
  

MODIFICATION OF HOLE TRANSPORT LAYER  

TO ENHANCE THE PERFORMANCE OF    

POLYMER SOLAR CELLS  

 

 

 

SAQIB RAFIQUE 

 

 

 

 

 

FACULTY OF SCIENCE 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 
 
 

 2017  Univ
ers

ity
 of

 M
ala

ya



  

MODIFICATION OF HOLE TRANSPORT LAYER TO 

ENHANCE THE PERFORMANCE OF POLYMER 

SOLAR CELLS 

 

 

 

 

SAQIB RAFIQUE 

 

 

 

THESIS SUBMITTED IN FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

FACULTY OF SCIENCE 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

 

 

 

 

2017 Univ
ers

ity
 of

 M
ala

ya



ii 

UNIVERSITY OF MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: SAQIB RAFIQUE   

Registration/Matric No: SHC 140123

Name of Degree: DOCTOR OF PHILOSOPHY 

Title of Project: Thesis 

MODIFICATION OF HOLE TRANSPORT LAYER TO ENHANCE THE 

PERFORMANCE OF POLYMER SOLAR CELLS 

Field of Study: EXPERIMENTAL PHYSICS 

    I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work; 

(2) This Work is original; 

(3) Any use of any work in which copyright exists was done by way of fair 

dealing and for permitted purposes and any excerpt or extract from, or 

reference to or reproduction of any copyright work has been disclosed 

expressly and sufficiently and the title of the Work and its authorship have 

been acknowledged in this Work; 

(4) I do not have any actual knowledge nor do I ought reasonably to know that 

the making of this work constitutes an infringement of any copyright work; 

(5) I hereby assign all and every rights in the copyright to this Work to the 

University of Malaya (“UM”), who henceforth shall be owner of the 

copyright in this Work and that any reproduction or use in any form or by any 

means whatsoever is prohibited without the written consent of UM having 

been first had and obtained; 

(6) I am fully aware that if in the course of making this Work I have infringed 

any copyright whether intentionally or otherwise, I may be subject to legal 

action or any other action as may be determined by UM. 

Candidate’s Signature Date: 

Subscribed and solemnly declared before, 

Witness’s Signature Date: 

Name: KHAULAH SULAIMAN (Ph.D.) 

Designation: ASSOCIATE PROFESSOR 

Univ
ers

ity
 of

 M
ala

ya



iii 

ABSTRACT 

Despite the fact that development of organic solar cells (OSCs) is rapidly 

accelerating as the new need of green energy sources, they continue taking backstage 

roll in growing markets of various photovoltaic technologies due to their limited 

efficiency and stability. One of the challenges in obtaining the high performance of 

OSCs is an inefficient charge extraction and transportation to the electrodes, in 

particular, inability of new generation of donor polymers to obtain Ohmic contacts 

between the electrodes and the photo-active layer. Poly (3, 4-ethylenedioxythiophene) 

polystyrene sulfonate (PEDOT:PSS) is the current state of the art interfacial material  

used to reduce these contact barriers between the photo-active layer and indium tin 

oxide (ITO) electrode. However, PEDOT:PSS as a hole transport layer (HTL) also 

favors device degradation due to its hygroscopic and acidic nature, resulting in severe 

device instability. Combination of metal oxides and/or graphene oxide (GO) along with 

PEDOT:PSS to form a composite HTL is expected to compliment the drawbacks of any 

of the individual materials. This dissertation is primarily focused on identifying and 

addressing the stability and degradation issues associated with bulk heterojunction 

(BHJ) solar cells. In particular, vanadium pentaoxide (V2O5), and/or graphene oxide 

(GO) along with the PEDOT:PSS were studied and device based on organic-inorganic 

hybrid HTL were fabricated and characterised. The first part of the work is devoted to 

the stability and degradation issues. Layer by layer degradation study of BHJ OSCs 

with pristine PEDOT:PSS HTL was performed to identify the factors affecting device 

efficiency and stability. It was demonstrated that indium diffusion from ITO anode and 

oxygen ingress from atmosphere are some of the major causes of device instability, 

which affect the morphological, optical, compositional and photovoltaic characteristics 

of the OSCs. Another task of this work was to fabricate and study the normal 
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architecture BHJ OSCs based on hybrid HTL consisting of PEDOT:PSS along with 

V2O5, and/or GO, and compare the device performance with that of pristine 

PEDOT:PSS. In this context, applicability of V2O5 incorporated in PEDOT:PSS 

aqueous suspension to form organic-inorganic HTL in BHJ OSCs was shown. The 

resultant devices were tested on merits of their efficiency and operational stability. Our 

results indicate that V2O5 could be a simple addition into the PEDOT:PSS layer to 

overcome its stability and degradation  issues leading to an effective HTL in BHJ OSCs. 

The last part of the work demonstrates the applicability of GO as an HTL material and 

further challenges were discussed. Firstly, the GO concentration was optimised, 

thereafter, optimised concentration of GO was used along with PEDOT:PSS in 

GO/PEDOT:PSS double decked HTL structure. The devices were tested on merits of 

their power conversion efficiency (PCE), reproducibility, stability and compared with 

the devices with individual GO or PEDOT:PSS HTLs. It was shown that performance 

of the device with GO/PEDOT:PSS HTL is significantly improved than that of devices 

with individual PEDOT:PSS or GO HTLs. The current work is based on highly 

reproducible, solution processable and cost effective fabrication techniques. 
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ABSTRAK 

Walaupun perkembangan sel suria organik (OSCs) kian meningkat dengan 

permintaan sumber tenaga hijau, ia masih lagi tidak mampu menembusi pasaran 

teknologi foto-voltan kerana masalah lazim yang kekurangan kecekapan dan kestabilan 

peranti jenis ini. Salah satu cabaran dalam mencapai prestasi lebih tinggi bagi OSCs 

adalah ketidak-cekapan pengekstrakan cas dan masalah angkutan cas ke elektrod. Ini 

ditambah dengan ketidak-upayaan polimer penderma yang baharu dalam mencapai 

sentuhan Ohmic antara elektrod dan lapisan foto-aktif. Poly (3, 4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) adalah bahan antara-

muka yang terbaru digunakan untuk mengurangkan sentuhan halangan antara lapisan 

foto-aktif dan elektrod indium timah oksida (ITO). Walau bagaimanapun, PEDOT:PSS 

sebagai lapisan angkutan holong (HTL) juga menyumbang degradasi peranti ini kerana 

sifat semulajadinya yang higroskopik dam berasid boleh menyebabkan ketidakstabilan 

peranti yang teruk. Gabungan oxida logam dan grafin oksida (GO) bersama-sama 

PEDOT:PSS dalam membentuk komposit HTL dijangka akan melengkapkan 

kekurangan bahan-bahan berkenaan yang digunakan secara individu. Disertasi ini 

memberi fokus utama kepada langkah mengenal pasti dan menangani masalah 

kestabilan dan degradasi yang berkait rapat dengan sel suria hetero-simpang pukal 

(BHJ). Secara khusus, vanadium pentaosida (V2O5), dan/atau grafin oxida (GO) 

bersama-sama PEDOT:PSS dikaji dan peranti berasaskan HTL hibrid organic-tak 

organik difabrikasi dan dicirikan. Pada bahagian pertama, keutamaan diberikan kepada 

masalah kestabilan dan degradasi. Kajian degradasi lapisan demi lapisan bagi BHJ 

OSCs dilakukan dengan menggunakan PEDOT:PSS tulen sebagai HTL dalam 

mengenal pasti faktor-faktor yang memberi kesan kepada kecekapan dan kestabilan 

peranti ini. Ia menunjukkan bahawa penyebaran indium dari anod ITO dan kemasukan 
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oksigen dari atmosfera adalah penyebab utama ketidakstabilan peranti, yang juga 

memberi kesan kepada ciri-ciri morfologi, optikal, komposisis dan foto-voltan bagi 

OSCs berkenaan. Tugas seterusnya adalah memfabrikasi dan mengkaji struktur asas 

BHJ OSCs berasaskan HTL hidrid yang mengandungi PEDOT:PSS bersama-sama 

V2O5, dan/atau GO, dan kemudiannya prestasi peranti ini dibandingkan dengan peranti 

piawai yang hanya terdiri dari PEDOT:PSS tulen. Dalam konteks ini, keserasian V2O5 

yang digabungkan dengan PEDOT:PSS membentuk HTL organik-tak organik dalam 

BHJ OSCs ditunjukkan. Peranti berkenaan diuji bagi menentukan kecekapan dan 

kestabilannya dalam jangka masa panjang. Keputusan kami mendapati bahawa V2O5 

mampu menjadi komponen penambahan yang ringkas kepada lapisan PEDOT:PSS 

dalam menangani masalah kestabilan dan degradasi, sekaligus menjadikannya HTL 

yang berkesan dalam BHJ OSCs. Tugas terakhir adalah membuktikan keserasian GO 

sebagai bahan HTL dan cabarannya dibincangkan. Pertama, kepekatan GO 

dioptimimkan lalu ia digunakan bersama PEDOT:PSS di dalam GO/PEDOT:PSS 

dengan struktur HTL yang bertingkat. Peranti ini diuji bagi mengenal pasti prestasinya 

termasuklah kecekapan, keboleh ulangan, kestabilan, dan dibandingkan dengan peranti 

yang mengandungi HTL GO atau PEDOT:PSS sahaja. Peranti yang mempunyai HTL 

GO/PEDOT:PSS ini telah menunjukkan peningkatan prestasi yang ketara berbanding 

dengan peranti yang menggunakan PEDOT:PSS dan GO sahaja sebagai HTL. Kerja 

terbaru ini adalah berasaskan teknik fabrikasi yang menjimatkan, keboleh prosesan 

secara larutan dan keboleh ulangan yang tinggi. 
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 INTRODUCTION  

1.1 Background  

In today’s world, the energy regimen is largely reliant on non-renewable and 

polluting energy sources, consequently, the global temperature is expected to rise about 

1 to 6 °C during the 21st century (Ameri et al., 2009). Conventional energy harvesting is 

based on fossil fuels such as oil, gas, and coal which have unsustainable consequences 

for environmental, economical, geopolitical and societal issues. Carbon dioxide (CO2) 

concentration is expected to rise between 540 to 970 parts per million until 2100  that is 

sufficient to cause substantial and irreversible modifications in the global climate 

(Ameri et al., 2009; Karl & Trenberth, 2003). Moreover, the energy consumption in 

many developed nations is still not at its peak plus there is an increasing demand of 

electricity utilization from the developing countries (Conti et al., 2011). According to 

the International Energy Outlook 2016, projected increases in world energy 

consumption is estimated to reach at 815 quadrillion Btu in 2040 which was 549 

quadrillion Btu in 2012, an increase of 48 %. Consequently, a rise in energy 

consumption, the depletion of these non-renewable sources and global warming are 

causing a severe threat to the balance of human life. Therefore, great attention was 

driven towards the clean and renewable energy sources of which solar energy is 

believed to have highest potential among other alternative energy resources such as 

hydroelectric, biomass and wind energy. There are several reasons of choosing solar 

energy as one of the most promising renewable energy resources to fulfill energy 

demands of the world. Many areas of developing countries lack grid infrastructures for 

transmission of electricity generation. This makes locally generated power potentially 

better suited to meet energy demands of these countries. In addition, sun is the most 

abundant source of energy on earth and the annual amount of energy received from the 
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sun is enormous; 3.9 ×1020  joules which is enough to meet world energy demand  in 

less than an hour (Anderson et al., 2004).  

Despite of the fact that earth receives abundant solar power, the photovoltaic 

(PV) technology is still cost intensive to become a primary energy source. Therefore, 

the development of highly efficient, cost effective and industrial scale technology is 

required to ensure a bright future of PV products.  

1.2 Solar Cell Generations 

Solar cells are manufactured through range of technologies including wafer 

based and variety of thin film technologies. These technologies are traditionally 

grouped into first, second and third generations. Below, a brief description of each 

generation is presented.  

First Generation (IG): First generation (1G) solar cells are produced on silicon 

wafers including single crystal (c-Si) and multi-crystalline silicon (mc-Si) (Bagnall & 

Boreland, 2008). Current photovoltaic market is dominated by this generation due to 

their high efficiencies typically in the range of 15-25 % (Bagnall & Boreland, 2008; 

Green et al., 2015). However, the production of these solar cells require high quality 

silicon, state of the art high temperature processing and complex engineering, and are 

therefore not a cost effective energy source (Sun & Sariciftci, 2005). In addition, these 

solar cells are rigid with less mechanical flexibility.   

Second Generation (2G): One of the key challenges in the production of IG 

solar cells is their high production cost. Therefore, the second generation (2G) solar 

cells were designed with the aim to remove unnecessary material from the cost equation 

by using single-junction devices based on thin film technology (Badawy, 2015), while 

maintaining the high efficiencies comparable with the 1G solar cells. These 2G devices 
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are fabricated on low cost substrates by using less material based on amorphous silicon 

(a-Si), cadmium telluride/sulfide (CdTe/CdS), copper Indium (Gallium) diselenide 

(CIS, CIGS) or polycrystalline-Si (p-Si), thereby reducing the overall cost in the 

manufacturing process (Green et al., 2006).  

Third Generation (3G): The third generation (3G) solar cells are based on 

organic small molecules or polymers and designed to complement the advantages of 

both 1G and 2G devices (Brown & Wu, 2009). The concept aims to reduce the cost per 

watt peak, by maintaining high efficiencies, and economic and environmental cost 

advantages of thin-film deposition techniques (Conibeer, 2007). 3G technologies 

introduce the idea of multiple stacking of solar cells, which can significantly increase 

the efficiency by improving the harvesting of photons and even overcome the 

theoretical limit of 30 % (Karam et al., 1999; Zweibel, 2010).  

The 3G exhibits an entirely new concept of device architecture and materials i.e. 

organic solar cells (OSCs), dye sensitized solar cells (DSSCs) and perovskite solar cells 

etc. (Sharma et al., 2015). The polymer solar cells including organic/inorganic hybrid 

are fundamentally new types of devices which offer several advantages over their 1G 

and 2G counterparts such as their tunable properties, low manufacturing cost, roll to roll 

(R2R) production compatibility, solution processed and light weight (Chen et al., 2013; 

Sun et al., 2010; Synooka et al., 2014). However, they exhibit significant instability 

when exposed to air, mainly due to oxygen and moisture ingress from air, and diffusion 

of indium from indium tin oxide (ITO) anode (Krebs et al., 2008; Kawano et al., 2006). 

Further improvement in the stability of OSCs is however, essential for most of the 

technological applications (Kawano et al., 2006).   

This thesis purely focused on modification of hole transport layer (HTL) in the 

bulk heterojunction (BHJ) OSCs with polymer-fullerene photoactive layer to improve 
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the stability as well as efficiency of devices. The basic working principle of BHJ OSCs, 

device architecture, typical materials, role of interfacial layers and stability/degradation 

of OSCs will be discussed briefly in the following sections.  

1.3 Bulk-Heterojunction Organic Solar Cells 

Since the production of organic photovoltaic materials in mid 1980s, solution 

processable OSCs based on thin film technologies have attracted immense attraction as 

a possible alternative to their inorganic counterparts (Bulavko & Ishchenko, 2014). 

Potential for cost effective and fast R2R production as well as their light weight and 

fabrication on flexible substrates could give them an edge over traditional inorganic 

solar cells (Scharber & Sariciftci, 2013; Shivanna et al., 2014).  

 Thanks to the discovery of an ultrafast charge transfer which opened the great 

but simple field of so-called BHJ OSCs. To date, remarkable progress in the BHJ OSCs 

has been recorded and power conversion efficiencies (PCEs) of more than 10% have 

been successfully demonstrated (Li et al., 2012; Trost et al., 2015).  The photoactive 

layer of a BHJ-OSC is made of a bi-continuous composite of electron-donor  and 

electron-acceptor modules sandwiched between the cathode and anode (Huang et al., 

2014). The basic structure , operational principal, device geometries and materials have 

been briefly discussed below, whereby schematic illustration of BHJ OSCs and 

corresponding energy-bands is illustrated in Figure 1.1.    
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Figure 1.1: (a) Schematic illustration of photocurrent generation steps e.g. from light 

absorption to charge carriers collection and (b) band diagram of the 

photocurrent generation mechanism in a BHJ solar cell. 

 

1.3.1 Device Structure and Materials  

A BHJ OSC is essentially consisted of multilayer structure in which each layer 

in the device architecture could be deposited by an individual fabrication technique. The 

device is illuminated through the transparent substrate, a glass or flexible (plastic) 

substrate in most cases, coated with high work function (WF) indium tin oxide (ITO), 

the transparent anode that provides the extraction and collection of positive charge 

carriers (Huang & Huang, 2014).  The cathode is usually made of a low WF opaque 

metal such as aluminum (Al) or calcium (Ca) (Po et al., 2011), whereas, the absorber 

layer is comprises of two constituents; A donor material is usually a conjugated 

polymer, conjugated pigments or oligomers, and for an acceptor material  often  

fullerene derivatives are applied. The photoactive layer is sandwiched between the 

anode and top low WF cathode. In order to improve the performance and stability of the 

BHJ OSCs, often interfacial layers namely HTL and electron transport layer (ETL) are 

inserted between the anode-photoactive and cathode-photoactive interfaces (Facchetti, 

Univ
ers

ity
 of

 M
ala

ya



 

6 

2013). Over the years, inverted device architecture has also been established for BHJ 

OSCs.  In an inverted device, the bottom transparent electrode serves as the cathode 

while the top electrode is anode. The performance of inverted devices is comparable 

with the normal architecture solar cells; in addition, they also exhibit relatively higher 

environmental stability. Typical device architecture for normal and inverted solar cells 

is illustrated in Figure 1.2.  

 

Figure 1.2: Device architecture of the (a) normal and (b) inverted BHJ OSCs. 

 

1.3.2 BHJ OSCs Working Principle 

The simplified working principle of BHJ OSC device can be described in at least 

four fundamental steps namely (i) Photons absorption and exciton formation, (ii) 

exciton diffusion and splitting, (iii) charge transportation and (iv) charge collection 

(Deibel & Dyakonov, 2010; Dou et al., 2013; Facchetti, 2013).   

In a BHJ OSC device, light is usually absorbed in the donor material e.g. a 

conjugated polymer. Upon absorption of photons, an electron is excited from the 

highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO). The offset between donor (LUMO) and acceptor (LUMO) must be in the 

range of 0.1-1.4 eV to generate the electron-hole pairs also known as the excitons. The 
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excitons must diffuse to the donor-acceptor interface where there is sufficient chemical 

potential energy drop to split these excitons into the free charge carriers i.e. the 

electrons and the holes (Mayer et al., 2007). After splitting into free charge carriers, 

each carrier must be transported to the respective electrode through the bi-continuous 

interpenetrating pathway while avoiding recombination and trapping of charges.  Some 

limitations and  losses could occur during these steps such as absorption loss due to 

spectral mismatch, thermalization loss, insufficient energy required for exciton splitting, 

and charge recombination etc. (Siddiki et al., 2010).  

Three important parameters determine the PCE of a solar cell: The current that 

reaches to the electrodes without any applied field is termed as the short circuit current 

(Jsc) whereas open circuit voltage (Voc) is the maximum potential generated by the 

device. In order for the current to do work, it must be generated with some potential. 

The ratio of maximum obtained power to the product of Jsc and Voc is known as fill 

factor (FF) and it defines the quality of the device.  PCE is defined as product of these 

three parameters divided by input power (Pin) and denoted by sign (η). Mathematically; 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
=

𝐹𝐹(𝑉𝑜𝑐×𝐽𝑠𝑐)

𝑃𝑖𝑛
                        (1.1) 

𝐹𝐹 =
𝑉𝑚𝑝𝑝×𝐼𝑚𝑝𝑝

𝑉𝑜𝑐×𝐽𝑠𝑐
                                  (1.2) 

Where, Vmpp and Jmpp (eq.1.2) are the voltage and current density at the maximum output 

power, respectively. The schematic illustration of the basic structure and working 

principle of BHJ OSCs   is presented in the Figure 1.3.   
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Figure 1.3: (a) BHJ OSC structure and (b) operation principle of BHJ OSC devices. 

 

1.3.3 Role of Interfacial Layers in OSCs 

In   BHJ OSCs, each layer of the solar cell architecture significantly influences 

the device performance and optimization of every layer is essential to achieve the best 

optimum performance. As discussed earlier, in the basic device structure the 

photoactive layer is sandwiched between the ITO anode and a low WF metal cathode.  

In order to ensure the efficient charge extraction at the respective electrodes, the energy 

level structure at the electrodes and photoactive layer interface plays an essential role 

(Po et al., 2011; Zheng et al., 2016). The electrodes- active layer interface affects the 

phase separation, energy level alignment, and a proper interfacial engineering (insertion 

of optimized ETL and HTL between photoactive layer and respective electrodes) 

provides good ohmic contacts with minimum resistance and higher charge selectivity to 

prevent carriers from reaching to the opposite electrodes (Lian et al., 2014; Steim et al., 

2010). In addition it helps in adjusting the surface energetics and WF, and affects the 

formation of gradients within the BHJ (Chueh et al., 2015; Zeng et al., 2015). A detailed 

discussion on the developmental history of BHJ OSCs, materials and design parameters, 

role of interfacial layers in BHJ OSCs, in particular the HTL in context of this thesis, 

device physics, performance characteristics, stability/degradation mechanisms and 

strategies to improve device performance will be presented in Chapter 2.   
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1.4 Stability/Degradation of the OSCs 

During the recent years, OSCs have evolved in terms of efficiency as well as 

stability. Stability of the OSCs is one of the major bottlenecks in their long term 

performance. Although, the stability of OSCs has remarkably improved and it was 

measured in minutes in earlier days which can sustain now for several thousands of 

hours under favorable circumstances. However, still a lot of improvement is needed to 

address the factors limiting the stability of OSCs (Jørgensen et al., 2012).  Degradation 

process comprises a range of complex phenomenon simultaneously in play, of which 

many of them are not completely understood yet. The multilayers structure  and 

interfaces of metal/organic, organic/organic materials significantly influences the 

overall performance (Bao et al., 2014). Recent reports on the lifetime stability of OSCs 

highlighted two major problems regarding the device stability. Firstly, the extrinsic 

stability which requires proper encapsulation of devices to prevent the environmentally 

induced degradation mainly caused by oxygen and moisture present in the air (Ecker et 

al., 2011; Udum et al., 2014). Secondly, the intrinsic stability which is related to the 

materials and interfaces present in the OSCs (Jørgensen et al., 2008; Zeng et al., 2015). 

Some of the known factors affecting the device stability are surface morphology of 

different layers, diffusion of oxygen from atmosphere, corrosion and diffusion of 

indium and tin (from ITO anode), mechanical stress and photo-degradation etc. (Cheng 

& Zhan, 2016).  Several processes and strategies have been employed in recent years to 

address stability issues such as optimization of active layer morphology, interfacial 

engineering and utilization of hybrid buffered layers, employing inverted geometry, 

using stable electrodes and proper device encapsulation. A detailed overview of the 

each of the factors limiting the device stability and possible strategies to increase the 

stability of OSCs is presented in Chapter 2.  
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1.5 Project Motivation  

During the past few years, significant progress has been recorded in BHJ OSCs 

by virtue of their low cost, solution processed and environmental friendly fabrication 

processes (Deibel & Dyakonov, 2010; Jagadamma et al., 2014). Considerable 

improvement in the device performance has pushed the device efficiency towards the 

efficient 10% regime (Dennler et al., 2009; Nelson, 2011). Although, a lot of research 

has been carried out on OSCs for their widespread commercialization and large scale 

production, but they still have many constraints that prevent them to move beyond the 

laboratory. Most of the limiting factors are environmentally induced degradations 

caused by oxygen, humidity and intrinsic instability of OSCs materials and interfaces 

(Choi et al., 2012; Jong et al., 2000). Since chemical, physical, mechanical and 

structural properties of organic semiconductors are very sensitive towards ambient 

atmosphere, therefore, the photovoltaic properties of OSCs are quite susceptible to 

degradation in ambient environmental conditions (Bekci & Ela, 2012; Jørgensen et al., 

2008). Although, the lifetime of OSCs can be improved by adopting various 

encapsulation techniques but this approach would significantly increase the production 

cost (Udum et al., 2014). Most of the OSCs which are being fabricated today are tested 

under controlled environment without even being exposed to ambient air containing 

natural humidity. Hence, for the successful widespread commercialization and large 

scale production of OSCs, the stability of OSCs also needs to be improved along with 

their efficiency (Savagatrup et al., 2015).  

Poly (3.4-ethylenedioxythiophene):Poly (styrenesulfonate) (PEDOT:PSS) is the 

most commonly applied HTL in OSCs. However it limits the device performance due to 

its highly hygroscopic and acidic nature which causes reliability issues while reducing 

the cell life drastically (Schulz et al., 2014). There are several pathways that have been 

adopted in order to improve the stability of the interface between photoactive layer and 
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the ITO anode. One of the most reliable methods is to optimize the HTL by introducing 

favorable materials along with PEDOT:PSS or to replace it with suitable alternatives. 

Materials such as metal oxides and/or graphene oxide (GO) along with PEDOT:PSS to 

form an organic-inorganic hybrid HTL are expected to address the stability issues 

associated with PEDOT:PSS and compliment the drawbacks of any of the individual 

materials.  The aim to improve the stability and efficiency of BHJ OSCs by utilizing the 

aforementioned hybrid HTLs has become the main motivation of this work. 

