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ABSTRACT 

Exercises provide many important health benefit to individuals. People should 

therefore be encouraged to change their life tyle b including some kinds of physical 

activities into their daily routines. A staircase provides free and easy access as a tool for 

exercising. A wide variety of exerci es have been proposed to be done on a staircase. 

Among them are walking up and down stairs with the hands behind the head, walking 

holding dumbbells walking in cross-step manner, and lateral stepping. The joint­ 

specific difference in the kinematics and kinetics patterns between such exercises 

and regular stair climbing may be used to target specific muscle groups of the lower 

extremity. On the other hand, the increase in weight associated with obesity is suppo ed 

to directly increa e the knee load that ub equently lead to the devel prnent of kne 

o teoarthriti . 

The kinematic and kinetic recording of obe e and Jim adult walking and e ' 

on a four- tep taircase were collected from 6-camera three-dimen ional m tion 

analy i system (Vicon MX, xford Matrice td, UK) and a force platfi rm (Ki tler, 

model 9281 A) po itioned on the c nd tair t p in lving a end and de nd 

pha es of regular tair walking, hand behind head, h lding dumb ell , ro .tep 

forward, lateral tepping leading (the leg in inter t i the le ding limb) and lateral 

tepping trailing (the I g in inter t i th trailing limb). ing and anal · i 

were d ne u ing Vi n e us. Vic n P I n, and fatlab. P were u d for all 

tali ·tical analy is. 

Bused nth· differ ·nt I ad th 11 sclc t -d e: crci s c crt n the I wcr tr mit mus I 

grc ups in the u zittal and tr mini plane and )fl th ' 

·. er .iscs it is found that the .r iss xtcp fl n urd UH.J the I Haul t ppin 1 lcudin • limb 



activities place greater demands on the hip extensors, and that the holding dumbbells 

activity places greater demands on the knee extensor and on the ankle dorsiflexors. In 

the frontal plane, the cross step forward and the lateral stepping (leading limb during 

descent and trailing limb during a cent) activities place greater demands on the hip 

abductors, and that the cross step forward and the lateral stepping (trailing limb during 

descent) activities place greater demands the knee abductors. These findings can be 

used to more effectively target specific lower-extremity muscle groups when 

recommending exercise for young individuals. 

Obese individuals might adjust their gait characteristics in response to their heavy 

bodies to reduce or maintain the same load on the knee joint as the slim people. 

Therefore, obe e people can safely perform the elected exercise a I ng a they do it at 

their elf- elected peed. 
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CHAPTER ONE: INTRODUCTION 

1.1 Introduction 

This chapter looks at the various staircase exercises in use today and defines the 

objectives, scope, and the importance of the current study. 

1.2 Objectives Of Study 

Exercises provide many important health benefits to individuals. People are, therefore, 

encouraged to change their lifestyle by including some kinds of exertive physical 

activities into their daily routines. 

Stair climbing is one of the daily routine that most people undergo almo t everywhere 

they go. There is a general belief that tair climbing is a u eful phy ical activity that 

should be promoted to the public a an exercise for good health maintenance. Toward 

this end, many sy terns that provide means to imulate the action of tair climbing ha e 

been propo ed. However, unlike these stair machines, a tairca e provides free and ea y 

acce s as a tool for exercising. This fact encourage trainer all over the world to 

propose some exercises that can be done on a taircase. 

A wide variety of taircase exerci e have been proposed. Among them are' alking up 

and down tair with the hand behind the head, walking h lding dumbbell • walking in 

cro tep manner, and lateral tepping. Hov ever. t ur knov ledg the bi me hanic 

of th e exerci e ha n t been tudicd yet. 

tudying th· biom • ihani cs <. f 'ill .h •. ·r i cs an pr v idc cry important nd u eful 

informati n. Alth u zh the: • exer .ise · ar multipl -joint c. .rciscs ,., hi h stimulate 

several muse I ·s group simultanc uxl ·. the j iint-spc cific differences in the kinemati 



and kinetic patterns between such exercises and regular stair climbing may be used to 

target specific muscle groups of the lower extremity. 

Obesity is considered as one of the important risk factors for development of knee 

osteoarthritis (Sturmer et al., 2000; Felson 1988). The increase in weight associated 

with obesity is supposed to directly increase the knee loads that subsequently lead to the 

development of knee osteoarthritis (Felson, 1988; Felson and Zhang, 1998; Hochberg et 

al., 1995; Komer and Eberle, 2001). 

The objectives of the current study are as follows: 

• To determine the differences in the kinematics and kinetics patterns between the 

standard stairca e exerci es and regular tair climbing during a cending and 

descending a taircase. 

• To identify how people who are obe e perform when doing tho e exerci e and 

to compare their performance to that of those who are lim. 

The parameters con idered are a follow : 

• The temporal parameter (Cadence, ti t off, tride time, and p ed . 

• Angle. 

• Moments. 

• Power. 

• lmpul e . 

• T tal \i rk. 

1 h · s p • of th current tud : lhe iurr nt r search invcsti ~.I ·s th kin emati nd 

that .an b d ne n , stair a. b. lim 

... 



and obese people at their self selected speed. The included exercises are: walking up 

and down stairs with the hands behind the head, walking holding dumbbells, walking in 

cross-step manner, and lateral stepping. 

The importance of the current study: This work provides pioneering research conducted 

on the biomechanics of staircase exercises, besides including the study of obese people 

doing stair climbing. The findings of the current study may be used to more effectively 

target specific lower-extremity muscle groups when recommending exercise for young 

individuals so that they can benefit from the stair at the office, in the home or at the 

shopping mall to build and maintain healthy bones, muscles, and joints. 



CHAPTER TWO: LITERATURE REVIEW 

2.1 Introduction 

The literature relevant to the current study is covered under three sections. The first 

section gives a review of the literature concerning the biomechanics of regular stair 

climbing. The second section looks at research done on stair climbing motion patterns. 

The last section presents some of the proposed staircase exercises and shows the 

importance of exercising and of the studying of the biomechanics of staircase exercises, 

especially the biomechanics of staircase exercises for obese people. 

2.2 Regular Stair Climbing For Normal Subjects 

The majority of stair biomechanics re earches have concentrated on the patient 

population in order to compare between lower limb pro thetic design ( chmalz et al., 

2004; chmalz et al., 2006; Venicek et al., 2007; Catani et al., 2003) t tal knee 

replacement designs (Andriacchi et al., 1982), and to determine the functional ability of 

different lower extremity di orders to perform thi important daily living task (Hughe 

et al., 2000; Lin et al., 2006; Cro sley et al., 2004· Thambyah et al., 2002; al ich et al., 

2005; Brechter and Powers, 2002). However, ome of the re arche ha e been 

conducted on the normal population. The aim of tho e tudie were to c mpare tair 

climbing and level walking, tair a cent and de ent, and t find out the effe t tair 

inclination and ubject ' height had on the I " er e: trernity joint biomechanic . h 

foll wing i a literature re i v f th regular tair climbing f r n rmal p pulati n. 

2.2.1 tair climbing v r u level walking 

In g en erul, stair limbing is m re d rmanding f r the I ' r •. trernit joint \\ h n 

c mpared to I •vet walking. M re dcm ndin 1 means "in r ·a" in the ran 1 f m ti n, 



moments, forces, and powers". In the sagittal plane, the knee, hip, and ankle go through 

greater range of motion. At the knee, Protopapadaki et al. (2007) reported maximum 

values ranging from 80 to t 00 degrees for typical step configuration (slopes 30 to 35 

degrees), or approximately 12 to 20 degrees more knee flex.ion than seen in level 

walking (Andriacchi et al., 1980; Livingston et al., 1991 ). At the hip, like the knee, 

increases in the range of 15 to 20 degrees had also been reported in the hip flexion 

during stair ascending (Andriacchi et al., 1980; Livingston et al., 1991). Also, an 

increase of the range of motion during stair climbing had been reported at the ankle 

joint (Protopapadaki et al., 2007; Andriacchi et al., 1980; Livingston et al., 1991). 

The sagittal plane hip and knee moments have been shown to be greater than level 

walking (McFadyen and Winter, 1988; Nadeau et al., 2003; Andriacchi et al., 1980; 

Livingston et al., 1991 ). However, Anderacchi et al. ( 1980) and McFadyen and Winter 

(1988) had reported that the largest increase in sagittal plane moment in tair climbing 

occur at the knee joint. On the other hand the power generation and ab orption i 

similar between stair climbing and level walking at the hip and ankle joint , and i mu h 

greater at the knee (Riener et al., 2002). All of this sugge ts that the knee is largely 

responsible for managing increased demands a s ciated with tair climbing. 

In compari on to level walking, the fr ntal and trans er e plane knee m ment were 

similar ( o tigan et al., 2002; K walk et al., 1996). H we er, K walk t al. ( 199 

ob erved two eparate in lance during tair climbing v h re exten i n m ment wer 

clo et zer , but the abducti nm ments had alues bet' cen 25 t 4 .m. hu , while 

abdu t ion-adduct ion moments ma n t be larger th n wh t i · achicv d f r le' cl 

walking, they ar • obvi usl fun ti null r .le ant. pr idin > be th propul i )n and rnedi - 

lateral tability (K walk •t ul., 1996). 
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The net force at the knee is similar between level and stair v alking in all planes 

(Costigan et al., 2002). However, the tlexion angle where the moment and force peak is 

20 deg. for level walking and 60 degrees for stair climbing. This is important because 

the higher flexion angle reduces the contact area for the articulating surface of the knee, 

which means higher stress and possibly more wear and tear (Costigan et al., 2002). 

2.2.2 Stair ascent versus descent 

Many differences have been detected between stair ascent and descent. At the knee and 

hip, greater tlexion angles during stair ascent compared to descent have been reported 

(Protopapadaki et al., 2007; Andriacchi et al. 1980; Livingston at al., 1991 ). At the 

ankle as well, Andriacchi et al. (1980) and Protopapadaki et al. (2007) have reported 

greater dor itlexion and plantarflexion angle during stair descent compared to cent. 

In the sagittal plane joints moments, variability in hip moment during tair a cent and 

de cent is reported in the literature (Andriacchi et al., 1980; ostigan et al., 2002; 

Mcfadyen and Winter, l 988; Riener et al. 2002· al ich et al., 2005). Protopapadaki et 

al. (2007) explained this variability by the po ition of the trunk. Different po ition of 

the trunk may bring the line of ground reaction force anterior to or behind the hip, 

affecting the hip joint m ment. At the knee, the higher external knee m ments curred 

while a cending tair (Protopapadaki et al., 2007; Mcfad en and Winter, 1988· al ich 

et al., 2005). onver ely, Anderacchi et al. ( 1980) and ' alk et al. l 9 6 

dem n trated the highe t external kn e m men urring in n rmal u ~e t durin 

de cent. ln the fr ntal plane kn c joint moment, walk et al. (l 

differ nee b nwccn uair as cnt and d • · cnt. 
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Power generation and absorption at the joints of lower limb have been reported for stair 

climbing (Riener et al., 2002; Mcfadyen and Winter, 1988). During ascent, all the joints 

generate energy. Power is generated at the hip and knee joints during the stance phase, 

mainly at the knee, to facilitate the raising of the contralateral limb to the next step. As 

soon as the cotralateral limb has approached the next step, during the late stance of the 

ipsilateral limb, large power generation occurring at the ankle supports the transfer of 

the body weight to the leading limb and reduces the need for higher hip and knee joints 

moments. 

During descent, all the joints absorb energy. The energy associated with the initial 

contact of the stance phase is absorbed primarily at the ankle, with mall peak 

occurring at the hip and knee joints. However, the large t power ab orption happen at 

biomechanics during tair climbing. he e two fact r are the ubject' height and tair 

the knee during late tance, in order to control the lowering of the contralateral limb 

from one step to the next. This knee power in absolute value is higher than the knee 

generation power during tair a cent. 

2.2.3 Effect of stair inclination and subject's height 

Two factors have been shown to have con iderable effect on lower extremity j int 

inclination. Living ton et al. ( 1991) inve ti gated the effe t f ubje t height on th knee, 

hip, and ankle kinematic during a cent and de ent. ifteen oung v men ran ing in 

age fr m 19 to 26 year v ere di ided int h rt, m dium, and tall u ~e t r up . 

ubject height appeared t influen kne m ti n durina tair limbing. h rter : ubje t 

u c greater knc fl , i n angl than taller subjc cts durin as cnt und d · nt. 
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Dependencies of lower extremity joints kinematics and kinetics on stair inclination have 

been reported (Riener et al., 2002). Low but significant increase of joint angle and 

moments with increasing inclination was reported. However, power generation and 

absorption have the largest dependency on stair inclination. In general, absolute joint 

power increases with increasing staircase slope. 

2.3 Stair Climbing Motion Pattern 

In addition to studying the regular stair climbing, few researchers have studied some of 

the stair climbing motion patterns. The aim of these studies was to explain why the 

elderly and disabled people use alternative motion patterns during stair climbing, and to 

suggest some patterns that can be adopted by those people in order to make stair 

climbing more comfortable and a afer ta k. The following is a review of re earche 

concerning stair climbing motion patterns. 

Becau e of the pain, difficulty and the ri k of fall that the elderly, injured, or physically 

impaired people face during stair climbing (particularly during de cending), Beaulieu et 

al. (2007) had investigated backward stair de cent as alternative trategy for de cending 

stairs. Three de cending conditions were tudied: forward tair de cent at If- elected 

speed, backward stair de cent at elf- elected peed, and lower forv ard stair de cent at 

the ame peed a backward tair de cent. he finding of thi re arch ha 

reduction in the peak p wer pr duced by the knee exten r during th riti al ingl 

upp rt pha e of tair de cent a c mpar d t regular peed and I ' f n ard .tair 

de cent. Addi ti nail , backv ard .tair d s cnt has h wn increas •s in the distan e f the 

c enter of pr ssur frc m th tair d ze, making it J •s likcl f r slip t • ur that might 

cause a foll, and thi · altemativ • strateg in .rca · ·s th· f t clearance and heel 

during th' . win ' phas , thus further r .duc ine th· ch n f foll. II f thi 



that backward stair descent permits safer and more comfortable stair descent when 

compared to regular forward stair descent. 

In other research, Ried et al (2007) had studied the effects of step-by-step gait pattern on 

knee biomechanics. Step-by-step pattern is the placing of both feet on the same step 

before ascending or descending. This pattern of stair ambulation is usually forcefully 

adopted by the elderly and disabled population due to factors such as decreased muscle 

strength and joint diseases. Unlike the regular step-over-step gait in which each limb 

performs the same function at different times, the step-by-step pattern has a leading 

limb which is the limb that is responsible for the forward movement, and the other one 

which is called the trail limb as shown in Figure 2.1. The findings of this study have 

shown that, for the step-by-step gait pattern, the trail leg during a cent and the lead leg 

during de cent have smaller net forces, moments, and power in the agittal plane when 

compared to regular step-over- tep gait. The e can therefore, be referred to as the 

"resting limb" of the step-by-step gait pattern. onver ely, the lead leg during a cent 

and the trail leg during de cent have imilar sagittal plane force , moment , and power 

when compared to regular step-over- tep gait. The e can, therefore, be described as the 

"working limb" of the step-by-step gait pattern. The e findings explain v hy the elder! 

and disabled people u e the more painful leg a the re ting one. 

, ... • a•.,. a' " 

Fl ure 2.1: 
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2.4 Staircase Exercises 

Exercises provide many important health benefits to people. In general, individuals who 

are engaged in some form of physical activities either through lifestyle or occupation, 

are likely to live longer and healthier, It is strongly recommended that all people be 

engaged in 15-30 minuets of moderate intensity physical activities on most days of the 

week, if not all. A review of the most recent scientific research collected by ACTIVE 

THE US SURGEON GENERAL (1996) indicates that there is clear evidence of many 

health benefits of regular physical activity, including: 

• Reduces the risk of dying prematurely. 

• Reduces the risk of dying from heart disease or stroke, which is respon ible for 

one-third of all deaths. 

• Reduces the risk of developing heart disease. 

• Reduces the risk of colon cancer and type (2) diabete by a much a 50%. 

• Help to prevent/reduce hypertension, which affects one-fifth of the world's adult 

population. 

• Helps control weight and lowers the risk of becoming obe e. 

• Helps to prevent/reduce o teoporo i , thu reducing the ri k of hip fra ture in 

women. 

• Reduces the ri k of developing lower back pain and can help in the manag ment 

of painful condition like back pain r knee pain. 

• I lelp build and maintain health) ne , mu le • and j int and make p pl 

with chr nic, disablin c nditi ns impr their stain inn. 

• Pr m tc · p ch logical w ell-bcine a. well as rcdu e · . tr s, an. iet , nnd 

depres i n. 
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• Helps prevent or control risky behaviors, especially among children and young 

people, e.g. use of tobacco, alcohol or other substances, unhealthy diet, or 

violence. 

Based on these significant benefits of exercising or otherwise being physically active, 

people should be encouraged to change their lifestyle by including some sort of physical 

activities into their daily activity. Stair climbing is one of the daily tasks people 

encounter almost every where they go to. Researchers believe that stair climbing 

provides a useful model of the regular physical activity that should be promoted to the 

public (Eves et al., 2006). Many efforts have been made to encourage people to use the 

stairs (Eves et al., 2006; Boreham et al., 2000; llmarinen et al., 1979; Shenassa et al., 

2008; Kerr et al., 2004; Kerr et al., 200 l · Dolan et al., 2006; Edward, 1983). The e 

efforts got great influence in people. For example, in the U. ., an estimated 4 million 

people, from young profe sionals to active grandparents, have joined tair climbing, 

with increase of more than 40 percent since the end of 1988 (William , 1989). Many 

benefits have been reported for stair climbing, including: 

• Stair climbing can be built-up aero day time, making a ignificant contributi n 

to the daily phy ical activity that i recommended for each day (Kerr, 200 l ). 

Furthermore, tair climbing require le time to do the same inten ity f v rk ut 

otherwi e. For example, 15 minute of tair climbing i equi alent t 30 minute 

f running (I lcalth anada, 200 ). 

• Re car h h w a I wer ri k f m rtalit in th s pe pl wh Jim d m re th n 

55 flight· of stair each we k Puffenbarger ct al., 19 ). 

• Th· ri k f cardi c is I wered m ng th se who or rcgul r stair 

limbers (Bor ·ham ct I., 2005). t m- -ear pr spcctiv -tud cf rniddl -aged men 
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estimated that the energy expanded in vigorous activity that reduces coronary 

heart disease incidence by almost two thirds was equivalent to as little as 7 

minutes a day of stair climbing (Yu et al., 2003). 

• Stair climbing can improve the amount of 'good cholesterol" (High-Density 

Lipoprotein (HDL) cholesterol) in the blood (Boreham et al., 2000). 

• Stair climbing can reduce or control body weight. Edwards (1983) states that stair 

climbing require about 8-11 Kcal of energy per minute, which is high compared to 

other physical activities. Even two flights of stairs climbed per day can lead to 2. 7 

Kg weight loss over one year (Brownell et al., 1980). 

• There is a strong association between stair climbing and bone density, in post- 

menopausal women (Coupland et al., 1999). 

• Stair climbing activates dynamically large muscle groups of the lower extremities 

(I lmarinen et al., 1979). 

• Active stair climbers are more fit and have higher aerobic capacity (Jlmarinen et 

al., I 979). 

• Since stair climbing increa e leg power, it may be an important priority in 

reducing the risk of injury from fall in the elderly (Allied Dunber urvey, 1990). 

Under the impres ion of the benefit that tair climbing ha on the wellbeing f human 

health, many designs have been propo ed of machine that imulate the real a ti n f 

stair climbing. Almo t all gymnasium nowaday have at least one type of tair 

machine uch a the machine h v n in Figure 2.2. 11 ' e er, unlik tair ma hine , 

tairca c are ea y to acce . It can be ti und aim t 

mall , etc. All of the e pre iously mcnti ncd fa ts a ut tir 

trainers all vcr th w rid to pr pos m • c. ercis ·s that can n a st irca . 

I.. 



Figure 2.2: Examples of stair machines 

Wide verities of staircase exerci es have been propo ed, such as, walking up and down 

stairs with hands behind head, holding dumbbells, walking in cro step manner, or ide 

stepping, as shown in Figure 2.3. The inten ity of the e exercises can be increa ed b 

increa ing velocity, walking with a backpack, climbing large step , and climbing tw or 

three tep at the time. However, the biomechanic of the e xerci e have n t been 

tudied yet. 



Fl rur 2.3: Staircas • e: r ·isc ) r ·gular tuir "all .. in . 0) 11 nd behind h ad. ) 11 lldin) I umbbells. 
0) Cro: s st ·r f( rwurd. 
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ont. Fl ur 2.3: Stair ·use c crcis s E l aterul st ·ppin 1 I<) With ba ·!..pa· 
) 'Iimbinu large sl ·p . II) 'limbin I ir • tcp: \\ ith o 1 ·kpacl.:. 
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Studying the biomechanics of such exercises can provide very important and useful 

information. Although these exercises are multiple-joint exercises which stimulate 

several muscle groups simultaneously, they may allow for unequal distribution of the 

mechanical demands imposed on the ankle, knee, and hip joint musculature. 

Understanding how the mechanical demands are distributed across the joints (and 

musculature) of the lower extremity can be used to determine the appropriateness of 

each exercise (Flanagan et al., 2004). Furthermore, knowledge of the biomechanics of 

such exercises can be used to avoid doing the exercises that may increase the risk 

potential of overuse injury such as osteoarthritis. 

Osteoarthritis is the most common joint disease which is caused by joint degeneration, a 

process that includes progressive loss of articular cartilage accompanied by attempted 

repair of articular cartilage, remodeling and sclerosis of subchondral bone, and 

osteophyte formation (Buckwalter and Mankin, 1997; Buckwalter and Martin, 1995) 

One major mechanism associated with pathogenesis of osteoarthritis is increa ed load 

across the articular cartilage (Mow et al., 1995; Radin et al., 1995). Osteoarthritis 

accounts for more trouble with stair climbing and walking than any other di ease 

(Guccione et al., 1994). tair climbing activitie but not walking increased the ri k of 

subsequent knee o te arthriti (Maalindon et al., 1999), and the job that requir 

climbing stairs repeatedly are a ociated with high rate of knee o te arthriti ( opper 

et al., 1994). 

be ity i c n idcrcd a. ne of th important ri k act r f r the d I pment f 

ostcoarthrit i . 'turmcr t al. {2 0) and Fels n (I 988) r ported a str ng ass inti n 

between be ity and bilateral kn • ste arthriti but no associati n betv en bcsit and 

hip osteoarthriti . Researcher. sug zest that in .rca ed w •i iht as iatcd , ith besity 



directly increases knee loads that subsequently lead to knee osteoarthritis (Felson, 1988; 

Felson and Zhang, t 998; Hochberg et al., t 995; Komer and Eberle, 200 l ). All of the 

previously mentioned studies show the importance of studying the biomechanics of 

staircase exercises for normal people who are slim and obese. 
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CHAPTER THREE: METHOD AND MATERIALS 

3.1 Introduction 

This chapter presents the method and materials used in the current study, including 

subjects, instrumentation, subject and system preparation, exercises procedures, motion 

analysis, and the statistical method used. 

3.2 Subjects 
Ten obese adults, 6 males and 4 females, and ten lean adults, 6 males and 4 females, 

volunteered for the study. Subjects' characteristics are listed in Table 3.1 and Table 

3.2. The groups were similar in height but the obese group had a larger mass and Body 

Mass Index (BMI). BMI was used to classify the participants. Obese subjects had BMI 

values of 30-43 kg.m", and lean subjects had BMI values less than 25 kg.m". The 

ranges of mass and BMI values for the obese male were 89 to 110 kg and 32.24 to 3 7 .18 

kg/m2, and 75 to 85 kg and 31.62 to 36.79 kg/m2 for obe e female. For the lean male, 

they were 52 to 74.5kg and 17 .9 to 25 kg/m2 and 42 to 55 kg and 17 to 22.9 kg/m2 for 

lean female. All subjects were young and healthy (except obesity) ranging in age fr m 

22 to 30 years for lean group and from 22 to 32 for obese group. 

