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ABSTRACT

A Brain-Computer Interface (BCI) system was developed to operate a prosthetic
hand and other devices. The Electroencephalogram (EEG) signals were recorded over
the sensorimotor cortex area during foot, left or right hand motor imagery. Only two
mental tasks and one or two EEG bipolar channels were identified and used in the
online experiments. Autoregressive (AR) modeling was used to extract the features
from the spontaneous EEG signals and Linear Discriminant Analysis (LDA) was used

as the classifier.

Six subjects participated in the online study. However, only three subjects had
sufficient control to proceed to the final application phase. The online classification
errors for these subjects ranged between zero and 17.8% in the subject-training phase.
In the application phase, the subjects were required to complete a preprogrammed test
sequence. The optimal time to complete the test sequence is approximately 6 minutes.
The times taken by the subjects to complete the test sequence were between 8 minutes
20 seconds and 17 minutes. The unintended activations per minute generated by the

subjects varied from zero to 0.8 per minute.

In the present application, high classification accuracy with low unintended
activations is more important than a high information transfer rate (ITR). By
introducing thresholds in the LDA classification rule and averaging the LDA outputs
over 5 seconds to arrive at a decision, we minimize the unintended activations although
the true positives (TP) and the ITR were reduced. The results of the present study show
that three of the subjects were able to use the BCI system to control a prosthetic hand

and other devices.
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CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Research into how the EEG signals can be used as commands to communicate
or to operate various assistive devices may improve the quality of life of patients with
neurological disorders, the handicapped and other patients with limited mobility. For
instances, the patients can express their wishes by using a spelling program, control
various devices at their environment or operate a neuroprosthesis by using EEG signals.
Moreover, by interfacing the BCI system to the web browser, they can get access to the
internet that may provide shopping, entertainment, educational and even employmenf
opportunities. It i1s also possible to use the BCI system to produce music and graphic

arts.

For patients who are not completely paralyzed such as the amputees, even
though they may be able to use the voice, eyes movements, or movements of some non-
paralyzed part of the body such as shoulder to control a prosthesis or other assistive
devices, the users are required to learn to use artificial commands for the intended
movements. The use of EEG signals to determine intent may provide a more natural

way to control these devices.



1.2 Aims and Contributions

1.2.1 General aim
The aim of this research project is to develop a BCI system that will allow the

users to use scalp-EEG signals to control a prosthetic hand and other devices.

1.2.2 Specific aims
The main focus of the present study is to implement real-time signal processing
and classification algorithms that are robust and with minimal unintended activations of

the control devices. The specific aims of the dissertation are as follows:

1) To develop an experimental protocol and select the mental strategy to obtain
useful EEG signals.

2) To perform offline analysis on the EEG signals to find the subject-specific EEG
channels and mental tasks.

3) To implement signal processing and classification algorithms to process the
EEG signals real-time.

4) To develop a Graphical User Interface (GUI) that provides feedback and

selection menu to control a prosthetic hand and other devices.

1.2.3 Contributions
The contributions of the present study are as follows:-
1) A standard experimental protocol for a BCI system was developed.
2) Real-time processing algorithms that include artifacts rejection, feature
extraction and classification were implemented.
3) A GUI was designed to enable the activation of 4 different prosthetic hand

movements and 4 LEDs representing 4 different remote devices.



1.3 Literature Review

According to Vaughan er al. [1], there are three ways to restore impaired motor

functions:-

1) Use the remaining voluntary muscles activities such as the eye, hand or
forehead movements to give simple commands, to move a cursor for
communication [2], to operate adaptive switches and scanning devices [3].

11) Circumvent the breaks in neural pathways that control the paralyzed
muscles. For example, the electrical stimuli can be used to produce
contractions in paralyzed muscles to perform functional tasks such as hand-
grasp, standing and locomotion [4] or to control a prosthesis [5].

1) Provides new communication channels to the brain by using a BCI system

[6-10].

In the present study, the last category- a BCI system is used to restore the
impaired functions. The remaining literature reviews are focus solely on the BCI

systems.

1.3.1 BCI System

A BCI is defined as “a system for controlling a device, e.g. computer,
wheelchair or a neuroprosthesis by human intentions, which does not depend on the
brain’s normal output pathways of peripheral nerves and muscles” [11]. Figure 1.1
shows a model of a BCI system and Table 1.1 describes /the functions of each

component.
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Figure 1.1. Model of a BCI system.

The different aspects that are important in the design of a BCI system are as
follows:-

1) Target populations.

2) Intended applications.

3) The placement of the electrodes.

4) The type of the input brain signals to use (evoked potentials (EP), spontaneous
EEG signals or neuronal action potential) |

5) The mental strategy and training paradigm to use.

6) The operating mode (asynchronous or synchronous system)

7) The signal processing and classification methods



Table 1.1. Description of a BCI system components.

Component Functional Description

User The user is the one who operates a BCI system by using
EEG signals correspond to different mental strategies or
EPs evoked by a stimulator (not shown in the figure).

Data Acquisition System | The system consists of an amplifier, filters, an Analog-to-
(DAQ System) Digital Converter (ADC) and an interface. The EEG
signals captured by the electrodes will be amplified,
filtered, digitized and sent to the processing unit.

Processing Unit The processing unit can be a computer, PDA or notebook.
It will process the EEG signals by using the signal
preprocessing, feature extraction and classification
algorithms. The monitor can also provide feedbacks to the
user.

a)Signal Preprocessing The raw signals will be preprocessed to increase the
signal-to-noise ratio (SNR) of the EEG signals.

b)Feature Extraction The algorithm will extract useful information from the
EEG signals that correspond to different neurological
mechanisms used by the user to control the BCI system.

c¢)Classification The classifier will classify the features extracted. The
outputs of the classifier (the control signals) will be sent to
the device controller to control the device.

Device Controller The controller will control the device.

Device The control device can be a prosthetic hand, wheel-chair,
switches to activate various home appliances and etc.

Table A.] (Appendix A) shows the types of the existing BCI systems
categorized based on the placement of the electrodes, the types of input brain signals
they use and the operating mode of the system. The comparison of the characteristics
and the performances of the BCI systems reviewed are presented in 7Table A.2
(Appendix A). The characteristics include the frequency range of the EEG signals used
in signal processing, the system sampling rate, the feedback update rate, the number of

selections and the length of training time. Meanwhile, the performances of the systems




are measured by using an accuracy rate that is obtained by evaluating the number of
correct classification or the percentage of the true positive and false positive. The speed

of the system is measured by using the information transfer rate (ITR).

1.3.2 BCI Target Populations

To date. most BCI groups focused mainly on the applications for people with
little or no voluntary movement such as patients with Amyotrophic Lateral Sclerosis
(ALS) [37], spinal cord injury [7.42,44-46], cerebral palsy [46] or locked in syndrome
[39,47] who are unable to produce any type of motor output [1]. As BCI technology
improves, it is expected to become useful to people who are less severely disabled, such
as the handicapped who want to operate a wheelchair.

Several studies demonstrated that the ability of the healthy subjects and the
disabled to operate the BClIs is the same [42,44,45,48 cited 49]. Studies have also
shown that it is possible to discriminate two or three motor imagery tasks with the

experiments conducted on healthy subjects [50] and spinal cord injury [7].

1.3.3 BCI Applications

BCISs can be used to control cursor movements to answer simple questions or to
select items from a screen menu [6,7,36]. BCls are also widely used to control a virtual
keyboard to spell words and write messages [9,10,17,23,40,47]. Neuper et al.[51]
described how a patient with infantile cerebral paresis used the Graz-BCI for verbal
communication by using a telemonitoring system.

The BCls can also be used to control devices such as neuroprosthesis [20,22,31],
switches to control home appliances [13], functional electrical stimulator [14] and

orthosis [52]. For instances, Graz BCI was used by a tetraplegic patient to use the



orthosis to lift light-weighted objects and eat his first apple after 5 months of training
with the BCI system [8,52].

Moreover, BCIs such as the Thought Translation Device (TTD) enables the
patients to navigate the World Wide Web by using a web browser [18,19]. It is also
possible to use a BCI in multimedia applications such as gaming [25]. There are BCIs
that are used to control a mobile robot in a house-like environment [23] and control
devices in a virtual apartment [53]. BCls can also be useful in military applications. The
Air Force Research Lab in USA [14] developed a Steady-State Visual Evoked Potential
(SSVEP)-based BCI for flight simulator control to make faster response possible for the

fighter pilot.

1.3.4 Electrodes Placements

Brain signals can be detected at all levels as shown in Table 1.2. Most BClIs
developed are non-invasive in nature. It has relatively low spatial and frequency
resolutions. It is also sensitive to noise. The voltage fields created by muscle and ocular
activities are detectable all over the scalp and may contaminate certain parts of the
useful EEG frequency range. Besides, the recording of the EEG signals require the
placements of electrodes or electrode cap on the scalp of the subject. This causes
variances in the recorded sessions during each use since it is not possible to place the
electrodes at the same locations during each recording sessions.

Table 1.2. Various levels of the brain and the types of

electrodes used to detect the brain signals.

Different level of the brain | Types of electrodes used
Medically invasive Immediately outside neurons | Micro or semi-electrodes
: ‘ . and their synapses
- | Surface of the brain Subdural electrodes
. | Just below the skull Epidural electrodes
Medically non-invasive | Surface of the skull Scalp electrodes




Meanwhile, there are a few BCI groups [29-33] currently developing invasive

BCI systems because of the following advantages:

e The signals recorded are more stable and exhibit more detailed characteristics.

e The signals can be recorded at higher spatial and frequency resolution.

e The signals are free from muscle and movement artifacts and have higher SNR.
Simpler processing algorithms can be applied on the signals.

e It provides a quick response time.

Despite the advantages of the invasive BCls, non-invasive BCls may prove as
effective as that achieved with invasive BCIs. Pfurtscheller et al.[52] demonstrated that
a quadriplegic patient fitted with a hand orthosis can learn to use motor imagery along
with non-invasive BCI to open and close the orthosis. Moreover, the surgically
implanted electrodes may present some risk of infection. These disadvantages can be

overcome by using wireless radio frequency [54].

Since the BCI system developed is a scalp-EEG BCI system, the remaining

reviews are focus solely on the scalp-EEG BCI system.



1.3.5 Types of Input Brain Signals (EPs vs Spontaneous EEG Signals)

EPs are brain potentials that can be evoked by a specific evoking stimulus while

spontaneous EEG signals occur during normal brain function. Examples of spontaneous

EEG signals are the p and B rhythm [6,7,24], slow cortical potentials (SCPs) [19], the

Bereitschaftspotential [25], the frontal B rhythm [20] and movement-related potentials

of the 1-4 Hz frequency components [22]. Table 1.3 compares the characteristics of the

EPs-based BCI and the Spontaneous EEG-based BCI [1,15].

Table 1.3. Comparison of the EPs-based BCI and the Spontaneous EEG-based BCIL.

EPs

‘Evoking stimuli

Required

Spontaneous EEG Signals
Not required

Attention to the
system

Demand attention to the
stimuli. The user cannot pay
attention to the environment

Do not demand the constant
commitment of a sensory
modality such as vision.

Timing of an action

Cannot be controlled

Can be controlled

Signal Processing

EPs focus on EEG activity that
occurs at a specific time or
specific frequency. The signal
is stable and has high SNR.
Hence, simple features such as
the peak amplitude are used.

Effort is required to recognize
the EEG controls signals when
the subject intends to activate
the device. The EEG patterns
may vary from days to days
and has low SNR. Hence,

However, averaging technique | more complex signal
has to be used to process the | processing techniques are
signals. required.

Training time The subjects do not need to be | The subjects need to be
trained. trained.

ITR Higher Lower

Practicality It is less practical since |It is more convenient and

evoking stimuli is required. It
can only provide discrete
control

more practical for individuals
with impaired modalities. It
can  provide  continuous
control since the EEG signals
obtained are ongoing.




1.3.6 Training Paradigm/ Mental Strategy

For the BCI systems that use spontaneous EEG signals as the input signals, the
subjects have to be trained to use the system. Subjects have to produce and control
changes in their EEG signals by performing certain mental tasks or concentrating on
something when they undergo training in BCI experiments. Generally, there are two

approaches used by the researchers to train the subjects to control the BCI systems:

1) Approach A: Subjects are trained to develop an automated skill of controlling
certain EEG components such as
e the p rhythm (8-12 Hz) or B rhythms (20-24 Hz) generated in the
sensorimotor cortex area and recorded over the central head regions
[6,55 cited 56].
e the P rhythm (25-28 Hz) recorded over the cortex’s frontal areas [2].

e the SCPs [47].

The subjects were not instructed to perform any mental tasks but were asked to
concentrate on moving the cursor [57 cited 58]. However, from the study, motor
imagery was reported to be used frequently at the early training stage to produce
~ and control the EEG activity. As the training progressed, the motor imagery may

no longer be needed to control the EEG activity [6].

2) Approach B: Subjects are trained to control the EEG components by pefforming
certain mental tasks. Motor imagery produces changes in EEG signals that have
been well-studied and it has been used successfully in the BCI system [9,22-26].
Frequency components such as p and 8 rhythm desynchronize or synchronize

during movement preparation, execution and motor imagery such as left hand,
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right hand and foot movements [24]. There are 4 ways in which the hand or foot

imagery can be performed by the subject [59]:-

Visualize his or her own hand/foot moving
Visualize other’s hand/foot moving
Feel his or her hand/ foot moving (kinaesthetic imagery)

Combination of visual and kinaesthetic imagery

Besides motor imagery, other mental tasks can also be distinguished and used in

the BCI systems such as a mathematical task, a letter task, visual counting task

and geometric figure rotation task [23]. The different EEG components and

mental tasks used by various research groups are summarized in Table 1.4.

Table 1.4. EEG components and mental tasks used by various BCI groups.

BCI Groups | EEG components Mental tasks References
Graz-BCl The mu rhythms (10-12 Foot, right hand and left [9,24]
Hz) and beta rhythms (16- | hand motor imagery
24 Hz) recorded over the
sensorimotor cortex area.
LF-ASD The 1-4 Hz frequency Voluntary hand [22,60]
band recorded over the movements or finger
motor cortex flexions motor imagery
BBCI The Bereitschaftspotential | Voluntary left and right [25]
recorded over the primary | hand movements
motor cortex
ABI The EEG signals (8-30Hz) | Relax, right and left hand [23]
recorded over the 8 motor imagery, cube
standard fronto-centro- rotation, subtraction and
L parietal locations word association
Oxford BCI The EEG signals recorded | Two mental tasks (one [26]
over the sensorimotor used the motor imagery
motor cortex. and one involved mental
arithmetic) and a baseline
task of relaxation
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The possible advantage of automated skill (Approach A) is that it may only
require little or no conscious effort once it becomes automatic [57]. For instance, Miner
et al. [37] showed that the attention to auditory queries and formulation of answers does
not interfere with the EEG-based cursor control. The complexity of the question also
does not affect the performance of the subject [37]. However, the Approach B requires

greater concentration and mental effort.

1.3.7 BCI Operating Mode (Synchronous vs Asynchronous BCI)

In a synchronous BCI, the period of control is initiated by the system while in an
asynchronous BCI, the period of control is initiated by the user [41]. In a synchronous
system, the signal will only be classified within the time window when a cue is given to
the subject to perform certain mental task. This is useful for communication
applications where the BCI is used repeatedly such as in spelling program [18,19]. In
control applications such as in operating a neuroprosthesis, a user-initiated control
(asynchronous system) is required. In an asynchronous BCI system, there is a period of
idleness between two active control initiations when the user is in a mental state other
than the mental state used to activate the system.

Several BCI groups have designed and tested asynchronous control applications.
The LF-ASD BCI was designed to operate in asynchronous mode by discriminating
attentive idle states and imagined finger movement [22]. Scherer ef al.[9] used a
different approach in implementing an asynchronous system for virtual keyboard
application. In the system, three mental tasks (foot, right and left hand motor imagery)
were discriminated and used to select the letters with the averaged spelling rate of JA09
letters/min. The ABI is also an asynchronous BCI system used to control a robot and a
virtual keyboard by using three mental tasks (left hand motor imagery, cube rotation and

relax) [23].
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1.3.8 Montage, Signal Preprocessing, Feature Extraction and Classification
Methods

Different algorithms in processing the EEG signals are used due to the
difference in the nature of the input signals, number of electrodes used and other
characteristics. The spontaneous scalp-EEG signals were used as the input signals in the
BCI system. Therefore, only the montage, signal processing and classification methods
used in the Spontaneous EEG-based BCls are reviewed and discussed in this section.
The montage and the algorithms used by the various BCI groups for signal

preprocessing, feature extraction and classification are reviewed and summarized in

Table A.3 (Appendix A).

1.3.8.1 Montage

The choice of the EEG channels used is important. The appropriate channels can
be selected based on physiological justification or from various algorithms such as
Common Spatial Pattern (CSP) [50] and Genetic Algorithm (GA) [48]. For some tasks
such as the motor imagery, the recording positions are known. However, in the absence
of prior knowledge about the spatial distribution of brain activity of a mental task, the

algorithms to select the optimal recording positions are important.

1.3.8.2 Signal Preprocessing

Signal preprocessing such as Common Average Reference (CAR) and Laplace
filter [7,70] may be useful to obtain optimal result and can increase the SNR. Three
investigated preprocessing methods (common, local and average reference) [71] were
shown to improve the classification results although not very significant. These signal
preprocessing methods require more recording channels and therefore a greater number

of electrodes.
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1.3.8.3 Feature Extraction

Feature extraction is important in the process of classification because feature
extraction reduces the data by measuring certain features of the signals, which capture
the relevant information in discriminating the signals [72]. The different approaches
used may have substantial effect on the accuracy of the classification results. Table A.3
(Appendix A) shows the different algorithms used by the BCI groups to extract features
from the EEG signals. AR or AAR modeling and the band power method are among the

most commonly used algorithms.

The analysis of the EEG signals using AR in Fenwick ez al. [73] showed that the
model can be used to produce both ongoing EEG activity and EPs. AR can be a useful
approach in determining the spectral properties of EEG [74]. Several BCI systems also
used AR as a feature extraction method [6,67,69,72,75,72 cited 76, 77-80]. On the other
hand, AAR has been used successfully as features to a linear classifier (LDA) to

discriminate different motor imagery patterns [34,52].

AR is appropriate if the signal is stationary. It requires a number of samples data
points to estimate the AR coefficients. Hence, when applying AR to biological signals
like EEG, the signals are segmented and it is assumed that each segment of the signals
is stationary. The shorter the segment used, the higher the time resolution and the less
accurate the AR coefficients estimation. In AAR, the AR coefficients are estimated
adaptively for every observation of the EEG signals and it requires no buffer memory
and low computational effort. Table 1.5 compares the properties of AR and AAR. Both

of the AR and AAR share the following advantages [64,83]:-

e A limited number of parameters are sufficient to represent the EEG signals.

e No prior frequency selection is required.
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e There is a unique optimum solution of AR parameters.

e Efficient algorithms are available to estimate the parameters.

Table 1.5. Comparison of AR and AAR.

AR

Stationarity

Applied to stationary signals.

- AAR

Can be applied to both
stationary signals and non-
stationary signals.  The
stochastic model describes
well the random behaviour of
the EEG.

Number of data points
required to estimate the

parameters

At least 100 [81].

The recursive nature of the
algorithm enables the AR

coefficients at a particular

sample to be estimated from
the previous data points [82].

Time resolution

Lower

High
(Equal to the sampling rate).

Sensitivity towards | More robust Very sensitive [61]
noise
Real-time Require higher computational | Computational effort is low.

implementation

effort to obtain the same
update rate as AAR [64,83].

The update rate is high. It is
possible to provide feedback
that is continuous in time and
quantity by using the
parameters [64,83].

The band power method used [7-9] is based on a band-pass filtering approach

that describes the frequency-specific power changes of the ongoing EEG activity. AR or

AAR estimation models the complete EEG signals. The .comparison between the band

power method and the AAR is shown in Table 1.6.

For the band power and AR or AAR methods, a small number of bipolar

recordings were used. Another approach, CSP that reflects the specific activation of the

cortical areas during hand motor imagery requires a greater number of electrodes than

the other procedures and it also shows some sensitivity to the electrode montage [7].
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Table 1.6. Comparison of the band power method and AAR.

Band Power method AAR
Algorithm Simple and efficient More complex [61]
complexity (The AAR depends on the

correct estimation of parameters
such as the model order and the
forgetting factor, which requires
experience.)

Computational
effort

Low

Low [64]
(Only data recorded previously
are required in the estimation.)

Influence of
the artifacts

More robust [61].

Very sensitive [61]

(Artifacts can cause the
classification results to be biased
and more training data must be
used to set up the classifier.)

Prior  subject | Required Not required [64]
specific (Feature selection algorithms such
frequency as GA [9] and Distinction
selection Sensitive Learning Vector
Quantization (DSLVQ) [62] are
used to select the optimal
frequency band for each subject.) -
Time Equal to the window size Equal to the sampling rate
resolution

Short-time Fourier Transform (STFT) and classical approaches like periodogram

contrary are not as widely used as band power method and AR or AAR. Classical

spectrum estimation, implemented by using Fast Fourier Transform (FFT) is

computationally efficient and produces reasonable results for a large class of signal

processes. However, it has limited frequency resolution as stated in the Heseinberg

Uncertainty Principle and it suffers from ‘leakage’ in the spectral domain because the

sampled data is windowed [84]. AR power spectrum can give higher resolution than

FFT analysis for short time segments and thus permits more rapid device control [6].
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1.3.8.4 Classification

Prior to classification, most of the researchers will incorporate some feature
selections technique such as GA, Principle Component Analysis (PCA), DSLVQ and
others into the classifier in order to reduce the dimensionality of the features vectors and
improve accuracy. For instance, GA was used to select the frequency band, the number
of samples used for the averaging and the time within the motor imagery period [9]. It
was also used to reduce the dimensionality of the features sets extracted from ECoG
channels [85]; DSLVQ was used to select the subject specific frequency used in the

band power method [34,62].

