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ABSTRACT 

 

In the present work, a polymer electrolyte  (PE) system comprises of corn 

starch/chitosan blend biopolymer electrolyte as host and ammonium iodide (NH4I) as 

proton provider is prepared by solution casting technique. Fourier transform infrared 

spectroscopy (FTIR) analysis has proved the interactions between the components. The 

highest room temperature conductivity of (3.04 ± 0.32) × 10-4 S cm-1 is obtained when 

the polymer host is doped with 40 wt.% NH4I. The conductivity is further enhanced to 

(1.28 ± 0.07) × 10-3 S cm-1 with the addition of 30 wt.% glycerol. Transport study has 

proved that the conductivity is influenced by the number density (n) and mobility of 

ions (). The conductivity-temperature analysis of all electrolytes is found to follow the 

Arrhenius rule. Dielectric studies confirm that the electrolytes obey non-Debye 

behavior. The ionic transference number measurement confirms that ion is the dominant 

conducting species. The cation transference number (t+) for the highest conducting 

electrolyte (B3) is found to be 0.40.  Thermogravimetric analysis (TGA) reveals that the 

plasticized electrolyte is stable up to 150°C. The characterization techniques including 

X-Ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and 

differential scanning calorimetry (DSC) have verified the conductivity trend. Linear 

sweep voltammetry (LSV) is carried out prior to fabrication in electrochemical devices. 

B3 electrolyte is electrochemically stable up to 1.90 V and suitable to be applied in 

batteries and EDLCs. Cyclic voltammetry (CV) and galvanostatic charge-discharge 

measurements are carried out for EDLC characterization. The primary proton batteries 

are discharged at different constant currents while the secondary proton battery has been 

charged and discharged at 0.40 mA for 60 cycles. 
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ABSTRAK 

 

Dalam penyelidikan kali ini, satu sistem elektrolit polimer (PE) yang terdiri daripada 

campuran kanji jagung/kitosan elektrolit biopolimer sebagai perumah dan amonium 

iodida (NH4I) sebagai penyumbang proton telah dibangunkan melalui teknik penuangan 

larutan. Analisis spektroskopi inframerah transformasi Fourier (FTIR) telah 

membuktikan interaksi antara komponen-komponen. Kekoduksian tertinggi pada suhu 

bilik adalah (3.04 ± 0.32) × 10-4 S cm-1 apabila perumah polimer itu dicampurkan 

dengan 40% berat amonium iodida. Kekonduksian ini kemudiannya ditingkatkan 

kepada (1.28 ± 0.07) × 10-3 S cm-1 dengan penambahan 30% berat gliserol. Parameter 

pengangkutan telah membuktikan bahawa kekoduksian tersebut dipengaruhi oleh 

kepadatan dan mobility ion. Analisis kekonduksian (suhu) kesemua elektrolit ditemui 

mengikut hukum Arrhenius. Kajian dielektrik membuktikan bahawa semua elektrolit 

mematuhi teori tidak Debye. Pengukuran nombor pemindahan ion membuktikan 

bahawa ion adalah spesis koduksi yang dominan. Nombor pemindahan kation untuk 

elektrolit berkonduksi tertinggi (B3) adalah 0.40. Analisis gravimetri terma (TGA) 

mendedahkan bahawa elektrolit berplastik adalah stabil sehingga 150°C. Teknik-teknik 

pencirian termasuk teknik pembelauan sinar-X (XRD), pengimbas mikroskopi elektron 

(FESEM) dan pengimbas kalometri pembezaan (DSC) telah menyokong susunan 

kekonduksian. Pengimbasan voltametri linear (LSV) telah dijalankan sebelum fabrikasi 

dalam peralatan elektrokimia. Elektrolit B3 adalah stabil sehingga 1.90 V secara 

elektrokimia dan sesuai untuk aplikasi bateri dan EDLC. Kitaran voltametri (CV) dan 

pengukuran cas-nyahcas galvanostat telah dijalankan untuk pencirian EDLC. Bateri-

bateri proton primer telah dicas pada arus malar yang berbeza manakala bateri proton 

sekunder telah dicas dan dinyahcas pada 0.40 mA untuk 60 kitaran.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Research Background 

 

Polymer electrolytes are ionic conductors which formed by salts dissolution in 

suitable polymers (Vincent, 1987). The phenomenon of ionic conductivity in solid state 

was identified by Michael Faraday in 1800s. In chemistry, solid state ionic was viewed 

as very successful solid state physics (Armand, 1994). A polymer chemist from 

Sheffield; Peter V. Wright first showed in 1975 that poly-ethylene oxide (PEO) can act 

as a host for the conduction of sodium and potassium ions, thus producing a solid 

electrical conductor polymer/salt complex (Wright, 1975). Michel Armand who had 

introduced the graphite intercalation compounds for electrodes was then realized that 

lithium/PEO complexes could be employed as solid electrolytes matching with perfect 

intercalation electrodes. This was a breakthrough and the beginning of a new world of 

polymer electrolytes, which encouraged researchers all over the world to work in this 

emerging branch of solid state ionics.  

 

Since then, a large number of new ion conducting polymer electrolytes with 

mobile ions such as hydrogen, H+ (Shukur, Ithnin, & Kadir, 2014); lithium, Li+ (Teoh, 

Ramesh, & Arof, 2012); magnesium, Mg2+ (Jaipal Reddy & Chu, 2002) and sodium, 

Na+ (Bhide & Hariharan, 2007) have been reported and their potential utility in various 

solid state electrochemical devices such as batteries (Ng & Mohamad, 2006; Kadir, 

Majid, & Arof, 2010; Jamaludin & Mohamad, 2010), fuel cells (Urban, Funke, Müller, 

Himmen, & Docter, 2001) , electrochemical double layer capacitor (EDLC) (Shukur, 

Ithnin, Illias, & Kadir, 2013; Arof et al., 2012; Pandey, Kumar, & Hashmi, 2011), dye-

sensitized solar cells (Jayaweera et al., 2015; Yang et al., 2006) and sensors (Vonau et 
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al., 2012) have been demonstrated. In all electrochemical devices, polymer electrolytes 

act as electrode separator and provide fast transportation and electronic insulation of the 

ions between the electrodes (Ravindran, Vickraman, Sankarasubramanian, & 

Sornakumar, 2015).  

 

Recently, a series of explosion of Samsung devices; a world well-known brand, 

has been reported due to batteries, which create stains on the company’s reputation 

(Cheng, Jeong, & Dou, 2016). Polymer industry has issues regarding disposal of wastes 

which contribute towards environmental pollutions (Sakurai et al., 2000). In fact, in 

recent years, people around the world have started to develop materials that will not 

harm the environment, including in polymer industry. Natural polymers from renewable 

agriculture resources have attracted more attentions due to the environmental concern 

including the efforts towards producing the degradable garbage, protection of climate 

through the reduction of CO2 released as well as the possible applications of agricultural 

resources for bioplastics production (Lörcks, 1998). Electrochemical energy production 

has been considered as an alternate energy sources since it is sustainable and 

environmental friendly. Moreover, the miniaturization and portable electronic devices 

such as laptop computers, calculators, cellular phones and digital watches have 

increased the demand for light weight rechargeable batteries (Ravindran et al., 2015).  

 

In this work, polymer electrolyte (PE) based on natural polymers; 

starch/chitosan blend has been studied. Little attention has been paid towards proton-

conducting polymer electrolytes using halides salts. To prepare the salted system, 

ammonium iodide (NH4I) was doped in the most amorphous polymer blend to provide 

the charge carriers, H+. Based on our knowledge, NH4I has never been reported as 

proton provider in the fabrication of proton batteries and EDLC by other researchers. 

Univ
ers

ity
 of

 M
ala

ya



 
3 

The highest conducting electrolyte was then plasticized with glycerol to further enhance 

the conductivity. The highest conducting electrolyte in the plasticized system was 

fabricated in EDLC and proton batteries. Characterizations have been carried out 

thoroughly to understand and correlate the conductivity with other characteristics.  

 

1.2 Objectives of the Thesis 

 

The objectives of this work are as follows: 

1. To prepare proton conducting starch/chitosan based polymer electrolytes from 

natural sources using solution cast technique. 

2. To develop a polymer electrolyte system with improved conductivity by the 

addition of glycerol as plasticizer.  

3. To evaluate the characteristics of the electrolytes using various techniques 

including thermogravimetric analysis (TGA) , differential scanning calorimetry 

(DSC), X-ray diffraction (XRD), field emission scanning electron microscopy 

(FESEM), fourier transform infrared (FTIR) and electrochemical impedance 

spectroscopy (EIS). 

4. To fabricate and to evaluate the performance of proton batteries and EDLC. 

 

1.3 Scope of the Thesis 

 

This thesis is divided into 11 chapters. Chapter 1 describes briefly on the main 

objectives and the scope of this research. Chapter 2 focuses on the literature review, the 

overview of the previous and recent studies in polymer electrolytes and the introduction 

to the materials used in this work. Chapter 3 describes the details of the sample 

preparations  and the techniques of characterizations involved in this work including 
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TGA, DSC, XRD, FTIR,  FESEM and EIS. The methods of fabrication and 

characterizations of EDLC and proton batteries are also discussed in this chapter. 

Chapter 4 discusses the characterization of polymer blend prior to the selection of the 

most amorphous and miscible electrolyte to be doped with salt by using FTIR, XRD, 

TGA, DSC and FESEM. Chapter 5 discusses the FTIR results based on the interactions 

involved between starch, chitosan, NH4I and glycerol. The electrical characteristics of 

the polymer electrolytes are discussed in Chapter 6. All important parameters such as 

impedance studies, high temperature conductivity, transference number and transport 

parameters are discussed in this chapter. Further electrical studies including dielectric 

constant, dielectric loss, electrical modulus and conduction mechanism are also 

discussed in this chapter. TGA and DSC results are presented in this chapter to support 

the conductivity trends in term of thermal stability of the electrolytes. XRD and FESEM 

results are presented and discussed in Chapter 7. The highest conducting polymer 

electrolyte is fabricated in electrochemical devices and the results are presented in 

Chapter 8. In Chapter 9, all results presented in the thesis are summarized and discussed 

shortly for better understanding. Chapter 10 concludes the thesis and some suggestions 

for future work. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

 

An electrolyte is a substance that contains positively charged species (cation) 

and negatively charged species (anion) and acts as a medium for transferring the charges 

between a pair of electrodes (Subramaniam, Morris, Yee, & Chiam-Wen, 2012). These 

electrolytes are basically polymers containing salts, acids, plasticizer composite fillers 

and/ or ionic liquids which can provide ions in a system or device. A good electrolyte 

should satisfy few requirements including high ionic conductivity, compatibility with 

electrode material and wide electrochemical stability (Bhargav, Mohan, Sharma, & Rao, 

2009). Ionic conductors or electrolytes are one of the crucial key components in 

electrochemical devices since ionic conduction has strong influence on a device 

performance (Hofmann, Schulz, & Hanemann, 2013; Rao, Geng, Liao, Hu, & Li, 2012).  

 

Liquid electrolyte has been studied as a substance that conducts the electricity in 

an aqueous solution by migrating both cations and anions to the opposite electrodes 

(Subramaniam et al., 2012). Liquid electrolytes are preferable due to their high ionic 

conductivity (Deepa et al., 2002; Perera & Dissanayake, 2006). However, 

electrochemical devices that employs liquid electrolyte are exposed to weaknesses such 

as leakage, corrosion, solvent evaporation and hazardous to the environment (Chen, Lee, 

Vittal, & Ho, 2010; Freitas, Gonçalves, De Paoli, Durrant, & Nogueira, 2008). Many 

researchers have been searching for alternatives to replace liquid electrolytes such as 

inorganic or organic hole conductors (Kroeze et al., 2006), ionic liquids (Yamanaka et 

al., 2007) and polymer electrolyte or PE (Winie, Ramesh, & Arof, 2009). PEs have 

received wide attention for their thermal stability, the absence of corrosive solvent and 
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harmful gas, ease of fabrication, low volatility and easy to be handled (Gao & Lian, 

2010; Winie et al., 2009). 

 

2.2 Polymer Electrolytes (PE) 

 

Polymer electrolyte (PE) is generally known as a membrane that possesses 

transport properties which can undergo two stages; dry solid-state polymer and gel/ 

plasticized polymer electrolyte (Stephan, 2006). PE is expected to replace the 

conventional liquid in the future due to its shape versatility, dimensional stability, easy 

to produce, film flexibility, electrochemical stability, safe in handling and life-long (Wu 

& Chang, 2007). Interactions of metal ions with polar polymers are mainly due to 

electrostatic forces and the formation of coordinating bonds (Rivas, Pereira, & Moreno-

Villoslada, 2003). Polymer electrolytes have shown tremendous potential in the 

development of various kinds of electrochemical devices in the last 25-30 years. They 

possess high ionic conductivity which exceeds 10-5 S cm-1 with solid free-standing films, 

which is comparable to the conductivity of liquid electrolytes (Przyłuski & Wieczorek, 

1991). These qualities establish PE as a potential candidate to be used in larger scale of 

electrochemical applications (Sudhakar & Selvakumar, 2012).  

 

Proton conducting polymer electrolytes obtained by polar polymer-salt 

complexation have received considerable attention and have been extensively 

investigated for advanced electrochemical applications such as high energy density 

batteries, sensors and fuel cells (Colomban, 1992; MacCallum & Vincent, 1989). Other 

than Li+ ion, combining ammonium salts with polymers is believed can produce good 

proton (H+) ion conducting polymer electrolytes (Hashmi, Kumar, Maurya, & Chandra, 

1990; Singh, Chandra, & Chandra, 2002). In order to enhance the ionic conductivity, 

Univ
ers

ity
 of

 M
ala

ya



 
7 

various approaches have been pursued including: (a) varying the polymers used for 

polymer blend (Kadir et al., 2010), (b) doped with different salts (Hema, 

Selvasekarapandian, Arunkumar, Sakunthala, & Nithya, 2009) (c) modify the degree of 

crystallinity by varying the ratios of polymers, salts or plasticizers (Shukur, Ithnin, & 

Kadir, 2014b), (d) plasticized the polymer electrolytes with high dielectric constant 

material (Shukur et al., 2013) and (e) form composite polymer electrolytes by the 

dispersion of nano or micron sized inert fillers (Ravindran et al., 2015).  

 

The fundamental of ionic conduction in the polymer electrolytes is related to the 

covalent bonding between the polymer backbones and ions (Velazquez-Morales, Le 

Nest, & Gandini, 1998). The electron donor group in the polymer will form solvation 

onto the cation component in the doping salt and followed by the ion separation; leading 

to the ions hopping mechanism which then generates the ionic conductivity (Ganesan et 

al., 2008). However, if the ions are immobile and unable to move around, they may 

become poor conductors. Therefore, the polymer host should become a flexible form to 

provide enough space for the ions migration. PE serves three principal roles in a 

rechargeable battery. Firstly, it acts as the electrode separator that insulates the anode 

from the cathode in the battery which removes the requirement of inclusion of inert 

porous membrane between the electrolytes and electrodes interface (Walker Jr & 

Salomon, 1995). Secondly, it plays the role as a channel to generate ionic conductivity 

where ions are transported between the anode and cathode during charging and 

discharging (Xu, 2004). This induces the enhancement of energy density in the batteries 

with formation of thin film. In addition, it works as a binder to ensure good electrical 

contact with electrodes (Walker Jr & Salomon, 1995; Xu, 2004). 
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2.3 Natural Polymers 

 

Natural polymers obtained from renewable sources have attracted attention from 

researchers in various material applications (Chang & Zhang, 2011; Hejazi & Amiji, 

2003). The significance of eco-friendly materials has evolved over the last decade 

mainly due to environmental concerns and the realization of the petroleum resource 

shortage (Yu, Dean, & Li, 2006). The biodegradability of natural polymers is very 

crucial in the subject of controlling the environment which can prevent the premature 

degradation of the polymers used (Sudhakar, Selvakumar, & Bhat, 2013). Natural 

polymers such as protein and starch are the potential alternatives to petroleum-based 

polymers for certain applications (Yu et al., 2006). The continuous use of non-

biodegradable polymer has caused serious issues regarding the earth-environment (Lu, 

Xiao, & Xu, 2009). The development of synthetic polymers by using monomers from 

natural resources also provides wide options of biodegradable polymers such as 

polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyvinyl chloride (PVC) and 

polyvinylidene fluoride (PVdF) (Yu et al., 2006). However, the expensive price of these 

synthetic polymers demands us to continue with natural polymers as the main materials 

(Lu et al., 2009). PEs which produced from natural polymers for instance starch, 

chitosan, pectin and cellulose have aroused a lot of attentions due of their low prices,  

stability and good mechanical and electrical properties (Pawlicka, Sabadini, Raphael, & 

Dragunski, 2008; Tambelli et al., 2001; Velazquez-Morales et al., 1998).  

