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ABSTRACT 

 The Electromagnetism-Like Mechanism algorithm (EM) is a meta-heuristic 

algorithm designed to search for global optimum solutions using bounded variables. The 

search mechanism of EM mimics the attraction and repulsion behaviours in the 

electromagnetism theory. Despite its notable performance in solving various types of 

optimization problems so far, literature study shows that in general, EM is good at 

solutions exploration but shows insufficiency in its solutions exploitation ability. Based 

on this motivation, this study aimed to improve the EM by enhancing this algorithm with 

stronger exploitation mechanisms. This research can generally be divided into several 

phases. The first phase of the research was on the investigation of the relationship between 

the search step size and the convergence performance. The conventional EM was tested 

to search under two different extremes of step sizes separately, marked as EM with Large 

Search Steps (EMLSS) and EM with Small Search Step (EMSSS) respectively. 

Experiments on ten test functions showed that the EMSSS performed much detailed 

searches in all dimensions and yielded outcome with higher accuracies. The trade-off, 

however, was that the convergence processes were comparatively slower than the 

EMLSS. The second phase of the research focused on enhancing the EM. Two major 

breakthroughs were achieved. The first successful modification was recorded by 

introducing a Split, Probe and Compare (SPC) feature into the EM (SPC-EM). The SPC-

EM applied a dynamic strategy to regulate the search steps during the local search. The 

search scheme began with relatively bigger steps. The algorithm then systematically 

tuned the step sizes based on a specially designed nonlinear equation. This ensured 

accuracies of the final solutions returned, in the meanwhile not slowing down the whole 

convergence process by probing around too finely at the beginning of the search. The 

modified algorithm was tested out in the established test suite. The results indicated that 

SPC-EM outperformed the conventional EM and other algorithms in the benchmarking. 
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The second successful approach involved a more sophisticated modification, named as 

the Experiential Learning EM (ELEM). As the name suggests, the ELEM is enhanced 

with the ability to learn from previous search experience, from which a better projection 

can be generated for the coming iterations. The ELEM adapts a guided displacement 

mechanism with gradient information analysis and backtracking memory. A trail memory 

is generated as iterations go on, allowing the algorithm to backtrack previous search 

results and improvement rates. The experimental results showed that ELEM achieved 

solutions with relatively higher accuracies and precisions. The convergence performance 

of the ELEM showed significant superiority compared to that of a conventional EM and 

other algorithms in the benchmarking, including SPC-EM. In the final phase, the ELEM 

was implemented in the simulation to track the maximum power point (MPP) of a PV 

solar energy harvesting system with three serially connected PV panels. Simulations 

showed that the ELEM was successful in tracking the MPPs under uniform irradiance, 

non-uniform irradiance, and rapid changing shading conditions. With all the result 

indications in this research, it can be concluded that the enhanced EM proposed in this 

study showed improvements in solving numerical and engineering optimization 

problems. 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



v 

 

ABSTRAK 

 Algoritma Mimikan-Elektromagnetisme (ME) adalah sejenis algoritma carian 

meta-heuristik yang dicipta untuk mendapatkan nilai jawapan pengoptimuman global 

dengan menggunakan pembolehubah- pembolehubah tersempadan. Tatacara carian ME 

dihasilkan dengan memimik cara tarikan dan tolakan antara zarah-zarah dalam teori 

elektromagnetisme. Kajian kesusasteraan menunjukan bahawa ME mencatatkan prestasi 

yang memberangsangkan dalam menyelesaikan pelbagai jenis masalah pengoptimuman. 

Secara umumnya, ME menunjukkan kebolehan tinggi dalam proses penerokaan. Namun, 

keupayaannya dalam carian terperinci pula adalah sangat tidak memadai. Penyelidikan 

ini diadakan dengan motivasi untuk meningkatkan lagi prestasi keseluruhan ME dengan 

memantapkan lagi keupayaan carian terperincinya. Secara keseluruhannya, objektif dan 

pencapaian penyelidikan ini dapat dibahagikan kepada beberapa fasa. Dalam fasa yang 

pertama, siasatan telah dijalankan untuk mengenalpasti kaitan antara prestasi carian 

dengan sais langkah yang digunakan. Algoritma asli ME telah diuji secara berasingan 

dengan menggunakan dua sais langkah yang amat berbeza. ME bersais Langkah Besar 

ditandakan sebagai MELB manakala ME bersais Langkah Kecil pula ditandakan sebagai 

MELK. Kedua-dua algorithma ini diuji dengan menggunakan 10 masalah ujian yang 

kerap digunakan oleh penyelidik-penyelidik lain dalam kajian kesasteraan. Hasil 

eksperimen menunjukkan bahawa MELK berjaya mencapai jawapan yang lebih tepat. 

Sais langkah MELK yang kecil membolehkannya untuk melakukan carian yang lebih 

terperinci dalam semua dimensi. Namun, ini telah melambatkan proses cariannya 

berbanding MELB. Fasa kedua penyelidikan ini memberi fokus kepada kerja pemantapan 

ME. Dua kejayaan dicatatkan dalam usaha menambahkaikkan ME. Kejayaan pertama 

dicapai dengan menyerapkan tatacara yang dikenali sebagai Belah, Siasat, dan Banding 

(BSB) ke dalam ME (BSB-ME). BSB-ME menggunakan stratergi dinamik untuk 

menyelaraskan sais langkah dalam seksyen carian terperincinya, bermula dengan sais 
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langkah besar, dan kemudiannya dilaraskan dengan sistematik berdasarkan suatu 

persamaan tidak-berkadar-terus yang telah dibina khas untuk tujuan ini. Cara ini dapat 

memastikan jawapan yang lebih tepat boleh dijumpai tanpa perlu melengahkan masa 

dengan membuat carian yang terlalu terperinci pada awal proses. Algorithma yang 

diubahsuai ini telah diuji dengan menggunakan set ujian yang dibina sebelum ini. 

Perbandingan hasil eksperimen menunjukkan bahawa prestasi BSB-ME adalah lebih 

mantap berbanding dengan algoritma-algoritma lain yang terlibat sama dalam 

perbandingan tersebut. Kejayaan kedua dalam usaha penambahbaikan algorithma ME 

tercapai dengan cara memasukkan suatu tatacara yang lebih komplex. Tatacara ini diberi 

nama ME Berpandukan Pengalaman (MEBP). MEBP ini berkebolehan untuk 

mempelajari pengalaman daripada iterasi-iterasi carian sebelum. Berpandukan 

pengalaman yang dipelajari, tatacara ini dapat memberikan anggaran parameter yang 

lebih baik untuk iterasi carian yang akan datang. MEBP menggerakkan zarah-zarah 

berpandukan analisa informasi kecerunan dan memori jejakan kembali. Setiap carian 

meninggalkan kesan yang membolehkan algorithma tersebut untuk merujuk kembali 

kepada jawapan sebelum dan kadar kemajuan yang tercatat. Keputusan eksperimen 

menunjukkan bahawa MEBP berjaya mencapai jawapan yang lebih tepat berbanding ME 

asli dan algoritma-algoritma yang lain, termasuklah BSB-ME. Dalam fasa terakhir 

penyelidikan, MEBP diuji dalam simulasi untuk mengoptimasikan kuasa yang dihasilkan 

oleh sebuah sistem tenaga solar Photovoltaic. Keputusan eksperimen menunjukkan 

bahawa MEBP berjaya menjejaki titik-titik kuasa maksima sistem tersebut dalam keadaan 

sinaran cahaya seragam, sinaran cahaya tidak seragam, dan juga dalam keadaan 

berbayang yang berubah-ubah bentuk. Berdasarkan keputusan-keputusan yang 

ditunjukkan dalam kesemua eksperimen ini, dapat disimpulkan bahawa tatacara 

penambahbaikan ME yang dicadangkan dalam kajian ini menunjukkan kemajuan dari 

segi prestasi dalam menangani masalah optimasi berangka dan kejuruteraan.  
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CHAPTER 1: INTRODUCTION 

Ever since the creation of Genetic Algorithm (GA) in the early 1960’s (Mitchell, 

1999), the development of optimization algorithms have been evolving towards 

mechanisms with better exploration of global optima points. The general idea of a global 

optimization is to search for the ultimate best set of parameters within a feasible range to 

achieve an objective under a certain set of constraints without being trapped in local 

optimums. Throughout the years, the study of global optimization has proven to be 

imperative in many spectrums of practical science and engineering applications (Floudas 

& Gounaris, 2009). It is essential to achieve the global optima in many of these 

applications, as opposed to a local solution. Researchers around the globe have been 

coming up with numerous meta-heuristic search techniques to solve complex 

optimization problems and ways to improve them. Many of these techniques are 

population-based, such as genetic algorithm (GA), swarm optimization (Bratton & 

Kennedy, 2007), ant colony optimization (Neto & Filho, 2013), differential evolution (DE) 

(Storn & Price, 1997), and simulated annealing algorithm (Shojaee et. al., 2010) just to 

name a few. 

The electromagnetism-like mechanism algorithm (EM) is a meta-heuristic search 

technique first introduced by Birbil and Fang (2003). Inspired by the attraction and 

repulsion mechanism of electromagnetic charges, this algorithm is designed to solve 

unconstrained nonlinear optimization problems in a continuous domain. EM has been 

widely employed as an optimization tool in various fields due to its capability to yield 

well-diversified results and solve complicated optimization problems. Examples include 

Univ
ers

ity
 of

 M
ala

ya



2 

 

multi-objective inventory optimization (Tsou & Kao, 2007), machine tools path planning 

problems (Kuo et. al., 2015), flowshop scheduling problems (Naderi, 2010), robot 

manipulator problems (Yin et. al., 2011), and many more. Similar to many other global 

optimization algorithms, the search mechanism of EM can generally be segmented into 

its exploration and exploitation partitions. The exploration segment of EM pushes the 

particles to search for a better variety of possible solutions globally by moving the 

particles in accordance with the superposition theorem. The exploitation segment, on the 

other hand, involves a random line search procedure which gather the information around 

the neighbourhood of a particular solution.  

 

 The implementation of optimization algorithms and AI techniques has gained 

significant popularity among researchers in the field of renewable energy worldwide over 

the past few decades. Among the renewable energy sources, solar energy proves to be 

one of the best options due to the sustainability of the mechanisms and minimal 

environmental damage (Gholamalizadeh & Kim, 2014). The literature study indicates that 

the photovoltaic (PV) systems contributed approximately 14,000 MW of power 

generation in 2010. This number is predicted to grow to 70,000 MW by the year 2020 

(Seyedmahmoudian et. al., 2016). With the rapid hike in the demand of this clean energy, 

researchers around the world are now gathering their attention into ways to boost the 

energy conversion efficiency of the harvesting system. Research shows that the 

performance of a PV system can be affected by many factors, such as the efficiency of 

the materials used, integration setup and many more. However, it is found that the most 

economical way of improving the power generation system is by boosting it with a 

maximum power point tracking (MPPT) mechanism (Salam et. al., 2013). 
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1.1 Research Motivations and Problem Statement 

 

 Generally speaking, the performance of an optimization algorithm can be 

influenced by many factors. Among others is the search step setting. The size of the search 

steps employed in an optimization algorithm can show huge impact in the result accuracy 

and the general convergence performance of the algorithm itself (Yua et. al., 2015). Yet, 

in a conventional EM, the particle search is based on random step size and the iterations 

are terminated immediately upon achieving any comparatively better objective value 

(Birbil & Fang, 2003). The random search step size method is clearly not acceptable as it 

may jeopardize the balance between the efficiency of the convergence and the accuracy 

of the solution returned. A more systematic and dynamic search step size setting is 

essential to ensure the accuracy of the solution without compromising the convergence 

efficiency of the EM.  

 

 In term of solar energy harvesting, despite recent improvements in many PV 

utilization-related aspects such as cell efficiency, cost reduction, and structural integration 

to buildings (Zahedi, 2006), the inefficiency of PV energy conversion systems still proves 

to be a major obstacle to the extensive employment of PV power generation systems 

(Seyedmahmoudian, 2016). This impediment can be rectified by providing the system 

with the ability to accurately track the maximum power point. Therefore, this research is 

also motivated to develop a strong optimization algorithm to be implemented as a mean 

of MPPT to harvest the maximum output energy from PV arrays.  
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1.2 Research Objectives 

 

 The main objective of this research is to develop an enhanced electromagnetism-

like mechanism algorithm with a higher performance in terms of the solution accuracy 

and convergence efficiency. The enhanced electromagnetism-like mechanism algorithm 

is to be implemented in the simulation to track the maximum power point (MPP) of a 

photovoltaic solar energy harvesting system. The sub-objectives of the research are as 

outlined below: 

 

1 To investigate the effect of the search step size setting on the convergence 

behaviour and overall performance of the electromagnetism-like mechanism 

algorithm. 

2 To develop a local search scheme with a dynamic tuning mechanism for the 

electromagnetism-like mechanism algorithm. 

3 To modify and enhance the electromagnetism-like mechanism algorithm with an 

experience-based search strategy. 

4 To develop a maximum power point tracking scheme for a photovoltaic solar 

energy harvesting system adopting the advantages of the enhanced 

electromagnetism-like mechanism algorithm. 
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1.3 Significance of the Study 

 

 The contribution of this study is fourfold and can be summarized along the 

following lines. First, this study offers a clear exposure on the correlations between the 

size of the search steps employed in an optimization algorithm and the impact on the 

convergence performance of the algorithm. Employing larger and smaller search steps 

both demonstrated different advantages and shortcomings. Secondly, a regulated search 

step strategy is proposed in the local search phase of the EM. By dynamically tuning the 

search steps as iterations go, this strategy has significantly improved the output accuracy 

and the convergence performance of the EM. Thirdly, an experience-based EM is 

proposed. This experience-base EM is modified with the ability to analyse previous 

search experience and projects the adjustments on the scale and direction of the following 

search iterations. This unique strategy enhances the EM with a powerful solution 

exploitation capacity. Integrating with the strong global solutions exploration ability of 

the EM, the modified algorithm strikes a good balance in providing well diversified 

solutions with high final output accuracies. The experience-based search scheme can also 

be introduced into other global optimization algorithms to enhance the convergence 

performance. Finally, the enhanced EM contributes as a mean of an MPPT mechanism in 

a PV solar energy harvesting system. In time to come, this modified and improved EM 

can be implemented as a strong tool in solving global optimization problems in many 

other fields.  
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1.4 Research Scopes 

 

 This research covers the improvement of the EM in terms of the output accuracy 

and the efficiency of the convergence performance in comparison to a standard EM. The 

performances of the algorithms were validated and demonstrated in a test suite of 10 

common numerical optimization test problems, which included Rastrigin, Rosenbrock, 

Ackley, Shubert, Booth, Beale, Himelblau, Schaffer, Six-hump Camel, and De Jong’s 

Sphere test. The Rosenbrock, Rastrigin, Ackley, Sphere, and Shubert tests were set to be 

conducted in a 10 dimensional hypercube.  

 

 The efficiency of the convergence process was evaluated based on the number of 

iterations it took to reach its best achievable solution. All the algorithms and simulations 

were developed and conducted using Microsoft Visual Basic.Net 2008 software with a 

1.6GHz Intel Core i5 CPU with 4GB-RAM, in WIN-7OS. For the ease of analysis, 10 

particles were employed for all the variants of EM. The enhanced EM was implemented 

in the MPPT simulation of a PV solar harvesting system in VB.Net software. Simulations 

were carried out to evaluate the performance of the algorithm in tracking the global MPP 

of an array with serially connected PV panels under uniform solar irradiance and changing 

partial shading patterns. 
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1.5 Organization of the Thesis  

 

 The outline of this thesis can be divided into 5 major chapters. In Chapter 2, a 

comprehensive review on related literature is carried out. Previous research and recent 

developments by researchers around the world are studied and reported. Chapter 3 offers 

the methodologies on the research and experiments done in this study. The flow of the 

algorithms, the search mechanisms, the proposed modifications, and the designs of the 

experiments are discussed in details in this chapter. The simulation and computational 

experiment results of the algorithms are then benchmarked, compared and discussed in 

Chapter 4. Some explanations and discussions are included as well. In Chapter 5, an 

overall conclusion is drawn. 
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CHAPTER 2: LITERATURE REVIEW 

 

 Soft computing emerged as a computer science discipline in the mid-1950s. In the 

early stage, Herbert Simon, Allen Newell and Cliff Shaw conducted experiments in 

writing programs to imitate human thought processes (Krishnamoorthy & Rajeev, 1996). 

The experiments resulted in a program called Logic Theorist, which consisted of rules of 

already proved axioms. When a new logical expression was given to it, it would search 

through all possible operations to discover a proof of the new expression, using heuristics. 

The Logic Theorist was capable of solving quickly 38 out of 52 problems with proofs that 

Whitehead and Russell had devised (Newell et. al., 1963). At the same time, Shannon 

came out with a paper on the possibility of computers playing chess (Shannon, 1950). 

Though the works of Newell et al. (1963) and Shannon (1950) demonstrated the concept 

of intelligent computer programs, the year 1956 is considered the start of Artificial 

Intelligence (AI). In this year, the first conference on AI was organized by John McCarthy, 

Marvin Minsky, Nathaniel Rochester and Claude Shannon’s at Dartmouth College in 

New Hampshire. This conference was the first effort recorded in the field of machine 

intelligence. It was at that conference that John McCarthy, the developer of LISP 

programming language, proposed the term AI.  

 

 This chapter offers a thorough study of the literature related to the research. The 

initial part of the chapter reviews on the some of the most well established optimization 

algorithms in the literature. This is then followed up by a more specific study on the EM 

algorithm, its implementations and its modifications. A study on the test functions used 

in the research is also reported. The chapter then continues with the study on some of the 
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state-of-the-art artificial intelligence techniques used in solar energy harvesting systems, 

specifically in the scope of maximum power point tracking of the PV systems. 

 

 Artificial intelligence (AI) is a term that in its broadest sense would indicate the 

ability of a machine or artefact to perform the same kind of functions that characterize 

human thought. The term AI has also been applied to computer systems and programs 

capable of performing tasks more complex than straightforward programming, although 

still far from the realm of actual thought. According to Barr and Feigenbaum (1981) AI 

is the part of computer science concerned with the design of intelligent computer systems, 

i.e. systems that exhibit the characteristics associated with intelligence in human 

behaviour—understanding, language, learning, reasoning, optimizing, solving problems 

and so on (Kalogirou, 2003, 2007). A system capable of planning and executing the right 

task at the right time is generally called rational (Russel & Norvig, 1995). Thus, AI 

alternatively may be stated as a subject dealing with computational models that can think 

and act rationally (Luger & Stubblefield, 1993, Winston, 1994, Schalkoff et. al., 1992). 

AI has been used in many applications, resolving different types of complex problems 

(Charniak & McDermot, 1985, Chen, 2000, Nilsson, 1998, Zimmermann et. al., 2001). 

Over the year, the research and development in this field has produced a number of 

powerful tools, many of which are of practical use in engineering to solve categorization, 

prediction, and optimization problems normally requiring human intelligence. 
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2.1 Optimization Algorithms 

 

 Optimization techniques first came about in conjunction with problems linked 

with the logistics of personnel and transportation management. Typically, the problems 

were modelled in terms of finding the minimum cost configuration subject to all 

constraints be satisfied, where both the cost and the constraints were linear functions of 

the decision variables. Diverse mathematical programming methods (Nocedal & Wright, 

2000), such as fast steepest, conjugate gradient method, quasiNewton methods, sequential 

quadratic programming, were first extensively investigated. However, increasing 

evidences have shown that these traditional mathematical optimization methods are 

generally inefficient or not efficient enough to deal with many real-world optimization 

problems characterized by being multimodal, non-continuous and non-differential (Wu 

et. al., 2013). In response to this challenge, many population-based search algorithms 

(PBSAs) have been presented and demonstrated to be competitive alternative algorithms. 

Among them, the most classical, popular, and well-established is the genetic algorithm 

(GA) (Forrest, 1993, Goldberg & Holland, 1988). 

 

 

2.1.1 Genetic Algorithm 

 

 The genetic algorithm is one of the most popular technique there is in the field of 

AI for the purpose of optimization. The GA was envisaged by Holland (1975) in the 1970s 

as a stochastic algorithm that mimics the natural process of biological evolution (Rich & 

Knight, 1996). The GA is inspired by the way living organisms are adapted to the harsh 
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realities of life in a hostile world by evolution and inheritance. The algorithm imitates in 

the process, the evolution of population by selecting only fit individuals for reproduction. 

Therefore, a GA is an optimum search technique based on the concepts of natural 

selection and survival of the fittest. It works with a fixed-size population of possible 

solutions of a problem, known as individuals, which are evolving in time. Problem states 

in a GA are denoted by chromosomes, which are usually represented by numbers or 

binary strings. A GA utilizes three principal genetic operators: selection, crossover and 

mutation (Kalogirou, 2003, Konar, 1999, Deyi & Yi, 2007). The algorithm normally starts 

by creating an initial population of chromosomes in the space using a random number 

generator. This space, referred to as the search space, comprises all possible solutions to 

the optimization problem at hand. At every evolutionary step, also known as a generation, 

the individuals in the current population are decoded and evaluated according to a fitness 

function set for a given problem. These fitness values of the chromosomes are used in the 

selection of chromosomes for subsequent operations. The expected number of times an 

individual is chosen is approximately proportional to its relative performance in the 

population. 

 

 Crossover is performed between two selected individuals by exchanging part of 

their genomes to form new individuals. The mutation operator is introduced to prevent 

premature convergence. Every member of a population has a certain fitness value 

associated with it, which represents the degree of correctness of that particular solution 

or the quality of solution it represents (Kalogirou, 2003, Kalogirou, 2007). After the cross-

over and mutation operations, a new population is obtained and the cycle is repeated with 

the evaluation of that population (Holland, 1975, Goldberg, 1989, Davis, 1991). Figure 

2.1 shows the flow of the GA in the basic form. 
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Figure 2.1: The flow of genetic algorithm in its most basic form. 

 Genetic optimization, including continuous optimization and discrete 

optimization, or constrained optimization and unconstrained optimization, is frequently 

involved across all branches of engineering, applied sciences, and sciences. Some 

examples of those applications include configuring transmission systems (Pham & Yang, 

1993), generating hardware description language programs for high-level specification of 

the function of programmable logic devices (Seals & Whapshott, 1994), designing the 

knowledge base of fuzzy logic controllers (Pham & Karaboga, 1994), planning collision-

free paths for mobile and redundant robots (Ashiru et. al. , 1995, Wilde & Shellwa, 1997, 

Nearchou & Aspragathos, 1997), scheduling the operations of a job shop (Cho et. al. , 

1996, Drake & Choudhry, 1997), and many more. 

 

 The problem of finding the global optima of a function with large numbers of local 

minima arises in many applications. The methods that were first used in global 

optimization were deterministic techniques, mostly based on the divide-and-conquer 

principle. One typical algorithm which embodies such principle is the Branch-and-Bound 
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algorithm (BB) (Papadimitriou & Steiglitz, 1998). Because of the nature of the algorithm, 

where the sub-problems are produced by branching a problem entity, for instance variable, 

into its possible instances, the BB algorithm applies very well to cases where problem 

entities are discrete in nature. Thus, the first applications of BB to global optimization 

problems were devoted to discrete problems such as the Travelling Salesman Problem. 

Over the years, optimization algorithms have evolved into many new approaches with 

different features, such as the swarm-based optimization.  

