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B TRA T 

A Fuzzy Logic with distributed control monitoring (D S) sy tern i implemented to 

control multiple degree-of-freedom (DOF) prosthetic fingers. Ther are four fingers 

with 3-DOF and a thumb with 4-DOF. Five identical microcontrollers programmed with 

Fuzzy Logic ontroller (FLC) and a ystem Handler are employed to control and 

monitor the fingers and the thumb to replicate the desired hand action of the grasp, the 

key pinch, the pulp to pulp pinch, the tripod pinch, and the open hand. Each finger is 

equipp d with position sensors at the pi ot joints and a tactile-pressure sensor at the 

fingertip. The finger mo ements are programmed to follow given set points and stopped 

,. h ne er an obstacle is encountered and the pressure of the tactile sensor exceeds a 

specified limit. This allows the fingers and thumb to wrap round an object without 

crushing it. DC motors with reduced gear heads are used as actuators and they are 

dri en by H-Bridge sv itches. Input signals to the switches in the form of Pulse Width 

Modulation (PWM) and direction signals are generated by the microcontroller . The 

signal r present control action of the FLC. Membership functions of the FLC were 

tuned and the rule \ ere formed to obtain the desired response. Distributed control is 

implemented by conn cting all finger microcontrollers to a main microcontroller that 

can b integrated with the Brain omputer Interface. The o erall system was 

constructed and te ted successfully to control the prosthetic hand. 
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Chap t e r 1 

INTRODUCTION 

1.0 Introduction 

This thesis work is part of a larger project to develop a Brain Computer Interface (BCI) 

sy tern at University of Malaya to enable control and communication usm' b · g ram 

signa l . An electrically ac tuated prosthetic hand is one of the devices in this system. A 

hand controller is designed to operate the prosthetic hand using the BCI system. Such a 

ystem' ill gi e disabled or paralyzed people a chance to be independent and be able to 

do certa in tasks by their own w ill. In this type of application, the hand controller must 

be inte lligent enough to enable the separate fingers to move in a manner that wil l adapt 

the hand geometry fo r the intended hand task. 

1.1 B I y tern overview 

1.1.1 B I in general 

The BCI is an interfacing of the bra in signals to a computer in a way that the computer 

can recognize th inten ions of the subject [I]. An Electroencephalogram based BCI 

pr id a new communication channel between the human brain and a computer [1 ,2]. 

pecific in fo rmation from neuron activities is obtained through analyzing and 

cia ifying thj ignal [ 1 2]. A typical BCI consist of an E lectroencephalogram amp lifier 

( mplifi er a Data Acqui ition ystem (DAQ), a computer with Digital Signal 

ft.., a re and de ice. The de ice can either be a program inside the computer 

like cur r m m nt pr gram or it can be external appliances like wheelchair or 

t ge f m tr phi 

u ~e t who suffer fro m se ere motor impairments such as late 

teral cl r is (AL ), severe cerebral palsy, head trauma and 



Chap! r-1 
lnlrodu lion 

pin I InJUn m y u 
u h a B I ys tem as an alternative form of communication 

[I 2]. 

1.1.2 B I y t m dev loped at University of Malaya 

\ aim t de elop a portable B I system to control devices like a prosthetic hand and 

to \ it h n remote le tri al applia nces [55]. The BCI system wil1 be designed such 

that th power con umption i low and the number of electrodes used is minimal. The 

brain signal classifi r, which i the core unit of this BCI system, will run in a remote 

computer. Th tructur ofthe BCI sy tern is shown below. 

utput r ( ontrol ignal) 

l ?-- otebook/Palm!D 

EEG 
'------::r:----~ .__ Signals 

k.-too Comouter with BCI oftware 

-, 
' ' 

' ' Blu t th!R 2 2--.------- ------ --------- -----------------------------; 
' 

\ a~le I ,~,red 
Wtred ProSthetic Hand 

Figure l.l: Th B I y te rn de eloped at Uni r ity of Malaya 

Bluetooth/ USB 

Thi B I tm f four main part : Th electroencephalogram (EEG) 

amplili r. th Q) ystem the Brain signal classifier and the devices 

0 that r pre nt switching sta te of device ). EEG 

a lp f the subject pick up the brain signal . 

(i. th ti 

tr that ar · pia d n th 

2 



lntrodu tion 

ndu ti p applied between the electrodes and the sca lp to improve electrical 

conducti ity. he EEG signal is filter d, amplified and transmitted to the remote 

mputer. ign I proces ing featu re extraction and classification of the EEG data 

are rri d ut in the r mote compu ter. The results of the classification are output as 

ontr ign I to the pro thetic hand controller to operate it or to remote LED's 

repr enting other de i e . A Graphic User Interface (GUI) on a display allows the 

ubj t t elect and activate the desired tasks. This thesis describes the development 

and impl mentation of the prosthetic hand motion controller using Fuzzy Logic with 

di tnbuted control monitoring system. It includes control analysis, design methodology, 

exp riment re ult and discussions. The overall structure of this control system is 

ho \ n belo" . 

Boo-S~g na l lo 
EJecltiCal S<gnal 

lnttrta~· 

Classd•r 

---------

kt•b' kf-'c' 
Kt-'1' .............. ___......... ld-'d' --. ......... 

T•ti• s.nsor __ 

Poelion Senton ~:,i. .. . 

/

Ad al i· ~· 
Ada2 0 / 

~ton N:t 13 Q I 

I 
Ad.. .__ __ _... 

!_ .. _ .. _ .. _ .. _ .. - ·· - ·. - ·· - ., _ .. - ., _ .. - .. - .. _ .. - : 

fthe prosthetic hand control system 
igure 1.2: trocture o 
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Ch, pt r- I 
lntrodu tion 

I. I. n rvie~ of pro thetic hand developments 

Th pr lh ti hand ha been introduced a long time ago. In 218 BC a Roman Genera 1 

ergiu had hi left hand amputated he was then fitted with an iron replacement 

h ld hi hi ld and wa able to r turn to battle [3]. Over the centuries, the pace of 

d elopment ha b n limited due to the lack of technological progress and small 

numb r f amputee . It wa not until the Ameri an Civil War that the first artificia l 

hand \ r actuated by harne sing the motion of the body. In the early 201h century, it 

wa po ible to e ploit e ternal source by electrical actuation [3]. The prosthetic hand 

de ign · Jo\ Jy modified until the shap r sembles that of a natural human hand. 

De elopment fa pro th tic hand involves a multidisciplinary study [12]. The study can 

be ifi d a fo II ' : 

I. hani al de ign and r alization 

• De ign and construction of dexterous fingers of prosthetic hand and to 

p rforrn a kinematic analysi 

2. ontrol a p t 

• Ta k planning high le el and low level control problems 

• anipulation probl m 

n ory fe dback 

• 
f en or (Po ition pressure, slip, temperature) 

ignal pr ing 

• 
fmu Je EJ ctromiogram (EMG) or brain EEG signals . 

meti 

• nh n ment f app a ran and look . 

4 



Ch, pi r- 1 Introduction 

A pr th tic h nd is ne e ary for amputees not only to improve their looks but also as a 

to I t facilitate their daily li fe activit ies. If this kind of hand can mimic and functions 

e ti ely like the human hand it will also become very useful in other areas of 

application lik r m te urgery and hazardous handling [5]. These are among the 

thing that motivate the de elopment and improvement ofprosthetic hands. Nowadays 

\ ith ontinued advancements in technologies, and the development of tissue 

ngin ring a well functioning prosthetic hand that also looks like a real hand has 

be orne po sible. A I o the impro ement in living standards has made the prosthetic 

hands more affordable. 

1.1.4 be pro thetic band developed at University of Malaya 

An anthropomorphic prosthetic hand mechanism that is to be used as a device in the 

B I y tern wa designed [53, 54, 55]. The prosthetic hand consist of four fingers with 

3-degr e-of-fr edom (DOF) and a thumb with 4-DOF. The fingers and the thumb are 

mounte on a plate that follows the human hand arrangement. Actuations of segments 

of the finger are performed u ing geared DC motors. A tendon cable is used to link 

ea h motor to the a so iate finger segment. The overall structure of the prosthetic hand 

AI ..,. .cu.,.. on 
• lingo< ... 

~bY· 
coni!O ..,., b 

- ld jeorftl pvc(liO 
onolmg.t"O.,. 

l o pC lo< lt!O,....., Tho 
...,1111> anexttw 

lOt. and .... 
~,,.,.., 

ciOIJ"H~) 

Controllofs 
eontrollo(s kjo 'c' 

do'b' Controlle(s 
,..........,. ld•'d' 

,..........,. ,.-A--, 

Fi ur 1. : The pro theti hand 
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Chnpt r-1 Introduction 

h gm nt f the fingers are controlled in such a way that they move to form the 

de ired ge m try to mimic the motion of the human hand. Control system that is 

app lied to control this hand is discussed in detail in the following chapters of this thesis 

report. 

1.2 Di tributed FLC Implementation (Methodology) 

Fuzzy Logic with Hierarchical control method is selected to control the multi DOF 

pro theti hand. The Fuzzy Logic method is found to be the most suitable to resolve the 

uncertainty beha iors and the complex control modeling of multi-fingered hand [16 17 
' ' 

25]. Thi method uses linguistic terms that can be easily understood by human whose 

operates the hand. 

With the Hierarchical contro l, every microcontroller of a finger is treated as a slave unit. 

Th microcontroller runs FLC algorithm and performs closed loop control to position 

egment of a finger. Fi e units of slave microcontroller are employed to control all the 

finger and the thumb. At one level higher, there is a master microcontroller which 

functions to coordinate all the sla es. The mater also allows another higher-level 

integration. Thi fea ture enable the incorporation of a BCI to the prosthetic hand 

motion controller. 

Thi contro l y tern i al 0 designed to have a capability to sense pressure. A tactile 

en r i u ed to limit fing r/ s gment movements especially when an obstacle is 

en untere . hi enable the hand to wrap round an object, and this widens its function 

an ap bility. 

6 



Chnpt r- 1 lntroduct ion 

For hardware implementati n, embedded microcontrollers from Microchip Technology 

I t d. PT 18F443 1 is used as slave microcontroller and PIC18F720 as 

rna t r microcontroller. 

For inter-microcontroll rs communications, USART with RS232 protocol is employed . 

pecial interrupt service routines are written for both master and slaves microcontrollers 

to serve commands from master to s lave and from BCI to master. The whole system is 

te t d to p rform five typical hand tasks; the grasp, the key pinch, the pulp to pulp 

pinch, the tripod pinch and the open hand. 

1.3 The i Objectives 

The main objecti e ofthis thesis are: 

1. To de elop a prosthetic hand motion controller for a multi fmgered prosthetic 

hand . 

2. To enable control and communication between the prosthetic hand controller to 

th d eloped BCI system. 

1.4 be i Outline 

Thi th i ha be n organized in the following way: 

• In h t 1 
the overview of BCI and the part concerned for the BCI 

ap r , 

y tern i highlighted. 

• hapter 2 re iev 
previous works on control strategies to 

d , t rous/robotic manipulator . 

th pro thetic hand mechanism fingertip trajectory, and 
• In hapt r 

a tu tin y t maredi cu ed. 
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• 

Introduction 

In chapter 4 Fuzzy Logic Control and Distributed monitoring 1 

Hierar hical ystem to the multi-fingered prosthetic hand are described. 

• hapt r 5 discusses hardware & software development. 

• hapter 6 shows the performance of the implemented controller. It 

discusses time responses, trajectory of a dexterous finger and the result 

of overa ll integration "Hand to BCI". 

• hapter 7 conc ludes the finding and achievement of this thesis. It also 

in Jude suggestions and possible improvement for future works. 

8 



Chapter 2 

LITERATURE REVIEW 

2.0 Introduction 

The implementation of a Prosthetic hand controller involves multidisc1'pl' d' mary stu 1es. 

Re iews are grouped into sections to clearly see what are the best co mponents, 

approa hes and methods that most suit for the control of a prosthetic hand. The first 

ction re iews the recently developed prosthetic hand to see the trend and how far the 

el ctrica l control has been developed. The next sections extend the review into more 

sp cific topics that discuss the structure of multiple plants control and also the 

id ntification of components for electrically actuated hands. The most important 

se tion the method of control is discussed in section 2.2. Conclusions are then made at 

the end ofthi section. 