 

Modern technologies create the opportunities to develop these biodegradable 

materials for applications in industrial and biomedical sectors (Tian, Tang, Zhuang, 

Chen, & Jing, 2012; Vroman & Tighzert, 2009). Some of them including starch, 

cellulose, chitosan and rubber, have been used widely today but many others remain 
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underutilized. Table 2.1 lists some other natural polymers and their applications in 

various fields.  

 

                 Table 2.1: Examples of natural polymers and their applications. 

 

 

2.4 Starch 

 

Starch is a green polysaccharide polymer which stored as granules in plants and 

served as the principle energy and carbohydrate in human and animal diets (Khiar & 

Arof, 2010). It is one of the most abundant biopolymers on earth which also inherent 

biodegradability and renewability. It is mainly composed of amylose; a linear (α-(1,4)-

Applications Natural Polymers References 

Tissue 

Engineering 

Collagen, 

glycosaminoglycans,  

Chitosan 

Malheiro, Caridade, Alves, & Mano, 

2010; Sarasam & Madihally, 2005; Sell 

et al., 2010; Suh & Matthew, 2000 

Biomaterials Chitosan Martino, Pollet, & Avérous, 2011; 

Matet, Heuzey, Pollet, Ajji, & 

Avérous, 2013 

Packaging Starch, chitosan Leceta, Guerrero, & De La Caba, 2013;  

Salleh, Muhamad, & Khairuddin, 

2009; Tuhin et al., 2012 

Agriculture Starch, chitosan Amaka et al., 2013;  

Dehnad, Mirzaei, Emam-Djomeh, 

Jafari, & Dadashi, 2014 

Medication Chitosan Berger et al., 2004;  

Hejazi & Amiji, 2003 

Fabrication in 

devices 

Starch, cellulose, 

chitosan 

Liew & Ramesh, 2015;  

Samsudin, Khairul, & Isa, 2012; 

Shukur et al., 2013 
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linked D-glucopyranosyl) and branched amylopectin; with the same backbone structure 

of amylose but joint through α-(1,6)-linked polysaccharide chains (Pawlicka et al., 

2008). The structures of amylose and amylopectin are shown in Figure 2.1. 

 

 

 

  

 

 

 

   

 

      

     

    

  

                    

                    Figure 2.1: Molecular structure of (a) amylose and (b) amylopectin.  

 

The relative amount of these substances however is depending upon the plant 

sources (Avella et al., 2005). Different types of starch sources such as potato, wheat, 

arrowroot and corn starches have been widely used (Tiwari, Srivastava, & Srivastava, 

2011). Among these sources, corn starch has received the biggest attention because of 

availability, renewability, easily degradable and low in cost (Ghanbarzadeh, Almasi, & 

Entezami, 2010; Khiar & Arof, 2010).  

 

(a) 

(b) 
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2.4.1 Starch-Based Polymer Electrolyte 

 

Since 1970s, starch has been incorporated with synthesized polymer matrix to 

convert starch into thermoplastic materials (Sen & Bhattacharya, 2000). Hydroxyl 

groups which are dominant in starch are available for reactions with alcohol and may 

participate in the formation of hydrogen bonds (Lu et al., 2009). Researchers discovered 

that starches derived from different botanical sources are various in composition, 

structure and polysaccharide constituents hence different in functionalities (Elgadir et 

al., 2012). It is proven that starch with high amylose content is highly amorphous 

compared to the starch with high amylopectin (Park, Ibáñez, Zhong, & Shoemaker, 

2007). Amylopectin contains packing arrangement of double helices with high 

molecular weight which lowered the mobility of the polymer chains hence increased the 

crystalline phase (Liu, Xie, Yu, Chen, & Li, 2009; Richardson & Gorton, 2003). Corn 

starch contains 27 % of linear amylose which is higher compared to other types of 

starches, for instance, potato starch with 20 % amylose and tapioca with 17% amylose 

(Association, 2006). In polymer electrolytes, amorphous region is desirable that in turn 

will favor the ionic mobility which promoted by the segmental motion of the polymer 

host (Armand, 1994; Vincent, 1987). The application of starch in polymer electrolyte 

field has been investigated, as listed in Table 2.2.  
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               Table 2.2: Review of earlier work on starch-based polymer electrolytes. 

Electrolyte 

Composition 

Conductivity, 

S cm-1 

Devices References 

Starch-NH4NO3 2.83 × 10-5 - Khiar & Arof, 2010 

Corn starch-LiClO4-

SiO2 

1.23 × 10-4 - Teoh et al., 2012 

Potato starch-NH4I 2.40 × 10-4 - Kumar, Tiwari, & 

Srivastava, 2012 

Corn starch-LiOAc-

glycerol 

1.04 × 10-3 EDLC Shukur et al., 2014b 

 

 

2.5 Chitosan 

 

In recent years, chitosan receives a lot of interests in various fields, including in 

biomedicine, pharmaceutical and biotechnology (Berger et al., 2004; Burke, Yilmaz, 

Hasirci, & Yilmaz, 2002). Chitosan is one of the most abundant biopolymers in nature 

which is non-toxic, edible and biodegradable (Yu et al., 2006). Chitosan consists a lot of 

hydroxyl and amino groups, where both groups are possible to be grafted with desirable 

bioactive groups (Sugimoto, Morimoto, Sashiwa, Saimoto, & Shigemasa, 1998). It is a 

high molecular weight polysaccharide mainly composed of β-(1,4)-linked 2-amino-

deoxy-D-glucopyranose which prepared by deacetylation of chitin (Berger et al., 2004; 

Sugimoto et al., 1998). The structure of chitosan is rigid through inter and intra 

molecular hydrogen bonding (Hejazi & Amiji, 2003). The structures of chitin and 

chitosan are shown in Figure 2.2. 
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                               Figure 2.2: Structure of (a) chitin and (b) chitosan. 

 

 

2.5.1 Chitosan-Based Polymer Electrolyte 

 

Chitosan is naturally soluble in water. However the solubility depends on the 

degree of deacetylation of the solution. Chitosan with low degree of deacetylation 

contains low hydrogen bonding density because of the low number of amino groups in 

the polymer chains (Hejazi & Amiji, 2003). Chitosan can also be dissolved in some 

organic and inorganic acids and protonated at amino groups on the pyranose ring (Tuhin 

et al., 2012). The degree of deacetylation is believed could affect the rigidity of the 

polymer film (Chen, Lin, & Yang, 1994). The application of chitosan in polymer 

electrolyte field has received much attention, as listed in Table 2.3.  
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              Table 2.3: Review of earlier works on chitosan-based polymer electrolytes. 

Electrolyte 

Composition 

Conductivity, 

S cm-1 

Devices References 

Chitosan-iota-

carrageenan-H3PO4-PEG 

6.29 × 10-4 EDLC Arof, Shuhaimi, Alias, 

Kufian, & Majid, 2010 

Chitosan acetate- H3PO4 4.90 × 10-4 - Majid & Arof, 2007 

Chitosan acetate-AgNO3 2.60 × 10-5 Battery Morni, Mohamed, & 

Arof, 1997 

Chitosan-PEG-LiClO4-

EC-PC 

1.10 × 10-4 Supercapacitor Sudhakar et al., 2013 

 

 

2.6 Polymer Blending 

 

Natural polymers mostly found as non-toxic and biocompatible due to their 

similarity with living tissues. However, some characteristics give major drawbacks to 

these biodegradable polymers including fast degradation rate, hydrophilic character and 

poor mechanical properties (Yu et al., 2006). Blend films are composed of two or more 

biopolymers and prepared by varying methods, such as multilayer procedures, 

conventional blends and injection moulding (Ban, Song, Argyropoulos, & Lucia, 2006; 

Famá, Gerschenson, & Goyanes, 2009; Vilaseca et al., 2007). New products prepared 

by a low cost and well used but promising techniques are required to improve and 

modify the physical and functional properties of the polymers. These new blends are 

extending the utilization of polymers from renewable resources into value-added 

products. The main objective of this method is to prepare a polymer blend with 

maximum performance without changing the properties of each component drastically. 
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2.6.1 Starch/chitosan Blend 

 

Researchers have developed the blends of starch and polyolefins in 1970s and 

1980s, but since the blends were not biodegradable, the objective of this method was 

considered failed (Yu et al., 2006). The research on polymer blend was continuously 

been carried out since then. According to previous researchers, when two or more 

biopolymers are blended together, the blends behaved differently compared to when 

they are presented individually (De Kruif & Tuinier, 2001; Elgadir et al., 2012; Piculell, 

Bergfeldt, & Nilsson, 1995). Starch granules are insoluble in cold water due to their 

semicrystalline structure. Heating of the aqueous suspension of starch will cause the 

swelling of the granules and disruption of the crystalline areas (Richardson & Gorton, 

2003). However, excess of heating process results in irreversible swelling and will 

destroy the granules. The viscosity increases as the swelling of the granules increases. 

This process is called as gelatinization which is an important property of starch (Liu et 

al., 2009; Richardson & Gorton, 2003). Gelatinization is also known as the destruction 

of the crystalline structure in starch granules (Zobel, Young, & Rocca, 1988). Starch has 

been widely used to produce biodegradable films to replace plastic polymers due to its 

low cost and renewability (Xu, Kim, Hanna, & Nag, 2005). These films exhibit many 

similar characteristics with synthetic polymers such as odorless, tasteless, resistant to 

oxygen and transparent (Salleh et al., 2009). However, the application of starch is 

limited due to its sensitivity to moisture and brittleness (Xu & Hanna, 2005).  

 

In order to overcome the weaknesses, many researchers have blended starch 

with other biopolymers (Jagannath, Nanjappa, Das Gupta, & Bawa, 2003; Liu et al., 

2009; Lu et al., 2009; Mathew & Abraham, 2008). Chitosan which is commercially 

available from shellfish waste was discovered can form a good biopolymer film in term 
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of availability, mechanical strength, flexibility, nontoxic and biocompatibility (Mathew 

& Abraham, 2008; Salleh et al., 2009). Combining chitosan with other film-forming 

materials can improve the functional properties of chitosan films (Xu et al., 2005).  This 

film can retain its integrity by maintaining the inter and intramolecular network 

(Stuchell & Krochta, 1994).  

 

In a report by Xu et al. (2005), a study on water resistance, mechanical 

properties and compatibility of composite films based on starch and chitosan has been 

carried out. They found that the interactions between starch and chitosan can form a 

tough film which prevents the water molecules from diffusing through the films. The 

mechanical strength of starch film is believed can be improved when the starch is well-

mixed with chitosan and consequently, the crystallinity region of the components is 

suppressed (Mathew & Abraham, 2008). Starch/chitosan blend films exhibit good 

properties due to the presence of a high density of amino groups and hydroxyl groups 

with inter and intra molecular hydrogen bondings (Lu et al., 2009). In polymer 

electrolyte, works by Khiar & Arof (2011) and Shukur, Majid, Ithnin, & Kadir (2013) 

obtained good conductivity values (10-5) when they doped the starch/chitosan films with 

ammonium salts which proves that this is a promising blend for polymer electrolyte. 

 

2.6.2 Acetic Acid as Solvent 

 

Water solubility is one of the characteristics possessed by most natural polymers 

which contribute in raising their degradability and degradation speed. However, this 

characteristic contributes in limiting their application (Yu et al., 2006). Starch is one of 

the examples where its hydrophilicity behavior leads to poor mechanical properties in a 

humid environment (Tian et al., 2012). In order to improve the mechanical properties, 
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chemical modifications are required. One of the methods that have received attentions 

in recent years is acetylation. By acetylation, the hydrophilic hydroxyl groups in the 

anhydroglucose units of starch are converted to more hydrophobic acetyl groups, 

consequently improved the functional properties even though at low degree of 

substitution (Vroman & Tighzert, 2009). An acetylation process with a relatively low 

degree of substitution has been widely used in the food industries (Yang et al., 2006). 

Pretreatment with hot water with or without the presence of catalysts in order to activate 

the starch molecule is sometimes necessary to influence the reaction rate (Tabuchi, 

Saito, Kibi, & Ochi, 1993). Sugimoto et al. (1998) also reported that chitosan modified 

with PEG and acetylated using 2% acetic acid solvent has increased the solubility of 

chitosan. 

 

Acetic acid is the simplest carboxylic acid with chemical formula C2H4O2, as 

shown in Figure 2.3. Acetic acid can easily dissolve in water due to its low molecular 

weight and carboxylic structure. The carbonyl groups are expected to act as proton 

donors and exhibits low levels of hydration. Hence, many studies have been performed 

on proton-conducting electrolytes using acetic acid as solvent (Arof et al., 2010; Nik 

Aziz, Idris, & Isa, 2010). Polymer blending using 2% acetic acid as solvent has been 

reported to exhibit films with good mechanical strength (Bel'Nikevich, Bobrova, 

Bronnikov, Kalyuzhnaya, & Budtova, 2004). Shukur et al. (2013) have reported that 

blending starch/chitosan using acetic acid as solvent produced a polymer electrolyte 

film with good performance. Qiao, Yoshimoto, Ishikawa, & Morita (2002) also reported 

that the conductivity of the proton conducting polymeric gel membranes based on 

polyethylene oxide-modified polymethacrylate (PEO-PMA) containing polyethylene 

glycol dimethylether (PEGDE) and acetic acid as the doping solution is 6.20 × 10-4 S 

cm-1 at 20˚C.  
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                                                 Figure 2.3: Structure of acetic acid. 

 

 
2.7 Ammonium Iodide (NH4I) As Proton Provider 

 

Various complexes of polymeric matrices with strong, inorganic acids such as 

H3PO4, HCl and H2SO4 as proton provider have been investigated. However, 

conductivity which is less than 10-4 S cm-1 at room temperature is usually obtained 

(Kawahara, Morita, Rikukawa, Sanui, & Ogata, 2000). Over-oxidation of the anions 

from the strong acids has destroyed these polymer electrolyte films (Qiao et al., 2002; 

Raducha, Wieczorek, Florjanczyk, & Stevens, 1996; Trivedi, 1998). Since this type of 

polymer complexes suffer from chemical degradation and mechanical integrity, one can 

concludes that it is not a good choice for devices applications (Hema, 

Selvasekerapandian, Sakunthala, Arunkumar, & Nithya, 2008). 

  

A polymer electrolyte which is prepared by dissolving a salt in a polymeric 

matrix is a method that has been widely performed. The dissociation of salt can be 

achieved either by using volatile solvents or by the same polymer whose atoms can be 

interacted with cations and separate them from the corresponding anions (Mendoza, 
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Paraguay-Delgado, & Hu, 2012). Most of the previous studies were focused on 

complexes of polymer with lithium salts such as LiClO4 (Deepa et al., 2002; Sudhakar 

et al., 2013; Teoh et al., 2012), LiCF3SO3 (Perera & Dissanayake, 2006), Li2B4O7 

(Subramaniam et al., 2012) and LiI (Shukur, Ibrahim, Majid, Ithnin, & Kadir, 2013) 

where the electrical conductivity was determined as a function of salt concentration. 

However, producing these Li batteries faces a few drawbacks including requires high 

cost and having difficulty in handling and safety issues (Mishra, Hashmi, & Rai, 2014; 

Samsudin et al., 2014; Walker Jr & Salomon, 1995).  

 

The proton (H+) conducting polymer electrolytes have been widely studied for 

their potential applications in low current density devices (Ng & Mohamad, 2008). This 

is due to the low cost of electrode and electrolyte materials for developing a proton 

battery (Alias, Chee, & Mohamad, 2014; Samsudin et al., 2014). Proton batteries have 

been considered as a potential option due to the small ionic radii of the H+ ions which in 

turn provide a better intercalation into the cathode surface (Mishra et al., 2014). 

Ammonium salts have already been reported as a good proton donor to the polymer-

ammonium salts complexes (Kadir et al., 2010; Shukur et al., 2013). The protonic 

transport in these polymer electrolytes generally involves motion of groups like H+, 

NH4
+, H3O+ and OH+ (Selvasekarapandian, Hirankumar, Kawamura, Kuwata, & Hattori, 

2005). Many complexes of ammonium salt with different types of polymers have been 

investigated in various fields of research, as can be seen in Table 2.4. The protons (H+) 

in polymer-ammonium complexes are covalently bound to the nitrogen, and 

consequently can form hydrogen bonds with other electronegative atom (Zhang & 

Wang, 2009). 
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According to Hema et al. (2009), lower lattice energy (605.3 kJ mol-1) and larger 

anionic size of I ion (211 pm) lead to higher ionic conductivity compared to NH4Br and 

NH4Cl. A comparative study by the authors shows that a PVA-NH4I electrolyte 

obtained a higher conductivity of 2.50 × 10-3 S cm-1, compared to PVA-NH4Br (5.70 × 

10-4 S cm-1) and PVA-NH4Cl (1.00 × 10-5 S cm-1). In the present work, the choice of 

NH4I as the proton provider in starch/chitosan blend is expected to obtain a higher 

conductivity than starch/chitosan-NH4Br; 9.72 × 10-5 S cm-1 (Shukur et al., 2013) and 

starch/chitosan-NH4Cl; 6.47 × 10-7 S cm-1 (Shukur et al., 2014a) electrolytes.  