 

 

2.1.2 Particle Swarm Optimization 

 

 Particle swarm optimization (PSO) algorithm is a population based stochastic 

optimization technique developed by Eberhart and Kennedy in 1995 (1995). Inspired by 

the information circulation and social behaviour observed in bird flocks and fish schools, 

this algorithm is a global optimization algorithm which is particularly suited to solve 

problems where the optimal solution is a point in a multidimensional space of the 

parameter. Inspiration from the natural analogues, i.e. schooling or flocking, translates to 

the property that agents or particles are characterized not only by a position, but also a 

velocity. The particles move around in the search space. The social interaction in a PSO 

is direct, as the movement of each particle is not only influenced by its best solution found 

so far, but it is also directed towards the best position found by other particles, be they a 

subset of particles or the whole swarm. The pseudocode of a standard PSO is as shown 

in Table 2.1. The flow of a standard PSO is as shown in Figure 2.2.  
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Figure 2.2: The flow of a PSO algorithm. 
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Table 2.1: PSO pseudocode. 

Particle Swarm Optimization 

Start 

Input PSO parameters and problem parameters 

Randomly initialise particles and compute objective values,  

   personal bests and swarm best. 

While stopping condition is not met 

Update velocities and positions of all particles by flight 

   equations 

Bound velocities to their limits 

Bound decision variables to their specified ranges. 

Compute objective values for all particles 

Update personal bests 

Update swarm best 

End While 

Display optimal decision vector and optimal objective  

End 

 

 Due to its meta-heuristic nature, which allows obtaining solutions also for non-

differentiable problems which may be irregular, noisy or dynamically changing with time, 

PSO algorithm has found a wide range of application in many domains of computer 

science and applied mathematics, such as for the calculation of neural network weights 

(Meissner et. al., 2006, Mohammadi & Mirabedini, 2014), time series analysis 

(Hadavandi, 2010), business optimization (Yang et. al., 2011) and many others. 

 

 

2.1.3 Ant Colony Optimization 

 

 Another well-known swarm-based optimization algorithm is the Ant Colony 

Optimization (ACO) (Dorigo & Stützle, 2004). Ant colony optimization is a probabilistic 

optimization technique, which is applicable where the task may be expressed as that of 

finding the best path along a graph (Dorigo, 1992, Dorigo & Stützle, 2004). Its inspiration 
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stems from the wandering behaviour of ants seeking a path between their colony and a 

source of food. In an ACO, the artificial ants iteratively build solutions to the problem at 

hand by moving from a candidate state to another and it selects the successive step, among 

all the possible ones based on the combination of two factors: the “attractiveness” of the 

move. Usually, it is inversely related to the distance to the destination point and the 

“pheromone trail”. The “attractiveness” is a meta-heuristic parameter determining the 

desirability of the state transition while the “pheromone trail” indirectly provides the 

social interaction among the agents.  

 

 Indeed, analogously to what happens in the behaviour of real ants, which, along 

their wander in search of food, deposit pheromones on the ground, so that future members 

of the colony will choose with higher probability paths that are marked by stronger 

concentrations of these substances, the fitness, also known as optimality, of a solution 

found by an artificial ant will be accompanied by an increase of the pheromone trail 

associated to that direction. Many other swarm-based optimization algorithms can be 

found in the literature, such as firefly algorithm, artificial bee colony, bat algorithm, krill 

algorithm, and many more (Yang, 2014). Indeed, unlike what happens with other nature-

inspired algorithms, evolution is based on cooperation and competition among 

individuals through generations (iterations): the flow of information among particles, 

which can be limited to a local neighbourhood or extended to the whole swarm is an 

essential characteristic of the algorithm. 
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2.1.4 Tabu Search  

 

 The Tabu search (TS) is a meta-heuristic search algorithm that incorporates 

adaptive memory and responsive exploration to avoid of local optima traps. The use of 

adaptive memory enables TS to learn and create a more flexible search strategy. TS differs 

from other stochastic optimization techniques by maintaining lists of previous solutions 

using a memory set. These lists help to guide the search process. The TS uses the lists to 

generate a sequence of progressively improving solutions through repetitive modification 

of current solutions. A neighbourhood search approach is used to explore the search space 

to escape local optima.  

 

 The memory in TS allows the algorithm to drive forward to discover regions that 

harbour one or more possible solutions, which can be better than the current best. A set 

of coordinated strategies such as intensification and diversification employed in TS allow 

the algorithm to explore the search space more thoroughly, thus helping to avoid 

becoming stuck in local optima. TS originally developed by Glover and Laguna (1997) 

has now become an established search procedure. The TS has been successfully applied 

to solve a wide spectrum of optimization problems, such as synthesis problems in 

chemical engineering and system modelling (Lin & Miller, 2004, Chelouah & Siarry, 

2005, Aytekin, 2008).  
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2.1.5 Artificial Immune System 

 

 The artificial immune system algorithm (AIS) is designed based on human body's 

defence process against viruses (Burke & Kendall, 2005). Similar to the GA, the AIS is a 

population-based algorithm. The operators in the AIS include duplication, mutation and 

selection. Starting from a randomly generated population, the solutions are reproduced 

with different rates. Considering the objective function, the better and more suitable 

solutions are duplicated in a relatively higher rate. The solutions are then mutated in 

different rates. Solutions with lower fitness values are mutated in a higher rate. Finally, 

the selection operator is applied to the whole population to produce a stronger group of 

solutions. The AIS is more intelligent than the GA due to the guided mutation and 

duplication operators. However, the setting of the mutation and duplication rates proved 

to be a challenge for AIS in practical applications. The details of the algorithm is well 

described by Kilic & Nguyen (2010). Several examples of AIS applications are shown in 

(Carrano et. al., 2007, Muhtazaruddin et.al., 2014, Junjie et. al., 2012). Often, hybrid 

meta-heuristics combine a certain global strategy with a local search, which iteratively 

tries to change the current solution to a better one, placed in some neighbourhood of the 

current solution. Some of these modified algorithms target to solve some specific 

optimization problems. Bean (1994) introduced a random-key approach for real-coded 

GA for solving sequencing problem. Subsequently, numerous researchers show that this 

concept is robust and can be applied for the solution of different kinds of COPs (Mendes, 

Goncalves, & Resende, 2005; Norman & Bean, 1999, 2000; Snyder & Daskin, 2006). 

Other applications of the random-key approach are in solving single machine scheduling 

problems and permutation flowshop problems using PSO by (Tasgetiren, Sevkli, Liang, 

& Gencyilmaz, 2004, 2007).  
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2.2 Electromagnetism-Like Mechanism Algorithm 

 

 The electromagnetism method (EM) is a population-based meta-heuristic 

algorithm introduced by Birbil and Fang (2003). This algorithm is designed to solve 

unconstrained nonlinear optimization problems in a continuous domain. Unlike 

traditional meta-heuristics, where the population members exchange materials or 

information between each other, in EM, each particle is influenced by all other particles 

within its population (Yurtkuran & Emel, 2010). Guided by the electromagnetism theory, 

the EM imitates the attraction-repulsion mechanism of electromagnetic charges in order 

to move sample points towards global optimality using bounded variables. In the 

algorithm, all solutions are considered as charged particles in the search space. The charge 

of each point relates to the objective function value, which is the subject of optimization.  

Better solutions possess stronger charges and each point has an impact on others through 

charge. Particles with better objective yields will apply attracting forces while particles 

with worse objective values will apply repulsion forces onto other particles (Wu et. al., 

2014). The exact value of the impact is given by Coulomb’s Law. This means that the 

power of the connection between two points will be proportional to the product of charges 

and reciprocal to the distance between them. Bigger difference in objective values 

generates higher magnitude of attraction or repulsion force between the particles. In other 

words, the points with a higher charge will force the movement of other points in their 

direction more strongly. Besides that, the best EM point will stay unchanged. The 

particles are then moved based on superposition theorem. Figure 2.3 shows an example 

of the total force, Fa applied on Qa by the repulsive force from Qb and attractive force 

from Qc.  
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Figure 2.3: Total force exerted on Qa by Qb and Qc 

 

 

2.2.1 EM Scheme 

 

          Similar to many other global optimization algorithms, the search mechanism of EM 

can generally be divided into its exploration and exploitation segments. The exploration 

segment of EM searches globally for a better variety of possible solutions by moving the 

particles in accordance with the superposition theorem. The exploitation segment, on the 

other hand, involves a random line search procedure which gather the information around 

the neighbourhood of a particular solution. There are five critical operations in EM, 

namely the initialization, the local search, the charge calculation, the force calculation, 

and the movement of particles.  
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2.2.1.1 Initialization 

 

           In the initialization stage of EM, the feasible ranges of all the tuning parameters 

(upper bound, uk and lower bound, lk) are defined. Then, m sample of initial particles are 

randomly picked from the feasible solution domain, each represents an N dimensional 

hyper-solid. Each value of dimension in each particle is assumed to be uniformly 

distributed inside the upper and lower bound (Dutta et. al., 2013). Immediately after the 

randomization of the solutions, the particles are evaluated based on the objective function 

of the optimization problem. In a maximization problem, the solution with the highest 

function value is identified as the best particle, while in the case of a minimization 

problem, particle with the lowest function value is marked as the best. 

 

 

2.2.1.2 Local Search 

 

           This step in EM is important to gather local information in the neighbourhood of 

a particle. The original local search procedure in a conventional EM employs a random 

line search within the feasible range of a solution. This simple line search involves a 

particle being tuned along its dimensions one by one, restricted by a maximum feasible 

random step length of 𝜆 ∈ (0, 1) (Zhang et. al., 2013). For each of the iterations, a new 

random step length is generated. The overall local search procedure is immediately 

terminated upon achieving any better objective value. This procedure is further discussed 

in details in Chapter 3. 
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2.2.1.3 Charge Calculation 

 

          The total force vector exerted onto each particle is calculated based on the 

Coulomb’s Law (Lee et. al., 2012). The charge of each particle is evaluated by its current 

objective value compared to the best particle in the iteration. The computed charge of a 

particle, qi , when compared to that of other particles, will determine if it is a repulsive or 

attractive force to the respective particles. The calculation of qi is shown in equation (2.1) 

𝑞𝑖 = 𝑒𝑥𝑝 (−𝑛
𝑓(𝑥𝑖)−𝑓(𝑥𝑏𝑒𝑠𝑡)

∑ (𝑓(𝑥𝑘)−𝑓(𝑥𝑏𝑒𝑠𝑡))𝑚
𝑘=1

) , ∀𝑖         (2.1) 

where n refers the total dimension of the particle and m denotes the population size. f(xbest) 

represents the objective value of the best particle. 

 

 

2.2.1.4 Force Calculation 

 

 With the charges calculated for all particles, the force generated by one particle 

onto another can be computed. According to the electromagnetic theory, the force of a 

particle onto another is inversely proportional to the square of the distance between the 

two particles and directly proportional to the product of their charges (Lee & Lee, 2012). 

The force vector for a particle can be determined using equation (2.2). 

 𝐹𝑖 = ∑ {
(𝑥𝑗−𝑥𝑖)

𝑞𝑖𝑞𝑗

||𝑥𝑗−𝑥𝑖||2
     𝑖𝑓    𝑓(𝑥𝑗)<𝑓(𝑥𝑖) 

(𝑥𝑖−𝑥𝑗)
𝑞𝑖𝑞𝑗

||𝑥𝑗−𝑥𝑖||2
     𝑖𝑓    𝑓(𝑥𝑗)≥𝑓(𝑥𝑖) 

      }𝑚
𝑗≠𝑖 , ∀𝑖     (2.2) 

where f(xj) < f(xi) denotes attraction and f(xj) ≥ f(xi) refers to repulsion.  
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2.2.1.5 Particle Movement 

 

 The movement stage in EM involves relocation of all particles but the best to a 

new location in space. The calculation for the movement of a particle is as shown in 

equations (2.3), where 𝜆  represents the global particle movement step length. It is a 

random value between 0 and 1, assumed to be uniformly distributed between the upper 

boundary (uk) and the lower boundary (lk ).  

 𝑥𝑘
𝑖  ←  𝑥𝑘

𝑖 +  𝜆𝐹𝑘
𝑖  ( 𝑢𝑘 −  𝑥𝑘

𝑖  )    ; 𝐹𝑘
𝑖 ≥ 0  

 𝑥𝑘
𝑖   ←  𝑥𝑘

𝑖 +  𝜆𝐹𝑘
𝑖  ( 𝑥𝑘

𝑖 −  𝑙𝑘)   ; 𝐹𝑘
𝑖 < 0    (2.3) 

 Holding the absolute power of attraction towards all other particles, the best 

particle of the iteration does not move (Cuevas et. al., 2012).  

 

 

2.3 Implementations of EM  

 

 EM has been widely employed as an optimization tool in various fields due to its 

capability to yield well diversified results and solve complicated global optimization 

problems (Naderi et. al., 2010). Though EM algorithm is initially designed for solving 

continuous optimization problems with bounded variables, the algorithm has been 

extended by a few authors to solve discrete optimization problems. Some recent 

successful applications of the EM include the unicost set covering problem (Naji-Azimi 

et. al., 2010), the uncapacitated multiple allocation hub location problem (Filipovi, 2011), 

automatic detection of circular shapes embedded into cluttered and noisy images (Cuevas 
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et. al., 2012) and feature selection problem (Su & Lin, 2011). In handling scheduling 

problems, an EM algorithm with discrete variables is discussed in Davoudpour and 

Molana (2008) for flow shop scheduling with deteriorating jobs. Another discrete 

Electromagnetism-like Mechanism algorithm is proposed by Liu and Gao (2010) for the 

distributed permutation flow shop scheduling problem. Debels et al. (2006) integrated a 

scatter search with EM for the solution of resource constraint project scheduling problems. 

Naderi, Zandieh, and Shirazi (2009) present an EM algorithm for the flexible flow shop 

scheduling problem with sequence-dependent setup times and transportation times with 

the objective of minimizing the total weighted tardiness. A similar approach is discussed 

in Naderi, Tavakkoli-Moghaddam, and Khalili (2010) for the flow shop problem with 

stage-skipping in order to minimize the makespan and the total weighted tardiness. The 

EM has also been used by Meanhout and Vanhoucke (2007) for the nurse scheduling 

problem and by Chang et al (2009) to solve a single machine scheduling problem. 

Because the EM algorithm was originally developed for the continuous search space, the 

papers discussed above made some adaptations for using the algorithm in the discrete 

domain. Those adaptations are mostly made by applying a random key representation to 

limit the required modifications of the original algorithm. A minority of the authors make 

the translation to a binary 0/1-representation (Bonyadi & Li, 2012; Javadian et al., 2009; 

Naji-Azimi et al., 2010) or maintain the permutation representation (Davoudpour & 

Molana, 2008; Liu & Gao, 2010). The choice of such representation schemes led to a 

modified version of the EM algorithm to allow the electromagnetic operators to work in 

discrete spaces. Moreover, most authors consider hybridizations of the EM algorithm 

with another meta-heuristic in order to benefit from the advantages of the individual 

approaches. 
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Table 2.2: Implementations of EM in solving optimization problems. 

Authors Year EM Implementation 

Naji-Azimi, Toth, & 

Galli 

2010 Set covering problems 

Lee & Chang 2010 PID controller optimization 

Yurtkuran & Emel 2010 Vehicle routing problems 

Javadian, Alikhani, & 

Tavakkoli-Moghaddam 

2008 Traveling salesman problems 

Tsou & Kao 2007 Multi-objective inventory optimization 

Yin et al & Abed et al 2011, 

2013 

Kinematic problems for robot manipulators 

Muhsen et. al 2015 Sustainable energy harvesting optimization 

Bonyadi & Li 2012 Knapsack problems 

Birbil & Feyzioglu 2003 Fuzzy relation equations solving 

Wu, Yang, & Wei 2004 Artificial neural network training 

Wu, Yang, & Hung 2005 Obtain fuzzy if–then rules 

Naji-Azimi et. al. 2010 Unicost set covering problem 

Filipovi 2011 Uncapacitated multiple allocation hub location 

problem 

Cuevas et. al. 2012 Automatic detection of circular shapes 

embedded into cluttered and noisy images 

Su & Lin 2011 Feature selection problem 

Davoudpour and 

Molana 

2008 Flow shop scheduling with deteriorating jobs 

Liu and Gao 2010 Distributed permutation flow shop scheduling 

problem 

Naderi, Zandieh, & 

Shirazi  

Naderi, Tavakkoli-

Moghaddam, & Khalili 

2009 

 

2010 

Flexible flow shop scheduling problem 

Meanhout & 

Vanhoucke 

2007 Nurse scheduling problem 

Chang et al 2009 Single machine scheduling problem 

 

 Literature also shows that EM has proven to be effective in solving COPs.  

Examples include set covering problems (Naji-Azimi, Toth, & Galli, 2010), PID 

controller optimization (Lee & Chang, 2010), vehicle routing problems (Yurtkuran & 

Emel, 2010), traveling salesman problems (Javadian, Alikhani, & Tavakkoli-

Moghaddam, 2008), multi-objective inventory optimization (Tsou & Kao, 2007), 

kinematic problems for robot manipulators (Yin et al, 2011, Abed et al, 2013), sustainable 

energy harvesting optimization (Muhsen et. al., 2015), and knapsack problems (Bonyadi 

& Li, 2012). The EMs are also implemented to optimize other AI algorithms, such as 
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fuzzy relation equations solving (Birbil & Feyzioglu, 2003), artificial neural network 

training for textile retail operations (Wu, Yang, & Wei, 2004), and also to obtain fuzzy 

if–then rules (Wu, Yang, & Hung, 2005). Table 2.2 summarizes the implementations of 

EM in solving various optimization problems. 

 

 

2.4 EM Modifications 

 

 The EM algorithm considers each particle to be an electrical charge. Subsequently, 

movement based on attraction and repulsion is introduced by Coulomb’s law. Obviously, 

it has the advantages of multiple search, global optimization, and simultaneously 

evaluates many points in the search space, which in turn make it more likely to find a 

better solution (Birbil & Fang, 2003, Lee & Chang, 2008, Tsou & Kao, 2007). Several 

modifications have been suggested in the literature on either the local or global search 

segment of the EM. Gol-Alikhani, Javadian, and Tavakkoli-Moghaddam (2009) 

presented a novel hybrid approach based on EM embedded with a well-known local 

search, called Solis and Wets, for continuous optimization problems. They compared 

related results with two algorithms known as the original and revised EM.  

 

 Chen et. al., (2007) and Chang et. al., (2009) proposed a hybrid Electromagnetism-

like Mechanism algorithm to solve the single machine earliness/tardiness problem. They 

hybridized the EM algorithm with the concepts of a genetic algorithm using a random-

key representation. The results indicated that hybridizing can provide a better solution 

diversity as well as a good convergence ability. The same problem is discussed in 
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Javadian, Golalikhani, and Tavakkoli-Moghaddam (2009), who present a discrete binary 

version of the EM algorithm, using a binary representation.  

 

 Tavakkoli-Moghaddam, Khalili, and Nasiri (2009) presented a hybridization of a 

simulated annealing (SA) and an EM algorithm for a job shop scheduling problem to 

minimize the total weighted tardiness. By hybridizing both meta-heuristics, the authors 

intended to overcome the limitations of both individual approaches. The SA provided a 

good initial solution, which the EM algorithm tried to improve. The same approach is 

studied by Jamili, Shafia, and Tavakkoli-Moghaddam (2011), who proposed a hybrid 

EM-SA algorithm for the periodic job shop scheduling problem. Roshanaei et al. (2009) 

used the EM algorithm with random key representation to solve the job shop scheduling 

problem with sequence-dependent setup times in order to minimize the makespan. Mirabi, 

Ghomi, Jolai, and Zandieh (2008) discussed a hybrid EM approach with simulated 

annealing for flow shop scheduling with sequence-dependent setup times with the 

objective of minimizing the makespan. 

 

 Three papers presented modified EMs for constrained optimization problems by 

Rocha and Fernandes (2008a, 2008b, 2009a). The first one presented the use of the 

feasible and dominance (FAD) rules in EM algorithm (Rocha & Fernandes, 2008a). The 

second one incorporated the elite-based local search in EM algorithm for engineering 

optimization problems and the FAD rules were used again (Rocha & Fernandes, 2008b). 

A self-adaptive penalty approach for dealing with constraints within EM algorithm was 

proposed in the third paper (Rocha & Fernandes, 2009a).  
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 Debels et al. (2006) integrated a scatter search with EM for the solution of resource 

constraint project scheduling problems. Their experimental results showed that the hybrid 

method of incorporating EM type analysis outperformed other methods in the 

benchmarking. Rocha and Fernandes (2008c, 2009b) modified the calculation of the 

charge and introduced a pattern-search-based local search. They also proposed a 

modification of calculation of total force vector (Rocha & Fernandes, 2009c). Many of 

the proposed combinations and modifications mentioned above have proven to be able to 

provide highly competitive results in their respective fields of applications. Table 2.3 

summarizes the modifications carried out onto the EM throughout the years. 

 

Table 2.3: Modification attempts on EM. 

Authors Year EM Modifications 

Gol-Alikhani, Javadian, 

and Tavakkoli-

Moghaddam 

2009 Hybrid EM embedded with Solis and 

Wets. 

Chen, Chang, Chan, and 

Mani 

Chang, Chen, and Fan 

2007 

2009 

Hybrid EM with genetic algorithm 

using a random-key representation. 

Javadian, Golalikhani, 

and Tavakkoli-

Moghaddam 

2009 Discrete binary version of the EM 

algorithm. 

Mirabi, Ghomi, Jolai, and 

Zandieh  

2008 Hybrid EM with simulated annealing. 

Tavakkoli-Moghaddam, 

Khalili, and Nasiri 

2009 

 

Hybrid EM with simulated annealing. 

Jamili, Shafia, and 

Tavakkoli-Moghaddam 

 

2011 Hybrid EM with simulated annealing. 

Roshanaei et al. 2009 EM with random key representation. 

Rocha and Fernandes 2008, 

2009 

FAD rules in EM, pattern-search 

based local search. 

Debels et al. 2006 EM with scatter search. 
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2.5 The Test Suite 

 

 In the field of soft computing and optimization, researchers always come up with 

different search mechanisms and analogical hypothesis. The introduction of many 

algorithms and the need for their computational comparison led to the development of 

standardized collections of benchmark problems. Over the decades, a rich literature on 

the test functions has been developed with the aim to test the convergence performance 

of the algorithms in different aspects. Such collections of test problems in local and global 

optimization can be found in the handbook by Floudas et al. (1999), the benchmark suite 

compiled by Shcherbina et al. (2003), as well as in other publications (Casado et al. (2003); 

Ali et al. (2005)). Often, confusing results limited to the test problems were reported in 

the literature in such a way that the same algorithm working for a set of functions may 

not work for any other set of functions. The IEEE Congress on Evolutionary Computation 

also introduced benchmark functions to be publicly available to the researchers for 

evaluating their algorithms. For unimodal functions, the convergence rates of the 

algorithm are more interesting than the final results of optimization. In contrast, for 

multimodal functions because of having lots of local optima, the ability of finding the 

optimum solution or a good near global optimum are more important than the 

convergence rate of the algorithm. After an extensive study, some of the most commonly 

used benchmark test functions are discussed in details in the subsections below. 
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2.5.1 Ackley Test Function 

 

 

Figure 2.4: 2-dimensional Ackley test function 

𝑓(𝑥) = −20 exp (−0.2√
1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − exp (

1

𝑑
∑ cos(2𝜋𝑥𝑖)𝑑

𝑖=1 ) + 20 + 𝑒 (2.4) 

 The Ackley function is a multi-model test function for minimization with multiple 

local optima. It has one global minima of 0 located at (0, … 0). The function poses a risk 

for optimization algorithms, particularly hill climbing type algorithms, to be trapped in 

one of its many local minima. The model of the test function is as shown in equation (2.4). 