Table 3.1: haracteristics of lean ubjects 

Subject Gender I leiaht (cm) Weig.ht(KI!.) A11.e (years) BMI (Kwm·) 

L1 M 170.5 52 27 17.9 

L2 M }73 74.5 23 24.9 

L3 M 167 59 23 21.2 

- - 
lA F 156 45 25 18.5 

L5 M 166.5 68 23 2.i.5 

- - 
- 

1.6 M 172 1.i 22 25 

- 1.7 \' 157 .i2 27 17 

- - - 
I 8 I· 162 54 30 20.6 

- - L M 173 71 2.i 23.7 

- - - LIO F 155 55 2.i 22.') 
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Table 3.2: Characteristics of obese subjects 

Subject Gender Height(cm) Weight (Kg) Afl..e (years) BMl (Kl!.lm') 

01 M 160 89 22 34.76 

02 M 168 95 22 33.66 

03 M 172 110 24 37.18 

04 F 162 83 24 31.62 

05 M 172 106 23 35.83 

06 M 162 89 28 33.91 

07 F 152 85 30 36.79 

08 F 153 75 32 32.04 

09 M 171 94 25 32.15 

010 F 148 75 23 34.24 

3.3 Instrumentation 

3.3.1 Stair design 
A four-step wooden stair was constructed by the use of three non-connected wooden 

sections, as shown in Figure 3.1. The number of the steps was cho en to be sufficient to 

perform a full gait cycle (Andiriachi et al., 1980). The first section is compo ed of the 

third and the fourth step which wa extended to a one-meter platform on \i hich the 

subject could tum around and prepare to de cend. A p rtion of the second wooden 

cction was cut out o that a force plate (Ki tier, model 9281 A) can be placed and 

provide the cc nd stair tep. o d that, a pecial metal tand wa de igned t h \d the 

f rce plate n t p fit, a h wn in Figure 3.2. make ur that the f r e plat wa 

fi ed, f ur h le w ere drill d n t p of the stand and the fi r 
na 

sh wn in Fi zure 3.2. Additi nally, t pr id· upp rt fi r th third n, tv · .mall 

w d n b xe w r in.·tallcd n th· t p f the 



shown in Figure 3.1. A second force plate (Kistler, model 9281 CA) was embedded in 

the laboratory floor just in front of the stairs as shown in Figure 3.3. 

The dimensions of the wooden sections and the metal stand were chosen so that each 

step was 25.5 centimeters deep, one meter wide, and 21 centimeters high. The slope of 

the staircase was 38 degrees. This staircase dimension is the standard dimension for an 

outdoor staircase (Andiriachi et al., 1980). Outdoor-staircase dimensions specify a 

greater step height and slope than do indoor staircase dimensions and are supposed to 

produce higher physiological demands (Riener et al., 2002). 

Figure 3.1: Wooden staircase sections. 



Figure 3.2: Second step setup. 

Fi re 3.3: Floor fore plate. 
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3.3.2 Vicon motion analysis system 

The Motion Analysis Laboratory at the Biomedical Engineering Department, University 

of Malaya, provides many hardware and software services which facilitated the research 

done in the field of human motion analysis. The VI CON MX MOTION ANALYSIS 

SYSTEM was used to conduct all the current experiments. Figure 3.3 shows the system 

configuration. 

Camn-a 5 

C amera 4 

Figure 3.4: 'yst irn conligurotion. 

Camua6 



The Hardware components include: 6-MX cameras, MX ultranet MX control, and 

the host pc. The following is a brief description for each of these components: 

MX cameras: six MX-F20 cameras were fixed to the top of the laboratory walls and 

arranged in the manner shown in Figure 3.4 above. Each camera unit consists of 

distinct video camera, a strobe head unit, lens, optical filter, and cables as shown in 

Figure 3.5. 

Figure 3.S: MX-F20 camera. 

MX-F20 cameras are height-quality devices which pr vide high peed and low-latenc 

motion capture. MX-F20 ha a re olution of up to 2 megapixel (1600 ertical and 1280 

vertical) and a maximum frame rate of 370 at maximum re olution. ach camera i 

programmed with firmware t c ntr l it perati n, enabling it to perform i wn 

nb ard gray cale pr cc ing. 

MX amera ·valuat · an cntir imag in ira 

whit thr h Id. ·1 hi· pr vid ·s m r • inf rrnati 

ac ura ov r an e ui al nt r s lution bla k and white am ra. lh m r 

I . rath r th. n ppl in bla k nd 



perform the majority of data processing. They generate grayscale blobs for reflections 

from objects in the capture volume and then use centroid-fitting algorithms to determine 

which of these objects are likely to be markers. 

MX ultranet: The MX ultranet supplies power, synchronization and communication for 

the six cameras and the MX control with the HOST PC. 

MX control: The MX control provides the interface between the vicon system and the 

two kistler force plate .Its connected to MX ultranet in the same way as MX cameras. 

Host pc: Vicon softwares were installed on this pc which contains an Ethernet port to 

enable communication between the software's and MX ultranet. 

Two of the provided vicon software's were used: VICON nexus (version l .3) and 

VICON polygon (3.1). The primary motion capture platform available in the Motion 

Analysis Laboratory is Vicon Nexus shown in Figure 3.6. It is a motion capture 

platform designed specifically for Life ciences application such as gait analy is 

rehabilitation, biomechanics re earch posture, balance, motor control, ergonomic , and 

many more. It i also used in ports and animal cience. Ne us's ver atility and u er 

friendly interface makes it one of the most ought after tool by the Clinical and re earch 

laboratories, sport performance center , univcr itie and other in tituti n to track and 

mea ure m tion in real time. ther optical, digital, and anal g capture de ice are all 

integrated in thi ea y t u e platfi rm. 
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Figure 3.6: Vicon nexus 1.3 front page. 

Polygon is a software tool ( ee Figure 3.7) that enables the u er to create, edit, and 

export Polygon Reports or to create and show Polygon Pre entations. lt is mainly 

intended as a visualization and report editing tool for gait laboratorie enabling them t 

quickly and easily to create a gait report, analyze the patient, and to do re ear h. 

However, Polygon is intentionally de igned a a generic tool which can be u ed f r a 

variety of biomechanical purpo e , such a port , ergonomi and mot r contr \ 

re earch, and rehabilitation tudie . P lygon integrate with Vicon ne u ft.ware. h 

moti n captured data pr e d thr ugh vie n ne u can be read and analyzed u ing 

P lyg n. 

25 



• w ~ •M.f> 

Figure 3.7: Vicon Polygon 3.1 report. 

3.4 System Preparation 

Before the subjects arrived at the laboratory the sy tern was prepared for the 

experiments. System preparation consists of two calibration stages: Dynamic Stage 

(Camera Calibration) and tatic tage (Capture Volume Calibration). The following i a 

de cri pt ion of each stage. 

Dynamic tage ( amera alibration): During the d namic tage of tern 

calibration, the Vicon nexu 
ftware calculate the phy ical p iti n and rientation of 

each Vic n camera in the capture v lume ba d n the m ement fa cali rati n wand. 

'I h obje live f th d nami 
lum t th M 

'I h 
3.8 v v a empt) ture 

lum unt i I c g d num ·r f wand fram 



for each camera as shown in figure. The feedback from nexus software was observed to 

determine when enough wand data has been acquired to calibrate each camera . 

., j 

Figure 3.8: Calibration wand. 

Static Stage (Capture Volume Calibration): During the static stage of system 

calibration, the Vicon nexus software measures the position of the static calibration 

object and sets the global coordinate system. The objective of the static stage i to et 

the global coordinates system so that subjects are displayed the right way up. The 

calibration object was placed flat on the corner of the floor force plate (see Figure 3.9) 

to identify the coordinates of the global origin (0, 0, 0), which represents the center of 

the capture volume, and the global axes (X, Y, Z), which represent the horizontal and 

vertical axes of the capture volume. 

Fl ure 3.9: Pl c ment f th· ·alibruli n obic 'l on the .orn r of th' 11 )Or for c plJt . 
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3.5 Subject Preparation 

After successfully calibrating the cameras, the subjects were prepared for the 

experiments. Subject's preparation consists of two steps: MARKER PLACEMENT and 

SUBJECT STATIC CLIBRA TION. The following is a description of each step. 

MARKER PLACEMENT: All subjects were barefoot and wore tight shorts for male 

and tight shorts and a T-shirt for female to allow attachment of reflective markers on the 

skin of the lower limbs as shown in Figure 3.10. Sixteen reflective markers (14 mm 

spheres) were placed on the second metatarsal head (TOE), lateral malleolus (ANK), 

posterior calcaneus (HEE) at the same level as the second metatarsal marker, lateral 

surface of tibia (TIB), lateral aspects of the knee joint (KNE), lateral surface of the thigh 

hand swing (THI), and over both anterior and posterior superior iliac spines (A 1 & 

PSI). 

I' I ure 3.1 O: Murk ·r p< ~ition . 



To enable calculation of hip, knee, and ankle joint angles and external joint moments, 

anthropometric measures were obtained including bilateral leg length, knee width, ankle 

width, height, and body mass. 

SUBJECT STATIC CLIBRATION: Subjects were asked to stand in the middle of the 

capture volume in the basic neutral pose, and raise the arms out straight to the sides with 

palms facing down in a position in the shape of a T, ensuring that the markers on the 

subject were visible to all the cameras. A static trial of 1-2 second was captured. Then 

the captured trial was processed in the nexus software to define the plug-in gait link 

segment model for each subject as shown in Figure 3.11. 

l<'I ur 3. l t: Pn · s. ·d st ui · tri 11. 



3.6 Exercise Procedures 

Five stair climbing styles were included in this study. However, these movements can 

be divided into FORWARD STEPPING and LATERAL STEPPING, according to the 

relative orientation of the subject body with respect to the stairs. The following is a brief 

description of each stepping condition. 

3.6.1 Forward stepping 

Subjects were asked to perform four different styles of movements including: 

REGULAR STAIR WALKING (RSW), HANDS BEHIND HEAD (HBH), HOLDING 

DUMBBELLS (HDB), and CROSS STEP FORWARD (CSF), as shown in Figure 

3.12. 

F zur l.12: hm.,,urtl stcppmg mov cm nts ) Re ul r t· ir w lking. B) I land· behind he d. 



I 

ontd. Figure 3.12: Forward stepping movements ) I lolding dumbbell . D) ro s step forward. 

For ascending, a subject was asked to stand in front of the floor force plate facing up the 

stairs as shown in Figure 3.13{A). On the count of 3, he tarted moving with hi right 

leg by tepping onto the floor force plate ( ee Figure 3.13{B)), then hi right leg 

stepped on to the first step, and kept moving tep-over- tep until he reached the top 

platform with the right leg. Then he turned around, to be ready for de cending. 

r de cending, the ubjcct wa a ked t tand n th t p platf rm fa ing the tair a 

hown in Figur 3.l4(A). n the unt 
• h tarte m ing v ith hi I ft I 

t epping n the third tcp ( · 
igur 3.14(8) , )), then hi right I g the 

t pping int th 

fl r f r pl t with th ri 'ht I z. 
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Figure 3.13: Forward stepping during ascending A) start position. B) Start moving with right leg'+). 

Figure 3.14: Forward stepping during descending A) tart siti n. B) tart m ving with left leg ( + ). 

3.6.2 Lateral tepping 

Thi involve climbing the tair in a tep-over- tep manner, mo ing id , ay . 

I lowever, f r lateral tepping, unlike fi rward tepping, ea h limb performed differ nt 

functi n. heref re, thi m vement wa di ided int : A RA PPl 

•A IN ), v here the I , in qu ti n right le 1) i 

forward pr gr i n ( c Figur 3.15 ) , and A'I ·RA 

(L "l ). wh .rc th· I·' in qu esti n (ri ht leg) i th trailing I g 

r 

PPIN 

igur 3.lS{B 



Figure 3.15: Lateral stepping mo ement A) Lateral stepping leading B) Lateral stepping trailing.(+ ) 

for right leg and ( +) for tell. 

For LSL during ascending, a subject was asked to stand be ide the floor force plate with 

hi left leg closer to the tair (the taircase on his LHS) as hown in Figure 3.16(A). 

n the count of 3, he tarted moving with their right leg by tepping hi right leg onto 

the floor force plate ( ee figure 3.16(B)) then hi left leg tepped on t th fir t tep, 

and kept moving until he reached the top platf rm with the right leg. hen he turned 

around t be ready fi r de ending. 



Figure 3.16: Lateral stepping leading during ascending. A) Start position. B) Start moving with right leg 

(+ ). ( +) for left leg. 

During descending, the subject was asked to stand on the top platform facing the 

sideways with his left leg closer to the edge of the top platform as shown in Figure 

3.17(A). On the count of 3, he started moving with his left leg by stepping onto the third 

step (see Figure 3.l 7(B)), then his right leg stepped on to the second step, and kept 

moving until he reached the floor by stepping on the floor force plate with the right leg. 

Fl ur 3. t 7: Lutcra! tcpping I eading during d ·sccnding. ) tort position. B) t rt moving' ith I flt ·g 

c (¢ ). +) for I .n I ·g. 

F r lat zrnl ·t ·pping trailing, th 
h nl 

differ n ·, wr s th· starting p stur . urin l a· ending, a subje t ' s a k d t • t nd 
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beside the floor force plate with his right leg closer to the stairs (the staircase on his 

RHS) as shown in Figure 3.18(A). During descending, the subject was asked to stand in 

the top platform facing sideways with his right leg closer to the edge of the top platform 

as shown in Figure 3.18(8). 

Figure 3.18 Lateral stepping trailing starting position. A) Ascending. B) Descending. left leg 
(+ ). (+ ) for Right leg. 

3. 7 Motion Analysis 

Five trials of ascending and descending for each movement were captured. The captured 

data were proces ed in vicon nexus software including: marker trajectory gap tilling, 

filtering and smoothing of the trajectory, detecting gait cycle parameter , and applying 

the vicon plug-in gait link egment model and get the re ults. The tride cycle during 

tair a cent wa defined a fir t right f t contact n the econd tep and ended at the 

ame f ot c ntact n the forth tep. uring tair de nt, the elected tride c cle tart d 

with right f t c ntact n the e nd tep and ended v ith th m f t c nta t n th 

ubj t 

weight and th m menls w re x re · d a external m merit . 



DESCE_iT ASCKrf 

Vicon Polygon software was used to find the average of the five trials of ascending 

phase and of descending phase of each movement for each subject individually and to 

Right 
foot 

contact 

express all stride events as a percentage of stride cycle. The averaged data were saved in 

Right 
foot 

contact 

ASCII format and transferred to excel to find the mean maximum values of the included 

Right Right 
foot foot 

contact contact 

key variables, which were: cadence, cycle duration, stance phase, velocity, 

Hip/Knee/ankle angles, Hip/Knee/ankle sagittal and frontal plane moments, and powers, 

during ascent and descent. Additionally, angular impulses and total joints work were 

Figure 3.19: The Stride cycle during stair ascent and descent. 

calculated using MATLAB and included in the analysis. Angular impulse wa defined 

as the area under a moment curve (i.e. integration) and flexion, dorsiflexion or 

adduction angular impulse represent the areas under the positive pha es of the moment 

curve as shown in Figure 3.20. Total joint work was defined as the area under the 

absolute power curve (i.e. integration) as shov n in Figure 3.20. 



.. 
QI z 

0.8 e 
C) 

5,... 0.6 i: .. e .5 z OA 
0 .... ., 

0.2 

o/1 Movement C cle 

Figure 3.20: Representation of the definition of A) angular impulse. B) Total work. 

Finally, all results were saved in excel format and transferred to SPSS 16 for statistical 

analysis and an ensemble average curves for the angles, moments, and powers for each 

group were produced using Polygon software. 

3.8 Statistical Analysis 

SPSS 16 was used to do all statistical analysis. Paired t test was used to compare 

ascending and descending phase for each exercise, compare between regular tair 

walking and each exercise during ascending, and compare between regular stair walking 

and each exercise during descending (Figure 3.21). Independent t test was used to 

compare between lean and obe e groups at each phase of each exercise (Figure 3.22). 
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Regular stair Regular stair 
walking (AS) walking (DE) 

HBH (AS) HBH (DE) 

HOB (AS) HOB (DE) 

CSF (AS) CSF (DE) 

LSL (AS) LSL (DE) 

LST (AS) LST (DE) 

Figure 3.21: omparison between exercises. 

Lean subjects obe e subjects 

Regular stair Regular stair Regular stair Regular stair 

walking (AS) walking (DE) walking (AS) walking (DE) 

HBH (AS) HBH (DE) HBH (AS) HBH (DE) 
-.. 

HOB (AS) HOB (DE) HOB (AS) HOB (DE) 

·~ 
CSF (AS) CSF (DE) CSF (AS) CSF (DE) 

. 
r 

LSL (AS) LSL (DE) LSL (AS) LSL (DE) 

- ~ 

LST (AS) LST (DE) LST (AS) LST (DE) 
- 

Fl ur J.22: Comparison bet we ·n grnups. 



CHAPTER FOUR: RESULTS 

4.1 Introduction 

The results obtained from the research are presented in this chapter. The kinematics and 

kinetics data for regular stair ascending and descending are presented first. Then the 

kinematics and kinetics differences between the chosen staircase exercises and regular 

stair walking during ascending and descending as well as the phase differences of all 

movements are presented. The last section shows the differences between obese and 

slim people for all movements during ascending and descending phases. 

4.2 Regular Ascending Versus Descending 

4.2.1 Temporal parameters 

The four temporal parameters involved in the analysis are the cadence (steps/minute), 

foot off (stance phase percentage for the gait cycle), stride time (the time, in minuets, 

required to execute one gait cycle), and speed (rate of movement in rn/s). Table 4.1 

summarizes the mean cadence, foot off, stride time, and speed during stair ascent and 

descent. Stride time was greater (P<0.01) during ascent (1.50 sec. (SD0.09)) compared 

to descent ( t.39 sec. (SD0.11 )). There were no significant differences in the foot off 

between ascent and de cent. Cadence (p<0.01) and speed (p<0.001) were lower by 8% 

and 18.5%, respectively, during ascent compared to descent. 
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Table 4.1: Mean (SD) of time parameters during regular stair ascent and 
descent (n = 10). 

I Mean(SD) I Significance 

Cadence (steps/min.) 
ASCENT I 80.7(4.8) I DE>AS (8%) 

DESCENT I 87.2(6.8) I 
Foot off(%) 
ASCENT I 62.4( 1.1) I Not sig. 
DESCENT I 63.6(2.8) l 
Stride time (s) 
ASCENT I 1.50(.09) I 
DESCENT I 1.39(.11) 1 AS>DE (7.9%) 

Speed (mis) 
ASCENT I .49(.037) I DE>AS (18.4%) 

DESCENT I .58(.050) l 

4.2.2 Angles 

The mean sagittal plane movements of the hip, knee, and ankle joints during stair ascent 

and descent are illustrated in Figure 4.1. During stair ascent in stance phase (from 0% 

to 62.4% of stride cycle) the hip and knee joints moved forwards into extension and the 

ankle joint into plantarflexion, while, during stair descent in stance phase (from 0% to 

63.6 % of stride cycle), the hip and knee joints moved into flexion and the ankle joint 

into dorsiflexion. During ascent and descent phases, the maximum hip flexion and knee 

tlexion occurred during the swing phase. 

Table 4.2 and the corresponding Bar chart (Figure 4.2) summarize the mean maximum 

angles observed at the hip, knee, and ankle joints during stair ascent and de cent. 

ubjects required greater tlexion at the hip (P <0.001) during ascending. There were no 

ignificant difference in knee flexion angle between a cending and de cending. ubjects 

required greater ankle d r iflexi n angle (P<0.00 I) and plantar-flexion angle (P<0.00 l) 

during de cent compared to during a cent. 
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Gait cycle (%) Gait cycle (%) 
Figure 4.1: Mean sagittal plane angles of the hip, knee, and ankle joints during stair ascent and stair 
descent (n = I 0). The continued and dashed lines represent the mean during stair ascent and descent, 
respectively. The grey and light red shades represent the SD during stair ascent and descent, 

respectively. 

Table 4.2: Mean ( D) of maximum hip, knee and ankle angles during 
regular stair ascent and descent (n = 10). 

I Mean(SD) \ Significance 

lllP nu. (degrees) 
ASCENT I 11.97( 12.47) I AS>DE (62.4%) 
DESCENT I 44.32( 12.44) 1 

KNEE flex. (degrees) 
ASCENT I I 07.22(5.95) I Not sig. 
DESCENT I 104.83(7.72) l 
ANKLE dorsi-f1ex. (degrees) 
ASCENT I 20.69(3.0S) I DE>A (55.8%) 

DESCENT I 32.24(7. t 3) l 
ANKLE plantar-flex. (degrees) 
ASCENT I 22.88(4.75) I DE>AS (46.9%) 

DESCENT I 33.60(5 49) l 

dorclflu:. 

120 

100 
80 

60 11-.- I 40 
20 

0 

I hip fl x. 

Angl • (d•gr .. a): 

l 
gul r stair ASCENlNG (full colored) and OESC9DNG 

(upward di gon I) 

Flgur 4.2: Bur churl rcpr ·sent tit n of the mean ma imum hip, kn c, nu nkl unglc during regular 

stuir u · · ·nt und d ·. ·cnl. 
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4.2.3 Moments 

The mean sagittal plane moments of the hip, knee, and ankle joints are illustrated in 

figure 4.3. At the hip in the sagittal plane, the external moment was positive during stair 

ascent and descent for the most of the stance phase, creating an external hip flexion 

moment. There was a period in late stance during stair ascent and descent that the 

external hip moment was negative, creating an external hip extension moment. At the 

knee, during stair ascent there was an external knee extension moment from foot contact 

on the 2nd stair step (0% of stride cycle) to 3% of stride cycle, an external knee flexion 

moment from 3% to 55% of stride cycle and an external knee extension moment from 

55% to 62.4% (toe-off) of stride cycle. During stair descent there was an external knee 

extension moment from foot contact on the 2nd stair step (0% of stride cycle) to 14% of 

stride cycle, and an external knee flexion moment from 14% of stride cycle to 63.6% 

(toe-off) of stride cycle. The external ankle moment was positive in stance phase during 

stair ascent and descent, creating an external dorsiflexion moment. 

Hip 

.. 

Ga11 l rOJ ' l ro) 
Fl ure 4.3: M ean sagittul plane moments of th· hip. knee. and ankl joint during . tuir s ·cnt and . t ir 
d ·scent (n t 0). th· continu •d und dashed line rcpre · ·nt the m sun during . tnir . c cnt nd des ent 
respectively. 1 he grc 

111d light red shad ·s rcprcs ·nt th' SD during :tuir us icnt and d zsccnt, respc ti\ cl~. 
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The mean frontal plane moments of the hip and the knee joints during ascent and 

descent are illustrated in figure 4.4. The external hip and knee moments were positive 

in stance phase during stair ascent and descent, creating an external adduction moment. 

Figure 4.4: Mean frontal plane moments of the hip and knee joint during stair ascent and stair descent (n 
= 10). The continued and dashed lines represent the mean during stair ascent and de cent respectively. 
The grey and light red shades represent the D during stair ascent and descent, respectively. 

Table 4.3 and the corresponding Bar chart (Figure 4.5) shows the mean maximum 

external moments observed at the hip, knee, and ankle joints during stair ascent and 

descent. The external moment includes the moment about the joint center created b the 

ground reaction force and inertial forces which i equal and oppo ite to an internal 

moment that is created by muscles, soft tissue and joint contact force The ubjects 

demon trated greater external knee flexion (P <0.01 ), knee exten ion (P <0.001 ), and 

hip adduction (P<0.05) moment during tair de cent c mpared t a cent. ubje t 

dem n trated minimal difference in external hip flexi n and exten i n m men , 

c t rnal ankl d r iOe. i n rn mcnt , nd c, tcrnal knc addu ti n m m nl betwe n 

'lair a. icnt and d • · ent. 