2.1 Pro thetic Hand and Robotic Hand Developments 

Earlier de e lopment of prosthetic hands focus on creating a hand mechanism without 

fully consid ring the control strategy. The earliest design solely depends on mechanical 

de ign it elf , ith actuation relying on human muscles [3, 12]. This approach limits 

d terity and th apability of the hand . The main reason was that the technology of 

el troni , mi ro ontroll r and the actuators were still at the early stage during that 

peri d. or a mpact ystem like a pro th tic hand controller, the use of such technology 

wa not pra ti al. The 
ontroller and actuator consume high power making the overall 

y·t m in ffi ient. Ho\ 
er th ad ancement of semiconductors, microcontrollers and 

in r ent years ha made compact electrical actuation control 

ible. 
part ar n w de igned to be smaller and lighter. 

9 



Literature Review 

The de e lopment of pro thetic and robotic hands shares lots of simila ·t· · n 1es m terms of 

deign n techn logy applied. In fact the robotic researches have contribut d 1 e a otto the 

ad ancement and improvement to prosthetic hand systems [18] This l"t . · I erature rev1ew 

c nsider both the prosthetic & robotic hand developments The followings are h · among t e 

famou hand de eloped recently. 

i. Bclgrad hand . It attempts to mimic human hand dexterity and 

functionality. It has four degrees of freedom on each finger. McHenry implements 

the con entional PD control with the feedbacks of joint position sensing and 

contact force sensing [22]. 

11. The tanford/JPL band. Its design had been motivated by anthropomorphic 

considerations as well as kinematics and control issues. Clifford S. Loucks and 

Victor JJolmson use strain gauges to sense tendon tension and six axis 

fore torque sensors placed on finger tips for contact force sensing. The 

con entional PD ontrol method has been applied on this hand [ 11]. 

111. The Hirzinger band incorporates joint position sensing, joint torque sensing, 

tactil en ing temp rature sensing, and a vision system in the hand. By far, the 

Hirzinger hand has the most number of sensors (28 per fmger). The sensing used 

by Hirzinger hand offers simplicity of the arrangement, compact sizes, better 

re Jution, and fev er wires [ 19]. 

tal IT hand was originally developed at the University of Utah by the 

enter for ngineering Design I d by Dr. Steve Jacobsen. In 1987, Motion 

ontf 
1 

m rporate joint position sensing, joint torque sensing and a tactile 

n ing uite with con entional proportional control to the hand. Microprocessor 

interface was also been introduced that allows the 

r theti I 
fi t n the adJ·ustment to achieve maximum 

r w arer to ne- u 

p r m1 n [I ]. 

10 



1. 

Lit·era ture Review 

DI T-Hand i a modular robotic system made up of 4-degrees of freedom (dot) 

identical fingers. Each finger is actuated by a system of six tendons routed through 

pulley and driven by five DC motors. Giuseppe Casalino & Fabio Giorgia from 

ni er ity Genova Italy introduced Embedded FPGA-based control with 

di tributed control architecture. Parallel processing in that system provides 

olution to complex algorithm calculation. The FPGA-based performs 100 times 

faster than the leading DSPs [21]. Controller of DIST-Hand employs a 

multilayered hierarchical structure as depicted in Figure 2.1 . 
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Le el 

Control 
(MLC) 
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.. 
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xl 
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x• • 
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. -------------------------------~ 
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Finger Low 
Level Control 
(LLC) 

q• 

ql 

Finger Low q• 
Level Control 
(LLC) 

Finger Low 
Le el Control 
(LLC) 

I q. 
I 
I 

: !Mer Control Loop : __________ _____________________ , 

. fDI T Hand control system (Adopted from [21]). 
igur 2.1: Th archJte ture o 

hadow Robot Company, the hand is a modular 
bad ' Hand - D eloped by 

g n ral-purp 
terou manipulator. It uses pneumatic actuator 

human fom1 de 

,. ith ff ntrol [20]. 
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11. GIFU hand, is a Multi-fingered Robot Hand that possesses dexterous 

manipulat ion capability. Yingjie Yin implements Hybrid Control to the hand. In 

iii. 

rder to obtain ub-optimal solutions, biologically inspired techniques might be 

very powerful [23]. 

hand, Han-Pang Huang controls the dexterous hand (NTU-Hand) using 

force fe dback. A DSP-based bilateral control is used to link the hand to the 

operator [5]. 

lX. L. Biagiotti fro m University of Bologna uses a force control scheme to control the 

DLR band. The hand was designed using "mechatronjc approach" in integrating 

the mechanica l structure, the sensory and the electronjc system, the control and 

the actuation part [12 13]. 

-Joint position sensors 
-Tacti le sensors 

,----------------------------------------

Compensation of non-idealities: 
-Friction 
_ Kinematics errors 

Supervision 

-Posi tion sensors 

Impedance 
Controller 

Posit ion set-points 
Impedance parameters 

DSP-based controller 1 
I 
I 

----------------------------- -------- ---------· •-------------- -- ------- --
. 

2 2
. Who le sch me ofDLR hand (Adopted from [12]) 

Ftgure . · 

. d ·th distributed sensory equipment in order to allow 
ach finger i mtegra te W I 

a li ati n 
f contro l procedure taking into account local and structural 

mpli n e [12] . 
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2.1.1 ontrol tructure of a multi-fingered hand 

Thi ection re iew the aspect of microcontroller-actuator interfacing. Key factors in 

thi re iew are the hierarchica l structure, data line/communica tion, and the actuation 

approach. 

I. Stev 11 M Spano & Nicholas Bourbakis use a method of Fuzzy Blocks control 

h m to contro l a M ulti F inger Robotic Hand. The interface system as shown in 

Figure 2.3 (a) b low i capable of activating fo ur DC motors in forward and reverse 

bia mode [8]. 

(a) 

llale 
(b) 

Figure 2. fc th hand and (b) the block diagram of the controller 
: (a) the Interface or e 

Th ontro l 

rt 

r ult an 

(Adopted from [8]) 

ftware of thi 
heme has the capability of independently adjusting 

utput 

e. 

f h otor The control system has been implemented 
ltage) o ac m · 

d ·t · claimed that this system provides excellent 
omputer an I IS 
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II. ]'; /suo Namima and Hideki Hashimoto perform grasping and manipulating objects 

using a 6-axis hybrid controller approach. The control is on 24-DOF robotic hand 

with force and torque sensors, equipped to detect forces and moments at the 

fingertip. They use data fro m the force torque sensor to obtain appropriate position 

and force refer nee in contro l. The object parameters like friction and stiffuess are 

estimated [15]. The contro l system structure for the hand and the 6-DOF hybrid 

controU r for each finger are shown in Figure 2.4 below. 

Etlunut 

.,...,.,_ _____ ... , Jointl.2,_, ____ _...~ 

(a) The Interface for the 24-DOF robotic hand 
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6-DOF Hybrid Cooll'Oikr 

(b) 6-DOF hybrid controller for each finger 

Figure 2.4: (a) Interface for the hand and (b) 6-DOF hybrid controller for each finger 

(Adopted from [15]) 

III. Li-Ren Lin and Han-Pand Huang developed a special design compact control 

y tern \! hich is embedded into the NTU hand to satisfy the limited space. The 

contro l ystem is able to control five fingers with 17-DOF. The actuators are 

controlled s imultaneously with the position and pressure feedbacks. Control is 

di tributed into several modules of DSP chips to overcome complexity. The 

tructure o f thi ystem is shown below [16]. 

Host 
Workstatjon 

er 
Int rface 

and 

High vel 
ompulation 

Power 
Supply 

a ad 
Rrputtr 

Powtr Sapply 

MP\1 
eo .. •u•k•lio• 
mkroprouuor 

All in the NTU Hand 

· igure 2. 
ntr 1 tru ture implemented to the NTU Hand (Adopted from [16]) 
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I · J. Lin u e a hierarchical ordering of fu zzy rules to reduc th · . e e srze of the mference 

ngine. hi i implemented in real time the sensory data b fc · , e ore mput and the 

y tern' output are fused to the inference engine. This reduces th b d e ur en of large 

iz rule et . With this approach the control of the force and ·t· pOSI IOn of the robot 

end point i po sible" hile the end-effecter moves on the constra · t .c. m sur1ace [17]. 

Figure 2.6: Block diagram of the hybrid position/force control system 

(Adopted from [17]) 

There are many methods and strategies applied in controlling prosthetic hand [8, 13, 15, 

16 17 1 21 23] as been discussed earlier. Generally, they can be grouped into the 

number of hierar hi cal levels used and by which level the feedback is fed. Hierarchical 

1e el i appli d to reduce complexjty and for easy integration and management. It is 

achi ed by introducing an organized communication structure with a protocol that can 

imu Jtan u ly ontrol and monitor th lower level controllers. Configuration of electrical 

c nlr 1 " ith hi rar hi al tructure and it feed feedback level are shown below: 
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S.o.Sognolto 
El.ctncil S~gnol 

Interlace+ 
Cl1111fier 

Oe11red PoiJbon 

Hu Umlted OOF 11nce the operator 
can only ca~trol one plant 

.-----:) 
Human 

Operator 

Blo.Signals (Mu~-EMG/Brei 

Vosual Feedbadc 
through ob3ervlbon 

810-Signal to 
Electncal Signal 

lnlerface + 

Classifier 

Desired Pos~ions of task 

n-EEG) 

Can support more then two or more OOF. However the whole system b 
slower with the add1bonal of plant Because, only one controller handles ,;::;:.~ts 

Figure 2.7: Direct Control and Hierarchical Control Diagram 

Referring to Figure 2. 7 th low level controllers receive instructions from the high level 

and e e ut the control commands locally without the need of full attention from the 

upper le el controller. The lower level controllers at any moment would be able to 

re pond back to th upper level whenever necessary. This approach reduces overhead 

communication activitie and improves speed of the control since not all feedback 

information is gi en back to the main controller during task execution. 
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2.1.2 Ba ic components of an electrically actuated prosthetic hand 

Fr m the liter ture review the basic components of a typical multi fingered prosthetic 

hand contr I ar identified. They are listed as follows: 

I) Input ommand ( ource of Command) 

• In ol e igna l processing (Bio-signal classification) - This part deals with the 

extraction of subject 's intention from biological signals like Electromyogram 

(EMG), Elec trocardiogram (ECG), and Electroencephalogram (EEG). This 

tage provides control action I set points to the next level of control. In this 

proj ect thi part is accomplished by the BCI system that uses EEG signal 

from the ubject. For testing purposes the BCI command is imitated using 

computer or microcontroller. 

2) Coordination of local controllers (High level part in hierarchical control) 

• In ol e communication and task planning, dealing with high level and low-

level contro l. 

3) Local control (low-le e l) 

• Manipulation problems using (P, PI, PID or advance control like fuzzy, Neuro 

fuzzy and etc.) 

4
) F, edbacksfrom sensors/transducers (position, pressure, slip .etc) 

5) A 
· (DC mo tor/ Pneumatic/ Shrink cable) ctuatlOilS 
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Th implementation ofthe multi-fingered prosthetic hand control involve h d s ar ware and 

o{h ar . 

From the literatur review, the fo llowing parts are typically incorporated: 

I) Microproc ors/Microcontro ller (Speed, s1ze, build-in d 1 mo u e, power 

con umption) 

2) AD and DAC for signal conversion 

) Actuato r dri ers (Drive method - switching/PWM, Linear) 

4) Feedback circuitries (Amplification, filtering, signal conversion) 

Th re are many approaches of implementing a control algorithm for multi-fingered 

pro thetic hand. Han Huang Pang [5] in 1996 used a DSP chip to execute his control 

algorithm. Th approach requires external ADC and external digital to analog converter 

DAC for data con rsions . Power control for actuators is established by Power 

Amplifiers. Thi method consumes space and high power loss at the drivers. In 2003 

Giu ppe a alino from U niversity of Di Genova, Italy implemented hand control 

tern in ide FPGA but still use external ADC. However, he used PWM method to 

control th actuator power which improves driver efficiency. 