Each classification algorithms has its strengths and weaknesses, dependent on
how we apply it, and the features we use. Generally, there are two categories of
classifier: linear and non-linear classifiers. The choice of linear or nonlinear methods
depends in the nature, size and other characteristics of the data set and requires a clear
conception of the theoretical model being applied to the data [86]. If the data and
knowledge about the data are limited, linear methods are preferred. However, if a large
amount of data is available, non-linear methods are suitable to find the more complex
structure in the data [86]. Both linear and non-linear methods are susceptible to outliers.
Therefore, regularization used [38,87] can help to limit the influence of outliers or
strong noise, the complexity of the classifier and the raggedness of decision surface in
the classifiers [86]. Table 1.7 compares the properties of the linear and non-linear

classifiers.
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Table 1.7. Comparison of the linear and non-linear classifiers.

Linear Classifier

Non-linear Classifier

Assumptions The data are linearly separable. | No assumption about the
Generally, assumptions about the distribution densities has to be
distribution density functions of | made and it can utilize the
the pattern classes are made and training-set data directly in
the performance criterion is | order 10 determine unknown
chosen [88]. coefficients of the decision

rules [88].

Implementation | Easy and simple More complex

(The appropriate architecture
of the network and the training
parameters have to be chosen.
Inappropriate design of the
network ~may cause the
network to overlearn or unable
to classify new data [79].)

Robustness More robust towards noise and | Experience devastating effects
outliers, and less prone to |in the presence of noise and
overfitting [86] outliers, and more prone to

overfitting [86]

Flexibility Limited parameters to tune Many parameters to tune

Computation Low High

time and (The training process is long

memory and has to be stopped arbitrary

in certain cases [79].

Training set size | Small Big

Examples 1) LDA 1) Artificial Neural Network
2) Signal Space Projection (ANN) such as the
3) Threshold method backpropagation neural

network, Learning Vector
Quantization (LVQ)

2) Support Vector Machines
(SVP)

3) Local Neural Classifier

Linear classifier such as LDA is the most widely used classifiers in the BCI

systems [7-9,25,38,40,61] because of its speed o
performance. The high-dimensional a

of nonlinear classification

f computation and minimal loss in
nd noisy nature of EEG may limit the advantage

methods over linear ones. A linear classifier (LDA) and two
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nonlinear classifiers (neural networks and support vector machines) were used to
classify five mental tasks [79]. The nonlinear classifiers only produce insignificant

improvement in the accuracy [79].

In the Graz BCI system, LVQ is mainly applied to online experiments with
delayed feedback presentation, that is, the feedback was provided at the end of each
irial; LDA is usually applied on the online experiments with continuous feedback
presentation [7]. The study also shows that a smaller number of training trials (160

trials) is needed to set up a suitable classifier online by using LDA compared to LVQ.

Another classification approach such as the Hidden Markov Models (HMM)
trained with Hjorth parameters was used because it can model the dynamic EEG

changes that will not be considered in the classification methods based on AR or CSP

such as LDA [8].

SVMs involve fewer parameters than neural networks, have built-in
regularization and are extremely fast [79]. It guarantees to find the optimal decision

function for a set of training data.

In a BCI system, the classifier will usually be updated after three to five sessions
to improve the classification accuracy in the course of experiments [62]. An interesting
approach, Adaptive Quadratic Discriminant Analysis [65] was developed to

automatically adapt to the subject when there is a change in his or her EEG signals.
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1.4 The Present BCI System

In this section, the BCI system that is developed at the Biomedical Engineering,
University of Malaya is introduced. The BCI system is still at the early stage of
development. The goal of this research is to provide a means 1o the handicapped to use

the EEG signals to control a prosthetic hand and other devices.

1.4.1 Electrodes Placements

The use of implanted electrodes in the brain requires a willing subject and a
qualified neurosurgeon to carry out the operation. EEG electrodes that are placed at the
scalp are easier to apply and the subjects are easier to get. Besides, many research
groups [6-10,22,23] have successfully used the scalp-EEG for their BCI systems.

Therefore, the BCI system uses EEG electrodes placed on the scalp.

1.4.2 Input Brain Signals

Spontaneous EEG signals (occur during motor imagery) are used as the input
signals to the BCI system. The user can have voluntary control over the prosthetic hand
or other control devices. The user can pay attention to his or her environment and no

stimulus is required.

1.4.3 Mental Strategy

The mental strategy used in the present study is motor imagery, that is, the user
has to imagine foot, right hand or left hand movements to operate the system. The
approach of training the subject to regulate EEG signals is not used because it is time-
consuming to train the subject to regulate the EEG signals based on the feedback

training. Motor imagery is used because it has been used successfully in several existing
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BCI systems [8,9.23,26.61]. Moreover, in this approach, there is mutual learning
between the subjects and the computer. Hence, the subjects are likely to gain control of

the BClIs in a shorter time.

1.4.4 The Operating Mode

The system is designed to classify the ongoing EEG signals continuously. The
subject will self-initiate and decide when to move the prosthetic hand or to select a
remote control device by using the selection menu designed. Delay may occur in the
generation of an appropriate change in the EEG signal and also in the process of

translating the EEG signals to control signals.

1.4.5 Montage

Motor imagery is used in the training paradigm. Hence, bipolar EEG channels
are derived from the electrodes placed over the foot “and hand sensorimotor
representation areas of the cortex. The montage used is based on the studies in Scherer
et al.[9] and Guger ef al.[61]. It was shown that 93% of the 99 subjects that participated
in a field study were able to achieve accuracy of more than 60% after 20-30 minutes of
training with just two bipolar EEG channels [61]. Hence, only one or two bipolar EEG

channels are identified and used in the online experiments.

1.4.6 Signal Preprocessing Method

In practical applications, it is desirable to have as few scalp electrodes as
possible. In the BCI system, only one or two EEG bipolar channels are used. Therefore,
the spatial filtering algorithms are not considered since the algorithms require a greater
number of electrodes. Temporal filtering is used. The raw EEG signals are band pass

filtered from 5 to 40Hz to increase the SNR.
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1.4.7 Feature Extraction Method

AR is used in this study to extract features from the EEG signals. AR power

spectrum in the R” spectral analysis is also used to study the subjects’” discriminating

features. The motivations of using AR are as follows:-

A

>

Simple and efficient algorithms exist to estimate the coefficients.

A small number of bipolar electrodes are sufficient as compared to other
approaches such as CSP [7].

AR process can represent the short-term EEG spectrum with reasonable
accuracy. Good spectral estimates can be obtained from short EEG segments.
Only a few coefficients are required to represent the signals of interests.

No prior selection of specific frequency band is required [34].

The AR power spectrum estimation avoids the problem of leakage and provides

better frequency resolution than the FFT-based methods [84].

AAR was not used in the present study despites its advantages discussed in

Section 1.3.8.3 because it is more sensitive towards noise, more complex and the

selection of the parameters such as the forgetting factor in the algorithm requires

experience.

It is important to note that the main focus in the early development of the BCI

system is to minimize the classification error. AR is used in the present study even

though it has a longer feedback delay because a shorter feedback delay may cause

instability and degrade the system robustness towards noise.
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1.4.8 Features Selection Method

The selection of the EEG channels and the mental tasks combination to be used
in the online experiments is based on the results of the averaged accuracy of the LDA
10x10 fold cross validation. Other methods such as GA are not considered because the
dimensionality of the feature sets and the possible combinations of the features are not
big. Simple algorithm like the LDA 10x10 fold cross validation is efficient and is

possible to be implemented online.

1.4.9 Classification Method

A linear classifier 1s generally simpler and more robust than a nonlinear
classifier [86]. Fisher’s LDA is a linear classifier and is widely used. Hence, the meth(;d
is used in the present study to classify the EEG signals online. The motivations of using

LDA are as follows:

It is simple and the weight vector can be easily obtained [64]. Hence, the

classifier can be set up after the training data are obtained from the subjects and

the new experiments can be performed immediately.

° Tréining time is short. It does not involve the long training procedure needed to
adequately estimate the parameters for a neural network classifier [89]

e  Smaller number of training sets is required [7].

e It has been used successfully in other BCIs [50].
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1.4.10 The BCI Applications and System Configurations

The user can use the BCI system to select the desired type of prosthetic hand
movements (grasp, key pinch, pulp-to-pulp pinch and tripod) and to reset the prosthetic
hand. The different types of prosthetic hand movements are shown in Figure 1.2. The

user can also select 4 LEDs representing 4 different devices.

Figure 1.2. The different types of prosthetic hand movements that can be selected by

the user: (a) Reset; (b) Pulp-to-pulp pinch; (c) Key pinch; (d) Tripod, and (e) Grasp.

The raw EEG signals collected will be filtered by an IIR elliptic band-pass filter
(5-40 Hz), processed by AR algorithm and finally classified by a linear classifier using
LDA. The LDA will continuously classify the EEG signals acquired from the user. The
GUI and the algorithms used to process the EEG signals are developed in Visual C+J'r,

Microsoft Foundation Class (MFC) language.

To date, two systems have been set up: one using Universal Serial Bus (USB)
communication and another one using wireless communication (Bluetooth). Figure 1.3
shows the BCI system configurations using the USB communication and Figure 1.4

shows the BCI system configurations using Bluetooth.
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As shown in Figure 1.3, the BCI system consists of a computer, a BCI box, a

prosthetic hand and 4 LEDs (represent 4 different switches to activate various devices).

The EEG signals captured by the electrodes are amplified and filtered by the biosignal

amplifier, digitized by an ADC, sent to the computer for further processing via the USB

communication. By using the same USB data acquisition controller, the output decision

of the classifier in the computer is sent to the prosthetic hand and the LED lights. The

computer also provides feedback and the selection menu to the user. However, wireless

communication using Bluetooth as shown in Figure 1.4 has the advantage that there is

no wire connection between the DAQ system, the prosthetic hand, the LEDs and the

computer. Visual feedback and the selection menu are provided to the user by a display

board that consists of LCD and LED arrays. Therefore, the user does not have to carry

the computer along.

Visual Feedback

User/
Device Stat 2
l evice ate Suchct
4 LEDs Prosthetic e
A
Hand Signals
Notebook/ :
Desktop Computer Hand |
LS Controll
G nal Preprocessin L SIEEEL s ks Ampliﬁer
B &P, K and Filter
Y
ﬁeature Extraction J |
v USB Data | e
[ Classification J Acquisition 2
Outputs Controller
BCIT Box

Figure 1.3. The BCI system configurations using USB communication.
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Figure 1.4. The BCI system configurations using Bluetooth.

1.5 Dissertation Organizations

The remainder of the dissertation is organized in four chapters. CHAPTER 2
METHODOLOGY describes the experimental protocols developed to train the subjects
in controlling the BCI system and the methods used for offline and online analysis of
the EEG signals. CHAPTER 3 RESULTS presents the results of the offline analysis and
the online system performance whereas in CHAPTER 4 DISCUSSION, the findings
and the system performance are presented. Finally, CHAPTER 5 CONCLUSIONS will
summarize the findings and outline future research efforts and the area in which the

system can be improved.
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CHAPTER 2 METHODOLOGY

In this chapter, the experimental protocols developed, the BCI system design
and the methods used for offline and online analysis of the EEG signals are described.

The subsections discussed in this chapter are shown in Figure 2.1.

2.1.1 Equipments and Instruments J
2.1 Data Acquisition J

and Experimental 2.1.2 Montage
Protocol

2.1.3 Experimental Protocol

2.2.1 R* Spectral Analysis

=N

2.2.2 Assess Subject’s EEG Control

o %
2.2 Data Analysis | | | 2.2.3 Identify the Two Mental Tasks and w
the Optimal EEG Channel(s)
%
2.2.3 Check for EOG and EMG 1
Contaminations
—s
’( 2.2.1 Artifacts Rejection (Threshold method) J
<
2.3 Online Signal " 2.2.2 Signal Preprocessing (Filter)
Processing and ==
Classification ’{ 2.2.3 Feature Extraction (AR) J
<
L’[ 2.2.4 Classification (LDA)

Figure 2.1. The subsections in CHAPTER 2 METHODOLOGY.

2.1 Data Acquisition and Experimental Protocol

Two types of experiments are conducted on the subjects: the offline experiments
to collect the EEG trials for data analysis and the online experiments to train the subject
to use the BCI system. The differences between these two types of experiments are

described in Table 2.1. The flow of the experimental protocol conducted on a subject is
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summarized in Figure 2.2. After an offline experiment, the EEG trials are analyzed to

identify the best two mental tasks and the EEG channels to be used for each subject in

the online experiments. Next. the subject is trained to use the online system. Once the

classification error of less than 20% can be achieved, the subject will use the

application-based system to control the prosthetic hand and the LEDs.

Table 2.1. The differences between the offline and online experiments.

Offline Experiments Online Experiments
DAQ System Commercial EEG machine The BCI DAQ System
Montage 9 electrodes placed over the |2 or 4 selected optimal
sensorimotor cortex area electrodes (1 or 2 channels)
No of mental tasks 3 2
Feedback No Yes
Real-time No Yes

New Subject

A

Offline Experiment
(Identify the 2 best
mental task and 1 or 2
bipolar EEG channel(s))

’

Online Experiments
(Subject-training)

Error <20%?

A

Online Experiments
(Application):-
Use the system to
control the prosthetic

hand & LEDs

Figure 2.2. The flow of the experimental protocol performed on every subject.
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2.1.1 Equipments and Instruments

2.1.1.1 Commercial EEG System
A commercial EEG system. the Medelec Profile Multimedia EEG system was
used in the offline experiments. The system can support up 10 32 EEG channels. The

sampling rate of 256 Hz was used in this study.

2.1.1.2 The BCI Data Acquisition System

The block diagram of the system configuration of the BCI system using the USB
~and Bluetooth interfaces are shown in Figure 1.3 and Figure 1.4 respectively. The
system can support four bipolar channels: two EEG channels, one Electroculogram

(EOG) channel and one Electromyogram (EMG) channel.

The analog EEG signals picked up by the electrodes are amplified and filtered
by the EEG amplifier and filter system. Further details of the amp]ifier and filter system
can be found in Phang and Goh [90]. Next, the EEG signals are digitized by a 16-bit
ADC at the sampling rate of 570 kHz [91] and sent to the computer batch-by-batch by
using the USB Interface Controller [91] or Bluetooth. The number of observations in a

batch of data is 256.

The computer processes the digital signals acquired by using a program written
in Visual C++ MFC language. The flow of the algorithms in the program is summarized
in Figure 2.3. First, the EEG signals are checked for artifacts (except during the
application phase), filtered, modeled by AR and classified by LDA. The LDA output is
used to move the cursor in the GUI to provide feedback to the user. During the
application phase, control signals are generated by the computer and sent to the LEDs or

the prosthetic hand controller to control the prosthetic hand. Further details on how a
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user used the GUI to activate the LEDs and the different prosthetic hand movements are

discussed in Section 2.1.3.2 (C).

1) Read Data from the Interface
Controller (via USB/ Wireless
communication)

v

2) Signal Preprocessing: (Artifacts Rejection
- Threshold method) /Not applied during the
application phase)

A

3) Signal Preprocessing (Filter)

v

4) Feature Extraction (AR)

v
5) Classification (LDA)

A

6) Provide feedback to the user (via
USB/ Wireless communication)
[The output will be used to control the
prosthetics hand and LEDs during the
application phase]

Figure 2.3. The flow of the computer processing algorithms in the BCI system.

2.1.2 Montage

2.1.2.1 Offline Experiments

The montage shown in Figure 2.4 was used. Nine electrodes were placed over
the sensorimotor cortex area. All the electrodes were referenced to an electrode placed
on the forehead of the subject. The ground electrode was placed on the subject’s
mastoid (right or left) to prevent charge accumulation and reduce interference. Other
non-EEG bipolar channels recorded along with the EEG signals to detect artifacts are
described in Table 2.2. The use of the right hand and left hand EMG was an important

measure to ensure that the subject did not move his or her hand during motor imagery.
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Figure 2.4. The montage used in the offline experiments.

A bipolar channel can be derived from two common-referenced electrodes by

finding the difference between the EEG signals of these two electrodes. Nine EEG

bipolar channels were derived and the convention of the names of the derived bipolar

channels used in this study is shown in Table B.1 (Appendix B-1).

Table 2.2. Non-EEG bipolar channels used in the offline experiments.

Channels Electrodes placements Artifacts detected
EOG Beside and above either eyes Eyes-movements and eyes-blinks
EMG Chin Biting, mouth or jaw movements

EMGs | Flexor and extensor digitorium Right and left hand movements

communis of the right and left
hand

2.1.2.2 Online Experiments

Only one or two out of the nine bipolar EEG channels derived were identified

(Section 2.2.3) and used in the online experiments. Besides the selected EEG channels,

a ground electrode was placed at the mastoid. The EOG and chin EMG signals were

also recorded online to detect artifacts.
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2.1.3 Experimental Protocol
The subject was required to give informed consent. Gold-plated scalp electrodes
were used in the EEG recordings. A brief discussion on the technical applications of the

electrodes is presented in Appendix B-2.

The experiment was conducted in an air-conditioned room without any shielding
or sound-proof system. The room was next to lecturers’ rooms and near the main road
of the university. Therefore, the subject was exposed to noise from the traffics,

telephones ringing and conversations.

The subject was seated comfortably on a chair with the visual display placed
approximately 100cm in front of the subject. The subject was required to perform two
or three of the following mental tasks: imaginary right hand movement (RIGHT),
imaginary left hand movement (LEFT) and imaginary both feet movement (FOOT).
Throughout the offline and online experiments, several commands were given to the
subject. The details on what the subject should do when the commands were given are

described in Table 2.3.

Table 2.3. Details on what the subject should do when different commands were given.

Command Task to perform
REST Rest and relax. Subject can blink his or her eyes and stretch
the body.
READY-RIGHT or | Decide which mental task to perform and prepare to imagine.
READY-LEFT or This will help to prevent the subject from performing the
READY-FOOT or | wrong task. Based on past experience, the subject would
READY-TONGUE | sometimes perform the wrong task without this command.

RIGHT Imagine right hand to move repetitively.
LEFT Imagine left hand to move repetitively.
FOOT Imagine both feet to move repetitively.
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2.1.3.1 Offline Experiments
Before an experiment, the experimental protocol was explained to the new

subject. The details of the explanations are presented in Appendix B-3.

The experiment lasted for approximately an hour. It consisted of a repetitive
‘process of RIGHT, LEFT and FOOT trials and the sequence of the mental tasks was
randomized by the computer to avoid adaptation. The command was displayed on the
GUI as shown in Figure 2.5. The feedback (cursor) in the GUI was used only during the

online experiments.

The experiment paradigm is shown in Figure B.2 (Appendix B-4). Five sessions
were conducted in each experiment. Each session consisted of 30 trials (10 trials for
each mental task) that lasted for about 9 minutes. Each trial lasted for 8 seconds. It
started off with the command of READY-LEFT, READY-RIGHT or READY-FOOT.
After 3 seconds, the command of LEFT, RIGHT or FOOT followed. After 5 seconds,
the command of REST would be given. The resting interval between two consecutive
trials varied randomly between 5 to10 seconds to avoid adaptation [34]. The paradigm

for one trial is shown in Figure 2.6.

Figure 2.5. The GUI used in the experiments.
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Figure 2.6. The paradigm for one trial.

After each experiment, the subject would be asked:-

e how the subject viewed and performed the task throughout the experiments.

e whether or not the subject felt sleepy or experienced any emotional changes

during the experiments.

2.1.3.2 Online Experiments

There were two phases in the experiments that were conducted using the online

system. They are the classifier set-up phase and the testing phase and they are described

in Table 2.4. The testing phase consists of the subject-training phase and the application

phase and there will be no update of the classifier within this period of time.

Table 2.4. Description of the classifier set-up phase and the testing phase.

Phase

Descriptions ,

Classifier  set-up
Phase

Artifacts rejection algorithm was applied. Only non-contaminated
EEG trials were used to set up the classifier. No feedback was
provided.

Subject-
training Phase

Artifacts rejection algorithm was applied. The classifier set up
was used to classify the EEG trials. The EEG signals were
classified and continuous feedback was given only during the
time window when the user was prompted by the computer.

Application
Phase

Testing Phase

Artifacts rejection algorithm was not applied. Experiments were
conducted only on the subjects who could achieve classification
error of less than 20% in the subject-training phase. The classifier
set up was used to classify the ongoing EEG signals and the
subject would decide when to activate the desired control device
by using the selection menu in the GUI The feedback was
provided continuously very second.
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Each experiment lasted for approximately one and a half hour to two hours. The
experimental protocol (Appendix B-4) was explained to the subjects who first used the

BCI system.

(A) Classifier Set-Up Phase

The experimental paradigm is similar to the one used in the offline experiments
(Section 2.1.3.1) except that only two types of mental tasks were used. The two types of
mental tasks and EEG channels were selected based on the data analysis on the subject’s

EEG trials collected in the offline experiments (Section 2.2.3).

Fach session consisted of 40 non-contaminated trials (20 trials for each mental
task) that lasted for about 12 minutes or longer. The paradigm for one trial is shown in
Figure 2.6. Whenever artifacts were detected by the system, the text of “BLINK” or
“ARTIFACTS” was displayed to inform the subjects. There were 3 sessions in the
classifier set-up phase and the resting interval between two sessions was 5 minutes. It

could be shorter or longer if the subject requested.