The dimension can be set to any value, depending on the need of the test. Figure 2.4 shows 

an example plot of the function in 2 dimensions. This test function is usually evaluated 

on a hypercube from the range of -32.768 to 32.768 (Zhu & Kwong, 2010).  
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2.5.2 Beale Test Function 

 

 

Figure 2.5: Beale test function 

𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 + 𝑥1𝑥2
2)2 + (2.625 − 𝑥1 + 𝑥1𝑥2

3)2 (2.5) 

 The Beale function is a multi-model test function for minimization with multiple 

local optima. It has one global minima of 0 located at (3, 0.5). Equation (2.5) shows the 

model of the test function. This is a two-dimensional test function. It can be observed 

from Figure 2.5 that this function comes with sharp peaks at the corners of the input 

domain. This test function is usually evaluated on a square from the range of -4.5 to 4.5 

(Liang et. al., 2014).  
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2.5.3 Booth Test Function 

 

 

Figure 2.6: Booth test function 

𝑓(𝑥) = (𝑥1 + 2𝑥2 − 7)2 + (2𝑥1 + 𝑥2 − 5)2     (2.6) 

 The Booth function is a continuous, uni-model test function for minimization with 

a single local minima of 0 located at (1, 3), which makes it the global optima point. The 

model of the test function is as shown in Equation (2.6). The Booth function is a two-

dimensional test function. Figure 2.6 shows the plot of the function. This test function is 

usually evaluated on a square from the range of -10 to 10 (Yua et. al., 2015).  
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2.5.4 De Jong’s First (Sphere) Test Function 

 

 

Figure 2.7: 2-dimensional Sphere test function 

𝑓1(𝑥) =  ∑ 𝑥𝑖
2𝑑

𝑖=1          (2.7) 

 The De Jong’s Sphere function is a uni-model test function for minimization with 

a single local optima of 0 located at (0, … 0), which is also the global minima point. The 

model of the test function is as shown in equation (2.7). The dimension can be set to any 

value, depending on the need of the test. Figure 2.7 shows the plot of the function in 2 

dimensions. This test function is usually evaluated on a hypercube in the range of -5.12 

to 5.12 (Yua et. al., 2015).  
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2.5.5 Himmelblau Test Function 

 

 

Figure 2.8: Himmelblau test function 

𝑓(𝑥) = (𝑥1
2 + 𝑥2 − 11)2 + (𝑥1 + 𝑥2

2 − 7)2      (2.8) 

 The Himmelblau function is a multi-model test function with four global optima 

points. These global minima points share the same value of 0 and are located at (3, 2), (-

2.805118, 3.131312), (-3.779310, -3.283185), and (3.584428, -1.848126). The 4 global 

minima points can be observed from Figure 2.8. Search mechanisms that manage to find 

any of the 4 points are considered successful. This test function is suitable to test the 

diversification of the results returned by the algorithm. The model of the test function is 

as shown in equation (2.8). It has a fixed dimension of 2. This test function is usually 

evaluated on a square from the range of -6 to 6 (Yua et. al., 2015).  
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2.5.6 Rastrigin Test Function 

 

 

Figure 2.9: 2-dimensional Rastrigin test function 

𝑓(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋)𝑥𝑖]

𝑑
𝑖=1       (2.9) 

 The Restrigin function is a continuous, highly multi-model test function for 

minimization with multiple local optima. It has one global minima of 0 located at (0, … 

0). Equation (2.9) shows the model of the test function. The dimension of this test function 

can be set to any value, depending on the need of the test. Figure 2.9 shows the plot of a 

2-dimensional Rastrigin test function. It can be observed from Figure 2.9 that this function 

displays vary jagged and regularly distributed local optima points. The search algorithm 

can easily be trapped in any of the local minima points, especially the ones located in the 

immediate surroundings of the global minima. This test function is usually evaluated on 

a hypercube from the range of -5.1 to 5.1 (Zhu & Kwong, 2010).  
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2.5.7 Rosenbrock Test Function 

 

 

Figure 2.10: Rosenbrock test function 

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]𝑑−1

𝑖=1      (2.10) 

 The Rosenbrock function is a continuous uni-model test function for minimization 

with one local optima of 0 that is located at (1, … 1) in a narrow, parabolic valley. The 

dimension of this test function can be set to any value, depending on the need of the test. 

Figure 2.10 shows the plot of a 2-dimensional Rosenbrock test function. The Rosenbrock 

test function is also known as the Rosenbrock Valley or Rosenbrock Banana function, 

due to the shape of the plot-form as shown in Figure 2.10. This test is very popular for 

gradient based search algorithms. It is easy for the search algorithm to locate the valley, 

but it is difficult to converge to the minima point (Picheny et. al., 2013). Equation (2.10) 

shows the model of the test function. This test function is usually evaluated on a 

hypercube from the range of -5 to 10 (Zhu & Kwong, 2010).  
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2.5.8 Schaffer Test Function 

 

 

(a)       (b) 

Figure 2.11: Schaffer N2 test function 

𝑓(𝑥) = 0.5 +
𝑠𝑖𝑛2(𝑥1

2−𝑥2
2)−0.5

[1+0.001(𝑥1
2+𝑥2

2)]
2       (2.11) 

 There are multiple types of Schaffer test functions. Here, the Schaffer N2 test 

function is shown. The Schaffer N2 function is a minimization test function with many 

local optima and a single global minima point of 0 located at (0, 0). The model of the test 

function is as shown in equation (2.11). The Schaffer N2 is a 2 dimensional test function. 

Figure 2.11 (a) shows the plot of the function. To expose the details of it, the plot of the 

test function is shown in smaller input domain in Figure 2.11 (b). This test function is 

usually evaluated on a square from the range of -100 to 100 (Zhu & Kwong, 2010).  
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2.5.9 Shubert Test Function 

 

 

(a) (b) 

Figure 2.12: Shubert test function 

𝑓(𝑥) = [∑ 𝑖 cos((𝑖 + 1)𝑥1 + 𝑖)5
𝑖=1 ][∑ 𝑖 cos((𝑖 + 1)𝑥2 + 𝑖)5

𝑖=1 ]     (2.12) 

 The Shubert test function is a continuous, multi model test function for 

minimization with many global minima points at the value of -186.7309, each 

accompanied with many local optima points in the surroundings. Any search algorithm 

that return value of -186.7309 is considered successful. The model of the test function is 

as shown in equation (2.12). The Shubert function is a 2-dimensional test function. Figure 

2.12 (a) shows the plot of the function. To provide a better viewing on one of the global 

optima points, the plot is shown in smaller input domain in Figure 2.12 (b). This test 

function is usually evaluated on a square from the range of -10 to 10 (Liang et. al., 2014).  
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2.5.10 Six-Hump Camel Test Function 

 

 

(a) (b) 

Figure 2.13: Six-Hump Camel test function 

𝑓(𝑥) = (4 − 2.1𝑥1
2 + 𝑥1

4 3⁄ )𝑥1
2 + 𝑥1𝑥2 + (4𝑥2

2 − 4)𝑥2
2    (2.13) 

 The Six-Hump Camel test function is a continuous, multi model test function for 

minimization. As the name suggests, this test function comes with 6 local minima points, 

with 2 of them being the global minima at the value of -1.0316, located at (0.0898, -

0.7126) and  (-0.0898, 0.7126). Search algorithms that found any of the global optima 

points are considered successful. The model of the test function is as shown in equation 

(2.13). The Six-Hump Camel function is a 2-dimensional test function. This test function 

is usually evaluated on a rectangle of X1 ϵ (-3, 3) and X2 ϵ (-2, 2). Figure 2.13 (a) shows 

the plot of the function on its recommended input domain. Figure 2.13 (b) shows only a 

portion of this domain in order to allow easier viewing of the function's key characteristics. 
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2.6 Artificial Intelligence in Solar Energy 

 

 With the rapid growth in industries and the ever increasing sophistication of 

modern lifestyles, the world energy supply has been subjected to a tremendous strain. 

These phenomena have raised concerns over the energy security and environmental 

sustainability. With the fossil fuel diminishing, researchers around the globe are turning 

their attention into more renewable energy sources. Among others is the solar energy 

(Hoffert et al. 2002). Due to the abundance of the source itself, solar PV is envisaged to 

an important renewable energy source of the future.  

 

 A PV system is easy to install, almost maintenance free and shows minimal 

environmental damage (Cacciato et. al., 2010 & Esram et. al., 2006). Over the years, the 

development of PV energy harvesting systems has been very rapid. AI has been integrated 

into the harvesting systems research in order to maximize the energy they harvest. 

Research and development in the area of optimization of solar systems using various 

deterministic and stochastic techniques have been carried out to achieve an optimum 

performance on the design and operating parameters. In the literature, many optimization 

methods have been attempted onto PV systems in several different aspects. Many of the 

techniques proposed proved to be effective to further enhance the efficiency of the solar 

energy harvesting system.  
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2.6.1 PV Sizing 

 

 Sizing is an important part of PV systems design. It includes the optimal selection 

of the number of solar cell panels, the size of the storage battery, the regulator and the 

inverter to be used for certain applications at a particular site is an important economical 

task for electrification of villages in rural areas, telecommunications, refrigeration, water 

pumping and water heating. Besides being an economic waste, an oversized system can 

also adversely affect further utilization of solar cells and the pollution-free PV energy. At 

the present stage of development of PV technology, one of the impediments to a wider 

market penetration, as noted by Haas (1995), is the high investment costs of the PV 

systems.  

 

 The conventional methodology such as empirical, analytical, numerical, and 

hybrid for sizing PV systems have been used generally for a location where the required 

weather data and the information concerning the site where the PV system will be 

implemented are available. In such cases, these methods present a good solution for sizing 

PV systems, particularly the hybrid method. However, these techniques could not be used 

for sizing PV systems in remote areas, where the required data are not available. 

Moreover, the majority of the above methods need long-term meteorological data such as 

total solar irradiation, air temperature, clearness index, and wind speed for its operation. 

When the relevant meteorological data are not available, these methods cannot be used, 

especially in isolated areas. In order to overcome this issue, AI-based methods have been 

developed for sizing the parameters for PV systems (Mellit, 2006). Table 2.4 summarizes 

several representative examples of the use of AI in sizing PV systems. 
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Table 2.4: AI techniques in PV sizing. 

AI Technique Area Number of 

Applications 

Neural networks Sizing of stand-alone PV systems 5 

 Identification of the optimal parameter of PV 

system 

 

Neuro-fuzzy Sizing of stand-alone PV system 1 

Wavelet and neural 

network 

Sizing of stand-alone PV systems 1 

Genetic algorithm Sizing of hybrid system 6 

 Stand-alone wind-generator system  

 Optimization of control strategies for stand-

alone 

 

 Optimal allocation and sizing for profitability 

and voltage enhancement of PV systems. 

 

Neural network, 

neuro-fuzzy and 

genetic algorithm 

Sizing of stand-alone PV system in isolated 

area. 

 

2 

 

 Mellit et al. (2003) developed an ANN model for the estimation of the sizing 

parameters of SAPVs. In this model, the inputs are the latitude and longitude of the site, 

while the outputs are two hybridizing parameters. These parameters allow the designers 

of PV systems to determine the number of solar PV modules and the storage capacity of 

the batteries necessary to satisfy a given consumption. Senjyua et al. (2007) developed an 

optimal configuration of renewable energy generating systems in isolated islands using 

GAs. This methodology can be used to determine the optimum number of solar-array 

panels, wind turbine generators and batteries configurations.  Using the proposed method, 

the operation cost can be reduced by about 10% in comparison with diesel generators. A 

methodology for optimal sizing of standalone PV/wind-generator systems was also 

developed by Koutroulis et al. (2006), in which the proposed methodology is based on 

the GA and compared with linear programming. 

 

 Herna´ deza et. al. (2007) presented a systematic algorithm to determine the 

optimal allocation and sizing of photovoltaic grid-connected systems (PVGCSs) in 
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feeders that provide the best overall impact onto the feeder. The optimal solution is 

reached by a multi objective optimization approach. According to the authors, the results 

obtained with the proposed methodology for feeders found in the literature demonstrate 

its applicability. The method has been used to test alternative PVGCSs allocation 

solutions. Simulations in actual feeders prove that the allocation based on the stability 

voltage distribution achieves the best results. This outcome allows a significant reduction 

of computation involved in future analysis. 

 

 GAs and neural networks have been implemented to determine the optimal sizing 

parameters in isolated areas in Algeria (Mellit & Kalogirou, 2006). The GA optimized 

the sizing parameters relative to 40-sites in Algeria while the ANN predicted the optimal 

parameters in remotes area. Mellit (2006) developed a hybrid model to determine the 

optimal sizing parameters of PV system. This model combined neural network and fuzzy 

logic (FL) and is known as neuro-fuzzy. This neuro-fuzzy was implemented to predict 

the optimal sizing coefficient of PV systems based only on the geographical coordinates. 

Mellit et. al. (2004) also developed a suitable approach, which combines the ANN with 

wavelet analysis for the sizing of stand-alone PV. The proposed approach presents more 

accurate results compared with other methods in the benchmarking. 

 

 

2.6.2 Tilt Angle Optimization 

 

 The design and development of solar energy systems require the knowledge of 

variation and maximum utilization of solar radiation falling on it. The measured solar 
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radiation data are not available for large number of sites, so it has to be estimated. A 

number of techniques are used for the estimation of solar radiation on horizontal surface 

(Bakirci, 2009, Chandel et. al., 2005). The amount of solar radiation received by a PV 

panel or a solar thermal collector is mainly affected by its orientation and tilt angle (El-

Sebaii et. al., 2010. Demain et. al., 2013). 

 

 The solar panels are generally oriented toward the equator, in the northern 

hemisphere oriented toward south and in the southern hemisphere toward north. However, 

the solar radiation is site specific with diurnal, monthly, seasonal and yearly variations; 

as such the optimum tilt angle for capturing maximum solar radiation will also vary for 

every location. Armstrong and Hurley (2010) developed a methodology to determine 

optimum tilt angle for locations with frequently overcast skies using monthly sunshine 

duration data and hourly cloud observations. Under cloudy skies, it is important to 

differentiate between direct and diffuse radiation for a particular site to calculate optimum 

tilt angle so the Perez model is useful to calculate diffuse radiation falling on the solar 

panel. The tilt angle is changed from 0° to 90° in steps of 1°. The angle that maximizes 

the incident solar radiation on solar panel is selected by taking into account the 

frequencies of cloudy skies. The optimum tilt angle of grid connected and standalone PV 

system that matches the available solar radiation with the load demand is chosen. 

 

 In tilt angle optimization, solar radiation on the tilted surface is taken as the 

objective function. Several attempts have been carried out in the literature to solve this 

function using different optimization techniques like GA, SA and PSO. GA is suitable for 

optimization problems with complex nonlinear variables (Goldberg, 1989, Yadav et. al., 

2011). A population of points is used for starting the GA instead of a single design point 
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(Sivanandam & Deepa, 2008). As discussed in previous sections, a GA involves 

principles of natural genetics and natural selection. The natural genetics are reproduction, 

crossover and mutation which are used in the genetic search procedure (Beasley et. al., 

1993). Talebizadeha et. al. (2011) used GA to calculate hourly, daily, monthly, seasonally 

and yearly optimum tilt angle in Iran. The report showed that the optimum hourly surface 

azimuth angle is not zero and optimum tilt angles of photovoltaic panels and solar 

collector are found to be the same. The solar energy gain at daily, monthly optimum tilt 

angle is found to be the same but energy gain is found to show significant increment with 

hourly tilt angle adjustment. Therefore, it was concluded that hourly variation of tilt angle 

increased the harvested energy. Čongradac et. al. (2012) used GA and FL process to track 

the optimum blind tilt angle with angle rotated in anticlockwise and clockwise direction 

to maintain an accurate brightness in a room. This process is useful in maintaining user’s 

comfort and saving energy. 

 

 SA derives its name from the simulation of thermal annealing of critically heated 

solids and is used to find the global optimum with a high probability of objective functions 

which contain numerous local minima. Chen et al. (2005) implemented SA in a fixed 

solar cell panel system. The SA was implemented as a one-off calculation for the optimum 

installation angle of the PV panels. The PSO, on the other hand, is a stochastic technique 

for exploring the search space for optimization with swarms of particles (Kennedy & 

Eberhart, 1995).  Optimum angles can be tracked using PSO, in which the convergence 

is achieved by particles in multi-dimensional space, carrying a solution and a velocity 

value (Beasley et. al., 1993). Chang (2010) used the varying inertia weight methods (Shi 

& Eberhart1998a, 1999b) and proposed a particle-swarm optimization method with 

nonlinear time-varying evolution (PSO-NTVE) to determine the optimum tilt angles of 

PV modules for the maximization of output energy of the modules in Taiwan. The yearly 
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optimal angles were found to be 18.16° and 17.30°, 16.15°, 15.79°, 15.17°, 17.16°, 15.94° 

for Taipei, Taichung, Tainan, Kaosiung, Hengchung, Hualian, and Taitung respectively. 

The PSO-NTVE proved to converge quicker than the other variants of PSO and the GA 

in achieving an optimum solution.  

 

 

2.6.3 PV Control, Modelling, and Simulation  

 

 A PV system can be combined with another energy source, such as wind, 

hydrogen and diesel, in order to develop a hybrid PV system. Modelling and simulation 

of a PV system is a very important step before implementation. Literature shows several 

AI in the modelling and control of PV systems and its components, which are based on 

analytical or numerical simulation. 

 

 Tawanda (2000) presented a method for predicting the long-term average 

conventional energy displaced by a PV system comprising a PV array, a storage battery, 

some power conditioning equipment with maximum-power tracking capability and an 

auxiliary power facility. System simulation is done over the average day of the month. A 

PV stand-alone system model is developed by Joyce et al. (2001). This model is based on 

current–voltage characteristic of the modules and on a linear relation between the battery 

voltage and the state of charge (SOC). The model was validated against experimental data 

of a 150Wp stand-alone system in Portugal and the performance of the measured system 

and model results were compared. A variable structure controller used to regulate the 

output power of SAPV hybrid generation system was proposed by Valenciaga et. al. 
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(2001). The proposed system comprises PV and wind generation, a storage battery bank 

and a variable monophasic load. 

 

 Karatepe et al. (2006) used a neural network-based approach to improve the 

accuracy of the electrical equivalent circuit of a PV module. The equivalent circuit 

parameters of a PV module mainly depend on solar irradiation and temperature. The 

dependence on environmental factors on the circuit parameters was investigated by using 

a set of current–voltage curves. It was shown that the relationship between them is 

nonlinear and cannot be easily expressed by any analytical equation. Ohsawa et al. (1993) 

applied an ANN for the operation and control of PV-diesel systems. El-Tamaly and 

Elbaset (2006) presented a complete study, from the reliability point of view to determine 

the impact of interconnecting PV/Wind Energy System (WES) Hybrid Electric Power 

System into utility grid (UG). Four different configurations of PV/WES/UG were 

investigated and a comparative study between these four different configurations was 

carried out. The overall system was divided into three subsystems, containing the UG, 

PV and WES. A generation capacity outage table was built for each configuration of these 

subsystems. The capacity outage tables of UG, PV/UG, WES/UG and PV/WES/UG were 

calculated and updated to incorporate their fluctuating energy production. A FL technique 

was used to calculate and assess the reliability of the system. 

 

 A simple PV simulation model capable of predicting the average PV output as a 

function of array geometry (slope and azimuth) and location was described and validated 

by Perez et al. (2004). This simulation tool is used in the Clean Power Estimator–a web-

based PV economic evaluation program available in the US and several other countries. 

Results showed that the simplified model accurately captures array geometry, seasonal 
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and daily PV output variations when benchmarked against a standard PV simulation 

program. A methodology to estimate PV electrical production from outdoor testing data 

was presented in by Rosell & Ibanez (2006). The method was based on the adjustment of 

the well-known I–V model curve and a new maximum-power output expression. The 

method was developed to provide PV module performance parameters for all operating 

conditions encountered by typical PV systems. 

 

 

2.7 Maximum Power Point Tracking 

 

 Photovoltaic cells are semiconductor devices that convert light energy into 

electricity at the atomic level through the photovoltaic effect (Wang et al., 2011). 

However, the low energy conversion efficiency of PV cells remains a barrier to the 

prolific growth of the PV energy source (Boukenoui et. al., 2016). For this reason, it is 

necessary to design a power converter that is not only high in efficiency, but also 

optimizes the energy production of the PV generator and ensures the harvest of maximum 

energy under any weather conditions. Although enormous amount of work has been 

carried out to improve the solar cell fabrication technologies (Parida et. al., 2011, Han et. 

al., 2011, Krebs, 2009), literature shows that the most economical way to boost the power 

yield of a PV system is by improving its maximum power point tracking (MPPT) 

capability (Seyedmahmoudian, 2016).  
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2.7.1 The Basic Idea 

 

 The aim of employing an MPPT mechanism is to ensure that at any environmental 

condition, particularly solar irradiance and temperature, maximum power is extracted 

from the PV modules. This is achieved by matching the MPP with its corresponding 

converter’s operating voltage and current. A typical MPPT mechanism works as follows. 

First, the current and voltage of the PV array are sensed by a current and voltage sensors, 

respectively. These values are fed into an MPPT block that computes the MPP at that 

particular sampling cycle. Once found, the MPPT block delivers the reference values for 

the current (I) and voltage (V). These are the values that need to be matched by converter; 

in most cases, only one variable is selected and it is usually the voltage (Liu et. al., 2015). 

Then, the measured power value is compared with the present value of MPP. If there is a 

difference between the two, the duty cycle of the converter is adjusted in an effort to 

reduce the difference. The control is usually carried out by a PI or hysteresis controller. 

In certain cases, the duty cycle is determined directly without PI controller. Once the 

measured equals the reference values, the maximum power from the array is extracted. 

The basic block diagram of a typical PV system with MPPT is shown in Figure 2.14. 

 

Figure 2.14: Basic MPPT with converter. 
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 An accurate modelling is crucial for the simulation of the solar harvesting system. 

Single diode model is found to be the most common mathematical representation of the 

solar cell in the literature, even though there are other models available which uses 

additional diodes to represent the recombination effects of charge carriers (Liu et. al., 

2015). In this work a single diode model is considered for the simulation of PV system as 

it is effective and provides a good compromise between simplicity and accuracy 

(Bounechba et. al., 2016). The equivalent circuit of this model is given in Figure 2.15. 

 

Figure 2.15: The single diode model. 

 The output current of photovoltaic cell is given below: 

𝐼 =  𝐼𝐿 − 𝐼𝐷 −
𝑉+𝑅𝑆𝐼

𝑅𝑃
=  𝐼𝐿 − 𝐼𝑆 [exp (

𝑉+𝑅𝑆𝐼

𝑉𝑡𝑎
) − 1] −  

𝑉+𝑅𝑆𝐼

𝑅𝑃
                       (2.14) 

Where, 𝑉𝑡 =
𝑘𝑇

𝑞
. 