   

    Table 2.4: Review of earlier works using ammonium salts in polymer electrolytes. 

 

 

 

 

 

 

Electrolyte 

Composition 

Conductivity, 

S cm-1 

Devices References 

Chitosan-PEO-

NH4NO3-EC 

2.06 × 10-3 EDLC Shukur et al., 2013 

Starch/chitosan-

NH4Br-EC 

1.44 × 10-3 - Bel'Nikevich et al., 2004 

PVA-chitosan-

NH4NO3 

1.60 × 10-3 Proton 

batteries 

Kadir et al., 2010 

Starch/chitosan-

NH4NO3 

3.89 × 10-5 - Khiar & Arof, 2011 

Chitosan-

NH4COOCH3 

3.83 × 10-3 Proton 

batteries 

Alias et al., 2014 

MC-NH4F 6.40 × 10-7 - Nik Aziz et al., 2010 Univ
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2.7.1 Grotthus Mechanism 

 

In polymer electrolytes, there are two possible mobile ionic species: cations and 

anions. The type of cation responsible for the ionic conductivity in the polymer blend-

ammonium salt system has been identified to be H+ (Chandra, Tolpadi, & Hashmi, 

1988). Hashmi et al. (1990) reported that in PEO complexed with ammonium 

perchlorate (NH4ClO4), the conducting species is the H+ ion. The H+ ions of the salt will 

be coordinated with the nitrogen (N) atom of the amine group in chitosan (Hashmi et al., 

1990). The NH4
+ cations have four H ions attached with a tetrahedral formation. One of 

the four hydrogen atoms which is weakly bound, is easier to be dissociated with an 

influence of electric field. This conduction is known as Grotthus mechanism when the H 

ion is transferred from one site to another, hence leaving a vacancy which will be filled 

by another H ion from a neighboring site. Majid and Arof (2005) have also inferred that 

H+ is the conducting species in a chitosan acetate-NH4NO3 sample. 

 

2.8 Ionic Conduction 

 

 Ionic conductivity depends on salt concentration which proves that there is a 

specific interaction between the salt and the polymer matrix (Selvasekarapandian et al., 

2005). Furthermore, polymer electrolyte conductivity is due to the transport of cations 

and anions in a polymer matrix (Johansson, Gogoll, & Tegenfeldt, 1996). Ionic 

conductivity, is closely related to the number and mobility of the charge carriers as 

given in this equation: 
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  nq  

 

where n, q and  are number density, charge of ion and mobility of charge carriers, 

respectively.  

 

2.8.1 Rice and Roth Model 

  

Rice and Roth (Rice & Roth, 1972) proposed a hypothesis that there is an energy 

gap in an ionic conductor, where the mass of conducting ions, m can be thermally 

excited from localized ionic state to become free ions in which the ion extends 

throughout the medium with velocity, v. Even though the Rice and Roth equation was 

formulated for superionic conductors classified by (i) cationic disorders, (Zhai, Zhao, 

Yoshii, & Kume, 2004) -alumina structure and (iii) defects, the equation can also be 

applied to correlate with ionic conductivity (Shuhaimi, Teo, Majid, & Arof, 2010). 

Number density of the charge carrier is a very crucial parameter in understanding the 

transport properties of polymer electrolytes (Shuhaimi et al., 2010). In this work, 

number density of mobile ions was computed using: 
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where Z is the valency of conducting species, e is electron charge, T is absolute 

temperature, k is Boltzmann constant, mc is mass of charge carrier, Ea is activation 

energy and τ is travelling time of ions. The equation given is depending on Ea which can 

(2.2) 

(2.1) 
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be obtained from the conductivity-temperature relationship. The value of was obtained 

using: 

 

 
v

l
        

 

The value of  can be used to determine the value of n using Equation (2.2). l is 

the distance between two coordinating sites while v is velocity of mobile ions, which is 

obtained using: 

 

c

a

m

E
v

2
        

 

The ionic mobility,  was calculated using the value of n: 

 

  
ne


                                                                                      

 

 (Shukur et al., 2013) reported that conductivity is controlled by mobility and 

number density of ions. The  values lay within 10-4 cm2 V-1 s-1 and n values are in the 

range of 1018 to 1019 cm-3. They concluded that conductivity is controlled by these two 

parameters since the highest conducting electrolyte has the highest  and n values, 6.86 

× 10-4 cm2 V-1 s-1 and 1.87 × 1019 cm-3, respectively. Table 3.6 lists some transport 

parameters as reported by Shukur et al. (2013) for chitosan-PEO-NH4NO3-EC system. 

 

 

 

(2.3) 

(2.4) 

(2.5) 
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Table 2.5: Transport parameters of chitosan-PEO-NH4NO3-EC system at room 

temperature (Shukur et al., 2013). 

 
(wt.% 
EC)  (S cm-1) Ea (eV) s n (cm-3) (cm2 V-1 s-1) 

0 (1.02 ± 0.39) × 10-4 0.23 1.51 × 10-13 5.76 × 1018 1.11 × 10-4 

10 (1.72 ± 0.14) × 10-4 0.22 1.54 × 10-13 6.72 × 1018 1.60 × 10-4 

20 (1.93 ± 0.07) × 10-4 0.22 1.54 × 10-13 7.53 × 1018 1.60 × 10-4 

30 (2.49 ± 0.37) × 10-4 0.22 1.54 × 10-13 9.74 × 1018 1.60 × 10-4 

40 (2.99 ± 0.34) × 10-4 0.22 1.54 × 10-13 1.17 × 1019 1.60 × 10-4 

50 (5.10 ± 0.17) × 10-4 0.21 1.58 × 10-13 1.38× 1019 2.30× 10-4 

60 (7.62 ± 1.01) × 10-4 0.20 1.61 × 10-13 1.43 × 1019 3.32× 10-4 

70 (2.06 ± 0.39) × 10-3 0.18 1.70 × 10-13 1.87 × 1019 6.86× 10-4 

80 (9.62 ± 1.31) × 10-4 0.20 1.61 × 10-13 1.81 × 1019 3.32× 10-4 

 

 

2.9 Glycerol as Plasticizer 

 

High ionic conductivities are obtained from polymer electrolytes with higher 

amorphous region (Noor, Ahmad, Talib, & Rahman, 2011). Various methods have been 

applied by researchers in order to improve their electrochemical and mechanical 

properties including copolymerization (Ban et al., 2006), cross linked polymer networks 

(Watanabe & Nishimoto, 1995), plasticization (Ramesh & Arof, 2001) and the addition 

of ceramic filler additive (Rajendran, Mahendran, & Krishnaveni, 2003). Utilization of 

plasticizers with high dielectric constant and low molecular weight can result in greater 

ion dissociation and increased the number of charge carriers for ionic transport (Noor et 

al., 2011). Table 2.6 shows the examples of plasticizers and the applications.  
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           Table 2.6: Review of earlier works using plasticizers in polymer electrolytes. 

Electrolyte Composition Conductivity, 

S cm-1 

Devices References 

PVC:LiCF3SO3:LiBF4: 

EC:PC 

2.80 × 10-3 - Ramesh & Arof, 2001 

PAN-EC-LiCF3SO3 

PAN-PC- LiCF3SO3 

1.32 × 10-3 

8.64 × 10-4 

- Noor et al., 2011 

Chitosan–PEO–NH4NO3–

EC 

2.06 × 10-3 EDLC Shukur et al., 2013 

PVA–chitosan- NH4NO3–

EC 

1.60 × 10-3 Proton 

Battery 

Kadir et al., 2010 

MC-NH4NO3-PEG200 1.14 × 10-4 Fuel cell Arof et al., 2010 

Starch/chitosan-NH4Cl-

Glycerol 

5.11 × 10-4 - Shukur et al., 2014a 

 

  

Glycerol is in alcohol group which is nontoxic to either human or environment 

(Tan, Aziz, & Aroua, 2013). The chemical structure of glycerol is shown in Figure 2.4. 

Glycerol has a high boiling point of 290˚C and low melting point of 18˚C (Speight & 

Speight, 2002). These characteristics will avoid glycerol from easily vaporized or 

solidified at room temperature, thus limit the ionic mobility (Speight & Speight, 2002). 

 

 

 

 

 

 

                                                                             Figure 2.4: Chemical structure of glycerol. 
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The glycerol dielectric constant value () of 42.5 is considered high which can 

weaken the attraction force between the cation and anion of salt as well as the polymer 

chains (Shukur & Kadir, 2015). New pathway provided for ions migration and more 

undissociated salt become free ions. The significant changes in local structures lead to 

increment in amorphous region and finally improve the ionic conductivity 

(Subramaniam et al., 2012). 

 

2.10 Electrochemical Devices 

 

Polymer electrolyte (PE) has been extensively studied in material science field, 

polymer science and electrochemistry, specifically in solid state energy devices such as 

solar cells, batteries and EDLCs (Naoi & Morita, 2008; Sudhakar & Selvakumar, 2012; 

Taib & Idris, 2014; Yang et al., 2006). PE is one of the major components in 

electrochemical devices and should exhibit sufficient ionic conductivity (Bhargav et al., 

2009; Hatta et al., 2009). The proton (H+) conducting polymer electrolytes have been 

widely studied in recent years for their potential applications in various electrochemical 

devices (Ng & Mohamad, 2008). The key factors for successful electrolytes include 

high ionic conductivity, sufficient mechanical strength, good chemical/environmental 

stability and acceptable production cost (Fujiwara et al., 2011; Qiao, Fu, Lin, Ma, & Liu, 

2010). 

 

These polymer electrolytes can overcome the drawbacks of liquid electrolytes 

such as reduce reactivity and leakage of electrolyte, improve safety and provide a better 

shape (Lim, Teoh, Liew, & Ramesh, 2014a). Recently, polymer electrolytes have been 

discovered as a potential electrolyte to be fabricated in EDLC and proton batteries (Park, 

Ahn, & Sung, 2002; Sivaraman, Hande, Mishra, Rao, & Samui, 2003). Li-ion batteries, 
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Zn-air batteries and Ni-MH (metal hydride) batteries are some of the battery systems 

that have been used widely in most electronic devices (Othman, Basirun, Yahaya, & 

Arof, 2001; Raj & Varma, 2010; Tarabay & Karami, 2015; Xu, Ivey, Xie, & Qu, 2015). 

  

2.10.1 Proton Batteries 

 

 Solid state batteries play an important role in the development of science and 

technology as a portable electronic source and a backup power source in an aircraft 

(Samsudin et al., 2014). The development of solid state batteries has overcome the 

problems in conventional liquid electrolyte batteries including short life span, difficult 

to handle during manufacturing and the possibility of corrosiveness in the containers 

(Gauthier, Belanger, Kapfer, Vassort & Armand, 1987). At the early development of 

proton batteries, Li+ ion batteries have become the most favorable among researchers to 

commercialize them due to its small ionic radii (Shukur et al., 2014b). However, people 

start to concern regarding a few drawbacks this type of batteries can cause to the 

environment and users, for example difficult to handle, high in cost and having safety 

issues (Samsudin et al., 2014).  

 

For low current density battery applications, electrode and electrolyte materials 

with low cost are required in order to develop H+ proton batteries as a potential 

alternative to Li+ ion batteries (Alias et al., 2014). Besides, the development of natural 

biopolymer-based electrolytes has been commercialized in recent years to substitute the 

petrochemicals source usage, along with the friendliness to the environment (Ponez, 

Sentanin, Majid, Arof & Pawlicka, 2012). For example, batteries based on cellulose 

have been produced in 2011 and reported to date which portray good reviews by people 
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from various industries as a natural-resource based alternative battery (Kim et al., 2016). 

The diagram of proton battery can be seen in Figure 2.5. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.10.2 Electrical Double Layer Capacitor (EDLC) 

 

Electrochemical supercapacitors have been developed as alternative power 

sources in many laboratories. Other than pseudocapacitor, another type of 

supercapacitors that have been widely used as memory backup device is EDLC 

(Tabuchi et al., 1993). EDLC is a type of supercapacitor where the energy is stored by 

charge separation across the blocking or polarizable electrode/electrolyte interfaces 

Stainless steel  

Cathode: MnO2  

Electrolyte film  

Anode: Zn + ZnSO4.7H2O  

Teflon jig  

Figure 2.5: Diagram of proton battery (Samsudin, Lai, & Isa, 2014). 
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(Arof et al., 2012). EDLCs are employing different electrolytes and various forms of 

electrodes which are still undergoing development as alternative power sources to 

rechargeable batteries (Simon & Gogotsi, 2008). Compared to batteries, EDLCs have 

identical electrodes, longer life times, high cyclabilities, high-power density and 

environmentally friendly features (Arof et al., 2010; Burke, 2000). The EDLC is 

basically stored the electric energy in the Helmholtz double-layers which formed in the 

electrolyte through ionic migration, without any chemical reaction occurred between the 

electrodes and electrolyte (Lim et al., 2014b). Positive and negative ionic charges within 

the electrolyte accumulate on the surface of the solid electrode and compensate the 

electronic charge at the electrode surface (Kotz & Carlen, 2000). 

 

The EDLC device comprises of an electrolyte film and two porous electrodes 

sandwiching the film, as can be seen from Figure 2.6. The electrodes used in EDLC 

must possess good pore size and high surface area (Syahidah & Majid, 2013). Activated 

carbon has been reported as a promising candidate as an electrode due to its chemical 

stability, good conductivity and moderate cost (Lozano-Castello, Cazorla-Amoros, 

Linares-Solano, Shiraishi, Kurihara, & Oya 2003; Nian & teng, 2003; Okajima, Ohta & 

Sudoh, 2005). 
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2.11 Summary 

 

In this chapter, literature review and background of the materials and some other 

important topics have been reviewed. The important information is gained and the 

knowledge is used for further discussion of the results. This chapter gives some 

previews that starch/chitosan based polymer electrolytes are suitable and can be used for 

further studies and investigation. 

 

Aluminium 
grid collector 

Aluminium 
grid collector Separator 

 (polymer electrolyte) 

Electrodes 
(Activated 

carbon) 
Formation of Electric 

double layer 

Figure 2.6: Diagram of an electric double-layer capacitor (Lim et al., 2014a). 
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CHAPTER 3: EXPERIMENTAL METHODS 

 

3.1 Introduction 

 

 In this work, three systems of starch/chitosan, starch/chitosan-salt (salted) and 

starch/chitosan-salt-plasticizer (plasticized) have been prepared. Ammonium iodide 

(NH4I) as dopant will provide the charge carriers while the glycerol is employed as 

plasticizer. All polymer electrolytes were prepared via solution cast technique. The 

study on the starch/chitosan blend in this work is to determine the most suitable ratio to 

be chosen as the polymer host based on the degree of crystallinity. Starch/chitosan blend 

has been characterized using fourier transform infrared (FTIR), X-Ray diffraction 

(XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and 

field emission scanning electron microscopy (FESEM) techniques in order to determine 

its compatibility to be employed as the polymer host.  

 

The blend is further doped with NH4I to prepare the salted system. The 

electrolyte which attained the highest ionic conductivity was then be plasticized with 

glycerol. The polymer electrolytes were characterized using several techniques 

including FTIR, electrochemical impedance spectroscopy (EIS),  XRD, FESEM, TGA, 

DSC and transference number measurement (TNM). The highest conducting electrolyte 

from the plasticized system was used in the fabrication of electrical double layer 

capacitor (EDLC) and proton batteries. A corn starch (Unilever) and a highly viscous 

chitosan with viscosity of 800-2000 cP, molecular weight of approximately 310000 to 

375000 and degree of deacetylation of > 75% (Sigma-Aldrich) were used to prepare the 

polymer blend. Ammonium iodide (NH4I) was procured from HmbG while acetic acid 

and glycerol were purchased from SYSTERM.  
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3.2 Electrolytes preparation 

 

3.2.1 Starch/chitosan System 

 

Corn starch with different weight percentages (x wt.%) were dissolved in 100 

mL of 1% acetic acid while heated at 80°C for 20 min. After the solutions were cooled 

to room temperature, (100-x) wt.% of chitosan was then added to the solutions. The 

mixtures were stirred using magnetic bar stirrers until homogeneous solutions were 

obtained. All solutions were cast into different plastic Petri dishes and left to dry to form 

films at room temperature in a drying cabinet. All samples were peeled out and kept in a 

desiccator filled with silica gel desiccants for further drying. Table 3.1 summarizes the 

compositions of the polymer blend. 