The GUI used was the same with the one shown in Figure 2.5. However, an
additional feature was incorporated into the GUI, that is, the cursor would move to the
left or to the right according to the command given to the subject. Table 2.5 shows the
moving direction of the cursor that corresponds to different commands when different
mental tasks combinations were used. For example, if the subject used RIGHT and
FOOT during the online experiments, the cursor would move a step towards the right
side every second if the command given was RIGHT. At the 5™ second, the cursor
would reach the right end of the slider. It would move back to the center position during

REST. If the command given was FOOT, the cursor would move to the left.
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Table 2.5. The moving direction the cursor that corresponds to different command

when different mental tasks combinations were used.

The combination of the mental Command Moving
tasks used in the experiment direction
RIGHT and LEFT RIGHT Right
‘ LEFT IR
RIGHT and FOOT FOOT Right
LEET Left
LEFT and FOOT RIGHT Right
FOOT Left

The cursor was designed to move during the classifier set-up phase even though
the EEG signals were not classified so that what was presented to the subject visually

during both the classifier set-up phase and testing phase remained the same.

Finally, the 120 EEG trials free of artifacts were processed immediately by the
computer. LDA weight vector was set up. The theory of LDA is given later in Section
2.3.4. The LDA 10x10 fold cross-validation was used to check the LDA’s ability to
separate the EEG patterns of the two different mental tasks. The whole process would
take less than 2 minutes and the experiment could be immediately continued with the

subject-training phase or application phase.

(B) Subject-Training Phase

The subject was trained to control the BCI system in the subject-training phase.
The experimental paradigm was similar to the one used in the classifier set-up phase.
The number of sessions ranged from 2 to 9. Six sessions were preferable. However, the
eﬁperiment would end once the subject felt tired or refused to continue. Each session
consisted of 20 non-contaminated EEG trials (10 trials for each mental task). The

subject would perform a mental task prémpted by the computer.
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The EEG signals were processed and classified by the LDA set up in the
classifier set-up phase once every second. Continuous feedback was used in the present
study. The result of each classification was presented to the subject in the form of the
cursor movement every seco\nd. After each trial, the cursor would move back to its

original position (the center position of the slider).

There were 3 experimental stages in this study. The interface and the feedback
system used in each experimental stage are different (7able 2.6). Further details of the
experimental stages are given in Table B.2 (Appendix B-5). At Stage 1, the USB
interface was used to interface the BCI DAQ system and the computer. At Stage 2 and
Stage 3, Bluetooth was used. However, the type of interface used should not have any
influence on the classification accuracy. Feedback system 1 was used in Stage 1 and
Stage 2. Later, Feedback system 2 was introduced in Stage 3 to reduce the classification

CITor.

Table 2.6. The interface and the feedback system used

in the 3 different experimental stages.

Experimental Interface System Feedback System

’ stage
Stage 1 USB interface Feedback system 1
Stage 2 Bluetooth Feedback system 1
Stage 3 Bluetooth Feedback system 2

The classification rule and how the feedback was presented to the subjects were
different in Feedback system 1 and 2. However, the feedback was provided every
second in both systems. The characteristics of the feedback system are presented in
Table 2.7. The main purpose of averaging the classification reSﬁlts over 5 seconds and
introducing the threshold (T,, and Ti) in Feedback system 2 is to reduce the
classification error in the system. How the Ty, and Tiow were defined is explained in

Section 2.3.4.2.
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Table 2.7. The characteristics of the two feedback systems used.

BCI Version 1 BCI Version 2 3%
(Feedback system 1) (Feedback system 2)
Number of 2 (Correct or incorrect) 3 (Correct. incorrect or
classification ambiguous)
classes
Time required ‘ Is 35S
to make a
decision
Samples Rule 1:- Rule 2:-
Classification | Classified as Classified as
Rule a)Task 1 if LDAgupu >0 a)Task 1 if LDAGuput = Tup
b)Task 2 if LDA gput <0. b)Task 2 if LDAgutput <Thow
¢)Ambiguous if
Tlow SLDAOUI[)UI STup- e |
Trials Not Applicable Classified as
Classification a)Task 1 if mLDAupu™Tup
Rule , and at least 60% samples
were classified as Task 1
b)Task 2 if mLDAupu<Tiow
and at least 60% samples
were classified as Task 2
c¢)Ambiguous if the trial was
not classified as Task 1 or 2.
Step size of the | Constant step size Varying step size
cursor (It was assumed that all the | (The step size was
classifications have equal | dependent on the absolute
strength.) value of LDAguput. If the
output was ambiguous, the
cursor would not move.)
Performance a) Classification accuracy: | a) Classification accuracy:
evaluation CR; (Equation 2.1) CR;(Equation 2.2)
parameters b) Classification error: | b) Percentage of the
CE;=100-CR,; ambiguous classifications:
CRambi
¢) Classification  error:
CEQZIOO-CRQ- CRa,,,b,-

After each session, the performance was evaluated using two different
parameters: classification accuracy (the percentage of correct classifications) and the
classification error (the percentage of incorrect classifications). In Feedback system 1,
every LDA output of the sample, LDA e in the trial was classified as mental task 1 or
mental task 2 using Rule 1 explained in Table 2.7. The classification accuracy for each

session was computed by using the Equation 2.1.
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Classification accuracy, CR; = 7’\1;* x 100 % 2.1)

s
where n,= The number of correctly classified samples

N, = The total number of samples classified in one session

In Feedback system 2, every LDA output of the sample, LDAqupu 1n the trial
was classified as mental task 1, mental task 2 or ambiguous using Rule 2. The averaged
LDA output of one trial, mLDAu, was evaluated every 5 seconds. A trial was
classified as mental task 1 or 2 if and only if 60% of the samples in that trial were
classified as mental task 1 or 2 and mLDAup was classified as mental task 1 or 2. The

classification accuracy of each session was computed using Equation 2.2.

Classification accuracy, CR, = %‘— x 100 % (2.2)

where n, = The number of correctly classified EEG trials

N, = The total number of EEG trials classified in one session

(C) Application Phase
The BCI Version 2 (with Feedback system 2) was used. Only subjects who
could achieve classification error (CE>) less than 20% in the subject-training phase

participated in this study.

Before an experiment, the subject was required to rest for 2 minutes. From the
preliminary study, the LDA would be biased to one class when it was used to classify
the resting samples, which were different from the two classes of EEG trials used to set

up the LDA. If the number of samples classified as mental task 1 in the 2 minutes was
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two times more than the other class and the averaged LDAoupu Over the 2 minutes was

classified as mental task 1, the LDA was considered bias to mental task 1.

The mental task used in the application phase to make a selection was dependent
on the LDA bias class as shown in Zable 2.8. In the worst case, the classifier and the
subject had to be retrained if the classification was random and no bias class was

1dentified.

Table 2.8. The mental task used to make a selection in the application phase

after a bias class was identified.

Bias Class Mental task used to make a selection during the
application phase

Mental task 1 Mental task 2

Mental task 2 Mental task 1

None Retrain the subject and classifier

After the bias class was identified, the computer would inform the subject on
which mental task to use in making a selection. The mental task is named IM1 and the
bias class is named IM2 hereafter in this report. The feedback was provided every
second and the cursor would move back to the center position every 5 seconds in the

application-based system.

(a) Classification Rules

Each sample was classified by using Rule 2. Each decision was made every 5
seconds. Every 5 seconds, the signals were classified as IM1 or IM2 if and only if 60%
of the samples were classified as IM1 or IM2 and mLDA guput Was classified as IM1 or

IM2 using Rule 2. Otherwise, the signals would be classified as ambiguous or incorrect.
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(b) Application-Based System Design

The application-based system was used in the application phase. The GUI of the
system provides user a selection menu to activate the prosthetic hand and LEDs. There
are four different levels in the GUI design: GUI-A [Figure 2.7(a)] provides only two
options (‘Hand’ or ‘Switch’) for the subject to select. If the subject intends to activate
the prosthetic hand, the ‘Hand’ has to be selected to go to the prosthetic hand control
GUI (GUI-BI [Figure 2.7(b)]). On the other hand, if the subject intends to activate any
LED, the ‘Switch’ has to be selected to go to the switch control GUI (GUI-B2 [Figure

2.7(c)]). Lastly, GUI-C [Figure 2.7(d)] is designed for the subject to ‘Reset’ the

prosthetic hand each time after a prosthetic hand movement.

If the subject intends to activate the prosthetic hand or LEDs, the subject has to
wait until the desired option appears in the grey box of the GUI and achieve correct
classifications of IM1 in 10 seconds (5 seconds to select and 5 seconds to confirm the
selection). The confirmation process will reduce the ITR and make the activation of
devices more difficult. However, the process can reduce the number of unintended
activations of the devices. No confirmation is required to select ‘Hand’ or Switch’ in
GUI-A. The selection is simpler so that the subject can more readily go into GUI-B1 or

GUI-B2. If it is difficult to select, the subject may be de-motivated.

(a) (b) (c) (d)
Figure 2.7. The 4 GUIs designed for the BCI application-based system.
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The activation process of the hand or LEDs in GUI-B1 and GUI-B2 is illustrated
in the following example. In this example, IM1 is LEFT and IM2 is RIGHT. During the

first 5 seconds:-

e If the signals are classified as RIGHT or Ambiguous, the options will be shifted one
step to the right.

o If the signals are classified as LEFT, a selection is made and confirmation is
required in the next 5 seconds. In the next 5 seconds:

- If the signals are classified as RIGHT, the options will be shifted one .step to
the right.

- If the signals are classified as Ambiguous, the computer will display the text
“Try Harder!” to encourage the subject to concentrate harder and to give a
second chance for the subject to confirm the selection. If the subject still fails,
the options will be shifted.

- If the signals are classified as LEFT, the selection will be confirmed.

The descriptions on how the GUI and the system operated are provided in
Appendix B-6 and Figure B.5 summarizes the logic of the BCI application-based

system operations.

(¢) Experiment Paradigm

The performance evaluation of the BCI application-based system requires an
indication of the intent. Therefore, an experimental paradigm was designed in such a
way that each subject participated in the study is required to complete a test sequence.
In a complete test sequence, the intents of subject are assumed to be the same with the

sequence of instructions prompted by the computer. The subject will be prompted to
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perform 12 device activations and maintain the system in an idle state for 140s. The
tasks are summarized as follows:-

e Select 4 different types of prosthetic hand movements (4 device activations)

e Reset the prosthetic hand after every movements (4 device activations)

e Seclect 4 different LEDs (4 device activations)

e Rest for 20s after one of the prosthetic hand movements was activated.

e Rest for 120s after half of the tasks were performed successfully

The computer will proceed to the next instruction if and only if the .subject
makes the correct selection as prompted by the computer. The sequence of the
selections is preprogrammed and a different sequence is used on the same subject in
different experiments. An example of the sequence used is shown in the flow chart in

Figure B.6 (Appendix B-6).

The duration of time used by the subject to complete the test sequence, T, is
compared with the minimum possible time, 7, that can be achieved to complete the
cycle. 7, is the total of 75 and Ty4 where 7 is the time when the subject can make a
selection and 7y, is the time when the subject is not supposed to make a selection.
Besides, the number of intended activations (IA), unsuccessful activations (FA),
unintended activations (UIA), true positives (TP), false negatives (FN), false positives
(FP), information transfer rate (ITR) and Accuracy are calculated. The definition of

these parameters is presented in 7able B.3 (Appendix B-6).

Ty, is the total time of the waiting time plus the resting period introduced in the
sequence. In the design, there may be instances when the subject has to wait for at least
5 to 15 seconds before a selection can be made. For example, the subject is instructed to

select ‘Hand’ followed by ‘3POD’. After the subject successfully selects the ‘Hand’, the
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subject may have to wait for at least 15s before the ‘3POD’ appeared in the grey box
and to be selected (as shown in Figure 2.8). If any device is activated during this

waiting time, 2 FPs and an UIA are generated.

[ SelectapoD

" Grab  Pinch | wod |
i ra inc t KeyP od i}

Figure 2.8. GUI-BI: The computer prompts the subject to select 3POD and the subject

has to wait for at least 15s before the selection can be made.

Another possibility of a long waiting time is when the subject selects ‘Hand’ or
‘Switch’ wrongly and the display becomes GUI-B1 or GUI-B2. The subject will only be

able to get back to GUI-A in 2 conditions:- .

(a) activate any device

(b) wait for the GUI-B1 or GUI-B2 to terminate after at least 45s

The subject is encouraged to use (b) even though it takes longer than (a) because it will
not cause any FP and UIA. On the other hand, action (a) in this test sequence will lead

the subject to a penalty of having 2 FPs and 1 UIA.

In a test sequence, there is also a special command ‘rest’ prompted by the
computer. During this resting period, the subject is not allowed to generate any UIA
otherwise the subject will never complete the test sequence. The purpose of introducing

this resting period is to train the subject to maintain the system in an idle state.
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The experiment will be terminated if:

e The subject gives up or the subject feels tired.

e The subject can not complete the cycle in 20 minutes.

In addition to the experiment conducted using a test sequence, each subject is

requested to perform the following task after a test sequence:-

a) Rest for 10 minutes
b) Read a book for 10 minutes

¢) Solve a mathematical problem

The FP/min and UIA/min are calculated to evaluate the performance of the system

when the subject is performing these tasks.
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2.2 Data Analysis

Data analysis provides useful information that can be used to:-

1) Assess the discriminating features of the subject.

2) Identify the best two mental tasks and the optimal EEG channels to use during
the online experiments.

3) Investigate if the subject has consciously or unconsciously used other artifacts

such as EOG or chin EMG signals to control the BCI system.

The two methods used in the data analysis are the R” spectral analysis and the LDA

10x10 cross validation.

2.2.1 R? Spectral Analysis

The EEG characteristics for each person are different (subject-specific). The
coefficients of determination, R* can be used in the spectral analysis to find the
discriminating features for each subject, assess the EEG control of the subjects and

investigate if the subject used non-EEG signals to control the BCI system.

2.2.1.1. Theory of R®

R is the simple linear coefficient of correlation. The square of R (RZ) is the
coefficient of determination. R? can be interpreted practically that the straight line
model relating y and x can explain (R* x 100 )% of the variation present in the sample
of y values [93]. This concept can be demonstrated in Venn diagram [94] in Figure 2.9.
Assume that the R value is 0.5. It means 50% of the variation in the EEG signals is

accounted for by knowing the cursor’s position (or vice versa).
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EEG Cursor’s
Position

Figure 2.9. Illustration of R’ using Venn diagram.

Since the R” measures the degree of linear relationship between two variables, it
can be used to measure the contribution of one variable in predicting the other variable.
For example, the contribution of EEG signals in predicting the cursor’s position and

. . 2
vice versa can be measured by using R”.

2.2.1.2. Application of R” on the EEG Signals

In the analysis, the AR spectra (order 8) of the raw EEG signals collected in the
offline experiments were computed. Next, the cursor’s position was assigned the value
of 0 and 1 to denote the right and left position (equivalent to the mental task 1 and
mental task 2) so that the different positions (different mental tasks) can be identified in
the regression analysis. The value of 0 and 1 does not indicate meaningful
measurements and it is known as a dummy indicator [95].

The R? between the EEG rhythms and the cursor’s position is used to measure
the user’s control of specific EEG features because it serves as a good predictor of
system performance [96]. A larger value of R? indicates a better user control. R? is also
used to show that the EEG-based cursor control does not depend on muscle activity

[97].
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2.2.2 Assess Subject’s EEG Control

The subject’s EEG control can be assessed by using RZ. If the user has perfect
EEG control, the value of the R2 will be 1 and if the user has no control at all, the value
of the R* will be 0. The main contributing features of the EEG frequency components in

discriminating two mental tasks can be identified from the R? spectra.

2.2.3 Identify the Two Mental Tasks and the Optimal EEG Channel(s)

During the offline experiments, EEG trials of the three mental tasks: FOOT,
RIGHT and LEFT were recorded using the montage shown in Figure 2.4. There are
three possible mental tasks combinations that can be used in the BCI system, that is,
RIGHT and LEFT, RIGHT and FOOT or LEFT and FOOT. Only one mental tasks
combination and one or two EEG bipolar channels derived were identified and used in

the online experiments.

In order to identify the combination of the mental tasks and the EEG channel(s),
the averaged accuracy of the LDA 10x10 fold cross validation for each mental tasks and
the bipolar channels combination was computed. No feature selection algorithm such as
GA was used because the possible combinations were not too big. There are nine
derived bipolar channels (Table B.1, Appendix B-1). Only 36 possible EEG bipolar
channel combinations were considered for each mental tasks combination. For example,
the Channel ac_C3 (from Region C3) can be used alone or in combination with any

other bipolar channels in Region C4 or Region.

In the analysis, the combinations of the EEG channel(s) and the mental tasks that
gave the best averaged accuracy obtained from the LDA 10x10 cross validation were

selected for each subject and used in the subsequent online experiments (except in the
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case when a single EEG channel was sufficient to discriminate the two mental tasks,

which is discussed in Section 3.1.2).

2.2.4 Check for EOG and EMG Contaminations

Unconscious muscle contractions may contribute to the change in the mu and
beta rhythm control of the BCI [97]. It is important to ensure that the subjects involved
in the study did not use the non-EEG artifacts generated by the other parts of the body
to control the BCI System. Hence, it has to be proven that the EEG activity control used

by the subject does not depend on the concurrent EOG and EMG activity.

The relationships between the cursor’s position and the power spectra for
frequency components (1-60 Hz) of the EEG, EOG and EMG signals recorded during
motor imagery were evaluated by using R’ values. Hypothesis testing was then
performed to check if the non-EEG signals are significant in predicting the cursor’s

position.
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2.3 Online Signal Processing and Classification

2.3.1 Artifacts Rejection (Threshold Method)

Artifacts will contaminate the EEG signals. There are a few methods to detect
artifacts online. For instances, FFT power spectra were used to detect muscle and ocular
artifacts [62] and the threshold method was to detect ocular artifacts [42,79]. In the
present study, the threshold method was used because it is effective and easy to

implement.

The threshold method was used to define eye-blinks, spikes and artifacts
generated by the mouth or jaw in the online experiments. The eye-blinks were detected
by using the EOG channel and the jaw movements were detected by using the chin
EMG channel. During the classifier set-up phase and subject-training phase of the
online experiments, only the clean EEG trials (without eye-blink and jaw artifacts) were
used to set-up the LDA and evaluated. However, in the application phase, no artifacts
detection method was used because eventually, a more robust classification is desired in

practical applications.

In the method, the EEG trials would be rejected if the absolute value of the
signal acquired exceeded 1000 unit (35uV) at the EOG and EMG channel. However,
the contaminated trials would be saved for data analysis. Trials and errors were used in
defining the threshold of 1000 unit (35pV). The mean value of the EOG without eye-
blinks is approximately 76.4 unit (2.6pV) with a standard deviation of 79.8 unit
(2.8V). As can be observed from Figure 2.10, there will be a peak whenever there is
an eye-blink. The absolute value of the peak exceeds 1000 unit (35pV) at every
instances. Figure 2.11 shows the EMG signal when the subject moved his or her jaw

and Figure 2.12 shows a spike that can be detected in all the channels (EEG, EOG or
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EMG). The spike may be caused by other types of artifacts or by the amplifier and filter

system. All of these artifacts exceed the amplitude of 1000 unit (35uV).
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Figure 2.12. A spike detected in the EEG and EOG channels.
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2.3.2 Signal Preprocessing (Filter)
The raw EEG signals were band pass filtered using an elliptic IIR filter of order
7 from 5Hz to 40Hz. 0.1 dB of ripple in the pass band and a stop band 40 dB was used.

Figure 2.13 shows the frequency response of the elliptic filter designed.

The EEG signals were filtered to increase the signal to noise ratio. The lower
cutoff frequency was set to 5 Hz to ensure that the dc component and the lower
frequency components were filtered in order to prevent the AR models from being
distorted by the EEG-baseline drifts [66]. On the other hand, the frequency components

higher than 40 Hz that were not crucial in the study were also filtered.

Magnitude Response
1
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Frequency

Figure 2.13. The frequency response of the elliptic filter designed.

2.3.3 Feature Extraction {AR)

AR modeling is the parametric modeling of a signal. The statistical properties of
the signal can be represented by an AR model using a number of coefficients. The
number of coefficients is known as the model order. AR coefficients contain most of the
information of the signal and its power spectrum. Hence, a classifier should be able to
discriminate between sets of AR coefficients calculated from signals with different

spectral properties [72].
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In an AR process, the value of a time series at current time period (n) is a linear
function of its immediate past value plus white noise (i.e. uncorrelated random

variables). It is clearly shown by Equation 2.3.

y[n] = iak yln—k] + w[n] (2.3)

where y[n] :current output
w[n] :white noise with mean zero, variance o~
ay: AR coefficients
p : AR model order
Various methods are available to estimate the AR coefficients, such as the Yule-
Walker method, the Burg’s method, the Covariance method, and the Modified
Covariance method (Least Squared Method) [84]. In this study, Burg’s method was

used to process the EEG data.

2.3.3.1 Reason of Using Burg’s Method

One of the oldest and most popular methods is the Burg’s method [98 cited 99].
A comparison of various estimators of AR coefficients showed that the Burg’s method
is the preferred estimator of AR coefficients [100-102]. Burg’s method was selected
because it gave better results in EEG analysis over the Kalman filtering and the Yule-

Walker method [72].

The Yule Walker method is widely used because it’s simple and efficient even
though its performance is not as good as Burg’s method. Howe /er, it can be severely
biased [101]. On the other hand, the least-squares estimator and the forward-backward
estimator have a greater variance than the Burg’s method. The least squares method

may yield unstable models [84,101,103].
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The major advantages of the Burg’s method are summarized as follows:-

It results in high frequency resolution [3].

It yields a stable AR model [84,98,103]

It is computationally efficient [84,98]

It is an accurate estimator for AR coefficients [104].