1.6 Project Goals and Outlines 

The title of this dissertation is rather broader and involved a couple of different 

tasks that have been accomplished during this work. The work is based on results; some 

of which have already been published. The articles comprises of projects of different but 

interlinked character with the aim to identify the degradation factors limiting the device 

stability in general, particularly, in the context of HTL. Further, to optimize the HTL by 

using metal oxides such as vanadium pentaoxide (V2O5), and/or GO along with the 

PEDOT:PSS in order to address the reliability issues associated with pristine 

PEDOT:PSS HTL and  enhance the stability of the device while addressing these 

factors.  In this context, the attempt to group these tasks in different sections, led to 

generation of four chapters (Chapter 3-6) that are presented after introduction and 

literature review chapters. In particular, Chapter 3 discusses the stability/ degradation 

issues involves in deterioration of device performance. It presents layer by layer 

identification of degradation factors affecting the device performance. Several 

characterization techniques have been employed in order to record the compositional, 

morphological, chemical, optical and photovoltaic decay as a function of aging time in 

ambient air. Chapter 4 addresses some of the reliability issues associated with the 

instability of the HTL by incorporating V2O5 into the PEDOT:PSS HTL. The resultant 

device showed enhanced stability and efficiency as compared to pristine PEDOT:PSS 
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HTL. Chapter 5 and 6 present two small projects that involve the utilization of GO as 

an HTL. At first, Chapter 5 describes the optimization of GO concentration to replace 

PEDOT:PSS as an HTL. It also identifies the limitation brought by GO as a single HTL 

material and suggests the possible improvement which could be brought in the device 

performance by using GO along with PEDOT:PSS in a bi-layer structure. Further, 

Chapter 6 suggests a novel approach to use GO/PEDOT:PSS HTL in the  poly[N-90-

heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30 benzothiadiazole)] 

(PCDTBT), and (6,6)-phenyl C71 butyric acid methyl ester (PC71BM) based device 

structure. A set of characterizations confirm the efficacy of this approach and a detailed 

study on reproducibility and stability of the resultant device has been presented.   

Finally, the conclusion of this work is reported in Chapter 7. Along with presenting the 

summary of the project this chapter also includes the future challenges and research 

directions. 

Four goals have been extracted from the current work that describes the aims of 

the present study:  

1.  To optimize the fabrication parameters in order to develop a facile, solution 

processable and cost effective fabrication technique of the polymer solar 

cells. 

2. To identify the degradation factors and stability concerns particularly 

related to HTL in the ITO/PEDOT:PSS/ PCDTBT:PC71BM/ Al device 

structure.  

3. To evaluate the V2O5 and/or GO along with the PEDOT:PSS as a hybrid 

HTL in order to address the reliability issues associated with pristine 

PEDOT:PSS HTL. 
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4. To evaluate and improve the operational stability of the fabricated devices 

with hybrid HTL. 
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 LITERATURE REVIEW1  

2.1 Development in BHJ OSCs  

Tang in 1986, reported the first successful organic photovoltaic device yielding 

a PCE of 1% but with a high FF of 65% in a bi-layer device architecture (Tang, 1986). 

Both donor and acceptor materials were deposited by sequential thermal vacuum 

sublimation of two small molecules. Six years later in 1992, Sariciftci et al. reported the 

ultrafast electron transfer from the donor polymer poly[2-methoxy-5-(2-

ethylhexyloxy)]-1,4-phenylenevinylene (MEH-PPV) to the fullerene (C60), which for 

the first time suggested the use of conjugated polymers as donor materials and fullerene 

derivatives as acceptor material (Kraabel et al., 1993; Sariciftci et al., 1992). Later, the 

concept of BHJ  comprises of donor and acceptor materials was introduced to address 

the performance constraints associated with the shorter diffusion length in OSCs (Halls 

et al., 1995; Yu et al., 1995). BHJ is an intimate blend of donor and acceptor materials 

within the photoactive layer with large interfacial areas for efficient charge separation 

(Zheng, et al., 2015; Rafique et al., 2016). Due to tremendous progress in optimization 

of materials and devices, the BHJ architecture is considered as standard for OSCs.  

PCEs of more than 10% have been reported recently, however, this value is still 

significantly less than what is required for daily applications (Liu et al., 2015). The 

development of BHJ OSCs is rapidly accelerating as a potential green solar energy 

technology. OSCs are attractive mainly because of the modifiable structures of their 

                                                 

 

1 The review presented in this Chapter has been submitted to  Elsevier: “Renewable & Sustainable Energy Reviews” as;  

Rafique et al. Fundamentals of Bulk Heterojunction Organic Solar Cells: An overview of design parameters, device physics, 

performance characteristics, stability/degradation factors and strategies for improvement. Renewable & Sustainable 

Energy Reviews. (Manuscript Submitted)  
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organic constituents, flexibility, and compatibility with R2R production (Cao et al., 

2014).  Most of the work is focused on improving the device efficiency; however, some 

visionary scientists have already paid attention to the stability constraints of the BHJ 

OSCs (Cao et al., 2014; Jørgensen et al., 2012; Katz et al., 2006). This literature review 

chapter does not cover a huge body of literature on this subject during last few years; 

instead, it focuses fundamental concept of BHJ OSCs including device physics of BHJ 

OSCs, performance characteristics, working principle, materials, limitations and 

possible routes of improving the performance.    

2.2 OSCs Materials: Ideal Design Properties 

The choice of materials used in OSCs is crucial to the overall performance in 

terms of efficiency and stability. This section presents a detailed overview of the 

material choice and properties, limitations and possibilities for improvement. Further, it 

surveys the materials which have been investigated in recent years and analyses the 

specific material (PCDTBT:PC71BM) with reference to the aforementioned desired 

properties and also discusses the potential advantages and major limitations of these 

materials.  

BHJ OSCs employing  organic donor and acceptor  materials  should comply 

with several performance characteristics for an efficient photocurrent and photovoltage 

generation and are thus as follows (Zheng, et al., 2015; Nelson, 2011): 

 Optimized absorption features of the OSCs by fine tuning the absorption 

characteristics to maximize the visible light absorption. 

 The width of domains of pure donor or acceptor material should be shorter 

than the diffusion length of (< ~10 nm) an exciton, in order for most 

photo-generated excitons to dissociate, i.e., the two components should be 

sufficiently well mixed.  
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 Both phases should form continuous percolating networks that connect the 

bulk of the film to the anode and cathode.  

 The electrodes should be chosen to ensure the high selectivity of charge 

carrier extraction and collection i.e. electrons must be collected at one and 

holes at the other electrode, in order to provide a direction for the 

photocurrent. Such selectivity can be achieved using one high and one low 

work function electrode. 

2.2.1 Donor and Acceptor Polymers 

Several factors determine the efficacy of donor and acceptor materials in BHJ 

solar cells architecture. While choosing a donor material, it is important to consider 

HOMO and LUMO levels with respect to the acceptor material.  Moreover, absorption 

range can be broaden by lowering the bandgap, thus polymer can absorb more photons 

which will consequently increase the Jsc (Scharber et al., 2006; Su et al., 2012). Most of 

the semiconductor polymers are hole conductor and named as electron donor polymers 

(Cai et al., 2010). The progress of donor polymers has gone through several phases of 

research; as a result four prominent names emerged, namely (i) poly 

(phenylenevinylene) (PPV) derivatives such as MEH-PPV (Hou & Guo, 2013; Zhou et 

al., 2004), (ii) MDMO-PPV (Zheng, et al., 2015), (iii) poly- (thiophene) derivatives, 

mainly P3HT (Wright & Uddin, 2012) and (iv) polyfluorene derivatives like PFDTBT 

and PCDTBT (Blouin et al., 2007; Cai et al., 2010).  Figure 2.1 shows the structure of 

these donor polymers. In addition, the full names of these polymers are:  

MEH-PPV: Poly [2-methoxy-5-(2’-ethyl-hexyloxy)-1,4-phenylene vinylene] 

P3HT: Poly (3-hexylthiophene-2, 5-diyl). 

MDMO-PPV: Poly [2-methoxy-5-(3′, 7′-dimethyloctyloxy)-1, phenylenevinylene] 

PFDTBT: Poly {[2, 7-(9, 9-bis-(2-octyl)-fluorene)]-alt- [5, 5-(4, 7-di-20-thienyl-2, 

1, 3-benzothiadiazole)]}. 
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PCDTBT: Poly [N-9’-hepta-decanyl-2,7-carbazole-alt-5,5-(4’,7’-di-thienyl-2’1’,3’-

b3nzothiadizaole).   

 

 

Figure 2.1:  Chemical structure for materials typically used as polymer donor materials 

including MEH-PPV, MDMO-PPV, P3HT, PDFTBT and PCDTBT. 

 

Since last one decade, P3HT emerged as a prominent semiconductor polymer 

due to its self-assembling tendency, improved absorption, higher hole mobility 

(Schilinsky et al., 2002; Wright & Uddin, 2012) and its ability to crystallize which 

means that the final morphology is controllable by varying process conditions or 

subsequent treatments (Quiles et al., 2008). P3HT exhibits a bandgap of ~ 1.9eV which 

can be further reduced by enhancing the quinoidal character in the polymer (Roncali, 

2007). However, in past few years, PCDTBT emerged as a superior donor polymer as 

compared to P3HT due its ultrafast charge carrier generation ability and different charge 
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carrier recombination dynamics (Synooka et al., 2014). Section 2.2.2 presents a brief 

description of PCDTBT as a prominent donor polymer.   

The conventional OSCs mostly use fullerene derivatives as the electron acceptor 

material. The unsubstituted fullerene shows poor solubility which limits its applicability 

in the device fabrication; therefore a number of substituents were 

introduced onto fullerene to overcome the solubility issues (Hou & Guo, 2013).  In this 

context, Hummelen et al. demonstrated a feasible approach to synthesize PCBM ([6,6]-

phenyl-C61-butyric acid methyl ester), which have been broadly used as one of the 

most successful electron acceptor materials due its excellent photovoltaic properties 

(Hummelen et al., 1995). Thereafter, the soluble derivatives of C60 have been 

successfully utilized as fullerene derivatives to act as electron acceptor materials. These 

so-called fullerene derivatives offer several advantages such as ultrafast charge transfer 

mechanism between donor polymers and acceptor fullerenes, high electron mobility and 

better phase segregation in the polymer-fullerene blend (Cai et al., 2010).  Chemical 

structures of some of the famous fullerene based electron acceptor materials are shown 

in Figure 2.2.  

 

Figure  2.2: Examples of the fullerene based electron acceptor materials used in OSCs. 
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In recent years, all polymer solar cells which employ polymer  donor  and 

polymer acceptor  materials as photoactive layer has received great attention (Facchetti, 

2013; Kim et al., 2015) due to their enhanced photo-absorption in the visible range as 

compared to fullerene. Consequently, it improves the light harvesting and enables 

higher PCEs (Lee et al., 2015; Long et al., 2016; Zhou et al., 2016). Recently, Gao et al. 

(Gao et al., 2015) demonstrated the all-polymer solar cells with a PCE of 8.27%. This 

shows that polymer donor and polymer acceptor based active layer could dominate the 

OSCs field in future.  

2.2.2 PCDTBT:PC71BM Blend 

Leclerc and co-workers in 2007, synthesized the PCDTBT donor polymer for 

the first time (Blouin et al., 2007). Since then PCDTBT is regarded as one of the most 

extensively studied donor-acceptor copolymers due to its excellent properties (Synooka 

et al., 2014).  PCDTBT shows nearly perfect quantum efficiency (Park et al., 2009), 

high solubility (Blouin et al., 2007), significantly higher PCEs (Wang et al., 2016), 

excellent thermal stability (Cho et al., 2010) and longer operational stability of several 

thousand hours (Roesch et al., 2013; Zhang et al., 2016).  

Recently, Wang et al. (Wang et al., 2016) reported a PCE of 7.13% by 

employing co-additives in PCDTBT:PC71BM based BHJ OSCs. PCDTBT:PC71BM 

blend also shows excellent operational stability along with high PCEs. Zhang et al. 

demonstrated outdoor stability of PCDTBT:PC71BM based BHJ OSCs for over the 

course of an year (Zhang et al., 2016). It was concluded that PCDTBT:PC71BM based 

solar cells show relatively good stability in the real operational conditions. Contrary to 

P3HT-PCBM based blend, where we need post fabrication annealing for the higher 

efficiencies, the PCDTBT based OSCs exhibit best performance with un-annealed state, 

thus reducing processing steps as compared to P3HT based devices (Synooka et al., 

2014).  
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The main focus of this thesis is to optimize the HTL by using metal oxides 

(V2O5) and GO along with PEDOT:PSS to address the stability issues associated with 

conventional PEDOT:PSS while maintaining the efficiencies comparable with the 

device containing pristine PEDOT:PSS, therefore section 2.2.3 below presents a brief 

description of it.  

2.2.3 The Buffered Layers 

A typical OSC architecture consists of a BHJ photoactive layer sandwiched 

between the two electrodes. However, this basic architecture possesses several 

performance constraints including lack of ohmic contacts, inefficient charge extraction 

and transportation, lack of selectivity in charge collection and mismatch of WF etc.        

(Chen et al., 2012). To overcome these issues, OSCs usually include functional layers 

(namely HTL and ETL) at the active layer/electrodes interface (Po et al., 2011). The 

buffered layers are considered to be critically essential part of the device architecture for 

achieving high efficiency and stability in OSCs and can no more be considered as 

“optional”. These layers can be used to “engineer” the interface between the photoactive 

layer and electrodes which strongly affect this interface by inducing geometry 

modifications, chemical reactions and charge redistribution etc. (Ma et al., 2010). These 

layers are mainly selected on the merits of their charge transport properties, their energy 

levels and offer several potential advantages such as (Cao et al., 2016; Steim et al., 

2010);  

i. Buffered layers enable the high selectivity of charge carriers from the 

photoactive layer towards the electrodes.  

ii. In some cases, they enhance the light absorption leading to higher PCEs, 

thus playing the role of an “optical spacer” 

iii. Limit the reaction between the photoactive layer and the electrodes.  
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iv. Reduce the energy barriers due to mismatch in the energy levels of 

photoactive layer and electrodes. 

Anode buffered layer: Since the discussion of ETL is out of this thesis scope, 

therefore, a brief description of HTL would only be presented here. The primary role of 

HTL is to improve the collection and extraction of positive charge carriers. In addition, 

it should block the negative charge carriers to the anode, thus needing a high WF 

material. ITO is the most commonly used anode electrode and its WF (~ 4.7 eV) does 

not match either with the HOMO level of most of the donor polymers or with the 

LUMO of fullerene based acceptor, thus, leading to a large band offset which results in 

recombination of charge carriers at the interface (Kettle et al., 2012).  Therefore, use of 

PEDOT:PSS as state of the art HTL enables the high WF and planarize the  

electrode/active layer interface (Bailo et al., 2012). In addition, it also offers high 

conductivity and transparency and helps in adjusting surface defects passivation 

(Ameen et al., 2015). On the other hand, it is also true that PEDOT:PSS favors the 

device degradation due to its highly acidic and hygroscopic properties, leading to 

indium corrosion and oxygen ingress, respectively  Shrotriya et al., 2006).     

To date, the known HTL materials are transition metal oxides (TMOs) (Chen et 

al., 2012; Shrotriya et al., 2006), conjugated or non-conjugated polymers (He et al., 

2014), small molecule organic materials, self-assembled monolayers (Zhao et al., 2015) 

and GO (Jeon et al., 2014; Liu et al., 2013). These materials have been reported to either 

replace PEDOT:PSS or used along with PEDOT:PSS to overcome stability issues 

associated with pristine PEDOT:PSS HTL. Among the HTL materials used in OSCs, 

TMOs are promising candidates due to their better environmental stability, high 

transparency and comparable device performance with that of PEDOT:PSS (Chen et al., 

2012; Choi et al., 2015).   
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The very first use of TMOs in the field of organic electronics can be traced back 

in 1996 when Tokito et al. used vanadium oxide (VOx), molybdenum oxide (MoOx) and 

ruthenium oxide (RuOx) as HTLs in organic light emitting diodes (OLEDs) (Tokito et 

al., 1996). In the pursuit for overcoming the stability concerns pertaining to 

PEDOT:PSS, researchers have identified several TMOs  such as V2O5 (Chen et al., 

2011; Cho et al., 2015), tungsten oxide (WO3) (Li et al., 2012; Stubhan et al., 2012), 

molybdenum oxide (MoO3) (Lee et al., 2012; Murase & Yang, 2012) and  nickel oxide 

(NiOx) (Hsu et al., 2015; Manders et al., 2013) to serve as HTLs in OSCs. It has been 

reported that certain metal oxides can act as an optical spacer (Gershon, 2011), 

moreover, TMOs are chemically and mechanically stable during their interaction with 

the organic photoactive layer, thus minimizing any undesired chemical reactions and 

increasing device life time (Ma et al., 2010 ). In addition, these metal oxides have high 

WFs so their Fermi levels match well with the HOMO level of photoactive polymer and 

they help to decrease the energy level offset between the photoactive layer and the ITO 

anode.   

In the current work, V2O5 and GO have been employed as an HTL material 

along with the PEDOT:PSS to form a hybrid HTL in the PCDTBT:PC71BM normal 

architecture solar cells. Therefore, a short description of each of these two materials is 

presented below.  

2.2.3.1 V2O5 as an HTL Material  

Metal oxide V2O5 has been widely explored as an HTL in BHJ OSCs. It can form an 

efficient HTL junction with the photoactive layer due to its much higher conduction 

level than the lowest occupied molecular orbital (LOMO) of the organic photoactive 

layer which can effectively block the undesired transportation of electrons towards the 

electrodes and thus, performance of the device can be significantly enhanced (Pan et al., 
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2016).  In addition, it shows very good transparency in visible region, wide optical 

bandgap, good interfacial adhesion and better environmental stability (Meyer et al., 

2011; Rafique et al., 2016; Zilberberg et al., 2011). At initial stage of TMO based 

OSCs, metal oxides were usually deposited by cost intensive vacuum based processes 

(Kyaw et al., 2008). However, in recent years several reports confirm the efficacy of 

solution processable V2O5 HTL in BHJ OSCs device architecture showing high stability 

and efficiency (Rafique et al., 2016; Escobar et al., 2013; Wang et al., 2012). The 

reported work related to V2O5 as an HTL can be classified into two categories: one is 

using V2O5 as an HTL to replace PEDOT:PSS; the other is to use V2O5 along with 

PEDOT:PSS to form an organic-inorganic hybrid HTL. The latter option has been 

adopted to compliment the best features of both of the materials while overcoming their 

disadvantages. In this context, J. Pan et al. recently reported PEDOT:PSS/V2O5 double 

decked HTL by depositing V2O5 nanowires on top of the PEDOT:PSS layer (Pan et al., 

2016). The resultant device outperformed the devices fabricated with either of 

individual materials on merits of their performance. In our recently reported work, V2O5 

nanoparticles were dispersed in PEDOT:PSS aqueous suspension and the resultant 

device showed enhanced stability as compared to the device with that of pristine 

PEDOT:PSS (Rafique et al., 2016).  It is thus concluded that solution processable V2O5 

based HTL could be a simple and facile route to fabricate BHJ OSCs with high 

efficiency and stability.  

2.2.3.2 GO as an HTL Material 

It is obvious that development of facile, solution processable and low cost HTL 

material compatible with OSC materials is urgently demanded in recent years. In this 

context, solution processed GO derivatives have emerged as an efficient HTL material 

for OSCs with long term stability (Li et al., 2010; Liu et al.,  2012). In particular, spin 

coated GO is regarded as a promising alternative to pristine PEDOT:PSS HTL due to its 
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easy fabrication approach, excellent transparency, mechanical flexibility and R2R 

production compatibility (Kim et al., 2013; Stratakis et al., 2014; Stratakis et al., 2013). 

GO is a derivative of graphene, consisting of one atomic layer thick graphene sheet 

functionalized with hydroxyl (OH) and epoxy groups on the basal planes and carboxylic 

groups (COOH) at the edge (Cheng et al., 2015; Ding et al., 2015). It contains a mix of 

sp2 and sp3 hybridized carbon atoms and, especially, sp2 hybridized domain of GO 

provides opportunities to tailor its optoelectronics characteristics (Li et al., 2010; Yang 

et al., 2012). Although, GO possesses insulating properties, however, it still can 

facilitate the transportation of holes via hoping (Dehsari et al., 2014). Moreover, the GO 

based device possess excellent device stability as compared to the one with 

PEDOT:PSS HTL (Yusoff et al., 2014). GO is water soluble and could be combined 

with different organic and inorganic materials. It also retains the high transparency and 

its WF (4.9 eV, lower than PEDOT:PSS which is 5.1 eV) is comparable to PEDOT:PSS 

(Smith et al., 2014). However, GO as an HTL material also possesses some drawbacks 

including its insulating properties leading to poor Ohmic contacts, poor film uniformity 

and relatively low WF as compared to PEDOT:PSS (Ding et al., 2015). Therefore, a 

GO/PEDOT;PSS composite layer is expected to overcome these issues associated with 

either of the single material. It is reported that an ultrathin layer of GO underneath the 

PEDOT:PSS could act as a barrier against the ITO diffusion and acid corrosion, and 

also facilitates the extraction of holes via hoping due to well matched WF between GO 

and PEDOT:PSS as well as GO can effectively block the undesired flow of electrons 

due its large bandgap (~ 3.6 eV) (Dehsari et al., 2014). Moreover, the GO/PEDOT:PSS 

composite HTL shows better electrical conductivity, higher PCEs and enhanced 

stability (Yu et al., 2014).  
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2.3 Device Physics of BHJ OSCs  

Since the development of BHJ device structure based on conjugated polymers-

fullerene based intimated blend, this material combination has led to several 

breakthroughs in efficiencies with PCEs approaching above 10% regime (Chen et al., 

2014). In addition, the stability of the OSCs has also substantially enhanced while 

device life of several thousand years has already been reported in real operational 

conditions (Zhang et al., 2016). This section reviews the process and performance 

characteristics that govern device operation of polymer-fullerene BHJ OSCs. The 

schematic representation of operating principle of OSCs is illustrated in Figure 2.3.  

 

Figure 2.3:  (a) Photogeneration in BHJ OSCs upon illumination and (b) Steps 

involved in energy production upon illumination (From exciton generation 

until charge carriers collection) 

 

2.3.1 Light Absorption and Exciton Generation  

To achieve the high efficiency, the photoactive layer must absorb the maximum 

of the incoming sunlight. Light is usually absorbed by donor fraction of the BHJ 
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photoactive layer. Due to high absorption co-efficient of conjugated polymers           

(107 m−1) , they can effectively  absorb light at maximum of their absorption spectrum 

(Blom et al., 2007) with  very low thickness of  the photoactive (100-200 nm) layer as 

compared to their in-organic silicon (an indirect semiconductor) based counterparts 

where thicknesses of hundreds of micrometers are required. Thus, the OSCs employing 

conjugated polymers significantly lower the amount of material. Unfortunately, owing 

to the narrow band of conjugated polymers as compared to inorganic semiconductor, 

they typically cover the small region of the solar spectrum only, thus, showing poor 

performance than inorganic solar cells (Hoppe et al., 2003; Lioudakis et al., 2007; Peet 

et al., 2007).  Moreover, the thickness of polymer based photoactive layer is also limited 

to 100 nm due to low charge-carrier mobilities in most of the polymers which leads to 

an absorption of only 60% of the incident light at the absorption  maximum (excluding 

back reflection of the electrode) (Blom et al., 2007). In contrast, the inorganic 

semiconductors can effectively absorb the whole visible solar spectrum (Blom et al., 

2007; Deibel & Dyakonov, 2010). Thus, low absorption in conjugated polymers leads to 

low photocurrent generation. Interestingly, the absorption of light can be enhanced by 

lowering the bandgap of donor polymers which results in absorption of maximum 

number of photons that lead to higher PCEs (Brabec et al., 2002; Yeh & Yeh, 2013). 

Therefore, materials with lower bandgap are necessary to optimize the photon 

harvesting. Generally, a material with bandgap lower than 2 eV is considered as a low 

bandgap material that lead to the possibilities of improving the efficiency of OSCs due 

to a better overlap with the solar spectrum. For example, a bandgap of 1.1 eV can cover 

77% of the AM 1.5 solar photon flux as compared to bandgap of 1.9 eV that can hardly 

cover 30 % of the AM1.5 photon flux (Yeh & Yeh, 2013). Thus, a low bandgap 

material can significantly improve the photocurrent generation.  
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Luckily, the bandgap of conjugated polymers can be lowered down to even 0.5 

eV through numerous manipulations and modifications of their chemical structures 

(Jean Roncali, 1997). A simple rule of thumb to lower the bandgap is to either raise the 

LUMO or lower the HOMO levels of the polymer or bring them together 

simultaneously (Cheng et al., 2009).  Several methods have been adopted to enhance the 

absorption range of donor polymers such as extending the conjugation length of the π-

conjugated segments (Mühlbacher et al., 2006). In general, conjugation length is in 

inverse proportion to the difference between the HOMO and 

LUMO of the conjugated polymers. However, after certain extension in conjugated 

length it reaches to a saturation point and the bandgap starts to level off. Thus, an 

unlimited extension of the conjugation length  results only in a limited reduction of the 

bandgap (Cheng et al., 2009). Another widely used approach is to combine electron rich 

and electron poor units in the polymer backbone in a ‘push-pull’ structure i.e. 

combining the thiophene containing (electron rich) and benzothiadiazole [BT] (electron 

poor). In this approach, the HOMO of the copolymer is dominated by the HOMO of the 

electron deficient unit and the LUMO by that of the electron rich unit. A remarkable 

improvement in the PCEs of OSCs has been made by using the so-called push-pull 

copolymers (Bronstein et al., 2011; Mühlbacher et al., 2006; Peet et al., 2007). 

Light is illuminated from the transparent electrode side, and on absorption of 

photon; an electron is excited from the HOMO to the LUMO.  It is similar to inorganic 

semiconductors where electron is excited from valence band to the conduction band. As 

a result an electron-hole pair (exciton) with binding energy typically in the range of 0.1–

1.4 eV is generated (Mayer et al., 2007). Contrary to inorganic semiconductors, higher 

binding energy in organic materials is due to strong coulomb’s attractions between the 

electron–hole pairs. The excitons are then migrated to donor-acceptor interface. A 

schematic representation of steps in energy production is shown in Figure 2.3.  
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2.3.2 Exciton Diffusion and Charge Dissociation  

Singlet excitons in organic semiconductor materials migrate between conjugated 

segments through Förster energy transfer (Scheidler et al., 1996). Owing to the 

disordered nature of the polymers such hopping is referred as diffusion (Mikhnenko et 

al., 2014). These coulombically bound electron−hole pairs cannot generate photocurrent 

and for photovoltaic applications, BHJ of electron donor and electron acceptor is used 

to generate charge carriers. Further, the energy offset in LUMO between donor and 

acceptor materials breaks the Coulomb attraction which ultimately causes the excitons 

to dissociate (Dimitrov & Durrant, 2013; Gao & Inganäs, 2014; Ohkita & Ito, 2013). 