 

 FTIR analysis has been carried out to study the molecular interactions between 

the polymers. This method is performed using Spotlight 400 Perkin-Elmer spectrometer 

in the wavenumber range of 400 - 4000 cm-1 at a resolution of 1 cm-1. Siemens D5000 

X-ray diffractometer with X-rays of 1.54 Å wavelengths generated by a Cu K source 

were employed for XRD measurements of the polymer blend films. The variation of the 

2 angle was from 5° to 80°. The decomposition temperature was studied from TGA 

analysis using Perkin-Elmer Pyris 1 TGA equipment. The determination of glass 

transition temperature, Tg for selected samples from DSC analysis was carried out using 

TA Instruments Q200. The cross-sections of the polymer blend films were examined 

using a Hitachi SU8220 FESEM.  
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Designations 
Starch: chitosan 

compositions (wt. %) 
 

Polymer blend  

Starch (g) Chitosan (g) 

PB0 100 : 0 1.00 0.00 

PB1 90 : 10 0.90 0.10 

PB2 80 : 20 0.80 0.20 

PB3 70 : 30 0.70 0.30 

PB4 60 : 40 0.60 0.40 

PB5 50 : 50 0.50 0.50 

PB6 40 : 60 0.40 0.60 

PB7 30: 70 0.30 0.70 

PB8 20 : 80 0.20 0.80 

PB9 10 : 90 0.10 0.90 

PB10 0 : 100 0.00 1.00 

 

 

3.2.2 Starch/chitosan-NH4I (Salted System) 

 

The polymer blend electrolytes of salted system were prepared by dissolving 

0.80 g of starch in 100 mL of 1% acetic acid while heated at 80°C for 20 min. After the 

solution was cooled to room temperature, 0.20 g of chitosan was added and stirred until 

it is fully dissolved. Different amounts of NH4I were added into the solution and stirred 

until the solutions become homogenous. All solutions were cast onto plastic Petri dishes 

and left to dry in a drying cabinet for 3 days. Later, the dried films were kept in a 

dessicator filled with silica gel desiccants for further drying. Table 3.2 summarizes the 

compositions of the prepared polymer blend-salt system. A4 sample was chosen to be 

added with glycerol. 

 

Table 3.1: The ratio content of starch/chitosan electrolyte. 
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3.2.3 Starch/chitosan-NH4I-Glycerol (Plasticized System) 
 
 

0.80 g of corn starch was dissolved in 100 ml of 1% acetic acid at 80˚C for 20 

min. After the solution cooled to room temperature, 0.20 g of chitosan was added. 0.667 

g of NH4I was added to the 4:1 starch/chitosan blend solution and stirred until 

homogeneous solution was obtained. Different amounts of glycerol were added to the 

starch/chitosan-NH4I electrolyte solution and stirred until complete dissolution. All 

solutions were then cast into plastic Petri dishes and left for drying process at room 

temperature in a drying cabinet. The dried films were kept in a glass desiccator filled 

with silica gel desiccants for further drying. The compositions and designations of the 

electrolytes are presented in Table 3.3. B3 sample was chosen to be fabricated in 

electrochemical devices. 

     

 

 

Designations 
PB2 : NH4I 

compositions 
(wt.%) 

Salted system 

Starch (g) Chitosan (g) NH4I (g) 

PB2 100 : 0 0.80 0.20 0 

A1 90 : 10 0.80 0.20 0.1111 

A2 80 : 20 0.80 0.20 0.2500 

A3 70 : 30 0.80 0.20 0.4286 

A4 60 : 40 0.80 0.20 0.6667 

A5 50 : 50 0.80 0.20 1.0000 

A6 40 : 60 0.80 0.20 1.5000 

Table 3.2: The compositions and designations of electrolytes in salted system. 
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3.3 Electrolytes Characterization 

  

3.3.1 X-Ray Diffraction (XRD) 

 

The XRD technique was used to determine the atomic arrangements of crystal or 

amorphous structures of a material. XRD provides most definitive structural 

information. This technique was carried out by applying an X-ray beam onto the sample 

with wavelength, at different angles, . The interaction of the rays with the sample 

produces constructive interferences and a diffracted ray which satisfies the Bragg’s 

condition:   

 

 sin2d    

 

where d is the interplanar spacing,  is the Bragg’s angle andis the wavelength (Liu, 

Chaudhary, Yusa, & Tadé, 2011). For structural characterization of the starch/chitosan 

blend films, the XRD measurements were carried out at room temperature using 

Siemens D5000 X-ray diffractometer where X-rays of 1.54 Å wavelengths were 

Designations 
A4 : glycerol 
compositions 

(wt.%) 

Plasticized System 
Starch  

(g) 
Chitosan 

(g) 
NH4I  

(g) 
Glycerol 

(g) 
A4 100 : 0 0.80 0.20 0.667 0 

B1 90 : 10 0.80 0.20 0.667 0.185 

B2 80 : 20 0.80 0.20 0.667 0.417 

B3 70 : 30 0.80 0.20 0.667 0.714 

B4 60 : 40 0.80 0.20 0.667 1.111 

B5 50 : 50 0.80 0.20 0.667 1.667 

(3.1) 

Table 3.3: The compositions and designations of electrolytes in plasticized system. 
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generated by a Cu K source. The 2 angle was varied from 5° to 80° by using a 

scanning rate of 0.1°/ 2 s.  

 

The XRD patterns of chitosan-based electrolyte membranes with different 

concentrations of oxalic acid are shown in Figure 3.1. Fadzallah and co-workers (2014) 

reported that the presence of 40 wt.% oxalic acid in chitosan-based film gives the 

highest degree of amorphousness while chitosan powder gives the highest crystallinity . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: XRD patterns of (a) chitosan with the addition of (b) 10% oxalic acid, (c) 
20% oxalic acid, (d) 30% oxalic acid, (e) 40% oxalic acid, (f) 50% oxalic acid and (g) 
pure oxalic acid (Fadzallah, Majid, Careem & Arof, 2014). 

 

 

 

3.3.2 Field Emission Scanning Electron Microscopy (FESEM) 

 

 An electron microscope scans a focused electron beam over a surface to produce 

an image. The electrons of the beam interact with the atoms in the sample, producing 

various signals that can be detected and contain information about the surface 
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topography and morphology. In this work, FESEM has been used to study the cross-

sections of the starch/chitosan blend and surface of salted and plasticized films for 

better and clearer images. A Hitachi SU8220 FESEM was used to study the cross-

sections of blend films at 1K × magnification while Zeiss Auriga FESEM was used to 

examine the surface of the films in salted and plasticized systems at 1K × and 5K × 

magnifications. This study gives an insight of the surface morphology of the semi-

crystalline polymer electrolyte.  

 

   

 

   

 

 

 

 

 

 

 

 

 

 

  

Figure 3.2: FESEM micrographs of 70PVAc-30PMMA in (a) and (b) and 70PVAc-
30PMMA-30NH4SCN in (c) and (d) (Chandra et al., 2016). 
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 Figure 3.2 shows the surface morphology of polyvinyl acetate (PVAc) and 

polymethyl methacrylate (PMMA) blend electrolyte. It can be seen that the surface of 

70PVAc-30PMMA film is smooth, proving the homogeneity of PVAc-PMMA blend. In 

contrast with 70PVAc-30PMMA-30NH4SCN film, some voids and cavities can be 

detected within the membrane surface (Chandra et al., 2016). This leads to the 

conclusion that new kinetic path probably has been formed through the polymer-salt 

boundaries.  

 

3.3.3 Fourier Transform Infrared (FTIR) Study   

 

 In FTIR, the IR radiation is passed through a sample. Some of the IR radiation is 

absorbed by the sample while the other is transmitted. The resulting spectrum represents 

the molecular absorption and transmission, creating a molecular fingerprint of the 

sample. FTIR can be used to identify the chemical compositions, chain structures and 

functional groups of the polymer electrolyte samples. This technique is carried out 

based on the fact that different bonds vibrate at different characteristic frequencies. 

 

The FTIR studies were performed using Spotlight 400 Perkin-Elmer 

spectrometer in the wavenumber ranged from 400 to 4000 cm-1 at a resolution of 1 cm-1. 

In this work, FTIR studies were performed to confirm the interactions between the 

polymers, polymer blend-salt and polymer blend-salt-plasticizer. Focus was given to the 

hydroxyl, amine and carboxamide groups.  

 

Figure 3.3 depicts the FTIR spectra of poly(caprolactone)(PCL)-ammonium 

thiocyanate (NH4SCN) electrolytes displaying NH stretching and SCN bending in the 

regions. Woo, Majid, & Arof (2011a) discussed on the shifting of the NH band towards 
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lower wavenumber and overlapping with PCL spectrum with the incorporation of 

NH4SCN.  They also discussed on the formation of loosely-bound hydrogen bonds and 

interaction of carbonyl groups that reflected the interaction between the polymer host 

and the dopant salt.  

 

 

 

  

 

  

 

 

 

 

 
Figure 3.3: FTIR spectra of (a) pure NH4SCN and complexes of PCL: NH4SCN in the 
weight ratio of (b) 100:0, (c) 95:5, (d) 85:15, (e) 74:26, (f) 68:32 displaying NH 
stretching region (Woo et al., 2011a). 
 

 

3.3.4 Thermogravimetric Analysis (TGA) 

 

 TGA is a method of thermal analysis where changes in weight of a material are 

measured as a function of temperature or time, with constant heating rate, under a 

controlled atmospehere. As the temperature increases, various components of the 

sample are decomposed and the weight percentage of the resulting mass change can be 

measured. TGA analysis was carried out using Perkin-Elmer Pyris 1 TGA equipment. 
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The samples were heated from room temperature to 800˚C at a heating rate of 10˚C  

min-1 under argon gas flow. Mass of samples used for TGA measurements is around 3.0 

- 5.0 mg.  

 

Figure 3.4 shows an example of TGA thermogram of PVA-potassium hydroxide 

(KOH)-aluminium oxide (Al2O3)-propylene carbonate (PC) as reported by Mohamad 

and Arof (2006). The weight loss was found higher due to the decreased of thermal 

stability for the samples with higher plasticizer content.  

 

 

 

  

 

 

 

 

                   
 

 

 

 

3.3.5 Differential Scanning Calorimetry (DSC) 

 

The determination of glass transition temperature, Tg is very useful to evaluate 

the miscibility of a polymer blend. Differential scanning calorimetry (DSC) was carried 

out using TA Instruments Q200. The samples were heated at a heating/cooling rate of 

10˚C min-1 from -50 to 200˚C.  

 

Figure 3.4: TGA thermograms of PVA-KOH-Al2O3-PC films where 
(a) PC0, (b) PC20, (c) PC40 and (d) PC60 (Mohamad and Arof, 2006). 
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 Shukur et al. (2014a) mentioned in their report that the ionic mobility depends 

on the segmental motion of the polymer chains in the amorphous phase which can be 

determined by the glass transition temperature, Tg.  

 

3.3.6 Electrochemical Impedance Spectroscopy (EIS) 

 

 The polymer electrolyte films were cut into small discs of 1.60 cm diameter and 

sandwiched between two stainless steel electrodes of a conductivity holder. Figure 3.6 

shows the picture of the conductivity holder used in this work.  

 

The impedance of the films was measured using HIOKI 3532-50 LCR Hi-Tester 

that was interfaced to a computer in the frequency range between 50 Hz to 5 MHz from 

298 to 343 K. The value of bulk resistance, Rb (Ω) obtained from the Cole-Cole plots as 
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Figure 3.5: DSC thermograms of (a) pure starch film and (b) pure 
chitosan film (Shukur, et al., 2014a). 
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            Figure 3.6: Conductivity holder with blocking stainless steel electrodes. 

 

shown in Figure 3.8, was used to calculate the conductivity,  using the following 

equation: 

 

11 


eb
AtR         

     

where t (in cm) is the thickness  of the electrolytes and Ae (in cm2) is the electrode-

electrolyte contact area which is 3.142 cm2. A digital micrometer (Mitutoyo Corp.) was 

employed to measure the thickness of the films. 

 

The cole-cole plots depicted in Figure 3.7 are reported by Aziz, Majid, & Arof 

(2012) which consist of a semicircle at high frequency and an adjacent line at low 

frequency region for phthaloyl chitosan-based polymer electrolytes with 10 and 20 wt% 

NH4SCN at room temperature. The Rb values were taken from the intercept of 

semicircle with the adjacent line. 

 

(3.2) 
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3.3.7 Transference Number Measurements 

 

In order to prove that the ionic conduction is contributed by ions, transference 

number measurements have been carried out. The ionic transference number has been 

evaluated using a V&A Instrument DP3003 digital dc power supply by employing 

Wagner’s dc polarization technique. A constant dc potential of 0.80 V is applied to 

polarize the cell. The highest conducting electrolyte was sandwiched between stainless 

steel (SS) blocking electrodes with cell configuration SS/ B3 sample/SS at room 

temperature. In order to prove that the polymer electrolyte is an ionic conductor, the 

transference number of ions, tion must be larger than the transference number of 

electrons, te (Aziz et al., 2012). Figure 3.8 exhibits the plot of polarization current 

versus time at 303K for 75PVA:25 ammonium bromide (NH4Br) (Hema et al., 2008). 

They found that the tion for all compositions of the PVA: NH4Br electrolyte systems lie 

between 0.93 to 0.96, suggesting that the charge transport in these electrolyte films is 

predominantly ions. 

Figure 3.7: Impedance plots of phthaloyl chitosan-NH4SCN at ambient 
temperature (Aziz et al., 2012). 
 

Zr × 104 (Ω) 

Z
i ×

 1
04 

(Ω
) 

Zr × 104 (Ω) 

Z
i ×

 1
04 

(Ω
) 

Univ
ers

ity
 of

 M
ala

ya



 
44 

 

 

 

  

 

 

 

 

 

 
 
 

 

  

 

Watanabe technique is employed to determine the cation (t+) transference 

number. 0.40 g MnO2 (Sigma-Aldrich), 0.08 g polytetrafluoroethylene (PTFE) and 0.04 

g activated carbon (RP20, manufactured by Kuraray, Japan) were mixed for the 

electrodes preparation. The mixtures were grounded and hydraulic pressed for 20 

minutes. The highest conducting electrolyte film was sandwiched between the 

electrodes and measured using V&A Instrument DP3003 digital dc power at 0.20 V. 

Figure 3.9 shows the current relaxation curve during dc polarization at applied voltage 

of 0.20 V as reported by Woo, Majid & Arof (2011b). They concluded that the value of 

t+ which is 0.21; indicates the existence of mobile ions or higher aggregation of the ions. 
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Figure 3.8: Polarization current as a function of time for 25 mol% 
NH4Br-doped PVA polymer electrolyte (Hema et al., 2008). 
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3.3.8 Linear Sweep Voltammetry 

 

Linear sweep voltammetry (LSV) measurement was conducted employing a 3-

electrode configuration where stainless steel electrodes were employed as working, 

counter and reference electrodes, as can be seen in Figure 3.10.  

 

 

 

  

 

 

  

 

                      

                     Figure 3.10: LSV with 3-electrode configuration. 
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Figure 3.9: Transference number of PCL-26 wt.% NH4SCN using 
MnO2 electrodes (Woo et al., 2011b). 
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A Digi-Ivy DY2300 potentiostat at a scan rate of 1 mV s-1 in a potential range of 

0 V to 2.50 V was used to measure the electrochemical stability window. The current at 

the working electrode for LSV study was measured at room temperature while the 

potential between the working and reference electrodes was swept linearly in time. 

Figure 3.11 depicts the LSV curves of 49 wt.% starch-21 wt.% NH4Br (ammonium 

bromide)-30 wt.% glycerol electrolyte at 10 mV s-1 using stainless steel electrodes. The 

decomposition voltage is detected around 1.66 V at room temperature (Shukur & Kadir, 

2015a). 

 

 

 

  

 

  

 

    

 

 

 

 

3.4 Fabrication and Characterization of EDLC 

 

3.4.1 Electrodes Preparation 

 

To prepare the EDLC electrodes, 13 g of activated carbon (RP20, manufactured 

by Kuraray, Japan), 2 g polyvinylidene fluoride (PVdF) and 1 g of carbon black (Super 
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Figure 3.11: LSV for 49 wt.% starch-21 wt.% NH4Br-30 wt.% glycerol 
electrolyte at 10 mV s-1 (Shukur & Kadir, 2015a). 
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P) were mixed in 60 ml N-methylpyrrolidone (NMP) (EMPLURA). Homogeneous 

slurry was obtained after 24 hours of stirring. The slurry was then spread on an 

aluminium foil via doctor blade method with thickness of 0.25 mm. After heating at 

60˚C, the electrodes were kept in a desiccator filled with silica gel desiccants prior to be 

used.  

 

3.4.2 EDLC Fabrication 

 

 The fabrication has been carried out by sandwiching the electrolyte between two 

electrodes. In order to clamp and hold the EDLC tightly, perspex plates were employed 

as depicted in Figure 3.12. The performance of the fabricated EDLC was monitored 

using Neware battery cycler. 