2.3.3.2 Burg’s Method

In this method, the reflection coefficients are estimated and then used i;l the
Levinson-Durbin algorithm to estimate the AR coefficients. No zero-padding is required
as in the Yule-Walker method. The stability of the estimated AR model is guaranteed

because the reflection coefficient is always smaller than unity [105].

The Burg’s method minimizes the sum of the squared of the forward and
backward prediction errors and the reflection coefficients are estimated directly with a
recursive algorithm whereby in each recursion step, a single reflection coefficient is
estimated. The algorithm of calculating AR coefficients using Burg’s method is

presented in Table C.1 (Appendix C-1) [84,106].

The Power Spectral Density (PSD) can be estimated by using Equation 2.4 and
the frequency resolution obtained from the AR analysis, resar can be computed by

using Equation 2.5 [106].

2
(o2

PSD(0)= a (2.4)

p .
271+ a,e™™
m=1

1.03
At.p.[SNR(p + 1)]*

(2.5)

CSAR™

where At = sampling interval
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Equation 2.5 shows that the frequency resolution obtained from the AR analysis
can be improved by decreasing the sampling rate or increasing the model order. The
resolution does not depend on the number of data point used to estimate the AR

coefficients. This is an advantage.

2.3.3.3 Model Order Selection

The model order used to represent the signal in AR is important. Too small of a
model will produce a smoothed spectrum and the model will not be able to represent the
signal’s properties and also cause poor resolution [106]. On the other hand, if the model

order is too high (over modeled), the spectrum may contain spurious peaks.

Many approaches have been proposed to select the optimum model order.
Among the most commonly used order selection criterion are Akaike’s Information
Criterion (AIC), Final Prediction Error (FPE), Minimum Description Length (MDL),
Parzen’s Criterion Autoregressive Transfer Function (CAT) [100]. AIC and FPE are the
better known criteria to select the model order and the order is selected by minimizing

Equation 2.6 and 2.7.

2
AIC (p)= Ino,+2L (2.6)
N
_ 2 (N+p+))
EREAp)Eoss ——————(N =m0 2.7)

The model selection is critical and it needs experience. In this study, 3

approaches were used to select the model order:-

e Consideration of the number of training sets required in setting up a classifier
e AIC selection criterion

e Referring to previous works
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(A) Consideration of the Number of Training Sets Required

The sample size requirement is ten times as many as there are independent
variables [94]. If the model order used is p, there will be p features extracted from each
EEG channel. If two EEG channels are used in the BCI, there will be 2p features.
Hence, at least 20p training sets are reqhired to set up the LDA classifier. During the
classifier set-up phase of the online experiments using AR, 300 training sets would be
obtained from each mental task. Since the number of training sets available from the
classifier set-up phase was small, the AR model order more than 10 were not

considered.

(B) AIC Criterion (Equation 2.6)

The EEG signals collected at one of the bipolar channels were segmented into
windows (the window size is 1 second, 256 observations). For each window, the signals
were filtered and modeled by using Burg’s method. The AIC values of AR order from 1
to 10 were computed for each window of filtered signals. The AIC values for each

model order were then averaged over windows and presented in Figure 2.14.

Statistical analysis ANOVA was then performed on the AIC values. From the
AIC ANOVA table (Zable C.2, Appendix C-2), the hypothesis that the average of the
AIC values for all the model order are the same was rejected (P<0.00001). By
performing Post-Hoc Test using Duncan Test, Table C.3 (Appendix C-2) was obtained.
There are 4 homogeneous subsets. The AIC values for AR model order from 6-10 are
shown to be significantly lower than the AIC values for the other AR model order.
However, there AIC values for order 6-10 are not significantly different. That means the
AR model order 6 is sufficient to represent the EEG signals. Therefore, orders lower

than 6 were not considered.
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Figure 2.14. AIC values for AR model order ranged from 1 to 10.

(C) Referring to Previous Works

The AR model order commonly used in previous works ranges from 6 to 15 as
shown in Table 2.9. However, the way of preprocessing the EEG signals by the research
groups might be different from the present study. Hence, it can only be used as a
reference.

Table 2.9. AR order used by various research groups.

Model order References
6 [27,34,75,79]
7 [106]
8 [75,80,108]
12 [80,109]
15 [73]

In the present study, AR model order 8 was selected even though the order of 6

was found to be sufficient to represent the signals based on the results of the AIC and
the ANOVA. This is because by using a higher order, more details can be incorporated

into the model.
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2.3.3.4 Application of AR in the BCI System
EEG signals were windowed into short segments to ensure local stationarity and
make the process of analyzing data more real-time. Considerations as follows have to be

taken into account when applying AR on EEG signals at real-time:-

e The window size used and the percentage of the window-overlap

e Feedback delay

The feedback delay of the system using AR method was one second. Shortening
the required time segment to estimate the AR coefficients (window size) can reduce the
delay in the feedback provided to the user. Offline analysis comparing window size of
one second and half a second showed that the shortening of the segments will affect the
accuracy. This is because a more accurate model can be obtained if more data points are
used to estimate the model. Hence, the window size of one second was used in this
study. There was no overlap between two consecutive windows because it was found
that it did not increase the accuracy even though the use of overlapping window

increased the number of the training sets.

2.3.4 Classification (LDA)

A classifier separates two or more classes of objects and allocates new
observations to one of the classes [113]. The classification rules are usually developed
from training samples. The features extracted from each class are examined for
differences and divided into two regions, R1 and R2. If a new observation falls in R1, it
is allocated to population Class 1, and if it falls in R2, it is allocated to the population
Class 2. The classification rules cannot provide an error-free method of assignment

because the classes may overlap.
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2.3.4.1 Fisher’s Linear Discriminant Analysis (LDA)

LDA is used in the present study because it is simple and robust. Besides, it
requires smaller training samples to estimate its coefficients [7]. It does not assume that
the populations are from mulfivariate normal distribution [113]. However, the LDA
does assume the populations have a common covariance matrix [113]. The assumptions
were shown to be fulfilled when applied to EEG signals [38,87]. The sample pooled

covariance matrix shown in Equation 2.8 is used.

- (n, —DS, + (n, =1)S, (2.8)
(n, +n, -1)

-1
~ pooled

Where S, = sample covariance of Class i, i=1, 2

n, = number of observations of Class i, 1=1,2

In LDA, the multivariate observations x are transformed to univariate
observations y such that y are separated as much as possible. The LDA coefficients can
be obtained by maximizing the variance between samples variance and minimizing the

variance between populations. The mathematical formula is shown in Equation 229

[113].

G o) e g At
m,'glx_l;%’l;k';b‘——(‘xl—x2)Sp<‘>oled(xl—x2) (2.9)

Where X, =sample mean of Class i, 1=1,2

b = LDA coefficients = (%, = X;)' S;,:,o,ed

n PSSR S e g
by = log(—)——= (¥, —%;) Sp(‘mled (x; +X,)
Y1
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The linear function obtained is §= (X, = X,)'S joeaX = bx . The function will transform
an observation, x with p-dimensions to a scalar number, y. For a new observation x

b

the classification rule (Rule 1) for Fisher’s LDA is as follows:

Allocate xto Class 1 if b +bx>0 OR

Allocate xto Class 2 if b, +bx <0

The accuracy can be used as a means 0 measure the classifier’s performance,
that is, how well the classifier allocates the future samples correctly. The accuracy can

be calculated from the confusion matrix table [113] shown in Table C.4 (Appendix C-

3).

2.3.4.2 Determine the Threshold

The threshold was determined immediately after the LDA was set-up and used
in subsequent testing phase. Simple statistical method explained in the next paragraph
was used to determine the threshold used in the classification because it is simple and
can be easily implemented online.  Other method such as the Receiver Operating
Characteristics (ROC) curves was not considered because the curves have to be
produced before a threshold can be determined. This is more difficult to implement
online as compared to the statistical method used in the present study. Furthermore, the

step size of the feedback cursor can be defined by using the two thresholds determined

in the statistical method.

Rule 1 is the sample classification rulz used in the BCI Version 1 (Section
2.1.3.2 (B)). In the BCI Version 2, a different sample classification rule (Rule 2) was
used. A third class (ambiguous samples) was introduced in the rule to reduce the

classification error. Figure 2.15 illustrates the two different classification rules, that is,
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Rule 1 and Rule 2. R1 is the region that belongs to Class 1, R2 is the region that belongs
to Class 2 and R3 is the region that belongs to the ambiguous samples. Typ and Ty, are

the upper and lower thresholds used to define the ambiguous samples.
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(a) Rule 1 (b) Rule 2

Figure 2.15. Two different classification rules used.

Tqble 2 10 summarizes the method used to define the thresholds for Rule 2 used
in Feedback system 2. The parameters pi and p, are the proportion of the distance
between the quartile and mean of Class 1 and Class 2 respectively. The distance
between Ty, and the mean of Class 1 will be larger than the distance between Tiow With
the mean of Class 2 if p; is larger than p;. In the feedback system 2, the step size of the
moving cursor is dependent on the magnitude of LDAgupu of the EEG signals classified.
The stef) size ranged from 0-4. Figure C. 1 (Appendix C-4) summarizes the conditions in

which step size from 0-4 were used.

Table 2.10. Method to define the Ty, and Tiy in Rule 2.

Steps

1‘) Svet‘up the LDA using the training samples collected.

2) Test the LDA by using the training samples.

3) Find the 1* quartile and mean of the training samples’ LDAgutpu for Class 1 and Class
2 respectively.

4) Find the absolute value of the distance (s;) between the mean () and the I quartile
(q;) for class i=1,2.

5) Tup= pi(1-p1)
Tiow= M2(1-p2)

ISy | B S
andpo= —————
Is, |+]s,| Is,|+1s,|

where p; =
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2.3.4.3 Cross Validation

In this study, a 10x10 fold LDA cross validation was used to identify the best
mental tasks and the optimal EEG channels. It was also used to assess the generalization

performance of the LDA after the classifier set-up phase of an online experiment. The

procedures are as follows [34]:-

1) The available data are mixed randomly and divided into 10 equally-sized

disjunct partitions.

2) Each partition is used as the testing sets and the remaining 9 partitions are used

as the training sets.

3) Steps 1) to 2) are repeated 10 times to improve the estimate of the accuracy of
the LDA. The generalization performance can then be measured by averaging
the accuracy obtained when tested on the test partitions of the data for each of

the 10x10 LDA models.

4) Hence, 100 averaged values of the estimate are obtained and averaged again.
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3.1 Data Analysis

Eight subjects (7 females [F1-F7] and 1 male [M1]) participated in the offline
experiment. The characteristics of the subjects are shown in Table 3.1. It has to be noted
that the main subject, F1 is the author. The author’s experience was useful in the design
of the experimental protocol and the GUI. Moreover, the author would be more aware
of the changes in her mental state during the experiments and could then try to relate it

to the system performance.

Table 3.1. Characteristics of the subjects who participated in the offline experi'ment.

Subjects | Sex Age Dominant Hand
Fl F 24 R
F2 F 2 R
B3 F 24 R
F4 F 23 R
BS 17 23 R
F6 F 24 R
F7 F 24 R
MI | M | 22 R

The R? spectral analysis and LDA 10x10 fold cross validation was used to assess
the EEG discriminating features, to identify the subject-specific mental tasks and EEG
channel(s) and finally to prove that the EOG and EMG activities played no role in the
mental tasks discrimination or in the BCI control. From Section 3.1.1 to 3.1.3, examples

of the data analysis on subject F1’s EEG signals are presented.

3.1.1 Assess the Subject’s Discriminating Features
The R? spectral analysis on the EEG trials gives a general view on the EEG
discriminating features (in the frequency domain) at different EEG channels for the

discrimination of two mental tasks. A higher value of the R? indicates a better
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discrimination of the two mental tasks and a better subject’s EEG control in the online

experiments.

An example of the R? spectral analysis on subject F1’s EEG signals is presented
in this section. The R? spectra of the 9 bipolar montage for the discrimination of two
mental tasks are shown in Figure D.1 (LEFT vs FOOT), Figure D.2 (RIGHT vs FOOT)

and Figure D.3 (RIGHT vs LEFT) in Appendix D.

The R? spectra showed that the EEG power spectrum centered at 23 Hz in
channel ac_CZ or ap_CZ (at the foot representations area) is the main discriminating
features between LEFT and FOOT (R2=0.53 for channel ac CZ and 0.52 for channel
ap CZ), or RIGHT and FOOT (R?*=0.49 for channel ac CZ and 0.47 for channel
ap_CZ). The R2 value of 0.53 indicates that 53% of the variations in the EEG signals
correspond to LEFT and FOOT is accounted for by the 23 Hz EEG power spectrum.
However, no significant discriminating features between RIGHT and LEFT is observed

and the R? values fall below 0.05 (Figure D.3).

The main discriminating features and the R? values for each subject are different
[97]. Higher accuracies of the LDA 10x10 fold cross validation were observed in the
subjects with higher R? values. The R? spectrum for each subject and the averaged

accuracy of the LDA 10x10 fold cross validation is presented in Table D.6 (Appendix

D).

3.1.2 Identify the Two Mental Tasks and the Optimal EEG Channel(s)
The selection of the EEG channels and the mental tasks combination to be used
in the online experiments was based on the results of the averaged accuracy of the LDA

10x10 fold cross validation. The results were compared with the results obtained from

65



the R? spe .o ;
spectral analysis 1 the previous section. An example on how the two ment ]
nta

tasks ¢ 4 . ;
sks and the EEG bipolar channels for subject F1 were selected 1s presented.

d cross validation for each of the 36

The accuracies of the LDA 10x10 fol

ons were computed for every mental tasks

possible EEG channel(s) combinati
combination. The averaged accuracies aré presented in Table D.1 (Appendix D). From
hannel(s) combination using RIGHT and

the table, the averaged accuracy for any EEG ¢

ral analysis of subject F1 had already shown that

LEFT is less than 65%. The R? spect

(h - - . Bt L .
ere were no significant discriminating features between these two mental tasks

RIGHT and LEFT int
d ap_CZ arc the optimal

T i '
herefore, the use of he online experiments was not considered.
EEG channels in both the

Table D.] also shows that ac_CZ an

lar results Were obtained using R? spectral analysis.

mental tasks combinations. Simi

Next, only the EEG channel(s) combinations with more than 90% accuracy were

mbination for the discrimination of LEFT

considered. Therefore, 7 EEG channel(s) co
RIGHT and FOOT were selected respectively for

and FOOT and the discrimination of

further analysis.

) combination with the best accuracy

For other subjects, 5to 15 EEG channel(s
rmed on the data if and only if one or more

nalysis was perfo

were selected and further a
EEG channel. Otherwise, the

of the selected EEG channel(s) combination Were single

EEG channels combination with the highest acc

uracy was selected without further

ged accuracy Was below 6570, the subject was required to

analysis. If the highest avera
nary mental task.

repeat the experiment with other imagi

he data. The null hypothesis is

OVA was used to further analyze t

sing LDA 10x1
S3 The ANOVA tab

One-way AN
¢ equal across

0 fold cross validation ar

that the accuracies obtained by u

) combination le for LEFT/FOOT and

the 7 bipolar EEG channel(s
66



RIGHT/FOOT are shown in Table D.2 and Table D.3. Both ANOVA table shows that
the differences are significant (Fo.01,13,1386=95.298, P=0.000 for LEFT and FOOT;

Fo_01,13,1386=85.634, P=0.000 for RIGHT and FOOT).

Next, Duncan’s test was performed on the data 1o identify the source of the
differences and the homogeneous subsets obtained from the test were shown in Zable
D.4 (LEFT and FOOT) and Table D.5 (RIGHT and FOOT) respectively in Appendix D.

In the homogenous subsets, the differences between the means of the constituent groups

are not significant.

Table D.4 and Table D.5 show that the accuracies of the EEG channel(s)
combinations using ac_CZ as one of the channel in the classification of LEFT and

FOOT or RIGHT and FOOT are significantly higher than those using ap_CZ. In both

mental tasks combinations, the accuracies obtained using the EEG channel ac_CZ alone

are significantly different from the accuracies using EEG channels of pc_C4 and ac_CZ.

However, neither has been shown 1o be significantly different from the other EEG

channels combinations using ac_CZ. Only EEG channel ac_CZ selected for subject Fl

because fewer electrodes are used. The mental tasks selected were LEFT and FOOT

because the averaged accuracy of for this combination is higher than the RIGHT and

FOOT combination.

The discriminating features and the optimal EEG channels are subject-specific.

Table D.6 (Appendix D) presents the R? spectra, the discriminating features of each

subject with the use of the selected mental tasks and EEG channels for the online

experiments, the mental strategy used and the averaged accuracy of the LDA 10x10 fold

cross validation.
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The distribution of the R? spectra patterns and the discriminatory power
measured by the R? value vary with subjects. Table D.6 shows that those subjects with
higher R? values and wider distribution of the discriminating features (larger area under
the R? spectra curve) achieved higher accuracy. Subject F2 and F7 achieved accuracy

lower than 70% and were with low R? value. The results for other subjects are more

promising.

The mental task combination of LEFT and FOOT was selected in all the
subjects. The bipolar channels derived from the electrodes placed at the foot
representation arca of the sensorimotor cortex (channel ac_CZ, pc_CZ or ap_C.Z) are
not neces.sarily the optimal EEG channel in discriminating LEFT and FOOT for some
subjects such as subject F4 and F5. For subject F1 and F3, a single EEG channel is

sufficient to discriminate LEFT and FOOT.

3.1.3 Check for EOG and EMG Contaminations
It is important to ensure that the EOG and EMG activities played no role in the
mental tasks discrimination or in the BCI control. Examples on how the R? spectral

analysis was used 10 check for the EOG and EMG contaminations in subject F1°s

offline and online experiments are presented.

3.1.3.1 Offline Experiments

The mental tasks and the EEG channels selected for subject F1 were
LEFT/FOOT and channel ac_CZ respectively. Subject F1 achieved averaged accuracy
of 94.06% in the offline experiment. In Figure D.4 (Appendix D), the R* spectrum of

channel ac_CZ was compared with the R? spectrum of other non-EEG bipolar channels,
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which include the EOG (Figure D.4 (a)), the EMG of the right hand (Figure D.4 (b)),
the EMG of the left hand (Figure D.4 (c)) and the EMG of the chin (Figure D.4 (d)).
Figure D.4 shows the main discriminating features focused in the EEG B rhythm
(centered at 23 Hz). The maximum EOGVor EMG R? values at the frequency range of 0-
128 Hz fall below 0.02 and are therefore significantly lower than the maximum EEG R?
value of 0.53 at ac_CZ (P<0.0001). This indicates that the EOG and EMG activities

recorded during the offline experiment did not contribute to the discrimination of LEFT

and FOOT.

3.1.3.2 Online Experiments

The R* spectrum of the EEG control channel (ac_CZ) was compared with those
of the EOG and EMG (chin) bipolar channels recorded during the online experiments of
subject F1. An example of the R? spectra obtained from Experiment 1 (Expl) is shown

in Figure 3.2. The R? values for the EOG and EMG channels are significantly lower

than the maximum EEG R? value.

The average of the maximum EEG R? value over all the online experiments for
F1 is 0.2836 (s.d. 0.0289). The EMG R? value 0.0102 (s.d. 0.0088) and the EOG R?
value is 0.0115 (s.d. 0.0133). The values are significantly smaller than the maximum
EEG R? value (P<0.00001). This indicates that the EMG and EOG activities are
minimally correlated with the cursor’s position when subject F1 was using the EEG

signals to control the BCI system.
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Figure 3.2. The comparison of the R’ spectrum of ac_CZ, EOG and EMG bipolar

channels recorded during online experiment, Expl.

The same analysis methodology was applied on the other subjects. The
maximum EEG R? values for F3, F4, F5, F6 and M1 are 0.22, 0.26, 0.26, 0.13 and 0.14
respectively. The EMG R? values are low, averaging 0.0345 (s.d. 0.0871) compared to
the EEG R? values. The EMG and EOG activities are not responsible for the

discrimination of LEFT and FOOT in these subjects.

For subject F2 and F7, the EEG R? values are low (<0.10). Both their EEG,
EOG and EMG activities show little or no discriminating features in the classification of

LEFT and FOOT.
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3.2 System Performance in the Subject-Training Phase

Six subjects participated in the experiments of the subject-training phase. The
selected mental tasks for all the subjects were LEFT and FOOT. Table 3.2 presents the
subject-specific mental tasks.and EEG channels, the number of online experiments each
subject participatéd and the final performance level (measured by CRz and CE) they
achieved. Four out of the six subjects could achieve CE; less than 20%. The
classification accuracy of subject F2 was close to the random level of 50%. Subjects F2,

F4 and F5, all of whom participated only once in the experiment, may be able to .

improve the classification accuracy and error with more training.

Table 3.2. Subject-specific mental tasks and EEG channels, the number of experiment(s)

each subject participated and the final performance level they achieved

Subject | Mental EEG Number of | Final Performance
Tasks channels | Experiments level
' (CRl CEZ%)
*F1 LEET + ac CZ 10 71.3/0.0
FOOT
F2 LEFT + ac_C4, 1 46.0/40.0
FOOT ac CZ
*E3 LEEISE ap_CZ 3 61.3/5.0
FOOT
F4 LEEI ap_C3, 1 69.0/23.8
FOOT ac_C4
F5 LEEL+ ac_C3, 1 63.3/13.3
FOOT ac_C4
*M1 LEEE]ISE ac_C4, 4 69.5/4.0
FOOT ac CZ

* Subject participated in the application phase of the online experiments.

There are three experimental stages. The number of subjects participated in each
stage is different as shown in Table 3.3. The details of the three experimental stages are
given in Table B.2 (Appendix B-5). At Stage 3, only three out of the five subjects

(subjects with * in Table 3.2) participated in the application phase.
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Table 3.3. The number of subjects participated in the different experimental stage.