Re ently i ro hip emiconductor introduced embedded microcontrollers that are 

ign d perform ariou task including control. Among the controllers, the 

PI 164 
wa found to b ery uitable to control multiple plants. It has embedded 

m 
in ide a compact chip. The use of this embedded chip may 

r du p v er n umpti nand space. 
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2.2 ocal ontrol Methods 

ln thi sub re iew local ontrol refers to low level control that is implemented inside 

micro ontro ller to control position and motion of segments of prosthetic fingers. Lots 

f control strategie are a ailable nowadays like P, PI, PID, Fuzzy Logic, and Hybrid 

contr I [12, 22 23]. Ad anced control methods like Neuro Fuzzy and Adaptive control 

ha e also been introduced [16, 17]. Any method that offers solution to a particular 

control problem still has some weaknesses when dealing with uncertainties of plant 

beba ior . A good ontrol performance with minimal drawbacks is achievable by 

properly tudying and understanding the characteristics of the plant and the controller. 

Control parameters like plant behaviors and the aims of the implementation play a 

major role in de e loping a controller. 

Fuzzy Logic offer simplicity and solves a lot of difficulties that is normally faced by 

con entiona l control. Problems like exact system model, indefinite and inconsistent 

system behaviors are easily tackled by Fuzzy Logic controller [16, 17, 25]. The reason for 

this is that Fuzzy Logic u es human knowledge (intuitive approach) in handling control 

probl ms. The u of Fuzzy Logic technique in controlling a multi-fingered prosthetic 

hand i beli d to be very helpful since it can simplify and overcome the complex 

modeling pr bl m . Th comparison between conventional approach and Fuzzy Logic 

contr I i h wn below. 
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C-ontrol 
Mctbod/Stratef!y 

Advantages Disadvantages 

- Use intuitive approach that -Involve rules evaluation 
employ human knowledge that slowdown decision 

Fuzzy Logic and computation. 
- Doe not require exact 

model 
- More precise (PI,PD,PID) - Require an exact system 

onvention I (PI,PD,PID) model for a better control 
performance 

Table 2. 1: Compari on between conventional and fuzzy logic control method 

The negati e ide of using FLC is that, additional input parameters to the FLC may results 

an exponential growth to the number of rules [16]. This becomes worse when a big 

number of membership functions are used. The decisional loops would run slower and 

this degrade performance of the FLC system. The big rules also affect the centroid 

computation ( d ffuzzificatio n). This problem however is tolerable with the use of Sugeno 

D ffu zzification techniqu . The ugeno Deffuzzification technique simplifies the centroid 

computation by introducing single tone values. 
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2.3 onclu ion 

From literature re iew that ha b en conducted the following conclusions are made: 

I . Hierarchical/multilevel structure is used to control motion of the prosthetic hand 

that ha b en de eloped at the University ofMalaya. From top to bottom, which is 

from B I to finger segments the control structure is break into three physical 

layers. They are the main frame, master, and slave layers. FLC is performed at the 

lowe t layer. 

2. Fuzzy logic control strategy is used to control motion for every segment of a 

finger. This method is found to be the most suitable to resolve the uncertainty 

beha ior and the complex control modeling of a multi-fingered hand. This 

method uses Jingui tic terms that can be easily understood by user. 

The embedded chip PIC18F4431 is used as a local micro-controller/slave micro­

controller and for the master the PIC18F8720 is used. 

4. A tactile sensor i used to limit movement of finger/segment especially when an 

ob tacl i encountered. This enables object to wrap round an object and widens 

th hand fun tion and capability. 
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C hapt e r 3 

THE PROSTHETIC HAND 

3.0 h hand mechani m 

The human hand consist of multiple degrees of freedom (DOF) that enable it to 

p rform ariou ta ks. It i difficult and costly to implement and control a hand with 

u h a 1 rge number of DOFs. In the present study, only the most important DOF is 

co ns ider d. 

Th hand had b en built by a group ofbiomedical and mechanical engineering student 

[52 56]. Four fmger ha e been designed to have 3-DOF and a thumb with 4-DOF. 

Paralle l plate , ere used to represent the three fragments of a finger, which are the 

dis ta l pro imal and middle segments. For clarity, the structure of the hand and the 

finger are d picted below. 

N the actuMcn on 
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Figure . l : The tructure ofthe hand and a finger 
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The Prosthetic Hand 

D m t r with the combination of reduced gear heads are used to actuate finger 

cgment . ach finger i equipped with position sensors at the pivot joints and tactile­

pres ure ensor at fingertips. F ive identical controllers with identical control structure 

ar employed to monitor and control the fingers. A flexible nylon string Jinks each 

segm nL to a parate actuator. Counter back springs are used to return the segments 

back to their res t position. 

3.1 Trajectory of a finger tip 

irnplified skeleton structure representing a finger is used to study fingertip trajectory. 

Th purpo e j to find the relationship between displacement angles and the trajectory 

of gment uch that a certain position can be obtained by adjusting the angles. The 

adju trnent of these angle (also known as position control) would be discussed in the 

n t chapter. 

Referring to Figure 3.2· al a2 and a3 represent the length ofthe distal, proximal, and 

phalange. The di placement angles MCP, PIP, and DIP are denoted by e1, e2, and e3 

)(3 ..... 

Figure .2: keleton model 
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Apply ing trig nometric rule 

l=a l· m(OI) 

2= l·sm(OI) + a2·sin(er + 82) 

3= I sin (8 1) + a2sin(9 1 + 92) + a3 sin(9 1 + 82 + 93) 

y l = a l·cos (9 1) 

y2 = l·cos (9 1) + a2·cos (91 + 82) 

y3 = I cos (9 1) + a2cos (91 + 92) + a3cos (8 1 + 92 + 83) 

The traje tory ofthe fi nger tip can be represented by 

Y3 = (a l·cos (91) + a2·cos(91 + 92) + a3·cos (9 1 + 62 + e3)).x3 

a l sin(el) + a2sin(er + 92) + a3sin(9 1 + 92 + 93) 

The Prosthetic Hand 

Eq 3.1 

Eq 3.2 

Eq 3.3 

With the three degree of freedom finger various trajectories are possible as shown on 

the picture b low (4]. 

t 

Figure 3.3: Possible trajectories (Adopted from (4]) 

A human mimicked trajectory is achieved by relating the displacement angles el, 92, 

and e 3 to th di placem nt angles of the actual finger. In this design the displacement 

ang le j de ign d t follow the Gou 's trajectory model as shown on Figure 3.4 [39]. 

Thi i achie d by adju ting the fu zzy log ic parameters. 
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Chapt ·r-
The Prosthetic Hand 

! 
Goo's Trajectory model ~ 

----==J I I 
I 

I 

] I 0 20 40 60 80 100 120 
x.,.xls 

------._) 

Figure 3.4: Gou's finger trajectory 

3.2 ctua tion 

Possib le actuation method for a prosthetic hand includes; pneumatic, DC motor, and 

artificia l mu I . The most commonly use is the DC motor. This method is relatively 

ea ier to contro l and its integration to a prosthe tic hand is flexible. 

3.2.1 D motor a actuator 

Geared d motor is used to actuate every segment of the prosthetic fingers including the 

thumb. 16 D motors are employed. Specification of the motors is determined as 

follo\ s: 

1. The mo tor mu t be able to withstand 400g load on fingertip, this load is within 

typica l handling for an adu lt finger [40, 41]. From this load and some other 

param ter of a finger the motor torque is calculated. 

onsidering th re i no friction motor torque (T m) is T m = Fm x r, where (Fm) is 

th fc r e e tor and (r) is the distance perpendicular to the force towards the axis 

frotat i n plea e refer to Figure 3.5. 
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DC motor 

~+J 
I ' ' ~ --- ·L- .,.! 

Middle phalanx Distal phalanx 

The Prosthetic Hand 

: Force perpendicular to the tactile sens [; 
: Force perpendicular to the Distal phalor su~ ace 
the tendon termination point (as h anx ack plate at 
figure). s own on the above 

Fm : String tension at the motor shaft. 
I : Length between Distal-Middle phala . . . 

tendon termination point (as shown onnt~JOt~t to Dtstal 
: ~erpendicular length between Distal-Mi~~leove figure) . L 
JOint to the direction ofF phalanx 

. Ly 

: Dtameter of the motor shaft. r 

Figure 3.5: Force estimation on a middle finger 

ertica l moments as in position on Figure 3.5: 

Momen due to load on fingertip 

MLy =FLy x L ~ 
Momen due to the string pulls by the motor 

M m = F,>' X I ~ Fmy = FmSin(B) 

To make th segment to mo e upward M my must be bigger then ML (M _ -=>M ) y my- Ly . 

F 
FLx L 

,> 
in( B) x I 

Th minimum torque required is: 

~- x L x r, 
T,>-~--

in(B) x l 

y u mg l, r () alues for the middle finger from (Appendix-4A), the 

minimum torque i determined. 

m > 0.036189 Nm 

2. mimi th human hand motion the spe d of actuator is important. Referring 

ngul r p d fa finger, for an adu lt hand, a speed around 4 rad/sec is 

27 



The Prosthetic Hand 

n id r d. hi p cd i obtained from observing 3-adult fingers d · urmg normal 

h nd gr p m ti n. Thi p ed together with the previous calculated t . orque ts 

u ed a main le tion criteria for motor and gear head. 

th r c n ideration are size and operating voltage. The size must not be too 

bulky nd the op rating oltage is around typical power supply range which is 

12V. 

From the criteria that ha e been discussed, a geared DC motor model from Faulhaber 

1 012 -motor J/14-gear type 159:1-reduction ratio) is selected [Appendix-3A 

and pp ndix- B]. For the Thumb 's 41
" DOF actuation, the same motor is selected but 

' ith additional of(IE2-512) magnetic encoder [Appendix-3C]. 

al ulation ba ed on motor parameters are carried out to see DC motor operating 

performan e. Fir t we determine torque at the motor shaft that is required to drive the 

gear to produ e a torque greater than 0.0362 Nm (this 0.0362 Nm is calculated 

pre iou Jy in ection 3.2.1). The efficiency of the gear head is 60% [Appendix-3B], 

mean that 40% of the power de eloped by the motor would be lost in the gear head. 

c rding 
the rnanufa tur r operationa l manual [44] the simplest method of 

a ounting fc r gear h ad lo s i to increase the torque requirement and make the 

al ulati n a if th gear head were 100% effic ient. In this case we increase the torque 

by 0% 0.0 62* 1.4 = 0.04704 Nm). Torque reflected to the motor is therefore 

.0 7 / J59 m = .000296 m or 0.041 8 Oz.in. We use this unit in order to match 

t th unit in th hara t ri tic graph pro ided by the DC motor manufacturer. This is a 

minimum t r ue r quir d to nab! a egment to move under 400g load on the middle 

finger. 
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The Prosthetic Hand 

h m t r mu t be a bl to upport speed of the geared shaft to be t 1 no ess than 4 

ra e . thi 

R erring t th 

limit .55>0.04 1 

ll!XII 

onditi n the motor peed is 4*159=639 d/ ra sec or 6073.35 rpm. 

igur 3.6, the torque capabil ity a t this speed is bigge th h . . r an t e cntJCal 

7) z.In or (0.003909 > 0.04704) Nm. 

--· --- . .. -OIIlJitf .,.,... 

14 

Figure 3.6: Characteristic of the DC motor 
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Th m tor th refor operates at appro ima tely 90% of its no load speed and about 10% 

to 30% of it ta ll torque. Th is i the typica l operating range for motor applications. This 

op rating rang g i e good effici ncy and also results in a better life characteristic [43, 

44]. 

.2 .2 h a tuator driver 

n th r l1l1 rt nt part of motion control is the actuator driver. Here the driver 

d an dir ti na l ignal from a microcontro ller into motor input (i.e the 

P ' e r u ply t th 
motor). Th signa l is a contro l act ion resulting from the 

e c uti n f th , c ntr 1 a lgo rithm by th microcontroller. The control signals are in the 

fc rm fPW 
ig na l 11 r th m t r p d and high/low s ignal for the motor direction. 
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The Pro >thctic Hand 

h fi II \.' in fa t r ha e been taken into considerations in designing the driver: 

I. rt h p rate\.' ithin the range of motor current and voltage. 

2. ap bl p rform bidirectiona l dri e 

L 

4. d 1 Jency low power consumption 

5. mall and compa 

Th re are many method ava ilable to control a DC motor. One of the most famous 

method no\' ad y i the Pulse-Width-Modulation 'PWM" with H-Bridge switch. This 

method u ariable duty cycle square wa e and on-off switches to control power. The 

uare \ a e that · omposed of durations of ' On' and 'Off' sequences would trigger 

the H-bridg v itch tate 'On' and 'Off' . Its duty cycle represents the percentage of 

PO\ er deli er d to the load. 