 The photocurrent of PV cell is proportional to solar irradiation and is also 

influenced by the temperature according to the following equation: 

𝐼𝐿 =  (𝐼𝐿𝑛 + 𝐾𝑖∆𝑇)
𝐺

𝐺𝑛
                                               (2.15) 

 The diode saturation current Is is given by 

𝐼𝑠 =  𝐼𝑠𝑛 (
𝑇𝑛

𝑇
)

3
exp [

𝑞𝐸𝑔

𝑎𝑘
(

1

𝑇𝑛
−

1

𝑇
)]                                        (2.16)  
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𝐼𝑠𝑛 =  
𝐼𝑠𝑐𝑛

exp(
𝑉𝑜𝑐𝑛

𝑎𝑉𝑡𝑛
)−1

                                            (2.17) 

 The remaining two unknown parameters Rs and Rp in (2.14) can be obtained 

iteratively by making the maximum power calculated from model to coincide with peak 

power from the datasheet at MPP. By varying V the corresponding values of I are obtained 

by solving (2.14) using numerical methods. Then, the P-V curve of the PV module can 

be obtained directly by multiplying Ns series connected PV cells with voltage, V and Np 

parallel connected cells with current, I.  

 

 

2.7.2 The P-V and I-V Curve 

 

 A PV module can be modelled as a current source that is dependent on the solar 

irradiance and temperature. The complex relationship between the temperature and 

irradiation results in a non-linear current–voltage characteristics. An example of I–V and 

P–V curve for the variations of irradiance and temperature is shown in Figure 2.16(a) and 

(b), respectively. It can be observed that the MPP is not a fixed point; it fluctuates 

continuously as the temperature or the irradiance does. Due to this dynamics, the 

controller needs to track the MPP by updating the duty cycle of the converter at every 

control sample. A quicker response from the controller to match the MPP will result in 

better extraction of the PV energy and vice versa. 
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(a)       (b) 

Figure 2.16: Example of I-V and P-V cures under different temperature and solar 

irradiance. 

 

 

2.7.3 Partial Shading Condition (PSC) 

 

 The MPP tracking becomes more complicated when the entire PV array does not 

receive uniform irradiance. This condition is known as partial shading. Typically, it is 

caused by the clouds that strike on certain spots of the solar array, while other parts are 

left uniformly irradiated (Di Piazza & Vitale, 2012). Another source of partial shading-

like characteristics is exhibited by module irregularities; a common example would be 

the presence of cracks on one or more modules of the PV array. Figure 2.17(a) shows a 

PV array in a typical series–parallel configuration. Commonly, a bypass diode is fitted 

across the module to ensure that hot spot will not occur if that module is shaded. In this 

example, three modules are connected in a single string. In a normal condition, when the 

solar irradiance on the entire PV array is uniform, the P–V curve exhibits a unique 

maximum power point as shown in curve 1 of Figure 2.17(c). However, during partial 

shading in Figure 2.17(b), the difference in irradiance between two modules activates the 
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bypass diode. As a result, two stairs current waveform is created on the I–V curve, while 

the P–V curve is characterized by multiple maxima points, as depicted by curve 2 of 

Figure 2.17(c). The MPPT needs to ensure that the tracked maximum point is the true 

global peak, not one of the local maxima. If the algorithm is trapped at the local peak, 

significant loss in power incurs. 

 

Figure 2.17: Example of the condition of a PV array under (a) uniform irradiance and 

(b) partial shading condition. The resulting I-V and P-V curves is shown in (c). 

 

 

2.7.4 AI in MPPT 

 

 Conventional MPPT operates by sensing the current and voltage of the PV array; 

the power is calculated and accordingly the duty cycle of the converter is adjusted to 

match the MPP. With the recent availability of vast and low cost computing power, MPPT 
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based on soft computing (SC) techniques are attracting considerable interests. The 

guiding principle of SC is exploiting the tolerance for imprecision, uncertainty, partial 

truth and approximation to achieve tractability, robustness and low cost solution. The 

most important feature of SC is the flexibility of the algorithms, which allows for the 

development of robust MPPT schemes. This is made possible as SC techniques are fully 

digital. Furthermore, SC is known to be very effective in handling non-linear complexities.  

 

 Since MPPT problem primarily centres on its non-linear PV curve (Ioulia & 

Purvins, 2012, Amrouche et. al., 2012), it is natural to solve it using SC techniques. In 

addition, due to the adaptive nature of their algorithms, SC is envisaged to be easily 

adaptable to cater for the adverse environmental conditions such as partial shading 

(Ishaque et. al., 2011) and rapid changes in irradiance (Kobayashi et. al., 2004). Many SC 

based MPPT schemes have been developed over the years. Examples include Perturb and 

Observe (P&O) (Jainand & Agarwal, 2004, Femia et. al., 2005), GA (Mohajeri et. al., 

2012, Shaiek et.al., 2013), Hill Climbing (HC) (Koutroulis et. al., 2001, Xiao & Dunford, 

2004), Artificial Neural Network (Hiyama et. al., 1995, Al-Amoudi & Zhang, 2000), and 

Incremental Conductance (IC) (Kuo et. al., 2001, Kobayashi et. al., 2003, Lin et. al., 2011). 

They are widely employed in many commercial dc–ac inverters (for grid-tied) and dc–dc 

converters (for battery chargers). Despite having the same objectives, the various MPPT 

techniques differ markedly in terms of convergence speed, accuracies and cost 

effectiveness. 
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2.7.4.1 Perturbation and Observation (P&O) 

 

 The perturb and observe (P&O) algorithm is one of the most commonly used 

MPPT mechanisms in practice because of its ease of implementation (Verma et. al., 2016). 

The method is an iterative approach, in which operating point of solar PV oscillates 

around the maximum power point. This method has a structure of a simple regulation, 

and few parameters of measurement. The PV voltage and current are measured initially 

and the corresponding power, P is calculated. Then, as the name suggests the 

conventional P&O algorithm operate periodically by perturbing the duty cycle of the DC–

DC converter and comparing the PV output power with that of the previous perturbation 

cycle. If the power is increasing the perturbation will continue in the same direction in 

the next cycle, otherwise the perturbation direction will be reversed (Jubaer & Zainal, 

2015, Saravanan & Ramesh, 2015). The slope is obtained using Equation (2.18). 

𝑑𝑃

𝑑𝑉𝑃𝑉
(𝑛) =  

𝑃 (𝑛)−𝑃(𝑛−1)

𝑉𝑃𝑉(𝑛)− 𝑉𝑃𝑉(𝑛−1)
                                                                                (2.18) 

where 
𝑑𝑃

𝑑𝑉𝑃𝑉
(𝑛) is actual derivative of power and voltage of PV, 𝑃(𝑛) is actual power, 

𝑃(𝑛 − 1)is previous power, 𝑉𝑃𝑉(𝑛) is actual voltage and 𝑉𝑃𝑉(𝑛 − 1) is previous voltage. 

If V>Vmpp the operating point slides towards left and when V<Vmpp the operating point 

slides towards right of the curve, where Vmpp is voltage at maximum power point. The 

P&O algorithm is shown in Figure 2.18.  Univ
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Figure 2.18: The flow of P&O algorithm. 

 The benefit of the P&O method is that it is easy to implement. The simple structure 

of the process and few required parameters make these algorithms widely used in 

commercial systems (Zhang, 2008). The limitations of this method include relatively 

slower response speed, oscillation around the MPP in steady state condition and tracking 

deviation from the maximum operating point under fast changing environmental 

condition. In the P&O method, treatments have to be in opposite direction when the 

additive contribution is negative. Under these conditions, the tracker seeks the maximum 

of power permanently. Nevertheless, the change in power is only considered as a 

perturbation of the output voltage and the algorithm does not compare this voltage with 

the present MPP voltage. As a consequence, when the MPP is reached, the tracker will 

oscillate around it, resulting in a loss of PV available power, especially in shaded 

atmospheric conditions with constant or slowly varying changes. Thus, the setting of the 
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perturbation size is important to provide good performance in both steady state and 

dynamic response (Liu, 2008, Xiao & William, 2004).  In addition, in presence of rapidly 

changing atmospheric conditions e.g. occurrence of clouds, the P&O algorithm can be 

confused. It is noted that due to the change of the solar radiation, the P&O algorithm 

deviates from the MPP until a slow solar radiation change occurs or settles down (Sera 

et. al., 2007).  

 

 Over the years, many variations of the P&O method were proposed by various 

authors. In (Abdelsalam et. al., 2011, Al-Amoudi & Zhang, 1998, Zhang et. al., 2000), 

adaptive P&O methods were presented. The systems operated according to the previous 

data. It used the previous duty ratio as the perturb step rather than PV array current or 

voltage. The main disadvantage in this method is the computational problem for heavy 

loading conditions. A multivariable P&O is proposed by Petrone et. al. (2011). This 

method uses many perturb variables instead of one variable. It is used to extract more 

power from the PV. The system will manage the variables and perturbations which lead 

to the best operating point in steady state conditions. The drawback of the system is the 

complexity when compared to conventional method. In the research conducted by 

Khaehintung et. al. (2006), a variable perturbation size adaptive P&O was proposed. This 

method was mainly used to track the maximum power under rapidly changing condition. 

An estimated perturb–perturb (EPP) method was proposed by Ansari et. al. (2009). The 

EPP method used two operating modes, mode 1 for estimate process and mode 2 for 

perturbation. The name “estimated-perturb–perturb” gives all information about the 

principle of this method. After two perturbations (mode 2 in which determination of next 

PV voltage is done) there is one estimation mode in which controller stops tracking MPP 

by keeping PV voltage constant and measures only the power variation or voltage 

variation due to environmental changes for the next control period. 
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2.7.4.2 Hill Climbing  

 

 Similar to P&O, the hill climbing (HC) method involves a perturbation in the duty 

ratio of the power converter. P&O, on the other hand, involves perturbation in terminal 

voltage to perform MPPT (Teulings et. al., 1993, Koutroulis et. al., 2001). There are 

several authors who focused their work on hill climbing MPPT (Teulings et. al., 1993, 

Hashimoto et. al., 2000, Koutroulis et. al., 2001, Veerachary et. al., 2001, Xiao & Dunford, 

2004). The methodology is explained in the Table 2.5.  

 

Table 2.5: Methodology of hill climbing method. 

 

 HC tunes the duty ratio of the power converter periodically, and then it compares 

the PV output power with that of the previous cycle of perturbation (Xiao & Dunford, 

2004). When PV power and PV voltage increase at the same time and vice versa, a 

movement step size, ΔD will be added to the duty cycle, D to generate the next cycle of 

movement in order to force the operating point to move towards the MPP. When PV 

power increases and PV voltage decreases and vice versa, the movement step will be 

subtracted for the next cycle of tuning (Ngan & Tan, 2011). This process will be carried 

on continuously until MPP is reached. It should be noted that, the system will also 

oscillate around the MPP throughout this process, and this will result in loss of energy. 

Therefore, reducing the movement step size will minimize these oscillations but it slows 

down the MPP tracking system (Fangrui et. al., 2008, Marcelo & Ernesto, 2009). 

Perturbation in 

terminal voltage 

Change in power Next perturbation 

Positive Positive Positive (increment in duty ratio ‘𝛿’ ) 

Positive Negative Negative ( decrease in duty ratio ‘𝛿’ ) 

Negative Positive Negative ( decrease in duty ratio ‘𝛿’ ) 

Negative Negative Positive (increment in duty ratio ‘𝛿’ ) 
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 The advantages of this algorithm are simplicity and ease of implementation. 

However, HC has limitations that reduce its MPPT efficiency. One such limitation is that 

as the amount of sunlight decreases, the P–V curve flattens out. This makes it difficult for 

the algorithm to discern the location of the MPP, owing to the small change in power with 

respect to the movement of the voltage. Another fundamental drawback of HC is that it 

cannot determine when it has actually reached the MPP. Instead, it oscillates around the 

MPP, changing the direction of the movement after each ΔP measurement. Also, it has 

been shown that HC can exhibit erratic behaviour under rapidly changing irradiance 

levels (Chee Wei et. al., 2007). Femia et. al. (2005) optimized the sampling process while 

D’Souza & Lopes (2005) simply applied a high sampling rate. Xiao and Dunford (2004) 

introduced a toggling between the traditional hill climbing algorithm and a modified 

adaptive hill climbing mechanism to prevent deviation from the MPP. Kasa et. al. (2005) 

estimated the PV array current from the PV array voltage, eliminating the need for a 

current sensor. Kim et. al. (1996) found out that digital signal processor or microcomputer 

control is more suitable for hill climbing and P&O even though discrete analogue and 

digital circuitry can be used. 

 

 

2.7.4.3 Genetic Algorithm and MPPT  

 

 GA is categorized under the evolutionary algorithm. As mentioned in the previous 

sections, it is a problem-solving techniques based on principles of biological evolution. 

In the process, some inputs are assigned as chromosomes, which are recombined or 

mutated and then tested to fulfil a predefined fitness function. Since the objective of the 
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evolution is to create a better species than its predecessor, GA finds the best solution by 

a random combination of different genes.  

 

 The initial set of chromosome is defined as the searching parameters of the 

optimization problem. In case of MPPT, such parameters can be either voltage or duty 

cycle. The initial parent population is shown in equation (2.19). 

𝑋𝑖 =  [𝑃𝑎𝑟𝑒𝑛𝑡1  ∙  𝑃𝑎𝑟𝑒𝑛𝑡2  ∙∙∙∙ 𝑃𝑎𝑟𝑒𝑛𝑡𝑁]                                       (2.19) 

where n is the population size, and each parent represents initial voltage values in which 

the algorithm starts the evaluation process. Chromosome can be defined in a real or binary 

coded numbers. The objective function f(xi) is the generated power at the output of the 

PV system, which is the PV curve equation (Kumar et. al., 2015).  

 

 For the case of MPPT, it is important to decide the length of the chromosome 

because a larger population requires less time to converge but such generation increases 

processing time. Next, the algorithm utilizes the crossover and mutation operation to 

change the DNA of the chromosomes, creating new generations of chromosomes. This 

new generation is evaluated through fitness function and is assigned a new fitness value. 

After consecutive iteration chromosome with the highest fitness value is chosen as the 

optimized parameter for MPP.  

 

 In the research conducted by Mohajeri et. al. (2012), an MPPT controller was 

developed based on the GA approach, and the proposed method was verified through two 

different case studies, each presenting different PS patterns. The verification part of both 

studies is limited to simulation validations. In another study by Shaiek et. al. (2013), the 
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performance of the GA-based MPPT method was compared with conventional P&O and 

the incremental conductance method under two predefined partial shading conditions 

(PSCs). As in previous work, the verification part is limited to simulations. In addition, 

the mutation steps are eliminated in the report. Therefore, the stochastic characteristic of 

the designed GA is diminished. Daraban et. al. (2014) integrated the P&O method with 

GA, reduced the population size, and decreased the number of iterations. The proposed 

method shows a faster convergence, as well as a more accurate output, for a PV system 

under various PSCs.  

 

 The GA has also been used in hybrid methods to improve the performance of other 

MPPT techniques. For instance, in the research conducted by Messai et. al. (2011), the 

GA was used to tune the parameters of a fuzzy logic controller (FLC) used in MPPT 

under PSCs where GA chooses optimally and simultaneously both membership functions 

and control rules for the FLC. GA-FLC-based MPPT is better than the ones obtained with 

classical P&O controller, since the response time in the transitional state is shortened and 

the fluctuations in the steady state are considerably reduced. The performance of the fuzzy 

logic controller improved as parameters, such as rule base and membership functions, are 

tuned to their optimized values by using GA techniques. In another study, the GA method 

was used as a tool to train the ANN system (Kulaksız & Akkaya, 2012). In this approach, 

the GA trained ANN provided the reference voltage corresponding to the maximum 

power for any environmental changes.  
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2.7.4.4 Artificial Neural Network (ANN) 

 

 An ANN is a computational model that uses interconnected artificial neurons to 

mimic the ability of biological brains. Primarily, it comprises of an input, hidden and 

output layers. A possible structure of ANN, tailored for MPPT is shown in Figure 2.19. 

The input variables can be PV array parameters such as irradiance, temperature, wind 

speed or any combination of these. The neurons in the input layer are responsible only 

for transmitting the input information to the hidden layer. By using large amounts of 

training data, the ANN continually adjusts the weighting and bias values, allowing the 

network-calculated output to approximate the target output. One of the most common 

ANN learning methods is the back-propagation method. The output can be designated as 

either the voltage, current or duty cycle, depending on the control variables used for the 

converter. In each layer the numbers of nodes varies and is user defined. 

 

Figure 2.19: A typical ANN structure for MPPT. 

 

 The advantage of ANNs is their parallel computing capability. Other SC methods 

may require multiple iterations to obtain the optimal solution, whereas ANNs can use 

simple multiplication and addition to rapidly calculate output. Therefore, ANNs enable 
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rapid calculation. However, the accuracy of an ANN is determined based on its training 

data. If the training data are insufficient, or the data do not cover the entire problem space, 

then the accuracy of the ANN will be reduced accordingly. The ability of the ANN to 

track the MPP depends on hidden layer’s algorithm and how careful and extensively the 

networks are trained. Typically, the ANN needs to be trained and tested for months or 

even years to ensure that the MPPT responds correctly to various meteorological 

conditions (Hiyama et. al., 1995). During the training, the neurons are weighted 

appropriately to match the input–output pattern correlation.  

 

 Currently, the ANN-based MPPT method are mostly used in uniform insolation 

conditions (Al-Amoudi & Zhang, 2000) primarily because at a single irradiance level, the 

location of the MPP is only related to the irradiance and the temperature. It is important 

to note that once a particular ANN is trained and designed for a specific PV module or 

climate, it may not respond accurately if employed in a different condition. Thus, when a 

PSC occur, the irradiance of the module, module temperature and shading pattern all 

affect the MPP location. Consequently, the training data required by the ANN 

substantially increase, and these data are not easily collected. This is the primary 

limitation of applying ANNs to MPPT. Therefore, only a few works in current literature 

proposed using ANNs as the primary method for addressing PSC. The input variables 

used in (Veerachary & Yadaiah, 2000) and (Yadaiah et. al., 2005) were the averaged 

irradiance of selected modules, and the design was affected by the arrangement method 

of PV modules. Therefore, if the architecture of the PV array changes, such as adding 

new PV panels, the ANN must be re-trained. In addition, irradiance and temperature 

sensors are more expensive compared with the voltage and current sensors used in other 

MPPT methods.  
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Table 2.6: Summary of ANN related work for MPPT. 

Authors Control 

variable 

Converter type/ 

Application 

Remarks 

Veerachary 

and 

Yadaiah 

Voltage Buck-boost 

converter for 

standalone 

applications 

ANN is used as the MPPT 

controller. The MPP is identified 

using gradient descent algorithm 

training. Work is extended for 

permanent magnet series motor. 

Alabedin et 

al. 

Duty 

cycle 

Buck converter for 

standalone 

applications 

ANN is used as an optimizer for 

P&O MPPT controller. Improved 

performance in dealing with the 

fluctuations in the array power. 

Jinbang et 

al. 

Duty 

cycle 

Boost converter for 

standalone 

applications 

ANN is used as an optimizer for 

IC/P&O MPPT controller. Faster 

than the IC and exhibits smaller 

steady- state error than the P&O 

algorithm. 

Islam and 

Kabir 

Voltage 

and 

Current 

Buck converter for 

standalone 

applications 

ANN is used as the MPPT 

controller. Utilizes only 20 nodes in 

the hidden layer, which reduces its 

complexity and increases the 

execution time. 

Jie and 

Ziran 

Voltage Buck-boost 

converter for 

standalone 

applications 

ANN is used as the MPPT 

controller. The method uses a 2 

level ANN, which has higher speed 

and accuracy compared to single 

level ANN. 

Veerachary 

et al. 

Voltage Boost converter for 

standalone 

applications 

ANN is used as an optimizer for the 

feed forward FLC MPPT. The ANN 

is trained using the BP algorithm to 

estimate the reference voltage on-

line. Tracking performance is 

improved. It also avoids the tuning 

of PI controller parameters. 

 

 In certain cases, ANN is not used as the MPP tracker itself; rather it is utilized to 

identify the optimized parameters of another MPPT controller. For example, ANN is used 

as optimizers for traditional MPPT such as P&O or IC methods (Alabedin et.al, 2011, 

Jinbang et. al., 2011). In general, these combinations result in improved performances 

(Jie & Ziran, 2011, Veerachary et. al., 2003, Ramaprabha et. al., 2011).  A summary of 

the ANN related researches for MPPT is shown in Table 2.6.  
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2.7.4.5 Fuzzy Logic Controller  

 

 Traditional control system design requires understanding the system being 

controlled; that is, using precise mathematical models to describe the system. However, 

when the controlled system becomes overly complex, it is often difficult to use system 

identification method to establish a system model. In early studies, the FLC is introduced 

for MPPT, where dPpv/dIpv and its change Δ(dPpv /dIpv) are considered fuzzy controller 

inputs (Simoes et. al., 1998). A general FLC structure is shown in Figure 2.20. It consists 

of three processing stages, namely fuzzification, rules inferences and defuzzification. In 

addition, it has a rule table in which the designed rules are stored. The process in which 

the FLC performs the calculation is called rules inference. 

 

Figure 2.20: Basic fuzzy logic structure. 

 

 In a FLC-based MPPT, the inputs are usually an error E and a change in error ∆E. 

Since dP/dV vanishes at the MPP, both inputs can be calculated as follows: 

𝐸(𝐾) =  
𝑃(𝑘)−𝑃(𝑘−1)

𝑉(𝑘)−𝑉(𝑘−1)
        𝑜𝑟    𝐸(𝐾) =  

𝑃(𝑘)−𝑃(𝑘−1)

𝐼(𝑘)−𝐼(𝑘−1)
                      (2.20) 

∆𝐸 = 𝐸(𝑘) − 𝐸(𝑘 − 1)                                                           (2.21) 
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where P and V represent the power and voltage in P–V curve, respectively. Once E and 

∆E are computed, they are converted to the linguistic variables based on a membership 

function. The variable assignment is user dependent and are typically designed based on 

the user’s experience for a specific control problem. The membership function is 

sometimes made less symmetric to give more importance to specific fuzzy levels (Chian-

Song, 2010).  

 

 In the defuzzification process, the FLC output is defined linguistically in terms of 

voltage, current or duty ratio of the power converter. It can be looked up in a rule table. 

The linguistic variables assigned to the output for the different combinations of E and ∆E 

are based on the power converter as well as the knowledge of the user. Next, the linguistic 

output signal is converted to numerical values by a process known as defuzzification. 

This can be achieved using several methods; one example is the “centre of gravity”, which 

utilize the following formula: 

𝐷 =  
∑ 𝜇(𝐷𝑗)− (𝐷𝑗)𝑛

𝑗=1

∑ 𝜇(𝐷𝑗)𝑛
𝑗=1

                                        (2.22) 

where j is the number of sampled duty cycle.  

 

 FLC provides a systematic approach to create automatic control algorithm by 

exploiting linguistic variables, based on experts’ knowledge. In contrast to the binary 

logic, fuzzy variables may assume a value between 0 and 1. Such controllers are 

advantageous when working with imprecise inputs as it does not require an accurate 

mathematical model. The latter is a significant advantage because the uncertainties such 

as un-modelled physical quantities, non-linearity and unpredictable changes in operating 
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point can be excellently dealt with (Wu et. al., 1999).  Furthermore, FLC is known to be 

very efficient in handling non-linearity problems. 

 

 One of the major disadvantages of pure FLC is its inability to handle partial 

shading. In order for it to do so, the rule table needs to change dynamically. However, 

this is not possible because once the rule table is set, it would be very difficult to change 

it as the controller is in tracking mode. Hence, there is no reported work on partial shading 

using standalone FLC. Karatepe et al. (2008) used distributed architecture and utilized 

FLC to replace traditional MPPT methods. Because each power converter contained a 

designated MPPT controller, the system guaranteed that the global MPP can be tracked. 

The advantage of the method used by Karatepe et. al. (2008) is its rapid tracking speed 

and high tracking accuracy; its disadvantage is that it exhibited a higher hardware cost 

compared with that of centralized architectures.  