Table 4.3: Mean (SD) of maximum external hip, knee and ankle moments during 
regular stair ascent and descent (n = 10). 

I Mean(SD) l Significance 
HIP flexion (N.m/kg) 
ASCENT I .893(. t 99) l 
DESCENT l .918(.195) I Not sig. 

HIP Extension (N.m/kg) 
ASCENT I .407(.134) I 
DESCENT T .375(.t29) l Not sig. 

HIP adduction (N.m/kg) 
ASCENT l .552(.233) I DE>AS 

DESCENT l .747(.177) I (35.3%) 

KNEE flexion (N.m/kg) 
ASCENT l .878(.240) I DE>AS 

DESCENT I 1.164(.135) I (32.6%) 

KNEE Extension (N.m/kg) 
ASCENT T .173(.048) I DE>AS 

DESCENT I .571(.155) I (23%) 

KNEE adduction (N.m/kg) 
ASCENT I .695(.151) l Not sig. 
DESCENT I .673(.t51) I 
ANKLE dorsiflexion (N.m/kg) 
ASCENT l 1.279(.193) 1 Not sig. 
DESCENT I 1.509(.218) I 

1.6 
1.4 
1.2 

1 
0.8 
0.6 
0.4 
0.2 
0 

Moment (N.m/Kg): Regular stair ASCeDNG (full colored) and oe;ceoNG 
(upward diagonal) 

Figure 4.5: Bar chart repre entation of th mean maximum hip, knee and ankl m ment during r gular 

stair ascent and descent. 

4.2.4 Power 
During a cent, all the j int pr uced energy p itive p wer) during mo t of the trid 

pha c (Figure 4.6). he kn and hip j int wer rea hed their ma ·imum alue at th 

·ginning of the tan phas at 18% f r th kn and l % f r hip f th cy 1 time . 

In th· hip. a c nd I wer p ak v as b rve during the v ing pha . he ankl j int 

e hi it ·d ma imum p )\ r pr du tic n at th end f th stan pha 
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not only during ascent but also descent. During descent, the joint powers were 

predominantly negative, i.e., energy was absorbed. Only the hip joint showed a 

remarkable phase of energy production, with a peak of power at 57% cycle time. The 

maximum (negative value) of the knee joint power occurred at 53% cycle time. The 

ankle joint absorbed energy during descent at the beginning of the stance phase (6% 

cycle time). 

ait eye e o ait cy e o ait eye e (~') 
Figure 4.6: Mean power of the hip, knee, and ankle joints during stair a cent and stair descent (n = \ O). 
The continued and dashed lines represent the mean during stair ascent and descent respecti ely. The grey 
and light red shades represent the D during stair ascent and descent, respectively. 

Table 4.4 and the corresponding Bar chart (Figure 4.7) hows the mean maximum 

ab olute powers ob erved at the hip knee, and ankle joints during stair a cent and 

descent. lligher power at the hip (P<0.00 I) and lower power at the knee (P<0.01) were 

required during a cending compared to de cending. N ignificant difference were 

f und and the maximum p wer value at th ankle j int etv een tair a ent and 

d • cent. 
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Table 4.4: Mean (SD) of maximum external hip, knee and ankle power 
during regular stair ascent and descent (n = 10). 

I Mean(SD) I significance 

HIP power (W/Kg) 
ASCENT I 1.56(.47) 1 AS>DE (90.2%) 
DESCENT I .82(.32) 

KNEE power (W/Kg) 
ASCENT I 2.64(.62) l 
DESCENT 1 4.28(1.06) I 

DE>AS (62%) 

ANKLE power (W/Kg) 

ASCENT I 2.87(.87) I 
DESCENT I 4.01c1.11) I 

Not sig. 

-- -- ------- 

4.5 
4 

3.5 
3 

2.5 
2 

1.5 
1 

0.5 
0 

lip 
Power (W/Kg): Regular stair ASCeDNG (full colored) and CSCeDNG 

(upward diagonal) 

Figure 4.7: Bar chart representation of the mean maximum hip, knee, and ankle power during regular 

stair ascent and de cent. 

4.2.5 Impulses 

Table 4.5 and the corresponding Bar chart (Figure 4.8) shows the mean maximum 

impulses ob erved at the hip, k.nee, and ankle joints during stair ascent and descent. No 

significant difference were found in hip flexion and extension impul e between tair 

a cent and de cent. ubject demonstrated greater k.nee flexion (P <0.05) k.ne 

exten i n (P <0.01 ), ankle d r iflexion (P <0.0 I) k.nee adduction (P <O. 5), and hip 

adducti n (P < .OS) impul e during tair de cent c mpared t a cent. 
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Table 4.5: Mean (SD) of maximum external hip knee, and ankle impul es during 
regular stair ascent and descent (n = 10). 

I Mean(SD) I Siznificance 

llJP flex.ion imoulse {N.m.s/ke) 
ASCENT 

I .624(.277) IN . 

DESCENT 
I .624(.342) 

l ot sig, 

HIP Extension imoulse {N.m.s/ke) 
ASCENT 

I .300(.148) IN . 

DESCENT I .281(.100) 
I ot sig. 

HIP adduction imoulse {N.m.s/k!!) 
ASCENT I .75 l(.495l \ DE>AS (38.3%) 

DESCENT 
I 1.039(.342l 

KNEE flexion imoulse (N.m.s/kl) 
ASCENT 

I .742(.247) \ DE>AS (22.2%) 

DESCENT 
I .907(.191) 

KNEE Extension imoulse (N.m.s/kt?) 
ASCENT I .138(.055) \ DE>AS (107%) 

DESCENT 
I .286(.134) 

KNEE adduction imoulse CN.m.s/k!!) 
ASCENT 

I .626(.363) i DE>AS (26.4%) 

DESCENT I .791L291) 
KNEE dorsiflexion impulse CN.m.slkl) 
ASCENT 

I 1.383(.470) ~ DE>AS (45%) 

DESCENT 
I 2.006<.547) 

2.5 

2 

1.5 

1 
0.5 
0 Ankle Dorcl­ 

flex. 

Impulse (N.m.a/Kg): Regular stair ASCENDING (full colored) and DESCENDING 
(upward diagonal) 

Figure 4.8: Bar chart representation of the mean maximum hip, knee, and ankle impul e during regular 

stair ascent and descent. 

4.2.6 Total work 

Table 4.4 and the c rre p nding bar chart (Figure 4.9) shows the mean maximum total 

work ob erved at the hip, knee and ankle j int during tair a cent and de ent. Higher 

w rk at th hip (P<O. I) but I wer w rk at the knee P< .0 I) and th ankl (P<O. 

wcr required during as ending c mpar d t d nding. 

47 



Table 4.6: Mean (SD) of maximum external hip, knee and ankle work during 
regular stair ascent and descent (n = 10). 

I Mean(SD) l Significance 
HIP work (J/Kg) 

ASCENT I 1.434(.693) l 
DESCENT I . 725( .388) l AS>DE (97.8%) 

KNEE work (J/Kg) 

ASCENT I 2.324(.604) I 
DESCENT I 3.359( 1.004) I DE>AS (44.5%) 

ANKLE work (J/Kg) 

ASCENT I 1.239(.500) \ DE>AS (106.3%) 

DESCENT I 2.556(.887) 

4 
3.5 
3 

2.5 
2 

1.5 
1 

0.5 
0 Ankle work 

ttpwork 

Total work (J/Kg): Regular stair ASCBONG (full colored) and DESCBONG 
(upward diagonal) 

Figure 4.9: Bar chart repre entation of the mean maximum hip, knee, and ankle work during regular stair 

ascent and descent. 

4.3 Staircase Exercises: Ascending 

4.3.1 Temporal parameters 

Table 4. 7 summarizes the mean cadence, foot off, stride time, and speed during the 

a cending pha e of all movements. CSF shows lower cadence (P<O.O 1) and velocity 

(P<.05) compared to regular ascending .LSL shows lower velocity (P<.05) compared to 

regular a cending. No ignificant differences were found for HBH, HOB, and L T in 

cadence and velocity c mpared t R W . nly 
how lower ti t off(P<.00 l) 

c mpared t regular a ccnding . 
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Table 4.7: Mean (SD) of time parameters during stair ascending exerci es (n = 10). 

RSW HBH HDB CSF LSL LST 

Cadence 80.7(4.8) 80.88(4.8) 86.58(7.3) 73.04(7.4) 75.85( 11.1) 79.21(5.4) 

(steps/min.) Not sig. Not sig. L (9.5%) Not sig. Not sig. 

Foot off 62.4(1.7) 62.26(1.4) 62.61(1.5) 61.9(2.2) 64.2(3.7) 59.66(1.7) 

(%) Not sig. Not sig. Not sig. Not sig. L (4.4%) 

Stride time t.50(.09) 1.49(.086) 1.4(.114) 1.67(.51) 1.63(.294) 153(.102) 

(s) 
Not sig. Not sig. H (11.3%) H(8.7%) Not sig. 

Speed .49(.037) .48(.024) .51(.049) .44(.054) .44(.064) .52(.036) 

(mis) Not sig. Not sig. L (10.2°/e) L (10.2%) Not sig. 

4.3.2 Angles 

The mean (SD) sagittal plane movements of the hip, knee, and ankle joints during 

ascending phase of all movements are illustrated in Figure 4.10. All of movements 

show the same trend as regular ascending. The hip and knee joints move forward in 

extension and the ankle joint into plantarflexion during the stance phase of all 

movements. 

Table 4.8 and the corresponding bar chart (Figure 4.11) summarizes the mean 

maximum angles observed at the hip, knee, and ankle joints during ascending phase of 

all movements. Subjects required lower flexion at the hip for HOB (P<0.05) and LST 

(P<0.01) and lower knee flexion for HBH (P<0.01) and LSL (P<0.001) compared to 

regular ascending. No significant difference in for hip flexion angle for HBH C F. and 

LSL and in the knee flexion angle for HOB and CSF compared to regular ascending. 

ubject required greater knee flexion angle for LST (P<0.001) greater ankle 

dor iflexion angle for L L (P<0.001) and 
T (P<0.05), and greater ankle 

plantarflexi n angle f r H B (P<0.0 l) c mpared t regular a cending. 
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[iiRSW.HIH HOB • CSf l1SL.lS11 

Figure 4.10: Mean angle power of the hip, knee, and ankle joint during stair ascent phase of al I exerci e 

(n = 10). 
Table 4.8: Mean ( D) of maximum hip, knee and ankle angles during stair ascending exercises (n = IO). 

RW llBH HOB C F L L LST 

llip nex. 71.97(12.47) 71.36( 12. 7) 69.69(11.5) 74.33( 11.3) 74.66( 11.2) 66.87( 11.8) 

(degree ) 
Not ig. l (J.2%) Not ig. Not ig. l (7.1%) 

Knee flex. 107.22(5.95) I 05.39(5.83) 108.05( 6. 76) I 07 .59(8.82) 99.14 (8.9) 115.54(6.9) 

(degree) 
l (1.7%) Not ig. Not sig. L (7.5%) H (7.8%) 

Ankle 20.69(J.05) 20.93(3.25) 21.19(2.54) 20.67(3.98) 27.78(4.40) 24.25(4.69) 

dorsiflex. 
Not lg. Not ig. Not ig. II (J4.2%) H (17.2%) 

(deerees) 
Ankle 22.88(4.75) 22.17(5.32) 26.39(6.71) 23.5(7.56) 23.69(7.05) 21.62(9.77) 

Plantarnex. 
Not ig. II ( 15.3%) ot ig. Not ig. Not ig. 

(deuces) 
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0 
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4.3.3 Moments 

The mean sagittal plane moments of the hip, knee, and ankle during ascending phase of 

all movements are illustrated in Figure 4.12. At the hip in the sagittal plane, all the 

movements show the same trend as regular ascending except for LSL and LST. LSL 

and LST show prolonged period of hip flexion until 59% and 52% of cycle time, 

respectively. On the other hand, LST shows a 2nd short period of flex.ion at the end of 

the stance phase. At the knee, all the movements show the same trend as regular 

ascending except for LSL, LST, and CSF. The external moment changed to negative 

(extension) early in the stance phase at 32%, 50%, and 36% of cycle duration for CSF, 

LSL, and LST, respectively. The external ankle moment was positive in stance phase 

for all movements, creating an external dorsitlexion moment. 

I • 
... 

I• igurt 4.12: Mean sagitUll pt.me mumcnL'i or me hip. knee. nd ankle joint during stair ascent phase of 

ull c: erclses (n • I 0). 
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The frontal plane moments of the hip, knee, and ankle joints during the ascending phase 

of all movements are illustrated in figure 4.13. The external hip and knee moments 

were positive in stance phase during al I movements, creating an external adduction 

moment, except for LSL. At the hip for LSL, external hip moment were positive from 

the beginning of the movement until 4 7% of cycle duration it turns to negative, creating 

an external abduction moment. At the knee for LSL, external hip moment were positive 

from the beginning of the movement until 45% of cycle duration it turns to negative, 

creating an external abduction moment. 

11 • • • • 

"---- Gaiteyc:k~I 

Figure 4.13: Mean frontal plane moments of the hip and knee joint during stair ascent 

phase of all excrciSt.'S (n • I 0). 

Table 4.9 and the corresponding Bar chart (Figure 4.14) show the mean maximum 

external moment. observed at the hip, knee, and ankle joint during ascending phas e of 

all movements. Al the hip joint, subjects demonstrated greater ext mal hip flcxion 

moments for CSF (P ·'0.01) and LSL (P 0.05), and greater hip addu Lion moments for 

I IDB {P· o.O 1 ), 'SF (P 0.00 I) and L 'l (P 0.001) compared to regular stair ascending. 
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At the knee, subjects demonstrated greater knee flexion moments for HOB (P<0.001) 

and lower knee flexion moments for CSF (P<0.001) and LSL (P<0.001) compared to 

regular stair ascending. In the frontal plane, subjects show greater knee adduction 

moment for HOB (P<0.001), CSF (P<0.001), LSL (P<0.001), and LST (P<0.05) 

compared to regular stair ascending. At the ankle joint, only HDB shows greater 

dorsiflexion moment (P<0.05) compared to regular stair ascending. 

Table 4.9: Mean (SD) of maximum external hip, knee and ankle moments during stair ascending 
exercises (n = 10). 

RSW HBH HDB CSF LSL LST 

llip nuion .893 .880 .945 1.272 1.038 .642 

(N.mlkg) (.199) (.191) (.213) (.282) (.202) (.262) 

Not ig Not sig H (42.4•/e) H (16.2°/e) L (28.1%) 

Hip adduction .552 .604 .724 1.179 .641 1.423 

( .m/kg) (.233) (.256) (.259) (.287) (.209) (.173) 

Not ig 11 (31.2•/e) H (l lJ.6•/o) Not ig II (157.8) 

Knee Onion .878 884 1.052 .643 .719 .965 

( .m/k~) (.240) (.263) (.297) (.271) (.255) (.273) 

Not ig H (19.2•/e) l (26.8"/o) l (18.1%) Not ig 

Knee .695 .720 .907 .975 1.009 .849 

Adduction (.151) (.131) (.165) (.144) (206) (.120) 

( .m/kg) Not ig II (30.5•/o) II (40.2•/o) II (45.2"/o) II (22.2%) 

Ankle 1.279 1.277 1.452 1.243 1.357 1.278 

dor muion (.193) (.194) (.173) (.291) (249) (.220) 

(N.m/kg) Not ig II (13.5%) Not ig Not ig ot ig 

' 

1.6 
1.4 
1.2 

1 
0.8 
0.8 
0.4 
0.2 
0 
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4.3.4 Powers 

The Mean powers at the hip, knee, and ankle joints during ascending phase of all 

movements are illustrated in Figure 4.15. All the movements show the same power 

production trend as regular ascending at the hip, knee, and ankle. 

~· 
~ ....... ... . , • } . 
0 
0.. ' 

I . . 
i 

.. . ... . • 

liait cyde ('•) 
• 

!jRsw••H• HOB •csr•LSt.lliSi 
Figure 4.1 S: Mean power of the hip, knee, and ankle joint during stair ascent phase of all exercises (n = 

10). 

Table 4.10 and the corresponding Bar chart (Figure 4.16) shows the mean maximum 

absolute powers observed at the hip, knee, and ankle joints during ascending phase of 

all movements. At the hip, CSP produce greater power (P<0.05) and LST produces 

lower power (P<0.05) compared to regular ascending. At the knee and ankle joints, no 

ignificanl difference were found in power production of all movements compared to 

regular a ·cending. 
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Table 4.10: Mean (SD) of maximum external hip, knee and ankle power during stair ascending 
exercises (n = 10). 

RSW HBH HDB CSF LSL LST 

Hip l.56 1.512 1.456 1.957 1.720 1.153 

power (.47) (.450) (.403) (.560) (.73 l) (.566) 

(W/Kg) Not sig Not sig H (25.4•/e) Not sig L (26.1 "lo) 

Knee 2.64 2.719 2.878 2.548 2.579 2.728 

Power (.62) (.607) (.779) (.714) (.637) (.665) 

(W/Kg) Not ig Not ig Not ig Not sig Not sig 

Ankle 2.87 2.794 3.273 2.432 3.186 3.028 

power (.87) (.767) (.619) (1.058) (.863) (.970) 

(W/Kg) Not ig Not sig Not sig Not sig Not sig 

3.5 

3 
2.5 

2 

1.5 

1 

0.5 

0 

Power (WIKQ): All movements during ASCBDNG 

Figure 4.16: Bar chart representation of the mean maximum hip, knee, and ankle power during stair 

ascending exercises. 

4.3.5 Impulses 
Table 4.11 and the corre ponding bar chart (Figure 4.17) shows the mean maximum 

impulses observed at the hip, knee, and ankle joints during ascending pha e of all 

movement . At the hip, the ubjects demon trated greater hip tlexion impulse for HOB 

(P < 0.03), 
F (P <0.0 t ), and L L (P <0.05), greater adducti n impul HOB (P 

<0.0 I), 
F (P . 0.0 I). and L · (P <0.0 I . At the knee, th ubjects dem n trated 

(P 
greater knee flexion impulse for llDB (P 0.0 I), I wer knee flexi 

0.0 l ). and gr eater kne • adducti n impul • for I IDB (P <0.00 l ), 
(P <0. 0 I), and 

I SI (P o.o 1 ), c mpan!d to re ular a ·ending. At th· , nklc, only H B produ ed 

si •nificanlly hi rh r dorsif • ion impulse (P 0.0 l) ' mp red to regular a. end in . 
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Table 4.11: Mean (SD) of maximum external hip, knee and ankle impulse during stair ascending 
exercises (n = 10). 

RSW HBH HOB CSF LSL LST 

Hip Resion .624 .643 .764 .953 .786 .627 

Impulse (.277) (.297) (.408) (.303) (.198) (.395) 

(N.m.slkg) Not sig H (22.4•/e) H (52.7•/e) H (26•/e) Notsig 

Hip adduction .751 .820 l.004 1.454 .616 1.259 

Impulse (.495) (.545) (.639) (.648) (.256) (.428) 

(N.m.s/kg) Not sig H (33.7•/e) H (93.6•/.) Notsig H (67.6"/o) 

Knee flesion .742 .687 .894 .459 .579 .637 

impulse (.247) (.230) (.243) (277) (.216) (.164) 

(N.m.slkg) Not ig H (20.S•/e) L (38•/e) Not sig Not sig 

Knee .626 .675 .913 I.I I .718 .928 

Adduction (.363} (.362) (.477) (.384) (.228) (.333) 

impul e 
Not ig 11 (45.S•/.) H (77.3°/•) Not sig H ( 48.2"/o) 

(N.m.s/kg) 
AnkJe 1.383 1.38 1.697 l.471 l.443 1.588 

dorsiResion (.470) (.479) (.522) (.542) (.517) (.464) 

Impulse 
Not sig H (22.7•/.) Not sig Not sig Not sig 

(N.m.s/kg) 

1.8 
1.6 
1.4 

I 1.2 
1 

0.8 
0.6 
0.4 
0.2 
0 

l 
l 

\ 

I 
\ 

hip Flex. hip Add. I knee Flex. knee Add. Ankle Dore!- \ 
flex. 

Impulse (N.m.sll(g): All movements during ASC9DNG I \ 
[jRsw•11H• HOB •cSfll.Sl.19 

Figure 4.17: Bar chart repres nt.ation of the mean maximum hip, knee and ankle impulse during tair 

ascending e ercises. 

4.3.6 Total work 
Table 4.12 and the c rre ponding Bar chart (Figure 4.18) sh w the mean total , rk 

ob erved at the hip. knee, and ankle joint. during a. ending pha e of all m vements. At 

the hip. CSF gen .ratcs higher work ( P 0.0 I) compared to regular ·cending. At the 

knee, llDB 1cncn1tcd higher w rk (P .0 l ), v hilc F (P <. .05) and L L P <0.05) 

zencratcd lower work. c )lllp~m:d to r gular a· ending. At th· ankle, HOB (P 
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LST (P<0.01) generated higher work, and CSF less the work (P<0.05), compared to 

regular ascending. 
Table 4.12: Mean (SD) of maximum external hip, knee and ankle work during stair ascending 

exercises (n = IO). 

RSW HBH HOB CSF LSL LST 

Hip J.434 1.478(.659) 1.589(.768) 1.994{.856) 1.616(. 702) 1.323(.717) 

work (.693) Not sig Not sig H (39.t•/e) Not sig Not sig 

(J/Kg) 

Knee 2.324 2.266(.611) 2.882(.793) 2.014{.635) 2.058(.630) 2.437(.501) 

Work (.<>04) Not sig H (24•/e) L (13.J•/e) L (1 t.4•/o) Not sig 

(J/Kg) 

Ankle t.239 1.237(.466) 1.659(.645) 1.112(.497) 1.407(.617) 1.586(.479) 

work (.500) Not ig H (33.9•/•) L (to.J•/e) Not ig H (28%) 
(J/Kg) 

Knee work Ankle work 

3.5 

3 

2.5 

2 

1.5 

1 

0.6 

0 
Hlpwork 

Total work (J/Kg): All movements during ASCE DING 

(jRSW811H. HOB •C&fll.Slll~ 

Figure 4.18: Bar chart representation of the mean maximum hip, knee, and ankle work during tair 

ascending e ercises. 

4. taircase Exerci e : Descending 

4.4.l Temporal parameters 
Table 4.13 ummarize the mean cadence. foot off, tride time, and peed during the 

de ·c ending phas fall mov ment . 
F h w l wer cadence (P<O.O l) and vel ity 

(P 0.0 I) cc mpar ·d to r iular dcsc nding .No i znif ant differences v er f und f r 

l lBI 1, I IDB. LSI , and t.ST in cadcnc • and velocity mpared to R W . nl HOB 

shows hi ,her foot ofi P 0.0 ) cc mp·trcd to regular de: eendin i, 
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Table 4.13: Mean (SO) of time parameters during st.air descending exercises (n = 10). 

RSW HBll HDB CSF LSL LST 

Cadence 87.2(6.8) 87.59(5.2) 9231(8.6) 72.39(8.1) 82.48( 11.9) 82.71(10.8) 

(steps/min) Not sig Not sig L (17°/o) Not sig Not sig 

Foot off 63.6(2.8) 64.11(3.1) 64.98(2.8) 62.57(2.6) 64.39(2.7) 63.48(2.7) 

(%) Not sig H (2.2°/o) Not sig Not sig Not sig 

Stride 1.39(.11) t.38(.083) 1.32(.111) J.69(.198) 1.50(.256) 1.48(.176) 

time (s) 
Not sig Not sig H (22.3%) Not sig Notsig 

Speed .58(.050) .59(.044) .62(.075) .48(.058) .53(.07) .55(.052) 

(m/) Nol sig Not sig L (17.2°1•) Not sig Not sig 

4.4.2 Angles 
The mean sagittal plane movements of the hip, knee, and ankle joint during descending 

phase of all movements are illustrated in Figure 4.19. All of movements show the same 

trend as regular descending. The hip and knee joints move into flexion and the ankle 

joint into dorsiflexion during the stance phase of all movements. 