Therefore, excitons must diffuse into the donor-acceptor interface to dissociate into 

charge carriers before deactivating to the ground state (Tamai et al., 2015). However, 

the thermal energy at room temperature which is required to dissociate an exciton into 

free charge carriers is not enough due to the high exciton binding energy in conjugated 

polymers (Blom et al., 2007).  

As most of the conjugated polymers exhibit shorter lifetime of the excitons, the 

diffusion lengths are limited to a few nanometers (less than 20 nm), which is much 

shorter than the optical absorption pass length (∼100−200 nm). As a result, the PCE of 

a bi-layer cell is limited by the low number of photons that can be absorbed within the 

effective exciton  range (Markov et al., 2005). To circumvent this issue, the BHJ 

structure has been widely adopted to maximize the harvesting of excitons at the 

interface (Kang et al., 2016; Yu & Heeger, 1995). However, it is the prerequisite that 

excitons must be generated within their diffusion length (LD) for efficient charge 

generation (Scharber & Sariciftci, 2013). Exciton diffusion length is defined as the 

distance travelled by an exciton before recombination (Fung & Choy, 2013). The 

reported excitons diffusion length for various conjugated polymers significantly varies 

ranging from 5 to 20 nm (Halls et al., 1996; Haugeneder et al., 1999; Stübinger & 
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Brütting, 2001). Thus, the thickness of the photoactive layer is very much critical for an 

efficient charge generation. However, a thin layer of photoactive BHJ material has to 

compromise on low absorption efficiency. Therefore, large interface area for exciton 

splitting and optimum phase separation is highly desirable which results in efficient 

exciton dissociation (Fung & Choy, 2013).  

In organic semiconductors, photogenerated holes and electrons at the 

donor/acceptor interface experience a strong Coulomb binding energy (Clarke & 

Durrant, 2010; Deibel et al., 2010). These Coulomb bound electron–hole pairs have to 

be dissociated to get free charge carriers. However, they either recombine or dissociate 

into free charge carriers upon escaping their mutual Coulomb attraction (Blom et al., 

2007; Deibel & Dyakonov, 2010). Efficient charge transportation requires efficient 

dissociation of excitons at the interface. The difference in HOMO and LUMO between 

donor and acceptor layers creates electrostatic forces at the interface.  When materials 

choice is  proper, such differences generate electric field that leads to the efficient break 

up of excitons into electrons and holes (Yeh & Yeh, 2013). Further, the free electrons 

are then accepted by the material with higher LUMO level and holes by the material 

with lower HOMO. Unfortunately, these free charge carriers can lead to recombination 

or trapping in a disordered interpenetrating organic material while travelling towards the 

electrodes.  

2.3.3 Free Charge Carrier Transport 

After the exciton dissociation into free charge carriers, the charges should be 

transported towards the respective electrodes as shown in Figure 2.3. The transportation 

of charge carriers in organic semiconductors mostly takes place by hopping from one 

localized state to the next (Baranovskii et al., 2000; Pivrikas et al., 2007). Moreover, in 

the BHJ of donor- acceptor materials, the donor is generally a hole conductor and an 
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acceptor transports the electrons. Transportation of free charges towards their respective 

electrodes is driven by an internal electric field occurred due to the Fermi level 

difference of the electrodes (Zhou et al., 2010).  In general, a high WF anode and a low 

WF cathode create an internal electric field that determines the Voc of the cell (Fung & 

Choy, 2013). Transportation of free charge carriers is either driven by the carrier 

diffusion or electric field induced drift.  

The main bottleneck to the efficient transportation of free charge carriers 

towards the anode and cathode is their recombination before reaching to their respective 

electrodes. The charge carrier mobility in the photoactive layer governs both the carrier 

transportation as well as the losses caused due to carrier recombination (Mandoc et al., 

2007). In the case of  low mobility materials, electrons and holes remain bound by the 

Coulomb potential, as a result they cannot overcome their mutual attraction and finally 

recombine prior to charge collection at the electrodes (Pivrikas et al., 2007). 

Consequently, the solar cell experiences a significant loss in terms of photogenerated 

current. As discussed earlier, because of low carrier mobility in BHJ materials, the 

thickness of the photoactive layer is restricted to less than 100 nm for an optimized 

performance (Park et al., 2009). The  path length of photogenerated electrons and holes 

is in direct proportion to the thickness of the photoactive layer (Cowan et al., 2012). 

Charge carrier recombination increases as the photoactive layer gets thicker, resulting in 

a substantial loss in the device performance (Lenes et al., 2006). Thus, competition 

between carrier sweep-out by the internal field and the loss of photogenerated carriers 

by recombination are the important issues to overcome for high efficiency devices 

(Cowan et al., 2012).  
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2.3.4  Collection of the Charge Carriers at the Electrodes 

Photogenerated charge carriers that do not recombine are finally extracted from 

the photoactive layer to the respective electrodes. The potential barrier at the 

photoactive layer/ electrodes interface must be reduced to maximize the extraction of 

charges (Deibel & Dyakonov, 2010). Therefore, the WF of the anode should match with 

the HOMO of the donor material, while the WF of the cathode must match with the 

LUMO of the acceptor material (Fung & Choy, 2013). If the WF matches well as 

described then the contacts are said to be Ohmic contacts. Contrary to this, if there is a 

mismatch between the anode and cathode with that of donor HOMO or acceptor 

LUMO, respectively, then no Ohmic contacts would be established. Ultimately, the 

performance of the solar cells will decrease (Blom et al., 2007).  

The charge collection at the respective electrodes concludes the steps from 

absorption of light to generation of photocurrent as show in Figure 2.3. The PV 

performance characteristics such as Jsc, Voc and FF etc. are reliant on the photocurrent 

generation. Therefore, a brief discussion on the performance characteristics of an OSC 

is presented in section 2.3.5.   

2.3.5 Performance Characteristics 

At present, BHJ OSCs are one of the most successful device architectures in 

OSCs, which employ an intimate blend of donor and acceptor materials incorporated in 

photoactive layer. In addition, OSCs have the lowest energy payback time (~ 0.4 years) 

than silicon (~2.4 years for c-Si) and CdTe (~ 0.7 years) (Peet et al., 2007). To achieve 

an optimum performance, a basic understanding of the performance characteristics that 

govern the operation of solar cells is necessary that can serve as a guideline to identify 

and develop new materials for highly efficient devices.  
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As discussed briefly in Chapter 1, the PCE of an OSC is reliant on the Voc, Jsc, 

FF, and Pin defined by the equation 1.1 in Chapter 1.  Figure 2.4 shows a typical 

Current density - Voltage (JV) curve for a solar cell. It illustrates the critical parameters 

which determine the PCE of an OSC. These include the Voc, Jsc, FF, and the values for 

JMpp and VMpp (JMpp and VMpp are the points on the J-V curve where maximum power is 

produced). The outlined shaded area in the graph indicates the FF whereas, the product 

of  current and voltage has the highest yield at the maximum power point (MPP) 

(Hoppea & Sariciftci, 2004). 

 

Figure 2.4: Typical Current density- Voltage (J-V) curves of an OSC. 

 

Rigorous research has been carried out to optimize these parameters in order to 

enhance PCEs of OSCs. Below, a brief description for each of them is presented. 

2.3.5.1 Short Circuit Current Density (Jsc)  

The Jsc is the maximum photocurrent density generated at zero applied potential 

(e.g. short circuit conditions when Voc = 0) (Troshin et al., 2008). Although, there is no 

power produced at this point, however, the Jsc marks the onset of the power generation. 
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It is essential parameter which can be affected due to several factors such as locally 

enhanced surface recombination, due to regions of low charge carrier lifetimes, 

inhomogeneous optical characteristics as well as distances to the metal contacts during 

the production process (Padilla et al., 2014). Jsc represents the number of charge carriers 

generated and finally collected at the respective electrodes at zero applied potential 

(Fung & Choy, 2013). Although it is technically a negative number, but conventionally 

its magnitude is considered and treated as a positive number, e.g. a higher Jsc is desired 

for higher efficiency.   

The performance of an OSC is largely governed by the incident photon to 

converted electron (IPCE) efficiency, defined as the externally measured number of 

collected charge carriers verses the number of incident photons, and also referred as 

external quantum efficiency (EQE) (Armin et al., 2014; Chen et al., 2013). The Jsc is 

directly related to the EQE and the relationship between the Jsc and EQE is expressed as 

(Wright & Uddin, 2012):  

𝐽𝑠𝑐 =
𝑞

ℎ𝑐
∫ 𝐸𝑄𝐸

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
× 𝑃𝑖𝑛 (𝜆)𝜆 × 𝑑𝜆……………. (2.1) 

Where, q is the charge of electron, λ [nm] is the wavelength of incident photons 

and Pin [W/m2] is the incident power. Moreover, IPCE can also be understood as how 

efficiently the device converts the incident light into electrical energy at a certain 

wavelength (Günes et al., 2007). Mathematically the IPCE it expressed as: 

𝐼𝑃𝐶𝐸 =
1240𝐼𝑠𝑐

𝜆𝑃𝑖𝑛
  ………………….. (2.2) 

Where, Isc is the photo-current [µA/cm2], λ [nm] is the wavelength of incident 

photons and Pin [W/m2] is the incident power.    
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2.3.5.2 Open Circuit Voltage (Voc) 

One of the most important factors determining the device efficiency is Voc which 

is determined when J = 0 or it is being open circuited (Chandrasekaran et al., 2011). It is 

the measure of the maximum of voltage that a solar cell can extract for an external 

circuit (Elumalai & Uddin, 2016; Qi & Wang, 2012). Although, a generally acceptable 

view is that  Voc in the BHJ OSCs originates from the energy offset between the HOMO 

of the donor and LUMO of the acceptor material (Ke et al., 2015), however, early 

studies reveals that the Voc is determined  by the difference in the WFs of the two 

electrodes (Lo et al., 2010), the so called metal-insulator-metal (MIM) model (Günes et 

al., 2007; Mihailetchi et al., 2003). Brabec et al. fabricated series of devices with several 

fullerenes of varied LUMO level and commonly used donor materials, and reported that 

Voc is directly related to the acceptor strength of the fullerenes. Moreover, their results 

fully support the view that Voc is reliant on offset between the HOMO level of the donor 

and the LUMO level of the acceptor components (Brabec et al., 2001). Scharber et al. 

reported in their work that MIM model is not valid for BHJ OSCs and Voc of a BHJ 

OSC linearly changes with the energy level offset between the HOMO of donor and 

LUMO of the acceptor (Scharber et al., 2006). From their analysis, a simple empirical 

equation was proposed to express Voc as:  

𝑉𝑜𝑐 = (1 𝑞⁄ )(|𝐸𝐻𝑂𝑀𝑂,𝐷| − |𝐸𝐿𝑈𝑀𝑂,𝐴|) − 0.3𝑉………… (2.3) 

Here q is the elementary charge, (EHOMO, D) and (ELUMO, A) are the energy levels 

of donor HOMO and acceptor LUMO, respectively. It is noteworthy that 0.3V loss is 

empirical, and could be less or more (Qi & Wang, 2012). However, the origin of Voc is 

not clear and its variations cannot be fully included from the above rules, thus, 

indicating that its origin still needs to be further investigated for better understanding on 

OSCs. 
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It is discussed by Widmer et al. (Widmer et al., 2013) in their recent study on Voc 

of an OSC that Voc of an OSC is also restricted by the donor-acceptor material system. 

Moreover, the nano-morphology of the BHJ photoactive layer also affects the device 

performance (Liu et al., 2001). In addition, charge carrier recombination (generally non-

geminate recombination in OSCs) (Groves & Greenham, 2008; Shuttle et al., 2008)) 

potentially brings the significant loss in the Voc of a device (Qi & Wang, 2012). There 

are several factors which can potentially reduce the Voc of an OSC such as temperature, 

light intensity, WF of electrodes and material microstructure etc. (Qi & Wang, 2012).  

The Voc of the device can potentially be improved by employing interfacial engineering 

at the active layer/ electrodes interface such as introducing HTLs and ETLs in the 

device structure (Lieuwma et al., 2003). The HTLs and ETLs can effectively reduce the 

surface recombination at the electrode/photoactive layer interface (Qi & Wang, 2012). 

The Voc is proportional to the built-in potential of an OSC, and by enhancing it will 

obviously increase the Voc.  

2.3.5.3 Fill Factor (FF) 

The FF is an important parameter that determines the PCE of an OSC. The PCE 

of an OSC is calculated from its J-V characteristics as a product of Jsc, Voc and FF. 

Moreover, the shape of the J-V characteristics of an OSC is characterized by the FF that 

is the ratio of the maximum output power to the product of Isc and Voc (Trukhanov et al., 

2015). The shape of the J-V curve determines how ‘‘difficult’’ or how ‘‘easy’’ the 

photogenerated carriers can be extracted out of a solar cell device and ideally FF should 

be 100% when the J-V curve is exactly a rectangle (Qi & Wang, 2013). In the Figure 

2.4, the shaded area represents the FF whereas the representative equation to express FF 

has been presented in equation 1.2 of Chapter 1.  
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It is noteworthy that FF is more sensitive parameters as compared to Voc and Jsc 

and depends upon several factors such as charge carrier mobility, thickness of the 

photoactive layer, morphology of cathode/photoactive layer interface and bulk material 

properties (Gupta et al., 2010). Moreover, series resistance Rs is one of the most 

important factors affecting FF of an OSC (Kim et al., 2009). In general, a low Rs is 

highly desirable that can be achieved with optimized surface morphology, and 

consequently a much higher FF is possible to achieve (Kim et al., 2009; Street et al., 

2011).  A fraction of increase in Rs can reduce high percentage of FF e.g. for every 0.1Ω 

increase in Rs value can reduce 2.5% of FF (Lindmayer & Allison, 1990). The Rs (often 

referred as the internal resistance) is comprises of several factors such as active layer 

resistance, interfacial layer resistance, electrode resistance, contact resistance of every 

interface in the device and probe resistance. Consequently, all these factors have 

adverse effects on the FF of a solar cell device (Servaites et al., 2010).  

Shunt resistant (Rsh) represents the current leakages in a solar cell including 

leakage from edges, pinholes, traps and films etc. An ideal device should not have any 

current leakage which implies that ideally Rsh should approach to infinity. Several 

factors influence the Rsh of a device and ultimately lower the FF. Kim et al. reported 

effective design variables to control FF; their study concluded that most prominent 

factors affecting Rsh of a device are the electrode/photoactive layer interface, 

illumination intensity and thickness of the blend layer and ultimately, lower the FF 

(Kim et al., 2009). By optimizing the aforementioned characteristics of an OSC 

including film morphology, interfacial optimization, lower Rs and high Rsh etc., higher 

FF values are possible to achieve.  
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2.3.5.4 Power Conversion Efficiency (PCE)  

Finally, the most discussed performance parameter of a solar cell device is its 

PCE. It is defined as the percentage of input irradiation (Pin) that is converted into the 

output power and expressed as the product of Voc, Jsc, and FF divided by the input 

power (Pin). 

In summary, these key performance parameters of OSCs play an important role 

in determining and optimizing the performance of solar cells. To achieve the best 

optimum performance, every single factor contributing towards the efficiency of the 

device has to be enhanced by improving electrodes, BHJ material, every layer and 

interfaces etc.  

2.4 Stability of OSCs/Degradation Factors Limiting the Device Stability 

OSCs have exponentially evolved in terms of efficiency and stability. While, the 

PCE has been increased by almost a factor of ten exceeding 10%, lifetime of the OSCs 

has also approached several thousand hours under favorable circumstances (Gevorgyan 

et al., 2013; Jørgensen et al., 2012). However, stability is still a bottleneck to the 

widespread commercialization of OSCs. While promising achievements in the PCEs of 

OSCs, above 10% value only represents the initial performance of the OSCs-how the 

PCE of the solar cell degrades with time is also of critical importance. The energy 

output of a solar cell device is the product of its efficiency and lifetime stability, 

illustrated in Figure 2.5. Therefore device stability is of paramount importance in OSCs 

and inferior device stability still remains a great challenge to compete the inorganic 

silicon based solar cells in photovoltaic industry. Moreover, the fabrication techniques 

must be compatible with the R2R production for the widespread commercialization of 

OSCs.  
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Figure 2.5: Key areas of research pertaining to OSCs 

 

Studying the stability of OSCs helps in understanding how a device degrades 

during operation. Device instability occurs due to range of complex phenomena that are 

in play simultaneously of which presumably many have not been identified (Rafique et 

al., 2017). OSCs are highly sensitive to even small degree of degradations which make 

degradation factors extremely critical for device operation and thus should be 

completely removed or at least reduced to improve device lifetime (Krebs et al., 2010).    

Obtaining longer operational lifetime in OSCs is generally challenging, even 

though lifetime of several thousand hours has been reported in certain conditions. 

Degradation mechanism in OSCs is rather complex and cannot be explained by a single 

process. It may include factors affecting active layer, the transport layers, the contacts 

and the interface of every layer with the adjacent layers (Guerrero et al., 2012; Kim et 

al., 2009). In general, degradation factors in OSCs can be distinguished to be either 

intrinsic or extrinsic. Among these factors are oxygen and water diffusion (Norrman et 

al., 2008), electro-migration induced shunts, oxidation and rusting of Al electrode due 

to moisture (Glen et al., 2015), indium diffusion from anode due to acidic PEDOT:PSS 

(Ecker et al., 2011), swelling of water-soluble layers as well as corrosion and 
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delamination of the metal contacts due to oxygen and water ingress (Jørgensen et al., 

2008). Moreover, thermal and photo-induced degradation of active layers under 

illumination in ambient conditions, active layer intrinsic chemical evolution, photo-

bleaching  and mechanically induced stress also occur in OSCs (Bao et al., 2014; 

Guerrero et al., 2015; Morse et al., 2015). Both types of degradation are mass-flow 

(diffusion) processes. This section briefly covers some of the most pronounced 

degradation effects, while schematic representation of some of the degradation factors 

limiting the device stability is shown in Figure 2.6.  

 

Figure 2.6: Degradation factors affecting device stability. 

 

2.4.1 Intrinsic Degradation  

OSCs are currently the ultimate in terms of complexity and they exhibit the most 

uncontrollable situation in terms of stability. So far, most of the research is focused on 

effects of extrinsic degradation factors such as temperature, light, oxygen and humidity 

on photoactive layer, electrodes and interfaces. However, less attention has been given 
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to the intrinsic degradation mechanisms. In general, the intrinsic degradation arise from  

thermal diffusion of constituent materials at interfaces of  OSCs (Cao et al., 2014). Even 

after encapsulation (to avoid oxygen and moisture ingress), intrinsic degradation in 

photoactive layer can occur due to light or by the elevated temperatures due to 

continued exposure to sunlight (Kesters et al., 2015). It includes inter-diffusion of 

electrodes (Jeon & Lee, 2012), interfacial layers (Ecker et al., 2011), phase-separation at 

organic-cathode interface and change in the nanoscale morphology of  BHJ constituents 

(Cao et al., 2014; Motaung et al., 2011). Moreover the thermally activated phase 

separation, photochemical damages occur in the BHJ films (Savagatrup et al., 2015) 

which can cause further deterioration of mechanical properties such as brittleness and 

stiffness in the photoactive layer (Connor et al., 2010; Savagatrup et al., 2014).   

Photoactive layer is the most important component of OSCs, comprised of 

donor, acceptor and donor/acceptor mixed phase. Photoactive layer possesses 

metastable phase separation due to strong mobility of its organic constituents. In order 

to increase the efficiency, often high boiling point additive solvents are added in the 

photoactive blend. On the other hand, these additives significantly hamper the device 

stability (Tournebize et al., 2015; Wang et al., 2014; Zawacka et al., 2014). Some of 

these additives are highly sensitive to light and can directly saturate the polymer 

conjugated backbone or be trapped by the fullerene moieties, moreover, they can 

accelerate the photo-oxidation of the BHJ layer (Kim et al., 2015; Tournebize et al., 

2015).   

Similar to photoactive layer, electrodes and interfacial layers also possess 

mobility resulting in severe device instability (Elumalai et al., 2013). Widely used 

PEDOT:PSS is highly acidic and hygroscopic which upon contact with ITO anode 

corrodes its surface. This leads to diffusion of indium (e.g. dissolution of In2O3) into the 
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active layer which results in trapping of charge carriers (Jong et al., 2000; Gautier et al., 

1996; Sharma et al., 2011; Sharma et al., 2011). Al is normally employed as cathode 

which readily gets oxidized to form Al2O3. Water can diffuse through pinholes and 

voids to the underneath layers that ultimately lowers the device lifetime (Rafique et al., 

2017). Moreover, water ingress from the edges through the PEDOT:PSS also oxidizes 

the cathode and significantly reduces the Jsc (Feron et al., 2013; Glen et al., 2015; 

Voroshazi et al., 2011). Such diffusion of electrodes and interfacial layers can 

drastically reduce the device lifetime by changing the energy levels of interfacial layers 

as well as causing charge carrier trapping and recombination (Cheng & Zhan, 2016).  

2.4.2 Extrinsic Degradation  

An ideal OSC device should possess consistent performance over time when it is 

exposed to cyclic changes in the environment such as light/dark, hot/cold, dry humid 

etc. However, the fact is opposite and with the emergence of new photovoltaic 

technologies such as OSCs, the stability of these devices is compromised as compared 

to silicon based solar cells where a life time of over 25 years is warranted (Jørgensen et 

al., 2012; Mateker et al., 2015). The poor long-term stability of OSCs needs to be 

overcome for their successful commercialization. Most importantly, an unanticipated 

decay in the device performance during its initial operation, the so called ‘burn-in’ loss,  

is one of the root causes for the device shorter lifetime (Kong et al., 2014).  A second 

phase starts after the burn-in phase which shows linear trend in degradation and the slop 

of this linear trend determines the lifetime of an OSC, which is chosen to be the time 

over which device efficiency reduced to the 80% (T80) of the post burn-in efficiency 

(Tipnis et al., 2009). Extrinsic stability can only be ensured with proper encapsulation 

of the device from the outside environment because un-encapsulated device rapidly 

degrades in ambient air and the device efficiency plunges down to negligible within few 

minutes (Roesch et al., 2013).   

Univ
ers

ity
 of

 M
ala

ya



 

42 

Oxygen and water, extrinsic to OSCs are some of the known degradation 

factors affecting device stability (Grossiord et al., 2012; Jørgensen et al., 2012). 

Typically, the constituents of an OSC are subjected to degradation upon exposure to 

ambient atmosphere. Molecular oxygen and water cause chemical degradation  (photo-

oxidation) of the organic layers and interfaces, which consequently will disrupt the 

delicate electrochemical processes that are vital for the photovoltaic performance 

(Jørgensen et al., 2012). Moreover, the photo-oxidation of active layer also alters its 

absorption, energy levels and charge carrier mobilities such as quenching the polymer 

excited state and a severe impact on electronic properties of fullerene domains (Reese et 

al., 2010) as well as aggregation of fullerene domains (Parnell et al., 2016), 

consequently, the device performance can be severely hampered. In addition, hole 

concentration can be increased due to oxidation of active layer which leads to a decrease 

in the density of deeper traps for electrons and eventually reduces the FF and Voc of a 

device (Schafferhans et al., 2010; Seemann et al., 2011).   

Oxygen and water diffuses through the whole device and equally damage the 

functionality of each layer (Kawano et al., 2006).  The low WF metal cathode gets 

oxidized due to oxygen ingress. Consequently, an insulating metal oxide layer is formed 

that creates a transport barrier, ultimately an S-shaped I-V curve is induced and the 

performance of the device gets degraded (Glatthaar et al., 2007). Also, formation of 

pinholes and voids in the metal layer facilitates the diffusion of water and oxygen to the 

underneath layers (Feron et al., 2013). Moreover, PEDOT:PSS is known to be 

hygroscopic and the absorbed water can further penetrate into the whole device. The 

PEDOT:PSS could be phase separated, with the PEDOT rich phase being responsible 

for most of the interfacial degradation in the presence of water and oxygen (Norrman et 

al., 2010). In addition, the photo-oxidation of active layer, formation of metal oxide 

insulating layer and phase separation lead to a reduction in the donor-acceptor 
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interfaces, which could potentially harm the exciton dissociation, thus the performance 

of an OSC significantly reduced (Parnell et al., 2016).  

Photodegradation upon irradiation is one of the most crucial issues to be 

addressed because any photovoltaic device is inevitably operated under the light 

exposure. OSCs are proven to be unstable upon irradiation and severe deterioration of 

device efficiency during 100 h of light exposure has been reported by recent studies 

conducted by Yamanari et al. (Yamanari et al., 2010). This is referred as the burn-in 

photo-degradation and proves to be one of the major barriers in the successful 

commercialization of OSCs (Tamai et al., 2016). Unfortunately, light irradiation 

accelerates the degradation of OSCs in number of ways. Firstly, as discussed earlier, 

continuous illumination elevates the temperature and cause thermally induced 

degradation which eventually boost the intrinsic degradation of OSCs (Motaung et al., 

2011). Secondly, the irradiation also degrades the organic constituents of an OSC and 

causes the oxidation of photoactive material near Al interface (Norrman et al., 2006). 

Moreover, excessive illumination also accelerates the diffusion of oxygen and moisture 

in the bulk of photoactive layer (Eloi et al., 1993; Voroshazi et al., 2011).   