 

 In Larbe et. al. (2009) and Letting et. al. (2010) optimized the performance of 

fuzzy logic controller through GA and PSO approaches, respectively. Alajmi et. al. (2013) 

used a method similar to the two-stage searching method to conduct MPPT. This method 

first swept the P–V characteristic curve and recorded various local MPPs, then replaced 

P&O by using FLC to conduct global MPPT. This method yielded a rapid tracking speed, 

but demonstrated disadvantages similar to those of other two-stage searching methods. In 

most work, FLC is used to design MPPT by manipulating different types of PV inputs. 

Combination of FLC with other SC algorithms is also attempted to increase the MPPT 

efficiency and tracking ability. Some of the important research on FLC based MPPT are 

summarized in Table 2.7. 
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Table 2.7: Summary of FLC related work for MPPT. 

Authors Control 

variable 

Converter type/ 

Application 

Remarks 

Mahmoud et 

al. 

Voltage Buck converter for 

stand-alone 

application 

Does not need modification in 

membership functions and rules 

while testing with different 

resistive loads. 

Veerachary 

et al. 

Voltage Interleaved dual boost 

converter for stand-

alone application 

A feed-forward MPPT for dual 

boost converter. The reference 

voltage for the feed-forward loop, 

is obtained by an off-line trained 

ANN.  

Khaehintung 

et al. 

Voltage Boost converter for 

stand-alone 

application 

FLC membership functions are 

made less symmetric to give more 

significance to the specific 

linguistic variables. 

Chung-Yuen Duty 

cycle 

Boost converter for 

stand-alone 

application 

FLC is operated into two modes: 

coarse and fine. Has higher 

efficiency than traditional hill 

climbing method. 

Simoes et al. Duty 

cycle 

Boost converter for 

stand-alone 

application 

PV array power variation and 

duty ratio are used as inputs for 

the FLC. It does not need any 

parameter information. 

Masoum et 

al. 

Duty 

cycle 

Buck converter for 

stand-alone 

application 

Three inputs FLC MPPT: array 

current, power and duty-cycle of 

converter.  

Chian-song 

and Fuzzy  

Duty 

cycle 

Buck converter for 

stand-alone 

application 

FLC-MPPT based on A Takagi-

Sugeno (T-S) observer for state 

feedback to achieve asymptotic 

control. Directly drives the 

system to MPP without searching 

the maximum power point and 

measuring irradiance. 

Kottas et al. Duty 

cycle 

Boost converter for 

stand-alone 

application 

A Fuzzy Cognitive Networks 

(FCN) with voltage, current, 

temperature and solar irradiance 

used as the nodes. Exhibits 

excellent tracking speed but at the 

expense of an additional switch 

and a sensor. 

Alajmi et al. Duty 

cycle 

Boost converter for 

micro-grid application 

Application of FLC to improve 

the performance of the 

conventional HC method. The 

FLC is developed by translating 

the HC algorithm into 16 fuzzy 

rules to ensure better tracking 

speed and efficient convergence.   
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Table 2.7, continued: Summary of FLC related work for MPPT. 

Authors Control 

variable 

Converter type/ 

Application 

Remarks 

Patcharapraa

nd 

Duty 

cycle 

Boost converter for 

grid-connected 

application  

An adaptive FLC is proposed to 

facilitate the constant tuning of 

the membership functions and the 

rule based table in order to 

achieve optimum performance. 

Wu et al. Duty 

cycle 

Inverter for grid-

connected application 

The scaling factor of both fuzzy 

inputs and output are 

automatically tuned to achieve the 

better dynamic performance of 

MPPT. 

Pumama et 

al. 

Duty 

cycle 

Boost converter for 

DC-DC application 

FLC is optimized by Hopfield 

Neural Network which is proven 

applicable in partial shading. 

Convergence time is less than 

P&O and typical FLC controller. 

Subiyanto et 

al. 

Voltage Boost converter for 

DC-DC application 

Fuzzy P&O MPPT (FMPPT) is 

developed which is supported by 

offline tracking function to avoid 

local maxima.  

Syafaruddin 

et al. 

Duty 

cycle 

Buck-Boost converter 

for DC-DC 

application 

A novel method is proposed 

which is a combination of ANN 

and polar coordinated FLC. ANN 

is offline trained under several 

conditions including partial 

shading.  

 

 

 

2.7.4.6 Other Immerging Techniques 

 

 Aside from these techniques discussed above, there are other emerging 

approaches for MPPT which have only recently been proposed and discussed in a limited 

number of publications. These emerging approaches do present good approaches to global 

MPP tracking, and are likely to be the focus of future research attention. Among the others 

is the DE algorithm, which is used for global optimization applications. The DE has a 
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similar concept to GA and was first introduced by Stornand Price (1997, 1995). In this 

algorithm, existing particles with the best fitness records remain in the population, while 

the others are replaced by new particles. The DE method was recently applied in different 

extents to solve the control issues of renewable energy systems, including the problem of 

global MPP tracing in PSCs. In the DE-based MPPT method, the target vector is normally 

considered the duty cycle of the designed DC-DC converter. The DE approach in the 

MPPT problem was first presented in (Taheri et. al., 2010, Tajuddin et. al., 2012) where 

a standard DE algorithm was used. However, the method is based on static objective 

function in which the P-V curve must be predetermined, which makes the method 

impractical for real-time MPPT application (Mohammad et. al., 2013). 

 

 The ACO has also been attempted in the MPPT. It is an optimization method based 

on swarm intelligence; its primary advantage is immediately adapting command values 

according to environmental changes. Thus, ACOs are suitable for conducting MPPT in 

changing environments. As mentioned in previous sections, each agent in an ACO selects 

its path randomly at first. If the path the agent chooses is short with has high fitness value, 

the agent leaves concentrated pheromone on the path. In the next iteration, the agent 

chooses its path based on the concentration of pheromone on that path. The more 

concentrated the pheromone is, the higher probability it will be for the agent to choose 

that path. Based on the principle represented by the mentioned equations, Jianga et al. 

(2013) used ACO to solve MPPT problems. Simulated results were given in the report. 

 

 PSO is also an optimization method based on swarm intelligence. In the PSO 

method, each particle is defined by its own position and velocity. The behaviour of 

particles within the swarm is influenced by the experiences of neighbouring particles. 
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Each particle follows the current best-performing particle to search within the solution 

space. Since PSO is an optimization method based on swarming, it can conduct MPPT in 

distributed architecture (Chowdhury & Saha, 2010, Chen et. al., 2010, Miyatake et. al., 

2011) or centralized architecture (Ishaque et. al., 2012a, 2012b, Liu et. al., 2012, Ishaque 

& Salam, 2013). Regarding algorithms, Chowdhury and Saha (2010) used adaptive 

perceptive PSO, whereas the remaining references used basic PSO algorithms. In 

(Ishaque & Salam, 2013), random number in the accelerations coefficient is removed, 

developing a deterministic PSO mechanism that improved the tracking speed. A few 

conference papers also show similar PSO methods (Kamejima et. al., 2011, Phimmasone 

et. al., 2011, Keyrouz & Georges, 2011, Keyrouz et. al., 2012). 

 

 In the Incremental Conductance (IC) technique, the PV array voltage gets 

modified based on the instantaneous and adjusted value of PV module. As the tracking of 

control variable is done rapidly it helps to overcome the disadvantage of some other 

methods which fail to track the peak control variable under fast varying conditions. The 

slope of the PV array power curve is zero at the MPP, positive when the operating point 

is on the left of MPP, and negative when the operating point is on the right of MPP 

(Saravanan & Ramesh, 2015). The control algorithm increase or decrease the voltage 

reference at which the PV array is forced to operate (Vref) to track the new MPP. The main 

disadvantage of this system is its adjustment size and complex control circuits (Esram & 

Chapman, 2007, Kuo et. al., 2001, Irisawa et. al., 2000, Wu et. al., 2003). To overcome 

the disadvantage of the adjustment size, some modified IC methods can also be found in 

the literature (Soon & Mekhilef, 2014, Hiren & Vivek, 2008, Xiao & Dunford, 2007). 
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 Beside the mentioned techniques, there are other simpler methods such as the 

Fractional Short Circuit Current (Masoum et. al., 2002, Noguchi et. al., 2000), Fractional 

Open Circuit Voltage (Hart et. al., 1984, Noh et. al., 2002) and Ripple Correlation Control 

(Midya et. al., 1996, Arcidiacono et. al., 1982) that are used for low cost applications, 

such as street lightings. These MPPTs exhibit limited accuracy but they require fewer 

sensors; thus offering a reliable, low cost solution. Other methods include Current Sweep 

(Bodur & Ermis, 1994), DC-link Capacitor Drop Control (Kitano et. al., 2001), Load 

Current and Load Voltage Minimization (Shmilovitz, 2005), dP/dV or dP/dI Feedback 

Control (Sugimoto & Dong, 1997), Linear Current control (Pan et. al., 1999), State-based 

MPPT (Solodovnik et. al.,2004), Best Fixed Voltage algorithm (De Carvalho  et. al., 

2004), Linear Reoriented Coordinate (Rtiz-Rivera & Peng, 2004) and Slide Control 

method (Zhang et. al., 2004, Kim, 2006). These techniques are reported in various in 

academic journals but it is unclear if they are practically implemented in commercial PV 

systems. 

 

 

2.7.4.7 Handling Partial Shading Condition 

 

 Shading has always been a major challenge in the MPPT research field. Salam et. 

al. (2013), in their report, mentioned that some traditional MPPTs like the P&O, IC and 

HC methods face difficulties in identifying the global MPP from the local MPPs when 

the PV curve consists of more than one peak. The aforementioned methods tend to 

converge to the first peak in the P–V curve, which can be a local peak. Hence, the power 

produced by the PV system is significantly reduced, resulting in low MPPT efficiency 

(Mellit and Kalogirou, 2014; Rezk and Eltamaly, 2015). For the case of ANN, handling 

Univ
ers

ity
 of

 M
ala

ya



73 

 

partial shading is also impractical, unless the shading is predictable; for example fixed 

spots shadows from building structures or trees. In such cases, the ANN can be trained to 

adapt for such conditions. However, with regard to environmental uncertainties, such as 

shading due to clouds, training the ANN is not possible due to the random nature of their 

occurrences. For the standalone FLC, tracking the varying global peak is not a 

straightforward task. This is because its membership function and control variables are 

static, while partial shading incidences can be highly dynamic (Patcharaprakiti & 

Premrudeepreechacharn, 2004). Thus, it is found that the search based SC techniques are 

naturally suitable to handle partial shading. This is primarily due to their ability to scan 

the entire P–V curve and subsequently discriminate between the global and local peaks. 

The challenge, however, is to optimize the search time so that the MPPT dynamic 

response can be improved.  

 

 From the study, it can be concluded that the output power of a PV system can be 

significantly boosted by optimizing the operating voltage value of the system to the 

maximum power point. Pattern recognition techniques are not suitable for the MPPT 

applications as the weather and climate can change rapidly and even unpredictably. As 

for optimization algorithms, there is still room for improvement with the techniques 

available today as some of the methods can cause the search to be trapped in local optima 

points due to the lack of exploration ability. Thus, in this research, an enhanced EM is 

proposed to be implemented as the MPPT scheme of the PV systems. 
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CHAPTER 3: METHODOLOGY 

 

 The methodologies adopted in this research are discussed in details in this chapter. 

This chapter is divided into several major sections. Section 3.1 gives a general picture of 

the flow and setup of the research. In section 3.2, the search mechanism of a conventional 

EM is discussed. The methods and modifications to investigate the effect of search step 

size are also included in this section. A Split, Probe and Compare mechanism is 

introduced into the EM in section 3.3. The mechanisms and modifications of the new 

feature are discussed in details. In section 3.4, and experience-based EM is proposed. The 

experience learning and analysis mechanisms are presented and discussed. And finally, 

the implementation of the enhanced EM in the MPPT of a PV system is presented in 

section 3.5. The simulation and experiment designs are discussed in details. 

 

 

3.1 Research Flow  

 

 A general methodological framework was developed for this research. It involved 

literature study, algorithms development, algorithm test run, optimization problem 

simulations, performance benchmarking, and documentations. The general flow of the 

research is shown in Figure 3.1. 
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Figure 3.1: General flow of the research. 

 

 All the algorithms were developed using Microsoft Visual Basic.Net of Microsoft 

Visual Basic Studio 2008. The simulations were conducted with a 1.6Ghz Intel Core i5 

CPU with 4GB-RAM, in WIN-7OS.  

 

 

3.1.1 The Test Suite. 

 

 In order to validate and demonstrate the performance of the developed algorithms 

and the proposed modifications, a test suite of 10 numerical optimization test problems 

with different features was employed. The test problems included Ackley, Beale, Booth, 

De Jong’s Sphere, Himelblau, Rastrigin, Rosenbrock, Schaffer, Shubert, and Six-hump 
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Camel test. All the benchmark functions used in this research are minimization problems. 

These classical optimization problems are commonly used by researchers around the 

world to test the performance of optimization algorithms. The details of the test functions 

are shown in Table 3.1. F1, F4, F6, and F7 were set to be conducted in a 10-dimensional 

hypercube.   

Table 3.1: The test suite setup. 

Function Formulations Range 

F1 Ackley 
min𝑓(𝑥) = −20 exp (−0.2√

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

exp (
1

𝑑
∑ cos(2𝜋𝑥𝑖)𝑑

𝑖=1 ) + 20 + 𝑒 

[-32.768, 

32.768] 

F2 Beale min𝑓(𝑥) = (1.5 − 𝑥1 + 𝑥1𝑥2)2 + (2.25 − 𝑥1 +
𝑥1𝑥2

2)2 + (2.625 − 𝑥1 + 𝑥1𝑥2
3)2 

[-4.5,4.5] 

F3 Booth min𝑓(𝑥) = (𝑥1 + 2𝑥2 − 7)2 + (2𝑥1 + 𝑥2 − 5)2 [-10,10] 

F4 Sphere min𝑓(𝑥) = ∑ 𝑥𝑖
2𝑑

𝑖=1  [-5.12, 5.12] 

F5 Himmelblau min𝑓(𝑥) = (𝑥1
2 + 𝑥2 − 11)2 + (𝑥1 + 𝑥2

2 − 7)2 [-5.12, 5.12] 

F6 Rastrigin min𝑓(𝑥) = 10𝑑 + ∑ [𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋)𝑥𝑖]

𝑑
𝑖=1  [-5.12, 5.12] 

F7 Rosenbrock min 𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2]𝑑−1

𝑖=1  [-5, 10] 

F8 Schaffer N2 
min𝑓(𝑥) = 0.5 +

𝑠𝑖𝑛2(𝑥1
2−𝑥2

2)−0.5

[1+0.001(𝑥1
2+𝑥2

2)]2 
[-100, 100] 

F9 Shubert min𝑓(𝑥) = [∑ 𝑖 cos((𝑖 + 1)𝑥1 +5
𝑖=1

𝑖)][∑ 𝑖 cos((𝑖 + 1)𝑥2 + 𝑖)5
𝑖=1 ]   

[-10, 10] 

F10 Six-Hump 

Camel 
min𝑓(𝑥) = (4 − 2.1𝑥1

2 + 𝑥1
4 3⁄ )𝑥1

2 + 𝑥1𝑥2 +
(4𝑥2

2 − 4)𝑥2
2 

x1,[-3, 3] 

x2,[-2, 2] 

 

 

 

3.2 EM and the Impact of Search Step Size  

 

 The setting of the search step size, especially on the local search segment of 

population-based optimization methods, shows significant impact on the outcome and 

convergence efficiency (Ratnaweera et. al., 2004, Yu et. al., 2015).  One of the objectives 

of this study is to investigate the impact of search step size setting onto the convergence 

Univ
ers

ity
 of

 M
ala

ya



77 

 

performance of EM. In order to do that, some modifications and adjustments were carried 

out onto the conventional EM in order to expose the advantages and disadvantages of 

different search step size employed in the algorithm. 

 

 

3.2.1 The Original EM Scheme 

 

 The EM is a population-based meta-heuristic search algorithm. Mimicking the 

attraction-repulsion mechanism of the electromagnetism theorem, the particles move 

within the search space in search for the best global optima value. The pseudocode in 

Table 3.2 summarizes the procedure of the original EM proposed by Birbil and Fang 

(2003). Figure 3.2 shows a better picture of the algorithm flow in the form of a flowchart. 

Table 3.2: Original EM proposed by Birbil and Fang (2003). 

EM (m, MAXITER, LSITER, δ)  

m= number of initial particles 

MAXITER: maximum number of iterations 

LSITER: maximum number of local search 

iterations 

δ: local search parameter, δ ∈(0,1)  

1: Initialize ( ) 

2: iteration 1 

3: while iteration < MAXITER do 

4:  Local (LSITER, δ) 

5:  F ← CalcF ( ) 

6: Move (F) 

7:  iteration ← iteration + 1 

8: end while 
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Figure 3.2: The flow of a conventional EM algorithm, where a and b denote the 

iteration number of local and global search respectively, while LSIte and OSIte refer to 

the pre-determined maximum iteration number in local and overall search. 

 

 For the ease of convergence analysis, 10 particles were used for all the variants of 

EM in this research. As discussed in Section 2.3, a conventional EM consist of 5 major 

stages. Similar to most population-based optimization algorithms, it begins with 

initialization. 

 

 In the initialization stage, all 10 particles are randomly assigned with solution 

values within the feasible range. Each solution value of a particle is assumed to be 

uniformly distributed between the corresponding upper and lower bounds of the 
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dimension. Then, the algorithm moves on to the local search stage. The original local 

search proposed by Birbil and Fang (2003) is a simple line search which tune the particle 

along the line of a dimension based on a random step size between (0,1) in a random 

direction. The local search terminates immediately upon achieving any better solution or 

when the pre-determined iteration number is reached. The pseudocode of the original 

local search procedure is as shown in Table 3.3.  

Table 3.3: Original local search proposed by Birbil and Fang (2003). 

Local Search ( LSITER,𝜹 ) 

1: counter ← 1 

2: Length ←  𝛿(𝑚𝑎𝑥𝑘{𝑢𝑘 −  𝑙𝑘}) 

3: for 𝑖 = 1 𝑡𝑜 𝑚 do 

4:    for 𝑘 = 1 𝑡𝑜 𝑛 do  

5:  𝜆1 ← 𝑈(0, 1) 

6: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝐿𝑆𝐼𝑇𝐸𝑅 do 

7:     𝑦 ← 𝑥𝑖 

8:      𝜆2 ← 𝑈(0, 1) 

9:     if 𝜆1 > 0.5 then 

10:        𝑦𝑘 ←  𝑦𝑘 + 𝜆2(𝐿𝑒𝑛𝑔𝑡ℎ) 

11:     else 

12:        𝑦𝑘 ←  𝑦𝑘 − 𝜆2(𝐿𝑒𝑛𝑔𝑡ℎ) 

13:     end if  

14:     if 𝑓(𝑦) < 𝑓(𝑥𝑖) then 

15:        𝑥𝑖  ← 𝑦 

16:        𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐿𝑆𝐼𝑇𝐸𝑅 − 

17:     end if  

18:      𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

19: end while 

20:    end for  

21: end for 

22: 𝑥𝑏𝑒𝑠𝑡  ← 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓(𝑥𝑖),   ∀𝑖} 

 

 

 Upon completion of the local search, the particle with the best objective value is 

determined and marked as the best particle. The following step of the procedure is to 

determine the charge values. The charge for each of the particle is calculated based on the 
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objective function of the particle in relative to the best objective function in among the 

particles, as shown in equation (3.1) below.  

𝑞𝑖 = 𝑒𝑥𝑝 (−𝑛
𝑓(𝑥𝑖)−𝑓(𝑥𝑏𝑒𝑠𝑡)

∑ (𝑓(𝑥𝑘)−𝑓(𝑥𝑏𝑒𝑠𝑡))𝑚
𝑘=1

) , ∀𝑖       (3.1) 

 With the charge of each particle obtained, the algorithm can now move on to the 

force calculation. Each particle will consider all the forces generated by every other 

particle. The sum of all the forces generated onto a particle is calculated using equation 

(3.2) below.  

𝐹𝑖 = ∑ {
(𝑥𝑗−𝑥𝑖)

𝑞𝑖𝑞𝑗

||𝑥𝑗−𝑥𝑖||2
     𝑖𝑓    𝑓(𝑥𝑗)<𝑓(𝑥𝑖) 

(𝑥𝑖−𝑥𝑗)
𝑞𝑖𝑞𝑗

||𝑥𝑗−𝑥𝑖||2
     𝑖𝑓    𝑓(𝑥𝑗)≥𝑓(𝑥𝑖) 

      }𝑚
𝑗≠𝑖 , ∀𝑖      (3.2) 

where f(xj) < f(xi) denotes attraction and f(xj) ≥ f(xi) refers to repulsion. The psuedocode 

of the force calculation procedure is as shown in Table 3.4. 

Table 3.4: Total force calculation procedure for a particle. 

Force Calculation (CalcF ( )) 

1: for 𝑖 = 1 𝑡𝑜 𝐿 do 

2:     𝑞𝑖 = exp (−𝑛 
𝑓(𝑥𝑖)−𝑓(𝑥𝑏𝑒𝑠𝑡)

∑ (𝑓(𝑥𝑖)−𝑓(𝑥𝑏𝑒𝑠𝑡))𝐿
𝑘=1

) 

3:     𝐹𝑖 = 0 

4: end for 

5: for 𝑖 = 1 𝑡𝑜 𝐿 do 

6:     for 𝑗 = 1 𝑡𝑜 𝐿 do 

7:         If 𝑖 ≠ 𝑗 then 

8:             𝐹𝑖
𝑗

=  (𝑥𝑗 − 𝑥𝑖)
𝑞𝑖𝑞𝑗

‖𝑥𝑗𝑥𝑖‖2
 

9:             If 𝑓(𝑥𝑗)  < 𝑓(𝑥𝑖) then 

10:                 𝐹𝑖 =  𝐹𝑖 +  𝐹𝑗
𝑖 (Attraction) 

11:           else 

12:                𝐹𝑖 =  𝐹𝑖 −  𝐹𝑗
𝑖 (Repulsion) 

13:           end if 

14:        end if 

15:    end for 

16: end for 
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 Next, the particles are relocated to a new location in the search space. Equation 

(3.3) shows the calculation of the particles movement in accordance to the total force 

generated. The pseudocode of the particle movement stage is as shown in Table 3.5. 

 𝑥𝑘
𝑖  ←  𝑥𝑘

𝑖 +  𝜆𝐹𝑘
𝑖  ( 𝑢𝑘 −  𝑥𝑘

𝑖  )    ; 𝐹𝑘
𝑖 ≥ 0  

 𝑥𝑘
𝑖   ←  𝑥𝑘

𝑖 +  𝜆𝐹𝑘
𝑖  ( 𝑥𝑘

𝑖 −  𝑙𝑘)   ; 𝐹𝑘
𝑖 < 0    (3.3) 

Table 3.5: Particle movement procedure. 