Table 4.14 and the corresponding Bar chart (Figure 4.20) summarizes the mean 

maximum angles observed at the hip, knee, and ankle joints during descending phase of 

all movements. Subjects required lower tlexion at the hip for HBH (P<0.05) and HOB 

(P<0.05), and higher hip tlexion angle for CSF (P<0.01) and LSL (P<0.001), compared 

to regular descending. No significant difference in the hip tlexion angle for LST, as well 

as in the knee tlexion angle for HBH, HDB, and LSL, compared to regular descending. 

Subject required greater knee flexion angle for CSF (P<0.0 \) and LST (P<0.05), lower 

ankle d r iflexion angle for C' F (P<O.Ot) and L T (P<0.05), and lower ankle 

plantarflexi n angle for l Sf (P<0.0 I), compared t regular d scending. 
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. .• . . . . . . . . 
<JaiJ eye e (11-,, 

Figure 4.19: Mean sagittal plane angles of the hip, knee, and ankle joint during stair descent phase of 

all exercise (n = I 0). 
Table 4.14: Mean (SD) of maximum hip, knee and ankle angles during stair descending exercises (n 

10). 

RSW HBH llDB CSF LSL LST 

llip nes. 44.32 
50.09 43.51 

(degree ) (12.44) 
(12.0) ( 12.4) 
II 13•;. Not i 

Knee nu. 104.83 
110.21 110.21 

(degrees) (7.72) 
(6.21) (7.8) 
H 12•1. II 12•1. 

Ankledoni- 32.24 
21.63 22.68 

fleL (7.13) 
(5.49) {7.43) 
t 33•;. I z9.1•1. 

33.60 
33.08 30.36 

(5.49) 
(4.97) (7.56) 
ot · I 9.6•/. 

I 
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4.4.3 Moments 

The mean sagittal plane moments of the hip, knee, and ankle joints during descending 

phase of all movements are illustrated in Figure 4.21. At the hip in the sagittal plane, all 

the movements show the same trend as regular descending except for LSL and LST. 

LSL shows a prolonged period of hip flexion until 59% of cycle time. LST shows a 2nd 

short period of extension from foot contact until 7o/c of cycle time. At the knee, all the 

movements show the same trend as regular descending except for LST, and CSF. The 

external moments changed to positive (flexion) early in the stance phase at 9% of cycle 

duration for LST, and lately at 28 % of cycle duration for CSF, compared to regular 

descending. The external ankle moment was positive in stance phase for all movements, 

creating an external dorsitlexion moment. 

. . . . .. . . 
---A----(iijJJ 

[iRsw••H• HOB •estll.Sl•l.3 

Fi ure 4.21: Mean.~ ittal ph1n •moments of th· hip. kn ·.and ankle joint during stair d sc nt ph • of 

all exerci: cs (n • 10). 

·1 he mean frontal plane mmm::nt f th· hip and th kn 'joints during th d nding 

phase of. II mo cmcnts ar · illustrated in figur 4.22. 'J he c. tcrnal hip moments w re 
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positive in stance phase during all movements, creating an external adduction moment, 

except for LSL and LST. For LSL, the external hip moment were positive from the 

beginning of the movement until 52% of cycle duration it turned to negative, creating an 

external abduction moment. For LST, the external hip moment was negative 

(abduction), from the beginning of the movement until 12% of cycle duration when it 

turned to positive (adduction) and remained positive until the end of stance phase. At 

the knee as well, the external moments were positive in stance phase during all 

movements, creating an external adduction moment except for LSL and LST. For LSL, 

the external knee moment was positive from the beginning of the movement until 59% 

of cycle duration when it turned negative, creating an external abduction moment. For 

LST, the external hip moment was negative (abduction), from the beginning of the 

movement until 16% of cycle duration when it turned to positive (adduction) and 

remained positive until the end of the stance phase. 

H urt 4.22: Mc;in frontul plane moments ofthc hip and knc e juint during tair de • m 
phUSl' of oil c ercises (n • 10). 



Table 4.15 and the corresponding Bar chart (Figure 4.23) shows the mean maximum 

external moments observed at the hip, knee, and ankle joints during descending phase of 

all movements. At the hip joint, subjects demonstrated greater external hip flexion 

moments for CSP (P <0.05) and LSL (P <0.0 l ), lower hip flexion moments for LST 

(P<0.001), and greater hip adduction moments for HDB (P<0.05), CSF (P<0.01), LSL 

(P<0.01) and LST (P<0.001), compared to regular stair descending. At the knee, 

Subjects' demonstrated greater knee flexion moments for HDB (P<0.05) and lower 

knee flexion moments for LSL (P<0.01) and LST (P<0.05), compared to regular stair 

descending. In the frontal plane, subjects show greater knee adduction moment for HDB 

(P<0.01), CSP (P<0.001), LSL (P<0.01), and LST (P<0.001), compared to regular stair 

ascending. The ankle dorsiflexion moment was higher for HBH (P<0.05), HOB 

(P<0.001), and LSL (P<0.05) compared to regular stair descending. 

Table 4.15: Mean (SD) of maximum external hip, knee and ankle moments during stair descending 
exercises (n = 10). 

RSW HBH HOB CSF LSL LST 

Hip neiion .918 .9380 .961 1.228 1.31 .342 

(N.m/kg) (.195) (.313) (.270) (.292) (.328) (.134) 

Nol ig ot sig (I (33.8•/.) II (42.7•/e) L (62.7•/e) 

Hip adduction .747 .766 .895 l.047 1.12 1.077 

(N.m/kg) (.177) (.228) (.216) (.155) (.222) (.079) 

Not ig II (91.89/e) II (40.2•/e) ll (5CWe) II (44.2•/•) 

Knee fluion 1.164 1.206 1.304 1.108 1.029 1.046 

(N.m/kg) (.135) (.119) (.176) ( 138) (.149) (.150) 

Not ig ll (12•1.) Not sig I (11.6•/e) I (10.19/e) 

Knee .673 707 .787 .965 .872 1.021 

Adduci ion (.ISi) ( 170) (.148) (.153) (.197) (.171) 

( .m/kg) ol ig 11 (t7•/.) II ( 43.4•/e) 11 (29.6•/e) II (St.7•/e) 

Ankk 1.509 1.637 1.820 1.622 1.767 1.52 

dor ifleslon (.218) (.268) (.296) (.262) (.247) (.257) 

(N.m/kg) 11 (8.S•/e) 11 (20.6•/e) Not ig II (17.t•/e) ot ig 

-~ 
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Figure 4.23: Bar chart representation of the mean maximum hip, knee, and ankle moments during stair 

descending exercises. 

4.4.4 Powers 

The mean powers at the hip, knee, and ankle joints during descending phase of all 

movements are illustrated in Figure 4.24. All the movements showed the same power 

production trend as regular ascending at the hip, knee, and ankle. However, LSL did not 

show the phase of energy production at the hip in the late stance. 

~ 
:t:: .•• 

.. "<\ i\ I\' 1' ""'~ I\' "l"X "J. " 

Flgurr 4.24: M •. 
111 

J'W.mcr ofth •hip. i.11 c. and ankle joint <luring tair d rent ph . • of JI e ercises (n. 

I 0) 
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Table 4.16 and the corresponding Bar chart (Figure 4.25) shows the mean maximum 

absolute powers observed at the hip, knee, and ankle joints during the descending phase 

of all movements. At the hip, only LSL produced greater power (P<0.05) compared to 

regular descending. At the knee, HDB absorbed greater power (P<O.O 1 ), and LSL 

absorbed lower power (P<0.05), compared to regular descending. At the ankle joint, 

both HDB (P<0.01) and LSL (P<0.01) absorbed higher power compared to regular 

descending. 

Table 4.16: Mean (SD) of maximum external hip, knee and ankle power during stair descending 
exercises (n = 10). 

RSW HBH HDB CSF LSL LST 

Hip .82 .757 1.054 1.063 1.20 .872 

power (.32) (.267) (.378) (.590) (.512) (.223) 

(W/Kg) Not sig ot ig Not ig It (46.J•/.) Not sig 

Knee 4.28 4.590 5.044 3.892 3.423 4.313 

Power (l.06) (.945) (.652) (.650) (.678) (.639) 

(W/Kg) Not ig H (17.9•/e) Not ig L (20•/e) Not ig 

Ankle 4.01 4.982 5.954 4.525 6.366 4.143 

power (l.71) (2.637) (2.32) (2.091) ( 1.805) ( 1.764) 

(W/Kg) ot ig II (48.5•/e) Not ig II (58.8•/e) Not ig 

Power (WfKG): All movements during (ESCalJNG 

14·1 ure 4.15: Bar chart reprc ntation of the m n ma imurn hip, knee, and ankle p()\\CT during . tair 

d ·. .cnding c erciscs. 
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4.4.5 Impulses 

Table 4.17 and the corresponding Bar chart (Figure 4.26) shows the mean maximum 

impulses observed at the hip, knee, and ankle joints during the descending phase of all 

movements. At the hip, the subjects demonstrated greater hip flexion impulse for CSF 

(P <0.01) and LSL (P <0.01), and greater adduction impulse HDB (P <0.01) and CSF (P 

<0.01), compared to regular descending. At the knee, subjects demonstrated a greater 

knee flexion impulse for HDB (P <0.001), a lower knee flexion impulse for CSF (P 

<0.05), and a greater knee adduction impulse for HDB (P <0.001), CSF (P <0.001), and 

LSL (P <0.05), compared to regular descending. At the ankle, HDB produce 

significantly higher dorsiflexion impulse (P<0.001), and lower dorsiflexion impulse for 

LST (P<0.05), compared to regular descending. 

Table 4.17: Mean ( D) of maximum external hip, knee and ankle impulse during stair descending 
exercises (n = 10). 

RSW HBH llDB CSF LSL LST 

llip Oesion .624 .586 .739 .860 .970 .269 

Impulse (.342) (.357) (.532) (.370) (.461) (.188) 

(N.m.s/kg) Not sig ot ig II (37.S•/e) H (55.4•/e) I (56.~/e) 

Hip adduction l.039 1.030 l.259 1.395 1.023 1.035 

Impulse (.342) (.354) (.370) (.306) (.366) (.238) 

(N.m.s/kg) ot ig II (2t.2•/e) H (J4.J•/e) Not ig Not sig 

Kneeflnion .907 .923 1.123 .740 .829 .892 

lmpul e (.191) (.172) (.262) (.1579) (.248) (,313) 

(N.m.s/kg) ot ig II (2J.S•/e) I (18.4~.) Not sig ot sig 

Knee .791 .781 .932 1.032 .939 .155 

Adduction (.291) (.327) (.315) (.256) (.380) (.188) 

impulse ot ig II ( l7 .s•;.) II (JO.S•t.) H (18.7•/e) ot ig 

(N.m.slkg) 
Ankle 2.006 2.061 2.557 1.980 1.976 1.734 

dorsiOe ion (.547) (.554) (.776) (.528) (.479) (.437) 

lmpul ot ig 11 (27-'We) ot ~ Not ig I. (13.6•/e) 

(N.m.l/kfC) _ 
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Figure 4.26: Bar chart representation of the mean maximum hip, knee, and ankle impulse during stair 

descending exercises. 

4.4.6 Total work 

Table 4.18 and the corresponding Bar chart (Figure 4.27) shows the mean total work 

observed at the hip, knee and ankle joint during descending phase of all movements. At 

the hip, LSL generates higher work (P <0.05) compared to regular descending. At the 

knee, HOB generates higher work (P <0.0 I), and CSF (P <0.05) and LSL (P <0.0 t) 

generates lower work, compared to regular descending. At the ankle, HOB (P<0.00 J) 

generates higher work, and CSF (P<O.O I) and LST (P<O.O 1) generate lower work. 

compared to regular descending. 

Table 4.18: Mean (SD) of maximum external hip. knee and ankle v ork during tair descending 
e ercises(n= 10). 

RW HBH HDB C F L L LT 

llip .725 .670(.295) .854(.286) .876(.387) .974(.467) 

Work (.388) ot ig Not ig ot i 11 (J4.J•/·) 

(J/Ka) 

Kn J.359 .504(.941) 4.021(.920) 2.937(.613) 2.756(.822) 

Work (1.004) ol lg II (19.7•!.) I (12.6•/•) I (IS•!.) 

(JIKX) 

nklt ,(,95(.885) :t4W(l.250) 1.781(.780) 2. 729( 1.044) 1.557(.378) 

work 
II (J.t.5•/•) I. (JO.J•/.) 'ot ig L( .1•1.) 

(Jll\x) 
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Figure 4.27: Bar chart representation of the mean maximum hip, knee, and ankle work during stair 
descending exercises. 

4.5 Staircase Exercises: Ascending versus descending movements 

4.5.1 Temporal parameters 

Table 4.19 summarizes the mean cadence, foot off, stride time, and speed during ascent 

and descent phases of all movements. Stride time was greater during ascent compared to 

descent for HBH (p<0.05), HDB (p<0.05), and LSL (p<0.01). Both HDB (p<0.05) and 

LST (p<0.01) shows significantly higher foot off during ascent compared to descent. 

The speed of descending was higher compared to descending for all movements [HBH 

(p<0.001), HOB (p<0.01), CSF (p<0.01), LSL (p<0.001), LST (p<0.05)]. The cadence 

was greater during descent for HBH (P<0.05), HDB (P<0.05), and LSL (P<0.001 ), 

compared to ascent. 
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Table 4.19: Mean (SD) of time parameters during stair exercises ascent and descent (n =10). 

Sig. Stride time Sig. Speed Sig. 
•1. 5 mis 

HBH 

ASCENT 80.88(4.8) DE>AS 
6226(1.4) 1.49(.086) AS>DE .48(.024) 

Notsig 
DE>AS 

DESCENT 87.59(5.2) (8.3%) 64.11(3 I) 1.38(.083) (7.4%) .59(.044) (22.9%) 

HDB 

ASCENT 86.58(7.3) OE>AS 
62.61(1.5) OE>AS 

1.4(.114) AS>DE .51(.049) DE>AS 

DESCENT 92.31(8.6) (6.6%) 64.98(2.8) (3.8%) 1.32(.111) (6.1%) .62(.075) (21.6%) 

CSF 

ASCENT 73 04(7.4) 61.9(2.2) 1.61(.5 I) .44(.054) 

DESCENT 
Not sig 62.57(2.6) 

Notsig Notsig DE>AS 

72.39(8.1) 
1.69(.198) .48(.058) (9.1%) 

L.SL 

ASCENT 75.85(11. l) OE>AS 
64.2(3.7) 1.63(.294) AS>DE .44(.064) 

Not sig 
OE>AS 

DESCENT 82.48(11.9) (8.7%) 64 39(2.7) 1.50(.256) (8%) .53(.07) (20.5%) 

L.ST 

ASCENT 7921(5.4) 59 66(1.7) DE>AS 
1.53(. 102) .52(.036) 

Notsig (6.4%) 
Not sig OE>AS 

DESCENT 82.71(10.8) 63.48(2.7) 1.48(.176) .55(.052) (5.8%) 

4.5.2 Angles 

Table 4.20 and the corresponding Bar chart (Figure 4.28) summarize the mean 

maximum angles observed at the hip, knee, and ankle joints during stair ascent and 

descent phases of all movements. Subjects required a greater flexion at the hip during 

ascending for all movements [HBH (p<0.001), HDB (p<0.001), CSF (p<0.001), LSL 

(p<0.001 ), LST (p<0.00 J )] compared to descending. There were no significant 

differences in knee flexion angle between ascending and descending phases of all 

movements. At the ankle joint. subjects required a greater ankle dorsiflexion angle 

during descending for HBH (p<0.001), HDB (p<0.001), and LSL (p<0.05) compared to 

ascending. All the movements showed a greater ankle plantarflexion angle during 

descending lHBH (p<0.001), HDB (p<0.001), C F (p<0.001), LSL (p<0.01), LST 

(p<0.05)] compared to ascending. 
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Table 4.20: Mean (SD) of maximum hip, knee and ankle angles during stair exercises ascent and 
descent (n = 10). 

Hip 
Sig. Katt 

Sig. Ankle 
Sig. Sig. 

Ankle 

FleL Fies. dorsi-OeL plantar-Des. 

(degrees) (degrees) (degrees) (degrees) 

HUH 
ASCENT 71.36(12.7) AS>DE !05.39(5.83) 20.93(325) OE>AS 2.217(5.32) 

Notsig 
DE>AS 

DESCENT 42.74(11.7) (67%) 105.08(6.58) 31.47 (6.94) (50.4%) 33.97(4.06) (53.2%) 

HOB 

ASCENT 69.69(11.5) AS>DE 
!08.05(6.76) 21.19(2.54) DE>AS 26.39(6.71) 

Notsig 
DE>AS 

DESCENT 42.53( 11. 7) (63.9%) 106.48(5.74) 32.18(5.86) (52.3%) 34.26(5.40) (29.8%) 

CSF 
ASCENT I 14.33(1 JJ> I AS>DE 

107 59(8 82) I 20.61(3.98) 23.5(7.56) 

Not sig I 21.63(5.49) Not sig DE>AS 

DESCENT I 50 09(12.0) I (48.4%) 110.21(6.21) 33.08(4.97) (40.8%) 

I.SL 
ASCENT 17466(11.2) I AS>DE I 99.14(8.9) I OE>AS 1 27.78(4.40) DE>AS I 23.69(7.05) DE>AS 

DESCENT I 63 1(10.3) I c18J%) r 104 13(1.03> I (5%) I 30.55(6.57) (10%> I 32.04(6.20> (35.2%) 

tsr 
ASCENT I 6681c11.s> I AS>DE I 115.54(6.9) I I 2425(4.69) I I 21.62(9.77) 1 DE>AS 
DESCENT I 43.51(12.4) I (53 1•Ai> I 11021c1.8> l Not sig I 22.68(7.43) l Not sig I (40.4%) I 30.36(7.56> 

140 
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hip flex. knee flex. ankle dorciflex. I Ankle planterflex. 

Angles (degrees): All exercises during ASCENDING (full colored) and 11 
oesceoNG (upward diagonal) 

l1t11H• HOB •est •LSl.•i.$1 

Figure 4.28: Bar chart representation of the mean maximum hip. knee, and ankle angles during tair 

exercise ascent and descent. 

4.5.3 Moment 

Table 4.21 and th corre ponding Bar chart (Figure 4.29) . how the mean maximum 

external moments observ d t th· hip, knee. and ankle joint during tair ascent and 

de. cent phase. of all m vcments. At the hip. ·ubject dem n trated a greater xt mal 

hip Ile ion moment durinu de ·nding for L L (P < .05), and I wer e. t rnal hip 

fl ·xion mom ·nt for 1$1 (P · 0.01). compared to a. nding pha ·e. h . temal hip 
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adduction moments were greater during descending for LSL (P <0.001 ), and lower for 

LST (P <0.0 I), compared to ascending phase. At the knee, all the movements required 

higher flexion moment during descending [HBH (p<0.01), HDB (p<0.01), CSF 

(p<0.001), LSL (p<0.01)] except LST, which showed no significant difference between 

ascending and descending. The external knee adduction moments were greater during 

descending for LST (P <0.05), and lower for HDB (P <0.05), compared to ascending 

phase. At the ankle, all the movements required higher dorsiflexion moment during 

descending [HBH (p<0.05), HDB (p<0.05), CSF (p<0.01), LSL (p<0.01)] except LST, 

which shows no significant difference between ascending and descending. 

Table 4.21: Mean (SD) of maximum external hip, knee and ankle moments during stair exercises ascent 
and descent (n = IO). 

Hip Sig. Hip Sig. Knee Sig. Knee Sig. Ankle Sig. 

fkL Add. fkL Add. Dorsi 

(N.m/ (N.m/ (N.ml (N.m/ -nH. 

kg) kg) kg) kg) (N.m 
/k2\ 

HBH 
ASCENT 880 604 .884 720 1.277 

( 191) (2561 Not sig 
(263) OE>AS ( 131) Notsig 

(1941 OE>AS 

DESCENT 9380 
Nol 1g .766 1.206 (36.4"•> .707 1.637 (28 2°·o) 

(313) (228) (. 119) {.170) (268) 

1108 
ASCENT 945 724 1.052 907 1.452 

(213) ( 259) Not ig 
(.297) OE>AS (165) AS>OE ( 173) OE>A 

Notsig 
DESCENT 961 895 1.304 (24°0) 787 (152%) I 820 (25.3°'•) 

(2701 (2161 {176) I 148) (296) 

CSF 
ASCENT 1.272 1179 643 975 1.243 

(2821 (287) Not ig 
(271) OE>AS ( 144) No1 srg 

(291) OE>AS 

Not ig I 047 1.108 (72J0o) 965 1622 (38.5°0) 
DESCEN1 1.228 ( 138) ( 153) (262) 

(292) (, 155) 

l..SL 
ASCFNT I 038 641 719 1.009 1.357 

(202) OE>AS c20Ql OE> ( 255) OE>AS (.206) Notsig 
( 249) OE>AS 

DESCENT UI (26 2°0) I 12 (74 7°0) 1.029 (43 m> 872 1.767 (30 2•.) 

(3281 (222) ( 149) (.197) ( 247) 

tsr 
ASCFNT 642 I 423 965 .849 1.278 

(2112) DF. (,173) A OE (.273) Not .ig 
(.120) OE>AS {220) 

Not 1g 

DESCl'Nl 342 (87 ~·) I 077 (32 1•.) 1.046 1021 (20 3°1) 1.52 

(.1501 ( 171) 1.257) 
(. l.l4 l ( 07')) 
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Figure 4.29: Bar chart representation of the mean maximum hip, knee, and ankle moments during stair 

exercises ascent and descent. 

4.5.4 Powers 

Table 4.22 and the corresponding Bar chart (Figure 4.30) shows the mean maximum 

absolute powers observed at the hip, knee, and ankle joints during stair ascent and 

descent phases of all movements. At the hip, both HBH (P<0.00 I) and CSF (P<0.05) 

required greater power during ascending compared to descending. At the knee, all the 

movements required higher power during descending [HBH (p<0.01), HDB (p<0.01), 

CSF (p<0.001), LSL (p<O.Ol), LST (p<0.05)] compared to ascending. At the ankle, all 

the movements required higher power during descending (HBH (p<0.05), HOB 

(p<0.01), CSF (p<0.05), LSL (p<0.001)] except LST, which shows no significant 

difference between ascending and descending. 
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Table 4.22: Mean (SD) of maximum external hip, knee and ankle power during stair exercises ascent and 
descent (n = 10). 

Sig. Sig. 
Sig. 

HBH 

ASCENT 1.512(450) AS>DE 
2.719(.607) DE>AS 2.794(.767) DE>AS 

DESCENT .757(.267) (99.7%) 4.590(945) (68.8°'o) 4.982(2.637) (78.3%) 

llDB 

ASCENT 1.456(.403) 2.878(. 779) DE>AS 3273(.619) 
Notsig 

DE>AS 

DESCENT 1.054(.378) 5.044(.652) (75.3%) 5.954(2.32) (81.9%) 

CSF 

ASCENT I 957(.560) AS>DE 
2.548(.714) DE>AS 2.432(1.058) DE>AS 

DESCENT 1.063(.590) (84.1°..'o) 3.892(.650) (52.7%) 4.525(2.091) (86.1%) 

L.sL 
ASCENT l 720(.731) 2.579(.637) DE>AS 3.186(.863) 

Not sig 
DE>AS 

DESCENT 1.20(.512) 3.423(678) (32.7%) 6.366( 1.805) (99.8%) 

LST 
ASCENT l 153(.566) 2.728(.665) DE>AS 3.028(.970) 

DESCENT .872(.223) 
Notsig 4.313(.639) (58.1%) 4.143(1.764) 

Not sig 

7 
6 

5 
4 

3 
2 
1 
0 

Hip knee Ankle 

Power (W/Kg): All exercises during ASCEHJING (full colored) andl 11 
DESCBIJING (upward diagonal) __'.J 

Figure 4.30: Bar chart representation of the mean maximum hip, knee, and ankle power during tair 

exercises ascent and descenL 

4.5.5 lmpul es 

Table 4.23 and the corre ponding Bar chart (Figure 4.31) show the mean maximum 

b. erved at the hip, knee, and ankle joint during tair a ent and d ent 

phases of all m vcmcnts. At the hip, . ubjc t. demon tratcd a greater hip fl xi n 

impuls during a ccnding for L. T (P <0.0 I), compared to de. nding pha . 1 he hip 

adduction impul · • v as grcat1.:r during d sccnding for L L (P <0.0 I) c mpared t 

asc ending phase. At th· knee, all th· movements r quired high r Ile: i nm ment during 
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descending [HBH (p<0.05), HDB (p<0.05), CSF (p<O.Ol), LSL (p<0.01), LST 

(p<0.05)]. The knee adduction impulse was greater during descending for LSL (P 

<0.05) compared to ascending phase. At the ankle, all the movements required higher 

dorsiflexion impulse during descending [HBH (p<0.001), HDB (p<0.001), CSF 

(p<0.01), LSL (p<0.001)] except LST, which shows no significant difference between 

ascending and descending. 