Recently, Córcoles et al. studied the influence of varied wavelength of solar cell 

spectrum on the stability of P3HT:PCBM based OSCs (Córcoles et al., 2015). Their 

study reveals that certain wavelengths of solar spectrum are more harmful for the device 

stability. For example, a blue and ultraviolet wavelength accelerates the device 

degradation.  Madsen et al. demonstrated in their recent work that light intensity also 

influences the stability of an OSC and the degradation rate linearly scales with the light 

intensity (Madsen et al., 2013). Above all, the key reason of light induced instability is 

the photo-chemical and photo-physical degradation occur in every layer and interfaces 

(Cheng & Zhan, 2016). Further in this context, several reports confirm that photo-
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oxidation reaction in the active layer is the main reason that hampers the device 

degradation (Domínguez et al., 2015; Tournebize et al., 2013). The device faces several 

consequences of these photo-oxidation reactions such as low photo-absorption due to 

altered donor and acceptor structures which eventually decrease the excitons 

generations (Deschler et al., 2012). Moreover, these reactions alter the energy levels of 

donor and acceptor materials as the two components do not get equally affected by these 

photo-oxidation reactions, consequently, energy level alignment between the donor and 

acceptor fractions get disrupted (Aygül et al., 2013). Finally, photo induced 

oligomerization of fullerene component and photolysis of donor fraction in the active 

layer occurs which cause the instability of OSCs upon irradiation (Burlingame et al., 

2015; Rivaton et al., 2010).  

In addition to chemically induced photo-degradation, Adachi et al. and Kumar et 

al. revealed physically induced photo-degradation of the devices which occur due to 

carrier accumulation, resulting in severe degradation in solar cell performance (Adachi 

et al., 2009; Kumar et al., 2010). Their studies established this fact that amount of 

accumulated charge carriers and degree of degradation of an OSC are closely related to 

each other.  

Mechanical degradation is less studied mode of degradation as compared to 

other extrinsic and intrinsic degradation modes. However, it is essential to address for 

the R2R manufacturing and the operational stability of OSCs, in particular for the 

portable and outdoor applications (Savagatrup et al., 2015).  The flexible modules of 

OSCs often go through the substantial bending, shearing and deformation, and 

therefore, require resistance to these mechanically induced degradations. Mechanically 

induced degradations (stress) could affect polymer-fullerene layer, the interfacial layers, 

electrodes and the interfaces (Cheng & Zhan, 2016). Moreover, in case of their 
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installation and exposure to the real world atmospheric conditions, the devices could 

face severe mechanical degradation including delamination, cracking, scratches, 

punctures and bending etc. (Bruner et al., 2014). The punctures and edge delamination 

facilitate the water and oxygen ingress which eventually cause further delamination of 

the modules (Krebs et al., 2014).  Consequently, as discussed earlier, the penetration of 

oxygen and water equally affect all the layers and their interfaces.   

As long as the photoactive layer concerned, Awartani et al. in their recent work 

highlighted two critical mechanical parameters of BHJ photoactive layer namely 

stiffness and ductility that are correlated to the device performance (Awartani et al., 

2013). Adequate knowledge of these factors is essential to provide insight into the 

performance, stability, and underlying degradation phenomena that could occur during 

the material’s service life (Chung et al., 2011). Their study concluded that the 

P3HT:PCBM based blend increased the elastic modulus and lowered the crack onset 

strain. Bruner et al. recently reported their findings on molecular intercalation and 

cohesion of BHJ OSCs (Bruner et al., 2013). Their findings suggest that polymer-

fullerene BHJ layer is cohesively weak resulting in thermomechanical failure within the 

BHJ layer and is influenced by the formation of a bimolecular crystal phase within the 

BHJ layer.   

Dupont et al. discussed the importance of inter-layer adhesion in R2R processed 

OSCs (Dupont et al., 2012). Their work suggests that poor adhesion between adjacent 

layers may results in in loss of device performance due to delamination driven by the 

thermo-mechanical stresses in the device. In particular, their study revealed that 

interface of BHJ layer with the PEDOT:PSS was found to be the weakest. In summary, 

all the aforementioned degradation factors comprise an intriguing aspect of 
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interdisciplinary research which requires a team of experts in organic chemistry, device 

physics, polymer science, interfacial engineering and microstructural determination.  

2.4.3 Strategies to Improve Device Stability 

It is vital that for the successful performance of an OSC, the device must be 

extrinsically and intrinsically stable. The OSC modules must resist to mechanical, 

oxidative, irradiation, thermal and photo-chemical instabilities. The electrode, the 

interfacial layers and most importantly the photoactive layer and their interfaces should 

not be susceptible to degradation factors. Several strategies have been adopted to 

address the stability concerns associated with the operational lifetime of an OSC. This 

section briefly describes a few strategies to improve intrinsic and extrinsic stability of 

an OSC.   

2.4.3.1 Encapsulation  

Encapsulation is one of the key measures which are taken to ensure extrinsic 

stability. Oxygen and water are the known degradation factors; therefore, it is natural to 

encapsulate the devices in various ways (Jørgensen et al., 2012). In addition, it also 

prevents the device from mechanical instabilities such as scratches and bending etc.  

However, the photovoltaic properties of an encapsulated device depend on the 

encapsulation material and method (Cheng & Zhan, 2016). In general, OSCs are 

encapsulated with the glass plates; however, it is not compatible with flexible solar cell 

modules. Therefore, in recent years, organic based encapsulation materials have been 

employed to protect OSCs (Krebs, 2006; Sapkota et al., 2014; Tanenbaum et al., 2012). 

Elkington et al. employed a bisphenol A-based epoxy resin to use as an encapsulation 

material on BHJ OSCs  (Elkington et al., 2014) . The encapsulant proved to be a barrier 

against the degradation in air. Similarly, Peters et al. demonstrated a highly stable 

PCDTBT:PC71BM  based device by using  UV curable epoxy glue as top encapsulation 
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layer (Peters et al., 2011). The device lifetime approached to around 7 years which is 

one of the longest ever reported life of OSCs. Recently, metal oxides along with MgF2 

in a layered structure (Gomez et al., 2015) and GO (Kim et al., 2014) have been 

employed to encapsulate the OSCs that lead to the highly stable device exhibiting 

several hundred hours of operational life. Combination of organic-inorganic materials 

such as epoxy resin and glass can also be used as an encapsulant (Aluicio et al., 2014; 

Roesch et al., 2013).     

2.4.3.2 Interfacial Engineering to Enhance Performance of OSCs 

The basic structure of an OSC comprises of photoactive layer sandwiched 

between two electrodes. However, it is now considered as essential to insert interfacial 

layers at the interface of electrodes and photoactive layer, making them integral part of 

BHJ OSCs. However, most commonly used interfacial materials are susceptible to the 

degradation and significantly reduce the device performance. Therefore, several 

alternatives have been explored during the past few years to address stability concern 

associated with pristine interfacial materials.  

Hole transport layer. PEDOT:PSS is  the most commonly  employed HTL 

material , but it favors the device degradation due to its acidic and hygroscopic nature. 

Ultimately, it corrodes the underneath ITO which further diffuse into the photoactive 

layer. Therefore several alternative materials have been reported to work as HTLs in 

OSCs. Among them metal oxides based HTL are the most studied alternatives to the 

acidic PEDOT:PSS (Lattante, 2014; Zhao et al., 2010). Metal oxides such as NiO (Yang 

et al., 2012), V2O5 (Meyer et al., 2011), WO3 (Tan et al., 2012)  and MoO3 (Chen et al., 

2012) have been widely used as HTLs in OSCs (Kim et al., 2015). All these materials 

can be processed from solution, and thus are compatible with R2R production (Girotto 

et al., 2011; Manders et al., 2013; Zilberberg et al., 2011). Recently, GO has been 
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employed as a potential HTL material in BHJ OSCs (Cheng et al., 2015; Li et al., 2010). 

Go is an oxidize state of graphene which possess excellent properties such as high 

transparency, excellent electrical conductivity and very good mechanical properties to 

act as an HTL (Gao et al., 2011). Another alternative is to use combination of metal 

oxide/GO along with PEDOT:PSS to compliment the drawbacks of each of the 

individual materials (Lee et al.,  2016; Rafique et al., 2016).    

Electron transport layer.  LiF or Ca and ZnO are the most commonly 

employed ETLs in conventional and inverted geometry BHJ OSCs, respectively. These 

materials are unstable in ambient atmosphere due their reactivity with oxygen, water 

(for LiF and Ca), air and light (for ZnO) (Cheng & Zhan, 2016).  In addition, vacuum 

deposition is not compatible with R2R manufacturing.  In this context, metal oxides 

such as CrOx (Wang et al., 2010), Cs2CO3 (Li et al., 2006), TiO2 (Huang et al., 2015) 

and electron extracting polymers (Nikiforov et al., 2013) have been employed as 

alternative ETLs. Moreover, ZnO can be modified in a number of ways to overcome the 

stability issues associated with the single ZnO ETL (Cao et al., 2014). Metal doping of 

ZnO is commonly used to enhance the electron transport characteristics (Kim, 2014). In 

addition, several other structures of ZnO such as nanowires, nanorods, nanoflakes and 

nanowalls are also reported in the literature as ETLs (Mbule et al., 2013). Like HTL, 

GO can also be used as an ETL material to improve the efficiency and stability of 

OSCs. D.H. Wang et al. demonstrated PCDTBT:PC71BM BHJ OSCs employing an 

ETL of stretchable GO by stamping transfer (Wang et al., 2013). The resultant device 

showed enhanced efficiency and stability as compared to pristine device without any 

interlayer. Efficacy of GO as an ETL has been reported by several other works 

(Jayawardena et al., 2013; Kim et al., 2015). 
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2.4.3.3 Morphology Control in the BHJ Photoactive Layer 

Photoactive layer comprises of BHJ of polymer-fullerene is the most important 

component of an OSC. Although, BHJ OSCs are showing promising results in terms of 

efficiency and stability, however, the morphology of each donor-acceptor material 

differs significantly, particularly, in terms of domain size and degree of interpenetration 

between domains (Zheng, et al., 2015). Due to shorter diffusion length of excitons the 

active layer must comprises of interpenetrating network morphology consisting of 

optimized domain size of both donor and acceptor constituents to facilitate the 

migration of excitons to the donor- acceptor interface and their splitting into the free 

charge carriers so that the charge carriers can be extracted. Ideally, the domain size of 

donor-acceptor fragments must be in the range of 10-20 nm (Yu et al., 1995).  

Inclusion of third component in addition to donor-acceptor fragments is a 

popular approach to enhance the device performance (Ameri et al., 2013; An et al., 

2016; Lu et al., 2015). A third component could be a cross-linker to enhance the thermal 

stability (Derue et al., 2014; He et al., 2013), modified fullerene derivatives acting as 

cross linker to thermally stabilize the device (Chen et al., 2015; Cheng et al., 2011), 

inclusion of compatibilizers to enhance the thermal and mechanical stabilities (Chen et 

al., 2014; Sivula et al., 2006) and employing insulator polymer as a third agent to 

simultaneously increase thermal and mechanical stabilities (Ferenczi et al., 2011). In 

addition to improve the thermal and mechanical stability, inclusion of third agent can 

also enhance the air and photostability (Jung et al., 2011; Kim et al., 2012). In addition, 

solvent additives also enhance the device performance. In this context, Peet et al. 

incorporated a few volume percent of alkanedithiols in the PCPDTBT:PCBM blend 

which results in an enhanced efficiency from 2.8% to 5.5% through altering the bulk 

heterojunction morphology (Peet et al., 2007). Moreover, optimization of processing 

parameters of the photoactive blend such as preparation of solution, formation of thin 
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film, and post treatment such as thermal annealing can enhance the stability of an OSC 

(Cheng & Zhan, 2016; Dittmer et al., 2000).  

2.4.3.4 Use of Inverted Geometry and Alternative Electrode to Enhance Stability 

The normal architecture BHJ OSC generally comprises of a low WF Al electrode 

which is sensitive to oxygen and moisture. As a result it reacts with atmospheric oxygen 

and water and they further diffuse into the whole device though the top cathode. In order 

to overcome this issue, inverted geometry has been developed in which position of 

cathode and anode is interchanged. The inverted device showed much better air stability 

as compared to the normal architecture OSCs while the efficiencies are still comparable 

with that of normal architecture (Dey et al., 2011; Lan et al., 2014; Lee et al., 2015; Nam 

et al., 2015; Şahin et al., 2005).   

As discussed earlier, Al is susceptible to oxygen and water, therefore, silver has 

been widely used as an alternative anode material. As a noble metal, silver is more 

stable than Al upon exposure to ambient atmosphere (Tavakkoli et al., 2011). Recently, 

H.R. Yeom et al. employed silver and gold top electrode in PTB7:PC71BM based 

inverted OSCs and the resultant devices exhibited high stability and photovoltaic 

performance (Yeom et al., 2015). Sio et al. in their recent work employed MoO3/Ag 

anode in P3HT:PCBM based inverted device that led to enhanced stability (Sio et al., 

2012).   

In order to achieve high stability and efficiency in BHJ OSCs, an in depth 

knowledge of degradation mechanism in OSCs is essential. Moreover, aforementioned 

strategies must be adopted in order to mitigate the degradation factors and ensure the 

higher operational stability of the solar cells.   
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2.5 Conclusions 

OSCs employing BHJ structure have attracted extensive attractions in recent 

years. Tremendous research is focused to increase the device performance in terms of 

efficiency, stability and production cost. Under optimized conditions device efficiency 

of above 10% and several thousand hours of life time has already been reported. In this 

review chapter, fundamental aspects of BHJ OSCs ranging from design properties to 

device physics, performance characteristics, stability/degradation mechanisms and 

strategies to improve device performance, have been discussed.   

The improvement in the device performance can be attributed to the 

development of new organic semiconductor materials specifically synthesized to use in 

OSCs. Moreover, it is also attributed to the development of optimized device physics 

framework that enables the rational approach to the design of OSC structure including 

photoactive and transport layers, electrodes, interfaces and choice of suitable material 

for every layer and interface. The multistep process from light absorption to the charge 

extraction has been understood largely, and factors affecting this whole process are 

briefly discussed. Further, the origin of performance characteristics of a BHJ OSC such 

as Voc, Jsc, FF and EQE etc. has been highlighted.  

The intrinsic and extrinsic degradation effects that arise either from material’s 

properties such as migration of constituent materials at interfaces of OSCs or extrinsic 

factors such as  molecular oxygen and water ingress, heat, light irradiation and 

mechanical stress have been summarized. Most of the factors are thermodynamic, 

oxidative, photochemical, morphological and mechanical modes of degradation. 

Furthermore, this review chapter highlights the strategies to improve the device 

performance in terms of improving the stability while mitigating the device degradation 

factors. 
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 LAYER BY LAYER CHARACTERISATION OF 

DEGRADATION PROCESS IN PCDTBT:PC71BM BASED 

NORMAL ARCHITECTURE POLYMER SOLAR CELLS2 

3.1 Overview 

This work demonstrates the stability and degradation of OSCs based on 

PCDTBT:PC71BM  photoactive blend layers as a function of ageing time in air. 

Analysis of the stability and degradation process for the OSCs was conducted under 

ambient air by using current-voltage (I-V) measurements and x-ray photoelectron 

spectroscopy (XPS). The interface between photoactive layer and HTL (PEDOT:PSS) 

was also investigated. Device stability was investigated by calculating decay in PCE as 

a function of ageing time in the air. The PCE of devices decrease from 5.17 to 3.61% in 

one week of fabrication, which is attributed to indium and oxygen migration into the 

PEDOT:PSS and PCDTBT:PC71BM layer. Further, after aging for 1000 h, XPS spectra 

confirm the significant diffusion of oxygen into the HTL and photoactive layer which 

increased from 3.0 and 23.3 % to 20.4 and 35.7 % in photoactive layer and HTL, 

respectively. Similarly, the  indium content reached to 17.9 % on PEDOT:PSS surface 

and 0.4 % on PCDTBT:PC71BM surface in 1000 h. Core-level spectra of active layer 

indicate the oxidation of carbon atoms in the fullerene cage, oxidation of nitrogen 

present in the polymer matrix and formation of In2O3 due to indium diffusion. A steady 

fall in the optical absorption of the active layer during ageing in ambient air has been 

observed and it reduced to 76.5% of initial value in 1000 h. On the basis of these 

                                                 

 

2 The work presented in Chapter 3 has been published in Elsevier: “Organic Electronics (Rank: Q1, Impact Factor: 

3.47)” as 

Rafique et al. (2017). Layer by layer characterization of the degradation process in PCDTBT:PC71BM based normal architecture 

polymer solar cells. Organic Electronics, 40, 65-74.  
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experimental results, key parameters that account for the degradation process and 

stability of OSCs in order to improve the device performance are discussed. 

3.2 Introduction 

Solar energy harvesting has become one of the major areas of research for the 

current and upcoming technologies. In this context, polymer-based OSCs have drawn 

special interest due to their tunable properties, low manufacturing cost, roll to roll 

production compatibility, solution processed and light weight (Chen et al., 2013; Sun et 

al., 2010; Synooka et al., 2014). To date, the progress in the OSCs development has 

been intensified and power PCEs of more than 10% have been successfully 

demonstrated (Li et al., 2012; Trost et al., 2015). In order to bring the OSCs into the 

market with full success, along with the high efficiencies and low manufacturing cost, 

longer devices lifetime is much needed (Ecker et al., 2011).  

Basically, the polymer solar cells employ BHJ of blended donor and acceptor 

components as a photoactive layer which is sandwiched between two electrodes. In 

order to enhance the functionality of these devices often interfacial layers namely HTL 

and ETL are introduced at the interface between the photoactive layer and electrodes 

(Duan et al.,2013; Po et al., 2011). However, a short lifetime of the OSCs is observed to 

be one of the stability constraints since there is always a presence of degradation 

process throughout the device. The unique degradation mechanisms affecting the 

photoactive layer, interfacial layers and the electrodes is rather a complex phenomenon 

and are not yet fully understood. These multilayers and interfaces of metal/organic, 

organic/organic materials significantly influence the overall performance (Bao et al., 

2014). Recent reports on the lifetime stability of OSCs highlighted two major problems 

regarding the device stability. Firstly, the extrinsic stability which requires proper 

encapsulation of devices to prevent the environmentally induced degradation mainly 
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caused by oxygen and moisture present in the air (Ecker et al., 2011; Udum et al., 

2014). Secondly, the intrinsic stability which is related to the materials and interfaces 

present in the OSCs (Jørgensen et al., 2008; Zeng et al., 2015). Device instability 

comprises a range of complex phenomenon simultaneously in play of which presumably 

not all have been identified. Some of them are interrelated and occur at the same time 

such as diffusion of oxygen from atmosphere, and migration of indium into the HTL 

and active layer due to ITO corrosion caused by acidic nature of PEDOT:PSS 

(Jørgensen et al., 2012). All these factors prove to be a bottleneck in device 

performance and hence, better understanding of these constraints is needed.   

A variety of different techniques and approaches have been employed in recent 

years to investigate the degradation mechanisms leading to device failure (Katz et al., 

2006; Reese et al., 2010; Schafferhans et al., 2010; Seemann et al., 2009). Analytical 

techniques such as time of flight - secondary ion mass spectroscopy (TOF-SIMS) and 

XPS  have been employed by many groups to study the  degradation effects, in 

particular, the chemical changes in OSCs with time (Kettle et al., 2015). However, 

TOF-SIMS is only semi-quantitative in certain situations, so XPS being a quantitative 

characterization technique, is expected to give better overview of compositional 

changes caused by device degradation (Norrman et al., 2010). Hintz et al. by the XPS 

analysis of exposed poly (3‐hexylthiophene) (P3HT) active layer to oxygen, showed 

that both photo-oxidized and physisorbed oxygen is present, which are one of the root 

causes of degradation (Hintz et al., 2010). Norrman et al. studied the degradation in 

P3HT:PC61BM photoactive layer due to water and oxygen, and showed by the XPS 

analysis that the chemical changes taking place at the interface of active layer and HTL 

are the major cause of instability (Norrman et al., 2010). Similarly, Seo et al. deduced 

by XPS the partial oxidation of P3HT and configuration of sulfoxide (R-SO-R) on the 

sulphur atom of thiophene ring after longer degradation hours (Seo et al., 2014). 
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However, most of works have focused on P3HT degradation studies but it lacks the 

broad absorption profile necessary to cover large proportion of solar spectrum (Peet et 

al., 2007), therefore new materials such as PCPDTBT and PCDTBT  etc. have been 

studied (Kettle et al., 2015; Wang et al., 2012). Several groups recently confirmed the 

high efficiency and  photo-current generation in PCDTBT based solar cells because of 

its faster charge carrier generation capability and different recombination dynamics as 

compared to P3HT (Banerji et al., 2010; Etzold et al., 2011; Wang et al., 2012). 

In this work, the stability and degradation effects related to oxygen and indium 

diffusion in the PCDTBT:PC71BM based BHJ OSCs with PEDOT:PSS HTL by using 

photovoltaic characterizations and  XPS, respectively, were investigated. Fabrication 

was carried out by easy, solution processed spin coating technique and devices were 

aged in ambient atmosphere for degradation analysis. Chemical, optical, compositional 

and morphological properties were characterized and their effects on the photovoltaic 

performance as well as long-term stability were studied. Based on the experiments, key 

physical parameters that account for the OSC degradation process such as indium and 

oxygen diffusion which consequently result in rapid device failure can be identified. 

Hence, this study leads to better understanding of degradation processes which occur in 

BHJ OSCs during their fabrication and ageing phase.  

3.3 Materials and Methods 

3.3.1 Materials 

  PEDOT:PSS solution (PH1000) has been  purchased from  H.C. Starck and used 

as received. Both PCDTBT and PC71BM were purchased from Lumtec, Taiwan. ITO-

coated pre-patterned glass substrates with a sheet resistance of 15 Ω per square were 

purchased from Ossila, UK. All other necessary chemicals such as HPLC chloroform 

etc. were purchased commercially and used as received without further purification. 
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3.3.2 Device Fabrication 

The reported OSCs were fabricated on 1.5 × 2.0 cm pre-patterned ITO coated 

glass substrates, with six active pixels on each substrate and an active area of 30 × 1.5 

mm (4.5 mm2) for every pixel. The impurities were removed from ITO substrates 

through sequential cleaning. Substrates were first cleaned with soap, ultrasonication in 

acetone, isopropanol, and deionized water for 15 min each, and subsequently dried 

under a nitrogen stream. Thereafter, PCDTBT:PC71BM photoactive blend was first 

dissolved in chloroform at the concentration of 10mg/ml  for each and then  mixed at a 

volumetric ratio of 1:4 by vigorous stirring overnight. Next, PEDOT:PSS aqueous 

solution was filtered using 0.45 µm PTFE filter (Whatman, Germany) and spun coated 

onto the substrates at 4000 rpm for 60 s and annealed at 120°C for 30 minutes in air to 

obtain HTL with desired thickness of 40 nm. Thereafter, PCDTBT:PC71BM blend 

solution was filtered using 0.25 µm PTFE filter (Whatman, Germany) and spun coated 

on top of the HTL at 2000 rpm in a glove box for 20 s to obtain ~70nm active layer.  Al 

cathodes with 100 nm thickness were thermally evaporated onto the photoactive layer 

through shadow masks under vacuum (10-6 Torr). Finally, the OSCs were encapsulated 

with a glass of exactly same dimensions as an active area for characterization in the air 

with a UV-curable epoxy. In order to study the ageing in the air, the HTL and 

photoactive layers were replicated on ITO coated glass substrates using spin coating 

with the same fabrication procedure.  

3.3.3 Microscopic and Spectroscopic Analysis 

Morphological characterizations were carried out by atomic force microscopy 

(AFM) model SPM PROBE VT AFM XA 50/500 Omicron, Germany, and  field 

emission scanning electron microscopy (FESEM), JEOL JSM-7600F, Japan. XPS data 

were analyzed to quantify the migration of degradation elements into the HTL and 

photoactive layer as a function of ageing in the air by using PHI 5000 Versa Probe 
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Scanning ESCA Microprobe (PHI 5000 Versa Probe II, USA), equipped with 

monochromatic Al-Kα (hν = 1486.6 eV) X-ray source. The XPS curve fittings for core 

level spectra were drawn using Multipack software (VERSION 9, ULVAC-PHI, Inc. 

Japan) which allows the deconvolution of each spectrum into the individual fitting of 

mixed Gaussian-Lorentzian components. The optical absorption spectra of the samples 

were recorded by Perkin Elmer Lambda 750 UV/Vis/NIR spectrophotometer, USA over 

the range of 300-800 nm.  

3.3.4  Device Parameters 

The current-voltage (I–V) characteristics of the OSCs were measured using 

Keithley 236 Source Measure Unit (SMU) at room temperature. Solar cell performance 

was tested by using an air mass 1.5 Global (AM 1.5 G) solar simulator with an 

irradiation intensity of 100 mW/cm2 illuminated from the ITO side. The light intensity 

calibration was performed with a Newport power meter 1918-R with calibrated 

Si-detector 818-UV.  

3.4  Results 

This work is mainly focused on the device operational stability and degradation 

factors which cause the instability in the device performance. Current density- voltage 

(I-V) characteristics of the devices were measured under illumination and in dark, and 

data were collected over a period of seven days to record the decrease in the PCEs as a 

function of exposure time to ambient air. Further, to understand the degradation process 

via chemical changes in the OSCs and the role that ambient atmosphere and indium 

diffusion played in the degradation process, XPS survey and core-level spectra for 

freshly prepared samples and after 1000 h of ageing in ambient air have been obtained. 

In addition, the fall in optical properties of the PCDTBT:PC71BM layer due to ageing in 

ambient air have also been studied. Moreover, the change in the morphology of the Al 
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electrode after exposing to the ambient air for 1000 h has been characterized. The 

schematic representation of the current work is shown in Figure 3.1.  

 

Figure 3.1:  Schematic showing the OSCs characterized by XPS and I-V measurement 

in fresh and aged conditions. 