Th equation .ti r thi phenomenon is: 

Output oltage ( tuator upply) 

ou t = V1 n * [T0./(Ton+Torr)J 

= tn* To./T) 

\ here, T \VJtching period (Ton+Totr). 

Ton- witch_ On time 

T tr• w1t h_Otftime 

.. nm upply 

F r th dir ti nal c ntrol there are four switches that form the H-Bridge switch. 

m n 
hi h pair f th diagonal switches is active the polarity of the load 

be et rmin d and thi allows motor direction control. This is clearly 

h \nbyth~Figure .7. 
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+Ve (Supply) 

S4 

S3 

-Ve (Supply) 

Figure 3. 7: The H-Bridge Switch 

The Prosthetic Hand 

S1 

S2 

........... .,.Clockwise 

-_.,.Counter Clockwise 

The po\ er deli ered to the motor is determined by how long the switch is ON. 

Additional logical circuit is normally added to this arrangement that allows easier 

microcontroller integration. From a survey an integrated H-bridge switch "LMD1820l" 

i found uitable to dri e the elected motor model. In this early design stage a ]ow cost 

packag i u ed. Thi hip upports up to 3 Amps with its operating voltage ranges 

around 12 to 24-Volt . 

. 3 oncJu ion 

t the beginning of thi chapter study of the finger mechanism helps us to see its 

po ibl traje torie . The con entiona l actuation by using DC motor is selected to 

actuate th hand; thi method i relati ely easier and inexpensive. The motor operating 

re j 
11 

i determin d for it optimum operation. Hand motion control is accomplished 

by th, u f H-bridge dri er to operate the DC motors; this allows low signal 

int rfn ing t nt I th D motor. 
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Chapter 4 

F ZZY LOGIC & DISTRIBUTED CONTROL 

4.0 Introduction 

Thi hapler di cus e th FL and the hierarchal distributed control structure that are 

employed to ontrol the pro thetic hand. Techniques, structure and components involve 

are de ribe . 

4.1 0 r i w of the ystem 

mentioned in introduction the prosthetic hand control system consists of five separate 

identi al mj ro ontroller called slave. Each salve microcontroller is programmed to 

ecute a fuzzy Jogi control algorithm together with a system handler. The main purpose 

to nab! hierar hi al integration and allows the actuators to be controlled locally. 

Tho 1a e micro ontroUer ar oordinated by another microcontroller called 'Master'. 

Th tru ture of this arrangement i hown on Figure 4.1 below . 

9 1 

i •ur · 4.1 : Pr 

- - ·· - ·· - · -

......... s.n ... •i-i: 
/;. , ...... o,.,. 

ACald'l ) A4 . , 0 / 
J"''-'0, I 
l"""" ..__ _ __. 

- ·- ·· - ··- ··- ·· - ··- ··- ·· - ··- ··- · 

tru rur fc r th pro theti hand control system 
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ntr I p rameter in the FLC is the displacement angle. This angle 1·s measured 

n t\i a ~ac nt egments of a finger using potentiometer placed at the · · E Jomt. ach 

joint that ha acti e gm t to o · · d 'th · n m ve IS eqUJppe WI a potenhometer. However, on forth 

thumb a m gneti ncoder i use instead of the potentiometer, this is due to special 

arrangement on thi gm nt. Voltage divider concept is applied on potentiometers to 

gi pr portional va lue related to displacement. 

4.2 uzzy Logic Controller (FLC) 

The purpo e of th FLC is to overcome difficulties in controlling multiple degrees-of­

freedom (DOF) that the typica l conventional controllers have difficulty dealing with, 

mainly due to imperfect modeling of a system [25, 46, 9]. The conventional controllers 

like PID r quire a good system model before it can effectively control the system. This is 

hard to achie e for a multi-DOF prosthetic hand . The eristences of non-uniform friction 

at joint and tendons and also unknown load conditions during prosthetic hand operation 

ha e mad the modeling of the system rather difficult if at all possible [8]. A robust 

contr U r that could overcome or tolerate those problems is therefore necessary. 

Fuzzy Logi m thod that u es linguistic terms and experiences inherent to humans is 

belie d to be abl to 0 er orne some of those issues. The Fuzzy Logic concept was 

propo d by Lofti Zadeh. The earliest implementation was on steam engine control by 

brahim H. Mamdani [49]. Fuzzy logic has been successfully applied in many 

comm r ial pr du ts like washing machines cameras and air conditioners. The method 

ha n w 
om on of the more popular approaches used by researchers in solving 

0 
linear pr blem [8, 9, 25, 47 48]. Here Fuzzy logic is employed to 

ntr I th m ti n f finger gm nts of the prosthetic hand. 
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4.2.1 on tructing a Fuzzy Logic Controller 

A typical FL y tern i shown below. The arrangement is similar to that of basic 

onventional control system. The difference is that the FLC makes use fl" · . 0 mgutshc terms 

and human e p rience to determine control actions. 

Fuzzy Logic Controller 
Fuzzification-Rules 

agregation-Defuzzification 

Feedback 

Plant 

Figure 4.2: A typical Fuzzy Logic Control system 

The FL block posse ses a few steps called Fuzzification, Rules evaluation, Aggregation 

and D effuzzzjicalion. Fuzzification translates the crisp input value(s) into sets of active 

linguistic term( ) together with its fuzzy value. The Rules evaluation & Aggregation 

determi:n what th Fuzzy Logic output should be for the Fuzzified inputs by referring to 

the Rut . Finally De./Juzzification translates the results of Rules Aggregation into a crisp 

alue. Thi alue i a control action for the system that is then applied to the "plant" In 

thi ca e a DC motor. The deta ils about these FLC steps are described below. 

4.2.1.1 D fining Fuzzy ets/Membership Function (MF) 

Fuzzy et m mber hip functions (MF) are defined over the whole possible range of the 

ariable called the ni er e of Discourse. The purpose ofMF is to represent the input 

an utput ariabi in lingui tic term such that a control decision by word can be 

carried ut. In thi th i , a m ntion d earlier the control parameter is displacement 

ang l . input ariable to th FL this angle is translated into Error and Rate of Error, 
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in " hich th error i the different of (set angle I set point) to the current angle. The 

r I ti n fth FL ariable i show be low. 

'[n] = etP[n]- Po [n] ........... . Eq 4.1 

y'[n]= [n]- [n- I] .... ..... .. ... Eq4.2 

y[n] = Error y'[n] = Rate of Error, 

etP[n] = the de ired s t point for a particular segment 

Po [n] = current pos ition; n = positive in teger 

MF can b r pr ented by any shape like triangular, trapezoidal or bell-shape as 

sh \ n in Figur 4.3 be low [50]. The vertical axis represents Fuzzy value, while 

horizontal ru i repr ents control ariable. 

Core 

Control Vanable 
" ~ 100 o;n 10 100 110 

(a) Trapezoidal 
(b) Bell-Shape 

F igure 4.3: Shapes ofmembership 

In thi the i trap zoidal and triangular shapes are used. This triangular shape is 

. t be represented inside a microcontro ller. MFs used in this thesis 
c mparati ely ea ter o 

n igure 4.4. 
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N z p 

~XX_: 
- 10 - 1 0 1 

10 

YmfnJ or) 
y'm[n] (Rate of Error) 

N p n= Positive integer 
rn= Membership number 

r-
88 m 

NB l 
NMfN 2 

[n] (PWM duty cycle) 

z 3 
PMIP 4 
PB 5 

Figure 4.4: The proposed Membership Functions 

4.2.1.2 Fuzzifi ation 

Fuzzifi ation i a pro e of tran forming an input signal into Fuzzy value. The Fuzzy 

alue i a lingui ti term(s repre ented by MF with holds information about degrees of 

truth range from (0 to 1). Th degree oftruth shows how close the input is to the MF. 

Thi fuzzification tage would re ults one or more sets of outputs if the input is overlap 

or within in th range of h: o or more MF regions. A technique that is used for the 

fuzzifi tion pro e for microprocessor implementation is shown in Figure 4.5 below_ 

;) X 

- 4 5 membership function tgur - : 

I I, ,, - - H 
L, I 

\.Vh r: H, = 1- 1, =x-x,- L, =x2 -x, - x is input 
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h, 

Applyin th 
am pro edur for the portion2 and portion3 in the figure 4.4 we obtain 

x -x 
I --...::.4 __ 
J-

x4 -x3 

Th Fuzzifi d alu for all input m mbership functions can be represented as 

x -x
1 

}' ::: J ....................... ' Xz :E; X~ X
3 

... ..... . , 

a luation & Aggregation 

Thi part make u e ofth Fuzzitied results to determine a control action based on rules 

that ha e been spe ified. Thi process produces another set of linguistic terms involving 

output F. 

DErr (Input I) Output 
y', y'z y'J 

Ymmax ,.-I y, Y, (y,.y·,) Y, (y,,y ·~> y4 (y,,y',) ~··:-~.~ Ysmax m 
Y , (y:.y',) y4 (y~.y·~> YJ (y~.y·,) 

Y4max 
=? Yz 

~~ ......... 
y4 (y ,y',) YJ (y,.y',) Yz (y, ,y',) fj Y3max 

::J y 
'0 

Y z (y •. y',) Y, (y.,y',) "!r:t 
Y2max 

c: y Y J(Y•·Y'•) t:::l .._.. 
,·, 

Y z(y,,y',) y, (yj,y '~) Y, (ys,y',) 
Y, max 

I Y5 

y bl 4.1: Rule in table form that relates input and output MFs 

In uzzy ar u ually in the form of IF-THEN statements. However, here 

rul in lh fc rm f e uati n \: ith (AND/Minimum) and (OR/Maximum) operators are 

u ed. hi i 1 ar/y h \ n on the Figur 4.6 and the Firmware code below. 
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~·· 

aggr = 

__ _.x· .. 

Aggregation 

Ys = (y l v y 'l) " (yl v y'2) " (y 2 v y 'l) 

Y, = (y l v y '3) " (y2 v y '2) " (y3 v y'l) 

y) = (y 2 v y '3) 1\ (y3 v y '2) 1\ (y4 v y'l) 

yl = (y 3 v y '3) " (y 4 v y'2) " (y S v y' l) 

Y. = (y4 vy'3) ( 5 , I 1\ y v y 2) 1\ (yS v y'3) 

"= maximum function I or operator 

v = minimum fun ction I and o perator 

Figure 4.6: Rules Evaluation & Aggregation 

h firmware code for (Rules Evaluation & Aggregation) of the FLC u · B · 
smg astc 

programming language is shown below. 

========= " Rul es evaluation & Aggregation" === 

Rules: 

MFSout I [0) = 0 
F4out I [0) = 0 

MF3out I [0) = 0 
MF2out I [0) = 0 

F I out I [0) = 0 

MFSoutl[O) = (MF iini[O] MIN MFiin2[0]) MAX (MF5outl[O]) 
MFSout I [0) = MF I in I [0] MIN MF2in2[0]) MAX (MF5out I [0]) 
MF5out I [0) = (MF2in I [0] MTN MF 1 in2[0]) MAX (MF5out I [0]) 

MF4out 1 [0) = (MF I in I [0] Ml MF3in2[0]) MAX (Mf4out I [0]) 
F out I [0) = (MF2in I [0] MIN Mf2in2[0]) MAX (MF4out I [0]) 
F4out 1[0] = (MF3in I [0] MIN MFiin2[0]) MAX (MF4outl [0]) 

F3out I [0) = F2in 1 [0] MI MF3in2[0]) MAX (MF3outl [0]) 
F3out 1[0) = (MF3in 1 [0] MI MF2in2[0]) MAX (MF3outl [0]) 
F out I [0] = (MF4in I [0] M 1 MF I in2[0]) MAX (MF3out 1 [0]) 

MF2out I [0) = (MF3in 1 [0] MIN MF3in2[0]) MAX (MF2out1 [0]) 
F2out 1 [0] = (MF4in I [0] MI MF2in2[0]) MAX (MF2out 1 [0]) 

MF2out 1[0) = (MF5in I [0) Ml Mflin2[0]) MAX (MF2outl [0]) 

MFlout 1[0) = (MF4in 1[0] MIN MF3in2[0]) MAX (MFioutl [0]) 
MF lout I [0] = (MF5in I [0] Ml MF2in2[0]) MAX (Mfl out I [0]) 

Flout I [0] = (MF5in 1 [0] Ml MF3in2[0]) MAX (MFloutl [0]) 

RET --------==-===-= "E D" = == 
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4.2. l .4 efitzzi fication 

h efuzz ifi ati n process converts Fuzzy values obtained from the previous 

Aggr galion proce into a crisp number. This is necessary since the next control 

pro e can only accept a fmite number. 