Table 4.23: Mean (SD) of maximum external hip, knee and ankle impulse during stair exercises ascent 
and descent (n = IO). 

lhp Sig. Hip Sig. Knee Sig. Knee Sig. Ankle Sig. 

Flex. Add. Flex. Add. Dorsi- 

(N.m.s/ (N.m.s (N.m.s (N.m.s flex. 

kg) /kg) /kg) /kg) (N.m.s/ 
l<o\ 

JIBH 
ASCENT 643 .820 .687 .675 1.38 

(297) (.545\ Not rg 
(230) DE>AS (362) Not sig 

{479) DE>AS 

DESCENT .586 
Notsig 1.030 923 (34 4%) 781 2.061 (49.3%) 

(357) (354\ ( 172) (327) (.554) 

llDB 

ASCENT 764 I 004 894 913 1697 

(408) (639) Not ig 
(243) DE>AS (477) Not sig 

(522) DE>AS 

DESCENT 739 
Not srg 1 259 I 123 (25 6%) 932 2.557 (50 7%) 

(.532) (.370l (262) (315) (.776) 

CSF 
ASCENT 953 1.454 459 111 1471 

(.303) ( 648) Not ig 
(277) DE>AS (384) Not sig 

(.542) DE>AS 

Not s1g 740 (612%) 1 032 
DESCENT 860 1.395 

I 980 (37.2°0) 

(370) (306) ( 157) (256) (528) 

l.SL 
ASCENT 786 616 579 .718 1443 

( 198\ ( 256) DE>AS (216) DE>AS (228) DE>AS (517) DE>A 

DESCENT .970 
Nots1g I 023 (66.1°•) 829 (43 2°1-) 939 (30.8°0) I 976 (36 9"e) 

(.461) (.366) (248) 1380) ( 479) 

LST 
ASCFNT 627 I 259 637 928 1.588 

( 395) A. DE (428) { 164) DE>AS 1333) Nots1g 
( 464) 

Not srg 
Not 1g 892 (40"o) 755 1.734 

OL'SCENT 269 (33 1°0) I 035 
( 188) (238) (313) ( 188) ( 437) 

3 

2.5 

2 

::~ 11t1llia 1d~-l lll .. 11•n I I 
1 hip Add kne• Rex. kne• Add. Ankle Dore~ 

I 
h p Rex. . flex. I 

Is• (N m.sn<Q): All •••re ls•• during ASCENJING (fult colored) and 
tmpu oescaoNG(upward dl.9gonal) 

I• I ure 4.J I: Bar chart r pr· 
impul. ' during tair 
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4.5.6 Total work 

Table 4.24 and the corresponding Bar chart (Figure 4.32) shows the mean maximum 

total work observed at the hip, knee, and ankle joints during stair ascent and descent 

phases of all movements. At the hip, all the movements required higher work during 

ascending [HBH (p<0.001), HOB (p<0.01), CSF (p<0.001), LSL (p<0.01), LST 

(p<O.O 1 )] compared to descending. At the knee, all the movements required higher work 

during descending [HBH (p<0.01), HDB (p<0.001), CSF (p<0.001), LSL (p<0.01), LST 

(p<0.01)] compared to ascending. At the ankle, all the movements required higher work 

during descending [HBH (p<0.001), HDB (p<0.001), CSF (p<0.05), LSL (p<0.001)] 

except for LST, which showed no significant difference between ascending and 

descending. 

Table 4.24: Mean ( D) of maximum external hip, knee and ankle work during stair exercises ascent and 
descent (n = IO). 

!hp work Sig. Knee work Sig. Ankle work Sig. 

JI J JI 

I 478( 659) DE 2 266( 611) DE>AS I 237(466) DE>AS 

670( 295) (120.6°0) 3504(.941) (54.6~·) 2.695(.885) (1179%) 

1.589(768) AS>DE 2 882(793) DE>AS I 659( 645) DE>AS 

854( 286) (86.1°10) 4 021( 920) (39.5%) 3439(1 250) (107 3°0) 

I 994( 856) AS>DE 2 014{635) DE>AS 1.112(.497) DE>AS 

876(387) (127 6°·o) 2 937(613) (45 8°10) I 781( 780) (60.2°0) 

J 616(702) DE 2058( 630) DE>AS 1407(617) DE>AS 

974(467) (66"•) 2.756( 822) (33 9°0) 2 729(1 044) (94°0) 

1.323(717) AS>DE 2 437(.501) DE>AS I 586( 479) Not ig 

.745( 224) (77 6~1) 3 227( 725) (32.4"•) 1557(378) 

11811 
ASCENT 

HOB 
D, ENT 

ASCENT 
D· ENT 
CSF 
ASCENT 
DESCENT 

4.5 
4 

3.5 
3 

2.5 
2 

1.5 
1 

0.5 
0 Ank .. work Knee work 

Hip work 

1 
work (J/Kg): All •••re••• during ASCENDING (full cok>r•d) •nd 

Tota oesce«"NG ( upw•rd dill gons I) 

ir 
l•i ur 4.32: Bttr chart rq)f' 
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4.6 Slim Versus Obese people: Ascending 

4.6.1 Temporal parameters 

Table 4.25 summarizes the mean foot off, stride time, and speed during ascent phase of 

all movements for obese and slim people. Obese people require longer Stride time for 

RW (p<.05), HBH (p<.05), HDB (p<.05), CSF (P<.05), LSL (p<.05), and LST (p<.001) 

compared to slim people. Obese people show greater foot off for all movements [RW 

(p<.05), HBH (p<.01), HDB (p<.05), CSF (P<.05), LSL (p<.05), LST (p<.001)]. The 

speed was higher for slim people compared to obese people for all movements [RW 

(p<.05), HBH (p<.01), HDB (p<.01), CSF (p<.05), LSL (p<.01), LST (p<.001)]. 

Table 4.25: Mean (SD) of time parameters during stair ascending of all movements for slim (n = 
IO) and obese (n = IO) people. 

foot off Sig. 
Stride Sig. 

Speed Sig. 
•f. time 1 m/s 

RW 
SLIM 624(1.7) S<O 15(089) S<O .49(.037) S>O 

OBESE 64 3(23) (3%) 1.70(.267) (I JJ•!o) .42(063) (16.7%) 

HBH 

SLIM 62 26(1 4) S<O 1.49(.086) S<O .48( 024) S>O 

OBESE 65 08(1.9) (4 5°·•> I 69(283) (13.4%) 42(069) (14.3~o) 

llDB 
SLIM 62 61(1.5) S<O l.4{.114) S<O 51(.049) S>O 

OBESE 64 94(24) 0.1~•> t.63( 263) (16.4%) 42(062) (21.4° o) 

CF 
SLIM 61.9(2.2) S<O 167(.51) S<O 44(054) S>O 

OBESE 6431(2.6) (3 ~·> I 93( 271) (18•0) 38( 049) (15.8°0) 

LSL 
Sl.IM 64 2(3.7) I 63(.294) S<O 44{.064) S>O 

OBESE 67.5(2.I) I 91( 254) (17 1•0) 37(.051) (18.9'!o) 

l if 
SLIM 59b6(1.7) 1.53( 102) S<O 52( 036) S>O 

OBESE 63 39(2 2) I 81(.161) (183"·) 40( 022) (30-o) 

4.6.2 Angl 
1 he Mean sagittal plane movement· of the hip, knee, and ankle joint during ascending 

phase of all movement for slim and obese pe pie arc illu urated in Figure 4.33. Table 

4.26 and the corresponding Bar chart (Fi~ure 4.34) ·ummari1c. mean maximum angle 

obs rvcd at th. hip, knee, and ankle joints during .tair ascent phase of all movements 
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for slim and obese people. No significant differences were found between obese and 

slim people in the hip/knee tlexion angle and in the ankle dorsiflexion and 

plantartlexion angles. However, obese people require lower knee tlexion angle for LST 

(P<.01) compared to slim people. 

ftigur 
4.JJ: 

Mean angle power of the hip. knee. and ankl ·joint during lair ascent phas e of all e crcises 

A) Slim (n 10). B) Obc · (n IO). 
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Table 4.26: Mean (SD) of maximum hip, knee and ankle angles during stair ascending of all moveme t 
for slim (n = 10) and obese (n = 10) people. n s 

llip FleL J<Jltt fleL 
Ankle Ankle 

(degrees) 
lg. (degrees) 

ig. donj.ftu. Sig. pbntar-OeL Sig. 
(dttrus) (degrees) 

RW 
SLIM 71 97(12.47) Not I 07 22(5.95) I Not 20.69(3.05) Not 22.88(4.75) I Not 
OBESE 63.80(11.13) sig 104 23(4.86) sig 22.53(6.37) sig 22.30(8. 76) sig 

llBH 
SLIM 71.36(12.7) Not 105.39(5.83) Not 20.93(3.25) Not 22.17(5.32) Not 

OBESE 63.03(133) sig I 04.04(5.57) sig 23.51(7.23) sig 23.91(8.45) sig 

HDB 
SLIM 69 69(11.5) Not I 108.05(6.76) Not 21.19(2.54) Not I 26.39(6.11) I Not 
OBESE 61.45(10.6) sig I 104.25(4.91) sig 24.53(6.65) sig I 24.54(8.37) I sis 

CSF 
SLIM 74.33(11 J) Not I 107.59(8.82) I Not I 20.67(3.98) I Not I 23 .srr.ss > I Not 
OBESE 67.54(10.3) sig I 104.42(1.18) l sig I 25.12(1.01J l sig I 22.6(1.15) l sig 
LSL 
SLIM 74 66(11.2) Not 

I 99 14 (8.9) S>O I 21.18(4.40) I Not I 23.69(7.05) I Not 

OBESE I sig I 87 08(9.5) (13.8 I l sig I 24.71(7.28) I sig 
6515(11.0) 

%) 34.17(8.35) 

LST 
SLIM 66 87(11.8) T Not I 11554(6.9) Not I 24.25(4.69) I Not I 21.62(9.11) I Not 
OBESE 63 86(12.2) l s1g I I 09 63(5.7) sig I 28.16(6.15) I sis I 22.29(6.61 > l sig 

140 
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hip flex. 
Ankle 

planterflex. 

Angles (degrees): All movements during ASCENDING, Slim (full 
colored) and Obe98 (downward diagonal) 

knee flex. 

I I 

Figure 4.34: Bar chart rcpre entation of the mean maximum hip, knee. and ankle angles during tair 
ascending of al I movements for slim and obese people. 

4.6.3 Moment 
he mean sagittal plane m ment of the hip, knee, and ankle joint and mean ( D) 

frontal plane rn m mts of th hip and the knee joint during a cending phas of all 

movements for obese and slim pc pl· are illustrat d in Figure 4.35 and Figur 4.36. 

rcspc ·tivcly. 
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Figure 4.35: Mean sagittal plane moments of the hip, knee, and ankle joint during stair ascent phase of 
all exercises. A) Slim (n"'IO). B) Obese (n-=10). 
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Figure 4.36: Mean frontal plane moments of the hip and knee joint during stair ascent 
phase of all exercises. A) lim (ff""10). B) Obese (n=IO). 

Table 4.27 and the corresponding Bar chart (Figure 4.37) shows mean maximum 

external moments observed at the hip, knee and ankle joint during stair ascent phase of 

all movements for obese and slim people. At the hip, no significant differences in the 

hip flexion moment were found between obese and slim people for all movements. The 

external hip adduction moments for LSL (P <.O 1) was greater for obese people 

compared to slim people. At the knee, obese people require lower flexion moment for 

RW (P<.05), HBH (p<.05), and HOB (p<.05) compared to slim people. The external 

knee adduction moments for LST were lower (p<.05) for obese people compared to 

slim pc pie. At the ankle, slim people required higher dorsiflexion moment for HOB 

(p<.O I), . F (p<.05), L L (p<.05), and L T (p<.O l) compared to obese people. 
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Table 4.27: Mean (SD) of maximum e~ternal hip, knee and ankle moments during ascendin of 
movements for slim (n =IO) and obese (n = 10) people. g all 

Hip 
Hip Kuce Kott 

Ankle 

Flex. 
Add. Flu. 

Dorsl- 

Sig. (N.m/ Sig. Sig. 
Add. 

(N.m/k 
(N.m/ (N.m/ 

Sig. fies. Sig. 

g) 
kg) kg) kg) 

(N.m/ 

RW 

ke) 

SLIM 
.893 552 878 .695 1.279 

(.199) Nots1g 
(23Jl Not sig 

(240) S>O {.151) (.193) 

OBESE 
.907 .638 .574 (53%) .8147 

Notsig 1.09 Notsig 

1.2551 (.165) 1.337) f.152) (.218) 

HBH 

SLIM 
.880 .604 .884 .720 1.277 

(.191) Notsig 
{.256) (.263) S>O (.131) (.194) 

.928 .687 
Not sig .5653 (56.5%) 

Not sig . Not sig 

OBESE 

.831 1.159 

(275) (.187) 1362) l.175) (.220) 

HOB 

SLIM 
945 724 J.052 .907 1.452 

(213) Not sig 
(259) Not sig 

(.297) S>O (.165) (.173) S>O 

OBESE 
896 877 .698 (50.7%) .936 

Not sig 1.230 

(264) ( 113) (.355\ 1.176) (.)48) 
(18%) 

CSF 

SLIM 
1.272 1.179 643 .975 1.243 

(282) Notsig 
(287) Not sig 

(271) 1.144) (.291) 

1.235 1.151 399 
Nol sig Nol sig S>O 

OBESE 

.985 1.010 (23.1%) 

1401) ( 160) (.253) 1.198) (.) 33) 

LSL 

SLIM 
I 038 641 719 1.009 1.357 

<202) No1.ig 
(209) <O (255\ Notsig 

(2061 (249) S>O 

1016 .902 (40 1••> 486 
Notsig 

OBESE 

1.070 1.076 (261%) 

(3831 (172) (326) 1.149) (2121 

tsr 
SLIM 

642 1.423 965 849 1.278 

(262) Not ig 
( 173) Nol 1g 

( 273) . Not ( 120) .S>O (220) S>O 

OBESE 
.571 I 293 842 sig .727 (16.8%) .992 (28 8%) 

(229) ( 145) (367) ( 121) 1.199) 

1.6 
1.4 
1.2 

1 
0.8 
0.6 
0.4 
0.2 
0 

hip Flex. 
knee Flex. knee Add. Ankle Dorcl~ 

nex. 

Moment (N.m/Kg): All movements during ASCENDING, Slim (full 
colored) and Ot>e• (downward diagonal) 

hip Add. 

ljRSW••H• !108 •est I LS] 
Fi ure 4.37: Bar chart r ·pr~'11tat_i< n of th mean maxi.mum hip, knee, and ankle moments during 

sccndmg of all mo' cnu:nts f< r slim nd obe: people. 

4.6.4 Powe 
'I h mean powers at th hip, knee. and ankl joint during a cending pha of all 

mew ernents for obc: c and slim pc pl· ar • illu. tratcd in Figur 4.38. Tabl 4.28 and th 

corrcsp, ndine B. r chart ( il!ur 4.39) . h \ s mean maximum ab lute power 
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observed at the hip, knee and ankle joint during stair ascent phase of all movements for 

obese and slim people. At the hip, obese people produce lower power for CSF (P<0.01) 

compared to slim people. At the knee. no significant differences between obese and slim 

people were found for all movements. At the ankle, slim people produce greater power 

for RW (p<.05), HDB (p<.01), LSL (p<.05), and LST (p<.01)], compared to obese 

people. 

[A: Slim ] 
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Table 
4.2S: 

Mean ( D) of maximum external hip, knee and ankle power durin ta" • movemonlS f oc slim (n " t O) and obe.e (n " IO) peoples s tr •sceruhng of •II 

RW 

Hip 
Ankle 

power Sig. 
Sig. power Sig. 

I 56( 47) 
2 64(.62) 

2 87{.87) 

Nots1g 
Not srg 

S>O 

124(.44) 
235(.60) 

2.00(.56) 
(43.5%) 

I 512( 450) 
2719(.607) 

2.794{.767) 

Notsig 
Not sig 

Not sig 

I 271( 438) 
2.397(.574) 

2.244(.659) 

I 456( 403) Notsig 
2 878(.779) 

3.273(.619) S>O 
Nol sig 

1.123( 370) 
2 613(.445) 

2.430(.578) (34.7%) 

1.957(.560) S>() 
2.548(.714) 

2432(1.058) 

tJ61(JIO) 
(43 3• •• ) 2 446(.527) 

Notsig 
Notsig 

I 759{.850) 

1.720(.731) Not ig 
2.579(637) 

3.186(.863) S>O 
Notsig 

1.399(496) 
2 456(423) 

2.277(843) (40%) 

I 153(5b6) 
2.728(665) 

3028(.970) S>O 

Not.is 
Notsig 

795( 270) 
2368(.718) 

I 765(628) 
(716%) 

OBESE 
SUM 

HBH 

OBESE 
SLIM 

noe 
SLIM 

OBl E 
SLIM 

LSL 

SLIM 

I 3.5 

I 
3 

2.5 

I 2 

I 1.5 

1 
0.5 

I 
\ 
l 

Ankle 

Power (W/Kal' All movem••'" during ASCENDING, Sllm {full 
colored) and ()be• (downward diagonal) 

Hip 

>'i ure 4.39: Har chart "P"-"'nta1ion of oh• '""'" ma imum hip. kJ>ee, and anlJ pOW"' during sl3ir 

ascending of ull mo\crn ·nt for Jim und obe. ·people. 

Tabl 4.29 and the cc rr·'panding B r chart (Figure 4.40) . h w the mean ma: imum 

impul ·s obser ed ,11 th. hip. kn • and ankle joinl' during stair a c nt ph e of all 

4.6.5 lmpul 

m ivcmen1' for, be and slim pc 1pl . t th hip. slim subj<'<l dem n trated a greater 

hip tl ·i >11 impul Ii r (SI· (P ,0 ) JUd I, I. (P -<.05). c >1npared to be pc pie. 

hip adductu n i111pt1i"' v ere lo" ·r [or the obc pc pl for • F (p.05<) and T (P 82 



<0.05) compared to slim peolpe. At the knee, obese people require lower flexion 

impulse for RW (P<.01), HBH (p<.01), HOB (p<.001), and LSL (P<.01), compared to 

slim people. The external knee adduction impulses of CSF (p<.01) and LST (p<.05) 

activities were lower for obese people compared to slim people. At the ankle, obese 

people required lower dorsiflexion impulse for all the movements [RW (p<.01), HBH 

(p<0.05), HOB (p<0.01), CSF (p<0.01), LSL (p<0.01), LST (p<.01)], compared to slim 

people. 

Table 4.29 Mean (SD) of maximum external hip, knee and ankle impulse during stair ascending of all 
movements for slim (n = 10) and obese (n = 10) people. 

Knee Kutt Ankle 
Hip Hip Doni- 
flleL Add. FkL Sig. 

Add. Sig. fkL Sig. ig. Sig. (N.m.s/ (N.m. 
(N.m.a/ (N.m.a/ (N.m.s 
kg) kg) kg) s/kg) /l<o\ 

_RW 
624 751 742 S>O 

626 I 383 
SUM (277) (495) (247) (.363) ( 470) S>O 

Not sig Notsig (118.9 Not sig 
416 546 339 %) 461 .846 (63.5%) 

OBESE (.166) (.189) ( 196) (143) (.222) 

11811 
643 ,820 687 S>O 

.675 138 
SLIM ( 297) (545) (230) (106.9 

(362) Notsig (.479) S>-0 
Not sig Not sig .332 481 910 (5 l.6"'o) 

461 .584 "•) 
OBESE (217) ( 160) (233) (.1321 (201) 

HOB 
764 I 004 894 913 1.697 

S>O 
SUM ( 408) (639) ( 243) (110 4 

(477) 
Notsig 

(.522) S>-0 
Not sig 

450 
Not s1g .741 425 ~-) 582 I 004 (69°0) 

OBESE (.241) (.161) (247) ( 153) (.206) 

CSF 
1.454 459 I II 1.471 

SLIM 953 (384) S>-0 ( 542) 
(.303) S>O ( 648) S>O ( 277) Not rg S>-0 

(50 3°0) ,973 (49 4°io) 265 715 (55.2°0) .885 (66.2~o) 
634 ( 136) (.131) BEE (280) (.128) ( 236) 

'-"" .579 .718 1.443 
.786 616 S>O (228) (517) 

SLIM ( 198) S>() (256) (.216) (1032 Not sig S>-0 
Not ig .586 793 (82°0) 

c«•o) 662 .285 ~-> 
OBfSE .546 ( 232) (.180) ( 102) 

( 265) (.184) 

rsr 637 928 1.588 
627 I 259 (.164) ( 333) S>O (464) S>O SLIM (,J95) ( 428) S>() Not 1g 

Not 1g (39 , •• , .452 .584 (58 9"t) .899 (76.M8) 

OBIA'il\ 
4()<) .90~ (242) (.172) (248) 
( 345) ( 172) 
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1.8 ,-------------------~ 
1.6 
1.4 
1.2 

1 
0.8 
0.6 

knee Add. Ankle Dorci- 
1 flex. 

I Impulse (N.m.slKg): All movements during ASCENDING, Slim (full 
colored) and Obese (downward diagonal) 

l•RSW9ttff HOB •CS!' .ISl.LSj 
Figure 4.40: Bar chart representation of the mean maximum hip, knee, and ankle impulse during stair 
ascending of all movements for slim and obese people. 

4.6.6 Total work 

Table 4.30 and the corresponding Bar chart (Figure 4.41) shows the mean maximum 

total work observed at the hip, knee, and ankle joints during stair ascent phase of all 

movements for obese and slim people. At the hip, slim people required higher work for 

all the movements [R W (p<.05), HBH (p<.05), HOB (p<.05), CSF (p<.O I), LSL 

(p<.0 I), LST (p<.05)] compared to obese people. At the knee, slim people required 

more work for all the movements [RW (p<.001), HBH (p<.01), HOB (p<.001), CSF 

(p<.O I), L L (p<.O J ), LST (p<.00 I)] compared to obese people. At the ankle, lim 

people required more work for all the movements [RW (p<.01), HBH (p<.01), HOB 

(p<.01), F (p<.01), LSL (p<.01), L T (p<.OOJ)] compared to obese people. 
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Table 4.30: Mean (SD) of maximum exte~al hip, knee and ankle work during stair ascendin 
movements for slim (n = 10) and obese (n = IO) people. g of all 

flip work ig. 
Knee work I Anklework 

(J/Kv\ (J/tu.l Sig. (J/Kl!I Sig. 