 

3.4.1 Photovoltaic Characterizations 

The OSCs lifetime stability was investigated by calculating the decay in PCE as 

a function of ageing time in air (Kim et al., 2014). I-V characteristics were measured 

under standard conditions of an encapsulated device over the period of one week. The  

I-V characteristics of the solar cells at 100 mW/cm2 are shown in Figure 3.2 (a, b) and 

Table 3.1. 
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Figure 3.2:  The curves show (a) output power (P) vs. voltage (V), (b) I V characteristic 

for fresh device, the variation in (c) Jsc, Voc, FF and (d) PCE (%) 

normalized to their initial values for seven days. 

 

From the comparison between the initial and final measurements, it can be 

observed that a considerable decrease in the solar cell performance occurred due to 

ageing in air. The cells initially demonstrated a reasonable PCE of 5.17% with a (Voc) 

of 0.84 V, (Jsc) of 10.2 mA/cm-2 and (FF) of 60.3%. The PCE reduced to 3.61% with 

Voc as 0.79 V, Jsc as 9.2 mA/cm-2 and FF as 49.8% over a period of one week. All the 

photovoltaic parameters for an entire week are presented in the Table 3.1. From the 

normalised parameters presented in Figure 3.2(c, d), the PCE of the solar cells rapidly 

reduced initially to 70% of its initial value within first three days of ageing. The devices 

observed to be relatively stable during the remaining period of time. There were no 
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significant decay recorded in (Voc) values while (Jsc) and (FF) reduced to about 87% 

and 80% of their initial values respectively. 

Table 3.1:  Photovoltaic performance parameters for the solar cell devices calculated 

prior to the device degradation tests and subsequent 7 days. Devices were 

measured by global (AM 1.5 G) solar simulator. 

Ageing time 

(Days) 

Jsc 

(mA/cm-2) 

Voc 

(V) 

FF 

(%) 

PCE 

(%) 

1 10.2 0.84 60.3 5.16 

2 9.08 0.81 52.8 3.87 

3 9.07 0.80 49.2 3.56 

4 8.67 0.79 48.0 3.30 

5 9.07 0.79 49.2 3.61 

6 8.77 0.79 46.8 3.26 

7 9.08 0.79 49.8 3.61 

 

For an OSC device, the degradation phenomenon rely on both bulk and interface 

phenomena, and involves degradation of the interfaces, degradation of active layer, 

interfacial layers and electrode degradation, morphological, optical and macroscopic 

changes such as formation of particles, bubbles, diffusion of water from atmosphere, 

corrosion and diffusion of ITO, delamination and initiation of cracks and voids etc. 

(Norrman et al., 2010). All these factors make this process a complex set of phenomena 

and it is thus a challenging job to identify some or all of them. It becomes even more 

difficult to quantify each of these degradation factors to what extent each of them 

contributes in the overall deterioration of the OSCs. In this work, a more detailed 

understanding of these degradation factors which cause the instability in the device 

photovoltaic performance have been sought and investigated every layer of the normal 

architecture cell structure. Although, the device stability data for up to 7 days (140 
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hours) of fabrication has been presented in Figure 3.2 and Table 3.1, the degradation 

study was prolonged to 1000 hours in order to develop a deeper understanding of 

degradation factors affecting the device performance at every layer level.   

3.4.2 XPS Analysis of HTL and Photoactive Layer with Aging 

To explore the effect of ambient atmosphere exposure on the chemical changes 

in PCDTBT:PC71BM active layer and PEDOT:PSS HTL, XPS measurements on 

PCDTBT:PC71BM and PEDOT:PSS thin films are carried out. Figure 3.3 shows the 

representative survey spectra for both layers ranging from 0 to 800 eV. Data were 

recorded before and after ageing of samples.  

 

Figure 3.3:  Survey spectra for (a, b) PCDTBT:PC71BM and (c, d) PEDOT:PSS films 

recorded for fresh sample and after 1000 h of aging in ambient 

atmosphere. 
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3.4.2.1 Change in Elemental Concentration of HTL with Ageing 

Figure 3.4(a) shows the elemental concentration of PEDOT:PSS films for 

freshly prepared, 250 and 1000 h  ageing, whereas  the data are obtained for Figure 3.4 

from XPS survey spectra of PEDOT:PSS presented in the Figure 3.3. Around 1.1% 

concentration of indium in freshly prepared PEDOT:PSS films was detected, whereas, 

the tin concentration was almost negligible (<0.1%) until 250 h of ageing. Indium and 

tin concentration reached to 17.9 and 2.1 % in 1000 h of ageing, respectively. There was 

no significant increase recorded  in oxygen content in first 250 h which on further 

ageing of the device for 1000 h in air reached from 23.3 (freshly prepared) to 35.7 %. 

Sulphur content was also reduced from 7.2% in the fresh sample to 0.7% in 1000 h aged 

sample. Like oxygen, there was no significant change detected in sulphur content in first 

250 h. According to Kettle et, al. in their study on chemical changes of active layer, 

substantial decrease in the sulphur concentration between 250 and 1000 h is equated 

with an increase in oxygen content in the similar time span (Kettle et al., 2015). 

Relatively stable concentration of oxygen in first 250 h is attributed to the fact that 

PEDOT:PSS initially have the tendency to both gain and loose oxygen; and initially, 

until 250 h , oxygen loss offsets the oxygen gain and  later oxygen gain observed to be 

the dominant process (Norrman et al., 2010).  
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Figure 3.4: Data acquired from XPS survey spectra of (a) PEDOT:PSS and (b) 

PCDTBT:PC71BM films, presented in Figure 3.3 as a function of ageing 

time, with a graph showing atomic concentration (%) of each element in 

PEDOT:PSS and PCDTBT:PC71BM layer. 

 

3.4.2.2 Change in Elemental Concentration of Photoactive Layer with Ageing 

PCDTBT:PC71BM  samples were replicated as described and characterised by 

XPS to analyze the relative changes in the surface composition which occurred during 

ageing in ambient atmosphere for 1000 h. Figure 3.4(b) show the relative atomic 

concentration (%) for each element of  PCDTBT:PC71BM films at 0, 250 and 1000 h. 

Representative survey spectra for freshly prepared and 1000 h aged samples is shown in 

Figure 3.3(a and b). It is clear that oxygen content has remarkably increased from 3% in 

the fresh sample to 20.4 % in 1000 h sample. Contrary to PEDOT:PSS films where no 

significant increase recorded in oxygen content during initial 250 h, in 

PCDTBT:PC71BM active layer, there was a steady increase in the oxygen content 

throughout the ageing period. Moreover, the carbon content was reduced from 95.1 to 

77.5% after ageing. Sulphur reduced to negligible level (<0.1%) after ageing while 

nitrogen concentration remained almost stable with relatively higher concentration 

(2.2%) at 100 h of ageing. Initially, no traces of indium at the surface of photoactive 

layer until 250 h were found, later; it reached to 0.4 % in 1000 h. However, it should be 
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noticed that XPS with the probe depth of 5 to 10 nm does not represent the bulk 

properties and represents only the surface composition. Therefore, it might be possible 

that indium had already diffused from ITO surface into the PEDOT:PSS and further into 

the photoactive layer  but reached to the surface after 1000 h. 

3.4.2.3 PCDTBT:PC71BM Chemical Changes 

To ascertain the chemical changes occurred in the PCDTBT:PC71BM films due 

to oxygen and indium diffusion, high resolution spectra for each element were recorded. 

XPS C 1s and O 1s core-level spectra of PCDTBT:PC71BM films show new features 

and broadening of both spectra after ageing as shown in Figure 3.5. The peaks in the C 

1s spectra after ageing show an insignificant shift towards higher binding energies. In C 

1s spectra for fresh and aged samples the components at 284.47 and 284.57 eV 

respectively, are ascribed to C-C bond and the peak shape represents typical of partially-

ordered graphite-like materials (Kettle et al., 2015) (Ganguly et al., 2011; Mattevi et al., 

2009). The high energy values at 286.76 and 286.84 eV of fresh and aged samples 

respectively, best match with the carbon singly or doubly bonded to oxygen i.e. O-C=O 

or C-O-C  bond (epoxide group) (Bhushan, 2012; Daems et al., 2014; Kumar, et al., 

2013). Whereas, the peak present in the fresh sample at 289.49 eV is corresponding to 

COO- bond (carboxyl groups) as shown in Figure 3.5(a) (Jeong et al., 2008; Mattevi et 

al., 2009). The intensity of the peaks had significantly reduced after ageing as shown in 

the C 1s spectra in Figure 3.5(b) which is also evident in the survey spectra and 

indicates the reduction in carbon content in the polymer matrix. The peak broadening in 

the aged spectra indicates the significant increase of oxygenated carbon present in the 

polymer, suggesting that C-O and C=O oxidation of the carbon atoms in the fullerene 

might occur which cannot be distinguished due to the broadening of peaks (Kettle et al., 

2015). These oxidized species might cause severe degradation issues and OSCs 

performance could significantly decrease.  
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The deconvulated O 1s spectra before and after ageing are shown in Figure 3.5. 

The components at 531.37 and 531.96 eV  of the fresh and aged sample ascribe to 

oxygen atoms bonded with carbon atoms in functions such as ketone (C-O-C) and 

carboxylic acid (COOH and/or -OC-O-CO) (Yusoff et al., 2014).  The peak at 533.30 

eV in the fresh sample is attributed to the C-O bond which implies that oxygen atoms 

are directly bonded to carbon atoms in the polymer backbone (Mittal, 2004; Rosenthal 

et al., 2010; Schweiger et al., 2015), in sound agreement with the literature values 

(Kettle et al., 2015). Generally, the O species having binding energies between 531-533 

eV are likely attributed to C-O or C=O species (Guo et al., 2013).  In the aged sample, 

the peak at 533.30 eV disappeared and a new peak at 529 eV emerged which 

corresponds to C=O bond (Sabu et al.,2012).   

The N 1s spectra for fresh and aged sample in Figure 3.5 showed a sharp and 

defined peak at ~ 402 eV  which correspond to N-O formation (Kettle et al., 2015). This 

indicates the oxidation of nitrogen present in the polymer matrix. Another shoulder peak 

at 402.31eV in fresh sample may also correspond to N-O surface species or an N atom 

bonded to another N atom (Fuge et al., 2003; Miller et al., 2002). A new peak emerged 

at 398.29 eV after ageing of sample is attributed to C-N or C=N bond (Dementjev et al., 

2000; Guo et al., 2013). The shakeup structures in both fresh and aged samples are 

emerging at 404.51 and 405.31eV respectively and correspond to some form of 

oxidized nitrogen species (Fechler et al., 2013; Feng, 2015; Gao, 2015; Radovic, 2004).    Univ
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Figure 3.5: High resolution XPS C 1s, O 1s and N 1s spectra of PCDTBT:PC71BM 

films  for (a) as prepared  and after (b) 1000 h of ageing. 

 

Due to the negligible level of sulphur content (< 0.1%) in the aged sample, the 

curve fitting for sulphur is not shown in Figure 3.6. The S content was observed from S 

2p peaks in the fresh sample and it shows two 2p doublets. The  peak at 163.65 eV 

corresponds to carbon bonded sulphur (Kettle et al., 2015), is most likely due to 

presence of little amount of sulphur in the sample due its existence in the  PCDTBT 

polymer (Yusoff et al., 2014). Moreover, contributions from aromatic carbon-sulphur 

motifs of the PCDTBT molecule structure in the form of C=S bond or thiophenic 

sulphur species is found at 165.02 eV (Fechler et al., 2013). Figure 3.6(b) shows the 

core level spectra for indium present in photoactive blend after 1000 h of ageing. Since 

no indium content was found in the freshly prepared sample, therefore, the core-level 

spectra for the fresh sample is not included here. The In 3d spectra have two 

components, the main In 3d5/2 peak has been found at 444.92 eV and attributed to the 

characteristic lines of In2O3 (Shao et al., 2016; Sharma et al., 2011). A second and 

Univ
ers

ity
 of

 M
ala

ya



 

67 

relatively smaller peak was found at 452.63eV which is In 3d3/2 component of the In 3d 

spectrum (Kim et al., 2014; Shao et al., 2016).  

 

Figure 3.6: High resolution XPS spectra for (a) S 2p fresh and (b) In 3d 1000 h aged 

sample. 

 

3.4.3 Decay in the Absorption of Photoactive Layer with Ageing 

Since the absorption is an important parameter that deals with the overall 

performance of the photovoltaic devices, it is, therefore, worthy to investigate it in 

detail. PCDTBT:PC71BM blend degradation was monitored by measuring the evolution 

of absorption versus exposure time in ambient air as shown in  Figure 3.7. As discussed 

by Tournebize et al. in their study on the photostability of active layer polymer, it is 

essential to focus on the initial stages of degradation, which have a key impact on the 

device performance (Tournebize et al., 2015), because initially, a few percent fall in 

optical absorption of the polymer may lead to a drastic change in the device 

performance (Tromholt et al., 2012). The normalized decay of absorption for the 

samples measured at 0, 25, 50, 100 and 1000 h of preparation show a linear decrease in 

the optical absorption of the polymer. During initial 100 h the absorption fell down to 

92.02 % of initial value which continued to decrease until it reached to 76.56 % in 1000 
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h. The peaks at 377  and 479 nm exhibit slightly more pronounced decrease in the 

absorption (undesired) of the aged samples which is indicative of the atmospheric 

induced degradation of the polymer due its exposure to air (Endale et al., 2014).  

 

Figure 3.7: (a) Evolution of the PCDTBT:PC71BM absorption (300-800 nm)  versus 

exposure time to ambient air (Fresh - 1000 h),  (b) Decay of the 

normalized PCDTBT:PC71BM absorption upon exposure in ambient 

atmosphere. 

 

3.4.4 Morphological Analysis of Photo-active Layer 

It is evident from the photovoltaic results that a sharp decrease in the device 

performance occurred within the first 72 h of device ageing, in this context; apart from 

other factors the morphology of the photo-active blend layer has a crucial influence on 

the device performance. Thus, AFM and SEM analysis of PCDTBT:PC71BM photo-

active layer were performed for freshly prepared and 72 h aged samples. AFM images 

in Figure 3.8 show the evolution of surface morphology with aging, both freshly 

prepared (Figure 3.8b) and 72 h (Figure 3.8d) aged samples revealed quite smooth 

surface with almost similar morphological features, however, the root mean square 

roughness (RMS) value, in an area of 1 µm × 1 µm, for the aged films (1.86 nm) is 

much greater than that of freshly prepared (1.07 nm) sample. The SEM images also 

present a flat sheet of polymer with morphology features very similar to that observed 
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in AFM images. Some impurities or probably some clusters of the organic material 

were found on the surface (i.e. encircled in the Figure 3.8c) of 72 h aged sample which 

likely occurred due to aggregation of organic constituents of photo-active layer with the 

ageing, in good agreement with previously reported data (Seck et al., 2015). 

 

 

 

 

 

  

 

 

 

3.4.5 SEM Analysis of Aluminium Electrode Degradation 

Effect of Al cathode exposure to the high humidity air has also been 

characterized. The devices were exposed to ambient air in order to observe the possible 

damage due to water ingress.  SEM results exhibit severe damage of Al electrodes 

caused by moisture and oxygen. SEM images of the freshly deposited Al electrode in 

Figure 3.9 (a, b) exhibit a void-free surface without much height deviation. Moreover, 

SEM images in both fresh and aged sample show grain surface texture consisting of 

small Al grains. Although the grains are densely packed, however,  no definite order 

(a

)

 
 

 (c

)
(d

)

(b

)

Figure 3.8: SEM and AFM images of PCDTBT:PC71BM films  (a, b) Fresh and (c, d) 

after 72 h of ageing at ambient atmospheric conditions. 
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among them is visible, in good agreement with previously reported results (Kaune et al., 

2011). Whereas, in the aged samples (Figure 3.9 (c, d)) micron sized voids and bubble-

like protrusions appeared which are similar to the previously reported ageing effects 

(Glen et al., 2015).  

 

Figure 3.9:  FESEM images of Al electrodes for (a, b) as deposited samples and (c, d) 

after exposing to the ambient atmosphere for 1000 h. 

 

3.5 Discussion 

From the XPS and photovoltaic results, it is believed that the OSCs in ambient 

air exhibit significant instability due to indium and oxygen diffusion into the HTL as 

well as the photoactive layer. The devices and films were tested under prolonged 

exposure to ambient air. It is evident from the photovoltaic results that the device 

initially showed rapid decay in efficiency, however, relatively stable performance of the 

Univ
ers

ity
 of

 M
ala

ya



 

71 

device after 72 h and until 1000 h is attributed to the proper encapsulation of the devices 

which overcomes the device degradation and limits the hazardous effect of ambient air 

on the device performance but it is expected to die within very short time of fabrication 

in case of an un-encapsulated device (Stratakis et al., 2014). The sharp decay in the 

device photovoltaic performance within 24 hours is mainly attributed to the instability 

of the interface between ITO and PEDOT:PSS. Initially the degradation is 

predominately due to indium diffusion which immediately started after spin coating of 

PEDOT:PSS HTL and 1.1% concentration of indium on the surface of freshly prepared 

PEDOT:PSS films has been detected. PEDOT:PSS etches indium out of ITO which 

leads to the incorporation of indium in the photoactive layer. The diffusion of indium 

into the active layer could result in quenching of excitons and accelerates the charge 

recombination rate due to its ability to act as the charge trapping center (Chen et al., 

2013; Warren et al., 1992). This would result in the decay of Jsc and FF of the device 

and, therefore, decrease the lifetime stability of the device. Moreover, as the time 

passes, the efficiencies keep on deteriorating, where after just three days of fabrication 

the PCE of the device plunges to around 70 % from its initial efficiency, shown in 

Figure 3.2(d). The decay in the efficiency is mainly attributed to the significant (about 

20%) decrease in the FF and around 10% decrease in the Jsc, however, the Voc of the 

OSCs remained almost stable with only 5% reduction in its initial value as shown in 

Figure 3.2(c).  In addition, formation of In2O3 and presence of oxygenated species 

caused by oxygen diffusion have been observed to restrict the overall device 

performance. Interestingly, during the XPS analysis of exposed films of HTL, it was 

observed that initially the dominating degradation factor is the diffusion of indium 

which started immediately after the spin coating of PEDOT:PSS HTL. Chang & Chen 

in their recent investigation on the PEDOT:PSS and ITO interaction, showed that 

dissolution of indium in PEDOT:PSS aqueous solution also decrease the work function 
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(Chang & Chen, 2007). This would lead a device to degradation even after 

encapsulation, predominately in the FF and Jsc as observed in our work. In case of 

longer hours of exposure to air, oxygen is also in play along with indium diffusion into 

the HTL which would also accelerate the indium diffusion (Kawano et al., 2006).   

Contrary to HTL, degradation process in PCDTBT:PC71BM photoactive layer 

was predominately due to oxygen diffusion (Figure 3. 4) which continuously increased 

in 1000 h. Oxygen can be absorbed from the atmosphere into the active layer through 

the Al electrodes. Al easily gets oxidize which cause voids and pinholes in case of 

longer exposure to moisture. These voids facilitate the diffusion of moisture into the 

underneath layers (Kawano et al., 2006; Seeland et al., 2011) , and this  whole oxidation 

process consequently increases the series resistance (Rs). In addition, areas which are 

affected by these voids due to deterioration of Al are unlikely to have any contribution 

towards a working device. Since the photo-active layer and Al electrode will lose 

contacts in the region under voids, therefore, any free charge carriers generated in this 

region will be likely to recombine rather than being extracted by the electrode. Hence, 

Al-active layer interface will act as a charge blocking layer and grow as a function of 

exposure time to air. This phenomenon significantly accounts in total efficiency loss 

with time (Glen et al., 2015).   

Although, there was no significant change recorded in the morphology of fresh 

and 72 h aged samples except for the increase in the surface roughness, however, it is 

vital to record the initial changes in the morphology of the blend film due to ageing 

because a small deterioration of the morphology could have a drastic effect on the 

device performance (Tournebize et al., 2015; Tromholt et al., 2012). However, in this 

work, it is believed that root cause of device degradation is the diffusion of indium into 

the photoactive layer and the increase in the surface roughness is likely to add in the 
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overall device degradation as smooth and homogeneous surface is highly desired for an 

optimum device performance. 

The decay in the optical properties of the active layer blend is likely ascribed to  

deterioration of polymer morphology due to its reaction with ambient atmosphere or 

even with PEDOT:PSS (Tournebize et al., 2015). Our results match well with observed 

decay in device photovoltaic stability (Figure 3.2); in addition, XPS survey spectra also 

confirm the oxygen/moisture ingress into the polymer blend and later on indium 

diffusion from ITO surface to the photo active layer which could likely hinder its 

absorption. 

 The study presented here demonstrate that ageing in ambient air leads to an 

overall performance loss of PCDTBT:PC71BM based OSCs. Basically, all the 

characterizations techniques revealed decay in the morphological, compositional and 

electrical parameters of an OSC with time. Finally, it is vital to note that the presented 

fabrication procedure is a facile route to ensure a low cost device, since it can be 

processed on light-weight and flexible substrates, and therefore compatible with large 

scale roll to roll production. The device performance can be improved by ensuring 

extrinsic and intrinsic stability with proper encapsulation and finding the alternative of 

PEDOT:PSS which should not corrode the ITO surface.   

3.6 Conclusions 

In summary, the degradation process mainly based on chemical and optical 

changes related to materials and interfaces in BHJ OSCs, has been studied. The XPS 

data show chemical changes that occur in PCDTBT:PC71BM photoactive layer under 

ambient atmosphere. The photoactive blend appears as an oxygen containing polymer 

with oxidation of carbon and nitrogen atoms. XPS survey spectra confirm the 

penetration of indium and tin into the PEDOT:PSS HTL and further into the photoactive 
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layer. Substantial increase in indium content at HTL surface in initial 250 h of ageing 

shows that degradation in HTL initially was predominantly due to indium diffusion 

which upon ageing for 1000 h also affected by remarkable increase in oxygen content. 

Whereas, a steady increase in oxygen content at the surface of photoactive layer, has 

been observed. It was concluded that photoactive material and its interface with HTL 

and cathode is strongly affected by moisture diffusion along with the diffusion of 

indium from ITO surface. Optical properties of the device were also affected in ambient 

atmosphere and the low absorption after degradation was observed. The power 

conversion efficiency was reduced due to decrease in Jsc and FF. Overall, this study 

show the degradation effects related to oxygen and indium diffusion in the photoactive 

layer and its interface with PEDOT:PSS and Al cathode. It is suggested that higher 

performance of the device could be achieved by adopting intrinsic and extrinsic stability 

measures. 
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 STABILITY ENHANCMENT IN ORGANIC SOLAR CELLS BY 

INCORPORATING V2O5 NANOPARTICLES IN THE HOLE 

TRANSPORT LAYER3 

4.1 Overview 

Synthesis The synthesis of V2O5 nanoparticles by a hydrothermal method and 

their utilization in a PEDOT:PSS buffer layer in a PCDTBT:PC71BM device structure is 

demonstrated. V2O5 nanoparticles were dispersed in the PEDOT:PSS HTL in normal 

architecture BHJ solar cells. The device performance for both pure PEDOT:PSS and 

hybrid HTLs were studied and demonstrated to effectively work in BHJ OSCs. From 

the stability test initially for one week and subsequently for another three weeks, it was 

confirmed that the OSC device with the incorporation of V2O5 nanoparticles in the 

standard HTL leads to a decrease in device degradation and significantly improves the 

lifetime as compared to the standard HTL based device. Moreover, the hybrid HTL 

exhibits better optical properties and a relatively stable band gap as compared to its 

pristine PEDOT:PSS counterpart. The results indicate that V2O5 could be a simple 

addition into the PEDOT:PSS layer to overcome its stability and degradation issues 

leading to an effective HTL in BHJ OSCs. 

4.2 Introduction 

OSCs have gained considerable attraction due to their friendliness to the 

environment, cheaper generation cost, compatibility with green energy systems and 

large scale roll to roll production (Huang et al., 2012; Sun et al., 2010). BHJ-OSCs are 

                                                 

 

3 The work presented in Chapter 4 has been published in  RSC: “RSC Advances (Rank: Q1, Impact Factor: 3.29)” as  

Rafique et al. (2016). Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer. 

RSC Advances, 6(55), 50043-50052.  
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based on an intimate blend of a donor and an acceptor material within the active layer 

matrix which is then phase separated while coating to create a donor acceptor interface 

(Irwin et al., 2011; Kettle et al., 2012; Li et al., 2010). Photons are absorbed by these 

materials to generate excitons which diffuse to the donor–acceptor interface and 

dissociate into the charge carriers. These charge carriers are then extracted by the 

respective electrodes (Scharber & Sariciftci, 2013; Wright & Uddin, 2012). These solar 

cells have layered geometric structure and optimization of each layer is essential to 

achieve overall performance of the device. It is very important in BHJ OSCs to achieve 

good ohmic contacts and charge transportation between the electrodes and the active 

layer. This is limited by the deep energy levels of the donor polymers which create a 

barrier at the interface between the active layer and either of the electrodes (Griffin, 

2014). In order to overcome these issues, HTL and ETL are introduced at the interface 

between active layer and the electrodes (Duan et al., 2013; Irwin et al., 2011; Jørgensen 

et al., 2012).  

PEDOT:PSS is considered as one of the most widely used HTL materials for the 

efficient charge transportation. However, there are several stability issues associated 

with this material due to its shallower energy levels and acidic nature which turns the 

device to degrade rapidly (Hancox et al., 2012; Schulz et al., 2014; Steirer et al., 2010). 