No of subjects Subject
Stage 1 Fl
F1,F3,F4
F1,F2,F3,F5,M1

3.2.1 Results of the BCI Version 1 (Stage 1 and Stage 2)

3.2.1.1 Online System Performance

The classification rules and the feedback system used in Stage 1 and Stage 2
were the same. The different interface used in Stage 1 and Stage 2 should not have any
effect on.the system performance in terms of the classification accuracy (Ckl) or the
classification error (CEj). The number of sessions conducted was different in each

experiment because the experiment would end once the subject reported fatigue.

The online system performance in the subject-training phase on the non-
contaminated EEG trials (with no artifacts detected online) for subjects F1, F3 and F4 is
presented in Table D.7. The number of the non-contaminated trials of LEFT and FOOT
in a session is 10 except in the 3" session, Exp5 of subject F1 because she was tired and
requested to rest. The online accuracy achieved ranged from 55.0% (subject F3, Expl,
Session 4) to 90.0% (subject F1, Exp4, Session 4). The mean accuracy over all subjects

and all sessions of the experiments is 75.97% (s.d. 7.90%).

The performance of subject F1 improved with experiments (from 76.2% in Expl
to 82.3% in Exp5). However, the performance degraded in Exp6 and Exp7. Possible
reasons for the degradation are subject F1 was bored, not motivated and under pressure.
Subject F1 also commented that she could not imagine as consistently and as focused in

Exp6 and Exp7 as compared to the previous experiments.
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For subject F3, the online accuracy improved significantly (from 57.8%, s.d
2.1% in Expl to 74.4%, s.d. 47% in Exp2). A possible explanation for the

unsatisfactory results in Expl is that the system was new to subject F3 and she found

the feedback distracting. This could change the EEG signals patterns and affect the

performance However, in Exp2, she was more familiar with the system and could

concentrate even with feedback.

3.2.1.2 Online System Performance on Different Days
A LDA weight vector was set up in the beginning of every experiment. In »

practice, this is not desirable because the classifier set-up phase takes time. In order to

investigate the possibility of using the previous LDA weight vector set-up, subject F1

performed 2 experiments. In the experiments (Exp3a and Exp3b), the LDA set up in

Exp3 (conducted on 24, January, 2005) was used. Exp3a was conducted on the same

day as Exp4 (just before Exp4). The performance of the system in these two

experiments is presented in Table D.8 (Appendix D).

By comparing the results of Exp3a and Exp4, the new LDA weight vector set-up

in Exp4 showed performance improvement (82.8%) compared to the old LDA set-up

(76.1%). This is because the new LDA weight vector was set up by using the EEG trials

obtained from the subject on the same day.

Overall, the results of these limited experiments are promising because the LDA

weight vector set up in Exp3 was still able to perform with the accuracy of 82.5% even

about a month later. However, for the rest of the experiments conducted on subject F1,

the new LDA weight vector was still set-up in the beginning of each online experiment

in the hope that the performance could be further improved when both the subject and

the classifier learned mutually [8]. That means, as the subject learned and experienced
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the possible EEG signals changes, the LDA was also trained to recognize the changes in

the EEG signals.

3.2.1.3 Offline Evaluation of System Performance

(A) Effects of the Artifacts

Only the non-contaminated EEG trials were used in the evaluation of the online

system performance . the subject-training phase even though the feedback was still

provided to the subjects. In the offline analysis, the effect of the artifacts on the system

performance Was investigated. The number of contaminated trials and the system

performance on these contaminated trials for subjects F1, F3 and F4 are shown in Table

D.9 (Appendix D). For subject F1, only Exp5-7 contained contaminated EEG trials. The

overall accuracy achieved when both the clean and contaminated EEG trials were

included in the classifications is presented in Table D.10 (Appendix D).

Table D.9 shows that the mcan“classiﬁcation accuracy of these 139

contaminated EEG trials 15 76.16% s.d. 10.75%). This is not significantly different from

the mean online aceuracy 1 the experiments with the 557 non-contaminated EEG trials

using t-test at the 99% confidence interval (P=0.0103). From

(71.79%, s.d. 8.39%) by

Table D.10, the mean accuracy 18 71.64% (s.d. 8.32%). The results indicate that the

when the contaminated EEG trials were used in the

system performance did not degrade

classification.

74



From this study on a limited number of contaminated EEG trials, the LDA was

shown to be robust towards the artifacts such as eyes-blinks and jaw or mouth

movements that could be detected by the system. However, more results were required

in the future work to verify it.

In the later part of the analysis, both the contaminated and non-contaminated

EEG trials were used because the LDA was eventually allowed to classify both

contaminated and non-contaminalcd EEG signals in the application phase.

(B) Time Course of CR;

The time cOurses (5 sccg)x}ds) of the averaged accuracy of LEFT and FOOT

trials, CRave WETC computed to assess the accuracy achieved by the subjects in every

second. Examples of the time cOurses of the CRyave of LEFT and FOOT trials for subject

F1 collected during the Exp 1, Exp 2 and Exp 3 are presented in Figure 3.3, Figure 3.4

and Figure 53] respectively.
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It was d
expected to i A% fi
to 1mprove the performance and robustness of the classifier for all th
€

subjects th
. 3 .
t come at the cost of increasing the duration of time to arrive at a decisio
cision.

C
(C) System Performance Using Feedback System 2

2, the mLDAutput Was classifie

DA utput Was also classified by using the

In Feedb '
ack system d by using the LDA rule with

th
reshold (Rule 2). In the present study, the mL

during the offline analysis t0 study the effect of the

L F
DA rule without threshold (Rule 1)

rformance. Hereafter, these two approaches are named as

threshold on the system p€

Approach 1 and Approach 2:
Use the LDA classification rule without threshold (Rule 1).

a) Approach 1:
ification rule with thresho

b) Approach 2: Use the LDA class 1d (Rule 2).

ubjects F1, F3 and F4 using Approach 1 and

The system performance for s
D.12 respectively (Appendix D). In
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form of CR2/ CE>.
d in Table D.13 (Appendix
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The comparison of the
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proaches is presente

Cla . . S .
ssification errors achieved 1n both ap
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ach 1 and Approach

d online classification accuracy and

%) and 67.37% (s-d. 10.20%) respectively. On
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vely. The average

us section using Feedb

the other hand, the
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given 1o the subjects and the EEG signals might b
e

Real-time feedback was

ack provided. For example, if the feedbacks were positive, th
, the

acks were negative, the subjects might be

changed by the feedb

subject might be motivated; if the feedb

es Llsed in Feedback system 1 and Feedback system

depressed. In addition, the approach

a direct comparison between these two Feedback systems is

emonstrated the possibility of using the

2 are different. Therefore,

not possible. However, the offline analysis d

n Approach 2 to reduce the classification error

MLDA gupu and threshold criterion 1
Therefore, Approach 2 of Feedback system 2 was used in the BCI Version 2. In the
system, even though ecach decision Was made at the end of each 5-second trial, the
was provided every second.

signals were classified and the fecdback

sion 2 (Stage 3)

3.2.2 Results of the BCI Ver
pendix D) summarize 1

d Table D.15 (Ap
hase obtained using Ap

he online system

Table D.14 an
proach 1 and Approach 2.

he subject-training p

F1, Exp8 & % subje

performance in t
ct F3, Exp3; subject M1, Exp2 & 4)

In several experiments (subject
was conducted immediately after the subject-training phase

the application phase
Therefore, the number of sessions in the subject-training phase is small (except subject
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F1, Exp9). Too many sessions mMay cause fatigu

n the application phase-

performance degradation i
The classification accuracy of subject F2 was close to the random level of 50%
and highly biased. The results indicate that she did not have control at all. The

acy achieved ran

ged from 50.0% (subject F2, Expl, Session 5) to

classification accur
.0% (subject F2,

gsion 2 and 3) in Approach 1 and 35

100.0% (subject F1, EXp%: Se
o (subject Fl,

Exp9; Qession 3) in Approach 2. The mean

Expl, Session 4) tO 80.0
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sessions of the experiments is 75.82% (s.d. 16.06%)
oo . 0) In
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curacy over all subjects and all

A
pproach 1 and 58.63% (s.d.1 1.32%) in Approach 2.

approaches |
_ It shows that Approach 2 reduced the classification error significantl
ificantly.
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H
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pplication phase 18 different because only on
to activ G & scati
ate the device in the apphcatlon-based system. The measures used to e 1
valuate

s is further discussed in the next section where th
e

th
e systems are also different. Thi

res .
ults are reinterpreted and presented.

3.
3 System Performance in the Application Phase

he Subject-Training Phase

n of the Results of t

in this study- They
phase. The bias class (IM2) and the
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achieved classification error of
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less than 20% (Approach 2)
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Spectlvely. he way 101 terpret t
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proach 2 shown in
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The results of AP Table D.14 and Table D.15

ar i i
€ remtexpreted and presented n
(5 signiﬁcantly better

and Table D.18 show that the error characte
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than Approach 1 with the decrease of 0.03% in P(FP). However, P(TP) was also

decreased by 17.62%. In the present application, Approach 2 is a better system in

suppressing the UIA since it Signiﬁcantly reduced P(FP). It may be more difficult to

r, it is believed that the activation will become

make a successful activation. HOWeve
easier as the subjects learn to control the system with further subject training.

Table 3.4. The interpretation of the correct, incorrect and ambiguous classifications

in the subject-training phase and the application phase.
—_//1/’_’7__,’————————
Subject- Application Phase

TrainingPhase |
FP (False Positive)

Incorrect classifications in LEFT @JQEL/
Incorrect classifications in FOOT —_C’E_]’_ELO—Q:I;/ FN (False Negative)
WM/ CR,in LEFT TN (True Negative)
Correct classifications in FOOT _gﬁ;jgf?ﬂLflP,@ue Positive)
Ambiguous classifications in LEFT | CRambi in LEFT__| TN (True Negative)
n FOOT | FN (False Negative) |

Ambiguous classifications in FOOT L,CEEL@—"F'/

3.3.2 The Bias Class

e experiments in the application phase, the subject was requested to

e bias class (IM2) an
D.19 (Appendix D) presents

Prior to th
d to define the mental task used to

rest for 2 minutes to check for th
ystem (IM]) Table

eriod for subjects F1,

he same IM1 and IM2.

the results

activate the devices in the s
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samples being classified is 120 All the subjects shared t
revious experiments using the BCI Version 1, the

n several of the p
rmed on subject F1. The results are

In addition, 1
g class was perfo
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was found that, the bias ¢

pendix D). It
e results do not sugg
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lass was always

presented in Table D.20 (Ap

ts. However th

est that the bias class for all

LEFT in the experimen
mental states othe

the subjects is LEFT in all the
s and study th

¢ system performance in various operating

required to verify the result

conditions.
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ah ine S
3 Online System Performance

In the applicati ;
pplication phase, the ongoing EEG activity was classified every second
ond.

The S 1
ubject can initi
selfinitiate and use IMI to activate the devices at any moment
even

though >
sometin 3 .
1es the subject may have to wait for a few seconds before the desired
e

option can
be selected. The performance of the app]ication—based system was evaluated
by usin
¢ the parameters shown in Table B.3 (AppendiX B-6). The parameters of mai
n
T.), the unintended activations per

concern .
are the time taken to complete a sequence (

minut . .
e (UIA/min), the information transfer raté (ITR) and the Accuracy.

1%

est sequence 1 and 2 were tested on the subjects- The optimal values of T¢, T

TS and cs 4 NA,

ITR for the test sequences are shown in Table 3.5- The difference in the t
est

ent waiting time for the desired option to appear in th
€

sequence was caused by the differ

efore, 1 Twa and ITR varied slightly.

grey box in each sequence- Ther

Tya and Ts for test sequence 1 and 2.

Table 3.5. Optimal values of Te
NSRRI 5 eoTETTE )
Sequence2

o
/ - Se uence 1
Parameter Optimal value w
Tnin 6m 20s 6m 55
m 40s 3m 258

| Imin
Tha oAt oy
3 om 40s 2m 40s

[ A
3.2 activations/min

| |

ITR 3 activations/mm

Where 7xs: The time W sect is not supposed to make any selection
ctis prompted to make a selection

T The time when

the subje

ults of each subject during the application phase

Table D.21 presents the res
ame sequence was tested on the subjects twice in 2

using test seque
) All the subjects completed the test

occasions: Exp2
m varies. They

y of each subject to control the syste

M1 to activate the prosthetic hand and

sequence even though the abilit

demonstrated the ability of switch from M2 to
ate during the restin

tem in an idle st g interval.

LEDs, and to maintain the sys
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F i

or T to be shorter than 10 minutes, the ITR and Accuracy had to be more th
an

he FP/min maintained at low level The

= .
pproximately 1.5 and 85% respectively with t

0.82 activations/min (subject F3, Exp 3a) to 2.06

I .
TR of the subjects ranged from

F1, Exp8) with the corresponding Accuracy values in the range

activations/min (subject
o Esnoh of M1, the Accuracies achieved

of 81.38% and 88.74%. In the case of Exp2

er than the Accuracy of 81.38% (subject F3, Exp3a)

(70.33% and 63.54%) were low

shorter and ITR was higher. This is due to the reason that the

even though the 7. was
gniﬁcantly Jarger than the FP/min of subject

FP/mi .
P/min of subject F3 is 2.56, which is si

M .
1 in Exp2a and Exp2b (0.0 and 0.61 respectively)-

The penalty of having FP is a Jonger waiting time for the desired option to
¢ the subject 10 make a selection and consequently longer 7.

appear in the grey box fo
xample 2.56 in Exp3a, s

Even though FP/min may be high (for € ubject F3), the UIA is
JA/min for the subj
ubject F3 (0.8 UIA/min). The performance

ects is small (ranged from 0.0

generally lower (<1.0)- The U

UIA/min to 0.2 UIA/min) except for Exp3a, S
A/min) in Exp3a because

of subject F3 was relatively slower (17 minutes with 0.8 Ul

this was the first time that the application-based sy

stem was introduced to her and the

ed to her during the experiment.

rules of using the test sequence were explain
As for subject M1, there Was a slight improvement in the 7, by comparing
However, the performance of Exp2b evaluated by

Exp2b (15m 5s) and Exp4 (9m 15s).
ded. In fact, subjec

t M1 had a very good control in the

using other parameters degra

¢ completed half 0

f the test sequence in 2 minutes 50s, and ITR

beginning of Exp2b. H
of 2.12 activations/min without any FP- Later, he was tired and had difficulty in

performing IM1 to make a selection.
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bl as

She failed to make any activations instructed

reques
quested to complete the test sequence.
by the
con 1 ]
1puter even after 18 minutes. If a subject had no control, the classificatio
’ ns

would mo 1

st probably be biased to one class or random. It was not possible to complete

the cvele 1
. B :
ycle in such conditions SINCe the test sequence not only required the subject to use

IM1 to . : -
make activations, it also required the subject to maintain the system in an idle
y activations. Therefore, subjects F1, F3 and M1 did

state for 140s without making an

not
complete the test sequence by chance.

It is more tiring to us€ the system in the application phase compare 10 the

ect has to imagine IM1 for 10 seconds to

Su 3 o e
bject-training phase. This is because the subj

e a device 1S activated. From F1’s experience,

S
elect and to confirm the selection befor
gining M1 and mak

hen the computer prompted h

someti ; el :
etimes she had difficulty in M4 ing a selection before a test
tigued. Therefore, W

re she could imagine I

er to

sequence ended if she was fa
M1 and make a

emained rested befo

select an option, she T
y she did not perfo

rm any better in Exp9 even

selection again. This may explain wh

(TP)=79'3 %) was better than Exp8

though her performance i Exp9 (P o4 and P(FP)=0

(P(TP)=65% and P(FP)=15%)-
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334 S :
ystem Performance during Resting, Reading and Solving A Mathematical

Problem
erformance when the subjects were

ing to evaluate the system p
ying attention toO the system. When the

It is interest

er
performing other activities and were not pa

olve a mathematical problem, he or she did not

subj
bject was requested to read, rest or S
mand was given to the subjects. The subject was free

look at the display. No special com
was then evaluated by using the

rmance of the system

in Table 3. 0.

to move and think. The perfo

FP/mi .
P/min and UIA/min. The results were presented

e results demonstrated that the system was maintained in

For all the subjects, th
reading and solving a multiplication

an i . ;
n idle state when the subjects were resting,
in is high. As explained ea

problem in a short period of time. The FP/mi1
m two or three FPs that o

rlier (Table B.3,

ccur in certain duration

Appendix B-6), an UIA i generated fro

sed system can suppress the UTA/min.

of time. Therefore, the application-ba

. is 0.1061 (s.d. 0.1386), which indicates that

ed value of UIA/m1
inutes time. The initial results are promising in the

The averag

there may be one or two UIA in 10 m

performance dur reading and solving a

preliminary studies of the system ing resting,

math problem.

en the subjects

performance wh

Table 3.6. System
q math problem.

reading O solving

were resting,

Subject " Bias: SR UIA/mm gTN,,
S GlasS *Rest« » Rest ~ Read Math

F3 LEFT | 0.900 0. 333 §0! 766 0.100 | 0.100 0.255
[ | (10m) (10m) (3m 55s) (10m) (10m) (3m 555)

Fl LEFT | 0.900 60200 | 1-100 0.100 | 0.000 0.000
bt L (10m) (10m) | (4m33%) |2 (10m) | (10m) (4m 55s

Ml [EFT | 2200 0500 | 0108 0.400 | 0.000 0.000

(10m) (10m) (9m 14s) (10m) (10m) M__

85



CHAPTER 4
pISCUSSION



CHAPTER 4

In this chapt

overvj : . . .
rview of the subsections discussed 1n this ¢

R

er, the findings and the BCI system

DISCUSSION

performance are presented. An

hapter is shown in Figure 4.1.
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4.2 Artifacts Rejection
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For example, the changing distributions of the EEG patterns in subject M1 can
be observed by using the R? spectral analysis on the data collected during the offline
experiment and the online experiment (Expl and Exp2) as shown in Figure 4.2. In the
offline experiment, the main discriminating features were ;hown to focus in the B
rhythm at channel ac CZ and to a lesser extent in the p rhythm at channel ac C4
(Figure 4.2(a)). However, in Expl and EXp2 (Figure 4.2(b) and (c)), the difference in
the distributions of the EEG patterns can be observed. The subject’s EEG control was
focused sharply in 10 Hz at ac_C4. The EEG contro] in the B rhythm at channel ac_CZ
becomes weaker and almost insignificant in Exp2. Therefore, the use of the LDA set up
In previous experiment would not be appropriate in this case. It will be appropriate only

if the subject is trained to generate consistent EEG patterns with more subject trainings.

In this study, all subjects will go through a classifier Sep-up phase to set up a
LDA before the testing phase so that the LDA could learn the EEG changes in that
particular day. Even though subject F1 can use the LDA set up in the previous
experiment, she could improve her classification accuracy by using a LDA set up on the

same day.

No classifier update is performed during the testing phase. This is because the
main objective of the testing phase is toe train the subject to learn to contro] his or her
EEG signals consistently. Subject is advised to be consistent with the mental strategy
used during the training phase. Therefore, the classifier will not be updated during the

testing phase to confuse the subject.
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Figure 4.2. R’ spectra of subject M1 during: (a) Offline experiment, (b) Online

experiment, Expl and (c) Online experiment, Exp2.

4.4.2 System Performance

All the subjects who participated in the online experiments (except subjects F1
nd F4) do not have previous experience in the control of the online BCI system. Four
Ot of the six subjects could achieve CE; less than 20%. The classification accuracy of
Subject F2 was close to the random level of 50%. Subjects F2, F4 and F5, all of whom
Participated only once in the experiment, may be able to improve the classification

ACcuracy and error with more training.



The parameters of 7., ITR, Accuracy and the UIA/min were used to assess the
system performance in the application phase. A single parameter, 7, that is the true time
spent by the subject to complete a test séquence encompasses all the Important
information on the ITR and the ability of the subject to control his or her own signals
(measured by Accuracy and UIA/min). The TP, FN, TN and FP were taken into account
in the computation of Accuracy as shown in 7, able B.3 (Appendix B-6). Those who had
a better control of the EEG signals would have higher ITR and Accuracy, smaller e

and UIA/min.

The ITR of the subjects ranged from (.82 activations/min (subject F3, Exp 3a) to
2.06 activations/min (subject F1, Exp8) with the corresponding Accuracy valyes in the
range of 81.38% and 88.74%. It was also shown that a subject who has no EEG contro]

at all (F1 with classification error 44%) could not complete the test sequence.

The ITR in the application phase is slow, that is, approximately 3 device
activations/min if Accuracy is 100%. In our application, the ITR need not be too high
because the devices will not be activated as frequently as in the applications of a
spelling machine or cursor control. Low FP/min and UIA/min is more critical and
desirable. The FP and UIA in the BCI applications will cayse Inconvenience and
problems to the user. If for example, the user is using the prosthetic hand to hold a cup

of water. Any UIA at that moment may cause the prosthetic hand to reset and release

the cup.

In the present system development, the main focus is on minimizing the FP/min
and UIA/min. Thi§ could be achieved at the cost of lower P(TP) and ITR. In order to
Suppress the FP and UIA in the system, Feedback system 2 (Approach 2) that makes a

decision once every 5 seconds and with thresholds introduced in the classification ryje
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Wwas used. The subject may have to concentrate harder and take 3 longer time to make
any device activation. This limitation wil] pe overcome when the subject hag enough
training and a better EEG control. The subject wi]] then be able to constantly generate

the EEG signals that are strong enough to activate the device. )

However, higher ITR wil] enable the user ¢, activate the device in a shorter time.
It can be improved by reducing the time required to make an activation. The length of
time required to make an intended activation, 7, in the present system is 10 seconds,
that is, 5 seconds to select the desired option and the next 5 seconds to confirm the
selection. The trade-off between 7' act and the Accuracy has to pe considered though. If
the subject uses a shorter 7 acr, the FP/min may increase. In fact, each subject may have a
different optimum 7,,,. Certain subjects may be able to use a shorter 7., to activate the

device without any increase in the FP/min or UIA/min. Therefore, in future studies, thjs

aspect can be looked into.