 

 

 

 

    

 

  

 

 

 

 

 

 

 

 

 
Figure 3.12: Picture of EDLC fabrication. 
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3.4.3 EDLC Characterization 

 

The performance of EDLC was characterized using cyclic voltammetry (CV) 

and charge-discharge cycling at constant current. CV was carried out at room 

temperature using Digi-IVY DY2300 potentiostat between 0 to 0.85 V at different scan 

rates. An example of cyclic volatammogram of MC-NH4NO3-poly(ethylene glycol) 

(PEG) is shown in Figure 3.13.  It can be seen from the figure that the shape of the 

voltammograms for the EDLCs with coated and uncoated electrodes is close to that of a 

rectangle (Shuhaimi, Teo, Woo, Majid, & Arof, 2012). This implies that the charge-

discharge cycle occurs reversibly and the electrode/ electrolyte contact is responsible for 

the EDLC resistance. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 The galvanostatic charge-discharge characteristics of the EDLC were carried out 

in a voltage range between 0 to 0.85 V at a constant current density of 0.04 mA cm-2. 

Figure 3.13: Cyclic voltammogram of the EDLC fabricated using uncoated and 
coated electrodes. Inset: efficiency of EDLC with PEG-coated electrodes for 100 
cycles (Shuhaimi et al., 2012). 
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The values of specific capacitance, Cs on selected cycles from the galvanostatic charge-

discharge measurement were calculated, as well as the specific capacity (Q) values 

which refer to the amount of charge passing through the outer circuit per unit mass. 

Figure 3.14 represents typical charge-discharge curves of EDLC for PVA-lithium 

perchlorate (LiClO4)-titanium dioxide (TiO2) polymer electrolyte at 1 mA current 

reported by Lim, Teoh, Liew, & Ramesh (2014a). They reported that the initial drop in 

the potential during the discharging process is attributed to the internal resistance and 

equivalent circuit resistance (ESR) in the electrodes and electrolyte. 

 

 

 

 

 

 

 

  

 

Figure 3.14: Charge-discharge pattern for (a) EDLC cell with 60PVA-40LiClO4 and   
(b) EDLC cell with 55.2PVA-36.8LiClO4-8TiO2 at current of 1 mA (Lim et al., 2014a). 
 

 

3.5 Proton Batteries 

  

3.5.1 Primary Proton Batteries Fabrication 
 

For the cathode preparation, 0.44 g MnO2 (Aldrich), 0.04 g carbon black and 

0.02 g PTFE were mixed and grounded in a pellet form. For the anode preparation, 0.31 

g Zn (Merck), 0.15 g ZnSO4∙7H2O (Univar), 0.02 g carbon black and 0.02 g PTFE were 
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mixed and grounded in a pellet form. The pellets were then pressed using hydraulic 

pressing for 15 min before fabrication by sandwiching the highest conducting 

electrolyte between the cathode and the anode pallets. The proton batteries were then 

packed in CR2032 coin cells as shown in Figure 3.15.  

 

 

 

 

   

 

 

 

 

 

       

                                        Figure 3.15: Picture of CR2032 coin cell. 

 

 

The open circuit potential (OCP) of the batteries was measured at an open circuit 

condition for 24 hours. OCP values represent the full potential of a battery since the 

potential does not share its potential with any other load. An example of OCP of a 

proton battery can be seen in Figure 3.16, which shows the OCP of 85 wt.% of 

poly(vinyl) chloride (PVC) doped with ammonium trifluoromethane sulfonate 

(NH4CF3CO3) + 15 wt.% butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide  

(BATS) electrolyte at room temperature. They suggested that the voltage was higher in 

the first 2 hours due to a voltage delay before stabilized at ~1.30 V after 24 hours of 

storage (Deraman, Mohamed & Subban, 2013).  
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All batteries in the present work were discharged at different constant currents; 

0.10, 0.20, 0.50, 1.00 and 2.00 mA; at room temperature using Neware battery cycler. 

Figure 3.17 shows discharge profiles of proton batteries of carboxymethyl cellulose 

(CMC)-NH4Br at different constant currents as reported by Samsudin et al. (2014). The 

discharge  curves  shows  that  their  batteries  can  perform  longer at 0.10 and 0.25 mA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time (h) 

C
el

l P
ot

en
tia

l (
V

) 

 

Figure 3.16: OCP of proton battery at room temperature for 85 wt.% (PVC-
NH4CF3CO3) + 15 wt.% BATS polymer electrolyte (Deraman et al., 2013). 
 

Figure 3.17: Discharge curves of CMC -NH4Br proton battery at 0.1, 0.25 and 
0.5 mA (Samsudin et al., 2014). 
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compared to 0.50 mA, before the voltage dropped immediately. This was attributed to 

the internal resistance of the battery which resulted in maximum power transfer, hence 

higher discharge capacity is obtained. They concluded that their proton battery is more 

suitable for lower current applications. 

 

3.5.2 Secondary Proton Batteries 

 

For the cathode preparation for secondary batteries, 0.41 g MnO2 (Aldrich), 0.02 

g carbon black, 0.02 g PTFE and 0.05 g of the highest conducting electrolyte solution 

were mixed and grounded in a pellet form. The anode pellet was prepared using similar 

method with the primary proton battery. The pellets were then pressed using hydraulic 

pressing for 15 min before the fabrication by sandwiching the highest conducting 

electrolyte between the cathode and the anode pallets. The proton batteries were then 

packed in CR2032 coin cells as shown in Figure 3.15. Figure 3.18 depicts the discharge-

charge characteristic for CMC-NH4Br at room temperature as reported by Samsudin et 

al. (2014). The battery was discharged with a constant current of 0.25 mA and performs 

up to 12 cycles. They concluded that the electrode-electrolyte surface contact has 

reduced during the 11th cycle thus decreased the cell potential. 
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3.6 Summary 

 

 From this chapter, the steps involved in the electrolytes preparation in 

starch/chitosan, salted and plasticized systems have been described. All samples were 

characterized using few techniques as discussed in the chapter. The highest conducting 

sample was used in the fabrication of EDLC and proton batteries. 

 

 

 

 

 

 

 

Figure 3.18: Discharge-charge curves of CMC-NH4Br proton battery at 
room temperature (Samsudin et al., 2014). 
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CHAPTER 4 : CHARACTERIZATIONS OF POLYMER BLENDS 

 

4.1 Introduction 

 

 For many years, blending of polymers is believed to be a useful and effective 

method to develop new polymeric materials with improved mechanical stability 

(Rajendran et al., 2003). Polymer blending is a low-cost method which contributes in 

the development of a new product with better performance (Yu et al., 2006). The 

miscibility of the blends is very important to assure that the combination of the 

polymers can form good inter macromolecular complexes (Rajendran et al., 2003).  

 

 Xu et al. (2005) have carried out a study on water resistance, mechanical 

properties and compatibility of composite films based on starch and chitosan. They 

found that the interactions between starch and chitosan can form a tough film which 

prevents the water molecules from diffusing through the films. Khiar & Arof (2011) and 

Shukur et al. (2013) obtained good conductivity values (10-5 S cm-1) when they doped 

the starch/chitosan films with ammonium salts which proves that this is a promising 

blend for polymer electrolyte.  

 

 Several techniques have been used to study on the miscibility of the polymer 

blend host to check the influence of blend ratio on miscibility. The objective of this 

chapter is to understand the miscibility, amorphousness and compatibility of the 

starch/chitosan blend to serve as a polymer host based on FTIR, XRD, TGA, DSC and 

FESEM micrographs of the cross-sections polymer blend.  
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4.2 FTIR Analysis 

 

FTIR spectroscopy was carried out to understand the interactions between the 

starch and chitosan in the blend film. As mentioned by Buraidah et al., blending two or 

more polymers will provide more interaction sites for the ions to hop and exchange, 

hence increase the conductivity (Buraidah & Arof, 2011). The infrared spectra of acetic 

acid, chitosan powder, PB10, starch powder, PB0 and PB2 films in the region of 2900 

to 3800 cm-1 are presented in Figure 4.1. Acetic acid exhibits a broad band at           

3295 cm-1 which is attributed to hydroxyl, OH stretch from carboxylic acid. This 

location is almost similar as reported by Alias et al. (2014). The hydroxyl bands of 

chitosan powder appear at 3330 cm-1. Dissolving chitosan in acetic acid has shifted the 

bands to 3354 cm-1, as shown in PB10 spectrum. The hydroxyl bands of starch powder 

appear at 3262 cm-1 which then shifted to 3280 cm-1 in the spectrum of pure starch film 

(PB0) due to interaction with acetic acid. The ordered crystalline structures of starch 

were destroyed during gelatinization process leads to the exposure of OH groups. In 

acetic acid solution, the amino groups (NH2) of chitosan backbone were protonated to 

NH3
+ and form hydrogen bonds with OH from the starch (Bourtoom & Chinnan, 2008). 

When two or more substances are mixed, there are modifications in the characteristic 

spectra which reflect the interactions involving physical and chemical blends (Yin, Yao, 

Cheng, & Ma, 1999). Therefore, it can be seen that the hydroxyl band of PB2 film 

appears at 3288 cm-1.  
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 The schematic diagram of the interactions occurred between starch, chitosan and 

acetic acid in PB2 can be depicted in Figure 4.2. Starch and chitosan are interacted 

mainly through hydrogen bonding between the amylose group of starch and chitosan 

molecules (Mathew & Abraham, 2008). The branching structure of amylopectin has 

Figure 4.1: Infrared spectra of acetic acid, chitosan powder, PB10, starch 
powder PB0 and PB2 in the region of 2700-3900 cm-1. 
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greater steric hindrance thus prevents the chemical reactions to occur (Khanmirzaei and 

Ramesh, 2013). 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

The carboxamide; O=C-NHR and amine; NH2 bands exist at 1650 and 1573   

cm-1, respectively, in the spectrum of chitosan powder. Due to the interaction between 

chitosan and acetic acid (Osman & Arof, 2003), both bands appear at 1640 and 1549 

cm-1, respectively, in the spectra of PB10 as shown in Figure 4.3 (b). These positions 

are almost the same as reported by Buraidah & Arof (2011) and Kadir, Aspanut, Majid, 

& Arof (2011). The positions of the carboxamide and amine bands have shifted to 1639 

and 1548 cm-1, respectively in the spectra of PB2, which is comparable with the results 

reported by Xu et al. (2005). In a report by Liu, Adhikari, Guo, & Adhikari (2013), the 

position of the amide-I band at 1638.68 cm-1 in pure chitosan film has shifted to 

Figure 4.2: Schematic diagram of interaction between starch, chitosan and acetic 
acid in PB2 film (   represents hydrogen bonds). 
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1638.97 cm-1 in starch/chitosan film due to the interactions between the hydroxyl 

groups of starch and the amino groups of chitosan, despite of the small shift in the 

spectrum. 
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Figure 4.3: Infrared spectra of (a) chitosan powder, (b) PB10 and (c) PB2 
in the region of 1490-1590 cm-1. 
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It can be seen in Figure 4.4 that chitosan powder, PB10, starch powder, PB0 and 

PB2 films exhibit characteristic bands in the region of 955-1105 cm-1 attributed to 

saccharide stretching structure (Leceta, Guerrero et al., 2013; Liu et al., 2013; Tuhin et 

al., 2012). The C-O bond stretching in chitosan powder spectrum which is located at 

1067 and 1029 cm-1 have shifted to 1063 and 1023 cm-1, respectively, in chitosan film 

(PB10) spectrum. Alias et al. (2014) also reported the same phenomena when the band 

located at 1079 and 1036 cm-1 in chitosan powder have shifted to 1066 and 1016 cm-1, 

respectively, when they dissolved chitosan powder in acetic acid to form the chitosan 

film.  

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 Figure 4.4: Infrared spectra of (a) chitosan powder, (b) PB10, (c) starch powder 
(d) PB0 and (e) PB2 in the region of 955-1105 cm-1. 
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The C-O peaks located at 1075 cm-1 in starch powder, PB0 and PB2 spectra as 

shown in Figure 4.4 do not show any difference in wavenumber. However, the peak 

intensity in PB2 spectrum is found decreased, which is almost similar with the spectra 

reported by Mathew & Abraham (2008). They reported that the intensity of the peak at 

1082 cm-1 in starch film is decreased in the spectrum of starch/chitosan film, which 

reflects the chemical interactions occur when two different substances are physically 

mixed. Due to the overlapping bands detected in the region of interest in starch powder, 

PB0 and PB2 spectra, deconvolution has been performed using OMNIC software with 

Lorentzian-Gaussian function to verify the individual peaks with the value of regression 

coefficient ~1. The deconvoluted spectra are presented in Figures 4.5 to 4.7. The other 

C-O characterization peaks are located at 990 and 1045 cm-1 in starch powder, PB0 and 

PB2 spectra without any changes in wavenumber. However, those peaks which are 

found intense and broad in starch powder get less intense in PB0 and PB2 spectra. 

These  modifications  reflect  the  interactions  among  the  polymer molecules since any  

 

 

 

 

 

 

 

 

 

 

  

  
Figure 4.5: Deconvoluted of FTIR spectrum for starch powder in the region of 
940-1080 cm-1. 
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changes in either shape or intensity is correlated to chemical and physical interactions 

(Vicentini, Dupuy, Leitzelman, Cereda, & Sobral, 2005; Ramesh, Liew & Arof, 2011). 

 

 The peak located at 1022 cm-1 in starch powder spectrum is shifted to 1020 and 

1007 cm-1 in PB0 and PB2, respectively. Besides shifting, the peak becomes broader 

with increasing intensity which proves a good interaction between the polymers. 

Mathew and Abraham (2008) reported a high intensity peak at 1029 cm-1 in the 

spectrum of starch/chitosan blend film. Vicentini et al. (2005) also reported that the C-

O-H peak located at 1015 cm-1 in starch powder spectrum is shifted to 1012 cm-1 in the 

spectrum of starch film, which can be attributed to amorphous characteristic peak. Liu 

et al. (2013) reported the bands at 931, 1009 and 1077 cm-1 are resulted from the C-O in 

starch/chitosan film. Salleh et al. (2009) mentioned in their report that the absorbance 

peaks for chitosan films appeared at 1072 cm-1 is attributed to saccharide structures and 

C-O stretching vibrations, respectively. Teoh et al. (2012) also reported that the 

absorption at 995 and 1077 cm-1 are attributed to C-O-H and C-O stretching vibration in 

their starch sample. 

 

 

 

 

 

 

 

 

 

 
Figure 4.6: Deconvoluted of FTIR spectrum for PB0 in the region of 940-1080 cm-1. 
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4.3 XRD Analysis 

 

It is important to find the most suitable ratio of the polymer blend prior to serve 

as a polymer host. Chitosan is well-known of its properties such as good film-forming 

ability, flexible but mechanically strong and biodegradable (Liu et al., 2013). The 

amount of amylose and amylopectin in starch is closely related to the crystallinity of the 

blend film (Liu et al., 2013). Ratio of starch and chitosan plays important roles on the 

properties of the films such as miscibility, mechanical stability and water resistance 

(Bourtoom & Chinnan, 2008). To be exact, the choice is directed to the reduction in 

crystallinity of the polymer blend.  

 

Deconvolution is found useful in polymer studies and has been carried out to 

obtain better views on the XRD patterns for further investigation on the crystallinity and 

structural changes due to overlapping patterns in the electrolytes (Galeski, Argon, & 

Figure 4.7: Deconvoluted of FTIR spectrum for PB2 in the region of 940-1080 cm-1. 
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Cohen, 1991). The amorphous peaks are broad but they underlie the sharp and narrow 

crystalline reflections. Figures 4.8 and 4.9 show the deconvoluted XRD diffractograms 

of starch/chitosan blend films. The baseline correction was done prior to fit multi-peaks 

using Gaussion distribution. The areas under the deconvoluted peaks were used to 

calculate the degree of crystallinity using equation: 

 

%100



T

aT
c

A

AA
  

 

with the aid of Origin 9.0 software using a non-linear least square fitting method, where 

ATis the total humps and Aa is the amorphous area of the electrolyte (Fadzallah et al., 

2014).  

 

The deconvolution pattern of PB10, PB9, PB8, PB7, PB6 and PB5 blend films 

can be depicted in Figure 4.8. It can be observed that the PB10 diffractogram consists of 

two broad amorphous peaks at 2 = 19.3˚ and 38.9˚. Three crystalline peaks at 2 = 

12.5˚, 16.1˚, and 22.4˚ have surfaced which similar with the peaks reported by Aziz et al. 

(2012) and Fadzallah et al. (2014). 
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Figure 4.8: Deconvoluted XRD pattern of PB10 to PB5 blend films. 
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It is observed that new peaks start to appear as the chitosan is blended with 

starch. As can be seen in XRD pattern of PB9 in Figure 4.8, a new crystalline peak 

appears at 2 = 14.8˚, ensuring that the addition of 10 wt.% of starch has resulted on a 

slight modification to the film without changing the property individually which proven 

by the retaining of two amorphous peaks at 2 = 20.3˚ and 40.7˚. As the starch content 

increases, the locations of crystalline peaks change as well as the amorphous peaks 

location. All ratios; PB9, PB8, PB7, PB6 and PB5; exhibit four crystalline and two 

amorphous peaks in their XRD diffractograms.  