In recent years, a lot of research has been carried out to overcome the shortcomings of 

PEDOT:PSS. Metal oxides have been proved to be a good alternative to it (Lattante, 

2014). These metal oxides serve many functions in an OSC such as their use as an 

active material, transparent electrodes, charge blocking and extraction layers, optical 

spacers and at the same time they are helpful in enhancing the stability and efficiency 

(Gershon, 2011). There are several transition metal oxides such as V2O5, NiO, Cs2CO3, 

WO3 and MoO3 which are being used in the BHJ solar cells and exhibit a wide range of 

energy levels. Many of them are proved to be more stable than PEDOT:PSS due to their 
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intrinsic optical, structural and electrical properties (Irani et al., 2013; Julien et al., 2012; 

Mane et al., 2015; Meyer et al., 2011; Ryu & Jang, 2011; Shrotriya et al., 2006; 

Zilberberg et al., 2011). In general, metal-oxide charge extraction layers demonstrated 

to be a good addition in OSCs with overall improvement in efficiency and stability (Ryu 

& Jang, 2011; Shrotriya et al., 2006).   

V2O5 is one of the most widely explored materials as an n-type semiconductor 

due to its very good transparency, wide optical ban dap, and good stability (Irani et al., 

2013; Mane et al., 2015). In addition, this metal oxide also provide good interfacial 

adhesion and enhances the device stability significantly when exposed to ambient 

environment which are limiting factors in case of PEDOT:PSS HTL (Meyer et al., 

2011; Zilberberg et al., 2011). There are several methods which have been employed in 

the past to deposit this material as an HTL in BHJ OSCs both in normal as well as in 

inverted structures. Vacuum deposited processes had been widely used to deposit V2O5 

in the past but these processes are not compatible with the large scale production on 

account of their high manufacturing costs which lead to a substantial addition in the 

overall fabrication cost of the device (Julien et al., 2012; Liu et al., 2014). In recent 

years, efforts have been made to solution deposit the V2O5 by using different techniques 

such as brush painting (Cho et al., 2015), solution processed spin coating (Hancox et al., 

2012), sol–gel derived vanadium oxide (Kololuoma et al., 2015; Zilberberg et al., 

2011), and several other methods (Irani et al., 2013; Julien et al., 2012; Mane et al., 

2015; Meyer et al., 2011; Ryu & Jang, 2011; Shrotriya et al., 2006; Zilberberg et al., 

2011). However, still a lot of work is needed to be done to find the best and cheaper 

ways to deposit these oxides, for optimizing the material properties to get the highly 

efficient devices compatible with PEDOT:PSS and exhibiting high stability.  
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One of the main constraints in OSC performance is its stability. OSCs are very 

sensitive towards various environmentally induced degradations such as decay in 

chemical, physical, mechanical, structural and optical performance. Consequently the 

life time of these devices is very short which put limitations for their commercial use.  

The goal to establish an easy solution processable fabrication procedure to develop a 

highly stable device by overcoming the reliability issues associated with PEDOT:PSS 

layer stimulates me to investigate the effect of incorporating the V2O5 nanoparticles in 

PEDOT:PSS layer. Investigations show that HTL with the dispersion of V2O5 

nanoparticles exhibit much stable device as compared to its pristine counterpart. 

4.3 Materials and Methods 

4.3.1 Active Materials and the Synthesis of V2O5 Nanoparticles 

Both PCDTBT and PC71BM were purchased from Lumtec. While PEDOT:PSS 

solution (PH1000) has been purchased from H.C. Starck and used as received. Figure 

4.1 shows the molecular structure of PCDTBT, PC71BM and PEDOT:PSS. 

 

Figure 4.1: Molecular structures of (a) PCDTBT, (b) PC71BM, and (c) PEDOT:PSS. 
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V2O5 nanoparticles were synthesis by hydrothermal method. 1 mM of vanadium 

acetylacetonate was dissolved into 40 mL of deionized water. 10 mg of Hexa-decyl-

trimethyl ammonium bromide (CTAB) and 5 mg of trimethylamine N-oxide were 

dissolved into 20 mL of deionized water. This solution was added drop by drop into the 

vanadium solution under stirring at 80 °C and left at this temperature for 30 minutes. 

Whole mixture was transferred to Teflon-lined stainless steel autoclave with capacity of 

80 mL and put into an electric oven at 150 °C for 2 hours. The product was collected by 

centrifuge at 5000 rpm for 1 min, then washed several times with deionized water and 

left to dry at 50 °C in the oven under vacuum overnight. The powder was followed by 

calcinations at 450 °C for 2 hours to finally obtain yellowish-brown V2O5 nanoparticles. 

The flow chart for the synthesis procedure has been presented in Figure 4.2. 

 

Figure 4.2: Flow chart of V2O5 nanoparticles synthesis via hydrothermal method. 
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4.3.2 Solar Cell Fabrication Procedure 

Pre-patterned ITO coated glass substrates, for device fabrication, were provided 

by Ossila Ltd. UK. The dimensions of the rectangular substrates were 1.5×2.0 cm, with 

six active pixels on each substrate and an active area of 3×1.5 mm (4.5 mm2) for every 

pixel. Those were cleaned first by using normal soap and then sequential ultrasonication 

in deionized water, acetone and isopropanol for 15 min each. At the end, substrates 

were dried by (Nitrogen) N2 stream and treated by O2 plasma for 5 minutes. 

PEDOT:PSS was spun coated at 4000 rpm for 1 min and then dried at 120 °C for 30 

minutes to achieve the final layer thickness of around 40 nm. The active layer is 

consisting of PCDTBT as donor material and PC71BM as an acceptor material. The 

active layer ingredients were dissolved in chloroform with a concentration of 10 mg 

mL-1 and then mixed with the volume ratio of 1: 4 (PCDTBT:PC71BM). Mixing was 

performed by stirring them for 24 hours. After transferring samples into nitrogen-filled 

glove-box, the final blended active layer was spun coated at 2000 rpm for 20 seconds. 

Al electrode with thickness of 100 nm was deposited on top of the active layer in 

vacuum (<10-6 torr) by means of thermal evaporation. Finally, all the OSCs devices 

were encapsulated by sticking a thin glass slide to cover active area of the device using 

a drop of epoxy glue. In the second set of experiments, PEDOT:PSS was mixed with the 

V2O5 nanoparticles at the concentration of 1 mg mL-1 and coating parameters were 

optimized for the desired thickness of 40 nm. Same fabrication procedure was adopted 

which is described previously. Figure 4.3 shows two types of fabricated OSCs varied by 

their HTLs including the energy band diagram for both of them. 
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Figure 4.3: Device structure of PCDTBT:PC71BM solar cells with  (a) PEDOT:PSS, 

(b) PEDOT:PSS + V2O5 as HTL, and the energy diagram for solar cells 

with (c)PEDOT:PSS, and (d) PEDOT:PSS + V2O5 as HTL. 

 

4.3.3 Characterization 

4.3.3.1 Characterization of V2O5 Nanoparticles  

V2O5 nanoparticles were first characterized for their compositional and structural 

properties. XRD was performed in 2θ scanning range of 10 to 60° by using Ultima-IV 

(Rigaku, Japan) multipurpose X-ray diffraction system. Powder diffractometer, 

equipped with Cu K-a source (λ=0.154060 nm) was used to obtain the X-ray diffraction 
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pattern. Energy dispersive X-ray analysis along with FESEM was performed to obtain 

the elemental composition by using EDS OXFORD INCA ENERGY 250 (Oxford 

Instruments, UK) attachment. Raman spectroscopy was performed to measure Raman 

shifts by a DXR Raman Microscope (Thermo Scientific, USA), equipped with green 

light excitation (532 nm) laser source at 6 mW power. 

4.3.3.2 Characterization of OSC Devices 

  Thickness of the HTL consisting of a mix blend of PEDOT:PSS and V2O5 was 

measured by surface Profiler (DEKTAK 150 Veeco, UK). Morphological 

characterizations were carried out by FESEM model JEOL JSM-7600F, Japan and 

AFM model SPM PROBE VT AFM XA 50/500 Omicron, Germany. Optical 

measurements of the samples were carried out with the UV-vis spectrophotometer 

(Perkin Elmer Lambda 750, USA). I-V characteristics of the solar cells were measured 

by Keithley 236 Source Measure Unit. Solar cell performance was tested by using an air 

mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW 

cm-2. The light intensity calibration was performed with a Newport power meter 1918-R 

with calibrated Si-detector 818-UV. 

4.4 Results and Discussion 

4.4.1 Structural and Morphological Analysis 

XRD pattern of the prepared V2O5 nanoparticles is presented in Figure 4.4(a). 

All the peaks are well indexed to the ICDD PDF-2 (Release 2011) DB card number 01-

077-2418 and represent the intense reflections at 15.4126, 20.3651, 21.7817, 

26.1387,v31.0528, 32.4078, 33.3502, 34.3418, and 41.3024° . 2θ diffracted peaks show 

sharp and noise free spectra which confirm the high Crystallinity and well-arranged 

orthorhombic symmetry of V2O5 crystal structure (space group: Pmmn (59)) with cell 
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dimensions as a = 11.5120, b = 3.5640, c = 4.3680. Both XRD and EDS (Figure 4c) 

results confirm the high purity of the prepared material. 

Phase purity of the synthesized V2O5 nanoparticles was confirmed by the Raman 

spectroscopy due to its high sensitivity towards crystalline V2O5 nanoparticles (Wachs 

& Routray, 2012). Determined spectrum matched well with the reported spectra (Aslam 

et al., 2015; Lee et al., 2003) and shown in the inset of Figure 4.4(b). The peak at 

995cm-1 is assigned to the terminal oxygen (V-O) stretching mode occurring due to 

unshared oxygen. Bands at 696cm-1 and 526 cm-1 are attributed to V-O-V stretching 

modes. Peaks at 406cm-1 and 283cm-1 are exhibiting the bending vibrations of V = O 

bonds whereas peaks at 487cm-1 and 303 cm-1 also represent the bending vibrations of 

different oxygen bonds. Raman peaks at 194cm-1 and 142cm-1 represent the lattice 

vibrations (Aslam et al., 2015; Lee et al., 2003).  

Two variants of HTL were also characterized for Raman shifts since it is a 

powerful tool to study the conducting polymers. Resulting spectra for both HTLs are 

represented in the Figure 4.4(b). Attributions of peak positions are consistent with 

several reported results (Chang et al., 2014; Teng et al., 2013), showing dominantly the 

characteristics for PEDOT in either case and contribution of PSS is almost negligible in 

both cases. Peaks observed at 1563 cm-1, 1500cm-1, 1440cm-1, 1360cm-1, 1252cm-1 and 

986cm-1 are assigned to PEDOT. Moreover, the most obvious difference brought by the 

addition of V2O5 nanoparticles was observed between 1252cm-1 and 1563 cm-1. These 

nanoparticles reduced the intensity of the Raman fingerprints for the peaks attributed to   

1252cm-1, 1360cm-1, 1440cm-1, 1500cm-1 and 1563 cm-1, furthermore they exhibited 

narrower band as compared to pristine HTL (Chou et al., 2015; Sakamoto et al., 2005). 
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Figure 4.4: (a) XRD pattern of the V2O5 nanoparticles synthesis by hydrothermal 

method, (b) Raman spectra of pristine PEDOT:PSS HTL and its hybrid 

variant. Inset shows Raman fingerprints for V2O5 nanoparticles and (c) 

EDS spectra of synthesized V2O5 nanoparticles. 

 

It is crucial to study surface morphology to ensure the device performance by 

improving different surface parameters. To compare the two HTL morphologies, 
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FESEM and AFM characterizations were used. High resolution FESEM images and 

AFM morphology of both HTLs are presented in Figure 4.5.  

 

Figure 4.5:  FESEM and AFM images for (a, c) pristine PEDOT:PSS HTL  and            

(b, d) Hybrid HTL. 

 

SEM image of the pristine PEDOT:PSS (Figure 4.5(a)) layer shows the smooth 

and featureless surface morphology as compared to hybrid HTL. Whereas, the hybrid 

HTL exhibits a loosely packed surface morphology (Figure 4.5(b)); the globules 

aggregation of discrete nanoparticles on the entire surface are likely to be V2O5 particles 

uniformly distributed within the polymer matrix which confirms the method efficacy of 

the solution processed fabrication technique that was used to prepare HTLs. Hybrid 
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HTL shows formation of channels like morphology likely caused by nucleation effect of 

V2O5 particles. Figure 4.5(c) and (d) shows the non-contact tapping mode AFM images 

of pristine and hybrid HTLs deposited on ITO coated glass substrates. The morphology 

of the PEDOT:PSS HTL is much smoother than hybrid HTL and surface roughness 

increased to double due to addition of V2O5 nanoparticles. The increase in the 

roughness was expected and agrees with the reported results in (Huang et al., 2009). 

Although the roughness of the HTL had increased with the addition of V2O5 

nanoparticles but it is believed that the particles dispersed on the surface of the HTL can 

effectively extract the charged carrier due to their high conductivity and at the same 

time they assist in reducing the leakage current by blocking the negative charge carriers 

which in turns guarantees a better and stable device. It is reported that the RMS 

roughness of modified HTL increases slightly with the increase of V2O5 concentration 

in PEDOT:PSS except for high ratio of doping concentration (1:1) ( Kim et al., 2015). 

In this work, it is observed that the addition of V2O5 in small amount (1 mg) into 

PEDOT:PSS has also altered the roughness of modified HTL as shown in Figure 4.5(d). 

However, the change in device performance is believed to be due to the change in 

electronic and optical properties of the HTL compared to the morphological change 

such as the roughness (Kim et al., 2015). Further details are presented in Section 4.4.2. 

4.4.2 Optical Transmittance and Band-gap Calculations 

In Figure 4.6(a), the transmittance spectra of pristine (PEDOT:PSS) HTL and 

hybrid HTL (PEDOT:PSS + V2O5) to distinguish the ageing effect on the optical 

properties of the both variants have been reported. Data are shown for the freshly 

prepared and one month aged samples. The transmittance curves for hybrid HTL show 

high transmittance of more than 94% in the visible region and did not show any 

significant reduction in transmittance over one month ageing period. Whereas, the 

transparency of the pristine PEDOT:PSS of freshly prepared sample is exhibiting 
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around 89 % transmittance which diminished to 84 %  after  one month of preparation. 

It is notable that transmittance of the pristine PEDOT:PSS thin film reduced with time 

which is undesirable (Sarker et al., 2015). Relatively higher degree of transparency in 

the hybrid HTL ensures more light absorption by the active layer and therefore an 

increase in the photo-generation of charges (Ecker et al., 2011).  
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Figure 4.6: The transmittance spectra, for (a) pristine PEDOT:PSS and PEDOT:PSS 

enhanced with V2O5 nanoparticles, the Tauc plot of (aE)2 against the 

photon energy (E) for (b) freshly prepared HTL variants and  (c) aged HTL 

variants. 
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In Figure 4.3(c) and (d), the energy band diagram has been presented based on 

their known energy levels which consist of LUMO and HOMO values. It can be seen 

that the presence of V2O5 has further facilitated the extraction of holes from the active 

component (PCDTBT) to PEDOT:PSS layer and then to the ITO  via V2O5. In 

principle, a significant difference of V2O5 LUMO level as compared to LUMO levels of 

both PEDOT:PSS and the active component (PCDTBT) has potentially created a 

restriction for electrons flow to the ITO and consequently made V2O5 as good electron 

blocking component between the ITO/active layer interfaces. In this section, the optical 

energy gaps for the freshly prepared and aged samples of pristine and hybrid 

PEDOT:PSS HTLs have been determined via the optical absorption spectroscopy. The 

square of absorption coefficient and photons energy (αE)2 is related to the band gap (Eg) 

and calculated by the following expression (Mane et al., 2015; Reddy et al., 2013). 

𝛼ℎ𝑣 = 𝛼𝑂(ℎ𝑣 − 𝐸𝑔)
𝑛

  …………… (4.1) 

Where Eg is the band gap corresponding to a particular transition occurring in 

the samples,  v is the transition frequency, h is Planck's constant, n is the exponent 

which can be taken as 1/2, 3/2, 2 and 3 depending on the band transition classifications. 

Whereas, α = 2.303 A/t, A and t are absorption and thickness of the films respectively 

(Muhammad & Sulaiman, 2011). Extrapolated values from the straight line to the 

abscissa determine the optical band-gap. Figure 4.6(b) and (c) show the Tauc plot, i.e. 

(aE) 2 versus photon energy of pristine and hybrid HTLs. For the direct allowed 

transition, the optical band gap transition energy for pristine PEDOT:PSS varied from 

1.46 to 1.55 eV when the data were collected after one month. Whereas, the optical 

energy gap for hybrid HTL was found to be around 1.51 eV slightly higher than the 

energy gap of fresh pristine PEDOT:PSS HTL which is believed to be due to the 

presence of V2O5 nanoparticles, a well-known high work function metal oxide. 

Univ
ers

ity
 of

 M
ala

ya



 

90 

However, it remained unchanged during this period of time exhibiting high degree of 

stability in the transition energy which consequently helps in improving the device 

performance especially in cell stability. Thus, the improvement in the device 

performance is also attributed to the optical properties of V2O5 (Lee et al., 2014). The 

variation in transmittance and band gap energy of the both variants of HTL are 

summarized in Table 4.1.  

Table 4.1: The variations in transmittance and band gap energy of pristine and hybrid 

HTLs due to ageing for one month. 

Sample 

Transmittance     

(%) 

Band gap energy 

(eV) 

Fresh Aged Fresh Aged 

Pristine PEDOT:PSS 89 84 1.46 1.55 

PEDOT:PSS+ V2O5 94     94 1.51 1.51 

 

4.4.3 Organic Solar Cell Device Characteristics 

Photovoltaic properties of the OSCs based on PCDTBT:PC71BM active layer 

with pristine HTL, PEDOT:PSS, and its modified variant with the incorporation of 

V2O5 nanoparticles were investigated. The efficiency and life time stability of both 

types of devices were investigated by performing I–V measurements and reduction in 

the PCEs was recorded over a period of 4 weeks. The solar simulations were performed 

at the light intensity of 100 mW cm-2. Figure 4.7 shows the I–V characteristics for both 

OSCs. The two variants of OSCs showed a decline in both (Jsc) and (Voc) as shown in 

Figure 4.7(a) and (b). However, OSC devices with pristine PEDOT:PSS HTL exhibited 

more decay in both parameters than that of with hybrid HTL. After the first week, the 

pristine device demonstrated a minor degradation, mainly the decrease of the device 

(Voc) from 0.8 to 0.75 V. After four weeks the device continued to degrade and (Voc) 

value reduced to 0.70 V. While, in the hybrid device the (Voc) for freshly prepared 
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device is about 0.85 V which showed minor degradation in first week with (Voc) of 0.80 

V. After four weeks the hybrid device showed no further reduction in the (Voc).  

 

Figure 4.7:  The current-voltage (I-V) characteristic in fresh condition, after one week, 

and after 4 weeks for OSCs with (a) PEDOT:PSS, and  (b) 

PEDOT:PSS+V2O5 HTL layer. 

 

From the normalized efficiency calculated over the period of four weeks as 

shown in Figure 4.8, it is evident that that device with the hybrid HTL was consistently 

much stable as compared to the device with pristine PEDOT:PSS layer. It retained 

about 90 % of its efficiency, whereas the standard device reduced to around 65 % of its 

initial efficiency over this entire period of time.  
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Figure 4.8:  Normalized efficiency (η/ηo) of both OSCs with pristine PEDOT:PSS layer 

and PEDOT:PSS + V2O5 nanoparticles layer measured  for 28 days (four 

weeks). 

 

The improvement in the device stability and overall performance was due to the 

intrinsic features of the metal oxide nanoparticles which were incorporated in the HTL. 

Our results were also consistent with the previous studies showing that V2O5 effectively 

prevent the leakage current in both normal as well as inverted geometries. It proved to 

be more stable as compared to conventional PEDOT:PSS layer (Kösemen et al., 2014; 

Shrotriya et al., 2006; Escobar et al., 2013; Wang et al., 2012). The addition of these 

nanoparticles forms an organic–inorganic hybrid buffer layer which protects the active 

layer and at the same time maintains the device performance (Chen et al., 2011). 

Moreover, in recent years, it is studied that conventional PEDOT:PSS layer does not 

provide good adhesion at the interfaces (Dupont et al., 2012). Whereas, V2O5 proved to 

be better in adhesion (Escobar et al., 2013) at the interface between active layer and 

HTL and at the same time it also helps in transport of charged carriers to the electrode. 

Relatively better performance of the hybrid device is also attributed to the better 

transmittance and stable band gap of the hybrid HTL as compared to its pristine 
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counterpart. Furthermore, it mitigated the adverse effects of PEDOT:PSS acidic nature 

on ITO over the time due to its favorable optical, structural and electrical properties 

which in turns had given us a more stable device as compared to the standard cell. 

4.5 Conclusions 

This work has successfully demonstrated the fabrication of air 

stable PCDTBT:PC71BM based polymer solar cells with V2O5 modified HTL to address 

the reliability issues associated with conventional PEDOT:PSS layer. The results show 

that the mixing of V2O5 + PEDOT:PSS has a major impact on the device life time 

stability. Based on this study, results were evident that V2O5 based HTL could 

significantly reduce the degradation in OSCs device performance than pristine 

PEDOT:PSS HTL. The device with hybrid HTL retained 90 % of its PCE even after 

four weeks of ageing compared to the pure PEDOT:PSS HTL where overall efficiency 

reduced to around 65 % of its initial value. In addition to remarkably better stability, 

both HTLs and active layers were fabricated by the simple and solution processed 

method, which greatly simplifies the fabrication process and reduced the overall cost. 

This study thus showed the importance of buffered layers in OSCs with an emphasis on 

improving the HTL if long operational devices are to be achieved. A further in depth 

study of metal oxide based HTLs and their interfaces with the BHJ and ITO electrodes 

are needed to be investigated in future. 
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 BULK HETEROJUNCTION ORGANIC SOLAR CELLS WITH 

GRAPHENE OXIDE HOLE TRANSPORT LAYER: EFFECT OF 

VARIED CONCENTRATION ON PHOTOVOLTAIC 

PERFORMANCE4 

5.1 Overview 

 This chapter reports the solution processable hole transport layer (HTL) for 

bulk heterojunction organic solar cells (BHJ OSCs) based on varied concentration of 

graphene oxide (GO) in aqueous suspension. The effects of varied concentration of GO 

at 1, 2 and 4 mg/ml on the morphological, optical, electrical and photovoltaic properties 

of the OSCs have been studied. Device with the lowest concentration and least 

thickness of GO showed most optimized performance with a power conversation 

efficiency (PCE) of 2.73 % as compared to the higher concentration where the PCE 

reduced to 0.67 and 0.22 % for the devices with HTL of 2 and 4 mg/ml, respectively. 

The remarkable reduction in the device performance at higher concentration is mainly 

attributed to a drastic decrease in the short circuit current that reduced from 

8.14mA/cm2 to 2.90 and 1.10 mA/cm2at 2 and 4 mg/ml, respectively. Similarly, the 

increased series resistance (Rs) from 6.89 Ω/cm2to 9.54 and 11.51Ω/cm2 has also 

reduced the device performance. Optical transmittance has been decreased from more 

than 85% to less than 80% in the overall wavelength region at higher concentrations. 

Both the insulating properties of GO at higher thickness of HTL due to high 

                                                 

 

4 The work presented in Chapter 5 has been published in  ACS: “Journal of Physical Chemistry C (Rank: Q1, Impact 

Factor: 4.50)” as 

Rafique et al. (2016). Polymer bulk heterojunction organic solar cells with graphene oxide hole transport layer: Effect of varied 

concentration on photovoltaic performance. The Journal of Physical Chemistry C, 121(1), 140-146.  
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concentration and inhomogeneous surface characteristics lead to a decrease in the 

device performance.   

5.2 Introduction 

The potential of a facile, low cost, solution processable, role to role 

manufacturing process has made BHJ OSCs very promising candidate to address 

growing concerns related to the implementation of green energy harvesting (Jagadamma 

et al., 2014; Li et al., 2015; Rafique et al., 2016). In OSCs, photovoltaic parameters such 

as open circuit voltage (Voc), short circuit current (Jsc) and fill factor (FF) are greatly 

relied on the interfacial characteristics between the photoactive layer and the electrodes 

as well as the bulk properties of the materials (Yun et al., 2011). Due to these reasons, 

the interfacial layers namely HTL and ETL are essential for improving the efficiency 

and stability of OSCs (Yang et al., 2012). Several key factors such as high 

transmittance, optimum morphology, high conductivity, stability and efficiency have 

been considered for the use of these promising interfacial layers (Cao et al., 2016b; Lian 

et al., 2014).  

Poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) PEDOT:PSS is the 

current state of the art standard interfacial layer on the transparent ITO anode to 

facilitate the extraction of holes, blocking of electrons and improve the surface 

morphology at the interface (Crispin et al., 2006; Espinosa et al., 2011; Wakizaka et al., 

2004). It possesses several advantages including its excellent transparency in the visible 

region, high electrical conductivity, easy solution processing in aqueous dispersion and 

its high work function (Nardes et al., 2008; Po et al., 2011; Zhao et al., 2015). However, 

PEDOT:PSS as an HTL also favors device degradation due to its hygroscopic and 

acidic nature, resulting in severe device instability (Jagadamma et al., 2014; 

Varnamkhasti et al., 2012). To address these issues, inorganic metal oxides such as NiO 
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(Park et al., 2010; Yang et al., 2012), V2O5 (Meyer et al., 2011) and MoO3 (Chen et al., 

2012) have been investigated among others to replace PEDOT:PSS. However, 

deposition of these materials normally involves costly vacuum techniques that are 

incompatible with the large scale role to role production (Yun et al., 2011). Therefore, 

development of a facile, solution processable and cost effective method is in high 

demands. In this context, solution processable GO has been recently reported by several 

groups to serve as an HTL in OSCs (Liu et al., 2012; Smith et al., 2014). GO is the one 

atomic layer thick graphene sheet functionalized with oxygen groups (hydroxyl (OH) 

and epoxy group) on its basal plane and various other types at the edges (Ding et al., 

2015). It possesses excellent electrical, optical and thermal properties, a large surface 

area and a high young’s modulus, which makes it suitable for a variety of applications 

including OSCs, fuel cells, light emitting diodes (LEDs), sensors and field effect 

transistors etc. (Yu et al., 2011; Yu et al., 2010). Stratakis et al. demonstrated the use of 

GO as an HTL in BHJ OSCs that outperformed the device  with pristine PEDOT:PSS 

HTL on merits of their stability and efficiency (Stratakis et al., 2014). Similarly, Zhou 

et al. and Smith et al. also reported the BHJ OSCs fabricated with GO HTL and 

exhibiting high efficiency and stability (Smith et al., 2014; Zhou et al., 2015). Efficacy 

of GO as an HTL in BHJ OSCs, for both normal and inverted architectures, has been 

confirmed by many other reported works (Yusoff et al., 2014; Cheng et al.; He et al., 

2014). Thus, GO has the substantial potential to serve as an HTL in OSCs with superior 

performance and device life time as compared to the conventional PEDOT:PSS HTL. 