RW 

SLIM 1 434(.693) S>O 2.324( 604) I 1.239(.500) S>O S>O 

OB E .783(.159) (83.1°0) 1.294(.343) I c19.6%) I .611(.258) (102.8%) 

llBH 

SLIM 1.478(659) S>O 2.266(.611) I 1.231(.466) S>O S>O 

OBESE 809(.205) (82.7°~) 1.341 (.402) (69%) I .684(282) (80.8%) 

HOB 

SLIM 1589( 768) S>O 2.882(. 793) I S>O I 1.659(.645) S>O 

OBESE 783(289) (102.9"1o) 1.557(.367) (85.1%) I . 796(.339) (108.4%) 

CF 

SLIM 1994(856) S>O 2 014(.635) S>O I 1.112(.497) S>O 

BESE 925(207) (115 6%) 1 115(.309) {80.6%) I .520(.118) (113.8%) 

LSL 

LIM 1616(702) I S>O 2 058(.630) S>O I 1.401c.611> I S>O 
OBESE 794( 170) ( IOJ.5°1o) I 200(.383) {71.5%) I .681(.213) (104.8%) 

LST 

!IM I I 323( 717) S>O 2 437(.501) I S>0 I 1.586(.479) S>O 

Bl' I· I 640( 167) (106.7°0) I 277(.304) (90.8%) I .698(291 > (127.2%) 

3.5 

3 

2.5 

2 
1.5 

1 

0.5 

0 
Hip work Knee work Ankle work 

Total work (J/Kg): All movements during ASceM)ING, Slim (full colored) and 
Obese (downward diagonal) 

[jRSW.llH. HOB •estllSl•IS! 
Figure 4.41: Bar chart repre cnt.ation of th m n maximum hip, knee, and ankl work during tair 
ascending of II movement for. lim and obese people. 

4. 7 lim Ver u be e People: De cending 

4.7.1 Temporal parameter, 

Table 4.3 l summarit the mean foot off. trid time, and peed during d c nt pha 

of II mo cm mts f( r obese and slim people. bese peopl r quir longer trid time f r 

all th 
1110 

.mcm IR (p .0 ). 1 IBI I (p .05), I IDB (p<.05), F (p<.05), L l 
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(p<.O I), LST (p<.O 1 )] compared to slim people. No significant differences were found 

in the stance phase between obese and slim people. The speed was higher for slim 

people compared to obese people for all the movements [R W (p<.05), HBH (p<.05), 

HOB (p<.05), CSF (p<.05), LSL (p<.01), LST (p<.01)]. 

Table 4.31: Mean (SD) of time parameters during stair descending of all movements for slim (n = 10) 
and obese (n = I 0) people 

Foot off Sig. 
Stride Sig. Speed 

•;. time s mis Sig. 

RW 
SLIM 63 6(2.8) 1.39(.11) S<O .58(.050) S>O 

OBESE 643(2.0) 
Notsig 

1.57(. 192) (12.9%) .52(.070) (l J.S•/a) 

11811 
SLIM 64 11(3.1) 1.38(.083) S<O .59(.044) S>O 

OBESE 65.65(2.50) 
Notsig 

1.57(.250) (13.8%) (13.5%) .52(.079) 

HOB 
SLIM 64 98(2 8) 132(.111) S<O .62(.075) S>O 

6635(2.58) 
Notsrg 

I 52(.221) (15.2%) .53(.075) (17%) 
OBESE 

CSF 
SLIM 62.57(2.6) Not sig 

1.69(.198) S<O .48(.058) S>O 

OBESE 6437(2 9) 1.86(.177) (10.1%) .41(.065) (171%) 

l.SL 
SLIM 6439(27) I 50( 256) S<O .53(.07) S>O 

66 42(3 JS) 
Notsrg 

1.88(.287) (25.3%) .41(.054) (29.3%) 
OBESE 

Uff 
SLIM 6148(2 7) I 48( 176) S<O .55(.052) S>O 

Notsrg 
I 74(.194) (17.6%) .47(.066) (17"-'o) 

OBESE 6556(2 70) 

4. 7.2 Angles 

The mean sagittal plane movements of the hip, knee, and ankle joints during ascending 

phase of all movements for lim and obese people are illustrated in Figure 4.42. Table 

4.32 and the c rre ponding Bar chart (Figure 4.43) summarizes the mean maximum 

angle ob rved at th hip, knee, and ankle joint during stair descent phase of all 

movement for .lim and bese pe pie. No ignificant difference were found between 

obcs and slim pc pl in th hip/kn flexion angle and in th ankle d rsiflexi n and 

plantarfl xion angl s. 
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A:Slim 

~--..L---~-(J~(%) 

[[iRsw•nH• HOB • CSf 11.S1.111Sj 

Figure 4.42: Mean sagittal plane angles of the hip, knee. and ankle joint during stair descent phase of 
all exercises. A) Slim (n JO). B) Obese (n 10). 
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Table 4.32: Mean (SD) of maximum hip, knee and ankle angles during descending of all 
slim (n = IO) and obese (n = 10) people. movements for 

llipOc:x. Knee fleL 
Auklc: Ankle: 

(degrees) ig. (degrees) 
Sig. dorsi-Oc:x. Sig. plantar-flc::a:. Sig. 

d rees d 

RW 

rees 

LIM 44 32(12 44) Not 104 83(7.72) Not 32.24(7.13) 

OBESE 

Not 33.60(5.49) Not 

38 90(8. 78) srg 102.21(4.47) sig 35.017(7.36) sig 30.63(6.96) sig 

11811 

SLIM 42 74(11.7) Not IOS 08(6.58) Not 31.47 (6.94) 

OBESE 

Not 33.97(4.06) Not 

3965(11.31) sig 105.43(6.51) sig 36.59(8.17) sig 

HOB 

31.40(7.62) sig 

4253(11.7) Not 106.48 (5.74) Not 32.28(5.86} Not 34.26(5.40) Not 

39 14(8.45) srg 107.17(6.19) sig 37.07(7.67) sig 30.81(7.30) sig 

SLIM so 09(12.0) 11021(6.21) Not 21.63(5.49) Not 33.08(4.97) Not 

43 92(10.01) ig 107 81(4 79) sig 28.68(9.16) sig 29.79(7.66) sig 

63.1(10.3) 104 13(7.03) Not 30.55(6.57) Not 32.04(6.20) Not 

54 29(12 87) ig 102 42(4.78) sig 33.29(5.65) sig 28.44(7.16) sig 

4151(124) 110 21(7.8) 22.68(7.43) Not 30.36(7.56) Not 

39 62(1341) rg 104 43(6 48) 22.08(7. I 0) sig 28.83(5.54) sig 

120 

100 
J 

80 

60 

20 

0 ankle dorclflex. Ankle planterflex. I 
Angle• (degrees): All movements during DESCEMING. Sllm (full colored) and 

()bese (downward diagonal) J 

hip flex. 

[jRSW•!ltt• HPB lestl!SLllLSl 

Fi ure 4.43: Bar chart representation of the mean m~imum hip, knee, and ankle angles during 
d nding of all m , erncn for ·lim and bese people. 

4.7.3 Momen 

T he rn an ·agittal plan moment of the hip, kn , and ankle joints during descending 

pitas of all mo cmcnts for obc ·e person 
illu strated in Figure 4.44. Th 

corr sp mdin , slues for th· frontal plane m merit ar pl Ued in Figure 4.45. Tabl 

4.JJ and th ·orr :-.pond in, Bar chart (Figur 4.46) hows th· rn an ma. .imurn xternal 

mom nts obscr ·c I at the hip. kn· , and ankle joint during .tair d . nt pha of all 
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movements for obese and slim people. At the hip, no significant difference in the hip 

flexion moment was found between obese and slim people for all movements. The 

external hip adduction moments for CSF (P<.05) and LST (p<.05) were greater for 

obese people compared to slim people. At the knee, obese people require lower flexion 

moment for RW (P<.05), HBH (p<.01), HOB (p<.05), LSL (p<.05), and LST (p<.05), 

compared to slim people. No significant differe ce was found in the external knee 

adduction moments between obese and slim people. At the ankle, slim people required 

higher dorsiflexion moment for HBH (p<.05), LSL (p<.05), and LST (p<.05), compared 

to obese people. ;_--- 
Ankle 

Hip 
Knee 

• nt phas 
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Gail cyde (%} Gail cyde (%) 

l!C""' .,,,.-":) 
Ftgure 4.45: Mean frontal plane momonts of the nip and knee jo;nt dudng swk cescem 
phase of all exercises. A) Jim (n I 0). B) Obese (n== IO). 
T able 4.33: Moan { D) of ma>dmum external hip. knee and ankle moments dudng stair descend;ng of all 

movements for slim (n - 10) and obese (n = 10) people. 

Hip 
tllp 

K•te 
Koee 

Ankk 

Fk'L 
Add. 

riu. Add. 
Donl- 

(N.mf 
Sig. (!'I.ml 

Sig. (!'I.ml 
lg. (!'I.ml 

lg. f1e'L Sig. 

kg) 
kg) 

kg) 
kg) 

(N.mf 
ko\ 

~w 
SUM 

.918 
.747 

1164 
673 1.509 

( 195) 
(.177) 

( 135) S>-0 ( 151) (218) 

796 
Nol s1g 952 

Nol ig 927 (25 6°0) 788 
No1s1g 1.352 

Notsig 

OBESE 1.360\ 
(257) 

(248) 
(194) (206) 

11811 
.9380 

.766 
1206 

707 1637 

SUM ( 313) 
( 228) 

(.119) S>-0 (170) (268) S>O 

Nol 1g 

Not sig 

1b 
Not 1g .975 

.913 {32 t••> 786 I 357 (20 610) 

Br E (391) 
(302) 

(254) 
(207) (186) 

1108 
961 

895 
t.304 

787 1.820 

.UM ( 270) 
( 2lb) 

(.17bl 
LI 48) 
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01 ig 
01 ig 

Not s1g Nol ig 

820 
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Moment (Nm}Kg): All movements during DESCENDING, 51.im (full colored) 
and Obese (downward diagonal) 

hip Flex. hip Add. knee Rex. 

Figure 4.46: Bar chart representation of the mean maximum hip, knee, and ankle moments during stair 
descending of all movements for slim and obese people. 

4.7.4 Power 

The mean power at the hip, knee, and ankle joints during descending phase of all 

movement for obe e and lim people are illustrated in Figure 4.47. Table 4.34 and the 

corre ponding Bar chart (Figure 4.48) shows the mean maximum absolute powers 

ob erved at the hip knee, and ankle joints during stair descent phase of all movements 

for obe e and lim people. At the hip, no significant difference between obese and slim 

people was found for all movements. At the knee, obese people absorbed less power for 

HBH (p<.05), HOB (p<.05), and L L (p<.O I), compared to slim people. At the ankle, 

lim people ab orbed greater power for HDB (p<.05) and LSL (p<.05) compared to 

obe e pe pie. 
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Table 4.34: Mean (SD) of maximum external hip, knee and ankle power during stair de di 
movements for Slim (n = IO) and obese (n = 10) people. seen ng of alt 

Hip 
ig. Sig. Sig. 

RW 

SLIM .82(.32) 4.28(1.06) 4.01(1.71) 
Not ig Notsig 

BESE 743(284) 3.437(.738) 3.204( 1.57) 
Not sig 

HBH 
SLIM 757(267) 4.590(.945) S>O 4.982(2.637) 

Nots1g 
OBESE 778(.276) 3.628(.902) (26.5%) 3.158(1.416) 

Not sig 

HDB 
SLIM I 054(.378) 5.044(.652) S>O 5.954(2.32) 

Not sig 
S>O 

OBESE 1001(.441) 4.229(.850) (19.3%) 3.632( 1.82) (63.9%) 

CSF 

SLIM I 063(590) 3.892(.650) 4.525(2.091) 

OBFSE .940(361) 
Notsig 

3.730(.724) 
Not sig Notsig 

3.752(1.521) 

L 
SLIM 1.20(.512) 3.423(.678) S>O 6.366( 1.805) 

Notsig 
S>O 

00. E 1.199( 822) 2.40(.669) (42.6%) 4.302(1.693) (48%) 

LST 
SLIM 872(.223) 4.313(.639) 4.143(1.764) 

OB· 858( 402) 
Not srg 3678(.850) 

Notsig Not.Sig 
2.991(1.486) 

7 

6 

5 

4 

3 

2 

1 

0 
Hip Knee 

Power (W/Kg): All movements during DESCBIDING. Slim (full colored) and 
Obese (downward diagonal) 

Figure 4.48: Bar chart rcpresenwtion of the mean maximum hip. knee, and ankle power during tair 
dose nding of :ill movements for lim and obe people. 

4.7.5 Impulse 

Tabl 4.35 and the cc rr sponding Bar chart (Figure 4.49) show the mean maximum 

impulses observ rd al th. hip, kn -, and ankl j int during stair de ent pha of all 

movements for obese and .lim pc ple. At th hip, slim ubjec dem n trated a greater 

hip 11., i( 
11 

irnpul for C r (P .05) ·ompared to obc · • pc pie. The hip addu ti n 
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impulses were similar between slim and obese people for all movements. At the knee ' 

obese people required lower flex ion impulse for all movements [R W (P<.O I), HBH 

(p<.01), HOB (p<.01), CSF (p<.01), LSL (P<.01), LST (p<.01)] compared to slim 

people. The external knee adduction impulses of HOB (p<.05), CSF (p<.05), and LST 

(p<.05) were lower for obese people compared to slim people. At the ankle, obese 

people required lower dorsiflexion impulse for all the movements [RW (p<.01 ), HBH 

(p<0.01), HOB (p<0.01), csr (p<0.01), LSL (p<0.001), LST (p<.01)], compared to 

slim people. 

Table 4.JS' Moan ( 'O) of maximum ••"""'\ hip,~ and ankle impul" during stair descending of all 
movements for Slim (n es 10) and obese (n == 10) people. 

Hip Kaee 
KJtU 

Aokle 

Hip ,\dd. Fki. 
Add. 

Donl- 

Fki. Sig. { .nul lg. 
lg. 

Sig. nei. Sig. 

(N.oi.s/ 
(N.111. 

(N.m.sl kg) kg) 
s/kg) 

(N.m.• 

kg) 

/11.2) 

KW 
624 

I 039 
9-07 

.791 
2.006 

st IM (3411.- 
t.3421 

t.191) S>() (.291 \ 
(.547) >O 

Not ig 

Notsig 

360 
NOi 1g 828 

520 (74 4o/o) 591 
1.223 (64"/o) 

BESE (232\ 
(208) 

(217) 
(.200) 

(.188\ 

HBll 
.586 

I 030 
923 

781 
2.061 

LIM i3~ 
(354) 

I 172) S>() (327) Notsig 
(.554) S>O 

1.--- - 
Not ig 

Not ig .540 (70 9°o) .570 
t.263 (63 2·~) 

.349 
828 

OBf'Sl• (276) 
(194) 

(.276) 
(.191) 

(236) 

1108 
739 

I 259 
I 123 

932 
2.557 

LIM (.532) 
(370) 

(.262) S>() (3\5) S>() (776) S>O 

Not 1g 
Not sig (80°10) 676 (37 9°'•) I 414 

I 010 
624 

(80.8°0) 

Bl' E 
.353 

(189) 
(268) 

(.268\ 
(181) 

(279) 

CSfl 
.860 

t.395 
,740 

\ 032 
\ 980 

Sl.IM (370) 
s>O (J06) 

(.1579) s-o ( 256) S>O (.528) S>O 

(82 2°• 
Not 1g (57 4°0) 

(36 1°•) 
{60.6°0) 

.470 
.758 

I 233 

( Bt:SE 
.472 ) 

I 134 
( 186) 

( 224) 

(296) 
( 190) 

(214) 

tsr, I 023 
829 

,939 
t 976 

Sl.IM 
970 

(248) 
(J80) 

(479) S>O 

I 461) 
1.366) 

Notsig 

I- 
ol IS 

ot is 500 (65 8~o) 695 
I 150 (71 3•.) 

BLSI· 
.582 

,'Ill ( 231) 
ct30) 

( 242) 

1JllS) 
11171 

2.s r I 03S 
8112 

755 
I 734 

SllM 
269 

( 313\ 
I 188\ S>O ( 437) S>O 

(.188\ 
12m ol 1g (80 6~t) 591 (27.7°0) I 032 (68°0) 

226 
Nol 1 (116 

494 I 158) 
(.122) 

OBl·SI. 

( 191) 

( 167) 
( 1~2) 
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1 

0.5 

0 
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hip Flex. knee Add. Ankle Dorci~ 
flex. 

I Impulse (N.m.s/Kg): All movements during DESCENDING, Slim (full 
colored) and Obese (downward diagonal) --~~ 

[•RSW.llH. HOB •CSFllSl•iSJ 

Figure 4.49: Bar chart representation of the mean maximum hip, knee, and ankle impulse during stair 
descending of all movements for slim and obese people. 

4.7.6 Total work 

Table 4.36 and the corresponding Bar chart (Figure 4.50) shows the mean maximum 

total work ob erved at the hip, knee, and ankle joints during stair descent phase of all 

movements for obe e and slim people. At the hip, slim people required higher work for 

all the movements [RW (p<.05), HBH (p<.05), HOB (p<.05), CSF (p<.05), LSL 

(p<.01), L T (p<.01)] compared to obese people. At the knee, slim people required 

higher work for all the movements [RW (p<.01), HBH (p<.001), HOB (p<.001), CSF 

(p<.001 ), L L (p<.00 I), LST (p<.00 I)] compared to obese people. At the ankle, slim 

pe pie required higher work for all the movements [RW (p<.01), HBH (p<.01), HOB 

(p<.01), 
(p<.05), L L (p<.01), L T (p<.001)] compared to obese people. 
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Table 4.36: Mean ( 0) of maximum external hip, knee and ankle work during stair descending of all 
movements for Slim (n = IO) and obese (n = 10) people. 

Sig. Sig. 

S>O S>O 
(73.1°0) (90.2%) 

S>O S>O 
(76.4°0) (90.5%) 

S>O S>O S>O 

(605.•) (79.7°0) (112.5%) 

S>O S>O 1.781(.780) S>O 

(71 4•~) (62.8%) 1.093(.534 (62.9%) 

S>-0 
(IOS.9"o) 

f 4.5 
4 

3.5 
3 

2.5 
2 

1.5 
1 

0.5 
0 

Hip work 
Total work (J/Kg): All movements during oesCEN)ING. Slim (full colored) 

and Obese (doWrtWard diagonal) 

Knee work Ankle work 

!jRsw••H• HOB •csr•l.Slllta 
i ure 4 .c:11 B 1.n... ,..,,· -of th mean maximum hip, knee, and ankle work during tair 

.JV: ar cnan rcprescn ..... ion 
d mdine of II rnovcm nts for lim and bese people. 
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CHAPTER FIVE: DISCUSSION 

5.1 Introduction 

The result obtained from the research are discussed in this chapter. Firstly, the current 

data for regular stair ascent and descent are discussed in the light of previous 

in ti . ve igations. Then the load differences between the chosen exercises and regular stair 

walking are discussed. Finally, the way obese people perfonn all the movements as 

compared to slim people are discussed. 

5.2 Regular Stair Climbing 

tair climbing is one of the daily tasks people encounter almost every where they go. 

Many tair climbing inve tigations have been conducted to find out the biomechanics of 

regular tair a ent and descent. In the present study, regular stair ascent and descent 

pr vide the baseline f comparison with other stair ascending and descending styles. 

heref re, the following i a discu ion of the present data of regular stair ascent and 

de cent in the light f previous investigations. In general, the present data of regular 

t.air cent and descent h w a great degree of agreement with previous researches. 

em ral arameter : In th pre nt tudy, as in previous stair climbing researches 

w 

t net al., 1991~ Riener et al., 2002; Protopapadaki et al., 2007), cycle duration 

ent omparcd t a nt. The mean cycle duration during ascent 

DO. ) , whil during d ent, it was 1.39 sec. ( D.11). Like the data 
w 1.5 
r .port d by In lop. pad. ki •1 al. 2007) and Riener t al. (2002), no ignificant 

diflcrcnc as f urnd in th. sran e ph· · bctwc n ent and d nt. The mean tance 

pha · durinu ,1 .. 
01 

wa , • .4 ,'o( J) 1.7). whil durio • d nt, it was 63.6 % ( D 2.8). 

lo th .u rr ·nl 
1 
ud '. i 

11 
J ircc 

111 111 with L [vin st n el I. (I 91) nod Prot p padaki et al. 

( ( 

nl , a. less ompated t de. nt, which i 
07). th m "' , ·ll it durin 
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consistent with an increased cycle duration during stair ascent compared to descent. The 

mean J • d · ve ocrty unng ascent was 0.49 mis (SD0.039) while during descent it was 0.58 

mis ( D 0.05). In agreement with the present data, Protopapadaki et al. (2007) reported 

a mean velocity of 0.49 mis (SD .05) and 0.56 mis (SD 0.06) during ascent and descent, 

re pectively. On the other hand, Livingston et al. (1991) reported that the mean velocity 

during ascent was 0.7 mis (SDO.l), while during descent it was 0.8 mis (SDO.l). 

Livingston et al. (1991) also reported that shorter subjects (mean height 155.9 cm (SD 

2.1)) ascended and descended stairs at faster velocities than taller subjects (mean height 

171.6 cm ( D 2.1 )). The mean height of the subjects in the current study (mean height 

165.2 cm) is greater than that in Livingston et al. (1991) study (mean height 163.5 cm). 

Thi factor may account for the difference in velocity of stair ascent and descent 

reported in thi tudy and that of Livingston et al. (1991 ). 

An le : he current data for the hip, knee, and ankle angles are similar in shape to the 

previ u ly publi hed graph by Protopapadaki et al. (2007) and Riener et al. (2002). At 

the f t contact of tair ascent, the hip and the knee joints were flexed and the ankle was 

d rsiflexed. In contra t., at foot contact of descent, the hip was only slightly flexed, the 

knee wa aim t fully extended and the ankle was plantartlexed. In the subsequent 

pha , during ascen th hip and the knee joints extended and the ankle joint globally 

plantarfl d, while during d scent, the hip and the knee joints flexed and achieved the 

hi herd gre f fl ion at the lat tance/early wing. The ankle remained dorsiflexed 

t: d · d nt and tarted to plantartlex at the late tance. 
ror m ·t f th tan pha unng 

urin , th. win, ph•"· the m •. imurn kne and hip flexi n angle occurred later during 

as •nt than durin ' de cnt. 
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In agreement with the results reported by Andriacchi et al. (1980), Livingston et al. 

( 1991) and Protopapadaki et al. (2007), the current subjects required significantly 

greater hip flexion angle to ascend stairs compared to descent. At the knee joint, no 

ignificant difference in flexion angle was found between ascending and descending. 

This result agrees with the data reported by Andriacchi et al. (1980), Laubenthal et al. 

( 1972), and Ried et al. (2007). The mean maximum knee flexion angle during ascent 

was 107.22 deg. (SD 5.95), while during descent it was 104.83 deg. (SD7.72). 

Andriacchi et al. ( 1980) reported flexion angle of 83.3 deg. (SD5.2) during ascent and 

87.9 deg. ( 04.4) during descent. Laubenthal et al. (1972) reported 83 deg. of knee 

flexi n angle during both ascent and descent, and Ried et al. (2007) reported 83.5 deg. 

( 04.9) of flexion angle for ascending and 83.3 deg. (SD6.l) for descending. 

Living t n et al. ( 199 J) reported that short subjects used greater mean knee tlexion 

angle than taller ubject . On the other hand, Riener et al. (2002) reported that knee 

flexi n angle increa with increased stair inclination. The stair dimension used in the 

current tudy i imilar to the one used by Andriacchi et al. (1980) (Rise=21.lcm, 

deep-25.5 cm). However, the mean subject height in the present study was shorter 

( 165 .2 cm) compared to Andriacchi et a I. ( 1980) ( 179 cm). These factors may account 

for the difference in knee flexion angles during ascent and descent between this study 

and ther publi hed tudic . 

irnilar to the finding. report d by Aodriacchi et al. (1980) and Protopapadaki et al. 

(2 07), th. urrent study ho"cd ·ignificantly greater d rsiflexion angle at the ankle 

durinu de cnt slai< c mpan:d 10 • nt. Th plantar flexion angle was greater during 

.1 • "th th data reported by P topapadaki et al. 
u • •nf C( mpar ·d to ascent, whtCh a •(l..--C. \\I 

(
2007) 

11 
d i. • t al (2007) reported mean ma; irnum Ile: ion angle of 

. ow iv ·r. Pwtopapa ..... , · 

4() 
· · .. t • than th· value obtain d in th current tudy 

.08 d · •. durin , dcsc ·nt. which 1s 
1rt:a 

er 
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(33.6 deg.). On the other hand, Andriacchi et al. (1980) and Livingston et al. (1991) 

reported mean maximum plantar tlexion angle during descent of 25.6 deg. and 30 deg., 

re pectively. Different subject heights, step dimensions, marker placements, and motion 

analysi device may be the factors contributing toward the different results among 

tu dies. 