 

Deconvolution of PB4, PB3, PB2, PB1 and PB0 films are shown in Figure 4.9. 

The XRD pattern of PB0 film reveals that there are five crystalline peaks appear at 2θ = 

13.7°, 15.1°, 16.7°, 19.4° and 22.4° besides two amorphous peaks centered at 2θ = 20.5° 

and 37.5°. All patterns except PB4 reveal that there are four crystalline peaks with two 

broad amorphous peaks. However, crystalline peaks presented in PB4 at 2θ = 14.5°, 

24.8° and 28.9° show higher intensity inferring that the crystallinity value has increased. 

The crystalline peaks for PB3 appear at 2 = 15.0˚, 17.3˚, 20.1° and 22.4˚ with two 

amorphous peaks appear at 2 = 19.2˚ and 35.4˚. These deconvolution patterns reveal 

that the polymers retained their individual behaviors in the polymer blend film due to 

the location of the crystalline and amorphous peaks. Further addition of starch has 

slightly shifted the crystalline peaks in PB2 to 2 = 14.2˚, 16.9˚, 23.9˚ and 27.9˚ while 

the amorphous peaks have shifted to 2 = 20.7˚ and 34.7˚. Deconvolution of PB1 

pattern shows that the amorphous peaks are located at 2 = 20.4˚ and 35.1˚ which 

almost similar with PB2. The crystalline peaks with higher intensity appear at 2  = 

16.1°, 17.2°, 19.5° and 22.5°, showing that this ratio is also crystalline as the pure starch 

film (PB0).  

 

Univ
ers

ity
 of

 M
ala

ya



 
  66 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.9: Deconvoluted XRD pattern of PB0 to PB4 blend films. 
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From the XRD patterns, it can be depicted that PB2 gives the broadest 

amorphous peaks with less intense crystalline peaks among other ratios. Based on the 

deconvoluted peaks, degree of crystallinity of the films have been calculated and listed 

in Table 4.1.  

 

         Table 4.1: Degree of crystallinity of starch/chitosan blend films. 

Samples Degree of crystallinity (Xc) 

PB0 21.10 

PB1  20.49  

PB2 15.30 

PB3 16.55 

PB4 16.27 

PB5 17.39 

PB6 17.80 

PB7 18.30 

PB8 18.40 

PB9 19.37 

PB10 19.64 

 

 

It is shown from the Table 4.1 that PB2 possesses the lowest crystallinity value. 

This proves that this ratio is the most amorphous polymer blend. The interactions 

between the hydroxyl groups of starch, chitosan and NH group from chitosan as 

discussed in FTIR analysis section, also play important roles in reducing the 

crystallization of the blend (Mathew & Abraham, 2008). Zhai et al. (2004) reported that 

an obvious improvement has been shown when chitosan was incorporated into starch 

and dried at room temperature. They claimed that the films tensile strength highly 

increased by incorporating 20% chitosan but difficult to form a homogenous 

starch/chitosan mixture with a higher content of chitosan. In their studies, XRD result 
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for a blend comprises of pure 20 wt% chitosan and 80 wt% corn starch shows the most 

amorphous pattern and therefore, the present result is in good agreement with Zhai et al. 

(2004). Literally, a blend of crystalline polymers with poor miscibility will result on the 

appearance of separate crystalline regions according to individual domain (Sakurai et al., 

2000). In contrast, when the molecular chains of both polymers are mixed so well, they 

cannot crystallize but instead, need to be arranged in three-dimensional space in order to 

crystallize. It can be seen that the crystalline domains in PB2 are suppressed which 

proven by the lowest degree of crystallinity. This result also strengthens the fact that 

PB2 is the most amorphous blend ratio and suitable to serve as the polymer host. 

 

 Figure 4.10 exhibits the X-ray diffractograms of all ratios of the starch/chitosan 

blend films. Deconvolution technique has already presented where the diffractogram of 

the starch/chitosan blend films have additional crystalline peaks apart from the obvious 

peaks depicted in Figure 4.10. When all XRD patterns are combined, two obvious 

crystalline peaks can still be detected in PB0 film where the locations are almost similar 

with the peaks reported by Liu et al. (2013), Mathew & Abraham (2008) and Wu, Ji, Qi, 

Wang, & Zhang (2004). A broad crystalline peak was detected at 2 = 23° in the PB10 

film which is comparable with XRD patterns by Mathew & Abraham (2008) and 

Hasegawa, Isogai, Onabe, Usuda, & Atalla (1992). However, as already been discussed 

and evaluated from XRD deconvolution pattern, PB2 pattern is abruptly changed where 

all crystalline peaks due to starch and chitosan are disappeared.  Amorphous regions are 

formed by demolishing their individual crystalline regions and consequently proves that 

the polymers are miscible and well-mixed at the molecular level (Mathew & Abraham, 

2008). Without deconvolution, it still can be concluded that PB2 is the most amorphous 

ratio among others as depicted in Figure 4.10. 
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4.4 TGA Analysis 

 

TGA measurement is carried out to study the thermal stability and phase 

transition of the pure films and pure blend films. Figure 4.11 shows the TGA 

thermograms of PB0, PB10 and PB2 films. The thermal degradation initially starts as 

the temperature increased up to 150˚C due to dehydration of water, elimination of 

residue of acetic acid and impurities in the polymer electrolytes which involving around 

10-12% weight loss (Lewandowska, 2009; Liew, Ramesh, & Arof, 2014a). The 

hydroscopic nature of the polymer also contributes to the insignificant weight loss at 

this stage (Lu et al., 2009), which is similar as reported by Noor et al. (2012) and 

Figure 4.10: The XRD patterns of all ratios of starch/chitosan polymer blend. 
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Lewandowska (2009). At 230-450˚C, major weight loss of ~50% in pure chitosan film 

(PB10) is attributed to the decomposition and deacetylation of chitosan (Wang et al., 

2005). Compared to the decomposition of pure starch film (PB0) which starts at 280-

410˚C with major weight loss ~85%, it can be seen that pure starch film can stand 

higher temperature compared to pure chitosan film. 

 

According to Ramesh, Shanti, & Morris (2012), this one step huge weight loss 

process is attributed to the depolymerization of the polymer electrolyte. At this 

temperature, the monomers, which are amylose and amylopectin detached from their 

long polymer chain while forming aromatic and cross-linked structures as the 

degradation behaviors of starch and chitosan film individually are retained in the blend 

film. Starch/chitosan blend (PB2) film starts to decompose at around 270˚C and shows 

~30% material left which proves that blending starch with chitosan has improved the 

film stability. 

 

 

 

  

   

  

 

 

 

 

 

 
                           Figure 4.11: TGA thermograms of PB0, PB10 and PB2 films. 
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4.5 DSC Analysis 

 

The thermal properties of the polymer blend electrolytes have been studied in 

order to verify the miscibility of the blend films. The values of Tg are taken as the 

midpoint of the heat capacity transition, from glassy state to rubbery condition (Lau & 

Mi, 2002). The Tg of natural polymers are still under discussion among most researchers 

(Liu, Yu, Liu, Chen, & Li, 2009; Neto et al., 2005). This affected by several properties 

of natural polymers such as degree of deacetylation, molecular weight and cystallinity 

which can present in wide variation depending on the source and extraction method, 

which lead to different values of Tg (Bonilla, Fortunati, Atarés, Chiralt, & Kenny, 2014; 

Neto et al., 2005; Rotta, Minatti, & Barreto, 2011). Processing conditions have an 

important role on the final blend materials, hence influenced the physical and thermal 

properties of the polymer blend. The Tg values of PB0 and PB10 can be depicted in 

Figure 4.12 and 4.13, respectively. The Tg of PB0 obtained is within the temperature 

range of 30 to 95˚C as reported by Zeleznak & Hoseney (1987) for starch containing 

10-18 % moisture. The Tg of PB10 is close to the value reported by Liu et al. (2013) 

which is 82.1˚C with 18.18% moisture content.  
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   Figure 4.12: Tg of PB0 film. 

   Figure 4.13: Tg of PB10 film. 
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Figures 4.14 to 4.20 depict the Tg value of selected blend films. The interactions 

effect of compatible and miscible polymers on Tg implies that the value will fall at 

intermediate range between the values of the individual pure polymers (Barbani et al., 

2005; Bonilla et al., 2014; Lau & Mi, 2002). van den Broek, Knoop, Kappen, & Boeriu, 

(2015) reported that the influence of chitosan on the thermal properties of any polymer 

blends is different for each combination. PB1, PB2, PB3, PB4, PB5, PB6 and PB8 

exhibit Tg values of 88.41, 86.51, 88.96, 88.81, 88.78, 87.29 and 88.74˚C, respectively. 

Each blend film possesses different Tg, implying the different ratio or content of starch 

and chitosan. However, the Tgs are in the intermediate range between the Tg of starch 

and the Tg of chitosan films. The shift in Tg value points to the good miscibility of both 

macromolecules (Bonilla et al., 2014; Cheung, Wan, & Yu, 2002). 

 

 The addition of starch with chitosan has interrupted the arrangement of molecule 

chains in starch, hence slightly shifts the Tg value of the starch film, confirming the 

interaction between these two polymers (Liu et al., 2013; Lopez et al., 2014). This 

phenomenon can be described in terms of intermolecular forces. In crystalline phase of 

starch, the interactions between polymeric chains are strong due to their chemical 

compatibility. When chitosan is added, there are modifications in the crystal lattice 

formulations and both polymers can interact mainly through hydrogen bonding (Cheung 

et al., 2002; Lau & Mi, 2002; van den Broek et al., 2015). However, the interactions 

between starch chains have become weaker, thus less energy is required to break them 

apart (Lopez et al., 2014). Tg of PB2 exhibits the lowest value, confirming the highly 

amorphousness of the blend compared to other ratios. These results are in good 

agreement with XRD observation and conclude that the components in the ratio are 

miscible with each other (Pareira, Paulino, Nakamura, Britta, Rubira, & Muniz, 2011).  
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 Figure 4.15: Tg of PB2 film. 
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     Figure 4.14: Tg of PB1 film. 
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      Figure 4.17: Tg of PB4 film. 
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   Figure 4.16: Tg of PB3 film. 
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   Figure 4.19: Tg of PB6 film. 

   Figure 4.18: Tg of PB5 film. 
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4.6 FESEM Analysis 

 

FESEM micrographs of cross-section of the blend film are crucial in confirming 

the miscibility between the starch and chitosan as the polymer host. Figures 4.21 (a) to 

(c) exhibit the micrographs of the cross-sections and the surface micrographs. As can be 

seen in Figure 4.21 (a) and (b), both starch (PB0) and chitosan (PB10) films exhibit 

rough cross-sections surface. Starch film possesses a shrinkage pattern film with some 

withered granules which consistent with the results reported by Salleh et al. (2009) and 

Liu et al. (2013). Muscat, Adhikari, Adhikari, & Chaudhary (2012) also reported that 

the starch films were brittle and highly cracked at room temperature. In contrast with 

starch film surface, chitosan film shows a smooth and homogenous surface. PB2 film 

   Figure 4.20: Tg of PB8 film. 
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exhibits a similar surface pattern with PB10, as shown in Figure 4.21 (c). This result 

also has a similar pattern with the one reported by Liu et al. (2013), indicating the 

chitosan and starch are miscible into each other without the presence of undissolved 

starch granules. Literally, a blend of crystalline polymers with poor miscibility will 

result on the appearance of separate crystalline regions according to individual domain 

(Sakurai et al., 2000). The smooth cross-section of the blend has supported the fact that 

blending starch and chitosan will enhance the compatibility of the electrolyte to serve as 

polymer blend host. A report by Lopez et al. (2014) also exhibited a smooth, uniform 

and unlayered cross-section surface when corn starch is blended with chitosan, which is 

similar with the present work. Zhai et al. (2004) suggested that the interactions between 

starch and chitosan molecules resulted on the dispersion of chitosan microdomains 

within the starch matrix in the blend film especially between the chitosan and amylose 

of starch molecules, compared to the branched chain of amylopectin (Mathew & 

Abraham). The PB2 surface reveals slight traces of the starch granules from which the 

amylose molecules have leached out during gelatinization. From the smooth pattern 

obtained, it can be concluded that the mixture of starch and chitosan is compatible since 

the presence of chitosan has suppressed the crack and shrink which appear in starch film, 

hence make it a good candidate to serve as polymer host.   
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Figure 4.21: FESEM micrographs of PB0, PB10 and PB2 films. 
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4.7  Summary 

 

FTIR analysis confirmed the interaction between acetic acid, starch and chitosan. 

To strengthen the XRD results, deconvolution has been carried out and crystallinity 

values have been calculated. When the molecular chains of both polymers are mixed so 

well, they cannot crystallize but instead, need to be arranged in three-dimensional space 

in order to crystallize. It can be seen that the crystalline domains in PB2 are suppressed 

which proven by the lowest degree of crystallinity. TGA analysis reveals that the 

degradation behaviors of starch and chitosan film individually are retained in the blend 

film. Tg values obtained from DSC are in good agreement with XRD observation and 

conclude that the components in PB2 are miscible with each other. Hence in the present 

study, PB2 blend is expected to host a reasonable fast ionic conduction compared to 

other blend compositions due to the interactions between the OH groups from starch 

and chitosan; and NH group from chitosan as discussed in FTIR analysis section, which 

resulted on the reduction of crystallinity region. FESEM micrographs also prove that the 

smooth pattern obtained for PB2 blend indicates that the starch and chitosan are 

miscible into each other. From all the results presented above, it can be proven that the 

blend of 80 wt.% starch and 20 wt.% chitosan is well formed and suitable to serve as 

polymer blend host. 
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CHAPTER 5: FOURIER TRANSFORM INFRARED (FTIR) STUDIES 

 

5.1 Introduction 

 

In this chapter, FTIR analysis is analyzed to determine the interactions of 

starch/chitosan-NH4I and starch/chitosan-NH4I-glycerol by observing the changes in the 

peak positions or wavenumbers of the functional groups that exist in the spectrum. 

These results can be used to identify the species and the chemical processes involved in 

the reactions occurred in the systems. Researchers have widely used FTIR as a direct 

method to monitor the band shifts or changes of the spectral peaks wavenumbers of 

certain functional groups in polymer electrolyte systems (Hema et al., 2009; Liu et al., 

2013). 

 

Polymer blending is an alternative to provide more complexation sites for ion 

migration and exchange which lead to the increase in ionic conductivity (Buraidah & 

Arof, 2011). Previous studies have shown that blending of polymers may enhance the 

conductivity value better than individual polymer host (Khiar & Arof, 2011; Shukur et 

al., 2013). As determined in Chapter 4, the blend of 80 wt.% starch and 20 wt.% 

chitosan has been proven to be the most amorphous blend to serve as the polymer blend 

host. The FTIR spectra of the blend also justified that the modifications from the 

blending technique resulted on the interactions among the electrolyte components 

(Shukur, 2015; Kadir et al., 2011). The starch and chitosan are interacted mainly 

through hydroxyl, amine and carboxamide groups. To ensure the polymer blend host 

can serve as an electrolyte, NH4I salt is added into the system to provide the charge 

carriers. The addition of NH4I has brought new functional groups hence new chemical 

interaction may occur, which can be studied from the FTIR results. The cation of the 
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doping salt will form a dative bond with nitrogen and/ or oxygen, thus a polymer-salt 

complex can be formed. 

 

5.2 Interaction between Starch/chitosan-NH4I (Salted System)  

 

Figure 5.1 shows the FTIR spectra for polymer-salt complexes in the hydroxyl 

band region between 2900 to 3500 cm-1. From the figure, it is observed that the addition 

of 10 and 20 wt.% NH4I has down shifted the hydroxyl band of PB2 from 3288 cm-1 to 

3286 and 3272 cm-1, respectively. The hydroxyl band shifting trend is similar with the 

results reported by Shukur et al. (2013) when the blend of PEO-chitosan interacts with 

NH4NO3. Hydroxyl bands are found strong and broad in A1 and A2 electrolytes as 

depicted in Figure 5.1. The hydroxyl stretching bands remain under constant review, 

and differing viewpoints concerning the position and orientation of the hydroxyl groups 

exist (Frost & Johansson, 1998). Teoh et al. (2012) reported that the strong and wide 

absorption at 3309 of pure corn starch samples indicates the presence of OH groups in 

their system that is comparable with this work. When 30 wt.% of NH4I is added, two 

peaks start to appear. The intensity of the peaks increases as the salt content increases. 

The appearance of those peaks is due to the overlapping of hydroxyl band, the 

asymmetry vibration; as (NH4
+) mode and symmetry vibration; s (NH4

+). The 

deconvolution technique using Lorentzian-Gaussian function is employed to extract the 

exact peak positions of the overlapping patterns and presented in Figure 5.2 and 5.3. 