In this system, only two types of motor imagery were used in the classification,
This poses a limitation on the design of the GUI. The subject had to wait for the desired
option to appear in the grey box before a selection could be made, Consequently, the
ITR was also reduced due to the waiting time. In future studies, a third class of menta]

task can be introduced so that a more efficient GUI that Improves the ITR can be

designed.

More experiments have to be conducted to confirm that the successful

performance results of the three subjects in the contro] of the BCJ System hold trye for

More subjects.
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4.4.3 Feedback Delay

Two types of feedback are used by the BCI groups: continuous feedback and
discreet delayed feedback. In the continuous feedback, the feedback is provided
continuously whereas in the discreet delayed feedback, the feedback will only be
presented after a testing trial.

In the present study, the continuous feedback is used so that the subject is
conscious about his or her performance continuously when he or she is performing a
mental task. The feedback update rate used is once every second. In other words, the
feedback delay is 71 second. Indeed, the feedback update rate of once every second is
lower than the feedback update rate used by the other research groups as shown in 7able
A.3 (Appendix A). According to McFarland er al. [45], the delayed feedback may
degrade the system performance. The delayed feedback may also confuse the subject.
The feedback update rate can be increased by shortening the required time segment to

estimate the AR coefficients or by using adaptive signal processing algorithm such as

AAR.

In the initial development of the BCI system, the emphasis is on improving the
robustness of the system. The shortening of the segments to estimate AR coefficients
will affect the accuracy and the AAR is very sensitive towards artifacts [61]. By using
AR and the update rate of once every second, the system will be less susceptible
towards noise and will reduce the number of FP/min and UIA/min. Furthermore, a
faster update rate may not be useful to all the subjects. For the subjects who are still new
in the BCI control, it may be better for them to use a system that does not update too
frequently. If the update rate is too high, certain subjects who have a slower response
may not be able to learn and gain benefits from the high update rate. After the subjects

have gained EEG control, a faster update rate would then be more usefu].
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4.5 Mental State and the System Performance

The mental state of the subject is also one of the important determining factors
in the success of the control of the BC] System. Performing the mental tasks in a relax
state with high concentration and consistency during the experiment are believed to be
important in the EEG control. During the eXperiments, there might be instances when
the subject lose concentration and was distracted by the noise. Many subjects also
commented that they became restless and sleepy at the later stage of the experiment.
These may be possible reasons for the lower online accuracy achieved by several of the
subjects such as subjects F4 and F5. In addition, no motivation such as monetary
rewards was given to the subjects.

From personal communication with the subjects and the author’s personal
experience, the system performance is very sensitive towards the change of the brain
states due to the emotional changes. For examples, there were instances when subject
F1 was annoyed due to the noise that was distracting her or when she was nervous and
under pressure when someone was observing her during the experiment. The classifier
was observed to be biased to one class and her performance degraded drastical]y.
Subject F3 also had the same experience because she would lose control whenever she
was restless. She would regain her control only when she calmed herself down and
remained in a relax state.

These factors may pose a problem in the implementation of the existing BCI
system in practical applications because human’s brain state changes all the time, There
is therefore a need to investigate what type of mental training will enab]e the subjects to

control their brain signals to improve the performance of the BCJ system.
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4.6 The Bias Class

There is a control class (IM1) and a bias class (IM2) in the BCI application-
based system. Whenever a device activation is desired, the subject will use IM1. In real-
world applications, it is important for the subject to maintain the bias class when the
activation of any device was not desired. It was observed in this study that when the
brain states other than the two motor imagery tasks (LEFT and FOOT) used in the BCI
system (such as the resting state) were classified, most samples would be classified as
IM2. Therefore, in the design of the application-based System, it was assumed that the
classifier could identify IM1 (FOOT) from other mental tasks or mental states IM?2

(LEFT, REST and e.t.c.).

It is interesting that all the subjects participated in the experiments of application
phase shared the same IM1, that is, FOOT when the two mental tasks used were LEFT
and FOOT. To investigate this phenomenon, R? spectral analysis was performed on
subject F1°s EEG signals collected during offline experiment. The R? spectra for the
mental task combination of LEFT vs FOOT, REST vs FOOT and LEFT vs REST are
presented in Figure 4.3. REST was the EEG data collecteq during the inter-session
resting period. From the figure, there are no significant discriminating features between
REST and LEFT. In contrast, the discriminating features i LEFT vs FOOT and REST
vs FOOT are similar with the R? values are relatively higher in LEFT vs FOOT. In other
words, the classifier will not be able to discriminate REST ang LEFT. The key to
control the BCI in this subject is the FOOT. The same phenomenon was observed in
subject F3’s and subject M1’s EEG data. Perhaps this is the possible explanation why

the bias class in subject F1, F3 and M1 is LEFT.
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Figure 4.3. The R’ spectra for LEFT vs F. OOT, REST vs FOOT and REST vs FOOT.

Due to this feature, the subjects later found that they did not have to perform LEFT in

order to maintain the bias class. Instead, they would Just rest and relax.

LEFT will then appear to be useless in the application phase. In fact, this may
not be true. For certain subjects, the EEG signals may take longer time to change from
one state to another. For subjects F1 and M1, LEFT was useful in speeding up the
change of brain states from IM1 to IM2. LEFT was also a way to divert the subject F1’s
attention from the feet because in many instances, the subject would consciously

imagine the feelings of feet movement even though she diq not intend to do so.

In the beginning of the application phase when the subjects were still fresh, the
subjects could usually imagine FOOT easily and a certain time Span was needed for the
EEG signals correspond to FOOT to vanish. If the time Span was too long, it may cause
FP and consequently UIA to occur. In order to prevent this from happening, the subject
had to consciously change the EEG signals frofn IM1 back to IM2 by using LEFT. Once
the feedback showed that IM2 was achieved, the subject would thep relax. From
subjects F1’s and F3’s experiences, relaxation was the key to maintain the system in an

idle state.
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At the later stage of the experiment, subjects would feel tired and it would be

subject was fatigue.

A short testing session was also conducted on subjects F1, F3 and M1
respectively after the application phase to Investigate the System performance when the
subject was performing other task and not paying attention to the GUI. Again, the
system was maintained in an idle state when they were reading, resting and solving a
multiplication problem. There may be UIA within this period. The averaged value of
UlA/min is approximately 0.1. Although the result is €ncouraging, it is still not good
enough for real-world applications. Improved Signal-processing algorithms are required
to reduce the UIA/min. Further investigations on the system performance in other
operating conditions and mental states are required. Additional testing is also required

to investigate the consistency of the mental task that Will be used as the biag class in the

application-based environment.
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4.7 Effect of the 50 Hz Noise

An interesting phenomenon was observed in F’s EEG signals in several of the
online experiments. The R2 spectra for the training and testing trials collected from
Expl to Exp5 are shown in Figure D.5 (Appendix D). The online accuracy, CR; for
each experiment is also presented in the figure, As €Xpected, the EEG control sharply
focused in the B rhythm. However, it is SUTPIising to find' that the R2 values of the
frequency band from 35-80 Hz exceed 0.1 in Exp 4 (classifier S€t-up phase) and higher
in Exp5 (classifier set-up phase and subject-training phase) even though the signals was
band-pass filtered frorﬁ 5 to 40Hz. This phenomenon Sometimes only happened in the
training EEG trials (Exp 1 and Exp4) or testing EEG trjals (Exp 2). The occurrence of
this phenomenon did not improve or degrade the performance of the System. In Exp 3,
Exp3a and Exp3b, the online accuracy achieved was 81.9%, 76.1% and 82.5%

respectively even without the occurrence of the phenomenon,

Initially it was suspected to be the artifacts caused by the subject’s unconscious
muscle activities. However, from the AR Spectra, no evidence of the muscle artifacts
was observed. The R spectral analysis on the EOG and EMG channel also indicateq
that the EOG and EMG activities played rio roje ip the BCI control. Figure D, 6(a) and
(b) (Appendix D) show the AR spectra for the raw EEG signals of Exp3 and Exps
respectively. It should be noted that Exp3 is the experiment Wwithout the phenomenon
and Exp 5 is the experiment with the phenomenon. There IS N0 observab]e difference in
the AR spectra for Exp3 and EXp5 except the smal] peak at S0Hz (caused by the 50 Hz

power line noise) in Figure D.6(b). ERS can be observeq in the B rhythm in all the AR
spectra.
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Figure D.6(c) and (d) show the enlarged AR spectra of the two experiments at
the frequency range of 40 to 80Hz. In ExpS, the 50 Hz in LEFT is relatively higher than
the 50 Hz in FOOT. The difference in the power at 50Hz in Exp3 is not significant if -
compared to Exp3. Therefore, it was concluded that the high R” values of the 35-85 Hz

frequency band was caused by the 50 Hz noise.

The next question is why was there a difference in the power of 50 Hz and the
frequencies in adjacent to 50 Hz in LEFT and FOOT trials? The reason is that in some
experiments, even though the computer randomized the LEFT and FOOT trials, it was
possible that most of the FOOT trials were performed in the early session and the LEFT
trials were performed in the late session. The 50 Hz noise in the system would increase
as time goes by due to the degradation in the electrodes impedance. Hence, the R?

spectral analysis that considers the ensemble average of the EEG trials showed

discriminating features in 35-85 Hz.

It is important to note that the phenomenon does not improve the system

performance and the system could still perform with high online accuracy in the

experiments without the occurrence of this phenomenon (82.5% in Exp3b). Therefore,

the main EEG control of subject F1 is still focused in the p rhythm at channel ac_CZ.
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CHAPTER 5 CONCLUSION

The newly set-up BCI system was used as an experimental system to control 2.1,
prosthetic hand and 4 LEDs representing 4 differen‘t remote devices. Real-time signal
processing and classification algorithms were implemented and a GUI was designed to
provide feedbacks and selection menu to the users. The main focus of the present study
is to implement a system that is robust and with no unintended activation of the control

devices.

The studies demonstrated the feasibility of using AR and LDA to process and
classify the two classes of EEG signals that correspond to motor imagery in real-time.
Although only three subjects participated in the application phase, the results are
promising and indicate that the subjects can learn to use an EEG-based BCI system to
control devices such as prosthetic hand. The subjects were also able to maintain the

system in an idle state with low UIA when they were resting, reading and solving a

mathematical problem.

The ITR is relatively low (ranged from 0.82 activations/min to 2.06
activations/min). However, the UIA/min (mean=0.1) for the above-mentioned three
subjects is encouraging. In our application, the ITR need not be too high because the
devices will not be activated as frequently as the other applications such as a spelling

machine or to control a cursor. Low UIA is more critical and desirable.

The processing of the EEG signals is complicated because the EEG signals are

stochastic and noisy- Furthermore, there are inter-trial and intra-trial variability. The

characteristics, discriminating features, optimal electrode locations and the best mental

strategy are highly subject-specific. The performance of the system is also sensitive to

the changes in the mental state of the subjects. Therefore, there is a need to investigate
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the type of mental training that wil] help the subjects to improve their EEG contro] and

consequently improve the system performance.

To date, this study has been conducteq on healthy individuals. Whether it is
possible for the individuals with motor disability to use the motor imagery to control the

BCI system remains to be explored.
Here are some suggestions for the future work:-

D) Investigate the possibility of using 3 classes of EEG signals to control the
BCI system so that the desired selection can be activated in a shorter time
and consequently increase the system information transfer rate.

IT) Improved the signal processing and classification methods so that the
number of FA/min and UIA/min can further be reduced.

IlI)  Use related algorithms to find the subject-specific optimal time to make an
activation without increasing the FP/min.

IV)  Explore the effect of the use of a shorter feedback delay by using signal

processing algorithms such as AAR.
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APPENDIX A: Reviews and Comparisons of the Existing BCIs

Table A.1. BCy lypes.

Type of input
brain signals

Asynchronous/ |
Synchronous !

BCI Group
[References]

Steady-state
Visual Evoked
Potentials

(SSVEP)

SSVEP China [12-
13], SSVEP Air Force
Research Lab [14-15]

Synchronous

P300-based BCI
[16-17]

Synchronous

Spontaneous EEG Signals
Slow Cortical Synchronous
Potentials(SCPs)
Operant-

Conditioning of

Thought Translator
Device (TTD) [18-1 9]
|EEG-based |

Neuroprosthesis [20],

i and B rhythm Wadsworth BC]

[6,21]
Event-related Asynchronous Graz-BC] [9], Low
EEG patterns

Frequency-
Asynchronous Device
(LF-ASD) [22],
Adaptive Brain-
Interface (ABI) [23]

Synchronous

Synchronous Graz-BC] [7,24],
Berlin Brain-
Computer Interface

(BBCI) [25], [26] and
EP o
S

Visual Evoked

: Brain Response
Potentials (VEP)

Interface (BRI) [28

Spontaneous EEG Signals

Movement-
related
Potentials

Synchronous [29]

Electrodes [ Invasive/
Placement Non-
invasive
On the scalp Non-
invasive
Just Below the Invasive
skull
On the brain Invasive
surface
(Electrocorticogram
(ECoQG))
Invasive

Immediately
outside neurons
(Neuronal Action
Potential)

Spontaneous EEG S; nals
Movement- Asynchronous
related
Potentials
Operant
Conditioning of
neural signals

(301, 317 and [32

(33]

Synchronous
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Table A.2. Comparison of the characteristics and performances of various BCls.

Abbreviations used:-
Freq: frequency ran
of selections; Tyin: lengt

J/m: letters/min.

BCI Freq S/R FBUR | Niiection Tt ITR CR Ref.
Group (Hz) ‘ : (%)
= EPs-based BCIs
‘BRI NS NS NS 64 10-60m 10-12 90 - [ [28]
w/m
SSVEP 1325 1124 NS 2 3-5 10.6 96 [14]
Training 1-hour b/m
(Air sess
Force
| Research
f L.ab) =8
SSVEP 23.42/ 1124 NS 2 mins 17.1 92 [14]
(Air 17.56 b/m
Force
Research
Lab)
SSVEP 6-14 200 NS 12 3 min 27815 31.25- | [12,13]
(China) b/m 100
P 300 0.01- 200 NS 36 2 2.3 RS [16]
100 Sess w/m
(mins) (12
b/m)
Spontaneous EEG-based BCls
‘New 0.5-30 128 4 2 2-3.5 5-17 80-97 | [34,35]
Graz-BCI hours b/m
Wadswor 8-12/ 128 10 2 15-20 2-25 95 [6,36,37
th BCI 20-24 sess b/m ]
BBCI 0.05- 1000 23 2 NS 40 >96 [25,38]
(ds100) b/m
TTD 0.01-40 256 16 2 Several 0.5 70-80 | [39,40]
(<8Hz) months I/m
to years
- 4 128 16 2 1.5-2 NS >94% | [22,41.4
LA ; (ds64) hours 1h3% 2]
60-81
FP
1.6-6
ABI 8-30 128 16 3 A few 2.7 TP: | [23,34]
: days- I/m 70
few FP:
weeks 5
“Asynchro | 10-12 128 10 3 2 1.99 >90 | [9]
e 16-24 hours I/m
g_éaé-B- = st NS NS 2 6(:;182? 8.1b/m | 590 [ [20]
based
neuropros sess)
thesis ‘,_J

e of the EEG signals; S/R: system sampling rate; FBUR: feed

. h of training time; CR: accuracy; ITR: information trans

d: ds: downsampling used; sess: sessions; TP: true positive; FP: false positiv
stated; ds:

back update rate; Nietection: NUMber
fer rate; Ref: References; NS: not

e; b/m: bits/min; w/m: words/min;
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Table A.3. The montage and the methods used by various BCI groups in signal

preprocessing, feature extraction and classification of the EEG signals.

Research Group Montage Signal Signal Classification
[References] Preprocessing Processing :
Synchronous BCI System _
Synchronous 2 bipolar 1) Spatial 1)Band-power 1) LDA
Graz-BCI channels filtering 2) Adaptive 2) Hidden Markov
System over the - Common Autoregressive Model (HMM)
17.8,34,62-65] cortical hand Average Model (AAR) | 3) Learning Vector
and foot area Reference 3) Common Quantization
(CAR) spatial filter (LVQ)
- Laplace (CSP) 4) Artificial Neural
filter 4) Hjorth Network (ANN)
- Local transformation | 5) Adaptive
Average 5) AR models Quadratic
Technique Discriminant
(LAT) Feature Analysis
2) Frequency selection :
filtering 1) Distinction
Sensitive
Learning
Vector
Quantization
(DSLVQ)
TTD (A1-Cz) Band pass filter | 1) Calculate a ; 1) Linear
[10,18,40,48,66] (A2-Cz) 500ms moving | Threshold
- todiag (2cm anterior average to the | 2)SVMs
C3-C2) EEG signals 3) LDA
(2em 2) Wavelet 4) Z-scale based
posterior C3- Tr:«msform, Discriminant
C2) Mlxeq Analysis
(2cm anterior Filtering
C4-Cz) Method
2cm
:)osterior C4- Feature )
C2) slt;léc:on x
e first
e 2) Zeros-Norm
s el m Optnmlzathn
A K and Recursive
feedbac pasp
Elimination
W Flectrodes CAR Autoregressive Linear Threshold
Wardsworth BCI E\';‘;‘:}?ﬁes ?l_; Laplacian speatral
16.36] zcnsorimotor Reference estimation
cortex area | 3) bipolar
reference
——— XX1




Table A.3, continued

Berlin BCI 21 electrodes | Laplacian Filter 1) Window the 1) Regularized
[25,38,67] mounted data with a Fisher
over the one-sided cos Discriminant
motor and function and 2) Fisher
sensorimotor apply Fast Discriminant
cortex and 6 Fourier 3) Sparse Fisher
frontal and Transform ~ Discriminant
occipital (FFT) filtering | 4) Support Vector
channels technique Machines
2) AR and CSP (SVMs)
5) k-Nearest-
Neighbour
il S|
Asynchronous BCI System !
~Asynchronous 6 bipolar Logarithmic LDA
Graz BCI channels band-power
[9] over cortical estimate.
hand and
foot area Feature selection:
1) GA
LF-ASD Bipolar: 1)Energy Analysis of EEG | Nearest neighbour
[22,41,59,68] F<FCi, F;- Normalization | 1-4 Hz using a bi- | 1-NN classifier on
FC,, F»-FC,, | 2) Bandpass scale wavelet the features set
FC;-C); FC;- filter from 1-4 modeled by a LVQ
C,, FC,-C, Hz
ABI [23,69] F3, F4, C3, Surfac<? PSD using Welch | 1)Local Neural
C4, P3, P4, Laplacian periodogram Classifier
Cz, Pz algorithm 2) Gaussian
(average three Statistical
0.5s segments Classifier
with 50%
overlap)
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APPENDIX B: Experimental Protocol

Appendix B-1 The Conventions of the Names of the Derived EEG
Bipolar Channels

Table B.I presents the conventions of the names of the derived EEG bipolar -
channels that are used throughout the present study. The channels were derived from the
montage used in Figure 2.3.

Three bipolar channels were derived from the anterior, center and posterior of
the electrodes in C3, C4 and CZ region respectively. The bipolar channels were named
based on the electrode positions used in deriving the bipolar channels. The first two
letters depict the two electrode positions: anterior (a), posterior (p) or center (c) of the

C3, C4 or CZ region.

Table B.1. The conventions of the names of the derived

EEG bipolar channels used in this study.

B Nameofthechannel |  Electrode Positions
Region C3 Channel ac_C3 ac3, c3
Channel ap_C3 ac3, pc3
Channel pc_C3 pc3, ¢3
Region CZ Channel ac_CZ acz, cz
Channel ap_CZ acz, pcz
Channel pc_CZ pcz, ¢z
Region C4 Channel ac_C4 ac4, c4
Channel ap_C4 ac4, pc4
Channel pc C4 pc4, c4

XXiii



Appendix B-2 Electrodes Technical Applications
The head of the subject is measured by using the 10-20 International System of
Flectrode Placement to estimate the electrode locations. There are 21 electrodes

according to the system. Figure B.1 shows the electrode placements in the system.

A plastic metric measuring tape is used to measure the head and a red color,
non-toxic skin marking pen is used to mark the head of the subject. Next, each location
of the electrode placements marked is cleaned by rubbing the spot with the cleansing
material that contains some abrasive substances to diminish the layer of natural oil on
the scalp. The electrodes are then placed on the skin. The Ten20 conductive electrode
paste is used 10 improve the contact between scalp and electrodes and reduce the

electrode impedance.

Nasion

Inion

Figure B.1. The electrode placements in the International 10-20 System.

Measuring and maintaining good inter-electrode and electrode-scalp resistance is
important to record high quality and artifacts-free EEG signals [91]. After applying each
electrode on the scalp of the subject, the impedance is checked by using the EEG

commercial system- Those electrodes with impedance more than 10 kQ will be

reapplied.
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Appendix B-3 Explanations of the Experimental Protocol

The details of the experimental protocol explained to the new subjects before an

offline experiment are as follows:-

The number of electrodes used and the procedures of the technical applications. -
The experimental paradigm.

The subject is advised to sit in a comfortable and relax position.

The subject is given the freedom to choose to imagine by either visualizing the
subject’s own hand or foot moving or kinaesthetic imagery or the combination
of both. However, the subject is encouraged to use kinaesthetic imagery because
preliminary results showed that a more significant EEG changes could be
detected by using kinaesthetic imagery.

The subject is advised to be consistent, to concentrate, not to count and be
motionless when performing the imaginary tasks.

The subject is advised not to blink, move the eyes, move the feet or hands, bite

and so on when performing the imaginary tasks.

The additional explanations provided for the subjects who are new in the online

experiments (with feedback provided):-

The experimental paradigm.