The moment: he present data showed no significant differences in the mean maximum 

external hip flexion moment between ascent 0.893 N.m/Kg (SD0.199)) and descent 

0.918 N.m/Kg ( D 0.195). The external hip moment was positive during ascent and 

de cent ti r the m t of tance phase, creating an external hip flexion moment. However, 

there wa a period in the late stance during ascent and descent when the external hip 

m ment wa negative, creating an external hip extension moment. Variability in the hip 

m ment patterns during stair ascent and descent is reported in the literatures 

tigan et al., 2002; Protopapadaki et al., 2007; Riener et al., 
(Andriacchi t al., 1980; 
2002; Nadeau et al., 2003; alsich et al., 2001; Macfadyen and Winter, 1988). Similar 

l current tudy, MacFadyen and Winter (1988), Riener et al. (2002), and Nadeau et al. 

(2003) reported internal hip cxten r moment during stair ascent but observed internal 

hip fl x r m ment at the end of the ranee phase. Andriacchi et al. (1980) and 

Pr l papadaki el al. 2007) observed e terna! flexion moment during ascent. However, 

the hip m men! graph publi h d by Prot papadaki et al. (2007) shows an external 

e tension m rncnt at approximately 6 % f gait cycle. Jn c ntrast, alsich et al. (2001) 

' ported a she rt period of internal hip n x r moment at the beginning of tance ohase 

f llow d h int ·rn. I hip c tensor m< rncnt during ·tair 
nt. During descent, similar to 

P• sent tud • ndriac ·hi 
1 11, 

1980) nd Prol< papadaki ct al. (2007) reported external 

hip fl. · . t . 
1 

rt • 
1• 
•• 1 ,f external hip c ·t n r m menl at the end of 

· ion moment wit l ii l per JU 

shn . 
1 

. •1 . I (200 ) rcnc rted inkrnal hip flex r m ment nl 
' 1:. rm-. . In ont .1st. R1~n ·r c.: ,1 · ... r 
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during the f · h ac ivity w ereas Macfadyen and Winter (1988) reported internal hip extensor 

moment duri g · d d · n rm -stance an hip tlexor moment at the end of stance phase. 

Prot papadaki et al. (2007) noticed this variability in hip moment among studies and 

explained it by the different po itions of the trunk. Different positions of the trunk may 

bring the line of the ground reaction force anterior or behind the hip joint, thus affecting 

the hip joint moments. 

In the current tudy, during ascent, there was a short period of external knee extension 

m ment at the beginning of the stance phase, followed by external flexion moment 

during mo t of tance phase, and a second period of extension at the end of stance 

pha e. During de cent, there was an external extension moment at the beginning of 

tance ph , f II wed by external tlexion moment until the end of stance phase. The 

knee m ment graph pre nted in the current study agree mostly with previous stair 

climbing inve tigati n (Kowelk et al., 1996; Riener et al., 2002; Protopapadaki et al., 

2007; tigan et al., 2002; Ried et al., 2007). The mean maximum external knee 

flexi n angl was ignificantlY decreased during ascent 0.878 N.m/Kg (SD0.24) 

compan d t de cent 1.164 .m/Kg ( 00.135). This result agrees with the results 

re rted by Andriacch i cl al. { J 980), Kowelk el al. ( J 996), Ried et al. (2007), and 

r well t al. (20 2). Andriacchi t al. ( J 980) reported a mean flex.ion moment of 146 

NM ual t 2.05 NM/kg) during de ent and 54.2 N.m (equal to 0.763 N.m/kg) during 

a. •nt. Kowclk 
1 
al. ( 

1 
) n:portcd a (0.885 N.m/kg) of external knee flexion moment 

duri n • asc nt and a ( I. 
4 5 

. rn/kg during de ent. Ried et a I. (2007) and rowell et a I. 

(. 002) r ported ne • Ile: ; c 
11 1110111 cnt of ( 0. 96 N. m/kg) and (0 .89 N .mlkg) for tair 

a cnt, and ( 
1 5 

. m , ) und ( I .• l . m/k , ) during sto ir de nt, re pectively. Riener et 

,1 I. (. 00 _) r ·port cl th II rnJ [mum e tcmol nu merit values in ceased with in reasin 

i 1· 
1 

• it 11• rht ditli:n:ncc n:portcd in literature. The data 
nc 111.11 inn. 'l his 111 1 c p a111 le: " 
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presented by Andriacch i et al. ( 1980) and Kowelk et al. ( 1996), who used the same stair 

dimen ion th · a e present study agreed with the present values to an acceptable degree, 

However, the slight difference between Andriacchi et al. (1980), Kowelk et al. (1996), 

and the pre ent tudy, may be explained by the different subject heights used. The mean 

height in the present tudy is 165.2 cm, while in the Andriacchi et al. (1980) and 

Kowelk et al. ( 1996) tudies, they were 179 cm and 174 cm, respectively. Furthermore, 

the current tudy calculated joint moments by using the link-segment method, while 

Andriacchi et al. 1980) use the ground reaction method. Wells (1981) found different 

value when c mparing moment calculation using link-segment method and the ground 

reaction method. 

At the ankle j int, the pre nt data demonstrate no significant difference in the mean 

maximum xt rnal ankle d rsiflexion moment between ascent (1.279 N.m/Kg 

( . 193)) and de ent ( 1.509 N .m/Kg ( DO .218)). This agrees with previous stair 

climbing inve tigati n Protopapadaki el al., 2007; Andriacchi et al., 1980; Lin et al., 

20 4; ala hi et al., 200 I). Tue external ankle moment was positive in stance phase 

during tair a nt and descent creating bi-pha ic shaped external dorsitlexion moment 

uring ent, the peak value oc urred at the end of the stance phase, while the peak 

valu urr d at th beginning f the ranee phase during descent. The current ankle 

m m nl patt rn durin, a. ent and de nt agree with previously published studies 

Pr t papadak i •1 al., 
2 7; 

Ri ner et al .• 2002; Lin et al., 2004; alashi et al., 200 I). 

In th. frontnl plane. Ix th the hip and th knee addu tion-abdu ti n m ments were 

in ·I I 
1 

1 111 
•• hip [oint, th• mean ma.ximum hip addu ti n 

Ill '< in the curr nl stud . "' 
m · J d · t • • -nt (0 52 N m/Kg (, 00.233)) c mpared t 

< mcnt 1 •nifil"tlltl inc rca • urin' c e: c · · 
a · nt 

0. 7 7 
. m/K , (SI)(). f 77)). nJriac< hi l I. ( 1980) and I.in l al. (2004) 
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included the frontal plane hip joint moment in their studies. Both studies, in agreement 

with the current data, show that the hip adduction moment during descent is higher 

compared to a ent. he current graphs show that the frontal plane hip joint moment 

was · · · po itive m the ranee phase of tair ascent and descent, creating an external hip 

adducti n moment. with a two-peak pattern which agrees with the graphs published by 

Andriacchi et al. ( 1980) and Lin et al. (2004) during ascent and descent, and with 

tegin et al. (2002) and Nadeau et al. (2003) during ascent. 

At the knee j int, a in previous investigations (Kowelk et al., 1996; Ried et al., 2007; 

tuart et al., 1997), n ignificant difference was found in the adduction moment 

between ascent and descent. The mean maximum knee adduction moment was 0.695 

N .rn/Kg ( DO. 151 ), while during descent it was 0.673 N .m/Kg (SDO. 151 ). Kowelk et 

al. ( I u d the same tair dimension as the present study, reported a 0.613 

N.m/kg ( 0.1 3) f external knee adduction moment during ascent and a 0.716 

N .m/kg ( . 113) during descen~ which agrees to an acceptable extent with the present 

valu . he current graph h w that the frontal plane knee joint moment was positive 

in the tance phase f tair ascent and descent- creating an external hip adduction 

m m nt, whi hi in agr ement with the graph publi hed by Kowelk et al. (1996), Ried 

et al. (2 7), and tuart et al.( 1997). 

pre ·nt stud . th po'"' g n rati n and ab rption phases at the hip, 

kn d kl · · 1· ti with previou . tair climbing inve tigations 
• an an 1omts a zre • J)(!f c 

(Ricncr ·t al., 
00 

; Mac ad en ;ind , inter, 1q 8: Lin et al., _004; Duncan et al., 1997; 

Ri ·d ct .11. .007 . I urin , ,1 ·cnt. II th . ints gen ·rat ncrgy. Po'"' i g neratcd at th 

hip and n joint durin ' th 
tanc phase. mainl at th kn , to fa ilitat th rai in 

( f th ·ont ulat r.•I lintb to th· n ·~t h;p. 
s . )Ofl 

th c ntralatcral limb ha 

103 



approached the next tep, during the late stance of the ipsilateral limb, a large power 

generation oc . h kl curring at t e an e supports the transfer of the body weight to the leading 

r imb and reduce the need for higher hip and knee joints moments. 

uring de ent, all the joints absorb energy. The energy associated with the initial 

contact of the tance phase is absorbed primarily at the ankle, with small peaks 

ccurring at the hip and knee joints. However, the largest power absorption happens at 

the kne during late tance, in order to control the lowering of the contralateral limb 

fr m ne t p to the n xt. 

When comparing th ab lute power value. in agreement with Riener et al. (2002), the 

power i. high rat the hip joint during ascending compared to descending. At the knee 

j int, the ab lute wer i higher during descending compared to ascending. The 

ab lut power at th ankle j int i equal (i.e. no significant difference) between 

a nding and d nding. 

Im ul. : Angular impul. i the area und ram ment curve while flexion, dorsiflexion, 

and adducti n impulse represent th are>s under the positive phases of the moment 

curves in thi curr nt ·iudy. n angular impul quantifie the total contribution of a 

I

. i t t I th r w rd , it gives some indication 
· n m rnent t ward produ ·ing movemen · n 

ab( ut th • shape of th m mcnt curve. 

h 11 h btaincd re ult f r rn ment. the de ending 
1 ie curr nt stud • in ,1 •r · ·rn ·nt '' ith I 

I

ll · 
1 

und hip adduction impulse, compared to 
la-; r .quir s rr uter kn 'l'. Ile kn unpu .. 

u ·ndin ' pha . • ,i •niti ud difli:r<n • was f und in hip 0 . i n impul e, which also 

I 
.11 . mkl d rsifl •. ion irnpul: and th kne 

iun 111< rm 111 re su I • 
1 
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adduction impul were higher during de cent compared to ascent, although the 

m ment peaks h wed n ignificant difference between ascend and descend. A quick 

1 k at the ankled rsiflexi nm merit and the knee adduction moment curves can show 

that the area under th d ending curve are greater than ascending curves. 

Total w rk: The t tal w rk is the absolute area under the power curve. In agreement 

with th power data at the hip and the knee, the total work was higher at the hip and 

1 " er at th kn during a ending. compared to descending. The total work at the ankle 

j int w higher during descending compared to ascending, although the power data at 

the ankle h w n ignificant difference between ascent and descent. The ankle power 

curve durin d ending h wed a peak of power production at the end of stance phase, 

In additi n, th pc k f poi r ab rption occurred at the beginning of stance phase, 

wer curv during ascending how only one peak of power 

end of tan pha . hi explain the re ult obtained for total work at 
while th ankl 

th ankle j int. 

.3 tairca erci e 
Four type of lair e c: .rci s 

1. 
re h sen in the present study: Hands behind head 

(I !Bl l), I I ldinu dumbbells H B). 

uep f rward ( F), and Lateral tepping 

h limb perfi rm a different function, this 

ti it .. v h re th leg f intere t i the one 
(I · 11 wev ·r in in 11 

m ·m ·nt \ as di id d int : L L 

oth r truilinu I·'· tud in' th. kin 111.1til' and kincti pattern 

an provi 111 • I ·fl1l 1'nfi.>nnati n. th· "wircase e: 
, Hr 11111 u1.111 t ,till u 

thi stu I .1r • multipk·ic>inl · 
~ whid1 ·timulat 

• eral mu , I gr up 

111111 lt incou I • I hl\ l'\ r, lh j iirtt· f 

iii difll'n:ll "'· in th· kin matic and kineti 
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pattern betv een u h e .ercise and regular tair climbing may be used to target a 

peciftc mu I gr up. 
he foll v ing i a discu ion of the results obtained when 

c mparing lair er i 
to the regular tair ascent and descent, and when 

cm . paring the ~ ent and d ent phase of ea h exercise. 

At the hi · · ip joint, both 
F and L L acti ities place greater demands on the hip 

ex ten r c mpared t regular tair walking. During the performance of the CSF 

a tivity · . • parn ipant d m n trated greater flexion moment (AS" 27.2 %; DE=33.8%), 

impul· A = 52.7 %; 
=37.8%). power (A ==25.2 %), and total work (AS==39%) 

the ther hand, the results showed no significant 
than r g 1 . u ar lair walkin 

difTer·nc · 
in th n ·. i n m ment and impul between ascent and descent phases of 

, r ' · cti ity, while th pow r and , rk were greater during ascent compared to 

an n lud d that F activity can be used to target the hip 

nt and d scent phase equally. However, the ascending phase 

s rr al er power and w rk demands on the hip extensors compared 

tor gul . r tair alking. 

F r L L acti ;1 , both sc nl and d -sc nt pha s generate greater flexion moment (AS= 

1 .2 ,'o; DI: 4 2. 7~' ). and irnpul • = 26 %: Ob =5 .4%) ihan regular tair walking. 

11 th· c thcr hand, d 
di h 

0 
l I acti· ity ·h w greater power (D ::::46.7%) 

en 111 , p asc Po ' 

and d. hil ·gn·ficant 
v ork (I I:• 11.. '\) "quir ·m nls than r ·gular d •• ·en mg, w ' e no ' ' ' 

dill r , • • h 3. nding ph• of L L activil)' 
nee ".1 f urnd 111 p< \Hr ,ind " )rk llchH: n t 

ncl r . ' I 11 tr 1 i.: 11din '· I he ph.1~· 
mp iri "' in i,SL u Ii ii sh ' . n ignificanl 

HI Oil\( I l f h ti 

c 'n lh< u •h 1hc Jcscenl ph . • ' •nerol s greater pawer 

I 
. ...1.. dcnrind-.; \\Cf'C higher during L 

1< fl: l\ ·r. ( l ' \\l I" • 

llh 
11 
•h th '""" ""' •rc•t r during J, L de· ent 

dil \.:11'11. • t: 111 I \Hf dl111111 I 

c1 inp.trt•d to r I ,. r1t. 'II ,IC ,I ... 

,, rll 
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c mpared t r ular de 
nt. In additi n. the L L phase differences showed no 

ignificant di ercn 
in impul . H we er, the flexion moment was higher during 

mpar d t a nt. heref re, it can be concluded that LSL activity places d nt 

nly real r m mcnt and irnpul d mand on the hip than regular stair walking, and 

that th d ent ph i m red manding than ascent In contrast. the descending phase 

f a tivit I wcr th m ment (62.7%) and impuJ (56.9%) demands compared to 

regular d nding. 

At th kn 
nly !IDB ti it places greater demands on the knee extensors 

c mpared t regular stair wal ing. participants demonstrated greater flexion moment 

A 20 ,~· l h-12% . impul = "0.5 %; O =23.8%), power (OS=l 7.9 %), and 

1 
ta! w rk A _4%: l)h= 

19.7 
during perfi 1111ance of HOB activity compared to 

regul r sta in lkina. rmparin >the., nding and descending phases of HOB activity 

h Wed th· t d 
ndin, required great rm m nt, impul , power, and work. Therefore, 

u d wh n " i sh i ng to iarget th knee extensors. Moreover, the 

d • nt t th asce t P 
1 

• pla cd rrcater d •mand n th kn exten rs an n 

n the • nt ' be th ( I· and l I, ·ti uie I "ered the demands on the knee 
F 
3 
·ti it . required le flexion moment 

tair wal ing. 

8 
,; l)b= 18.4% • and total w rl: (A =I J .Jo/o; OE= 

12. ' 

11 
1 

t. .,,.11\ it re11uired I flexion moment 
' tan re iul r t ir ~ ,1lkin •. He'" ·H:r. · .... .., 

( S I ...l· ( r:::t l.4%: D 18%) than 
x.10': 1)1·•11.Cloa. Hf (I (:, 2( '). md w J"' 

•ul.ir 1.1ir, ilk' , L If) 0 

I the.: l I •• 11 • 101111 i111il 1r 1(1 1h • Im 
Ill 

•• I IDB ·' th•it dcmonstrat d great r 
j1 inl ... 

Ile · I 111 Ill llll llf ( 
I )I 0,b 

22.70'; 
Db 7.5%). power 
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( 48·5 %), and t tal ' rk (A ==33.9%; OE== 34.5%) compared to regular stair 

walking. h ph differcn c • imilar t the knee joint, howed that descending 

re uir d gf'i at r m ment, impul , pow r, and work. Thu when wishing to target the 

• H B ti if) h uld be ch sen, e pe iall during descending. In 

additi n t H a ti if)', th 
nt phase of L L acti ity howed greater dorsiflexion 

m mcnt 17.1 % and w r 58.8% ompared to re~lar descent The LSL phase 

nding phase generated greater moment and power than 
di eren e reveal d that d 

a 
de nding ph of L L activity can be also used to target 

the nkl pl ntar fl . r. 

In th fr nte 1 pl ne. be th th hip and th knee analyses were included in the present 

nd . ·Fa ti itie h wed increased demands on the 

H B activity generated greater adduction 
vcr re zul r tair walkin . 

rn m nt 
A 33.7%; O ==21.2%). The CSP 

A 

ddu ·ti n m men! A -113 .6%; D =4().16% and impulse 

er re iul r talr ,.alking. n the other hand. both HDB and 

dif eren ce in addu tion moment and impulse. 

r •. t ·r demand on the hip abductors during ascent 
i •nificant ph 

1 (i\iticspl.1 

nd d . . t I n p ia 

In a di . uion l l th· lfl>ll and 
th iii .. lx)th 0 

nt and d · nt phase 
f LT 

' 11 ti I , 11 ·r 1 tdu ti< u nwrm·nt 
· .. 1 .9%: 

. 
llHpul 

11Jin • phil 
fl r ~ ti it sh wed greater 

. ·1·., t differ -n ·c \\R. f und in 
II l SI •Ill 11. .. lll 

.ind re •ular de ending. I h pha. 

. • pill • en th< ugh th 
Ill lfll • 

llllflti I I I\ 

I " 
I nift 111( fjf ·n 
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ph r quir d great r impul c mpared to regular tair walking. Moreover, the 

m m nt durina a mt \ 
higher than during de ent. Hence, it can be concluded that 

nl · pla ed great r m ment demand during ascent and descent phases L a ti it 

c mp r d t r gular tair walking, and that th ascent phase v as more demanding than 

de ent. The de · nt ph f L · · I h d add · activity a so s owe greater ucnon moment 

nt. M re v r, the L L phase differences revealed that descent 

n d d gr at r ddu ti nm ment than ascent Thus the descend phase of LSL 

a ti ity pl d . . c m r d mand n th hip abdu tor than regular staLr ascent and descent. 
pha 

mp rati I·. a 
n b th increa d percentage of HOB, CSF, LSL, and LST 

t. ir walkin •.and b th phase differences. it is more appropriate 
a ti iti 

C I and t.st ti iti during a nding. and to choose CSF and LSL 

a tiviti durin d 
ndin '• wh n \\ i. hing t target the hip abduct rs. 

A.t th kn ioint. in th. fr ntal plane. II B and F a tivities showed increased 

m rn int 

tair \ alking. HOB activity generated 

=!6.9%) and impulse (AS==45.8%; d mand 

l b 17 .8Yc • 'J he 'J• ·ti ii. 
1rc.itcr addu ti n m ment (A ==40.2%; 

ver regular tair walking. On the 

i mifi ·ant pha. diO<ren in impul e. while the 
th r han I. Ill B ,1 thit_ 

mom tit d nt. The F pha c mparisons 
a hi ihc l11ri111 ,1 • nt · mp 1ri:d to 't: · 

. d I ,,· n rtH mt:nt and irnpul. . Therefore. both 
• tll .I ll 

h<lll ll r.; during a. nt and de ent 

I •t 111.: r I 111 111 Is 11 1h' kl l 
• I hi •h<r Jc n1and' dnrin ' , . ent pha • than 

Ph I · l hw. 

nl. ltil 111 I I ni.111 I 
nt in I d' c.: ·11t. 



In additi n th th a ent and d ent phase of L L acti ity generated greater 

·= ... 9.6%) than regular tair v alking. On the other 
addu ti n m 

I l a ti it h wed greater impulse (18.7%) than regular 
hand d . 

d ndin , whil n 
f und in impulse between ascending 

pha f and re ular a endin . 
ph comparison in LSL activity showed no 

ignifi ant di er n 
in m m nt d rnand . and that descending phase generated greater 

impul· than a 
ndin . her re, it an be con luded that the LSL activity placed 

nt and d nt, and greater impulse during descent 
great r m m ·nt dcrn: nd durin 

c mpa d t 0 re rular tair walking. 

L 'I 
tivit • al c • in rt d m:akr du ti n rn ment (A "12.2%; DE=52%) than 

re u I r t . aarr walkin •. '111 
f 

activity showed greater impulse 

4 I~ th an r •ular • cndin '· \ hit n 
ignificant difference was found in impulse 

he phase 

tw n de ·ndin • pha 1 
r , ·ti it) and regular descending. 

c m1p ri 
signifi nt diOi:rcn in impulse, even though the ascent 

mp3reJ 
1 

regular tair walking. Moreover, the 

nt. Hen e, it can be concluded that Pha r . quir d rr atcr impul 

mom nt durin d s hi iher th n during 
LS I ·1 t' · d d · .. .,rent and descent phases 

" 
1 
it ' nl J la · ·d rr ucr 111 rni:nt di:rnan unng ....,... 

c mpa ·d t .~ d ent phase i m re demanding than 
r •ul,tr tair , nl in •. nd that u• 

Ill 

( lllllJl'l 1· n ' I n I rh • in 

lh
i.: aJdu ti n m ment and 

r1.c.:11ltl' s < 
"' ·r re ,ufar stair , alking. and b 

r l ·ti,·it during a ending. 

it i rm 
flJH' pri ti • It 

. 
'lllJ ul 

tlurin d · 

.11 tu tnr • 
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an ignificant difference compared to regular stair 

walkin • x pt n in rca • in ankl d 
u11" rsiflex.i n m ment during descent. However, this 

Th H .. H acuvrt , did n 

increa ' as ju t 8 01 • 10 gr ter than regular d 
ending. and it was lower than the 

m reas d 

ign r d. 

a ti itie . Therefore. this movement can be 

F r th. lateral t ·ppin 
') a ti it)'. unlike other mo ements. each limb perfonned a 

di ffcr t fi n un ·ti in. As di u ·. d a , 'e. th limb which was responsible for forward 

pr res ·i ) l 
n • L pla cd rearer d mand n hip extensors during ascent and descent 

and n pl ntar fle · rs nd hip abdu 1 during descen~ while the other (trailing) leg 

pla d , • rearer dcm nds n hip bdu 1 r during ascent and on the knee abductors 

durin , d nt. 'I h ·rel< re. based 
re ul , a ch ice can be made on which limb 

to u ' th on r , n ibl for r rw rd pr gre i n and a the trailing leg . 

sit j 

I he Ith pr b\em> the w rid faces nowadays. Obesity is 

rat .d ' ith num r u he' Ith ri k including an in reased ri k for cardiovascular 

b P pl . 4 ilim V r u 

di a · in ulin resi I tn c, and 

IC arthrili. ( D<' ila and Hortobagyi, 2003). 
a 

( le, nhriti is th most omm n jt'inl di. a cau"'d b 'j int degenerati n, a proce 

tluu in Jud ' P'' •r< si\ I ' ol • ni ·ul r cartila •c a • mpanied b attempted repair of 
.trtkuJ r uh<h ndral boll•· and o le phyte 

l·nrniati lll 1)11 '· 1·. t>t1··k·~ tter and tartin, 1995). ne maj r 
' " .tit r .111 f 1.111kin. 1 t 1 .. " 

Ill I . ' I lilt II\ ·' 
r1hritis is in n:ascd I ad 

3 
r 

th 

1rf 1 ul u \trt1I 1 

'i1h I llf • t > ) ( Ix: it . is • 1nsid •f'l!d o. ne of 

t ii .. l t>'> : K hn t ul .. I • · 

I
•• 11hriti . Stunner d al. (2000) and 

I p111 n1 l1I .. 
l
k;.,·1t , • nd (iilatcrnl kn • 

(\ •fl t ,,... 

in I hip <)!'!l1.:l°1arthritis. Researchers 
t 11 

th 

I I H} l · J )fl 

hut 



uggc t th · at m r eas d \\ 

ubscquentl , I ad 

II hberu t al., l 5; 

i ht iat d ' ith be it) direct! increase knee loads that 

tc arthriti · ( el n, l 988; Felson and Zhang, 1998; 

m r nd 'bcrle. _()()I). 

pl ar 
nc urn zed t parti ipat in me rt of exercise< such as the chosen 

t pe of e · rcises ma place loading conditions at 
er. th 

int \ hi h ma cau 
de •enerative knee joint diseas<S· rnese [acts show the 

of taircase exercises for obese people in 
th kn 

importan ll tud ing the bi me hani 

c mp . an n l th ·1'r lint untcrparl!. 