Three deconvoluted peaks are obtained from A3 and A4 spectra. It can be seen that the 

addition of 30 and 40 wt.% NH4I has shifted the hydroxyl band to 3324 and 3338 cm-1, 

respectively. Another two peaks which located at 3179 and 3037 cm-1 in A3 and 3175 

and 3047 cm-1 in A4 spectra are due to vas(NH4
+) and vs(NH4

+) peaks. On the addition of 
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salt into the polymer host, the cation is expected to coordinate within the polymer host 

which may influence the original structure of the polymer backbone and affected certain 

infrared active mode of vibrations (Hema et al., 2009). This also another evidence of 

interaction between the cation and the hydroxyl group of the polymer blend (Kadir et al., 
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Figure 5.1: FTIR spectra for PB2 and selected electrolytes in salted system in the 
region of 2900-3500 cm-1. 
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2010). The anions, I- and cations, NH4
+ mostly interact with H and O atoms in starch 

and chitosan. Thus, both H and O atoms are occupied and difficult to form hydrogen 

bonds with water molecules (Ramesh et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Further addition of 60 wt.% NH4I, as (NH4
+) mode and s (NH4

+) mode seem to 

dominate and appear at 3057 and 2983 cm-1, respectively, as depicted in Figure 5.3 (a). 

These two peaks are located at 3053 and 2981 cm-1, respectively, in the spectrum of 

Figure 5.2: Deconvoluted FTIR spectra for A3 and A4 in the region of 2900-
3600 cm-1. 

  

290032503600

3338 
3175 

3047 A
bs

or
ba

nc
e 

(a
.u

.) 

Wavenumber (cm-1) 

A4 

(b) 

  

290032503600

3324 

3179 

A3 

3037 

Wavenumber (cm-1) 

A
bs

or
ba

nc
e (

a.
u.

) 

(a) 

Univ
ers

ity
 of

 M
ala

ya



   

 
85 

pure NH4I salt as shown in Figure 5.3 (b). Based on XRD results in Chapter 7, when 

more than 40 wt.% is added, the mobile ions tend to reassociate back to become neutral 

ion pairs. The significant appearance of as (NH4
+) and s (NH4

+) modes have shed some 

lights on the ions reassociation that will lead to conductivity decrement when more than 

40 wt.% of NH4I is added in the salted system. 

 

 

  

  

 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

Figure 5.3: Deconvoluted FTIR spectra for A6 and pure NH4I in the region 
of 2750-3350 cm-1. 
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 The carboxamide band is located at 1639 cm-1 in the spectum of PB2 electrolyte 

as depicted in Figure 5.4. The band is downshifted to 1635, 1627 and 1620 cm-1 in the 

addition of 10, 20 and 40 wt.%, respectively, inferring that complexation has occurred 

between the starch/chitosan blend and NH4I salt. The shifting towards lower 

wavenumbers an indication of more hydrogen bonding interactions have occured 

between the components, where cations; H+ and NH4
+ will attach to C=O (Khoo, 

Frantzich, Rosinski, Sjöström, & Hoogstraate, 2003). When more than 40 wt.% salt is 

added, the  band  shifted to 1632 cm-1. The  shift  towards  higher  wavenumber inferred  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.4: FTIR spectra for PB2 and selected electrolytes in the salted system in 
the region of 1565-1715 cm-1. 
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that the saturation of salt leads to ions recombination hence reduced the interaction 

between the polymer host and the salt at oxygen atoms of carboxamide groups. 

 

Figure 5.5 depicts the amine band region between 1490 to 1580 cm-1. The amine 

band of PB2 is located at 1558 cm-1. The addition of NH4I up to 40 wt.% has shifted the 

band towards lower wavenumbers. This result proves the interaction within 

starch/chitosan-NH4I electrolyte at nitrogen atom of amine group (Shukur et al., 2013). 

However, when more than 40 wt.% NH4I is added, the amine band cannot be detected,  

 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 

 
Figure 5.5: FTIR spectra for PB2 and selected electrolytes in the salted system 
in the region of 1490-1580 cm-1. 
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suggesting that the electrolyte contains too much salt hence the ions reassociate back to 

form neutral ion pairs. 

 

Figure 5.6 shows the saccharide bands region between 955 to 1055 cm-1. These 

bands oftenly assigned as vibration modes of C-C and C-O stretching, and the bending 

mode of C-H bonds (Liu et al., 2013). The band observed at 1007 cm-1 in the spectrum 

of PB2 is attributed to C-O-H band vibration as reported by Bergo, Sobral, & Prison 

(2009) while the band at 990 cm-1 is attributed to the stretching vibration of C-O in C-O-  
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Figure 5.6: FTIR spectra for PB2 and selected electrolytes in the salted system 
in the region of 955-1055 cm-1. 
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C group (Teoh et al., 2012). The bands exist in this region for PB2 have been further 

discussed in Chapter 4 and the deconvolution spectrum is presented in Figure 4.7. Both 

peaks are found shifted to higher wavenumbers up to 998 and 1014 cm-1 as the polymer 

blend is doped with NH4I, proving the interactions between starch/chitosan with NH4I 

(Ramesh et al., 2011). The new bands are located at new locations in A1, A3 and A4, 

respectively. However, when 60 wt.% of NH4I is added, the intensity of the band 

becomes very low as depicted in Figure 5.6 due to overloaded of NH4I within the 

polymer host. Deconvolution has been used to further analyze the FTIR spectra as can 

be seen in Figures 5.7 to 5.9. 

 

 

 

 

 

 

 

 

 

 

 

 

The bands located at 1009 and 992 cm-1 in A1 have shifted to 1012 and 996 cm-1 

respectively in A3 spectrum. The bands have further shifted to 1014 and 998 cm-1 in A4 

spectra.  

 

 

Figure 5.7: Deconvoluted FTIR spectra for A1 in the region of 955-1065 cm-1. 
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The intensity of the band at 998 cm-1 has reduced before almost disappear in the 

spectra of A6. Vicentini et al. (2005) reported that these bands are sensitive to 

crystallinity, hence any changes in shape and intensity within this region is correlated to 

the transition from amorphous to semicrystalline state or vice versa. This could 

strengthen the fact that the conductivity in this work have decreased due to the 

recrystallization of the salt. 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Deconvoluted FTIR spectra for A3 in the region of 955-1065 cm-1. 

Figure 5.9: Deconvoluted FTIR spectra for A4 in the region of 955-1065 cm-1. 
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5.3 Interaction between Starch/chitosan-NH4I-Glycerol (Plasticized System) 
 

Figure 5.10 depicts the FTIR spectra of selected samples for plasticized system 

in the region of 3075-3595 cm-1. The broad band is attributed to OH stretching vibration. 

This hydroxyl band has shifted to lower wavenumbers as the amount of glycerol 

increased, which implied that the addition of glycerol promotes the hydrogen bonding 

interactions between the electrolyte components (Nie, Stutzman, & Xie, 2005). Glycerol 

has multihydroxyl moiety structure and possesses  the  strong ability to interact  with the  

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure 5.10: FTIR spectra for A4 and selected electrolytes in the plasticized 
system in the region of 3075-3595 cm-1. 
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polysaccharide group through hydrogen bonding interactions (Shukur et al., 2014). 

According to Liu et al. (2013), when the glycerol concentration in the matrix is 

increased, more OH groups are available for starch-glycerol and/or chitosan-glycerol 

interactions. They reported that the hydroxyl band has shifted from 3339.57 cm-1 to 

3336.82 cm-1 in starch/chitosan film containing 5 wt.% and 10 wt.% of glycerol, 

respectively. In B3 spectrum, a broad hydroxyl band starts to form due to the fact that 

further addition of glycerol allows the formation of linkages between the plasticizer 

which cause the salt to recrytallize, resulting in conductivity decrement. 

 

To further identify the hydroxyl bands, deconvolution has been carried out for 

selected electrolytes in plasticized system as shown in Figures 5.11 to 5.14. From the 

deconvolution patterns, it can be observed that the hydroxyl band is more intense for the 

samples with higher glycerol concentrations. As depicted in Figure 5.11, there are three 

overlapping peaks in the spectrum of B1 electrolytes located at 3333, 3235 and 3172 

cm-1. The peaks at 3235 and 3172 cm-1 are correlated toas (NH4
+) and s (NH4

+) modes 

of the salt, which originated from A4 spectrum.  
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Figure 5.11: Deconvoluted FTIR spectrum for B1 in the region of 3000-3600 cm-1. 
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The interaction between glycerol and the salted polymer blend is reflected by the 

changes of the characteristic spectra. Hydrogen bonding has formed between the OH 

group of starch/chitosan blend, NH4
+ from salt, NH group from chitosan and oxygen 

atom from glycerol. In the deconvolution spectrum of B2, the bands shift to 3328, 3254 

and 3163 cm-1 corresponded to the change in glycerol concentration as the peaks 

become closer to each other.   

 

 

 

 

   

 

 

 

 

 

  

 

The deconvoluted of FTIR spectrum for B3 is depicted in Figure 5.13. Two 

bands have merged hence only two bands appeared; one is a broad band located at 3314 

cm-1 and that of the other is at 3195 cm-1. The IR band shows the tendency to approach 

the glycerol position as the glycerol concentration is increased. This phenomenon is 

attributed to the hydrogen bonds formed between the hydroxyl groups of the glycerol 

and the salted polymer blend structures that do not contribute towards conductivity 

enhancement (Cerqueira, Souza, Teixeira, & Vicente, 2012; Liu et al., 2013). 

 

Figure 5.12: Deconvoluted FTIR spectrum for B2 in the region of 3000-3600 cm-1. 
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The addition of plasticizer promotes ions dissociation hence more free ions will 

interact with polymer host at the hydroxyl band as evidenced by the band shifting. 

During ionic conduction, the O atom in hydroxyl groups of glycerol will complex with 

cations (H+ and NH4
+). This has been verified by FTIR analysis as reported by Kadir et 

al. (2011) and Shukur (2015).  In B4 deconvoluted FTIR spectrum, the hydroxyl bands 

shifted to 3309 and 3180 cm-1. As shown in Figure 5.14, the band appeared at 3180 cm-1 

has become less intense indicating that too much of glycerol exist in the polymer blend. 

This phenomenon leads to the lack of interactions between the salted polymer blend and 

the glycerol when the glycerol content is more than 40 wt.%. As reported by Shalu, 

Singh & Singh (2015), the amount of uncomplexed ionic liquid (IL) is increased as they 

increased the IL content. It can be seen from the increasing intensity of the 

deconvoluted y peak located at 3106 cm-1 which attributed to the excess IL and failed to 

complex with the polymer host. The increased of glycerol-glycerol interaction is 

associated with the decrement in ionic conductivity. Cerqueira et al. (2012) also 

reported that the deconvolution origins two more peaks with higher intensity of OH 

bonds for the sample containing highest concentration of glycerol. Figure 5.15 shows 

Figure 5.13: Deconvoluted FTIR spectrum for B3 in the region of 3000-3600 cm-1. 
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the deconvolution pattern of glycerol where only one broad band due to hydroxyl band 

can be detected at 3279 cm-1. 
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Figure 5.14: Deconvoluted FTIR spectrum for B4 in the region of 3000-3600 cm-1. 

Figure 5.15: Deconvoluted FTIR spectrum for glycerol in the region of 3000-3600 cm-1. 
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Figure 5.16 depicts the FTIR spectra of selected plasticized samples in the 

region of 1560-1700 cm-1. The peak located at 1620 cm-1 in the spectrum of A4 that is 

attributed to carboxamide group, has shifted to higher wavenumbers up to 1634 cm-1 

after the glycerol is added. This indicates that the addition of glycerol promotes the 

bonding interactions among starch, chitosan, NH4I and glycerol (Liu et al., 2013). 
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Figure 5.16: FTIR spectra for A4 and selected samples in plasticized system 
in the region of 1560-1700 cm-1. 
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Figure 5.17 depicts the FTIR spectra of selected plasticized samples in the 

region of 1490-1570 cm-1. The peaks located in this region are attributed to amine group, 

shifted towards higher wavenumbers as the glycerol concentration increases. The 

absorption at amine bands suggests the interactions between glycerol and salted 

starch/chitosan at nitrogen atom of amine group, even at low plasticizer content. 

However, the intensity of the band has decreased when more than 30 wt.% of glycerol is  
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Figure 5.17: FTIR spectra for A4 and selected samples in plasticized system in the 
region of 1490-1570 cm-1. 
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added. When too much glycerol is added, the glycerol molecules tend to form bridges 

among themselves hence decreased the interactions with other molecules (Liew and 

Ramesh, 2015). 

 

Figure 5.18 depicts the FTIR spectra of selected samples for the system in the 

region of 955-1055 cm-1. The peaks observed at 1014 cm-1 in the spectrum of A4 

sample  has  shifted  to 1016 cm-1 in the spectrum of B1 and  further increased  to higher 

 

  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
  
 
 
 
 
 
 
 
 

Figure 5.18: FTIR spectra for A4 and selected samples in plasticized system in the 
region of 955-1055 cm-1. 
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wavenumbers with the increment of glycerol content. This can be associated with the C-

O-H and C-O-C vibrations (Vicentini et al., 2005). As the glycerol concentration 

increases, Bergo et al. (2009) reported that the peak observed at 1011.8 cm-1 in the 

spectrum of starch film without glycerol shifted to higher wavenumbers once the 

glycerol is added, which is comparable with this work. Ramesh et al. (2011) also 

reported an upward shifting at 1011 cm-1 due to C-O stretching mode of corn starch in 

their plasticized corn starch-LiPF6 system. These bands are also correlated to 

amorphous characteristic of the material (Vicentini et al., 2005, Ramesh et al., 2011). 

 

 The deconvolution patterns of B1 and B2 samples in the region of 960-1080 cm-

1 are depicted in Figure 5.19 and 5.20, respectively. The C-O-H and C-O-C bands at 

1014 and 998 cm-1, respectively, in A4 spectrum have shifted to 1016 and 996 cm-1 in 

B1 spectrum due to the interaction of salted polymer blend with glycerol. The changes 

within this region are believed to be reliable indicators to justify the interactions occur 

between glycerol with other components (Liu et al., 2013). 
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Figure 5.19: Deconvoluted FTIR spectrum for B1 in the region of 960-1080 cm-1. 
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 As the glycerol concentration increases, the band at 1016 cm-1 has shifted to 

1018 cm-1 in B2. Meanwhile, the band located at 996 cm-1 has shifted to 990 cm-1 in B2, 

and the intensity of this band starts to increase. When more than 20 wt.% of glycerol is 

added, the band at 990 cm-1 in B2 has separated and grown apart from the band at 1018 

cm-1, following the glycerol spectrum as depicted in Figure 5.18.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The possible interactions occur within plasticized system is illustrated in Figure 

5.21. H+ and NH4
+ are the charge species which play important roles in conduction 

mechanism. 
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Figure 5.20: Deconvoluted FTIR spectrum for B2 in the region of 960-1080 cm-1. 
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5.4 Summary 
 
 

The interactions between the polymer blend, NH4I and glycerol are proven from 

the changes in wavenumbers at hydroxyl, amine, carboxamide and saccharides (C-O-H 

and C-O-C) regions. The hydrogen bonding has formed between the OH group of 

starch/chitosan blend, H+ and NH4
+ from salt, NH2 group from chitosan and OH group 

of glycerol thus reflected through FTIR spectra. The nitrogen atoms of amine groups 

also provide the coordination sites for the cations to move around. Glycerol possesses 

hydroxyl groups where the oxygen atom will complex with cations (H+ and NH4
+) 

during ionic conduction. The addition of glycerol in electrolytes will provide new 

pathways for ion conduction which can dissociate more salt to become free ions hence 

promotes the interactions with the polymer host.  

 
 
 

Figure 5.21: Schematic diagram of possible interactions in plasticized system. 
H+ plays an important role in conduction mechanism. 
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CHAPTER 6: ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 

STUDIES 

 

6.1 Introduction 

 

 Electrical conductivity is the most significant study concerning polymer 

electrolytes. The main objective of this chapter is to study the conductivities at room 

and elevated temperatures, to understand the electrical conduction trend and transport 

mechanism in starch/chitosan-NH4I and starch/chitosan-NH4I-glycerol systems. From 

this chapter, the effect of incorporating salt and plasticizer can be investigated based on 

the ionic conductivities. The Rice and Roth model is employed to determine the 

mobility and number density of the ions which leads to a better understanding of the 

conductivity variation. 

 

The conductivity trend can be further understood by dielectric studies and give a 

better understanding about the conductive behavior of polymer electrolyte (Ramesh, 

Yahaya, & Arof, 2002). The dielectric study helps to understand the trend of 

conductivity and also gives the important insights of the polarization effect at the 

electrode/ electrolyte interfaces (Howell, Bose, Macedo, & Moynihan, 1974). The 

dielectric constant determines the amount of charge that can be stored by a material and 

correlates the conductivity with the increase in free mobile ions (Khiar, Puteh, & Arof, 

2006). In this chapter, dielectric properties such as dielectric constant, dielectric loss, 

ion relaxation and electrical modulus in salted and plasticized systems will be discussed. 
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6.2 Impedance Studies 

 

Figures 6.1and 6.2 depict the Cole-Cole plots of selected samples in salted 

system at room temperature. It can be seen from Figure 6.1(a) that A1 shows an 

incomplete semicircle curve while the Cole-Cole plots of A3 Figure 6.1(b) consist of a 

semicircular at high frequency and an adjacent line at low frequency region.  