Particle Movement (Move ()) 

1: for 𝑖 = 1 𝑡𝑜 𝐿 do 

2:        If 𝑖 ≠ 𝑏𝑒𝑠𝑡 then 

3:           𝜆 = 𝑟𝑎𝑛𝑑𝑜𝑚 (0,1) 

4:           𝐹𝑖 =
𝐹𝑖

‖𝐹𝑖‖
 

5:           for 𝑘 = 1 𝑡𝑜 𝑛 do 

6:              If 𝐹𝑘
𝑖 > 0 then 

7:                 𝑥𝑘
𝑖 = 𝑥𝑘

𝑖 +  𝜆𝐹𝑘
𝑖 (𝑢𝑘 − 𝑥𝑘

𝑖 ) 

8:              else 

9:                 𝑥𝑘
𝑖 = 𝑥𝑘

𝑖 +  𝜆𝐹𝑘
𝑖 (𝑢𝑘 − 𝑙𝑘) 

10:             end if 

11:        end for 

12:    end if 

13: end for 

 

 Holding the absolute power of attraction towards all other particles, the best 

particle of the iteration does not move (Cuevas et. al., 2012). 

 

 

3.2.2 EM with Large and Small Search Step Sizes 

 

 In order to examine the gravity of different step size setting to the convergence 

performance of EM, a conventional EM was set to search in two different extremes of 

search step length settings in the local search procedure. EM with Larger Search Steps 
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(EMLSS) was modified and set to search in a fixed search step of 0.99. EM with Smaller 

Search Steps (EMSSS), on the other hand, was set to conduct search with a fixed search 

step of 0.01. Since the local search procedure of a conventional EM terminates 

immediately upon achieving any better objective value, this experiment setting can 

expose the difference in the performances if the search ended in comparatively bigger or 

smaller search steps. Table 3.6 and Table 3.7 show the local search procedures of EMLSS 

and EMSSS respectively. Samples of the simulation results were analysed to investigate 

the performance of each. 

Table 3.6: Local procedure for EMLSS. 

EMLSS Local Search ( LSITER,𝜹 ) 

1: counter ← 1 

2: Length ←  𝛿(𝑚𝑎𝑥𝑘{𝑢𝑘 −  𝑙𝑘}) 

3: for 𝑖 = 1 𝑡𝑜 𝑚 do 

4:    for 𝑘 = 1 𝑡𝑜 𝑛 do  

5:  𝜆1 ← 𝑈(0, 1) 

6: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝐿𝑆𝐼𝑇𝐸𝑅 do 

7:     𝑦 ← 𝑥𝑖 

8:      𝜆2 ← 𝑈(0, 0.99) 

9:     if 𝜆1 > 0.5 then 

10:        𝑦𝑘 ←  𝑦𝑘 + 𝜆2(𝐿𝑒𝑛𝑔𝑡ℎ) 

11:     else 

12:        𝑦𝑘 ←  𝑦𝑘 − 𝜆2(𝐿𝑒𝑛𝑔𝑡ℎ) 

13:     end if  

14:     if 𝑓(𝑦) < 𝑓(𝑥𝑖) then 

15:        𝑥𝑖  ← 𝑦 

16:        𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐿𝑆𝐼𝑇𝐸𝑅 − 

17:     end if  

18:      𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

19: end while 

20:    end for  

21: end for 

22: 𝑥𝑏𝑒𝑠𝑡  ← 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓(𝑥𝑖),   ∀𝑖} 
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Table 3.7: Local procedure for EMSSS. 

EMSSS  Local Search ( LSITER,𝜹 ) 

1: counter ← 1 

2: Length ←  𝛿(𝑚𝑎𝑥𝑘{𝑢𝑘 −  𝑙𝑘}) 

3: for 𝑖 = 1 𝑡𝑜 𝑚 do 

4:    for 𝑘 = 1 𝑡𝑜 𝑛 do  

5:  𝜆1 ← 𝑈(0, 1) 

6: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝐿𝑆𝐼𝑇𝐸𝑅 do 

7:     𝑦 ← 𝑥𝑖 

8:      𝜆2 ← 𝑈(0.01, 1) 

9:     if 𝜆1 > 0.5 then 

10:        𝑦𝑘 ←  𝑦𝑘 + 𝜆2(𝐿𝑒𝑛𝑔𝑡ℎ) 

11:     else 

12:        𝑦𝑘 ←  𝑦𝑘 − 𝜆2(𝐿𝑒𝑛𝑔𝑡ℎ) 

13:     end if  

14:     if 𝑓(𝑦) < 𝑓(𝑥𝑖) then 

15:        𝑥𝑖  ← 𝑦 

16:        𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝐿𝑆𝐼𝑇𝐸𝑅 − 

17:     end if  

18:      𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

19: end while 

20:    end for  

21: end for 

22: 𝑥𝑏𝑒𝑠𝑡  ← 𝑎𝑟𝑔𝑚𝑖𝑛 {𝑓(𝑥𝑖),   ∀𝑖} 

 

 

3.3 Split, Probe and Compare 

 

 The local search segment is a crucial part in EM. The efficiency of an optimization 

algorithm to exploit further around a particular solution depends heavily on this part of 

the algorithm (Ratnaweera et. al., 2004). The local search procedure ensures a more 

refined search for a particular solution to hit a better optimum locally. As shown in the 

previous sections, the local search in a standard EM employs a random step length value 

between 0 and 1. The search direction of each iteration is randomly picked, and the search 

step size for all the iterations is randomly set between the value of 0 and 1, be it early or 

near-end of the search. The local search iteration is terminated immediately when a 
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relatively better objective outcome is achieved, or when the iteration number meets the 

terminating criteria. Randomized search direction and step length are obviously 

inappropriate as they may jeopardize the efficiency of the convergence and the accuracy 

of the final outcome. In order to solve these issues, a new Split, Probe, and Compare (SPC) 

feature is proposed into the EM (SPC-EM) in this study. 

 

 The SPC-EM is an enhanced version of EM that can grant the algorithm the ability 

to hit a more accurate solution without heavily slowing down the entire convergence 

process. The general idea is to replace the local search mechanism of a conventional EM 

with the SPC search procedure. Analogically speaking, SPC-EM probes around the 

neighbourhood of a solution with two separate probes. The results returned by the probes 

will give the algorithm an idea of the direction to a better solution. The lengths of the 

probes are dynamically and systematically regulated based on the feedback results. As 

the name suggests, the SPC consists of three segments, namely Split, Probe, and Compare. 

 

Split: Randomly selecting the search direction can result in unnecessary objective 

function evaluations and thus significantly lower the efficiency of the convergence 

process. The SPC feature provides a more systematic way of exploration in the search 

direction. In this Split segment, the search mechanism is split into two probes (Probe A 

and Probe B) in all respective dimensions. The probes then reach out to test the 

surroundings for any better solution in two different directions. The purpose of splitting 

the search is to gain a sense of direction to any better solution in the neighbourhood of 

the particle. Probe A explores towards the lower bound while Probe B searches towards 

the upper bound of the feasible solution range for any better solution. 
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Probe: In a conventional EM, the sizes of the local search steps are randomly selected. 

The search procedure ends immediately upon achieving any better objective value. Since 

there is no telling on what search step size the iterations will end with, this conventional 

method does not guarantee the accuracy or the efficiency of the search. This can cause 

problems due to several reasons. Big search steps can speed up the overall convergence. 

However, they may skip the best optimal solution when it is in the vicinity of the particle, 

thereby reducing search performance of the best optimal solution. Small search steps, on 

the other hand, can ensure a better accuracy of the convergence. The trade off, however, 

is that it will significantly slow down the whole convergence process. Taking these 

problems into account, the SPC mechanism is designed in such a way that the Compare 

segment will decide if the length of the probes need to be adjusted for each iteration. 

Depending on that decision, the lengths of the probes are dynamically regulated by a 

carefully designed nonlinear equation. The calculation of the probe length, L is as shown 

in equation (3.4). 

 𝐿 =
2

1+exp (
10𝑖

𝑀𝑎𝑥_𝐿𝑆𝐼𝑡𝑒
)
         (3.4) 

 In equation 5, i represents the current number of local search iteration while 

𝑀𝑎𝑥_𝐿𝑆𝐼𝑡𝑒  refers to the pre-set maximum number of iteration. Figure 3.3 shows an 

example of the L variation over the iterations with 𝑀𝑎𝑥_𝐿𝑆𝐼𝑡𝑒  set to 1000. The 

decreasing nature of the resultant L causes the search steps to be relatively larger at early 

stage, and then decreases as the iterations go on. This can ensure the algorithm hits a more 

accurate solution at the end of the iterations, in the meanwhile not slowing down the 

whole convergence process by probing around too finely at the beginning of the search.  
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Figure 3.3: Variation of probe length, L over 1000 iterations. 

 

Compare: The purpose of this segment is to check for objective value improvement of 

the particle and to update the current particle with the best solutions found in every 

iteration. A common issue with the local search of most population-based algorithm is 

that the particle might move out of the feasible range in search for a better solution. In 

order to overcome this issue, each time the probes returned with new found solutions, the 

feasibility of them are first checked. The new found solution is immediately disqualified 

and replaced with the previous value if it falls outside the feasible range. After making 

sure of the feasibility, a 3-way comparison of solutions is carried out. Comparison 

between the two new solutions provides the algorithm an idea on the direction to a better 

solution, if any. The particle moves towards the lower bound of the dimension if Probe A 

obtains a better solution. In contrast, if Probe B proves to provide a relatively better 

solution, the particle will move towards the upper bound of the dimension. The rate of 

the movement is dependent on the length of the probe at that particular iteration. If the 

best result among the probes is better than the current solution, the particle will adapt to 

the new found best solution and the position of the particle will then be updated. This 

solution improvement process continues until no better solution can be returned by the 
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probes. Then, the length of the sticks is adjusted according to equation (3.4), and the 

iterations continue until the predetermined terminating criteria is met.  

 

 The proposed SPC local search procedure is shown in Table 3.8. Figure 3.4 shows 

a better explanation of the decision making process in the form of a flowchart. The 

proposed SPC-EM was tested in the designed test suite. The results and analysis are 

shown in Chapter 4.  

Table 3.8: Local search procedures for SPC-EM. 

SPC-EM Local Search Procedures 

Step 1 Set maximum number of iteration as terminating criteria. 

Step 2 Calculate the length of the probes using equation 5. 

Step 3 Split the search into Probe A and Probe B.  

Step 4 Extend the probes towards lower and upper bounds respectively to search 

for better solutions. 

Step 5 Check if the solutions returned by the probes are within feasible range. 

Step 6 Compare the new found solutions and move particle towards the better 

yield.  

Step 7 Adapt the new found solution if it is better than the current solution. 

Step 8 From the new location of the particle, repeat Steps 3 to 8 until no further 

solution improvement is possible. 

Step 9 Exit if the iteration number reaches termination criteria. Otherwise adjust 

the probe length, move on to the next iteration 𝑖 = (𝑖 + 1) and repeat from 

Step 2. 
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Figure 3.4: The flow of the proposed modification on SPC-EM, where D denotes the 

parameter of a particular dimension in a particular solution and λ refers to the search 

step size. 
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3.4 An Experience-Based EM 

 

 Besides SPC-EM, another successful attempt in improving the EM is recorded by 

enhancing the EM with the ability to learn from previous search experience. In order to 

impart a stronger and more solid exploitation capability to the EM, a new Experiential 

Learning EM (ELEM) is proposed in this research. 

 

 Kolb (1984), in his book defined experiential learning as the process of creating 

knowledge from experience. As the name suggests, the Experiential Learning EM is an 

algorithm designed with the ability to learn from previous experience, from which a better 

projection can be generated for the iterations to come. ELEM adapts a guided search 

mechanism with previous search information analysis and backtracking memory into the 

EM algorithm. This enhanced local search mechanism operates on guided displacements 

in every dimension by analysing the rate of improvements and comparison with the 

experience from the past iterations. With the ability to backtrack the search to previous 

solutions and improvement gradients, this local search mechanism can ensure a better 

exploitation on the solutions by adjusting the scale and direction of the search as iterations 

go. Combining with the powerful exploration procedures of the EM, ELEM yields 

accurately exploited and well diversified solutions. The details of the modified local 

search mechanism is described in the following subsections. 
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3.4.1 Particle Memory Setup 

 

 To backtrack the evolution of the solution in the neighbourhood search and gain 

experience from it, a memory block, MBi is set up to store particle values from previous 

search results. This memory leaves a trail of information on previous search efforts, such 

as the rates of improvement (M), best achieved base values (B), and the search direction 

matrices (SD). Every successful search will update the memory on the achievements, 

while unsuccessful search will backtrack to previous base values, recalculate settings 

based on the experience, and reattempt the search with the new settings. At the end of 

every iteration, the MBi is updated with new information. That way, every success or 

failure reduces unnecessary searches in the region and drive the results to higher 

accuracies. 

 

 

3.4.2 Guided Search Mechanism 

 

 Instead of a simple line search with random search steps, the local search 

procedure of the modified ELEM is carried out by a proposed local search with a stronger 

exploitation ability named Guided Search (GS). Inspired by the naive directed search 

mechanism (Sharifi et. al., 2012), the GS mechanism is further enhanced by Improvement 

Gradient Analysis and Memory Backtracking feature, which are discussed in details in 

the following subsections.  
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 In general, the movement of GS is based on guided displacements in every 

dimension. An initial search step λinit is set in the first iteration. A search direction vector, 

SDi=(SDi
1, SDi

2, …, SDi
d) is employed to set the direction of the next local search 

movement in all dimensions, where sdi
d∈{-1,1}. For the initial stage, the direction of the 

search is randomly selected. The current position of the particle is set to be the base 

solution, Bi(t). The value of this Bi(t) is then stored as the old base value, BiOld in the 

memory of the particle.  

 

 At each iteration, the Bi(t), is moved in the search direction vector in attempt to 

find a better solution. Upon completion of the displacement, the feasibility of the new 

found solution, 𝐵𝑖𝑛𝑒𝑤 = 𝐵𝑖(𝑡) + 𝑠𝑑𝑖 × 𝜆𝑖
𝑇 is then checked. If Binew falls outside the 

feasible range of the solution, it will be discarded and the search direction is flipped to 

the opposite direction of the dimension with Bi(t) restored to BiOld value. If Binew is found 

to be feasible, the objective value of the new found solution is then compared to BiOld. 

The result of this comparison determines the action to be taken by the algorithm the the 

next steps. The corresponding actions are as shown in Table 3.9. The gradient of the new 

particle base and BiOld is also calculated and stored in the MBi as Mold before moving on 

to the next iteration. 
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3.4.3 Search Experience Analysis  

 

 The search experience analysis stage is activated when a feasible new solution is 

found. The first step of this analysis is to compare the rate of improvement with that of 

the previous iterations. This can provide a better estimation on the position of the current 

solution to the optima point, and thus the search step size can be adjusted accordingly. 

The mechanism begins with the calculation of the gradient formed by the solutions of 

previous and current iterations. The calculation of the improvement gradient, M is as 

shown in equation (3.5) below: 

𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑡 = (𝐵𝑖𝑛𝑒𝑤(𝑡) − 𝐵𝑖𝑂𝑙𝑑(𝑡))/𝜆𝐶𝑢𝑟𝑟𝑒𝑛𝑡       (3.5) 

where λ refers to the search step size. With the current gradient of improvement obtained, 

the algorithm then recalls the memory of the previous gradient, MOld to understand how 

the improvement rate of the search has evolved up to the current iteration. This 

information, pairing with the result from the fitness functions comparison, enable the 

algorithm to decide better on the best corresponding action. If the fitness of Binew is better 

than Biold, the new found solution is adapted, and the search direction maintains for the 

next iteration. Meanwhile, based on the improvement gradient comparison, the size of the 

search step for the next iteration is determined by the rate of the gradient change, as shown 

in equation (3.6) and (3.7). 

 λNext = λCurrent * α (MCurrent / MOld)   ; |MCurrent| ≥ |MOld|  (3.6) 

 λNext = λCurrent * β (MCurrent / MOld)   ; |MCurrent| < |MOld|  (3.7) 

where parameters α and β denote the gain and penalty factors respectively. On the other 

hand, if the fitness of Binew is found to be worse than Biold, the new found solution is then 

discarded, and the particle is backtracked to the previous base Biold. The direction of the 
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search in the dimension is reversed with the adjusted search step as shown in equation 

(3.8) and (3.9). 

 λNext = λCurrent * β (MOld / MCurrent)   ; |MCurrent| ≥ |MOld|  (3.8) 

 λNext = λCurrent * α (MOld / MCurrent)   ; |MCurrent| < |MOld|  (3.9) 

where parameters α and β denote the gain and penalty factors respectively. Note that 

equation (3.8) and (3.9) share the same gain and penalty parameters as equation (3.6) and 

(3.7). The settings of parameters α and β show certain impact on the performance of the 

algorithm. A parameter sensitivity test was conducted. The effects are further discussed 

in Chapter 4. 

 

 The fitness and improvement gradient memory of the particle are then updated 

with the latest values before moving on to the next iteration. The search procedure is 

terminated when the search direction is flipped up to a pre-determined number of times 

in a row, j without any further improvement in the fitness value. Table 3.9 summarizes 

the corresponding actions of the comparison results.  

Table 3.9: Memory comparison and the corresponding actions. 

 

 

BiNew vs BiOld MCurrent vs MOld Action Search Step Tuning 

Better Bigger Adapt new solution 

 

Remain SD 

λNext = λCurrent * α (MCurrent / 

MOld) 

Smaller λNext = λCurrent * β (MCurrent / 

MOld) 

Worse Bigger Backtrack to BiOld 

 

Reverse SD 

λNext = λCurrent * β (MOld / 

MCurrent) 

Smaller λNext = λCurrent * α (MOld / 

MCurrent) 
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Figure 3.5: Decision making flow on corresponding actions. 

 

 Figure 3.5 gives a clearer picture of the decision making process in the form of a 

flowchart. Leveraged by the memory and experience from previous search efforts, the 

changing nature of the resultant λ causes the search steps to be more fine-tuned as the 

search approaches the optima point. This can ensure the algorithm achieves solutions with 

higher accuracies at the end of the iterations, in the meanwhile not slowing down the 

overall convergence process by searching around too finely at the beginning of the search. 

Unlike SPC-EM, the tuning mechanism of the ELEM is based on the improvement rate 

and immediate search experience, instead of search iteration number. This unique strategy 

provides the local search mechanism with a powerful exploitation capability. Combining 
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with the strong exploration technique of the EM, the ELEM gains advantages from both 

and strikes a good balance between the accuracy and diversity of the solutions returned. 

The enhanced ELEM is tested in the designed test suite. The results and analysis are 

shown in Chapter 4. 

 

 

3.5 MPPT via EM 

 

 The enhanced ELEM was implemented in the MPPT simulation of a PV solar 

energy harvesting system in this research. For the application in MPPT, the tuning 

parameter of the EM was set to be the voltage of the PV harvesting system output. The 

objective of the algorithm was to maximize the generated power. In the initialization stage, 

all the particles in the algorithm were assigned with a voltage value randomly selected 

within (Vmin, Vmax) where Vmin and Vmax represents the minimum and maximum values of 

the operating voltage of the PV array. Then, the particles went through the enhanced local 

search procedure. For the objective function evaluation, the dc-dc converter was activated 

using digital controller corresponding to the position of each particle. The fitness value 

(power) of a particle was calculated after the allowable converter settling time of 0.1s. 

The power value obtained by the particles were compared. The position with the highest 

power value was marked as the best particle. The charge and force of the particles were 

then calculated. In the particle movement stage, the voltage value obtained by the best 

particle with the highest output power achieved was kept, while all other particles were 

moved based on superposition theorem within the feasible range.  
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3.5.1 Simulation Environment 

 

 Simulations were designed to evaluate the performance of EM in tracking the 

MPP of the PV system. The PV arrays in the simulation mode consisted of 3 commercial 

PV modules BP Solar MSX-120W connected in series, as shown in Figure 3.6. The key 

specifications of the BP Solar MSX-120W is given in Table 3.10. The details of the BP 

Solar MSX-120W characteristics can be found in (Boukenoui, 2016). The specification 

sheet of BP Solar MSX-120W is attached in Appendix A.  

 

Figure 3.6: Simulation model of the PV system. 

 

Table 3.10: Electrical characteristic of BP Solar MSX-120W. 

Parameters Value 

Maximum Power (Pmax) 120W 

Voltage at Pmax (VPPM) 33.7V 

Current at Pmax (IPPM) 3.56A 

Open Circuit Voltage (VOC) 42.1V 

Short Circuit Current (ISC) 3.87A 

 

 Under ideal and uniform irradiance, the P-V curve of the serial connected BP Solar 

MSX-120W shows a single peak, as shown in Figure 3.7. In practical applications, the 

actual atmospheric condition can change very rapidly due to clouds, trees, electric poles, 
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and the shadow of neighbouring buildings. Thus, 3 different shading patterns were 

designed with different irradiance on each of the PV panels to simulate the challenging 

and dynamic shading conditions in practical applications. The P-V curves of the designed 

shading patterns and the corresponding MPPs are as shown in Figure 3.8 (a), (b), and (c). 

The peaks and the shaped of the curves are randomly designed within the feasible range 

to simulate the random shading patterns in actual applications. The EM was tested in the 

simulations to track for the MPPs as the shading condition changed from pattern1 to 

pattern 2 and then to pattern 3. The results are analysed in Chapter 4.  

 

 

Figure 3.7: The P-V curve of the serial connected PV panels under ideal and uniform 

irradiance. 

 

Univ
ers

ity
 of

 M
ala

ya



98 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.8: The P-V curves of the simulated shading patterns. PSC varied from pattern 1 

to pattern 2, and then to pattern 3 in the simulation. 

Univ
ers

ity
 of

 M
ala

ya



99 

 

 

CHAPTER 4: RESULTS AND DISCUSSION 

  

 This chapter presents the results and analysis of the simulations, experiments and 

verifications. The chapter can generally be divided into 4 major sections. Section 4.1 

focuses on the impact of search step size settings onto the performance of the EM. 

Experiments and simulations were carried out to analyse the performance of the proposed 

SPC-EM and ELEM in solving numerical optimization problems. The results are 

analysed in details in section 4.2 and 4.3 respectively. The enhanced EM was then 

implemented in the MPPT simulation of a PV system. The results and discussions are 

presented in the final section. 

 

 

4.1 Algorithm Development Environment 

 

 The algorithms were developed and simulated in Microsoft Visual Basic.Net of 

Microsoft Visual Basic Studio 2008. Figure 4.1 shows the integrated development 

environment of the software while Figure 4.2 gives an example of the GUI developed for 

one of the algorithms. The tuning dimensions and the results were set to be in the data 

type of ‘Double’ with the decimal accuracy up to 1E-16. Any number smaller than that 

was considered as ‘0’ in the algorithms. The data and results of the experiments were 

recorded and exported in the format of notepad text document files. Examples of the 

exported data are shown in Figure 4.3. For the ease of convergence analysis, 10 particles 

were employed in all variants of EM, and the algorithms were set to iterate up to 100 
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times. As for ELEM, the value of j was set to 8 while parameters α and β were set to 1.2 

and 0.8 respectively. The reason behind this parameter setting of ELEM and related 

parameter sensitivity analyses are given in Section 4.4.  

 

Figure 4.1: The integrated development environment of the software. 

 

 

Figure 4.2: An example of the developed GUI. 
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(a)         (b) 

Figure 4.3: Data export text document files examples: (a) all particles search history 

details and (b) best particle trails. 

 

 

4.1.1 Impact of Search Step Size Setting in EM 

 

 Experiments were conducted to analyse the impact of search step size setting onto 

the performance of EM. The modified EMLSS and EMSSS were experimented to solve 

the designed test suite consisted of 10 commonly used numerical test functions as shown 

in Chapter 3. The performance and results are benchmarked with that of a conventional 

EM. All the benchmark functions used in this research were minimization problems. Thus, 

in this context, solutions with lower objective values are considered to be relatively more 

accurate. Due to the fact that experiments from the literature such as (Filipovic et. al., 

2013, Arab & Alfi, 2015, Kratica, 2013) were repeated 20 times, the same scheme was 
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adopted in this research. 20 independent runs were conducted for each of the algorithms 

to avoid stochastic discrepancy.  