The two mental tasks to use in the experiment.

The objective of having the feedback system and how it works.

The subject is requested not to move his or her eyes with the cursor’s (feedback).

In the application phase, the mental task used to make a selection and the

principle of operation of the GUI in the application phase will be explained.
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Appendix B-4 The Experimental Paradigm

The experimental paradigm used in the offline experiment and the classifier .set—
up phase of the online experiments is shown in Figure 2.7. In the offline experiments,
there will be 5 sessions and three ‘mental tasks (RIGHT, LEFT and FOOT) are
performed by the subject whereas in the classifier set-up phase, only two of the selected

mental tasks are used and there will be only 3 sessions.

Rest with eye-close (3
minutes) & eye-open
(3 minutes)

Rest with eye-close (1 minute)
& eye-open (1 minute)

No of sessions = 3
or S Sessions?

Rest with eye-close (3 minutes)
& eye-open (3 minutes)

Y

End of
Experiment

Figure B.2. The experimental paradigm.
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Appendix B-5 The Three Experimental Stages

Table B.2. The details of the three experimental stages.

_Stage 3

Stage 1 Stage 2
Feedback Feedback system 1 Feedback system 1 Feedback system 2
system
Interface USB Bluetooth Bluetooth
System B ' i
' Phase of online | Subject-training - Subject-training -Sub]e:ct-t.rammg
| experiments -Application
involved : il
Parameters - Classification - Classification (1) Subject-training
used for accuracy (CR)) accuracy (CR)) - Classification
performance - Classification - Classification accuracy (CR>)
evaluation error (CE)) error (CE)) - Classification
error (CE;)
(2) Application

- Time used to
complete a test
sequence (7,)

- Unintended
activations (UIA)

- Information
Transfer Rate (ITR)

- Accuracy
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Appendix B-6 The Application-Based System Design

The descriptions on how the GUI of the application-based system operates are as

follows:-

)

2)

Initially, the GUI-A (Figure B.3(a)) is presented to the subject. The option
appeared in the grey box will change every 5 seconds. If ‘Hand’ is selected,
GUI-B1 (Figure B.3(b)) will be displayed. If ‘Switch’ is selected, GUI-B2
(Figure B.4(b)) will be displayed.

In GUI-B1, “GRAB” means grip; “3POD” means tripod; “PINCH” means
pulp-to-pulp pinch; “KEYP” means key pinch. If the subject selected the
desired option in the grey bok (for example, PINCH), the text of ‘PINCH’ in
the GUI (Figure B.3(c)) will be displayed to inform the successful selection.
After the confirmation, ‘OK-PINCH’ will be displayed to inform the successful
confirmation and an output signal will be sent to a Fuzzy Logic Controller to
move the prosthetic hand. The GUI-C (Figure B.3(d)) will be displayed and
wait for the subject to reset the prosthetic hand.

“RESET” in the GUI-C means to move the prosthetic hand back to its original
position. After the activation of the ‘RESET’, the prosthetic hand will reset and

the GUI-A will be redisplayed again.

Figure B.4 shows GUI-C. If the subject wants to activate the LED, the subject

has to select ‘Switch’ (Figure B.4(a)) and to be followed by the LED he or she wants to

activate (Figure B.4(b)). The principle of operations of the GUIs in Figure B.4 is similar

to the one explained in 2) above. After the LED is activated, GUI-A will be redisplayed

again. The LED will be switched off if the other different LED is switched on. The

system operatio

n is shown in Figure B.S.
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A

Y
A4

Select HAND or SWITCH? ¢

HAND SWITCH

!

NO w NO

A

YES YES
Select GRAB/KEYP/PINCH/3POD? Select LED1/LED2/LED3/LED4?
SHIFT Options [ ™ SHIFT Options >

M YES
o
4“—VES | 1M2?
NO
< Ambi ?
5 Ambiguous? YES RO
YES
NO
IM1 M1
: YES v
Confirm? Confirm?

h
< \
)
-~
A
Y

NO

Ambiguous? Ambiguous?

IM1 IM1
Move the hand Activate the LED
v

Want to RESET?

NO

——""—’——'_EEE—T— Figure B.5. The system principle operations.
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NO

Select Hand [+
YES

Select Tripod [+
YES

RESET

YES

Select Hand [+
YES

Select Pinch

NO

Reset

Select Grab

NO

le—

Select Hand

NO

le—

NO

Select LED3

‘YES '

Select Switch |«

|

NO

YES
Selected?

L

Select LED1

|

YES
Rest 20s
Reset M
YES

Select Switch

Select LED2

Switch

e

YES
Select

YES

Select Switch

O
NO

YES

;

—Seereat >

YES

NO
NO
NO
NO
NO
NO

YES

Rest 120s
ES

NO

NO

Select KeyP

ES

Select Hand

NO

Select LED4

NO

NO

Figure B.6. An example of a test sequence.
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Table B.3. Definition of the parameters used in the BCI application-based system.

Parameter

Definition

1 T,

The total time spent by the user to complete a test
sequence

2 FP

The number of incorrect decisions made by the system
every 5 seconds when the subject was not using IM1
to select an option.

Percentage of the FP, P(FP) = ;Ex 5x 100 (%)

NA

The correct decision made by the system every 5
seconds when the subject was using IM1 to select an
option.

Percentage of the TP, P(TP) = e x 100 (%)
TP + FN

The incorrect decision made by the system in 5
seconds when the subject was using IM1 to select an
option.

FN
Percentage of the FN, P(FN) = ——— x 100 (%
A ) = T X 100(%)

5 UIA

The number of device activation made by the system
when the subject did not attempt to activate a device in
one minute. An UIA was generated if:-

e 2FPsin 10-15s (‘Reset’)

* 1 single FP and 2 FPs in 10-15s. These 3 FPs

have to be generated in 45s (‘Hand’ + and
Hand options)

UIA/min= UI\A
7, (min)

The successful device activation made by the system
when the subject attempted to activate a device. An IA
could be achieved by having:-

* 2TPsin 10-15s (‘Reset’)

* 1 single TP and 2 TPs in 10-15s. These 3 TPs

have to be achieved in 45s (‘Hand’ and Hand
options)

7 FA

The number of unsuccessful device activation made by
the system when the subject attempted to activate it

g ITR

The number of device activation the subject could
achieve in one minute.

9 Accuracy

The accuracy of the application-based system was
computed using the following equation:-

P(TP) x T + (100 — P(FP)) x T,
TNA i T:?

Accuracy = (%)
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APPENDIX C: Online Signal processing

Appendix C-1 The Algorithm of the Burg’s Method

Table C.1. Burg's method.

N-1
1) Minimize the Prediction error, & = Z[em" (n)? +e," (n)*]:-
n=p

p N-1 1 b
,d,,(ci, =, 2Z[em./ (n) aem (n) +emh (n) aem (n)
(}) m n=p a}’m a}/m

]=0

Where e’ (n) = forward prediction error

e, " (n) = backward prediction error
7, = the reflection coefficient
N = the number of samples

2) Mathematical solution to find the reflection coefficient:-

. N-1 f b
05 7 o S (e () e L EERG ek
a}’m n=p aym }/m

N-1 .
>, (me,” (n—1)+e,’ (ne,” (1] =0
n=p

e " (m)=e, ]/ (0)-y,e,. (n=1) and ¢,’ (M)=e, " (n=1)-7,e,.” (n)

()

fuem-.’ (n)=7,ens (n=D)e, " (1=1)+(e,," =D -y,e,." (M)e,,” (1)]=0

N-1
2y e, (ne,,’ (n-1)
il <]

}/m o N-1 . b
Y len (m)? +en " (n—Df]
n=p

3) Use the Levinson-Durbin algorithm to obtain the AR coefficients:-

1 1 1
am.l am—] 1 am—],m—]
am,Z = am- 1,2 ! }/m am—],m—Z

m,m O 1
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Appendix C-2 The AIC ANOVA and Post-Hoc Test Tables

Table C.2. AIC ANOVA Table.

Sum of Mean o
Squares df Square F Sig.
Between Groups | 15155925 91 1683991.700 | 979271 | - .000
Within Groups 1702441 990 1719.637
Total 16858366 999

Table C.3. Homogenous Subsets for the AIC of AR model order 1-10.

AR Order Subset for alpha=0.01
1 2 3 4

1 906.65

2 860.39

3 623.18

4 619.09

5 614.11

6 567.17
7 567.10
8 562.21
9 556.31
10 556.74
Sig 1.000 1.000 0.146 0.100
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Appendix C-4 Feedback Step Size

The step size (ranged from 0-4) of the feedback slider’s cursor used is depending on the

magnitude of LDAypu. Figure C.] illustrates the step size used in correspond to the

value of [LDA oyipu-

4
r Step size = 4
rd *
rtile for Class 1
Step size =3 Rl a0
.............................................................................. W+ T,

Step size =2
""""""""""""""""""""""" nl

Step size = 1
i e A Lt S =ik,

Step size = ( 2

Step size=0 >0
e S SERRL e T,

Step size = 1
"""""""""""""""""""""" n2

Step size =2

............................. “2+ TIO‘V
Step size =3
3" Quartile for Class 2
Step size = 4

Figure C.1. The feedback step size used is dependent on the value of |LDA

output I .
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APPENDIX D: Results

2 Imaginary Left Hand vs Imaginary Feet

Imaginary Left Hand vs Imaginary Feet

weseap 3
——ap 4

0.5 —p (7

SEM0T s 00 26 80 S35 40

(a) Frequency (b) Frequency
R2 Imaginary Left Hand vs Imaginary Feet
-‘-;-‘pt_(')
——pc (4
05! | —pe_CZ
0.4r
0.3:

0.2:

fateessess dianiy:

0 55" * 100881 SO 20 W2 S R0 B s e
(C Frequency

Fioure D.1. R spectra of the 9 bipolar montages for the discrimination of LEFT and
FOOT: (a) R’ spectra of channel ap_C3, ap_C4 and ap_CZ. (b) R? spectra of channel

ac C3, ac_C4and ac_CZ. (c) R’ spectra of channel pc_C3, pc_C4andpc CZ
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R? Imaginary Right Hand vs Im aginary Feet R? Imaginary Right Hand vs Imaginary Feet
..... e eter s
——up O e
05 —ap (7 0.5; S—_CT
0.4 04
03 03
02 0.2
0.1 0.1;
7 i
&P £ postneees SN 1 A N
5 10 1(‘. 20 25 30 35 40 0 5 10 ?b 20 25 30 35 40
a Frequency ) Frequency
R2 Imaginary Right Hand vs Imaginary Feet
enn pe_C3
- pc_C4
0.5 — c_CZ
0.4 3
0.3
0.2+
0.1: 1
{ |
\
0 et et s 8 v . -\q A B e B m e e,
0 5 10 15(6‘) 20 25 30 35 40
Frequency

Figure D.2. R’ spectra of the 9 bipolar montages for the discrimination of RIGHT and

FOOT: (a) R’ spectra of channel ap_C3, ap C4 and ap CZ (b) R® spectra of channel

ac_C3, ac C4 and ac_CZ. (c) R’ spectra of channel pc_C3, pc C4 and peiCZ
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R? Imaginary Left Hand vs Imaginary Right Hand

R? Imaginary Right Hand vs Imaginary Left Hand

e

0.55- - s
0.5 =" R e
0.45
04 0.4-
0.35-
0.3 ] 0.3;
0.25!
0.2 : S48
0.15!
0.1; ol
srosassissetee. s —n e L LTT =
30 35 40 0 5 10 15 20 25 30 35 40
Frequency (b) Frequency
R? i [rf‘,,a_gﬂ?iy,}e“ Hand vs Imaginary Right Hand
0.55} ‘TT'T’:-;"‘A
! | - a1
05} St
0.45+ B
0.4:
0.35+
0.3}
0.25;
0.2
0.15}
01} ’
0.05} 1

(C) Frequency

Figure D.3. R spectra of the 9 bipolar montages for the discrimination of RIGHT and
LEFT: (a) R? spectra of channel ap _C3, ap C4 and ap CZ (b) R? spectra of channel

ac C3,ac_C4 and ac CZ. (c) R’ spectra of channel pe_C3, pc C4 and pc CZ
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Table D.1. Averaged accuracy for the different mental tasks

discrimination and EEG channel(s) combinations.

th T and FOOT

Channel(s)

Channel(s)

Accuracy(s.d)

Accuracy(s.d)

Channcl(s) Accuracy(s.d)

ac_C3 63.40(2.25) | *ap_C3,ap CZ 92.35(1.39) | ac_C4,pc CZ 82.45(1.96)
ac_C3,ac_C4 65.76(2.40) | ap C3,pc CZ 84.17(1.79) | ap C4 66.06(2.53)
‘ac_C3,ap_C4 70.23(2.06) | pc C3 59.02(2.31) | *ap_Cd,ac CZ 94.53(1.04)
“ac_C3,pc_C4 69.32(2.28) | pc C3,ac C4 63.47(2.53) | *ap_C4,ap_CZ 92.60(1.31)

*ac C3,ac_CZ 94.33(1.02) | pc C3,ap C4 67.52(2.44) | ap Cd,pc CZ 82.71(1.90)
*ac C3,ap_CZ 91.76(1.25) | pc_C3,pc_C4 68.32(2.14) | pc C4 66.31(2.22)
ac C3,pc CZ 82.47(1.64) | *pc C3,ac CZ 94.26(1.07) | *pc_Cd,ac CZ 94.89(1.02)
‘ap C3 64.29(2.11) | *pe C3,ap CZ | 92.08(1.49) | *pc_Cdap CZ | 92.42(1.16)
‘ap C3,ac_C4 66.81(2.31) | pc C3,pc CZ 82.69(1.83) | pc Cd,pc CZ 83.67(1.76)
ap C3ap C4 66.24(2.32) ac C4 59.89(2.47) Facl7Z 94.06(1.27)
ap C3,pc_C4 68.88(2.40) | *ac C4,ac CZ 94.27(1.10) | *ap CZ 91.77(1.42)
“*ap C3,ac_CZ 94. 31(1 10) *ac C4.ap) CZ 9l 85(1 51) pc CZ 82. 05(1 77)
RIGHT and FOOT TR e i el S e e R
ac C3 57. 48(2 16) *ap C3 ,ap CZ 91 48(1 35) ac_Cd,pc CZ 82 84(1 96)
ac C3ac C4 | 63.11(246) ~  [ap C3.pc CZ | 83.83(1.91) ap C4 67.50(2.29)
ac C3,ap C4 | 68.87(2.34) pe C3 57.10(2.27) *ap Cd,ac_ CZ | 93.98(1.04)
ac C3,pc_C4 70.33(2.32) pc_C3,ac C4 64.15(2.07) *ap_Cd,ap CZ | 92.32(1.23)
*ac C3.ac CZ | 94.05(1.14) pc C3,ap_C4 | 67.91(2.27) ap Cd,pc CZ | 83.75(1.61)
“*ac_C3,ap_CZ_ | 91.44(1.23) pc C3,pc_C4 | 70.53(1.99) pc_C4 68.74(2.10)
‘ac_C3,pc CZ | 82.92(1.75) *pc_C3,ac_ CZ | 93.70(1.15) *pe_Cd,ac CZ | 94.27(1.03)
ap C3 59.99(2.33) *pe C3,ap CZ | 91.70(1.46) *pc_Cd,ap CZ | 91.95(1.48)
ap C3,ac C4 | 66.58(1.81) pc C3.pc CZ | 83.26(1.90) pc C4,pc CZ | 84.08(1.69)
ap C3ap C4 | 69.10(2.00) ac_C4 62.24(2.38) *ac CZ 93.70(1.15)
ap C3,pc C4 | 70.32(2.01) *ac Cd,ac CZ | 93.76(1.25) *ap CZ 91.64(1.38)
*ap C3,ac CZ_1 93.83(LI0) i M,f” - Ci— IEH
RIGHT vs LEFT £ Rieh i T
ac C3 746(2 46) ap C3.ap CZ | 61 34(2 66) ac_Cd,pc CZ 57, 77(2.30)
ac C3,ac C4 | 59.07(2.41) ap C3,pc CZ | 60.25(2.51) ap C4 54.92(2.50)
ac cz_a”—" p C4 | 59.29(2.51) pe C3 53.39(2.78) ap_Cd,ac CZ | 57.72(2.30)
ac_C3,pc_C4__| 58.59(228) pc_C3.ac C4 | 56.49(2.26) ap_Cd,ap CZ | 59.07(2.16)
ac C3.ac CZ | 60.10(2.32) pc C3.ap C4 | 56.52(2.58) ap C4,pc CZ | 55.47(2.16)
ac C3ap CZ | 61.31(2:32) pc C3.pc C4 | 55.19(2.22) pc_C4 55.10(2.60)
‘ac C3,pc CZ | 57.96(2.17) pc C3,ac CZ | 57.00(2.26) pc Cd,ac CZ 57.38(2.16)

C3 56.72(3.01) pe C3.ap CZ | 59.26(2.49) pc_Cd,ap CZ | 58.34(2.64)

ng__ 60.34(2.50) pCAC3 DRG] 56.52(2.29) pc_C4,pc CZ 54.00(2.43)
ap_C3 ap C4 60.78(2-36; ac gj == gggzg:g; ac (Clé 56.51(1.93)
5 4 | 59.142.73 ac_Cd,ac 96(2. ap 57.67(2.60)
~§§:%§—j§f_i 61.33(2.11) ac_C4,ap CZ | 60.09(2.60) pc CZ 54.50(2.26)

*EEG channel(s) with accuracy more than 90%
s.d : standard deviation
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Table D.2. ANOV A Table for the mental tasks combination of LEFT and FOOT.

Sum of Mean
Squares df S i
quare F S
Bgt\v?en Groups | 1899.482 | 13 146.11 95.298 lgOOO
Within Groups 2125.062 1386 1.533 : .
Total 4042.544 1399

Table D.3. ANOVA Table for the mental tasks combination of RIGHT and FOOT:

Sum of - Mean
5 = ?;]uares df Square F Sig
etween Groups 52.177 13 134.78 :
Within Groups | 2181.476 1386 1'5743, 2.4 s
Total 3933.653 1399 :

Table D.4. Homogenous Subsets for the mental tasks combination of LEFT and FOOT

Channel(s)

2 3

_ Subset for alpha=0.01

4 SRS

ac_C3 and
ap CZ

91.76

ap CZ

91.76

ac_C4 and
ap CZ

91.85

pc_C3 and
ap CZ

92.08

92.08

ap_C3 and
ap CZ

92.35 9235

pc_C4 and

92.42 92.42

ap CZ
ap_C4 and
ap CZ

92.60

ac CZ

94.06

pc_C3 and
ac CZ

94.26

ac_C4 and
ac CZ

94.27

ap_C3 and
ac CZ

9431

ac_ C3 and

94.33

ac CZ

ap_C4 and
| _ac CZ
pc_C4 and

94.53

94.53

94.89

ac CZ

066 181

015

042

Sig
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Table D.5. Homogenous Subsets for the

mental tasks combination of RIGHT and FOOT.

Channel(s)

Subset for alpha=0.01

3

4

ac_C3 and
ap CZ

91.44

ap_C3 and
ap CZ

91.48

91.48

| ac_C4and
ap_CZ

L2185

D151

ap CZ

91.64

91.64

pc_C3 and
ap CZ

91.70

91.70

pc_C4 and
ap_CZ

SIE95

O 1805

ap_C4 and
ap CZ

92.32

pc_C3 and
ap_CZ

93.70

ac CZ

93.70

ac_C4 and
ac CZ

93.76

ap _C3 and
ac CZ

93.83

93.83

ap_C4 and
ac CZ

93.98

93.98

ac_C3 and
acAGZ

94.05

94.05

pc_C4 and
ac CZ

94.27

| ac CZ
E ke

193

017

.036

086

022
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Table D.6. The R’ spectra, the discriminating features, the selected mental tasks, the
mental strategy used, the selected EEG channel (s) and the averaged accuracy of the
LDA 10x10 fold cross validation for all the subjects participated in the offline

experiment.

Subject | R’ Spectral/ Discriminating Feafures/ EEG

Selected Metal Tasks/Mental Strategy
used by the subject

F ] R2 Imaginary Left Hand vs Imaginary Feet

Accuracy
Channels

F

ac_CZ 94.06%

0.5 r
0.4-

0.3- '

02! ’

0.1 7
0 IR Ty 2

0 5 10 15 20 25 30

Discriminating features: f# rhythm
Mental tasks selected: LEFT and FOOT
Mental strategy used:

LEFT: Imagine the left hand playing piano
(visual Imagery)

FOOT: Imagine the feeling of moving the
leg upwards (visual + kinaesthetic imagery)
__FT_ R? » Imaginary Left Hand vs Imaginary Feet

35 40
Frequency

ac_C4, 65.12%
P ac_ CZ

0.5¢
0.4°
0.3}

0.2+

I

0.1+

o\ TR
0

0T 5 - 40T S IR 20 TR S g Sy o e b

Frequency
Discriminating features: u and p rhythm

Mental tasks selected: LEFT and FOOT
Mental strategy used:

LEFT: Imagine the left hand fingers moved
in certain sequence (kinaesthetic imagery)
FOOT: Imagine the legs stepping right and
left (kinaesthetic imagery)
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Table D.6, continued

R? Imaginary Left Hand vs Imaignary Feet

05 ! L2 L 0 4

04:

0.3t

01" ,

0 5 105515 EL L2008 25 B B A st )
Frequency

Discriminating features: # rhythm
Mental tasks selected: LEFT and FOOT
Mental strategy used:

LEFT: Imagine feeling to move the left hand
(kinaesthetic imagery)

FOOT: Imagine the feeling to move the leg
(kinaesthetic imagery)

ap CZ

79.46%

F4

R? Imaginary Left Hand vs Imaginary Feet
Temew 2c.CH|
— ap_C3

0.5
0.4

0.3}

0.1-

0 £ 51010 150 20 oS IEEES0 DI s R
Frequency

Discriminating features: g rhythm
Mental tasks selected: LEFT and Foor

Mental strategy used:
LEFT: Imagine the feeling of left hand wrist
exion and extension (kinaesthetic imagery)
FOOT: Imagine the feeling of legs when the
legs were playing the piano paddles
(kinaesthetic imagery)

ap C3,
ac_C4

84.18%
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F6

Table D.6, continued

Imaginary Left Hand vs Imaginary Foot

;-n_('l

- wac_C3

0.5

0.4

25 30 35 40
Frequency

Discriminating features: ¢ and f rhythm
Mental tasks selected: LEF T and FOOT
Mental strategy used: :
LEFT: Imagine the feeling to the hand when
the hand was not allowed to move
(kinaesthetic imagery)

FOOT: Imagine the legs moving

(visual imagery)

ach(G3;
ac_C4

77.08%

2 Imaginary Left Hand vs Imaginary Feet

R

fe——scC 11

- up_CZ!