There are everal methods of Defuzzification technique. The well known methods in 

contro l eng ineering are the centroid/centre of gravity technique (COG) and the 

w ighted-a erage. The weighted-average or also known as Sugeno-Defuzzification 

techniqu i found to be most suitable for an 8-bit microprocessor implementation since 

thi technique offer simple computation while still giving a comparable result to the 

COG. The equation for the Sugeno-defuzzification is shown below: 

u~ 
u, u, 

Figure 4. 7: Output MF for Sugeno-Deffuzzification 

U
--((Yj xu1 +Y2 xu 2 + ... +Y,11 xum)J 

) 
(Equation 4.1) 

( Yj + y2 + .. 0 + Y,, 

(Equation 4.2) 

Um= Output MFs. 

y m= Fuzzy alue :from pre ious stage of"Rules evaluation & Aggregation". 

= cr p alue representing FLC output. 

Th n p alu • • i PWM duty cycle representing power delivered to a DC motor to 

m e a finger egment. 
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4.2.2 baring uzzy Logic routine 

he pre 10u ontrol block can be modified to handle more than one plant/actuato F r. or 

a finger, it con i t of se era ! segments that utilize three or more similar actuators as 

hown on Figur 4.8 below. Directly applying the previous control block without 

modifi ati n " ould result in redundancy that consumes unnecessary space, power and 

co t. This can be overcom by simultaneously sharing the FLC block for one :fing er. 

This m ans a unit of microcontroller is used to control and monitor a finger/ thumb. 

Fuzzy logic 
Fuzzffication-Rules agregation-Oefuzzif~eation 

I 
Rules 

L---------"1/ Nom~hzatJOri{y,x)~ If---- - Posifun Feedbackt---..J 

Figure 4.8: The proposed control system to control one fmger 

Thi configuration not only reduces space and power consumption but also offers a 

y tematic " iring for feedback and actuators. 

4.2. hape adaptation & safety 

D pending olely on po ition feedback is insufficient for a prosthetic hand control, 

cially wh n performing tasks that involve interaction with objects. The hand is e 

expe ted to clo ely follow the shape of the held object and also maintain a certain grip 

fi rc " h n h !ding th obj ct. For safety reasons, the actuated segment has to stop if an 

n ountered. This pre ents damage to the object and also to the system. 
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he human h nd u e M chanoreceptor to sense contact and also pressure on skin. 

hi i nal i 
nt t the brain and .from experience in mind human can easily handles 

an bje t for e amp le holding an egg. To mimic some of these features tactile sensors 

tog th r with rule are employed on the prosthetic hand. 

Th folio\! ing rules (in the table below) are applied for shape adaptation. The s
3 

s S 
' 2, I 

r pre ent pre ure on di tal middle and proximal phalanx respectively as shown on the 

figur below. At the moment the three sensors configuration is only applied to the 

middle finger. The remaining fingers use one tactile sensor each, and it is placed at 

finger tip. 

I~ ::: 
.......... 

Case Actuator (1, 2, 3) 
I All are off 
2 Only Act I is on 
3 Only Act 3 is off 
~ All are on 

Tab! 4.2: Sequences for shape adaptation 

Table 4 .2 de ribe the po ible conditions. Without any load (case 4) all the actuators 

are et t acti e. Wh n pre ure at SJ exceeds the threshold value S JJimir (case 3) the 

actuat r [that egment i turned to off The same rule is applied for the next segment 

2. In any ituation if t> thmu all th actuator will be off. 
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practical Fuzzy Logic Controller for the prosthetic hand 

e ral more modifications are made to the control block on section 4 2 2 t k . · · o rna e It 

more practical and precise in executing tasks. This includes Additional I t 1 . n egra action 

and ormalization. 

Sg z oegment {1,2.3 4 

Fuzzy Logic 
Fuzzifocanon-Rules agregation·Defuzzification 

I 
Rules 

Figure 4.9: The proposed final control block for a finger 

I. Additional Integra l action for precise control: Under high load condition PD type of 

FLC cannot eliminates zero steady state error. Reduction of this error is significant 

when a precise control is desired. Hence, integral action is included into the FLC. This 

action i implemented by accumulating previous error values and it is then scaled and 

added to the FLC output to increase the PWM duty cycle. This increases power of the 

actuator that then allows it to further adjust the particular segment towards its set point. 

The integral action will only be activated when the manipulator (i.e. the contro11ed 

egment) fail to reach its targeted set point after certain period of time. This 

implementation i depicted as Integral Rule on Figure 4.9. This rule is adjustable during 

calibration. 
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onn lization: The purpose ofNonnalization is to have a standard input for the FLC. 

Regardle of different voltage level from position sensor at referent point, the 

controller capab l to use this input signal to represent the actual position of the seg t men . 

Howe cr the senso r must be able to give a voltage change from reference point to its 

rna imum segment deflection. This implementation minimizes physical adjustment of a 

position sensor and makes the whole system becomes more robust. 

onsidering these two modifications, and also the previous discussed shape adaptation, 

a more practical FLC is proposed as shown on Figure 4.9. This control system runs on 

e ery slave microcontroller. 

4.3 Di tributed Control 

To effectively control a system consisting of duplicate identical sub-systems, the use of a 

central unit i ery helpful. This approach is called distributed control. Distributed control 

ha been widely used in industry to monitor and control large number of plants. It is also 

implemented in robotic systems [16, 21]. In the robot system, the scattered controllers on the 

robot body are linked to a main controller unit such that all instructions from upper level are 

1 t th ~; .... controller This idea reduces complexity and easy system management on y ent o e m......... · · · 

A ba ic distributed control system is shown on Figure.4.10. It normally consists of 

minimum of2 le el networks. 

.r ,I.. 

Plant 1/ 
Plant 21 

Sub unrt 1 
Sub unH 2 

Main Controller 

' ·- ·- ·- ·- ·- · 

- ·· - ·· - ·· - ··- ·· - Plant nl 
Sub unrt n 

Figure 4.1 0: Basic Distributed control system 
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For the prosthetic hand control system, each sub-system (which is the slave 

microcontroller) i programmed to always listen to the commands given by the main 

micro ontro ller. A command is executed when a match id with valid format found in 

th command code. The topology ofthe implemented distributed control is shown in the 

Figure 4.11. 

[_ Additional Feedback Main Controller Commands through 
(Tactile Sensor) Usart Communication 

('Mred/ Bluetooth Wireles) 

[ _j _ 

J. __,l l l J. 
Lrttle finger Controller Ring finger Controller Middle finger Controller Index finger Controller Thumb finger Controller 

ID="a" ID="b" ID="c" ID="d" ID="e" 
(Segments 1,2,3) (Segments 1,2,3) (Segments 1 ,2,3) (Segments 1 ,2.3) (Segments 1 ,2,3,4) 

Figure 4.11: The Distributed control for the prosthetic hand 

The use ofthis control topology is very helpful in making the overall system to be more 

sy tematic and integrate-able to the other system such as BCI unit. 
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.4 on lu ion 

he de ign fa practical FL for the UM-Prosthetic hand has been presented. Typical 

PD type of Fuzzy Logic i designed to simultaneously handle three to four identical 

ac tuato rs. onstruction of the PD type FLC to control position/angle of a segment is 

de crib d. This involves identification of membership function, fuzzification, rules 

e aluation and rules aggregation and finally defuzzification. This hand control system is 

also de igned to ha e some intelligent to the hand, like the capability to wrap around an 

obj ct. orne additional safety factor like emergency stop is also included. 

To reduce complexity, overall control is divided into three layers; BCI, Master, and 

Ia e. t th sla e layer, a similar FLC is let to run on five identical microcontrollers to 

control all the fingers and the thumb. These microcontrollers are coordinated by Master 

microcontroller, which is located one level higher. This integration not only reduces 

comple ity but it is also more manageable and easy to be integrated to with the BCI. 
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Chapt e r 5 

IMPLEMENTATION 

5.0 Introduction 

Here the implementation of hardware and software for the prosthetic hand t 
11 

. con ro er 1s 

discu sed. In this part the theoretical aspects that have been discussed e 1. . 
ar ter ts 

translated into a practical form. 

5.1 The controller hardware system 

A controller board is developed to realize the Distributed Fuzzy Logic Control system. 

Figure 5.1 depicts the controller board. It is composed ofthe following components: 

Master microcontroller (PIC18F8720) 

2 Ia ve microcontrollers (PIC 18F4431) 

3 RS232 communication 

4 DC motor drivers 

5 Data acquisition 

PIC rnicrocontrollers from Microchip Semiconductor Inc. are used as processor units. A 

PI 18F8720 is used as a master rnicrocontroller and four PIC18F4431 as slave 

microcontro llers. The first PIC offers high memory space suitable for high memory 

demanding applications. It has also embedded in the chip with two "Universal Serial 

Asynchronous Rece iver Transmitter" (USART) modules. These features make it most 

suit d for monitoring and coordinating. 

For th slave microcontroller, the chip has specially designed with modules that can 

handle motion control. It is embedded with most of the control components like Pulse 

Width Mo ulator ( 'PWM" for power control), Analog to digital converter ("ADC" to 

conv rt ana log into dig ital signal), Universal Serial Asynchronous 
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Rece i er Transmitter (''USART" as serial communication), d Q an uadrature Encoder 

Interface(' QEI" to encode signa l). This integration in the form ofmodul · . es mto a smgle 

chip greatly improves execution time, consumes low power and takes up s ll rna space. 

Master 
M icrocomroller 

The Slave 
Microcontrollers 

Figure 5.1 : The Controller board prototype 

Feedbacks (Positions 
& Pressures) 

H-Bridge motor 
Drivers 

To actuators (Control 
action) 

Communication between master and slaves is established through USART interface 

w ith RS232 protocol. H-bridge switches with PWM power control are used to drive the 

actuators. The whole circuit ofthis arrangement is shown in appendix-1A. 

5.2 The Master microcontroller (PIC18F8720) 

The role of the master microcontroller is to be a front-end microcomputer that allows 

BCI-FLC communication. It coordinates and monitors the distributed fuzzy logic 

controllers. When executing a task, the master distributes set points to all slaves. 

ontrol is then accomplished locally by every slave units. 

The built in u ART modules are used to link the 'upper' to the 'low' level part of the 

di tributed control structure (which is discussed in chapter 4). These USART modules 

are operated in Asynchronous mode under RS232 protocol. For the 'upper level' PC­

Master the configuration is (Baud Rate = 115200, Data Bits = 8, Parity = No Parity, 

top Bits = I) . For the 'low level' Master-Slaves, the configuration is (Baud Rate = 

9600 Data Bit = , Parity = No Parity, Stop Bits = 1). These parameters are set by 
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adju ting th internal registers of the microcontroller. F th b or e aud rate setting, its 

r gi ter mod ificat ion has to follow certa in conditions because it depend . s on oscillator 

frequency and microcontroller internal logic circuitries. This is discussed · d t .1 . . m e at mstde 

th mi rocontro ller data manual. 

5.3 T he Slave microcontroller (PIC18F4431) 

Thi . t an embedded microcontroller designed for motion control. It has most of the 

motor contro l e lements that are embedded as built in modules. In this application the 

followirtg build irt modu les are used: 

I PWM signal generator. 