'J h be • p rt' . I .ipant 
h 1 c lunt r ·J a ·ubj ts in the present study were young 

e · ept be ity. The bese and slim groups 

r, and h ·i •ht. nd nl • ditTercd in ,.eight and the l)ody mass 

pu rt j ·;pant w re, an a, eragc. I A % m re massive than the 

,umcd that II bs rved gait ditTerences were due 
ind 

c )flfl • •t • t t to th 

2( )()· • 1 luzio 

Id l11 ·f 1 11 mrnn nt 

thr iu •h lh 

th. gait paramete" which are u uallY 
f kn , . 

1eoarthriti 
(Kerrigen et al., 

her> h•" ·ugge ·ted that the knOC 

I th. Jj,tributi n f I ad rran ferred 
• j-. the signnl m ·t imPortant 

irthriti'· I hcrcfor<. the °'ternal kn 

. !'. I r11t.·' urc tlf the 111 ·dial kn • 
fl 111 If 

' ii. I~).: l'r xlr< n•O' t I. !985: 

. f tl1'1. n:tiilhl mcilsurc as 
),lh'll \l ~ 

l11c kn. n . c 1c n m I 1d Ju ·ti n nH 111 11t-. 

'1 du • t II II Ill 

It I I' 111 
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a pr . f r m .dial lo d h. s be n up rted b rudie of bon mineral density 

di t ib rt uti n, tibi: I 
artik '· thi kn· s and di~--ct me urement of th contact forces 

(Maly, o 8) • I i r t me sur m nt of the nm t f re ~ ithin the medial compartment 

f th. in vivo is di 1 ult nd h s n t been wid I)' rep<>rted. To date, direct 

be ·n chi vcd m nl ne indi idual with a knee implant 

ext ma! kn adduction moment was highly 

t al, 2007). Moreover the adduction 

mea ur m nt h 

in tru m ntcd \\ ith fc ur I d II . 

rr ·l led ' ith m di I nta t Zh 

ITI m ent h: be n 

th r. bbit' kn 

und t use ste arthriti chang in the medial compartment of 

I., i 977 . 

'l h ' knc ll . . 'ti t diff rences between 
c .. , in • n t 1 Ju ti< n nu rn ·nt ·h wed · m 1gni .can 

1 

e 

·n<lin 1• th 

nJing nd d ·ending phase of all movements. 

h vcd redu ti n in th knee fle;ion moment for 

10, 
le ) a tivitie . However, they 

. ,o 
r, L L, and L T. For the RW l. I s tlHH 

rn . 
int. in tit · am 

f1 • i HI 111 ment ., [irn pc pie f r nt a the slim 
• flC pl • 111 int in cqu I fr ntal plane m me 

r 
\\hich ·h wed redu tion of 14.4 % 

pt f r th l 

ddu ti n rn rn nt th ~be 

pc pie r r II m vi.:m<.:nt 

c: >In p r • t I• , lim J pl·. 

ne. i n mom nts for 

I t • 1ri11 , d 

ti ity. 

jgnificant 

<Ii 

t l. 



'Jh pr'\ i< us d i ·u si{ n ha h wn th t nl HOB 
ti it) in rease the flexion 

111 mcnt c r r 

3 .7,~d . urm , ,1 

th th r h: nd, 

iular t ir 1 ent and d . 
ent. Th· be. pe pl redu ed this load by 

in th knee adduction 

rn m nts \ r r iular 

ddu 1· t n mom int 

ph 

• nt. Th 
bese people maintain the same 

th lim pl in II fth 
a tivitie during ascent and descent 

. Hi. '' c e r, th k 

fi r l ti it rn d l lim 
pie. Therefore, it can be 

th l (. 

n11wd to lim people, are able to reduce or 

lllaint . am th· 
du ti nm men "lue . "hich an: the most imPortant 

j int d generative joint disease· 

I<. o I r 111 H. 

nd ,lim pc pl during the ascending phase 

ubi< t red• ed Po"" ab rption by 

r I st nd mainlllin d the same Po"" 

plc ""1• :J th fl . ; n angular impulse 

t. • ; r llHll. 5 • .5~0 C. r HOB. and 51 % 
~Ju zed by 35.6% for 

llll"' J I (illl p< pie. [luring 

i " in•r•I • by 4 •. r.· for R w. 
• h r I l. 3nd ;14.6% for L T. 

J ll 11 

of I I mo cm 

2 lo/i o \ r I !Ill I 

or l 

t l<l slint P' pie. 

1 
1 111Jinl rcJu c r 
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m· aintain th 
s the slim pe pl f r all th movements, during 

m ·I .1 in' 

a •nd· 1t1' und d ndin • ph: . .... 

At th 1• lip th • fl . ·' n rn mcnt 
re c4ui\ I nt berw n be and lim people during 

a cndin, nd r II ml \<:mc.:nb. In ch 
f obese people, the hip 

ddu tic n m 

2 .... 2 o/t f )r 

mcnts 1 r h, 4 . ,o fi r during 
ending. as well as by 

r I during de 
hip power only shows 

3!' of obese people. The flexion 

. 
trnpu I 

Jurin~ th ·ending and descending but in 

\~ere higher, in case of obese 

\\ rk was lower at the hip 

(Ill nt u in• 
ndin' ph 

lu ti ninth· nkl di .,;Jle. i n moment for L L 

r J il)B nd F during ascending, 

nd LS l . uurm , t 

and < r I IBJJ 

r HI B 

nd d nding. DJld for R W DJld L T, 
\\ere rcdu ed for all 

rn , cm nt 

( I it 

n1e kin ·maLi ., adaptati n 

,t net: phase time. 

I fl I 11 th 

II JI. 



but no · • 1 'lllfi nt d"fl~ t eren 

obe b" SU ~ .rs. 

in the tan .e phase wa: found beh\ten the obese and non- 

I t6 



OMMENDA TIONS 

6.1 on lu ion 

\\ r , tr fli 

ir tu I · 
inc kind 1f ph) ic I a ti1 i~· into their daily 

'er. ex rci equipments are bulJ..')' 

(fl 

tc I f r exerci ing. A wide variety 

. rn ng them. four types of 

• ol in h !din. dun• tidl .. ••!king in cross- tep 

ud ·, namel , \\alking up and down 

t • 
rr ' ith 

Ill llllltc r II d I t I m 

111 
th. dill ·r<n in the kinematics 

nd n;gular tair limbing during 

ut h \ pC pie \\h are obe e 

m H th ir ptr ' '"''"' e to iJiat of those 

li Ill 

In 
II 11. in ' 

un, h ,alth 
dults. the 

l 
ti\ 1ti plJ' gft!al r 

• ti\ it 
rt .. , ,..,at r d ·io'"'d 

th 11 
(ll ph·l 

1fth 

n I 
nkk d ,r.o;it11: l1r.;. 
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it, 11• • •re ucr J m.1nd , n th· hip obdu t r during ascent and descent. 

In add'. HI 11 th the I .•. 
tum limh t the I re al ·t,pping ·ti1 i~· during de ent and the 

trailin 1 1· imb durin 

In th t r' ntal plan I 
• t '" re ult indi re thot. in , una h alth :idults. the cro s· tep 

fo •rd ti 

ti' it nt nd Je ent and th descent ptuise of the 

1 
itin • Ii nth pti rcot<r J,mand n the Im abd• tors· 

lh 

tower-extremity muscle 

un , individual 
that they can benefit 

r at th h pping mall to build and maintain 

hle to red• e r maintain the same 

. dun' ng ascending and 
th ' ' i;l't:I ' 

nt Ji ,n:n •· in the 1emp0ral. joint 

rl< J.1ta l><t~ ·n th• best and the 

ini hi Jju I th ·ir goit h:UOcieristic in 

. . I xid n th knee joint as 
' n in in th. n1 l 

l lllp, r I h 

I . d 
I\ th 

pl " 

th I in1 I 

.2 R comm nd uion or ur t) pi:s of the 

1pt. it th -ir self 

n th tii ,nw~:hani ·s 

J irt , I ir ,.;lilllhill i. 



• 'J pcs nf I r po d t: ir 
exercise· th r than those ch sen in the current 

ari ti n in th 
c • c i · spe J. I ut ure n:sean:h 311 be d ne to find out the 

• 
it. n the kincniali , J kindi f th exercise . 

• \\a th inten it. lll th) 

uggested \\ ays to do so may 

rim • 

• iumt r l r titi n 

r« 
1111 

:J, fatigue effects following 

jati.:d with the exercise. 

tili( 11 vill 
th kin ·ti~s 

old he nsidcreJ in future work. 
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(Whittle, 2002). Them tion f the body gment i de ribed t happen in three plane 

that are referenced t the anat rnical po iti n a h wn in Figure A.I above. These 

plane are the agirta! plane, Fr ntal ( r c r nal) plane, and the Tran erse plane. The 

agittal plane i the entn idal verti al plane that di id th bod into the right and left 

part . he Fr ntal plane i th entr idal vertical plane that divides the body into the 

anterior and po terior parts. The Tran verse plane i the centroidaJ horizontaJ plane that 

divide the body int the inferi rand uperior parts. 

Th joint m ti n can be de ribed u ing the definitions of motion in the three planes. In 

the sagittal plan • the hip and kn e movem nt is Fie i nl xtension, and at the ankle i 

Plancrflexi n/Dorsifexi n as h wn in Figure A.2. Flexi n mean "decrease the angle 

betwe n the tw segments" and ·. t n i n mean "in rea · it". Plantarfexi nm an that 

the t point up t ward· the hin and d rsiflcxi n mean that th t , point down. 

Jn th fr ntal plan , the hip and kn m v ment i bdu ti n/Adducti n a wn m 

igure A.3. Abducti n mean "m v awa fr m mid-lin " and Addu ti n mean "m e 

t v ard it". Th· kne m ti n in th fr ntal plan during th lied 

Valgu arus m ti n. In th tran ve • plan . th hip nd kn m vern nt an: 

intcrnal/e: t irnal r tali n sh wn in Figure .J. Int m I r tati n m • ns that the 

ant ·ri{ r surfa r tat •s m dial! al inward c r m dial r tati n . L. km I 

rotation m ms that th ant ric r surf c • r tat latcrJll) 

r tati< n . 

ll d utw ard \ r lateral 

I .. 
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in the f l\>Otal and tran verse planes. Abduction and 
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. mis ot rh I l<l durin' 1bulali n ( hurr and Mi ttael. 2002). 11 is al o defined 
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re pon , and the ingle upport period continue from loading re ponse, through mid- 

and int the tenninal tance. The sec nd period of double upport begins as the 

th r I g t u he the gr und and end \ ith the end of toe-off uh-phase, at which the 

tan pha i c mplcte and the wing phase begin . The wing phase is divided into 

thre ub-pha • : initial v ing, mid- wing, and the terminal swing. The second heel 

nta t f the f t in que ti n i defined a the end of the swing phase and the gait cycle 

and a the beginning f the new cycle. 

1 her ar many differ n e in the gait cycle between stair climbing and level walking. 

1 h stanc pha and the wing phase periods during stair climbing are different 

mpar<d t level walking. The ranee phase accounts for approximately 65% of the 

gait cycle rather than 60% during level walking (Mcfadyen and Winter, 1988), and so 

the swing ph; i · h rter during tair climbing. The stance phase of tair ascent can be 

br ken dov n int three parts: weight acceptance (WA), pull-up (PU), and forward 

continuance (F N) while the wing pha can be divided into two parts: foot clearance 

( · L) and f l placem nt ( P) (Mcfadyen and Winter, 1988) as shown in Figure A.5 

(A). 'he ranee pha whil l walking down tairs can be broken down into three ub­ 

ph e d scribed a weight acceptance (WA) forward continuance (FCN) and 

c ntr lied I wcring ( ). he wing period had two pha s leg pull-through (LP) and 

prcparati n f. r f l placement P) Mc adyen and Winter, 1988) as hown in Figure 

.5 (B). 
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egment model and anthr pometric data. 2) Kinematic d ata, 3) force data. as shown in 

FigureA.6. 

Force plate Motion ystem Anthropometric 
data 

Kinematic 
Data 

Force data 
(kinetic 
data) 

Applying Equation of motion on link_ 
egment model 

t r action f rce 

Fl re .6: 'tcp for ornpl l m ti n anal} i using inverse dynamic appr ch. 

I linlHegm int model and anthro1om1/ric data 

a t f gments c nnected thr ugh 
Lin - igm nt mod ·I r -pres nt the human 

h wn in Figure A.7. Th 
puint rc1 rl·scntin ' th· • nter of r tati n 

Winter, 19 0): 
II n in • 1ssumptit ns • re mad ' ·irh re 

nt r of mas. 
• 

I· 1 h · •111 ·nt h.1-. .11li. c f. ma loc it ·d us u int ma· at it 

\\hi h " i II I I h 

• I h • It • 11 ion of c 1 h 
•111 nt's · nt r ol mass r main fi ed during the 

Jilli\ c 111Cllf. 
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• The joints are con idered lo be hinge (or ball and socket) joints . 

• The ma moment of inertia of each segment about its mass center (or about 

either proximal or di tal joint ) i con tant during the movement. 

• The length f each segment remain constant during the movement (e.g., the 

di ta nee between hinge (or ball and ocket) joint remains constant). 

An otomJCol 
Model 

Lin• Segment 
Model 

Fi ure A.7: Relation: hip between anatomical and link-segmenl model . Joints replaced by hinge joints 
and segments ar • replaced by masse and m m nts of in rtia located al each segment's center of mass. 

h anthr pometric data i a tati tical table used to obtain the segment's masses, 

c nt r of ma , and m ments of inertia based on the person's height, weight, and 

metimc x (Winter, 1990). 

2) Fora data (lrinetic data) 

Fore data refers t th external fl re a ting on the human body. The mo t common 

f< re. a tin' on th .. bod is th gr und re cti n fl rce. Thi i u ually acquired through 

111 
• 

11 
sh , n in igure A.8. The fl r e plate i a de ice used 

th u • < f n fore • pl tc a 
rt

. 11 th applied f rce (Winter, 1990), and t 
tu produ . t for t.: vc tor thnt is propo re na 

cl I nninl' th Ix: iti )II of th .. ·ntc.:rnf prcssur·. 



.8: f r plate placed in taircase, 

3) Kinemoti · data 

Kinematic i th branch f mechanic that deals with the geometry of motion without 

regard t th fi rce cau ing the motion. All of the kinematics parameters including 

linear and angular di placement, velocity, and acceleration can be calculated by 

knowing the po iti n and ricntati n of each body segment in space with respect to 

rim . The po iti n and rientation data are traditionally acquired through the use of 

vid o analy i in which the po ition of segment markers are tracked over time (Winter, 

19 0). 

w c rdinat y tern are r quired to describe the geometry of motion: Global and 

L I c rdinate ·y tern . Th I bal rdinate sy tern, also called the fixed 

rdinat tern, i fined by , Y, Z) a i y tern and provides the 3- 

nvir nm nt that th human m ernent occur within. The Local 

rdinat rt si n 
n am ving rigid body. The 

rdinat s tern \\ ith r pe l t gl bal c rdinat tern over 

Ill ) ·men! 

rim . l tc fin I th I itic n data. 
I ll 
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A.4 The Human Knee 

Th point at which two or more bones are connected is called a joint Each joint has 

veral type of tructure including cartilage, muscles, ligaments and tendons that help 

the j int t d it job by pr viding upport, stability, and movement Knee joint, which 

i th juncti n f three leg bone (thigh bone, shine bone, and the knee cap) is 

c n idered a the large t, one of the mo t complex, and the most frequently injured joint 

in the human body. U ually, the knee joint is described as a hinge joint since its major 

rn vement i tlexion and ex.ten ion. However, along with the hinge movement, there is 

me gliding and slight rotation occurring (Dunleavy, 1985). Like any other joints, the 

kne j int i c rnpo d of: I) bone , 2) muscles and tendons, 3) ligaments, and 4) 

cartilage, a .hown in the Figure A.9. The following gives a brief overview of each. 

u•dl'i •~ ----~.:;:;i,..:;: 
flw'lv• ••• ;.,.....u,. _ 

'\..-....>.>.>....+-~- Oueddc•P'9 
Tendon 

--4.- P•-t:•lt• (normally 
In c.en-.::er o'f' knee) 

,Af"'tl vl•r 
•r"'til•O• .. ._.,.., ond)l'••·-----=-~~11111-~===:~~~~ ~ •t•r•or ,....,. I•• 

LI .,....,._.,.,, .An"tef'I ,. t"U l••--f";:Jt"Ht:~~~~~~ 
1 •u•••""t•n• .... ,. .. 
11pament. 

AP--- IV"edl•I Collater"•I 
Ligament 

1-~J-.-- Pat.ell•,. Tendon 
(Lfgamen"t) 

igure A.9: Part of the human knee . 

.4.1 Bon 
. mention d c rlicr, th kn j int i th juncti n f three leg bone : thighs bone (the 

f mur shine bon • the tibia). and th· kn i cao (pat Ila). The femur i the large t bon 

in the I I • and it runs from the hip t< th knc •. Ih • distal h ad of the femur ha two 

I 
k 

I 
·illc.:d th. 

111 
.dial nnd lat •rJI ondylc. (Frind, 2 07). Ih tibia i the 

I ir I • )fl 11( )S • 

lar • .,t I n of the I 11 er I·• and it runs fr< m th. ankl. t the kne . Ih pr xirnal end 
13 



of this bone forms the lower portion of the knee, also known as the tibial plateau (Frind, 

2007). The patella, which is the third bone that forms the knee joint, is a little sesamoid 

( esame - eed- haped) bone that simply serves as a pulley for the extensor muscle to act 

more efficiently (Frind, 2007). 

A.4.2 Muscle and tendons 

There are two major groups of muscles working at the knee: the Quadriceps and 

Hamstring groups. The e muscle groups work synergistically to provide protection as 

well a flex ion, extension, and rotatory movements of the knee (Thompson and Floyd, 

2 O I). The Quadricep group, as hown in Figure A.10, is the anterior thigh muscles, 

which i re pon ible for extending the knee. The quadriceps group comprises the vestus 

Jaterali , ve tu intermediu , rectus femoris, and vestus medialis (Anderson et al., 2000). 

Th I lam tring gr up, a hown in Figure A.10, is the posterior thigh muscle, which 

c mpri e the bicep femoi on the lateral side of the leg and the semitendinosus and 

emimcmbrano u n the medial ide (Dunleavy, 1985). The hamstring group is 

primarily r pon ible for flexing the knee. However, the biceps femoris is also 

n ible f r c ntrolling the external rotation of the tibia, and the semitendinosus and 
re 

· b al ng with ther mu cle are re pon ible for the internal rotation 
em1m m ran u ' 

astr nciu mu cle i primarily re pon ible for extending 
n ct al., 2 0). Ande 

ihe nkl • ut it al: help in flexing the kn e. 
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i ure A.JO: Anterior and po terior vi \ of the knee muscles. 

Tend n ar a tr ng band of connective ti ue that connects a muscle group to a bone. 

1 h tend n in the knee j int are quadricep tendon and patellar tendon. The quadriceps 

t nd n c nne t the t p of the patella and allows extending of the leg. The patellar 

tend n c nn t the bott m of the patella and attaches to the top of tibia. Because of 

thi , patellar tend n i n idered as ligament rather than tendon. 

A.4.3 Ligaments 
B ne are joined t bone by tr ng, elastic bands of tissue called ligaments. The major 

ligamen cro mg the knee joint are: the ruciate ligaments and the Collateral 

ligamen . The ruciate ligaments are two ligamentou bands that cross one another 

within th j int cavity f th knee (Ander n et al., 2000), including, the anterior 

cru iat ligament and the po terior cruciate ligament. 

'I h anterior ru i tc ligament (A ) attache in fr nt of the tibia; then, pa ing 

ha ·kward it atta he lntcrolly to the inn r urfa e f th lat ral c ndyle (Anderson et 

11,, 
2000). 'I h • prima • Jun ti m of th • ·1, is to pre nt th anteri r tran Inti n f the 

tihia, II al 
1 
wbilirs th· tibia a rain I •. c .sslv int rn I r tali n and erve a 
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c ndary re traint for valgu or varus stress with the collateral ligaments (Anderson et 

al. 20 0). 

The po teri r ru iate ligament (P L), which is horter and stronger than the ACL, 

c fr m the ba k of the tibia in an upward, forward, and medial direction and 

attach t the anterior portion of lateral surface of mediaJ condyle of the femur 

(Anders n et al., 2000). The primary function of PCL is to resist the posterior 

tran Jati n f the tibia. However, PCL also plays a role in the internal/external rotation 

f th tibia and in th valgus/varu movement (Anderson et al., 2000). Because of this, 

th i u ually referred to as the primary stabilizer for the knee joint. 

Th c llateral ligament of the knee include the medial collateral ligament and the 

lateral ollateral ligament, a hown in Figure A.ll. The medial collateral ligament, 

which run al ng th in ide of the knee joint, is the primary restraint to the valgus 

r tati n f the knee. However, it is al o considered to be a secondary restraint to the 

anteri r/po teri r tran Jati n of the tibia (Anderson et al., 2000). The lateral collateral 

ligament, which connects fibula to femur laterally, is the primary restraint for varus 

rotati n. H wever, it i al o con idered to be a secondary restraint for external rotation 

f the tibia (Ander net al., 2000). 

I 11 • 111 cru iat ·Ii •Jlll nt 11the1..n ~ 
•1 urr . . 
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A.4.4 artilages 

In the knee joint, there are two type of cartilages: articular cartilage and minsical 

cartilage. The articular cartilage, which is a hyaline cartilage, is a tough, elastic material 

that c vers the end of the knee bone and helps in shock absorption, and allows the knee 

l m ve m thly (Figure A.12). 

The menisci arc two oval fibrocartilages (meniscus) that deepen the articular facets of 

th tibia and cu hi n any stresse placed on the knee joint (Anderson et al., 2000). 

In Judcd al are the lateral and medial meniscus, named according to their location on 

the tibia, a hown in the Figure A.12. They serve several functions, such as absorption 

and di ipati n of force, lubrication and nourishment of the joint structure, and 

c ngruency f th j int urface to improve weight distribution (Anderson et al., 2000). 

_::_:...;=:::=:=;i'fj-- m d 1al 
meniscus 

,,•.s--- m dial 
colla'terat 
ligam nts 

Fi ure .J2: Collateral ligamcn , rncni i, and articular cartilage ofth right knee. 
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