 

 

4.1.2 Performance Benchmarking 

 

 Table 4.1 and Table 4.2 compare the best solutions, the worst solutions, the 

standard deviations and the average values of 20 runs on all 10 of the optimization 

functions. The original conventional EM is marked as EM. It can be observed that EMSSS 

found highest accuracy solutions in most of the test functions in terms of best value, worst 

value, and average value. The performance of the conventional EM is very unstable as 

there is no telling on the size of the search steps it ends with. However, it can be observed 

that some of the solutions obtained by the conventional EM are very competitive with 

that of EMSSS. It even beats EMSSS in terms of the best values obtained in some of the 

test functions such as f1, f3 and f8. 
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Table 4.1: Best and worst solutions obtained in 20 runs. 

 

 

 

 

 

Table 4.2: Average and standard deviation values of all 20 runs. 

 Best Value  Worst Value 

 EM EMLSS EMSSS  EM EMLSS EMSSS 

f1 3.5488E-03 4.5921E-02 3.8573E-03  2.7525E-01 4.1649E-01 1.2121E-02 

f2 3.9145E-05 2.5787E-04 9.5861E-07  4.9154E-03 3.7381E-03 4.6775E-04 

f3 1.4551E-05 5.4168E-04 5.3497E-05  9.7606E-03 9.3487E-03 5.2585E-04 

f4 7.9371E-06 1.2766E-04 2.8497E-06  1.2945E-03 3.3039E-03 2.1470E-05 

f5 1.5761E-05 1.7194E-04 1.1683E-05  9.1845E-03 9.5083E-03 4.6511E-04 

f6 1.4493E-04 1.8655E-03 6.0471E-05  3.0677E-02 4.9664E-02 9.7521E-04 

f7 4.8441E-05 9.8546E-04 4.1846E-05  2.8021E-02 3.9921E-02 1.2764E-03 

f8 4.4633E-12 1.5314E-07 6.4951E-11  3.0381E-05 2.3740E-05 7.1495E-06 

f9 -186.7259 -186.7010 -186.7300  -186.5277 -186.3577 -186.6749 

f10 -1.03162337 -1.03159788 -1.03162720  -1.03011631 -1.03007554 -1.03152877 

 Average   Standard Deviation 

 EM EMLSS EMSSS  EM EMLSS EMSSS 

f1 1.0603E-01 2.0480E-01 7.6152E-03  5.6446E-03 1.5163E-02 5.4233E-06 

f2 1.7701E-03 1.3424E-03 1.6460E-04  2.5603E-06 7.9994E-07 2.5631E-08 

f3 3.5775E-03 5.1289E-03 1.5220E-04  1.0620E-05 6.8173E-06 1.2121E-08 

f4 3.7616E-04 9.0476E-04 1.0529E-05  1.3192E-07 6.0240E-07 3.5227E-11 

f5 3.3685E-03 4.3701E-03 1.9505E-04  8.8754E-06 9.1427E-06 1.8427E-08 

f6 1.1116E-02 1.9877E-02 5.1123E-04  9.6784E-05 2.2039E-04 7.4025E-08 

f7 8.4205E-03 1.4243E-02 4.7670E-04  5.4449E-05 1.3299E-04 1.6155E-07 

f8 3.3250E-06 4.5667E-06 1.8545E-06  4.6258E-11 4.5498E-11 6.1744E-12 

f9 -186.6603 -186.5090 -186.7030  3.4926E-03 9.7112E-03 2.7069E-04 

f10 -1.03101462 -1.03104713 -1.03157383  2.2573E-07 1.2621E-07 6.3617E-10 Univ
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 Table 4.3 shows the difference of the average values obtained in EMLSS and 

EMSSS to that of the original conventional EM. The comparison gives an indication on 

how much closer the values obtained by EMLSS and EMSSS are to the global optimal 

point in relative to the original EM. Positive values suggest that the result of the algorithm 

is farther away from the global optimal point and less accurate compared to the original 

EM. Negative values, on the other hand, indicate that the algorithm returns results with 

better accuracy. It can be observed from the comparison that EMSSS shows better 

accuracies compared to EMLSS and original EM. 

 

Table 4.3: Average values difference of EMLSS vs EM and EMSSS vs EM. 

 EMLSS - EM EMSSS - EM 

f1 3.0322E-01 -9.8414E-02 

f2 -4.2770E-04 -1.6055E-03 

f3 1.5514E-03 -3.4253E-03 

f4 5.2860E-04 -3.6563E-04 

f5 1.0017E-03 -3.1734E-03 

f6 8.7604E-03 -1.0605E-02 

f7 5.8226E-03 -7.9438E-03 

f8 1.2416E-06 -1.4705E-06 

f9 1.5126E-01 -4.2732E-02 

f10 -3.2516E-05 -5.5922E-04 

 

 

4.1.3 Convergence History Comparisons 

 

 Convergence histories were sampled from the 20 runs and the convergence 

process of the algorithms were compared. The series of figures in Figure 4.4 show the 

convergence curves of EMLSS and EMSSS on all 10 of the test functions in comparison 

with the conventional EM. The negative values of the best fitness functions in F9 and F10 

prohibit the presentation of the graphs in logarithmic axis. 
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 From the graphs, it can be observed that all the variants of EM performed well in 

different complex optimization problems. It can be noticed in the convergence curves that 

EMLSS progress in bigger steps and reach near-optimal values in comparatively earlier 

iterations in most of the cases. EMSSS, on the other hand, has slower convergences, 

which in turn lead to comparatively smoother curves. This slow search processes, 

however, enabled EMSSS to obtain results with higher accuracy compared to both the 

standard EM and EMLSS. This phenomenon can be observed as the curves of the EMSSS 

show the ability to achieve comparatively lower values in most of the minimization test 

functions. 

 

(a)  

Figure 4.4: Convergence histories of conventional EM, EMLSS and EMSSS. 
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(b) 

 

(c) 

Figure 4.4, continued: Convergence histories of conventional EM, EMLSS and EMSSS. 
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(d) 

 

(e) 

Figure 4.4, continued: Convergence histories of conventional EM, EMLSS and EMSSS. 
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(f) 

 

(g) 

Figure 4.4, continued: Convergence histories of conventional EM, EMLSS and EMSSS. 
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(h) 

 

(i) 

Figure 4.4, continued: Convergence histories of conventional EM, EMLSS and EMSSS. 
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(j) 

Figure 4.4, continued: Convergence histories of conventional EM, EMLSS and EMSSS. 

 

 

4.1.4 Particles Movement Analysis 

 

 In order to better expose the movement of the particles during the convergence 

process, the EMLSS and EMSSS were tested to solve the bowl-shaped Sphere test 

function. For the ease of movement analysis, the dimension number of the test function 

was set to 2. Table 4.4 shows the results of the best particles in a search for the minima 

point performed by EMLSS. 
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Table 4.4: Performance of EMLSS. 

Ite Best Particle X Best Particle Y Best Particle fBest Particle 

0 Particle 7 0.26 -1.66 2.8232 

1 Particle 7 0.26 -0.67 0.5165 

2 Particle 7 0.26 0.32 0.17 

3 Particle 2 0.094943093 0.078857467 0.015232691 

4 Particle 5 0.054285117 0.101797292 0.013309563 

. . . . . 

. . . . . 

. . . . . 

17 Particle 5 0.054285117 0.101797292 0.013309563 

18 Particle 3 -0.024974939 0.049636075 0.003087488 

. . . . . 

. . . . . 

. . . . . 

100 Particle 3 -0.024974939 0.049636075 0.003087488 

 

 As shown in Table 4.4, particle number 7 had the initialized random values of 

0.26 and -1.66 for X and Y respectively. This yielded an objective value of 2.8232, which 

was the best among all other particles in the initialization. Particle 7 then searched locally 

and achieved better result of 0.5165 in the first iteration and further improved it to 0.17 

in the second iteration. Upon completing the third iteration, particle number 2 found a 

better result, thus replaced particle number 7 to be the best particle in the iteration. In 

iteration 4, particle 5 found an even better objective value at X= 0.054285117 and Y = 

0.101797292. It maintained its position as the best particle until iteration 17. The search 

reached its best minima point at the end of iteration 18, when particle number 3 found a 

new best minima of 0.003087488 at X= -0.024974939 and Y = 0.049636075. The result 

for the best particle remained the same from iteration 18 onwards to iteration 80.  

 

 Figure 4.5 shows the movement of the best particles from initialization (i0) to 

iteration 18 (i18). All the different positions of the particles yielded different objective 

values, as shown on the right side of the graph. The best particles moved from iteration 

to iteration towards the origin point (0,0), where the best minima is located.  
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Figure 4.5: Movement of best particles in EMLSS from iteration to iteration. 

 

 EMSSS, on the other hand, performed a much detailed search. Table 4.5 shows 

the search history of the experiment. Since the search steps in EMSSS were comparatively 

smaller, it caused the improvement in objective values to be relatively smaller as well. A 

plot of graph in Figure 4.6 gives a better image on how the search mechanism was carried 

out with a sample movement from iteration 8 to iteration 37 by particle 6, which was the 

best particle in those iterations as it found the lowermost value in the minimization test 

function. Particle 4 took over when it found a better objective value in iteration 38. The 

movement scale of the plot shows smaller search steps compared to the movements in 

BSL. 
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Table 4.5. Performance of EMSSS. 

Ite Best Particle X Best Particle Y Best Particle f Best Particle 

0 Particle 7 0.97 -0.75 1.5034 

1 Particle 7 0.96 -0.74 1.4692 

2 Particle 7 0.95 -0.73 1.4354 

3 Particle 6 -0.521062359 -0.667410792 0.716943148 

4 Particle 6 -0.511062359 -0.657410792 0.693373685 

5 Particle 9 -0.225239608 -0.629136921 0.446546146 

6 Particle 9 -0.215239608 -0.619136921 0.429658615 

7 Particle 9 -0.205239608 -0.609136921 0.413171085 

8 Particle 6 -0.249784768 0.096136126 0.071634585 

9 Particle 6 -0.239784768 0.086136126 0.064916167 

10 Particle 6 -0.229784768 0.076136126 0.058597749 

11 Particle 6 -0.229784768 0.066136126 0.057175027 

12 Particle 6 -0.219784768 0.056136126 0.051456609 

13 Particle 6 -0.209784768 0.046136126 0.046138191 

14 Particle 6 -0.199784768 0.036136126 0.041219773 

15 Particle 6 -0.189784768 0.026136126 0.036701355 

16 Particle 6 -0.179784768 0.016136126 0.032582937 

17 Particle 6 -0.169784768 0.006136126 0.028864519 

18 Particle 6 -0.159784768 -0.003863874 0.025546101 

19 Particle 6 -0.149784768 -0.003863874 0.022450406 

20 Particle 6 -0.139784768 -0.003863874 0.019554711 

21 Particle 6 -0.129784768 -0.003863874 0.016859015 

22 Particle 6 -0.119784768 -0.003863874 0.01436332 

23 Particle 6 -0.119784768 -0.003863874 0.01436332 

24 Particle 6 -0.109784768 -0.003863874 0.012067625 

25 Particle 6 -0.099784768 -0.003863874 0.009971929 

26 Particle 6 -0.089784768 -0.003863874 0.008076234 

27 Particle 6 -0.079784768 -0.003863874 0.006380539 

28 Particle 6 -0.069784768 -0.003863874 0.004884843 

29 Particle 6 -0.059784768 -0.003863874 0.003589148 

30 Particle 6 -0.049784768 -0.003863874 0.002493453 

31 Particle 6 -0.039784768 -0.003863874 0.001597757 

32 Particle 6 -0.029784768 -0.003863874 0.000902062 

33 Particle 6 -0.019784768 -0.003863874 0.000406367 

34 Particle 6 -0.009784768 -0.003863874 0.000110671 

35 Particle 6 0.000215232 -0.003863874 1.50E-05 

36 Particle 6 0.000215232 -0.003863874 1.50E-05 

37 Particle 6 0.000215232 -0.003863874 1.50E-05 

38 Particle 4 0.001504167 -0.001954916 6.08E-06 

. . . . . 

. . . . . 

. . . . . 

100 Particle 4 0.001504167 -0.001954916 6.08E-06 
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Figure 4.6: EMSSS local search movement by particle 6. 

 

 The solutions with highest accuracies are highlighted in boldface. The results 

show EM with larger search steps reached near-optimal values faster with less iteration 

number needed. The trade-off, however, is that the solutions returned by EMLSS are 

generally less accurate compared to all the other EM algorithms. The large steps may skip 

some of the better solutions between the steps, resulting in outcomes with lower 

accuracies. EM with smaller search steps, on the other hand, returned outcomes which 

are more accurate compared to EMLSS. Its small search steps enabled it to better exploit 

the solutions, granting the algorithm to achieve final results with consistently higher 

accuracies. However, the small steps employed requires more iterations to complete the 

convergence, which in turn slow down the overall convergence process. 
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4.2 SPC-EM 

 

 The proposed SPC-EM was tested in the designed test suite to analyse its 

performance in solving numerical optimization problems. The results are compared with 

that of the conventional EM, EMLSS and EMSSS. From the literature, Genetic Algorithm 

(GA) is found to be one of the most established and well-known meta-heuristic algorithms. 

Therefore, it is also included in the results benchmarking in order to effectively justify 

the performance of the proposed algorithm. 20 independent runs were adopted in SPC-

EM to avoid stochastic discrepancy. 

 

 

4.2.1 Performance Benchmarking 

 

 The comparisons of the computational results are shown in Tables 4.6. In each 

table, “Best” indicates the best value ever obtained by the algorithm in the corresponding 

test function throughout the 20 independent runs. “Mean” refers to the mean value of the 

20 results obtained from the independent runs in solving the corresponding benchmark 

function. “SD” denotes the respective standard deviation value of the results. “Rank” 

stands for the performance comparison ranking of the search algorithm based on the mean 

results (“Mean”).  
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Table 4.6: Best values, worst values, mean values and standard deviations comparison 

  SPC-EM EM EMLSS EMSSS GA 

F1 Best 1.4193E-03 3.5488E-03 4.5921E-02 3.8573E-03 3.0947E-02 

 Worst 1.4353E-03 2.7525E-01 4.1649E-01 1.2121E-02 2.6375E+00 

 Mean 1.4247E-03 1.0603E-01 2.0480E-01 7.6152E-03 5.9336E-01 

 SD 2.3926E-11 5.6446E-03 1.5163E-02 5.4233E-06 5.6891E-01 

 Rank 1 3 4 2 5 

F2 Best 3.9364E-07 3.9145E-05 2.5787E-04 9.5861E-07 1.5779E-06 

 Worst 3.2743E-05 4.9154E-03 3.7381E-03 4.6775E-04 8.5408E-02 

 Mean 4.6110E-06 1.7701E-03 1.3424E-03 1.6460E-04 1.3026E-02 

 SD 6.1325E-11 2.5603E-06 7.9994E-07 2.5631E-08 5.5266E-04 

 Rank 1 4 3 2 5 

F3 Best 1.2472E-06 1.4551E-05 5.4168E-04 5.3497E-05 1.7997E-05 

 Worst 2.0052E-06 9.7606E-03 9.3487E-03 5.2585E-04 2.2922E-02 

 Mean 1.3958E-06 3.5775E-03 5.1289E-03 1.5220E-04 1.2109E-02 

 SD 5.9082E-14 1.0620E-05 6.8173E-06 1.2121E-08 9.4126E-05 

 Rank 1 3 4 2 5 

F4 Best 2.4944E-07 7.9371E-06 1.2766E-04 2.8497E-06 4.0000E-06 

 Worst 2.4997E-07 1.2945E-03 3.3039E-03 2.1470E-05 9.0000E-04 

 Mean 2.4962E-07 3.7616E-04 9.0476E-04 1.0529E-05 2.6330E-04 

 SD 2.8795E-20 1.3192E-07 6.0240E-07 3.5227E-11 5.4418E-08 

 Rank 1 4 5 2 3 

F5 Best 3.6616E-06 1.5761E-05 1.7194E-04 1.1683E-05 3.2809E-05 

 Worst 5.8058E-06 9.1845E-03 9.5083E-03 4.6511E-04 4.5956E-02 

 Mean 3.8741E-06 3.3685E-03 4.3701E-03 1.9505E-04 7.9481E-03 

 SD 2.1121E-13 8.8754E-06 9.1427E-06 1.8427E-08 1.4531E-04 

 Rank 1 3 4 2 5 

F6 Best 4.9526E-05 1.4493E-04 1.8655E-03 6.0471E-05 1.9855E-04 

 Worst 5.7421E-05 3.0677E-02 4.9664E-02 9.7521E-04 1.9884E+00 

 Mean 5.1338E-05 1.1116E-02 1.9877E-02 5.1123E-04 2.6310E-01 

 SD 5.6796E-12 9.6784E-05 2.2039E-04 7.4025E-08 2.7924E-01 

 Rank 1 3 4 2 5 

F7 Best 2.4945E-05 4.8441E-05 9.8546E-04 4.1846E-05 1.4607E-04 

 Worst 2.8149E-05 2.8021E-02 3.9921E-02 1.2764E-03 9.0797E-02 

 Mean 2.5914E-05 8.4205E-03 1.4243E-02 4.7670E-04 3.3102E-02 

 SD 8.6973E-13 5.4449E-05 1.3299E-04 1.6155E-07 9.1038E-04 

 Rank 1 3 4 2 5 

F8 Best 1.1102E-16 4.4633E-12 1.5314E-07 6.4951E-11 1.1000E-07 

 Worst 2.0630E-05 3.0381E-05 2.3740E-05 7.1495E-06 7.1922E-04 

 Mean 1.4542E-06 3.3250E-06 4.5667E-06 1.8545E-06 1.8244E-04 

 SD 2.0079E-11 4.6258E-11 4.5498E-11 6.1744E-12 4.7147E-08 

 Rank 1 3 4 2 5 

F9 Best -186.7304 -186.7259 -186.7010 -186.7300 -186.7299 

 Worst -186.7303 -186.5277 -186.3577 -186.6749 -169.5802 

 Mean -186.7303 -186.6603 -186.5090 -186.7030 -185.3659 

 SD 5.4656E-10 3.4926E-03 9.7112E-03 2.7069E-04 1.3925E+01 

 Rank 1 3 4 2 5 

F10 Best -1.03162780 -1.03162337 -1.03159788 -1.03162720 -1.03162500 

 Worst -1.03162745 -1.03011631 -1.03007554 -1.03152877 -1.02697000 

 Mean -1.03162749 -1.03101462 -1.03104713 -1.03157383 -1.03044870 

 SD 5.2578E-15 2.2573E-07 1.2621E-07 6.3617E-10 1.1913E-06 

 Rank 1 4 3 2 5 
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 The benchmarking reveals the striking capability of SPC-EM in obtaining optimal 

solutions with higher accuracy and precision. The solutions found by SPC-EM are 

relatively much better than the solutions found by the conventional EM, EMLSS, EMSSS, 

and GA. The systematically-self-regulating probe length feature of the SPC-EM enabled 

it to effectively exploit the solutions. The fine-tuned search steps towards the end of the 

local search every time also ensured the precision of the algorithm, which in turn resulted 

in lower standard deviation values as shown in the table. From the overall analysis on the 

results benchmarking, SPC-EM outperformed all the other algorithms involved. 

 

 

4.2.2 Convergence Process Analysis 

 

 Figures 4.7 show the convergence curves of the benchmarked algorithms in all the 

test functions. The graphs are focused on the first 50 iterations of the convergences where 

most of the movements took place. Logarithmic axis is not applicable in test functions F9 

and F10 due to the negative values of the objective functions. It can be noted from the 

graphs that the SPC-EM performed well in solving variable types of complex 

optimization problems in terms of the accuracy of the solutions and overall convergence 

performance. The SPC-EM progressed very rapidly in early stages and found near-

optimal values in relatively earlier iterations in most of the cases. The ability for the SPC-

EM to reach near optimum values in earlier stage of convergence was due to its long 

probe lengths at the beginning of the search. The regulated and fine-tuned probe lengths 

towards the end of the local search of SPC-EM enabled it to achieve solutions with 

relatively higher accuracy. The tuning of the probe lengths helped SPC-EM to outperform 

other algorithms in their overall convergence process. 
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(a) 

 

(b) 

Figure 4.7: Convergence histories comparison of SPC-EM, conventional EM, EMLSS, 

EMSSS and GA. 
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(c) 

 

(d) 

Figure 4.7, continued: Convergence histories comparison of SPC-EM, conventional 

EM, EMLSS, EMSSS and GA. 
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(e) 

 

(f) 

Figure 4.7, continued: Convergence histories comparison of SPC-EM, conventional 

EM, EMLSS, EMSSS and GA. 
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(g) 

 

(h) 

Figure 4.7, continued: Convergence histories comparison of SPC-EM, conventional 

EM, EMLSS, EMSSS and GA. 
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(i) 

 

(j) 

Figure 4.7, continued: Convergence histories comparison of SPC-EM, conventional 

EM, EMLSS, EMSSS and GA. 
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4.3 ELEM 

The same experiment setup was used to test the proposed ELEM. The experiment 

for each of the tests were carried out 20 times to avoid stochastic discrepancy. The results 

obtained by ELEM are compared with the conventional EM, EMLSS, EMSSS and GA 

in terms of the best solutions, worst solutions, mean values and standard deviations of the 

20 independent runs. 

4.3.1 Performance Benchmarking 

Table 4.7 shows the results comparison of ELEM with other algorithms in terms 

of the best solutions, worst solutions, mean values, and standard deviations of the 20 

independent runs. Based on the mean values, ELEM ranks the first place compared to 

other algorithms. The overall result comparisons reveal the potential of ELEM in 

achieving optimal solutions with higher accuracies and precisions. ELEM steadily shows 

better performance in contrast with the conventional EM, EMLSS, EMSSS and GA. 

EMSSS shows very competitive results on the best solutions achieved in test functions 

F2, F6, F7, and F9. It even outperforms ELEM in the worst value achieved column in F8. 

ELEM shows very promising performance in solving multi-model functions, such as F1, 

F5, F6, F8, F9, and F10. The strong exploration ability of EM paired with the powerful 

experience-based exploitation mechanism enabled ELEM to escape local traps and 

returns with high accuracy solutions. 
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Table 4.7: Comparison on the best solutions, worst solutions, mean values, and standard 

deviations generated by ELEM with the other benchmark algorithms. 