2 USART commu nication module. 

3 ADC module. 

4 Motion Feedback module (Quadrature Encoder Interface_ QEI) 

The operating mode and its configuration for every module listed above are discussed in 

deta il in the followirtg sub-topics. 

5.3.1 PWM signal generator 

Pu l e width modulation PWM is a method of controllirtg power by adjustirtg PWM duty 

cycle. There are 4 PWM channels avai lable in this PIC. Here, letter 'x ' is used to 

de ignate PWM channel. Referring to the PIC datasheet, the duty cycle is adjusted by 

changirtg 10-Bit duty cycle registers represented by CCPRxL:CCPxCON<5:4>. 

A proper relationship between the regis ters and the effective PWM duty cycle output is 

determined by: 

PWM _Duty_ cycle= CCPRxL:CCPxCON<5 :4>*Tosc* [TMR2 _prescale _value]) 

Wher the To c i I/( oscillator frequency), and the TMR2_yrescale_value ts a constant 

pre- al lu et in TMR2 pre-scale register. 

Her PWM freq uency j set to 22 kHz. This freq uency is set beyond the human audible 
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range. hi fast switching frequency is necessary for smooth PWM output. 

The PWM frequency i calculated as follo ws: 

PWM_:freq = 1 I PWM_Period, 

PWM_Period = [(PR2) + I]*4*Tosc*(TMR2__prescale_value). 

5.3.2 USART communication module (PIC18f4431) 

Implementation 

This module is quite similar to the Master USART module. Its configuration is set to be 

the same as the second module of Master 's USART configuration (Baud Rate == 9
600 

' 
Data Bits = 8, Parity= No Parity, Stop Bits = 1). All slaves ' TX and RX pins are linked 

to formed one TX and one RX line. This two nodes TX and RX is connected to the 

master's RX and TX line respectively. This connection is clearly shown in figure S.J. 

This configuration requires all the slaves' TX Jines to be set to high impedance if not in 

use, and at any moment only one TX line is allowed to be active to prevent data 

collision. 

5.3.3 ADC module 

The build in ADC module is a high speed 200Ksps 1 O-bit resolution. It offers 
9 

channels with simultaneous two samplings and auto conversion capability. The ADC 

has nine registers for configuration, control, and result buffer. 

The registers are as fo llows: 

Registers Address Location 
• ND Result High Register (ADRESH) FC4h 

• ND Result low Register (ADRESL) FCJh 

• NO Control Register 0 (ADCONO) FC2h 

• NO Control Regis ter 1 (ADCON1) FC ih 

• NO Control Regis ter 2 (AOCON2) FCOh 

• ND Control Register 3 (AOCON3) F9Ah 

• NO Channel Select Register (ADCHS) F99h 

• Analog 110 Select Register 0 (ANSELO) FB8h 

• Analog 110 Select Register 1 (ANSEL1) FB9h 

Table 5. 1: Registers and the address associated with the ADC module 
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Implementation 

Th frr t three to four ADC channels are used for position feedbacks and the re · · mammg 

chann I for tactile sensing. 

5.3.4 Motion Feedback module (Quadrature Encoder Interface _ QEI) 

Thi module is part of control component for forth DOF thumb's position control. 

Position feed back on this segment is obtained from encoder that is located at one end of 

the motor shaft. This encoder produces two square wave signals. The QEI module in 

the PIC microcontroller converts the two signals into a value representing position of 

the motor shaft. An example of the two square wave signals QEA and QEB is shown 

below: 

Cha nnel A 

Channel B 

Rotation 

Figure 5.2: Signals from Encoder 

This combination of continuous square wave signals contains information about speed 

and position of the motor shaft. The PIC I 8F4431 has the capability of monitoring this 

sequence. The internal QEI logic detects the leading edge of the QEA and the QEB 

phase generates a count pulse and updates the position counter. The counter acts as an 

integrator for tracking distance traveled. 
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hapter-5 
Implementation 

5.4 ommunication 

he communication system is a vita l element for a distributed control system. Here the 

RS232 protocol is applied on the embedded USART module. The RS232 protocol is a 

commonly used communication method for microcontroller-computer interface. This 

protocol is easy to use, and most microcontrollers nowadays support this type of 

communication. The connections of RS232 protocol designed to support the distributed 

control of the prosthetic hand is shown below. 

r-:1[ (From higher level to 
Brain Computer IE - lower level) 
Interface 'BCI' ID='a' --· Tx- Rx 

- Rx- Tx 
Prosthetic hand lRx / Tx 
controller 

I 
I 

" -----_t-~ ---- ----------------------I---------~ To other BCr 
devices 

Level Converter 
(MAX232) 

I 
I 

I 
I 
I I _l rL-Master I 
I 

Master Txl --X rx ~ Tx2 Slave I 

ID ='m' ' t-----1 
ID='e ' ~-· Rx2 Rxl If- '-T~ Rx 

L J ! ~ 
Main microcontroller I 

I 
I laves I 

----jl----Jl------------ - ___ Jl _____________ ---Jl---~---------J[-~-----

n Tx 1 Rx r Tx J Rx n Tx 1 Rx Tx j Rx J 
Slave Slave Slave Slave 

ID='a' ID='b' ID='c' ID='d' 

Slave microcontrollers 

F . 53· Communication ofthe prosthetic hand controller 1gure .. 

L 1 MAX232 IS. used in this communication system to provide a proper eve converter 

1 1 1 fc · ocontroller-computer communication. The level converter is not vo tage eve or m1cr 

fc 1 Communication since the microcontrollers are placed close to each u ed or master-s ave 

other. 
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5.5 D motor driver 

H-bridge switche are used to drive the actuators with PWM power control. The 

integrated H-Bridge switch from National semiconductor LMDJ 8200 is selected. This 

chip was built using multi technology processes that combine bipolar and CMOS 

contro l circuitry with DMOS power devices on the same monolithic structure [42]. This 

compact H-bridge switch eliminates the need of conventional method by connecting 

four s parate switches to perform a similar function. The use of this chip is not only 

reduces space and power consumption of the controller board, but also offers better 

switching characteristic at higher efficiency. 

E ery DC motor is equipped with an H-Bridge switch. There are 16 actuators for the 

prosthetic hand and hence 16 drivers in total are used. The drivers are lumped into five 

groups with three to four units each. A group is connected to a slave microcontroller. 

The rnicrocontroller provides Directions and PWM signals to the switches. The 

connection of the H-bridges to a microcontroller and to DC motors is shown below. 

LMD IS: OO 

P\'CCB 

~ 
CoM ct to DC motors Connect to Microcontroller 

F
. 54· Connections ofH-bridge switches for actuators of a finger tgure . . 

Detail interconnections of the H-bridge switch is clearly shown on AppendixlA 
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1 mp lementation 

5.6 irmware and computer interface 

5.6.1 The Firmware 

Firmware i developed using MPLAB IDE that is provided for free by the PIC 

mi rochip manufacturer. Basic and PIC microprocessor Assembly languages are used in 

de eloping the firmware. The codes written are translated into machine codes with the 

aid of the PICBASIC PRO Assembler. The machine codes are then burned into the flash 

program memory of the PIC microcontroller. The simplified block diagrams of 

firmware algorithms for the master and slaves microcontrollers are shown on Figure 5.5 

and Figure 5.6. 

(X-<1,1,2.3) 
t A: .. d AOC(w) and Nomdr• fl• 

vlllu. •s PstQ. 
2.c.t Sf*) tan cW.ul regls(M or 

~--...,-+i ...,.~h~ 
3. c.t the muimum ~,.,. • ....-.t 

·r•(ll:>" WMf ~te th• Qltr.-.: lml 
••r.crnu{lr)• 

No 

· 5 s· Firmware algorithm in a Slave microcontroller F1gure . · 
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Reset all slaves 

y 

Wo 't for command/ l 
Interrupt J 

1 ter's main program 

Command "' Send set 
points to slaves 

Dedicates set points to 
al slaves with proper ID 

Through Tx line of 
USRT1 

( Interrupt ) 

Command • access or 
modify memory 

Implementation 

Resolve the cause of 
interrupt 

(Use for ca libralionltesting/ Emergency slop/ Reset 
FLC configuration) 

Response to the 
command through Tx I 

Rx line of USRT1/ 
USART2 (depends to 

the command) 

I Stop all 
ACTUATORS/ 

Reset an slaves 
(depends to the 

command) 

Master's Interrupt & commands routine 

F igure 5.6: Firmware algorithm in Master microcontroller 

5.6.2 ormalization in the 8-bit microcontroller 

m ntioned in 4.2.4, the purpose ofNormalization is to have a standard input for the 

FL Here implimentation of the Normalization on 8-bit rnicrocontroller is discussed. 

In an -bit mi ro ontroller memory size per location is 8-bit wide. This 8-bit wide can 

co er up to (2 = 256) po ibilities or in other word it can represent integers from 0 to 

255. In the arne , ay if we combine two 8-bit to become 16-bit it can cover up to (2'6 = 

655 po ible locations. A higher bit is used for a higher number or higher resolution. 

nder -bit memory a high r bit representation is possible by combining two or more 

unit f th -bit m mory. 
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r-5 Implementation 

In th L y tern, Normalization receives input from 10-bit wide ADC r · t Th" egis er. 1s 

I O-bit gi e u up to (2 10 = 1024) to represent input data. Referring to Figure 5. 7, the 1 0_ 

bit data r presentation of the ADC is app lied on X axis. This figure is used to assist 

e planation on how Norma lization is accomplished on 8-bit microcontroller. 

Norma liza tion is constructed using a linear function and congruence of triangles as 

shown on the figure below. 

y Y(X)=( YMa•No., -Y,.1inNom Jx(X-X ) 
X Ma.tlimfl - X MinUmif MinLimlt + Y MlnUmit 

ormalization value t / .· ,/ 

Y Mm • .._ (EEPROM 
LocS004Ah) 

(Potentiometer) 
(ADC result) 

I I / 

------:--------- ~ - - - - - 1023 
I / 1 ~ 
! / . ! Yn(X); Normalized value 

• • e • • •,• • • • • • • "' I fr . . ~ om mput 'X' 
: ./: I 

: / / . 
\~ JL" X 

5 Volt 

I 023oec 

Figure 5.7: Normalization of feedback 

Rotation of a finger segment is limited to a certain angle similar to the human hand. 

Hence, we have minimum and maximum values that are allowed for the ADC which are 

XMaxLimit and XMinLimit· On FLC side, we have a range of numbers acceptable as its input. 

The range is remarked as Y MaxNom and Y Min om· The reason why only the values within 

thi range are permitted is that to prevent error on the FLC system. These values 

X X 
y om. and Y MinNom are stored in EEPROM ofthe microcontroller. 

MaxLimit MinLimit, Ma 

On the Figure 5. 7, the "tick dark dashed line" labeled as Yn(X) is a Normalization 

function. This function is shown below; 

~(X)= ,::~~~-;~~mit )+ ~finLimir ..... . . ;XMinLimir ~X~ XMa.tLimir (the linear function) 

{

Y. .. ............ ........ ... ;X~ XMinLimit 

Y. .... ......... ....... .... .. ;X ~ XMaxLimit 
Ma.rNom ·•·•·••·•·• 

Where· Ill = ~f,.rNom - ~tinNom 
X Ma:cLimtt - XMinLimir 
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l mplementation 

5. . he computer interface 

A Wind .,: b computer interface was developed for easy customization of the 

pr th ti hand ontro ll r and also for validating the Distributed Fuzzy Logic Control 

alg rithm 

The program was written and compiled using Visual basic. This program uses a RS232 

dynamic link library to access computer serial port for communication to the Prosthetic 

hand rna ter microcontroller. The interface window is shown on Figure 5.8. 