However, device performance with GO HTL is extremely sensitive to its thickness due 

to insulating characteristics of GO. In addition, the thickness of the GO films is also 

highly dependent on the GO concentration in any solvent, in particular, the aqueous 

suspension. To date, there has been no report published with optimized experimental 

conditions with regard to concentration and consequently thickness of GO as an HTL. 
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Several groups reported the efficacy of GO as an HTL and each of them reported the 

results with different concentration and experimental conditions for the fabrication of 

GO HTL in BHJ OSCs. For example, Li et al. reported GO for the very first time as an 

HTL in P3HT based BHJ OSCs and used an optimized concentration of 8 mg/ml in 

aqueous dispersion (Li et al., 2010). However, the thickness was optimized to be ~ 2 nm 

for a PCE of 3.5%. In another study, Yang et al. utilized GO aqueous dispersion at 2 

mg/ml concentration to deposit GO HTL in a BHJ OSC (Yang et al., 2012). Similarly, 

Cheng et al. also reported BHJ OSC with UV treated GO HTL at the concentration of 

1.25 mg/ml (Cheng et al., 2015). Therefore, optimization of GO concentration and 

corresponding thickness are much needed to move towards the standardized conditions 

for deposition of GO as an HTL.  

In this study, the solution processed GO HTLs in the PCDTBT:PC71BM 

photoactive blend based BHJ OSCs have been investigated. GO in aqueous suspension 

was prepared at varied concentration and deposited at fixed spinning speed. The 

changes in surface properties due to different concentrations and an overall effect on the 

thickness were investigated. Surface morphology, optical and electrical properties, and 

photovoltaic performance were evaluated to correlate the performance of OSCs with 

varied concentration of GO as HTLs.  

5.3 Materials and Methods 

5.3.1 Preparation of GO HTLs  

The GO solution was prepared by following simplified hummer method reported 

elsewhere Ming (Ming, 2010). Three different concentrations were considered for GO 

HTL aqueous dispersion: 1, 2 and 4 mg/ ml. The freshly prepared GO aqueous solution 

of varied concentration was spun coated on cleaned, pre-patterned ITO substrates (15 
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Ω/ sq.) at spin rate of 6000 rpm for 40 s. After the spin coating the films were annealed 

at 150 °C for 5 min in air and allowed to cool down at room temperature.  

5.3.2 Characterization of GO HTLs  

Surface morphology of the GO films was characterized using tapping mode of 

atomic force microscopy (AFM, Agilent Technologies 5500 Scanning Probe 

Microscope) and field emission scanning electron microscope (FESEM) model JEOL 

JSM-7600F, Japan. Structural analysis of the samples was performed by DXR Raman 

Microscope (Thermo Scientific, USA) with 532 nm laser irradiation source of 6 mW 

power. The optical transmittance spectra of spun coated GO layers were measured using 

Perkin Elmer UV-visible diffuse reflectance spectrophotometer (Lambda 650) over the 

wavelength range of 200 to 800 nm. The thickness of the GO films was estimated using 

surface profiler (DEKTAK 150 Veeco, UK). 

5.3.3 Fabrication of PCDTBT:PC71BM Based Solar Cells  

Normal architecture BHJ OSCs were fabricated on pre-patterned ITO coated 

glass substrates. The substrates were cleaned with detergent, ultrasonicated in deionized 

(DI) water, acetone, isopropyl alcohol and rinse with DI water. The cleaned substrates 

were blown with dry nitrogen stream and further treated with oxygen plasma for 5 min 

to obtain a hydrophilic surface state for GO HTL. The PCDTBT:PC71BM photoactive 

blend solution was prepared by dissolving 10 mg of PCDTBT and PC71BM in 1 mL of 

chloroform, separately. The constituents of photoactive layer were kept on stirring at 

room temperature for ~ 24 h and further mixed by vigorous stirring overnight at the 

ratio of 1:4 for the PCDTBT and PC71BM, respectively. The prepared solution was 

filtered with 0.25 µm PTFE filters (Whatman, Germany) prior to spin casting at an 

optimized speed of 2000 rpm for 60 s, resulting in a thickness of ~ 70 nm.  
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5.3.4 Characterization of Solar Cells 

Measurement of the photovoltaic performance was carried out using a Keithley 

236 (Keithley Co.) source measurement unit. Air Mass 1.5 Global (AM 1.5 G) solar 

simulator with an irradiation intensity of 100mW/cm2 was used to measure the solar cell 

performance. The light intensity calibration was carried out using a Newport power 

meter 1918-R with calibrated Si-detector 818-UV. 

5.4 Results and Discussion 

Figure 5.1(a) and 5.1(b) describe the device structure of OSCs using the GO 

HTLs and corresponding energy level diagram. The devices were fabricated with varied 

concentration (1, 2 and 4 mg/mL) of GO in aqueous suspension and consequently the 

varied thickness using fixed spin coating conditions.  The OSCs were fabricated by the 

consecutive spin coating of GO HTLs (2-10 nm as shown in Figure 5.2(a), 

PCDTBT:PC71BM as an active layer (70 nm) and thermally evaporated aluminium (100 

nm) as a cathode on ITO anode. The fabrication of OSCs is described in the 

experimental section. GO nanosheets were synthesized by the chemical exfoliation of 

graphite powder using simplified Hummers method, further, GO aqueous suspension 

was prepared in DI water at the concentration of 1, 2 and 4 mg/mL. GO exhibits several 

unique properties including its tunable energy levels, easy functionalization, facile and 

low cost synthesis process, and its two dimensional structure. In order to fabricate a 

high performance OSC device with GO as an HTL, a highly uniform, ultra-thin and 

smooth surface with full coverage of ITO is recommended. However, it is difficult to 

deposit a homogeneous HTL of GO in the range of 1-3 nm with uniform full coverage 

of ITO anode. Therefore, the device performance is significantly affected due to direct 

contact of ITO and photo-active layer at the non-covered regions. In addition, at higher 

concentration, aggregation of GO flakes is observed which gives rise to high root mean 
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square (RMS) roughness values; consequently, the non-uniform and overlapping GO 

flakes are likely to suppress the transportation of holes.  

 

Figure 5.1: (a) Schematic device structure and (b) energy level diagram of the 

PCDTBT:PC71BM based devices with GO HTLs of varied concentration. 

  

Raman spectroscopy has been extensively used to characterize the graphene 

based materials. The Raman spectra presented in Figure 5.2(b) for all three HTL 

concentration variants showed two well-known bands i.e. the D band and G band. The 

peaks at ~1347 cm-1 are ascribed to the D-band, which represents the structural disorder 

defects and partially disordered structured of the sp2 domain (Bajpai et al.,2012; Fu et 

al., 2013), while the peaks at ~1598 cm-1 correspond to the G-band, which shows the 

planer configuration of sp2 bonded carbon corresponding to GO (Hafiz et al., 2014). 

The existence of G band of GO at a higher region indicates the extensive oxidation of 

graphite which lead to the distortion of its planar structure (Dehsari et al., 2014). At the 

higher frequency end of the spectra, three peaks at ~2710, 2940 and 3190 cm-1 are 

observed. A relatively strong and pronounced peak at 2940 cm-1 is the combination of D 

and G band and denoted as D+G band which is ascribed to the disorder induced 

(a) (b) 
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combination mode (Delgado et al., 2008). The peaks at 2710 and 3190 cm-1 correspond 

to an overtone of D band and often referred as 2D band (Bajpai et al., 2012; Wang et al., 

2013). There is a significant increase in the intensity of the D and G bands at 2 and 4 

mg/ml which likely occur due to increase in the concentration and consequently the 

increased Raman scattering.  

Since the transmittance is one of the important parameters which govern the 

overall performance of the solar cell devices, therefore, Figure 5.2(c) reports the optical 

transmittance of GO films in order to distinguish effects arising from varied 

concentration of GO aqueous suspension. The films at 1 and 2 mg/ml do not 

significantly alter the transparency of ITO and show high transmittance values of more 

than 85% in the overall wavelength range. However, in the case of higher concentration 

(4 mg/ml), it yielded a more pronounced reduction in the transmittance of the film. It 

can be observed that the transmittance of the GO-4mg/ml film is almost 15% lower 

compared with the transmittance of pristine ITO and ITO/GO (1 and 2 mg/ml) samples 

in the region of ~ 400-800 nm. The observed decay of transmittance in the ~ 400-800 

nm region could potentially bring a substantial effect on the photo-generated current 

(Jsc) of the device. Thus the device efficiency could be significantly reduced due to low 

transmittance as well as other factors such as high surface roughness and increased Rs 

values etc. (Yusoff et al., 2014; Jeon et al., 2014). These results are in good agreement 

with the current photovoltaic studies of the corresponding devices. Relatively low 

transmittance is ascribed to the increased concentration which consequently increases 

the thickness as well as the surface roughness of the film, as a result diminishes the 

transmittance. 

Rs, is another important parameter to determine the overall device performance; 

generally, low Rs values are desirable. For the device with GO HTL of 1 mg/ml 
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concentration, Rs is estimated to be 6.89 Ω/cm2. At high concentrations, a linear 

increase in the Rs values has been observed and it increased to almost double of the 

lowest concentration (11.51 Ω/cm2) at 4 mg/ml. Comparatively low Rs values suggest 

the better charge transportation ability and a homogeneous morphology, as compared to 

the devices fabricated at high concentration. The Rs values as a function of varied 

concentration of GO has been presented in Figure 5.2(d) and Table 5.1.  

 

Figure 5.2: (a) Thickness vs concentration plot (b) Raman spectra of GO films,          

(c) optical transmittance and (d) series resistance (Rs),  at 1, 2 and 4mg/ml 

concentration. 
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5.4.1 SEM and AFM Morphology of GO on ITO 

The influence of the different concentration of GO in aqueous suspension on the 

surface morphology of spin coated GO films was analyzed based on AFM 

topographical images and FESEM surface scans, as shown in Figure 5.3. The RMS 

roughness values for the films at 1, 2 and 4 mg/ml are calculated to be 2.88, 2.53 and 

5.16 nm respectively. RMS value slightly reduced in case of 2 mg/ml as compared to 1 

mg/ml because this concentration likely results in planarization of the surface. 

Moreover, RMS surface roughness has significantly increased at 4 mg/ml which caused 

a substantial decrease in the device performance. The surface texture for all three 

concentration variants can also be seen in SEM images where it is clearly visible that at 

4 mg/ml, GO has aggregated and it is exhibiting stem like structures on entire surface 

due to aggregation of these flakes. The SEM results matched well with the AFM 

morphology analysis. Comparatively uniform surface texture is observed for the HTL 

deposited with concentration of 1 and 2 mg/ml as shown in Figure 5.3(a) and 5.3(b). 

HTL morphology significantly influences the Rs values and generally, a homogeneous 

and full-covered HTL morphology yield low Rs which is highly desired. However, in 

this study, GO at 1mg/ml exhibited a reasonably uniform surface and an ultrathin layer 

(Figure 5.3(a)) but it lacks in full ITO coverage of ITO surface. Therefore, uncovered 

regions may cause a direct contact of photo-active layer with ITO which could lead to a 

significant decrease in device performance. At higher concentrations, although the HTL 

is providing full coverage of ITO but increase in roughness and thickness lead to a 

radical decrease in device performance. As discussed above, GO exhibits its full 

functionality if it is in the form of an ultrathin layered structure. Stacking of many 

atomic layers in case of thicker HTLs may diminishes the favorable properties of GO 

and predominately exhibits the insulating properties. Hence, the device performance is 

observed to be drastically decreased.  
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Figure 5.3: AFM topography image and SEM surface scan of GO films at the 

concentration of (a) 1 mg/ml (b) 2 mg/ml and (c) 4 mg/ml. 

 

5.4.2 Photovoltaic Performance 

The OSCs devices have been characterized in dark conditions by Keithley 

source measure unit at low voltage range from -1 to 1 V in order to calculate the 

rectification ratio (RR) of each device. RR values were calculated by obtaining the ratio 

of the forward current to the reverse current at a certain applied voltage, i.e. IF/IR. 

Figure 5.4a shows rectification behavior of each device and it is observed that the OSCs 

with the thinnest GO layer produced by 1 mg/ml GO solution exhibited the highest RR; 
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while the OSC with thickest GO HTL formed from 4 mg/ml GO solution showed 

lowest RR than the others. This indicates that an asymmetry current density – voltage 

(J-V) characteristic is increased with the decreasing GO concentration as well as the 

thickness as HTL in OSCs.  

 

Figure 5.4: (a) Rectification ratio of the OSCs with GO HTL variant and (b) J-V 

characteristics of the devices fabricated with GO based HTLs of varied 

concentration at 1, 2 and 4 mg/ml.  

 

Figure 5.4(b) represents the J-V characteristics under illumination of the OSCs 

fabricated with GO HTLs of varied concentration, consequently the varied thickness 

also, and performance characteristics of the devices are summarized in Table 5.1. A 

clear trend of decreasing in PCE with increasing GO concentration and film thickness 

can be observed. The lowest concentration (1 mg/ml) and thinnest HTL yielded the best 

results and all solar cells parameters were improved as compared to its high 

concentration and thicker HTL variants. The improved PCE is mainly attributed to the 

substantially increased short circuit current (Jsc), and comparatively improved open 

circuit voltage (Voc) as well as fill factor (FF). In addition, the enhanced performance is 

also attributed to smooth surface morphology and decreased Rs as compared to the HTL 

of higher concentration. The performance of high concentration HTLs is substantially 
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decreased, most likely due to the significant increase in Rs resulting in substantially 

lower Jsc and slightly lower transmittance of the film with thickness of ~10 nm, 

moreover, Voc and FF also comparatively decreased. 

Table 5.1:  OSCs photovoltaic performance parameters for GO HTL variants of 1, 2 

and 4 mg/ml concentration calculated under illumination  and their series 

resistance(Rs). 

GO HTL 

Concentration 

Jsc (mA/cm2) Voc (V) FF η (%)  Rs(Ω/cm2) 

1 mg/ml 8.14 0.80 0.42 2.73  6.89 

2 mg/ml 2.90 0.74 0.31 0.67  9.54 

4 mg/ml 1.10 0.65 0.31 0.22  11.51 

 

Experimental results show that device fabricated with GO HTL at concentration 

of 1mg/ml demonstrated best performance. The optimized thickness of GO HTL is 

about 1-3 nm in this work. However, it still lacks the full coverage of ITO and excessive 

voids and openings will weaken the charge extraction ability of HTL due to direct 

contact of ITO with that of photo-active layer. When high concentration and 

consequently thicker HTL is used, the Rs value is observed to increase significantly and 

reduce the device performance greatly. Performance of the OSCs fabricated with GO 

HTL could be enhanced by optimizing the concentration as well as the surface 

morphology and thickness of HTL. In general, an ultrathin GO HTL with full coverage 

of ITO surface would yield a high performance. Moreover, we can reduce the band-gap 

between GO and photoactive layer by introducing conventional PEDOT:PSS interfacial 

layer between GO and PCDTBT:PC71BM photo-active layer to form a bi-layer HTL 

structure that would facilitate the transportation of charges towards the ITO. 

PEDOT:PSS with the band-gap of 5.1 eV will provide a very good ascending step for 

the holes to hop.   
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5.5 Conclusions 

In summary, it is demonstrated that the ultrathin GO films (thickness = 1-3 nm) 

processed from aqueous dispersion at concentration of 1 mg/ml are a promising 

candidate for HTLs in OSCs as compared to their high concentration variant HTLs. 

However, HTL concentration and thickness are two critical parameters which are 

needed to be optimized for enhanced performance. The decay in device performance is 

observed to be mainly driven through a substantial decrease in Jsc and a significant 

increase in the Rs values at higher concentrations. Moreover, the Voc, FF and PCE also 

reduced as a function of increasing concentration. The efficiency values obtained in our 

results are slightly lower than the previously reported data, however, owing to the 

advantage of solution processability, nonacidic nature (contrary to PEDOT:PSS), 

suitable electrical and optical properties of GO thin films as an HTL indicate its 

promising future. For the further optimization of OSCs, development of a novel 

composite of GO with that of PEDOT:PSS and metal oxide is currently underway. 
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 SIGNIFICANTLY IMPROVED PHOTOVOLTAIC 

PERFORMANCE IN POLYMER BULK HETEROJUNCTION 

SOLAR CELLS WITH GRAPHENE OXIDE /PEDOT:PSS 

DOUBLE DECKED HOLE TRANSPORT LAYER5 

6.1 Overview 

This work demonstrates the high performance graphene oxide (GO) / PEDOT:PSS 

doubled decked hole transport layer (HTL) in the PCDTBT:PC71BM based bulk 

heterojunction organic photovoltaic device. The devices were tested on merits of their 

power conversion efficiency (PCE), reproducibility, stability and further compared with 

the devices with individual GO or PEDOT:PSS HTLs. Solar cells employing 

GO/PEDOT:PSS HTL yielded a PCE of 4.28% as compared to either of  individual GO 

or PEDOT:PSS HTLs where they demonstrated PCEs of 2.77 and 3.57%, respectively. 

In case of single GO HTL, an inhomogeneous coating of ITO caused the poor 

performance whereas PEDOT:PSS is known to be hygroscopic and acidic which upon 

direct contact with ITO reduced the device performance. The improvement in the 

photovoltaic performance is mainly ascribed to the increased charge carriers mobility, 

short circuit current, open circuit voltage, fill factor, and decreased series resistance. 

The well matched work function of GO and PEDOT:PSS is likely to facilitate the 

charge transportation and an overall reduction in the series resistance. Moreover, GO 

could effectively block the electrons due to its large band-gap of ~ 3.6 eV, leading to an 

increased shunt resistance.  In addition, the improvement in the reproducibility and 

stability has also been observed.  

                                                 

 

5 The work presented in Chapter 6 has been published in  Nature: “Scientific Reports (Rank: Q1, Impact Factor: 5.23)” 

as 

Rafique et al. (2017). Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene 

oxide/PEDOT:PSS double decked hole transport layer. Scientific Reports, 7(39555), 1-10.  
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6.2 Introduction 

Organic photovoltaic devices (OPVs) employing donor-acceptor BHJ structure 

are considered promising next generation solar cells due to their advantages over  

traditional counterparts, including lower costs, increased flexibility, lighter weight plus 

solution processed R2R production compatibility (Kanwat & Jang, 2014; Pan et al., 

2016; Rafique et al., 2016). Although this class of solar cells has seen significant 

progress, further development in both efficiency as well as  stability are still needed for 

their widespread commercial applications (Savagatrup et al., 2015). During recent years, 

considerable research has been focused on interfacial engineering of OPVs, in 

particular, on the introduction of an interfacial layer between ITO anode and a photo-

active layer that could facilitate the transport of holes, blocking of electrons and reduce 

the charge recombination and leakage (Duan et al., 2013; Lattante, 2014). This layer is 

often termed as HTL. 

PEDOT:PSS is regarded as state of the art HTL which is being used as a 

standard material for BHJ OPVs because of its  high work function, easy solution 

process-ability, high conductivity and high optical transmittance (Lee et al., 2014; 

Vitoratos et al., 2009). However, owing to the highly acidic and hygroscopic nature of 

PEDOT:PSS, it favors the device degradation in number of ways (Jagadamma et al., 

2014; Norrman et al., 2010). The chemical interaction between PEDOT:PSS and ITO 

causes the corrosion of ITO which gives rise to  severe instability in device performance 

(Ecker et al., 2011). In addition, it absorbs the oxygen and water from the air which 

further penetrate to subsequent layers to eventually reduce the device performance 

(Kanwat & Jang, 2014). Therefore, research has been focused to either replace or 

improve PEDOT:PSS by introducing inorganic semiconductors such as V2O5 (Chen et 

al., 2011; Zilberberg et al., 2011), NiO (Wang et al., 2014), WO3 (Chen et al., 2012)  or 

MoO3, (Xie et al., 2013)  among others, to address the  reliability issues related to 
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PEDOT:PSS. However, deposition of these oxide materials normally involves intensive 

costs related to high vacuum techniques which are incompatible with the large scale roll 

to roll OSCs production. 

In this context, solution processed aqueous dispersion of GO has been recently 

used by several groups as an HTL material for ITO anode (Jeon et al., 2014; Liu et al., 

2012; Stratakis et al., 2014). GO is the derivative of one atom thick graphene comprises 

of hydroxyl (OH) and epoxy group on its basal plane and carboxyl groups (COOH) at 

the edge (Ding et al., 2015). GO, in aqueous dispersion, exhibits a unique 

heterogeneous electronic structure due to the presence of mixed sp2 and sp3 

hybridizations (Loh et al., 2010). However, it lacks good Ohmic contact due to its 

insulating properties (Yu et al., 2014). Moreover, it is difficult to obtain the full 

coverage coating of GO at a time. Therefore, recently combination of GO and 

PEDOT:PSS have been reported to effectively work as an HTL in OSCs. It is reported 

that use of a thin layer of GO underneath PEDOT:PSS can effectively prevent corrosion 

of ITO and its further diffusion into the photoactive layer (Dehsari et al., 2014). Lee et 

al. in their recent work on planar heterojunction perovskite solar cells, used 

GO/PEDOT:PSS HTL structure to obtain a stable device with power conversion 

efficiency (PCE) of 9.74 % (Lee et al., 2016). Similarly, Yu et al. demonstrated highly 

efficient polymer light emitting diodes (PLEDs) and OSCs with GO and PEDOT:PSS 

composite layer as an HTL (Yu et al., 2014). Park et al. used GO/PEDOT:PSS bi-layer 

HTL in P3HT:PCBM based BHJ OSCs and demonstrated a PCE of 3.53% (Park et al., 

2012). In this context, PCDTBT: PC71BM photoactive blend layer in BHJ OSCs   has 

been used during this study. PCDTBT, as donor polymer, is expected to yield high 

efficiency and photo-current generation due to its faster charge carrier generation 

capability and different recombination dynamics as compared to P3HT (Banerji et al., 
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2010; Etzold et al., 2011; Wang et al., 2012). In addition, PCDTBT WF matches well 

with that of GO and PEDOT:PSS as compared to P3HT. 

In the present study, findings suggest the enhanced efficiency of 

PCDTBT:PC71BM based OPVs, using a solution processed GO/PEDOT:PSS double 

decked layer as an HTL. It is suggested that combination of GO/PEDOT:PSS as an 

HTL may complement the shortcomings of either of individual materials. GO in 

combination with PEDOT:PSS as an HTL exhibited a high efficiency and stability as 

compared to either of single PEDOT:PSS or GO HTLs. This study investigated the 

electrical, optical, chemical and morphological properties and their effects on the 

performance of the OPVs.   

6.3 Materials and Methods 

6.3.1 Materials 

PEDOT:PSS aqueous suspension (PH1000) was purchased from  H.C. Starck 

and used as received. Both PCDTBT and PC71BM have been purchased from Lumtec, 

Taiwan. Pre-patterned ITO-coated glass substrates with a sheet resistance of 15 Ω per 

square were purchased from Ossila, UK. Graphite flakes has been purchased from 

Asbury Inc. (USA). Potassium permanganate (KMnO4, >99%), sulphuric acid (H2SO4, 

98%), phosphoric acid (H3PO4, 98%), and hydrochloric acid (HCl, 35%) for GO 

synthesis, were obtained from R & M Chemicals. All other necessary chemicals such as 

chloroform etc. were purchased commercially and used as received without further 

purification.   

6.3.2 Synthesis of GO  

In the present study, GO was synthesized following a simplified hummers 

method (Ming, 2010). Namely, graphite flakes, H3PO4, H2SO4, and KMnO4 were mixed 

in an appropriate amount at room temperature by using a magnetic stirrer. The mixture 
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was kept on stirring for about 72 h so that complete oxidation of the graphite could be 

achieved. After oxidation of graphite, H2O2 solution along with ice was used to stop the 

oxidation. The synthesized GO was subjected to washing for three times with 1 M of 

HCl aqueous suspension and several times with DI water to achieve a neutral pH. 

During washing process with DI water, the exfoliation of GO was experienced, which 

resulted in formation of thick brown GO solution and finally followed by the emergence 

of the GO gel. The concentration of obtained GO gel was determined for further studies. 

6.3.3 Device Fabrication Procedure 

   Pre-patterned ITO coated glass substrates were cleaned with consecutive 

ultrasonic agitation in acetone, isopropyl alcohol (IPA) and DI water for 20 minutes 

each. The substrates after drying with nitrogen stream were subjected to oxygen plasma 

treatment to form a hydrophilic surface state. The GO aqueous solution was prepared at 

the concentration of 1 mg/ml in DI water, while, PEDOT:PSS solution was filtered by 

using 0.45 µm PTFE filters (Whatman, Germany). The doubled decked 

(GO/PEDOT:PSS) HTLs were deposited by sequential spin coating of GO and  

PEDOT:PSS at 6000rpm for 60 seconds onto the ITO coated substrates and post-

annealed at 150 °C for 5 min in ambient room conditions. For the performance 

comparison, individual GO and PEDOT:PSS HTLs were also deposited and annealed at 

the same conditions. To perform further fabrication steps, all the materials and 

substrates were transferred to nitrogen (N2) filled glove box. To fabricate the photo- 

active layer, both PCDTBT (donor) and PC71BM (acceptor) were dissolved in 

chloroform at the concentration of 10mg/ml by vigorous stirring overnight and further 

mixed at the ratio of 1: 4, respectively. The prepared blend was first filtered by 0.25 µm 

PTFE filters and then spun coated at an optimized speed of 2000 rpm for 60 s onto 

PEDOT:PSS, GO and GO/PEDOT:PSS HTLs. Next, Al electrodes were thermally 

evaporated onto the active layer through shadow masks under vacuum with the pressure 

Univ
ers

ity
 of

 M
ala

ya



 

113 

of 10-6 Torr. Thereafter, the fabricated devices were encapsulated with glass covering 

the active area by using UV-curable epoxy for the characterizations in the air. 