  ELEM EM EMLSS EMSSS GA 

F1 Best 2.3785E-04 3.5488E-03 4.5921E-02 3.8573E-03 3.0947E-02 

 Worst 9.6410E-04 2.7525E-01 4.1649E-01 1.2121E-02 2.6375E+00 

 Mean 8.0935E-04 1.0603E-01 2.0480E-01 7.6152E-03 5.9336E-01 

 SD 6.6424E-08 5.6446E-03 1.5163E-02 5.4233E-06 5.6891E-01 

 Rank 1 3 4 2 5 

F2 Best 1.7511E-07 3.9145E-05 2.5787E-04 9.5861E-07 1.5779E-06 

 Worst 1.6450E-05 4.9154E-03 3.7381E-03 4.6775E-04 8.5408E-02 

 Mean 3.0747E-06 1.7701E-03 1.3424E-03 1.6460E-04 1.3026E-02 

 SD 1.8329E-11 2.5603E-06 7.9994E-07 2.5631E-08 5.5266E-04 

 Rank 1 4 3 2 5 

F3 Best 5.5609E-07 1.4551E-05 5.4168E-04 5.3497E-05 1.7997E-05 

 Worst 1.3053E-06 9.7606E-03 9.3487E-03 5.2585E-04 2.2922E-02 

 Mean 7.6655E-07 3.5775E-03 5.1289E-03 1.5220E-04 1.2109E-02 

 SD 9.9573E-14 1.0620E-05 6.8173E-06 1.2121E-08 9.4126E-05 

 Rank 1 3 4 2 5 

F4 Best 1.1096E-07 7.9371E-06 1.2766E-04 2.8497E-06 4.0000E-06 

 Worst 1.1162E-07 1.2945E-03 3.3039E-03 2.1470E-05 9.0000E-04 

 Mean 1.1106E-07 3.7616E-04 9.0476E-04 1.0529E-05 2.6330E-04 

 SD 2.1177E-20 1.3192E-07 6.0240E-07 3.5227E-11 5.4418E-08 

 Rank 1 4 5 2 3 

F5 Best 1.6275E-06 1.5761E-05 1.7194E-04 1.1683E-05 3.2809E-05 

 Worst 3.5498E-06 9.1845E-03 9.5083E-03 4.6511E-04 4.5956E-02 

 Mean 1.9761E-06 3.3685E-03 4.3701E-03 1.9505E-04 7.9481E-03 

 SD 3.2895E-13 8.8754E-06 9.1427E-06 1.8427E-08 1.4531E-04 

 Rank 1 3 4 2 5 

F6 Best 2.2032E-05 1.4493E-04 1.8655E-03 6.0471E-05 1.9855E-04 

 Worst 2.2343E-05 3.0677E-02 4.9664E-02 9.7521E-04 1.9884E+00 

 Mean 2.2060E-05 1.1116E-02 1.9877E-02 5.1123E-04 2.6310E-01 

 SD 4.6304E-15 9.6784E-05 2.2039E-04 7.4025E-08 2.7924E-01 

 Rank 1 3 4 2 5 

F7 Best 1.1120E-05 4.8441E-05 9.8546E-04 4.1846E-05 1.4607E-04 

 Worst 2.7677E-05 2.8021E-02 3.9921E-02 1.2764E-03 9.0797E-02 

 Mean 1.3260E-05 8.4205E-03 1.4243E-02 4.7670E-04 3.3102E-02 

 SD 1.5737E-11 5.4449E-05 1.3299E-04 1.6155E-07 9.1038E-04 

 Rank 1 3 4 2 5 

F8 Best 0.0000E+00 4.4633E-12 1.5314E-07 6.4951E-11 1.1000E-07 

 Worst 7.5275E-06 3.0381E-05 2.3740E-05 7.1495E-06 7.1922E-04 

 Mean 4.2922E-07 3.3250E-06 4.5667E-06 1.8545E-06 1.8244E-04 

 SD 2.6611E-12 4.6258E-11 4.5498E-11 6.1744E-12 4.7147E-08 

 Rank 1 3 4 2 5 

F9 Best -186.7307 -186.7259 -186.7010 -186.7300 -186.7299 

 Worst -186.7304 -186.5277 -186.3577 -186.6749 -169.5802 

 Mean -186.7306 -186.6603 -186.5090 -186.7030 -185.3659 

 SD 5.4818E-09 3.4926E-03 9.7112E-03 2.7069E-04 1.3925E+01 

 Rank 1 3 4 2 5 

F10 Best -1.03162802 -1.03162337 -1.03159788 -1.03162720 -1.03162500 

 Worst -1.03162792 -1.03011631 -1.03007554 -1.03152877 -1.02697000 

 Mean -1.03162801 -1.03101462 -1.03104713 -1.03157383 -1.03044870 

 SD 4.9932E-16 2.2573E-07 1.2621E-07 6.3617E-10 1.1913E-06 

 Rank 1 4 3 2 5 
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4.3.2 Convergence Process Analysis 

 

 Figures 4.8 graphically present the comparison on typical convergence 

characteristics between the ELEM, GA, and the variants of EM involved in the 

benchmarking. It can be clearly observed from the graphs that the ELEM performed well 

in different complex optimization problems both in terms of the quality of the solution 

and convergence speed. The gradient analysis of the ELEM and its ability to backtrack 

the experience of previous searches enable it to perform a well-directed local search. This 

advantage was balanced by a well-diversified solutions search in the global movement 

stage of the ELEM, where the particles were moved in accordance to the attraction and 

repulsion forces influenced by all other particles in the search space. With the 

combination of the two advantages, the ELEM algorithm converged more rapidly and 

reached lower objective values than other algorithms, Lower objective values indicate 

solutions with higher accuracies. 

 

(a) 

Figure 4.8, continued: Convergence history comparison of ELEM and other algorithms. 
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(b) 

 

(c) 

Figure 4.8, continued: Convergence history comparison of ELEM and other algorithms. 
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(d) 

 

(e) 

Figure 4.8, continued: Convergence history comparison of ELEM and other algorithms. 
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(f) 

 

(g) 

Figure 4.8, continued: Convergence history comparison of ELEM and other algorithms. 
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(h) 

 

(i) 

Figure 4.8, continued: Convergence history comparison of ELEM and other algorithms. 
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(j) 

Figure 4.8, continued: Convergence history comparison of ELEM and other algorithms. 

 

 

4.3.3 Parameter Sensitivity Test 

 

 In this section, the effect of α and β settings on the performance of the ELEM 

algorithm is investigated. Simulations were carried out where the algorithm was executed 

independently 20 times on each benchmark test function with different settings of α and 

β. The value of the gain factor, α was limited to vary from 1.1 to 1.5 as it was estimated 

that a gain too large can generate an out-of-proportion λ size. For similar reason, the value 

of the penalty factor, β was limited to vary from 0.5 to 0.9. The mean results generated 

by pairing increasing α with increasing β values are summarized in Tables 4.8, while 

Table 4.9 shows the outcomes obtained by pairing increasing α with decreasing β. The 

best solutions are highlighted in boldface. 

Univ
ers

ity
 of

 M
ala

ya



131 

 

 Table 4.8: Results generated by pairing increasing α with increasing β. 

 α=1.1 

β=0.5 

α=1.2 

β=0.6 

α=1.3 

β=0.7 

α=1.4 

β=0.8 

α=1.5 

β=0.9 

F1 1.8842E-02 3.7731E-03 3.1124E-03 6.4779E-02 3.7888E-02 

F2 9.6901E-05 4.9592E-06 9.1646E-05 3.1034E-03 6.3541E-04 

F3 9.1630E-04 3.1846E-06 4.1956E-06 3.7929E-05 2.4648E-05 

F4 3.0848E-06 9.1750E-07 3.8827E-05 6.5751E-06 6.4104E-04 

F5 5.0405E-03 6.5901E-06 3.0366E-05 3.4126E-03 3.1622E-03 

F6 3.1954E-02 3.2260E-03 7.9021E-05 3.1645E-02 3.0305E-04 

F7 2.9763E-04 7.9311E-04 2.9006E-03 6.1552E-03 2.5645E-04 

F8 6.0772E-03 6.3091E-02 1.0979E-05 3.3923E-07 6.8741E-05 

F9 -186.730133 -186.730528 -186.730471 -186.730241 -186.730586 

F10 -1.03161688 -1.03162762 -1.03162675 -1.03162432 -1.03162181 

 

Table 4.9: Results generated by pairing increasing α with decreasing β. 

 α=1.1 

β=0.9 
α=1.2 

β=0.8 

α=1.3 

β=0.7 

α=1.4 

β=0.6 

α=1.5 

β=0.5 

F1 6.4644E-03 9.3732E-04 3.1124E-03 9.1788E-02 3.9511E-02 

F2 7.1195E-06 3.3910E-06 9.1646E-05 6.1263E-04 6.8411E-05 

F3 9.1264E-06 7.4061E-07 4.1956E-06 8.0242E-03 3.7962E-04 

F4 6.2338E-06 2.5348E-07 3.8827E-05 3.7121E-06 4.3860E-05 

F5 3.4004E-06 3.1928E-06 3.0366E-05 5.0906E-05 2.8377E-04 

F6 9.8919E-05 7.2856E-05 7.9021E-05 3.1665E-03 6.1720E-03 

F7 6.4407E-04 8.1555E-05 2.9006E-03 3.8337E-02 3.0028E-02 

F8 6.3160E-08 9.1616E-07 1.0979E-05 6.0028E-03 6.4552E-05 

F9 -186.730422 -186.730601 -186.730471 -186.729702 -186.729288 

F10 -1.03162771 -1.03162800 -1.03162675 -1.03162391 -1.03162442 

 

 The results in Table 4.8 and 4.9 indicate that the setting of parameters α and β 

shows certain impact on the performance of the ELEM. It can be observed from the tables 

that for most benchmark functions, the ELEM showed the best performance when the 

gain factor, α was set to 1.2 and the penalty factor, β was set to 0.8. When α was set to 

1.0, it began to show under gain while any value over 1.2 showed over gain on the step 

tuning. Over gain led to an oversized search step in the local search procedure, causing it 

to overstep any better solution within the step. Under gain, on the other hand, caused the 

search to reach the best solution in relatively later iterations. Similar situations can also 

be observed for the setting of parameter β, where 0.9 showed over compensation, while 
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values under 0.8 caused under compensation. As a whole, ELEM with α = 1.2 and β = 

0.8 shows the best performance among the tested algorithms. 

 

 

4.3.4 ELEM vs SPC-EM 

 

 The SPC-EM and the ELEM both proved improvements compared to the 

conventional EM. In this section, the performance of the experience-based ELEM is 

compared with the iteration-based step regulation SPC-EM. Table 4.10 shows the 

comparison of the results obtained by the ELEM and the SPC-EM. From the table, it can 

be observed that the ELEM outperformed the SPC-EM in all of the test functions. The 

SPC-EM shows very competitive solutions in many of the tests, such as F2, F3, F4, F5, 

F6, F7, and F9. However in the end, the ELEM proved to be superior in term of solution 

accuracies. 
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Table 4.10: Results comparison of ELEM vs SPC-EM. 

  ELEM SPC-EM 

F1 Best 2.3785E-04 1.4193E-03 

 Worst 9.6410E-04 1.4353E-03 

 Mean 8.0935E-04 1.4247E-03 

 SD 6.6424E-08 2.3926E-11 

 Rank 1 2 

F2 Best 1.7511E-07 3.9364E-07 

 Worst 1.6450E-05 3.2743E-05 

 Mean 3.0747E-06 4.6110E-06 

 SD 1.8329E-11 6.1325E-11 

 Rank 1 2 

F3 Best 5.5609E-07 1.2472E-06 

 Worst 1.3053E-06 2.0052E-06 

 Mean 7.6655E-07 1.3958E-06 

 SD 9.9573E-14 5.9082E-14 

 Rank 1 2 

F4 Best 1.1096E-07 2.4944E-07 

 Worst 1.1162E-07 2.4997E-07 

 Mean 1.1106E-07 2.4962E-07 

 SD 2.1177E-20 2.8795E-20 

 Rank 1 2 

F5 Best 1.6275E-06 3.6616E-06 

 Worst 3.5498E-06 5.8058E-06 

 Mean 1.9761E-06 3.8741E-06 

 SD 3.2895E-13 2.1121E-13 

 Rank 1 2 

F6 Best 2.2032E-05 4.9526E-05 

 Worst 2.2343E-05 5.7421E-05 

 Mean 2.2060E-05 5.1338E-05 

 SD 4.6304E-15 5.6796E-12 

 Rank 1 2 

F7 Best 1.1120E-05 2.4945E-05 

 Worst 2.7677E-05 2.8149E-05 

 Mean 1.3260E-05 2.5914E-05 

 SD 1.5737E-11 8.6973E-13 

 Rank 1 2 

F8 Best 0.0000E+00 1.1102E-16 

 Worst 7.5275E-06 2.0630E-05 

 Mean 4.2922E-07 1.4542E-06 

 SD 2.6611E-12 2.0079E-11 

 Rank 1 2 

F9 Best -186.7307 -186.7304 

 Worst -186.7304 -186.7303 

 Mean -186.7306 -186.7303 

 SD 5.4818E-09 5.4656E-10 

 Rank 1 2 

F10 Best -1.03162802 -1.03162780 

 Worst -1.03162792 -1.03162745 

 Mean -1.03162801 -1.03162749 

 SD 4.9932E-16 5.2578E-15 

 Rank 1 2 
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 The sampled convergence processes of the ELEM are also compared with that of 

the SPC-EM in Figure 4.9. Since it is not feasible to show F9 and F10 in algorithmic axis, 

the graphs are shown without taking the initialization iteration values as the scales of the 

movements after the initialization stage are relatively too small to be visible. The ELEM 

achieves comparatively lower solution values in most of the sampled convergence, except 

for F8. Given the nature of the graph shape in Schaffer N2 test, the sharp spikes pose 

many local optima traps, rendering differential type local search mechanism to show 

limitations. In problems as such, the exploration ability of the algorithm plays a more 

important role in diversifying the search for other optima points. In term of convergence 

rate, it can be observed from the all the comparisons that both algorithms are equally rapid 

in most of the test functions. In some of the tests, such as F3 and F6, ELEM shows slightly 

quicker convergence.  

 

(a) 

Figure 4.9: Convergence rate comparisons of ELEM vs SPC-EM. 
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(b) 

 

(c) 

Figure 4.9, continued: Convergence rate comparisons of ELEM vs SPC-EM. 
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(d) 

 

(e) 

Figure 4.9, continued: Convergence rate comparisons of ELEM vs SPC-EM. 
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(f) 

 

(g) 

Figure 4.9, continued: Convergence rate comparisons of ELEM vs SPC-EM. 
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(h) 

 

(i) 

Figure 4.9, continued: Convergence rate comparisons of ELEM vs SPC-EM. 
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(j) 

Figure 4.9, continued: Convergence rate comparisons of ELEM vs SPC-EM. 

 

 

4.4 EM in MPPT 

 

 To test the performance of the enhanced EM in solving engineering optimization 

problems, the proposed ELEM was implemented in the simulation to track the MPP of a 

PV solar harvesting system. First, ELEM was tested to track the MPP of 3 serial-

connected BP Solar MSX-120W PV panels under ideal and uniform irradiance. As 

mentioned in Chapter 3, the Power-Voltage behaviour of the simulated PV array under 

ideal and uniform irradiance is as shown in Figure 4.10. 
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Figure 4.10: P-V curve of the serial-connected arrays under ideal irradiance. 

 

 

4.4.1 Ideal Irradiance 

 

 Simulations were carried out 20 times and some results were sampled and 

analysed. Figure 4.11 shows an example of the convergence of the ELEM in the MPPT 

simulation under uniform insolation. The modified ELEM was quick in locating the MPP 

as the single peak P-V characteristic of the PV array under uniform irradiance required 

relatively easier convergence process. Univ
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Figure 4.11: MPPT convergence of the ELEM under ideal irradiance. 

 

 Table 4.11 shows an example of the particle movement in search of the MPP under 

the enhanced exploitation procedure proposed in the ELEM. Figure 4.12 gives a better 

illustration of the movements in the form of a Power vs Voltage graph. It can be observed 

from Figure 4.12 that the best particle began the search procedure in the initial position 

marked in the graph. It then moved in search for a higher power point towards the peak 

of the P-V curve (refer Figure 4.11) until it finally hit the MPP of 360W at 33.7V. Figure 

4.13 shows the sampled local search convergence process. 

Table 4.11: Example of local search particle displacement of the ELEM in tracking the 

MPP. 

Ite Voltage (V) Power (W) 

0 30.08889 324.9600 

1 30.97778 334.5600 

2 31.86667 344.1600 

3 32.75556 355.4492 

4 33.64444 359.9844 

5 33.70000 360.0000 

6 33.70000 360.0000 

7 33.70000 360.0000 

- - - 

- - - 

- - - 
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Figure 4.12: Particle movement in search for the MPP under ideal irradiance condition. 

 

 

Figure 4.13: The exploitation progress in search of the MPP under ideal irradiance 

condition. 
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4.4.2 Partial Shaded Condition 

 

 In practical applications, the solar irradiance onto the PV arrays is seldom uniform. 

Shadows of clouds, buildings and accumulated dust can disturb the insolation of the PV 

arrays, causing non-uniform irradiance to the PV arrays (Boukenoui, 2016). The rapidly 

changing shading pattern makes it even harder for the PV system to perform effectively. 

To simulate challenging partial shading conditions as such, the algorithm was tested to 

track for the MPP under 3 changing shading patterns, as shown in Figure 4.14. In the 

simulation, the P-V curve of the shading pattern was as shown in Figure 4.14 (a) during 

the first second. Then, in the following second, the P-V curve changed into Pattern 2, 

representing changes in the shading pattern on the PV array. In the third second, the 

shading pattern changed again into pattern 3 with the P-V curve as shown in Figure 4.14 

(c). 

 

Figure 4.14 (a): Simulated pattern 1 of shading condition.  
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Figure 4.14 (b): Simulated pattern 2 of shading condition.  

 

 

Figure 4.14 (c): Simulated pattern 3 of shading condition.  
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 Simulations were carried out 20 times and some results were sampled and 

analysed. Figure 4.15 shows an example of the result obtained by implementing ELEM 

in the MPPT of the PV system under varying shading condition. It can be observed that 

the algorithm successfully found the MPP under the first shading pattern (MPP1). The 

operating voltage remained at 21.86V until the shading condition changed to the second 

shading pattern. The algorithm carefully tracked the MPP as it dropped to MPP2 at 

102.852W. When the shading pattern changed again to pattern 3, the algorithm followed 

and tracked the MPP to 253.32W. It can be concluded from this observation that the 

ELEM successfully tracked the MPP as it moved under different PSC patterns. 

 

Figure 4.15: The MPPT successfully performed by ELEM under changing PSCs from 

pattern 1 to pattern 2 and then to pattern 3. 

 

 Figure 4.16 (a), (b), and (c) show some sampled movements of the particles in 

tracking the MPPs under shading pattern 1, 2, and 3 respectively. These movements gives 

a clear picture on how the algorithm tracks the MPP by adjusting the Voltage. 

Univ
ers

ity
 of

 M
ala

ya



146 

 

 

Figure 4.16: Particle movement in search of the MPPs in PSC pattern 1, pattern 2 and 

pattern 3. 

 Literature study shows that the P&O is one of the most commonly applied 

algorithms in the MPPT of a PV system. Thus, the performance of the ELEM is also 

compared with a conventional P&O with random perturbation length setting. Simulations 

with P&O were also carried out 20 times. Result was sampled and shown in Figure 4.17. 

It can be observed that in this example that in shading pattern 1 and 3, P&O was trapped 

in the local optima for some time before managed to escape them. It is important for an 

MPPT algorithm to avoid local MPP traps as they can cause unnecessary loss of energy. 
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Figure 4.17. Performance comparison of ELEM vs P&O. 

 In the case of a PV solar energy harvesting system, the main challenge of the 

MPPT mechanism is to adjust the output Voltage in order to optimize the output power 

under different irradiance conditions. The simulation results in this section indicate that 

ELEM is successful in tracking the maximum power point of a PV solar harvesting 

system under uniform irradiance, non-uniform irradiance, and varying shading conditions.  
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CHAPTER 5: CONCLUSION 

 

 The Electromagnetism-like Mechanism algorithm is a population based meta-

heuristic search method. Mimicking the attraction and repulsion mechanisms in the 

electromagnetism theorem, the EM is designed to search for the global optimum point in 

a continuous search space. In this research, extensive studies have been carried out to 

learn the behaviour of this algorithm. Modifications and improvements are proposed to 

further enhance the performance of it. The enhanced EM is then tested to solve 

engineering optimization problem.  

 

 The effect of the search step size setting on the convergence performance of the 

EM was investigated by modifying a conventional EM to search in two different extreme 

sets of step size settings. EMLSS was set to search in relatively larger steps, while EMSSS 

conducted the search in smaller search step setting. Experimental results showed that 

larger and smaller search step size settings both have their respective advantages and 

disadvantages. Larger step settings speeded up the convergence process, but the final 

results returned by the algorithm is comparatively less accurate. Smaller step settings, on 

the other hand, yielded results with higher accuracies. The trade off, however, was that 

the algorithm required significantly more iterations before it obtained the final outcome, 

which in turn rendered the overall convergence process to be slower.  

 

 In order to acquire the advantages from both large and small search step settings, 

a local search scheme with a dynamic tuning mechanism, known as the Split, Probe and 
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Compare mechanism was developed for the EM in this research. The SPC mechanism is 

a solution exploitation scheme created to replace the entire local search segment of a 

conventional EM. This search scheme enhances the EM with the ability to hit a more 

accurate solution without heavily slowing down the entire convergence process. The 

search mechanism probes for better solutions in split directions in the dimension. A 

nonlinear equation has been designed to systematically and dynamically adjust the length 

of the probes based on the outcome of the Compare segment in each iteration. The general 

concept of the tuning strategy is to begin the search with relatively longer probes and 

dynamically tune the probe lengths as iterations go. Experiments on 10 different test 

problems reveal that the modified algorithm performed well in solving numerical 

optimization problems. The proposed modification onto the algorithm brought significant 

improvements especially in term of solutions exploitation.  

 

 Besides SPC-EM, an experience-based search strategy has also been successfully 

developed and introduced into the EM. The Experiential-Learning EM is enhanced with 

the ability to learn from previous search experience and adjust the scale and direction of 

the following search iterations. A trail memory was generated as iterations went on, 

allowing the algorithm to remember and backtrack previous search results and 

improvement rates. In addition, the ELEM employed a more directional search approach 

instead of a random line search in a conventional EM. This approach significantly 

improved the exploitation ability of the algorithm. Combining with the powerful 

exploration mechanism of the EM, the proposed ELEM stroke a good balance in 

searching for well diversified solutions and accurately exploited results. In the experiment 

of 10 complex optimization problems, the ELEM showed significant superiority in terms 

of solution accuracies and convergence efficiencies compared to all other algorithms 
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involved in the benchmarking. The ELEM also proved to outperform the SPC-EM in the 

same test suite. 

 

 The ELEM was implemented in the simulation to track the maximum power point 

of a PV solar energy harvesting system. Experiment on a PV array with 3 serial-connected 

PV panels was carried out. Simulations of changing shading patterns were carried out to 

mimic the challenging shading conditions in the actual applications. The algorithm was 

tested to track the moving MPP caused by the changing shading conditions. Results 

showed that the enhanced EM was successful in tracking the MPP under uniform 

irradiance, non-uniform irradiance, and rapid changing shading conditions with moving 

MPPs. A maximum power point tracking scheme for a PV system adopting the 

advantages of the ELEM has been successfully developed. The achievement of the ELEM 

in this experiment also proved the capability of it in solving actual engineering 

optimization problems. 

 

 As a conclusion, all the aims and objectives of this research are successfully 

achieved. In the future, inter-particle experience sharing feature can be considered for the 

betterment of the EM. Sharing local information with immediate neighbours can be very 

helpful in speeding up the local search procedure. Furthermore, there is also possibility 

to apply the experience-learning feature into the exploration segment of the EM to further 

enhance the diversification of the solutions. The proposed SPC and Experiential Learning 

features can also be introduced into other population-based global optimization 

algorithms, such as particle swarm optimization, ant colony optimization, and artificial 

bee colony in the future work. The ability to learn from previous experience can be very 

useful in enhancing the convergence performance of these algorithms. It is also suggested 
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that in time to come, the implementation of the ELEM can be extended to track the global 

MPPs of other energy harvesting systems with multiple local peaks, as well as other 

engineering optimization problems with the need of global optima searching.  
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