Transmitted!Received Data 
<ld>, <command>, <Locuion>, <Length>, <Data .. . > 

--~ r u-Coritole< A• s ....... ., 

(ZOO T<{m<) I' 
--- En!M 

Gt-"P ~ Pp I KD Open I G ~9 I I 
. -fl .. ~ I I 

A£ jAJSICI> AIRII> 14<>•1 T FP I 
~ 

~ LdPoi-ls/ 1 

1 I 
LoadMfsl Defd.Valj 

F=vM....t>e<stlo 

Mr..:! rrorororo 
JO IO IO IO MFO<ll -, ,-,---,,, /' 

(010101010 
JO JO IO IO 

L_ [L_JO fO JO 
1 fo Jo 10 Jo 
Flch 1 Rd rd I ~ -~~/, 

1'\1./M - I 
Oty ({;;T M .. fjiiO 

Froq f{nT 
..:..LC:==::::=::..u ' 

St.tw ~ ComA 31t5200.n.8.t 
Ccm8 ;j !lGOO.n8.1 False 

J 

F
. e 5 8· The Windows front-end microcomputer interface 1gur .. 

mmand u ed to control the prosthetic hand controller are listed in Appendix-2A. 

Any d v
1
·ce that has RS232 communication can use the commands. This 

mputer or e 
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y tm1 

y tern. 

Implementat ion 

t int rfi ing us ing serial R 232 protocol is implemented to ensure that the FLC 

11 ra J enough to interface to any computer or devices that may run the BCI 
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Chapte r 6 

RESULTS & DISCUSIONS 

6.0 Introduction 

Tests were conducted to validate the control system for the prosthetic hand. 

The tests are as folloW'S: 

I. The prosthetic hand controller with the BCI 

2. Finger responses under different set points. 

3. Finger response under different load. 

4. Finger Trajectory 

5. Finger-Object interaction 

The first test shoW'S the overall integration of the hand and the BCI. Using a PC as the 

Brain omputer Interface platform, the Prosthetic hand is controlled through the RS232 

communication line. Five hand tasks were performed. The second test examines the 

FL in positioning segments of a finger. In the third experiment, the system was tested 

again to see how it responses under different load conditions. The finger trajectory was 

tested in experiment number four. In the last experiment, wruch is to test Finger-Object 

interaction a finger was allowed to move with its segments sequentially to wrap around 

an object. A11 of the tests are discussed in the following sub-topics below. 
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Results & Discussions 

6.1 T st of complete system (Integration of prosthetic hand controller with the 

The complete system, (consisting of a BCI processmg unit, the prosthetic hand 

controller and the multi-fingered prosthetic hand) was tested to perform the five desired 

hand tasks. The tasks are grasping, pulp-to-pulp pinch, tripod-pinch, key-pinch and reset 

position. For every hand task execution it involves simultaneous positioning control 

over the whole fingers segments. Motion of every segment is limited either by its 

individual fmal set point or by the pressure limit sensed at the fingertips. In this 

experiment the control components hardware and software (which include the RS232 

communication, FLC, the system handler, and the distributed control) were tested. 

Photos of the hand perform the tasks are shown below. 

Tasks-:) 

Set points 
(a I,U,a ,a4} 
(bl,b2,b3,b4} 
(cl,c2,c3 c4) 
(dl,d2,d3,d4} 
(cl,c:2,c3,o4) 

100, 100, 100, -
100, 100, 100, -
100, 100, 100, -
100, 100, 100, -
100, IOO, 100, I 

400, 400, 400, -
400, 400, 400, -
400, 400, 400, -
400, 400, 400, -
270, 3I8, 0, 50 

100, 100, 100, ­
I 00, I 00, 100, -
160, 160,370, -
160, 160, 320, -
50, 117, 3 1, I 45 

100, IOO, 100, ­
I OO, 100, 100, -
100, 145, 100, -
160, I 20, 340, -
60, 159, 31, 115 

400, 447, 512, -
447, 485 458 -
450, 493: 530: -
252, 441,3 10, -
152, 297, 130, 50 

L. . w., 1 c:nt angles for the manipulator to move:, if there is an obstac.le and the pressure exceed a certain thresh ld 
tsted are the maxunum p a cern value sensed at fingertips the rmger wiU stop o 

Figure 6.1: The five hand tasks 

This results show that the hand controJler capable to communicate with the BCI 

system and performs the designated hand tasks. 
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Results & Discussions 

6.2 under different set points 

t d to see how the FLC perform. Set points were sent from a computer 

using s rial communication port through the master microcontroller. In this case only 

one microcontroJier was active. The finger motion is recorded by continuously taking 

displacement angles on each joint. Graph that shows the segments responses is plotted 

as shown below. 

SOT~ 

10 

f.' ! 
10 r 

I 
0 

r--

1 
I I 
J J 

10 

!CO 200 JllO 400 500 eoo 100 BOO 90) 11f0 
·1 0 

Unl*'lt 

Figure 6.2: Segments responses 

In this experiment the fuzzy logic controller was tested to simultaneously move the 

finger segments from one position to another position. The segments were able to move 

close to the specified set point as shown on the graph. 
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hnpter-6 
Results & Discussions 

6.3 Re ponses of a finger under different loads 

To show the capability of the finger to operate under different loads the c. u · 
1.0 owmg test 

has been conducted. A finger was Jet to run repeatedly under same set points but under 

different loads (from 0 to 400g). The responses for position were recorded. 

00.9~ 
Time response under Different loads 

'-- 90.00 

80.00 

70.00 .. 
!! ~0.00 
~ 
e. 50.00 c: 
0 
;: 

0.00 ;; 
0 a. 

7 ' I p(3Q0g) 

+----;;.;'-----------+: ----1 - p(400g) 
I 

+-------------------------- . -----
1-+------------' _c:.;_·~:....-·:--- ~----J p(1 OOg) 

I 

/ I +-------;;:~c....._----+-------J - p(200g) 
"// : 

1----30.001--+-----,..,-:..._----------'!-, ________ _j 
I 

20.00 /p' : 
J--1 o.oo-r ·::__-------------i1~--------J 

" n n I ~toady state=3s l 
-1 0 1 2 3 4 5 

Time (second) 

Figure 6.3: Finger responses under different loads (0-400g) 

The responses of position are consistent although the load was changed. The maximum 

applied load was limited by the maximum motor torque allowed by the motor. This load 

variation test indicates that a load change on finger segments does not much affect its 

motion response and trajectory. The main factor that supports this stabiJjty is the 

capability of the motor driver to supply high current and also due to high torque 

handling capability possessed by the actuators. Load variation in the prosthetic hand 

system is mainly caused by inconsistent friction that is due to surface contact between 

the segment plates and also friction and elastic behavior of the harness cables. Time 

taken to reach the set point is about 3 second; this time is acceptable for a hand motion. 
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Results & Discussions 

6.4 inger trajectory 

he advantage of electric controlJed prosthetic :fingers is its flexibility to give trajectory 

su itable for hand motion. Here Gou 's standard trajectory is used as a comparison 

model. The fuzzy logic controller was programmed to follow the trajectory similar to 

that ofGou trajectory model [1]. The test was conducted on the middle :finger. Result of 

this experiment is shown below. 

Tajectory comparison 

f 
100 

l 
! --- -~ ~ 

I . -."'.... 
f . . 

.!! 

i 
/ 

i 
I I 

' J i 
l 

-20 0 20 40 60 80 100 

x-ex ls 

Figure 6.4: Trajectory ofthe middle :finger compared to the Gou's trajectory model 

The trajectory obtained from the prosthetic :finger is close to the Gou 's trajectory model. 
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Results & Discussions 

6.5 inger-Object interaction 

Here the same procedure as the second experiment was applied, however the set points 

were set to maximum An object is placed in the path of the segments. 

Figure 6.5: Finger segments with obstacle 

As shown in the pictures, the segment stops moving when it encounters an object. The 

other segments move to wrap round the object. 
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C h apt e r 7 

CONCLUSIONS 

1. A FL with distributed monitoring system was developed for a BCI system 

to control a prostl1etic hand. The finger movements are programmed to 

fo llow given set points and stopped whenever an obstacle is encountered and 

the pressure of the tactile sensor exceeds a specified limit. This allows the 

fmgers and thumb to wrap round an object without crushing it. 

2. The control system consists ofthe following components: 

Five unit slave microcontrollers programmed with fuzzy logic to control 

the four fingers and the thumb. 

One unit master microcontroller to coordinate all the slave 

microcontrollers and to interface to the BCI. The master microcontroller 

acts as the front end to the BCI system. 

Sixteen H-bridge motor drivers to drive DC motors using PWM power 

control method. 

3. The following tests were carried out to validate the control system for the 

prosthetic hand. 

They are: 

The prosthetic hand controller with the BCI 

Finger response under different set points 

Finger response under different loads 

Finger trajectory 

64 



4. 

Conclus ions 

Th prosthetic hand control board was implemented using the embedded 

micro ontrollers. This method requires small spaces and also c onsumes 

re lative ly low power since much of electronic compo t nen s are properly 

connected and integrated in compact chips. 

5. The use of distributed control method over the FLC microcontrollers for the 

prosthetic hand has enabled easy integration ofthe microcontrollers to other 

component such as the BCI system. 

uggestion for future research 

1. Thi hand controller can be extended to control wrist in the future by just adding 

another unit of similar slave microcontroller to the control network. 

2. The slave microcontrollers and the DC motor drivers should be rearranged to an 

optimum position such way feedbacks and motor driver signal possess least 

effect of interference. Besides, all the signal lines must be properly protected 

from external noise. 

3. e lf ca libration is possible by integrating more sensors together with minor 

modification to the firmware. This self calibration is necessary to reduce errors 

and make the system more reliable. 

4. Implementation of smaller unit control hardware is possible by using smaller 

Of microcontrollers and H-bridge switches. However, this packages 

implementation requires special and relatively expensive tools. 
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PP DI -IB: Picture of the controller board and the hand 

The prototype of the FLC controller board (consisting of slaves and master 
microcontrollers, and DC motor drivers) 
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p -2 M D 

2. I OJ M lOR (T rminal-> Master->Sia esJ Sla es) 
RAM, EEPROM, and registers on Master and lave controller are accessible and can be modified. It is 
u eful m mmtmtzing controller code size since similar commands are used to modify system memory. 
Modtfymg m mory locations\! ould rencct variable alues. 

Most tmportant ariable like PWM frequency, Set points, and Fuzzy membership functions are fixed to 
be at certain locations. And to access or modify variables, a similar command is used but with different 
memory location. This implementation reduces determination loops and impro es speed. 

>>H < Jd><Command><Start><Address><size><Termination> 
ld = { 'a', 'b ', ' ', 'd', 'e ·. 'm '} 

tart .. {' '} 
ommand = { 'U'-ReadEE; 'V'-WriteEE; 'w'-write nash memory; 'r'-read nash memory} 
ddress = 2bytes memory location Higher byte and lower byte in hex format 
tze = number of bytes to be read or write {1, 2, 3 ... 14} 

Termination = { 'e '} 

3. B P M TER {Terminal-> Master->Siaves/ Slaves) 
This command bypasses the master controller that enables direct communication from the upper 
controller (controller before master) terminal with slave controllers. Every slave controller is directly 
accessible as its commands through master controller by using 

>>HC< 'ID '>< lave Command> 

4. PREPROGRAMMED MOTIO S (Terminal -> Master->Slaves) 
There are fi e preprogrammed commands use to perform tasks; key-pinch, tripod-pinch, pulp-to-pulp, 
hand open and grasp. 

>>HP<Command><Termination> 
Command = {"GB", "PP", "TP ", "KP", "WO"} 
Termination = { 'Z'} 

Master controller will read set points stored at EEPROM for the particular task. 