0.5
0.4+

0.3}

Frequency

Discriminating features: # and f rhythm
Mental tasks selected: LEFT and FOOT
Mental strategy used:

LEFT: Imagine the left hand playing piano
with feeling (kinaesthetic imagery)

FOOT: Imagine the feeling of legs moving
during swimming (kinaesthetic imagery)

achCds
ap CZ

76.47%

el oo

xlv



b7

Table D.¢, continued

R2 Imaginary Left Hand vs Imaginary Feet
; ac_C4
- e CZ
0.5
0.4
0.3:
0.2-
0.1+ .,‘\'\
A '\
. / N
0 — am 7
0 5 10 15 20 25 30 35 40
Frequency
Discriminating features: Hand B rhythm
Mental tasks selected: LEFT and Foor
Mental strategy used:
LEFT: Imagine the Jeeling of left hang
moving to left and right
(kinaesthetic imagery)
FOOT: Imagine the Seeling of legs moving
(kinaesthetic imagery)
M1 r? Imaginary Left Hand vs Imaginary Feet
(ROTR M—icci]]
v ——acCZ)
0.5
0.4+
0.3t
0.2}
Dl ‘\D |
0.1- TR AN 1
i ! 1 :
I L." ‘NI N el
47 § 0T 155020 25 R T ey
Frequency

Discriminating features: u and f rhythm
Mental tasks selected: LEFT and FOOT
Mental strategy used:
LEFT: Imagine the feeling of left hand
pulling a load (kinaesthetic imagery)
FOOT: Imagine the feeling to move the legs

(kinaesthetic imagery)

ac_C4, 68.47%

ac C7Z
ac C4, [ 7977% |
ac_CZ

S T e
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R2 lmaginary Feetvs lmaginary Left Hand R? Imaginary Feet vs Imaginary Left Hand

—_—cCz — e CZ
=8 EOG | ® == EMG (Right Hand)
0.5-

0.4
03

0.2

0.1

s R2 g Imaginary Feetvs lmaginqry Lrgft Hanq ks

a7

= : Ormm R B N, "eme
S0 60 0 10 20 30 40 50 60
Frequency (b) Frequency

0 i | —ac. CZ
.1t EMG (Left Hand) || | »2s+ EMG (Chin)
0.5¢ 0.5: e E
0.4- 0.4
0.3! 0.3
0.2+ 1 0.2f 4
0.1} i 0.1
0-;“_‘ ‘Vu‘-‘-_._.,;.,.vlllllilw-lllllllI-.lL-L-J..‘l-.‘.. 01..,_ £\ ._,,'_',-_-,._.__,_,;.,:”»--,-,.._,..,....7!.7..7_,_.7,,_‘
0 10 20 30 40 50 60 0 10 20 3 40 50 60
(C) Frequency d) Frequency

Figure D.4. The comparison of the R? spectrum ofac_CZ, EOG and

EMG bipolar channels recorded during the offline experiment.
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Table

in the Stage 1 and Stage 2 experiments.

D.7. Online accuracy, CR, (%) for subjects F1, F3 and F4

Stage 1
Subject 1
g [TH’Z\DEXP:" Exp4 | Exp5
1 62 92 76 | 94 90 68 04 73 o =
2 | 06 L2 | NGRS N AN MR R0 G o o2 N R R
| 3 | 820 0 4R MRS | A 7o | P oo MO s
; = 4 72 88 76 LI %4 o4 70 = =
cil Sl % | 62 [ 94 | 7 % 5 =
» 6 70 98 84 76 | 81 | 9 0 52 =
7 66 96 82 8 | 78 | 38
8 50 84 86 76 TT
9 46 94 :J\
Average 76.2 79.3 . S108EE BiR o
A eStage 2t T T
Subject F1 3 %
Exp6 Exp7 TR D ' M
F DA R L F T = f# L -
2 38 96 82 66 54 66 64 %0 T =
S 3] @ | 7 | s |ies|oanm|ommn icsmliizsaliios i
o e I T e P Sl o ——
B T o
6 76 70 64 %0 S
Average 71.8 75.0 57.8 74.5 M
Note: *9 trials, **8 trials

The L and F in the tables depict the LEFT and FOOT trials respectively and Exp depicts Experiment.

experiments that used the LDA set up in Exp3,

Table D.8. Online accuracy, CR; (%) for subject F1 in the two

eenni IR e L S
Exp3a Exp3b
(31, January, 2005) | (22, February, 2005)
F L F L
1 75 75 88 72
2 82 88 88 781 gl

= 3 78 90 72 94

= 4 58 90 84 84
3 5 62 92
6 24 94
7 66 92

Average 76.1 82.5
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Table D.9. System performance on the contaminated EEG trials

Jor subjects F1, F3 and F4.

Subjectife e F1

Exp5 Exp6 Exp7
F I F L F L
1] -(0)]| -(0) 40(2) | 87(3) | 85(4) | 40(2)
e 2160 | -0) | (0 95(4) | 70(2) | 40(1)
2 3 190(7) | 9425) [ 52(5) 80(2) | 100(1) | 70(2)
S L4133 -0 90(2) | -(0) | 64(5) | 50(2)
. -(0) | 80(1)
6 -(0) | 60(1)
Average .89.7 73.0 66.3
Subject B35y F4

Expl ’T Expl
F L TFT F L
733) | 55(8) | 87(3) | 87(3) 602) | -(0)
72(5) | 60(2) | 70(2) | 80(7) -99(3) |
35(4) | 602) | -(0) [89(7) [ -(0) 54(2)

(0 | 902) | 75(4) [ 77(1) | -(0) | -(0) |

Session
N[O | [0 |09 | e

-(0) | 90(2)
-(0) | 60(1)
Average 60.8 81.9 75.0

Note: The number in the bracket is the number of contaminated EEG trials in that session.

Table D.10. Overall system performance for subjects F 1, F3 and F4 when both the

contaminated and non-contaminated EEG trials were classified.

Subject F1
Exp5 Exp6 Exp7
F L F L F L
1 88 72 62 86 94 52
2 65 82 38 96 80 64
S ey 88 92 59 75 85 68
8 g 85 92 68 86 72 68
L 5 74 71
6 76 69
Average 84.5 1 720 A 73.33\» ‘
Subject e e U e e R
Expl Exp2 Exp5
F it F L F E
1 68 49 63 82 70 82
3 2 60 65 65 80 95 40
S 3 41 70 66 88 100 30
S 3 58 58 77 84 92 26
5 62 83
6 64 87
Average 57.4 76.0 67.1
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Table D.11. System performance, CR; (%) for

subjects FI, F3 and F4 using Approach 1.

Subject FI
I-I\pl Exp2 Exp3
4 F T L F o[ st
+_& 101 90 1100790 | 90 [ 100 | 100 | 100 | 100
-1 goo 80 90 90 100 | 80 100 80 67 80
s 90 70 1100 | 100 | 100 | 100 9 | 100 97
90 70 80 9 | 100 | 100 [ 100 | 100 | 100
s 70 100 /] 80 | 100 70 | 100 | 100 80
90 _ 1100 ] 100 | 90 9 | 100 | 100 70
70 100 | 99 90 9% | 100
30 9 | 100 | 100 | 100 | 100

§J 40 100
%0 | 938 93.3 94.0
ceDY S b~ Y A
Exp? Expl Exp2 Expl
F L F L F L F L
100 58 85 56 62 92 83 100
100 o4 73 83 58 94 100 50
100 | 8 | 290 | 83| 70 100 100 | 25
73 92 40 50 86 100 100 20
60 100
60 100

Table D.12. System performance, CRyYCE; (%) for
subjects Fl, F3 and F4 using Approach 2.

L ¥ L F L "“i:
900 | 700 | 600 | 10000 | 600 | 900 | 700
%00 | $00 | 600 | 1000 | 600 | 880 | 883
0 | 600 | 700 | 1000 | 400 | 7700 | 60/10
900 | 600_| 900 | 1000 | 4010
7010 | 700 | 900 | 1000 | 300
700 | 600 | 1000
700 | 500 | 1000
TL10.0 74208 80.3/1.7
: N
iy | o | awa | suis | 2o (s [ 0o
27| 758 | 3323 | 940 | 1000 | 5040
437 | 678 | 4020 | 1000 | 1000 | 858
507 | e47 | 910 | 1000 | 20/80
4020 | 1000
0720 | 910
PO | AN | 676




Table D.13. Comparison of the

subjects F1, F3 and F4 using

classification error, CE; (%) Jfor

Approach 1 and Approach 2.

Subject F1
Expl Exp2 Exp3 Exp4 Exp5
Al | A2 [ A1 A2 AT A2 N T I N A2
1 15 0 5 0 10 0 0 0 0 0
2 30 10 10 0 10 0 10 ommieee s 5
3 10 0 15 5 0 0 5 0 2 3
s | 4 20 0 25 0 5 0 0 0 0 5
21 5 15 0 10 5 15 0 10 0
w6 5 0 5 5 5 0 15 0
] 15 0 10 0 5 0
8 40 5 0 0 0 0
9 30 20
Average | 20.0 | 44 [ 10.0 | 1.9 | 63 0.0 6.7 | 0.8 | 565 | 1.7
Subject F1 F3 F4: .
Exp6 Exp7 Expl Exp2 Expl
ALl A2 AT A2 [TEAT A2 AT oAz AT A2
1 | 200 | 00 | 192 [ 38 [ 295 | 165 | 230 SRS T 8.5
g |2 1292 [ 167 ] 174 | 00 | 220 | 175 | 273 10888250 8200
23U 14851830 8| B4 R T 0 B B S B i 74 | 375 | 290
A T R T B G 5.0 | 265 | 7.8 |39 | 40.0 | 400
A T3 60| K00 182 | 91 =ooa
6 | 91 | 00 182 [ 95
Average | 17.59 | 3.57 | 16.16 | 4.04 | 37.74 | 24.50 | 16.67 | 8.00 27.59 | 23.76
Table D.14. System performance, CR; (%) for
subjects FI, F2, F3, FS and M| using Approach 1.
Fl1 F2 F3 E5i:
Exp8 Exp9 Expl Exp3 Expl
Bl F I F L F 1, F BT
1% 80 ['55 | 90 | 80 10 | 100 | 100 | 90 90 40
gl 2 100 | 100 | 10 | 100 90 70
2 | 3 100 | 100 | 10 | 100 60 100
w | 4 100 | 88 | 40 70 |
5 10 90
| Average | 675 E\sm 95.0 75,000
o : M1 o Neia
Expl Exp2 Exp3 Exp4
F L F L F E; F L
1 190 [ 100 | 8 | 100 | & 9] 100 | 85
= |2 |8 |8 | 60 [ 70 | 90 | 20
2 1 3 [100] 60 40 | 100
& |4 [ 30 [100 A58 BE1 0018 [ SN
5 100 | 36
6 67 | 100
Averag 80.0 77.5 71.9 9250




Table D.15. System performance CRy/CEx(%) for

subjects F1, F2, I3, FS and M using Approach 2.

Elo TR F3 F5
Exp8 Exp9 Expl Exp3 Expl
F 5 L F L F 3 L F L F L
L | 65/5 | 45/15 | 70/0 | 50/0 | 0/80 | 100/0 | 100/0 | 30710 | 90/10 | 40/40
= |2 91/0 | 64/0 | 0/90 | 90/0 90/0 | 40/30
z |3 85/0 [ 75/0 | 10/90 | 100/0 30/0 | 90/0
5 kg 71/0 | 65/0 | 20/40 | 50710
‘ 5 10/80 | 80/10 R
Average | 55.0/10.0 71.3/0.0 | 46/40 61.5/5.0 63.3/13.3
T M1
Expl Exp2 W Exp4
F L F L Th F L
1 | 60/10 | 80/0 | 20/20 [ 90/0 | 64/0 | 91/9 | 70/0 | G978
2 | 70/0 | 60/0 | 60/40 | 50/10 | 90/0 | 10/60
S 3 ] 6000 [ 60/0 0720 | 80/0
g [ 4 [ 0/50 | 10000 18/36 | 90/0 i Torm
B 100/0 | 0/45 i
6 33/29 | 90/0
Average | 61.3/7.5 55.0/17.5 53.3/17.8 | 69.5/4.0
Table D.16. Comparison of the classification error, CE, (%) for
subjects F1, F2, F3, F5 and M1 using Approach 1 and Approach 2.
e ORI F2 F3 F5
Exp8 Exp9 Expl Exp3 Expl1
AP AR B AL G A2 DAL ] A3 | AT | Az ATHEA?
1| 40 10 15 0 45 40 5 5 35 25
= [ 2 0 0 45 45 20 15
(=]
a3 0 0 45 45 20 0
2 6 0 50 | 25
5 45 45
Average 32.5 | 150 |' 53 [70.00 [146.0 | 44.0 | 50 50 [ 25.0 [ 133 ]
Expl Exp2 Exp3 Exp4
AL | A2 | AT FTT LAY
1 5 5 10 10 14 ASH | IS BaTo
o= 20 0 35 DSH|As 30
S 131 20 0 | N (B0 T 0
c)%; fodid 35 25 28 18
S 32 23
6 17 15
(Average| 20.0 | 7.5 | 2.5 175 | 251 178 | 75 | 4.0
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Table D.17. Interpretation of the results in Table D. 14 (Approach 1).

M1
Expl Exp2 Exp3 Exp4
TP | FN | FP | TP | FN [ FP | TP | FN | FP | TP | FN | FP
1] 9% | 10 | 0 |8 |20 0 [8 | 18| 9 | 100 0|15
= |.2] 8 |20 |20 [ 60 |40 | 30 | 90 | 10 | 80
S L IO T 40 | 60 | ©
g [4] 30 [70] 0 SRR
s 100 0 | 64
i 6 678|838 ED
| Average | 75.0 | 25.0 | 15.0 | 70.0 30.0 | 15.0 | 70.7 [ 29.3 | 25.5 [ 100.0 | 0.0 | 15.0
; F1 = F3
Exp8 Exp9 Exp3
TP | FN | FP | TP [FN | FP | TP | FN | FP
1] 8 | 20 |45 ]9 [ 10 | 20 | 100 0 | 10
g |2 100 | 0 0
m g 100 | 0 0
» | 4 100 0 | 12
5 _
Average | 80.0 |20.0 [45.0 [ 97.5] 2.5 | 8.0 [ 100.0] 0.0 | 10.0
Table D.18. Interpretation of the results in Table D.15 (Approach 2).
= 20 - M
Expl [ Exp2 Exp3 Exp4
IP | FN | FP | TP [FN [ FP | TP | EN | FP | TP | FN | Fp
| 608 F408 [0S 1 B0 0B M3 08| B0 (Feas 8660 o 70 | 30 | 8
g 121 70 130 ] 0 [ 60 |40 | 10 | 90 | 10 | 60
S B3 60 [F40 [T 0 0 [100] 0
£ 4 0 100 0 18 82 0
" |5 100 | 0 | 45
6 330 E678| D
Average | 47.5 | 52.5]| 0.0 | 40.0 | 60.0 | 5.0 | 50.8 | 49.2 | 19.0 | 70.0 | 30.0 | 8.0
Exp8 Exp9 Exp3
IP | FN | FP | TP [FN [ FP | TP | FN | FP
& 65 7350 s|708ji30x ol at000 0t o It 10
) 91 | 9 0
703 85 ] 15 | o
N 4 71 29 0
5
Average | 65.0 | 35.0 | 15.0 [ 79.3|20.3 | 0.0 | 100.0 | 0.0 | 10.0
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Table D.19. System performance when the subjects

were resting (2 minutes) to find IMI.

F1 M1 F3
Exp8 Exp9 Exp2 Exp3 Exp3
15 0.5068 0.9157 0.7343 0.6638 0.8218
“Fiow -0.4103 -0.6505 -0.5906 -0.6925 -0.9349
No of samples 74 66 87 86 91
classified as
s EERE
No of samples 25 21 7 23 7
classified as
FOOT
Averaged -0.8378 -0.8782 -2.1718 -4.1392 -2.1726
LDAoutput
Bias Class LEET LEFT LEFT LEFT LEFT
(IM2) ~
IM1 FOOT FOOT FOOT FOOT FOOT
Table D.20. System performance when subject F]
was resting (2 minutes) to find IMI1 (using the BCI Version 1).
Expl Expl Exp5 Exp7
Lip 2.1278 2.1278 1.0149 0.7214
Diow -1.5809 -1.5809 -0.8676 -0.7459
No of samples 100 94 91 68
classified as
EEFT
No of samples 14 14 9 19
classified as
FOOT
Averaged -6.96 -5.7454 -2.6839 -1.1971
LDAoutput
Bias Class BEET LEFT LEFT LEFT
(IM2)
IM1 FOOT FOOT FOOT FOOT
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Table D.21. Online performance of subjects F1, F'3 and M1 using test sequence 1 and 2.

Note: The number in the bracket in Table D.21 denotes the test sequence used in the experiment.

| Parameter Subject
: : F1 : F3
Exp8 (1) Exp9 (2) Exp3a (1) Exp3b (1)
Bias Class LEFT LEFT FEE LEFT
T 8m 10s 10m 20s 17m 9m 35s
Ts 3m 45s 4m 20s 4m 30s 4m
T 4m 25s 6m 12m 30s 5m 35s
TP 34 34 48 33
FN 11 18 6 15
HE 0 3 32 5
IA 12 12 12 12
UIA 0 0 10 0
FA 5 8 4 3
FP/min 0.00 0.50 2.56 0.90
UIA/min 0.00 0.00 0.80 0.00
ITR 2.06 1.50 0.82 1.66
Accuracy 88.74% 83.06% 81.38% 86.25%
Parameter el Subject ‘
M1
Exp2a (1) Exp2b (1) Exp4 (2)
Bias Class EERT LEFT LEEFT
T, 16m 15m Ss 9m 15s
Ts 8m 10s 8m 30s 3m 20s
Ta 7m 50s 6m 35s Sm 55s
(R 41 40 82
FN il 62 8
FP 0 4 9
IA 12 12 12
UIA 0 1 0
FA 30 56 0
FP/min 0 0.6076 1.52
UIA/min 0.00 0.15 0.00
ITR 0.88 0.94 1.73
Accuracy 70.33% 63.54% 84.68%




F1: Exp1 R? F1: Exp2

i St e s 0,45 = = s ;

= Training EEG Trials = Training EEG Trials

"",T,e,Sling,E,,EQ Trials 0.4 ===+ Testing EEG Trials
0.35

CR,=76.2% CR;=79.3%

" 40 60 80 100 120 ‘ "~ 60 80 100 120
((I) Y Frequency (b) Frequency
F1: Exp3 R? F1: Exp4

s e e e () (4 5 PRI = e i T A
= Training EEG Trials | = Training EEG Trials
»++» Testing EEG Trials 0.4} ==+ Testing EEG Trials

0.35-
CR,=81.9% 0.3 CR,;=82.8%

80 100 120 20 40 60 80 100 120
(c) Frequency (d) Frequency
R? F1: Exp3a R? F1: Exp3b
0.45; = 5 : E 0.45
' ***= Testing EEG Trials _*=** Testing EEG Trials
0.4+ ‘ 0 4}
| i i
0.35} CR,=76.1% - o0.35; CR;=82.5%
0.3}

u--..-.,_".“.
..---u-uu--uﬁwv

L bl ‘_',,.';"!,"#.'_L!J.-,m,;;-.‘.-----;.a---.-;--.n-;u,
100 20 40 60 80 100 120
(e) Frequency Frequency
R? F1: Exp5
045 = o et e e i ;‘_'_ N ) R A =g
{ | == Training EEG Trials ||
0.4 | **** Testing EEG Trials |
035, CR,=82.3%

o 20 40 60 80 100 120
(g) Frequency

Figure D.5. The R’ spectra of the training (classifier set-up phase) and the testing

(subject-training phase) EEG trials in Expl-Exp5 for subject F1.
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Normalized AR Spectra for FEET and LEFT at Channel az (raw) Normalized AR Spectra for FEET and LEFT at Channel az (raw)
fhe— - o - e e . Lo :

z e R 1 ; o e e
| =3 | F e =— FEET
0.9 ze 22 L ERTIEL SR 0.9 s2= S LEETHR
0.8 0.8}
0.7 0.7
@06
o
0.5;
0.4}
40 60 80 100 120 0 20 A0 260 80 100 120
Frequency Frequency
(a) Exp3 (b) Exp5
— FEET ||
szt LEFT 1

& 0.03

P

A0 =A5e 150 N 55 IR 0 RI 5 MM () S 5 S 0 O 40 45 50 55 60

65 70 75 80
Frequency Frequency
(c) Exp3 (40-80Hz) (d) Exp5 (40-80H?z)

Figure D.6. The AR spectra of the raw EEG signals for

(a) Exp3 and (b) Exp5 subject F1.
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