6.3.4 Instrumentations  

The surface morphologies of the all three types of HTLs were analyzed by 

atomic force microscopy (AFM) using tapping mode of Agilent Technologies 5500 

Scanning Probe Microscope. Cross-section images were taken by field emission 

scanning electrons microscopy (Hitachi, SU8220 Scanning Electron Microscope). 

Raman spectra of all types of HTLs were measured by a DXR Raman Microscope 

(Thermo Scientific, USA), by using green light excitation (532 nm) laser source with 6 

mW power. Optical properties were measured by a Perkin Elmer UV-visible diffuse 

reflectance spectrophotometer (Lambda 650) in the range of 250–800 nm. XPS analysis 

of prepared GO was carried out by PHI 5000 Versa Probe Scanning ESCA Microprobe 

(PHI 5000 Versa Probe II, USA), equipped with monochromatic Al-Kα (hν = 1486.6 

eV) X-ray source. The curve fittings for core level spectrum was performed by using 

Multipack software (VERSION 9, ULVAC-PHI, Inc. Japan) which allows the 

deconvolution of each spectrum into the individual fitting of mixed Gaussian-

Lorentzian components.  

Current density-voltage (J-V) characteristics of OPVs were measured using a 

Keithley 236 (Keithley Co.) source measurement unit. Photovoltaic performance was 

measured by using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an 

irradiation intensity of 100 mW/cm2. The light intensity was calibrated using a Newport 

power meter 1918-R with calibrated Si-detector 818-UV.  

6.4 Results and Discussion 

 In the present study, the BHJ OPVs were fabricated with single GO, 

PEDOT:PSS and double decked GO/PEDOT:PSS as HTLs. GO possesses several 
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unique advantages, including its tunable energy levels, facile solution processed, low 

cost synthesis, its two-dimensional structure and easy  functionalization(Liu et al., 

2014). However, it is essential to fully cover the ITO surface with a uniform and very 

thin layer to achieve an optimum performance with a GO HTL. Moreover, post 

deposition annealing is also recommended to remove the oxygen function groups and 

consequently the electrical properties of GO could be improved (Jeon et al., 2014). It is 

difficult to deposit highly uniform thin layer of GO with full coverage of ITO surface. 

As a result, poor holes extraction to ITO anode can be expected because of the direct 

contact of BHJ photo-active layer with the ITO at the uncovered regions. In addition, 

non-uniform surface coverage by GO may also lead to inhomogeneous electrical 

properties yielding a poor reliability of the device performance (Lee et al., 2016). 

Similarly, standard PEDOT:PSS HTL also exhibits severe stability issues. To address 

these point, low temperature (150 °C) solution processed approach to fabricate BHJ 

OPVs with sequential spin coating of GO and PEDOT:PSS was used and compared 

with that of individual GO or PEDOT:PSS HTLs on merit of their efficiency, 

reproducibility and  stability. The schematic of the current work is presented in Figure 

6.1.     
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Figure 6.1: (a) Schematic illustration of the BHJ OPVs with GO, PEDOT:PSS and 

GO/PEDOT:PSS HTLs and (b) The energy band diagram showing the 

energy levels of all the materials used in OPVs of current study. 

 

6.4.1 Spectroscopic Characterizations 

The optical and structural properties of each HTL deposited on ITO coated glass 

substrates have been investigated prior to device fabrication. Transmittance spectra of 

all three types of HTLs along with bare ITO are shown in Figure 6.2(a). These layers 

show high transmittance in the overall wavelength range of more than 87%.  The optical 

transparency of HTLs is very important in order to absorb maximum light by photo-

active layer. It can be observed that the transmittance spectra of the ITO/PEDOT:PSS 

and ITO/GO/PEDOT:PSS is almost 15% higher compared with the transmittance of 

pristine ITO and ITO/GO in the region of ~ 400-500 nm. However, no pronounced 

change in transmittance spectra for any of the HTLs is observed in the overall 

wavelength region except the aforementioned wavelength range. The observed 

difference of transmittance in the ~ 400-500 nm region could potentially bring a 

significant effect on the photo-generated current (Jsc) of the device and hence the better 
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efficiency is expected in case of ITO/PEDOT:PSS and ITO/GO/PEDOT:PSS, in good 

agreement with the photovoltaic studies of the corresponding devices.  

Raman spectroscopy is the most commonly used non-destructive technique to 

analyze the quality and structure of the carbon based materials, in particular, it is being 

used to investigate the defects and ordered and disordered structures of graphene (Some 

et al., 2013).  Raman spectrum was collected for GO/PEDOT:PSS double decked 

structure as shown in Figure 6.2(b). For comparison, the spectra of single GO and 

PEDOT:PSS HTLs were also collected. Raman spectrum for single GO HTL shows 

both D and G bands appearing at 1350 and 1600 cm-1, respectively. It is well known that 

D band appearing  in the range of 1200 to 1500 cm-1  corresponds to structural defects 

and partially disordered structures of the sp2 domains, whereas, G band appearing from 

1500 to 1600 cm-1 is associated with E2g - vibration mode of sp2 carbon (Some et al., 

2013; Zhang et al., 2014). The wide band towards high frequency end of the spectrum 

features three peaks at around 2720, 2930 and 3190 cm-1. The peak at 2790 cm-1 is 

corresponding to an overtone of D band and attributed as 2D band, whereas, the peak at 

2930 cm-1 arise from contribution of both D and G bands and often termed as D+G band 

(Bajpai et al., 2012; Delgado et al., 2008). The shoulder peak at ~ 3190 cm-1 also 

ascribes to an overtone of D band (2D).  The Raman spectrum for GO/PEDOT:PSS 

films also illustrated D and G bands but with significantly decreased intensity of the 

peaks as shown in Figure 6.2b. In addition, the spectrum is featured with some bands 

from PEDOT:PSS polymer in low frequency range between 500 to 1100 cm-1 which 

confirms the method efficacy of double decked layer fabrication. The GO/PEDOT:PSS 

HTL also features the 2D, D+G and 2D bands at 2700, 2930 and 3170 cm-1 but with 

significantly low intensity as compared to pure GO films. The Raman spectrum for 

PEDOT:PSS HTL shown in Figure 6.2(c) exhibits Raman finger prints for PEDOT and 

PSS. Most of the peaks are attributed to PEDOT and negligible contribution of PSS is 
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observed in the spectrum,  in good agreement with previously reported data (Rafique et 

al., 2016; Sakamoto et al., 2005). A strong vibrational band  observed at 1440 cm-1 is 

attributed to PEDOT and related to symmetric Cα = Cβ (- O) stretching mode. In 

addition, the following bands are related to PEDOT vibrational modes such as: 1562 

cm-1 is ascribed to Cα = Cβ  asymmetrical stretching, 1364 cm-1 to Cβ - Cβ stretching 

deformations and 1255 cm-1 to Cα - Cα inter-ring stretching vibrations (Chang et al., 

2014; Farah et al., 2012). The peaks at 986 and 573 cm-1 correspond to the oxyethylene 

ring deformation (Teng et al., 2013).  

 

Figure 6.2: (a) Transmittance of GO, PEDOT:PSS and GO/PEDOT:PSS films 

deposited on ITO coated substrate and that of bare ITO substrate.            

(b) Raman spectra for GO, GO/PEDOT:PSS and (c) PEDOT:PSS HTLs.  

(d) Deconvoluted XPS C 1s spectrum of GO. 
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 The core level  XPS C 1s spectrum of the GO presented in Figure 6.2(d) is 

decomposed into two components, the sharp and high intensity peak at 284.7 eV is 

ascribed to  sp2 carbon aromatic rings (C-C/C=C) and relatively low intensity peak  at 

286.1 eV  corresponds to C-O bond (Some et al., 2013; Wang et al., 2014). These peaks 

confirm the presence of carbon atoms in different functional groups , i.e. the non- 

oxygenated rings and oxygen related functional groups (Kim et al., 2015; Some et al., 

2012).  

6.4.2 Morphological Study of HTLs 

Film morphology of an HTL significantly influences the electrical properties of 

the device, in particular, the Rs and shunt resistance (Rsh). In general, a smooth and 

fully-covered HTL morphology may induce a higher Rsh and low Rs which is highly 

desirable to enhance the performance of OSCs (Jeon et al., 2014). It is therefore vital to 

control the morphology of the HTLs. In the present study, the AFM topography images 

of the all three HTLs on ITO were taken as shown in Figure 6.3. RMS roughness values 

of GO, PEDOT:PSS and GO/PEDOT:PSS films in an area of 5 µm × 5µm were 

calculated to be 2.88, 1.56 and 1.99 nm, respectively. As compared to the recently 

reported results (3.2 nm) for spin coated GO films (Lee et al., 2016), the RMS 

roughness of our samples is comparatively improved but it is still significantly higher 

than PEDOT:PSS HTL. The single GO HTL is inhomogeneous with overlapping GO 

flakes across the surface as visible in AFM image (Figure 6.3(a)) and could not cover 

the ITO surface with high uniformity. Consequently, the non-uniform and overlapping 

GO flakes could suppress the transportation of holes while the uncovered areas may 

lead to direct contact of ITO and photo-active layer and hence the performance of OSCs 

with GO as HTLs could  significantly reduce (Ding et al., 2015). By applying 

PEDOT:PSS on GO (GO/PEDOT:PSS HTL), RMS roughness reduced to 1.99 nm 

Univ
ers

ity
 of

 M
ala

ya



 

119 

(Figure 6.3e), comparable with single PEDOT:PSS (Figure 6.3c), which indicate that 

deposition of PEDOT:PSS on GO results in smoothening of the irregular GO surface.   

 

 

 

 

Figure 6.3: The AFM surface topography images and SEM cross-sectional images 

with complete device, of (a, b) GO (c, d) PEDOT:PSS and                     

(e, f) GO/PEDOT:PSS HTLs. 
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Figure 6.3 shows cross-sectional SEM images of the solar cells fabricated with 

each of the GO, PEDOT:PSS (Figure 6.3d) and GO/PEDOT:PSS (Figure 6.3f)  HTLs. 

The thickness of PCDTBT:PC71BM were observed to be uniform (approx. 75 nm) 

regardless of the HTLs. The single GO film was very thin (around 1-3 nm) to 

distinguish as shown in Figure 6.3(c). The thickness of both PEDOT:PSS and 

GO/PEDOT:PSS HTLs was approximately the same and calculated to be around 30 nm.  

6.4.3 Photovoltaic Characteristics 

In order to analyze the photovoltaic characteristics, it is important to explain the 

role of HTL during the OPVs operation. In normal architecture BHJ OSCs, the photo-

active layer is irradiated with solar light via ITO/HTL bottom electrode side, while the 

active layer absorbs the solar light (photons) and generates electrons- holes pairs, the so-

called excitons. Further, these excitons dissociate into the electrons in the lowest 

unoccupied molecular orbital (LUMO) and holes in the highest occupied molecular 

orbital (HOMO), at the donor-acceptor interface. Therefore, the HOMO level of the 

donor polymer should match well with the work-function of HTL to facilitate the 

transportation of  holes through HTLs to the anode (Stratakis et al., 2014). In this 

context, PCDTBT with the HOMO of 5.3 eV was utilized along with the 

GO/PEDOT:PSS HTL. The device with PCDTBT as donor polymer provides better 

holes extraction since energy levels from PCDTBT/ PEDOT:PSS/ GO/ ITO provide 

good ascending steps for the holes to hop. The energy level diagram for each element 

used in this study and the device structure is presented in Figure 6.1. Reference devices 

with only GO and PEDOT:PSS as an HTL were also fabricated for comparison. In 

addition, the performance of GO is somehow thickness dependent and one can achieve 

an optimum performance with the GO layer of 1-3 nm (Li et al., 2010). Therefore, the 

thickness and concentration of GO were optimized, and with the spinning conditions 
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described in the experimental section, a layer of approximately 1-3 nm was obtained as 

shown in Figure 6.4(a).   

Figure 6.4(b) shows the typical current density-voltage (J-V) characteristics 

under illumination of the PCDTBT:PC71BM OSC devices with GO, PEDOT:PSS and 

GO/PEDOT:PSS as the HTLs, and the corresponding extracted device parameters are 

summarized in Table 6.1. As shown in J-V curves, the devices using the 

GO/PEDOT:PSS  double decked HTL showed superior performance as compared to the 

individual GO or PEDOT:PSS HTLs with a Voc of 0.82 V, a Jsc of 10.44 mA/cm2 , FF of 

0.50 and a PCE (η) of 4.28 %. In comparison, the devices with only PEDOT:PSS as an 

HTL exhibited a relatively low performance with Voc of 0.80 V, a Jsc of 9.49 mA/cm2, a 

FF of 0.47 and an η of 3.57 %. Whereas, the device with single GO exhibited poor 

performance with a Voc of 0.80 V, a Jsc of 7.90 mA/cm2, a FF of 0.44 and a PCE of   

2.77 %. Relatively poor performance of the devices with individual GO HTL is mainly 

attributed to inhomogeneous GO layer with high surface roughness that lead to 

suppression and an inefficient transportation of holes. As a result, the device efficiency 

is significantly reduced. For the devices based on GO/PEDOT:PSS HTL, the 

improvement is attributable to high Jsc, FF and Voc values as compared to either of GO 

or PEDOT:PSS HTLs. Additionally, the GO/PEDOT:PSS  HTL also exhibited reduced 

Rs than GO or PEDOT:PSS single HTLs, as shown in Figure 6.4(c). Relatively low Rs 

value in case of GO/PEDOT:PSS HTL suggest the better charge transportation ability 

of the double decked structure as compared to single GO and PEDOT:PSS based 

devices. As discussed above and presented in the energy diagram in Figure 6.1, the WF 

of GO (4.9 eV) matches well with PEDOT:PSS (5.1 eV) which likely results in an 

efficient charge extraction and transportation to ITO. Moreover, GO could effectively 

block the electrons owing to its large band-gap of ~ 3.6 eV (Lee et al., 2016). 
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Table 6.1:  Device photovoltaic performance characteristics of PCDTBT:PC71BM 

OPVs incorporating GO, PEDOT:PSS and GO/PEDOT:PSS as the HTLs. 

Anode interlayer  Jsc (mA/cm2) Voc (V) FF Mobility, μ 

(cm2/Vs) 

η (%) 

GO 7.90 0.80 0.44 4.04 x 10-4 2.77 

PEDOT:PSS 9.49 0.80 0.47 3.78 x 10-4 3.57 

GO/PEDOT:PSS 10.44 0.82 0.50 7.47 x 10-4 4.28 

 

 

Figure 6.4: (a) Thickness vs concentration plots for GO. (b) J-V characteristics of 

OPVs with GO, PEDOT:PSS and GO/PEDOT:PSS as an HTL. (c) Rsh and 

Rs calculated from J-V curves under illumination conditions.  (d) Stability 

test of OPVs over 250 h. 

 

 Since operational stability of the OPVs is one of the most important factors for 

their widespread commercialization, therefore, the operational stability of all type of 

HTLs was explored. Figure 6.4(d) shows the decay in PCE as a function of exposure 
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time in ambient atmosphere. The devices with single GO HTLs or with 

GO/PEDOT:PSS HTLs showed better stability as compared to single PEDOT:PSS 

HTLs in which the efficiency decreased to more than 50% of initial value. The 

instability in the PEDOT:PSS HTL is attributed to corrosion of indium due to acidic 

nature of PEDOT:PSS with high pH value (Wong et al., 2002). With the passage of 

time indium diffuses into the HTL and further to active layer which causes severe 

damage to the device performance. The improved stability in case of single 

GO/PEDOT:PSS HTL is expected because a thin layer of GO underneath PEDOT:PSS 

serves as a barrier against the direct contact of PEDOT:PSS with ITO surface.  

The effective carrier mobility or the so-called ambipolar mobility for all three 

devices was then determined by space-charge-limited-current (SLCL) method under 

positive voltage up to 10 V in dark. Figure 6.5 shows log J vs. log V, several conduction 

regimes have been identified from the plots based on their gradient values, such as: 

I ~ V1 with slope 1 is an Ohmic regime, I ~ V2 with slope 2 is an SCLC regime, while 

I > V2 with slope > 2 is a trap regime. The ambipolar mobility has been calculated from 

the SCLC regime by the following equation: 

𝐽 =  
9

8
𝜀𝜀𝑜𝜇 

𝑉2

𝐿3
 …………………………………………. (6.1) 

Where J is the current density within the conduction regime, ε is the relative 

dielectric constant, εo is the vacuum permittivity, L is the active layer thickness, V the 

voltage within the conduction regime and μ represents the mobility (Yang et al., 2012). 

Figure 6.5 and Table 6.1 show the change of ambipolar mobility for the devices with 

GO, PEDOT:PSS and GO/PEDOT:PSS HTLs. The ambipolar mobility increased from 

3.78 x 10-4 cm2 V-1 s-1 in case of PEDOT:PSS HTL to 4.04 x 10-4 cm2 V-1 s-1 for single 

GO HTL and finally to 7.47 x 10-4 cm2 V-1 s-1 for the device with GO/PEDOT:PSS 
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double decked HTL, which is almost double of the either of the individual GO or 

PEDOT:PSS HTLs, and in good agreement with the PCEs of corresponding devices. A 

quantitative comparison of ambipolar mobility of the OSCs with GO, PEDOT:PSS and 

GO/PEDOT:PSS HTLs confirmed that use of GO/PEDOT:PSS layer promoted the 

charge carriers transportation and extraction, particularly the hole mobility, resulting in 

optimized photovoltaic performance (Yu et al., 2014). Since the only difference in the 

device architecture is the utilization of different HTLs therefore the increase in the 

accumulative charge carrier mobility is predominately due to the increased hole 

mobility using a GO/PEDOT:PSS double decked layer that can lead to balanced charge 

carrier transportation with an electron-blocking ability and a reduction of the 

suppression between the HTL and the active layer (Yu et al., 2014). Thus, OSCs with 

high PCEs were realized using GO/PEDOT:PSS double decked layer.  

 

Figure 6.5: Double logarithmic characteristic (Log V vs. log J) exhibiting effective 

charge carrier mobility of PCDTBT:PC71BM  based OPVs with  GO, 

PEDOT:PSS and GO/PEDOT:PSS as the HTLs. 

 

In order to confirm the reproducibility and reliability of the GO/ PEDOT:PSS 

HTLs, the important photovoltaic parameters were recorded and presented in Figure 6.6. 
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The GO/ PEDOT:PSS HTL exhibited fairly good reproducibility with minor variations 

in Voc, Jsc and PCE. On the contrary, the device with GO HTL showed comparatively 

wide variations in Voc. However, a relatively wider variation is observed in FF of all 

HTLs which could be attributed to the absence of ETL in our device structure.  

 

Figure 6.6:  Photovoltaic performance parameters including (a) Jsc , (b) Voc , (c) FF and 

(d) PCEs (%) of PCDTBT:PC71BM  based OPVs with  GO, PEDOT:PSS 

and GO/PEDOT:PSS as the HTLs. 

 

 The selection of double decked GO/PEDOT:PSS HTL played a vital role in the 

improved device efficiency and stability. It has been reported that use of either of 

individual GO or PEDOT:PSS as HTLs in OPVs  may cause severe instability issues at 

the anode interface (Jørgensen et al., 2012; Lee et al., 2016).The hygroscopic and acidic 

PEDOT:PSS aqueous suspension  could react with both the ITO as well as the 

photoactive layer. Similarly, single and ultrathin GO layer could cause a non-uniform 
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coating on ITO which would provide a direct contact of ITO and photoactive layer at 

the non-covered regions and drastically reduces the device performance. Interestingly, 

the combination of GO and PEDOT:PSS in a double decked structure is a compatible 

solution to compliment the drawbacks of both individual materials. To the best of my 

knowledge, there is no report on photovoltaic performance, reproducibility and stability 

of PCDTBT:PC71BM based devices with GO/ PEDOT:PSS double decked layer.  

6.5 Conclusions 

In summary, the performance, reproducibility and stability of GO/PEDOT:PSS 

double decked hole transport layers in PCDTBT:PC71BM based OPVs are reported. The 

GO/PEDOT:PSS is a promising candidate  to replace conventional PEDOT:PSS or 

single GO HTLs by complimenting the drawbacks of both individual materials. The 

GO/PEDOT:PSS HTL retained its efficiency as well as reproducibility yielding a highly 

stable device. It demonstrated a Jsc = 10.44 mA/cm2, Voc = 0.82 V, FF =0.50, and PCE = 

4.28 %.  A well matched work function of GO/PEDOT:PSS = 4.9 eV/5.1 eV with that 

of  PCDTBT (5.3 eV) donor material facilitates the hole transportation to ITO. The 

improved performance is also attributed to decreased Rs which are highly desired for 

carrier transportation and collection as evident from charge carrier’s mobility results. 

Moreover, the high Rsh of GO also helps to suppress carrier recombination. Both 

parameters were calculated from J-V curves. GO is probably inducing effective 

blocking of electron due to its large band gap of ~ 3.6 eV. In addition to the reasonably 

improved efficiency, reproducibility and stability, the preparation of HTLs as well as 

photoactive layer are based on a facile, flexible and R2R compatible solution process, 

which remarkably simplifies the overall fabrication process and lowers the fabrication 

cost. 
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 CONCLUSIONS AND FUTURE CHALLANGES. 

7.1 Conclusions  

Organic photovoltaic materials open up the new pathways to develop solar cells 

modules based on a facile, solution processable and R2R compatible fabrication 

techniques. However, like any burgeoning OSC related technology there are several 

instability issues that need to be addressed to move beyond the laboratory. The biggest 

obstacles in their widespread commercialization are their low efficiencies and shorter 

life time as compared to that of already developed technologies. In this context, this 

PhD thesis successfully describes the degradation factors effecting device stability, and 

performance achievements of OSCs by overcoming the stability issues associated with 

the HTL. One crucial step was the identification of the degradation factors pertaining to 

device instability in ambient air, in particular related to the HTL. Further to address 

those factors by introducing organic-inorganic hybrid HTLs consisting of conventional 

PEDOT:PSS material along with V2O5 and/or GO. Moreover, a range of 

characterization techniques were presented, which have been used in the current work. 

It was shown that many characteristics such as device architecture, material 

combinations, ITO diffusion, oxygen ingress, concentration ratios and layer thicknesses 

can significantly affect the device performance. During this work, the overarching 

theme was to study metal oxides (V2O5) and/or GO in HTL of BHJ OSCs with the aim 

to ensure utilization of a facile, flexible, low cost and R2R compatible solution process, 

which remarkably simplifies the overall fabrication process. This dissertation can be 

subdivided into three major sections. A summary of each of the section is presented 

here followed by a brief outlook of the future challenges and strategies to follow-up the 

present work.  
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In the first step, stability and degradation issues pertaining to each layer of the 

normal architecture BHJ OSCs as a function of exposure time to ambient air were 

discussed. The BHJ OSCs were fabricated and their photovoltaic performance was 

evaluated. It was shown, that indium and oxygen diffusion are one of the main causes of  

device degradation which cause deterioration of chemical, optical, morphological and 

photovoltaic characteristics of the device. This study was  mainly focused on identifying 

and addressing the stability constraints brought by PEDOT:PSS due to its acidic nature 

and instability issues due to device exposure in ambient atmosphere.  

In the second set of experiments, the stability issues associated with the 

PEDOT:PSS were addressed, by incorporating V2O5 nanoparticles in the PEDOT:PSS 

HTL to develop an organic-inorganic hybrid HTL. The resultant device has significant 

improvement in stability while maintaining the efficiencies comparable to that of 

pristine PEDOT:PSS HTL.  

In the third section, GO was utilized as an HTL in the PCDTBT:PC71BM based 

BHJ OSCs. At first, the GO concentration was optimized for the best photovoltaic 

performance. Further, the optimized concentration was utilized as an under-layer in GO/ 

PEDOT:PSS double decked HTL. The resultant devices were tested on the merits of 

their stability, efficiency and reproducibility and compared with those containing either 

of GO or PEDOT:PSS HTLs. The device with double decked HTL has successfully 

overcome the drawbacks of any of the individual GO or PEDOT:PSS HTL. 

In conclusion, we optimized the fabrication parameters by adopting a facile and 

solution processable fabrication process by simply spin coating of HTL as well as 

photoactive layer. Degradation factors, particularly in context of HTL, were identified 

and successfully addressed by employing V2O5 and GO based HTLs. Moreover, the 
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operational stability of the OSCs have been remarkably improved by employing hybrid 

HTLs as compared to pristine PEDOT:PSS HTLs.    

7.2 Future Challenges 

There are a number of challenges that still need to be addressed to accomplish 

the current work, which were not possible to do within the frames of this study. In 

particular:  

a) Further studies of metal oxides and/or GO have to be carried out to develop 

optimized processing conditions of the layers for the manufacturing of 

efficient OSCs. These optimized fabrication conditions for the metal oxides 

and/or GO can be implemented to manufacture tandem solar cells.  

b) Degradation studies should be extended to develop optimized atmospheric 

chambers for an in-depth analysis of degradation factors such as humidity, 

oxygen, and electrode corrosion and diffusion etc.    

c) Several important points should be addressed pertaining to device 

fabrication, stability and degradation study such as, improved buffered 

layers, proper encapsulation, high efficiency and stability, increased 

geometrical FF and fabrication of large scale R2R solar cell modules.  
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