5. T P R , RE ET (Terminal -> Master->Siaves) 

Stop actuator(s) by setting PWM alue(s) to be equal to zero. 
>>HCOF II stop all 
>>HC<Id> F //stop only id 

e current PWM alue(s) 
>>HCO II on/run all 

Re I 

>>H <Id> 

>>H RT 
» HCRE 
>>HC<Id> R 

1/o run only id 

II Re et master then r t all sla es 
II Reset all Ia only 
II Reset id only 

Id { 'a ', 'b ', 'c', 'd',' '} 
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n bl lnl gra l lion 
t PROM Joe $90 I (0, 144) o.c < ___ > ~ = I enable, =0 disable 

Th1 ' uld chang lue of ariable "lOg" after r set/reboot the microcontroller unit. 

n bl tactll n or a motion limiter 
et EEPROM Joe $76 I (0, II ) 0cc < , > ~ = I enable =0 disable 

Interna l nable ould only change after rese reboot the microcontroller unit 

Important variable 

Fl h M mory(SL E ) 
arne, Typ ize, Base Location 
P \ ord [5] SOI6E 'Current Set Points (I" .. , 2"d .. , 3rd Set Points) 

Er word [5) $0180 ' urrent Errors (I " .. , 2"d .. , 3rd Segments) 
DEr -. ord [5) $018A 'Current Error Rates (1" .. , 2"d .. , 3rd Error Rates) 

EEPROM (SLAVES) 
Error memb rship functions 'MF' (Listed are the trapezoidal point of the MF) 

MF I in I $0000 - t<r $0007 
MF2in I SOOO - t<r SOOOF 
MF3inl $0010-t<r$0019 
MF4in I $0018 - t<r $00 IF 
MF5in I $0020 - t<r $0029 

Del Error membership functions 
MF I in2 $0028 - t<r $002F 
MF2in2 $0030 - t<r $0037 
MF3in2 $0038 - t<r $003F 

EEPROM (MASTER) 

Preprogrammed Set Points (8 bytes for each finger- I", 2"d, 3rd, 4lh segment) 

Final Posi tion Memon Location 

Finger 
Grasp "GB" P-Pulp "PP" Tripod "TP'' Key-Pinch 

"KP" 
a so $28 $50 $78 
b $8 $30 S58 $80 
c $10 $38 $60 $88 

d $18 $40 $68 $90 

e $20 $48 $70 $98 

ommands 

Rest/Open 
"'WO" 
SAO 
$A8 
$80 
$B8 
$CO 
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pp Dl tuat r 

4 

5 No load sp pd 
6 No load c n ent (with sha ft o 1,5 mm) 
7 Std ll torquP 
8 f riction rorque 

SpPed constant 
10 8• ·EM F constant 
11 Torque comtant 
12 Cu rr~nt constAn t 

13 Slop" of n-M cu"'" 
14 Rotor inductance 
15 Mech.lnical timP constant 
16 Roror In ..rna 
17 Angul r cti!IN ation 

18 Thermal resi stance 
19 Th~rmal timr constant 
20 Op prating uo mpera ru re rangP: 

- moror 
- rotor, ma•. pormissibiP 

21 Shaft bParings 
22 Shaft load max.: 

-with shaft diaml!ter 
- radial at 3000 rpm (3 mm fr om bearing) 
- a.ial at 3000 rpm 
- uial at standstill 

23 Shaft play: 

hnical da ta (D motor, and 

p,.., 
'l '"• 
no 
lo 
Mw 
M-. 
k, 
k .. 
ko 

AriAM 
l 
-r ., 
J 
o .,.._ 

Rth 1 I Rt•l 
't'wl /T.wl 

6/25 
5/ 190 

-30 ... + 85 (optional -55 ... • 125) 
•1 25 

1 

sint erl!d bronze sleeves 

1.5 
1,2 
0,2 

120 

ommands 

ear h ad E ncoder) 

~~ FAULHABER 

For combination with 
Gl!arhoads: 
14/1, 1513, 1515 
nco der1: 

IE2 

'' · 6 12 
2,83 13,7 
3, 11 2,57 
81 80 

10 600 9 900 
0,0220 0,0105 
11,20 9,90 
0,12 0, 12 

1 790 835 
0,56 1,20 
5,35 11,4 
0,187 0,087 

946 1 000 
70 310 
7 7 
0,71 0,67 
160 150 

24 Vol t 
549 Sl 
2,66 w 
80 % 

10400 rpm 
0,0055 A 
9,76 mNm 
0,12 mNm 

439 rpm/V 
2.28 mV/rpm 
21,8 mNm/A 
0,046 AhnN m 

1 070 rpm/mN m 
1 100 I'H 
7 "" 0,63 gem' 
160 · 1 0 l ra~> 

KNI 

•c 
•c 

mm 
N 
N 
N 

- radial s lo.o3 
0,2 

mm 
-a.ial 

24 Housong materia l 
25 Weight 
26 Oirt>ction of rotation 

27 Spee up to 
28 TorquP up to 
29 CurrPnt up to ( ermal limits) 

0 
013 -0,052 

steel, black coated 
19 
d ocl:wlse, vit>wl!d f rom the front fa ce 

06·8.05 0 1,5 :g;883 
A n'lo;g 

j 12 000 
3,2 
0,8 1 

~~--··-~------lin-• 
~ 

1, 1 2. 1 

3 1 2 4,3 :;0, ] 

1331 T -· Sll 
1ll1 E · - SR 
for Gf' rh uds 151 ... 

12 000 
3,2 
0,37 

12 000 
3,2 
0,19 
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Planetary_G 

onput spo<>d for· 
- con t t'tUOUl opentaon 
Sa l•sl\ at rlO-Ioad 
Beam'9s 011 output <haf t 
Shoft to.d. mn 
- rad••l (6,5 mm from moonttng fac ) 
- axtal 
S tt press ftt force. m x 
s.hoft pl.ty (oo> OO.r >q ou1put) 
- rad• I 
- ax•~ l 
Op«a l IJ1 temper tura range 

ificatton5 

reductNln ra tiO 
(nomtnal} 

3,71 1 
14 1 
43 1 
66 1 

134 1 
159 1 
246 1 
4 15 
592 
989 

1 526 '1 
2608 .1 
4365 1 
5 647 .1 

W<!IQhl length 
Without Without 
motor motor 

l2 
9 mm 
17 20,9 
20 25,0 
24 29,2 
24 29,2 
27 33,3 
27 33,3 
27 33,3 
30 .3 7,4 
30 37,4 
30 37.4 
30 37,4 
34 41 ,5 
34 41 ,5 
34 41 ,5 

length with motor 

1319T 1331 T t336 u 
ll l1 l1 

mm mm mm 
34, 1 45,9 50,9 
38,2 50,0 55,0 
42, 4 54,2 59,2 
42,4 54,2 59,2 
46, 5 58,3 63,3 
46,5 58,3 63,3 
46, 5 58,3 63,3 
50,6 62,4 67.4 
50,6 62,4 67,4 
50, 6 62,4 67,4 
50,6 62,4 67,4 
54,7 66,5 71,5 
54,7 66,5 71,5 
54, 7 66,5 71,5 

~~ FAULHABER 

for combination with 
OC-Mtuomotors: 
1319, 1331 , 13J6 

mt>tal 
allst 

S 000 rpm 
~ ,. 

pre loaded ball bear1ng.s 

~ 20 N 
~ 5 N 
~ 5 N 

!i0,02 mm 
;Omm 
- Jo .. .. 100 ·c 

output torq~ 

continuous intermittent d1rection ~ffidency 
opt>ration operation of rotatiool 

M mlllC 
mNm 
200 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 

Mmax. 
mNm 
300 
450 
450 
450 
450 
450 
450 
450 
450 
450 
450 
450 
450 
450 

(reversible) 

% 
90 
80 
70 
70 
60 
60 
60 
55 
55 
55 
55 
50 
so 
50 

-El$ 
O'ltnUtfon \ lh 11..-ct tD moe or 
termuwlcnotd_.f,"H (1336) 

2• 
M1,6 2, 5 d•"' 

9,5 

(1311) 0 ·0,006 
"13 (13 19) "14 o<O, t o6 ~.o1 s o3 ~.o 12 

I 2,8(02 I .. ---------El9 Hi t ·--- ----·--·-·- -- -:;:..1 I ... I V4.----~ --·--

~ ~ 81 ot0,3 

L2 o<O,l 9 ~.3 

L1 .0,5 10 .0,) 

14/1 
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Encoders 
M gn tic Encod rs 

2 
Voo •.s 5,5 

I CVw• SV DQ loo fP. 6, fNX, 12 
l our 5 
p 180 a 45 .. 90 a 45 
trllf 0,1/0,1 
f 20 
J 0,09 

-25 • 85 

40 

ruuores: 
64 to 512 LII'IM ~r r eo.~olutlon 
2 01 nntls 
Olglul output 

80 I 0 

chann.b 
VDC 
mA 
rnA .. 
•e 

~1 
qcm' 
·c 

1'V t • 5 V OC.: Low logo I"" I< 0,5 V, high log le<.~ b 4,5 \f' CMOS an TTL compatible 
"' eloclty (rpm) • I (H!l x &c.'N 

fnw.J r number lin~ per rf'IIOiutlon 

lf2 -64 

lf2 -128 

IE2- 256 

1£2-512 

of<Nnntls 

64 

128 

256 

s 12 

Thtsetncr m«>t I shaft tnc<Jders In combln~tlon with lh FAULHABER 
OC·Mtcromoton and Brushless DC·Servomotol'1 ue used for 
Indication and control of both sh It •.todty •nd dlre-cuon of rotdtlon 
~~" I~ for positioning 

The ~ncodu lsln ttgr t~ In the DC·M icromoton SR·S«Its •nd 
utends the CNtralllength by only 1,4 mm. 8 ul -on option for 
OC·Micromoton and Brushl tss DC· Servomotors 

Output signals I Ora.olt dbgr.am I Connector lnform;aUon 

; I 1 ;~ ~~~,. 
I L Cha~18 

Rot uon 

AdmlrSI I• dftl tton of phase shift . 

In COfnblndUOO wtth: 

DC·MlcrOtnoton series 
1316 ..• c. 
15 16 .. . SR, 1524 ... SR, 
1717 ... SR. 1724 ... SR. 1727 ... C. 
2224 ... SR, 2342 . .. 01. 
2642 ... CR, 2657 ... CR. 
3242 ... CR, 3257 ... CR, 3863 ... C 

Btushless OC·S<r<~On>ot«s son•s 
1628 ... 8 , 2036 ... 8, 2444 ... 8 

Hybrid circuits with sensors •nd a low Inertia magn tic disc pr0<1kte 
t>.vo channels with 90" ph- shift. 

The supply voltage for the encoder and the DC-MI< romotor as well 
as the two channel output slgn•ls are interfaced through a ribbon 
cablt with connKtor. 

Oetaols for the DC· Micromotors and suitable redUCtion gearheads 
are on se~ratt catalogue pagef. 

4 Voo 

5I&- Chan~A/8 150.tl0 

1--- GND 

6, 1 

Pin Functi on 
I ltwtotot- • 
l Mo•.,. • .. 
I GfO 
• v .. 
1<11....,.,8 
' ct.M'WWI ,a. 

• The M•ton Sfrttl 
~- r717 . na ~ .M7, 
»42_.11.57 .rw~ l:NJ tww 
,.,_.... ,_.ot•'~Ot. 

NC~bknt.IGM 

.1 ·190"--p · teo-j~4s• 
OUtput 'lgn;als 
w• h doc rotatiOn s SMn 
from che sh4f1 end 

OUtput circuit 
111 Motor tennln.ll r e~lst nee 

Ina ~'"by ~ppf'Ol!. 0,4 n 

Con ne(t Or 
DIN-41651 
grid 2,54 mm 
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Nominal Voltage 12 Volts DC 
Armature Resistance 13.3 Ohms 

No Load Speed 11300 Rpm (before gear) 
No Load Current 0.015 Amps 

Max. Efficiency 77% 
Max. Power 2.66 w 

Gear head reduction 159:1 

Parameters of the DC motor 

1 (rrm) L (nvn) LJI Theta(deg) rad r(mm) r(m) Fyl(g) Fyi(N) Tm(Nm) Fm(N) 

49.82 76.58 1.54 30.00 0.524 3.00 0.0030 400.00 3.92 0.036 12.06 

Middle finger parameters for minimum torgue estimation 

Potential Meter/Position Sensor 
(Volt - Displacement-angle Relation) 

6 ~------------------------------------------~ 

> y .. -0.0189x + 5 = 1 +----------""~~ ........ ~=-----------1 g ,--....__ ______ ---, 
0 +----.-----r-----.r-----r"oo,i~--r:o---.---i - - - typical 

50 100 150 
- typical +20% 'angle' 

typical -20% 'angle' 

-Linear (actual SBflllle) 
-3 +-----------------------------------L_~----~--~~ 

~ ~---------------------------------------~ 
Displac~m~nt...angl~ (Th~ta) 

Voltage-Angle relation of a potential meter 
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