 

The equivalent circuits corresponding to the Cole-cole plots are also provided 

with the figure. The semicircle represents the bulk conductivity due to the parallel 

combination of bulk resistance and bulk capacitance of the polymer electrolytes 

(Malathi et al., 2010) while the adjacent line is attributed to the effect of electrode 

polarization, which is a characteristic of diffusion process (Samsudin et al., 2012). The 

value of bulk resistance (Rb) for Figure 6.1(a) which only consists of a semicircle is 

determined from the intercept of the semicircle with the real axis. The Rb value for 

Figure 6.1 (b) is determined from the interception of semicircle with the adjacent line, 

as shown in the figure.  

 

When the capacitance is ideal, only the tilted line will appear in the impedance 

plot of A4 while the semicircle part has disappeared as can be seen in Figure 6.2 (a). 

The equivalent circuit corresponding to the Cole-cole plot is provided with the figure.  
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 Figure 6.1: Cole-Cole plot of (a) A1 and (b) A3 at room temperature. 
Provided below each figures are the corresponding equivalent circuit. 
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Figure 6.2: Cole-Cole plot of (a) A4 and (b) A6 at room temperature. 
Provided below each figures are the corresponding equivalent circuit. 
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The tilted line which inclined at an angle () less than 90˚ suggests that only the 

resistive component of the polymer prevails (Hema et al., 2008). The Rb value is 

determined by the interception of the line with the real axis as shown in the figure. The 

Rb value is found increased in A6. It is also observed in Figure 6.2 (b) that the semicircle 

part for A6 is bigger compared to A3 due to different ionic conductivity when different 

amount of salt was added. Ion aggregation occurs as the salt content has been increased 

to 60 wt.% which leads to conductivity decrement. The blocking electrodes were used; 

hence the electrode/electrolyte surface is regarded as a capacitance (Samsudin et al., 

2012). 

 

Figure 6.3 (a)-(c) shows the Cole-Cole plots of selected samples in plasticized 

system at room temperature. The plasticized Cole-Cole plots show the same pattern as 

A4. Only the adjacent lines appear in the impedance plot while the semicircle parts have 

disappeared.  

 

The electrical equivalent circuit representation can provide a complete picture of 

the systems, other than providing the outcomes in faster and simpler way (Han & Choi, 

1998). In the present work, A1 consists only the semicircle arc, hence the equivalent 

circuit can be represented by a parallel combination of Rb and constant phase element 

(CPE). The corresponding equivalent circuit can be seen in Figure 6.1 (a). CPE is 

commonly used in a model instead of a capacitor to compensate the inhomogeneity in 

the electrolytes (Qian et al., 2001). The impedance of CPE (ZCPE) can be expressed as:   

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 
 107 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3: Cole-Cole plot of (a) B2 (b) B3 and (c) B4 at room temperature. 
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where C is the capacitance of CPE, is angular frequency and p is related to the 

deviation of the plot from the axis (Malathi et al., 2010). 

 

The real and imaginary parts of impedance, Zr and Zi of the equivalent circuits, 

which consists of semicircular curves, can be expressed by: 
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As can be seen in Figure 6.1 (b) and 6.2 (b), A3 and A6 consist of a semicircle 

and an inclined adjacent line. These equivalent circuits are represented by a parallel 

combination of Rb and CPE with another CPE in series (Shukur et al., 2014a) as can be 

seen in Figure 6.1 (b). The values of Zr and Zi from the equivalent can be expressed by: 
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where C1 is the capacitance at high frequency, C2 is the capacitance at low frequency, p1 

is the deviation of the radius of the circle from the imaginary axis, and p2 is the 

deviation of the inclined adjacent line to the semicircle from the real axis. The increased 

in number of mobile charge carriers leads to the decrease in Rb values (Arof et al., 2014).  

 

It can be observed in Figure 6.2 (a) that the semicircle is absent in the Cole-Cole 

plot. The addition of glycerol also leads to the disappearance of the semicircle as can be 

seen in Figure 6.3.  This satisfies the following equation: 

 

d

A
C r0     

 

where is vacuum permittivity and r  is dielectric constant. Due to its high dielectric 

constant, glycerol dissociates more salt to become free ions, hence increases the stored 

charge in plasticized electrolyte together with the value of r (Shukur et al., 2013). The 

increasing r will increase the value of capacitance. The equivalent circuit for this type 

of plot can be represented by a combination of Rb and CPE in series (Shuhaimi et al., 

2012) as can be seen in Figure 6.3. The value of Zr and Zi associated to the equivalent 

circuit can be expressed as: 
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Tables 6.1 and 6.2 list the parameters of the circuit elements for selected 

samples in unplasticized and plasticized systems, respectively. The values of 

capacitance for plasticized electrolytes are higher compared to the unplasticized 

electrolytes. This suggests that the addition of plasticizer may create new pathways for 

ion conduction and promotes the ions dissociation hence increases the number density 

and mobility of ions.  

 

 

 

 

 

 

 

 

 

                         (*Where; A3 and A6 consist of a semicircle and a spike) 

 

 

 

 

 

Samples       p (rad) C (F) 

A1 0.96 2.86×10-10 

         *A3 
p1 0.58 

p2 0.69 

C1 3.73×10-7 

C2 9.62×10-7 

A4 0.65 8.16×10-6 

         *A6 
p1 0.78 

p2 0.61 

C1 1.72×10-9 

C2 1.55×10-7 

Table 6.1: Parameters of the circuit elements for selected electrolytes in salted 
system at room temperature. 
 

(6.7) 

(6.8) 
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 Figures 6.4 and 6.5 show the Cole-Cole plots at selected temperatures for B3 

electrolyte. The equivalent circuit for B3 at various temperatures is represented by a 

combination of Rb and CPE in series. The value of Zr and Zi associated to the equivalent 

circuit are calculated using Equations (6.7) and (6.8). Table 6.3 shows the parameters of 

the circuit elements at various temperatures for B3. It is observed that the values of 

capacitance are increased as the temperature increased. At high temperature, the Rb 

values are decreased due to the increased in segmental motion of the polymer chains.  

  

 

 

   

 

 

 

 

 

 

Samples       p (rad) C (F) 

B2 0.70 7.60×10-6 

B3 0.69 1.76×10-5 

B4 0.70 1.69×10-5 

Temperature (K) p (rad) C (F) 

298 0.69 1.76×10-5 

303 0.69 1.92×10-5 

308 0.69 1.98×10-5 

313 0.69 2.35×10-5 

318 0.69 2.47×10-5 

323 0.68 2.86×10-5 

328 0.68 3.39×10-5 

333 0.67 4.17×10-5 

338 0.66 4.76×10-5 

343 0.65 8.33×10-5 

Table 6.2: Parameters of the circuit elements for selected electrolytes in 

plasticized system at room temperature. 

 

 

Table 6.3: Parameters of the circuit elements for B3 at various temperatures. 
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Figure 6.4: Cole-Cole plot of B3 at (a) 303, (b) 308 and (c) 323 K. 
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Figure 6.5: Cole-Cole plot of B3 at (a) 328, (b) 333 and (c) 338 K. 
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6.3 Conductivity Studies at Room Temperature 

           

 Variation of room temperature conductivity as a function of NH4I concentration 

is presented in Figure 6.6. The conductivity of electrolytes depends upon charge carriers 

concentration. Hence, when charge carriers or ions concentration are changed by doping 

the polymer with different concentration of salt, the conductivity is also expected to 

change (Kumar et al., 2012). It can be seen that the conductivity increases from 3.05 × 

10-10 S cm-1 to 1.71 × 10-9 S cm-1 with the incorporation of 10 wt.% NH4I with the 

polymer blend. The ionic conductivity increases as the salt content increases up to (3.04 

± 0.32) × 10-4 S cm-1 with the addition of 40 wt.% NH4I. This increment may be 

attributed to the increase in the number of mobile charge carriers (Khiar & Arof, 2010) 

and also in amorphous nature of polymer electrolytes which will be verified by XRD 

analysis in Chapter 7. As a result, the energy barrier is reduced thereby facilitates a 

faster ionic transportation (Hema et al., 2009). Kumar et al. (2012) reported that the 

highest conductivity of starch-NH4I electrolyte was ~ 2.40 × 10-4 S cm-1.  

 

A higher conductivity value obtained in this work proves that the host which has 

undergone the polymer blending method contributes in the conductivity enhancement of 

an electrolyte. Buraidah & Arof (2011) also reported that the conductivity of 55 wt.% 

chitosan-45 wt.% NH4I is increased when they blend chitosan with PVA in their 55 

wt.% (chitosan-PVA)-45 wt.% NH4I system; from 3.73 × 10−7 S cm−1 to 1.77 × 10−6 S 

cm−1. According to the authors, there will be more sites for ion migration in the polymer 

blend; hence, ions exchange can easily take place leading to an increase in conductivity 

(Buraidah & Arof, 2011). After the optimized concentration of 40 wt.% NH4I, the 

conductivity starts to decrease because the distance between dissociated ions became 

too close, which enable them to recombine and form neutral ion pairs that do not 
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contribute in conductivity (Kadir et al., 2010). The films become brittle with the 

addition of more than 60 wt.% NH4I.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 6.7 represents the variation of room temperature conductivity as a 

function of glycerol concentration. The conductivity value of glycerol free film 

increased from (3.04 ± 0.32) × 10-4 S cm-1 to a maximum value of (1.28 ± 0.07) × 10-3 S 

cm-1 with 30 wt.% of glycerol (B3). Glycerol possesses a high dielectric constant which 

can weaken the Coulombic force between cation and anion of the salt hence promotes 

the dissociation of salt, NH4I to become free mobile ions, NH4
+ and I- (Gondaliya, 

Kanchan, & Sharma, 2013). The plasticizer molecules size which is relatively small 

compared to polymer molecules will penetrate the polymer matrix hence create 

attractive forces while reducing the cohesive forces between the polymer chains 

resulting the segmental mobility increment (Sekhar, Kumar, & Sharma, 2012). 

Figure 6.6: Effect of NH4I content on conductivity at room temperature. 
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Moreover, the addition of plasticizer can create alternative pathways for ion conduction 

which may increase the ionic mobility (Buraidah, Teo, Majid, & Arof, 2009; Ramesh & 

Arof, 2001). Marcondes et al. (2010) reported that the ions mobility is high as the 

glycerol concentration is increased up to 30 wt.%. Good ionic conduction and film 

forming properties are obtained at 30 wt.% of glycerol and further addition is not 

suggested due to difficulty in handling. 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

A work by Shukur, Yusof, Zawawi, Illias, & Kadir (2013) reported that when 

glycerol was added to the chitosan-NH4SCN based electrolytes, the conductivity 

increases from (1.81 ± 0.50) × 10-4 to (1.51 ± 0.12) × 10-3 S cm-1. From Figure 6.7, it 

can be observed that further addition of glycerol decreases the conductivity due to the 

fact that the increase in glycerol content allows the formation of microcrystalline 

linkages which promote recrystallization of salt (Bergo, Sobral, & Prison, 2009). This 

may also cause the displacement of host polymer by plasticizer molecules within the 

Figure 6.7: Effect of glycerol content on conductivity at room temperature. 
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salt complexes which reduced the ionic mobility resulting in a drop in conductivity 

(Suriani & Mohd, 2012). Film formation has been disabled when more than 50 wt.% of 

glycerol is added into polymer blend. 

 

6.4 Conductivity at Elevated Temperatures 

 

 Temperature has a strong influence on ionic conductivity (Noor et al., 2011). 

The conductivity-temperature relationship is verified whether it obeys Arrhenius or 

VTF rules by converting the data into a plot of log  versus 1000T-1. The VTF rule is 

dominant for ion transport which depending on the polymeric chain movement (Ayala, 

Agudelo, & Vargas, 2012). This model can be described by the following equation: 
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where,  is the conductivity, A is the pre-exponential factor, EVTF is the pseudo-

activation energy for conduction, k is the Boltzmann constant, T is the absolute 

temperature and T0 is the thermodynamic glass transition or ideal glass transition 

temperature. T0 is obtained by trial and error, but usually the value is 50˚ lower than the 

glass transition temperature. If a plot exhibits a linear relationship with the correlation 

factor is more than 0.90, this proves that the electrolytes are temperature dependence 

(Harun, Ali, Ali, & Yahya, 2011; Jones, 2014).   

 

The polymer chain acquires faster internal modes where bonding rotations 

produce motions to favor inter- and intra-chain ion hopping (Harun et al., 2011). This 

phenomenon is represented as Arrhenius, hence the conductivity can be expressed as: 

(6.9) 
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









kT

Eaexp0           

 

where 0  is  a  pre-exponential   factor, Ea  is   the  activation energy  of conduction 

and  k  is  Boltzmann constant. The activation energy, Ea of these polymer electrolytes is 

obtained from the slope of the plot based on this equation. 

 

Figures 6.8(a) and (b) represent the temperature dependence of ionic 

conductivity for all compositions of starch/chitosan-NH4I and plasticized 

starch/chitosan-NH4I electrolytes. The regression values, R2 are almost 1 and therefore 

implies that the plots of log  versus 1000T-1 are Arrhenian (Winie et al., 2009). It can 

be seen that temperature plays an important role in the conductivity increment since the 

electrolyte became less viscous at high temperature hence increased the chain flexibility 

(Yang, Fu, & Gong, 2008). This phenomenon assists the conductivity increment due to 

the increased in ions free volume and their segmental mobility (Rajendran, Sivakumar, 

& Subadevi, 2004). The vibrational energy of the ions is sufficient to move against the 

hydrostatic pressure produced by the neighboring atoms (Shukur, Ithnin, & Kadir, 

2014b). As the segmental motions occur, the free volume around the polymer chain 

caused an augmentation among the mobile ions thus leads to the increase in 

conductivity (Kadir et al., 2010; Noor et al., 2011; Samsudin et al., 2012).                                                        

   

 

 

 

 

(6.10) 
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Figure 6.8: Conductivity of (a) starch/chitosan-NH4I and (b) starch/chitosan-
NH4I-glycerol system at elevated temperatures. 
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All electrolytes do not show any abrupt change in conductivity values with 

temperature provided that the electrolytes are amorphous in nature (Michael, Jacob, 

Prabaharan, & Radhakrishna, 1997). Pawlicka et al. (2008) reported that the highest 

conducting sample in the starch-based PEs with conductivities varied from 10-6 S cm-1 

to 10-4 S cm-1 follows Arrhenius rule. Many other researchers reported that their 

electrolytes obey Arrhenius rule since linear relationships are observed in their plots 

(Bhavani, Ravi, & Rao, 2008; Samsudin et al., 2012; Yang et al., 2008). 

 

The activation energy decreases with increasing conductivity as shown in Figure 

6.9 (a) and (b). The highest conducting sample in salted system possesses an Ea value of 

0.200 eV while the lowest Ea in plasticized system is 0.182 eV. A work by Buraidah & 

Arof (2011) reported that the highest conducting sample in chitosan-PVA-NH4I system 

with conductivity of 1.77 × 10−6 S cm−1 has the lowest activation energy of 0.380 eV. 

This result implies that the ions in highly conducting samples require lower energy for 

migration. The rapid ionic conduction also aided by the plasticizer, which promotes 

mobility of the ions by providing easier pathways (Bhide & Hariharan, 2007). The 

correlations between conductivity and Ea of polymer electrolytes reported by many 

researchers have shown similar behavior (Buraidah et al., 2009; Khiar et al., 2006; 

Majid & Arof, 2005). 
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Figure 6.9: Ea values of (a) starch/chitosan-NH4I and (b) starch/chitosan-
NH4I-glycerol electrolytes. 
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6.5 Ionic Transport Analysis 

 

 In general, conductivity is depending on mobility,  and number of mobile ions, 

n (Majid & Arof, 2005). By employing the Rice and Roth model using Equation (2.2) 

and (2.3), the travelling time (), and n can be calculated. These properties are known 

as transport parameters, which are important in order to assess the performance of the 

electrolytes (Arof, Amirudin, Yusof, & Noor, 2014). It is necessary to know the type of 

conduction ion since its mass is one of the important parameters. In this work, H+ ion 

from NH4I is the conducting species which can be explained by Grotthus mechanism; 

where NH4I is considered as the proton source (Hashmi et al., 1990). 

  

 l is the distance between two complexation sites. The value of l is used in order 

to calculate the value of . Since this work is using a polymer blend, various values of l 

are used. In a report by Khiar & Arof (2010), the l between two adjacent amylose fibers 

in starch is taken as 10.4 Å. This distance is used because the cations are easily attached 

to the amylose compound compared to amylopectin. The -1,6-D-glucosidic linkages of 

amylopectin is a branched polysaccharide, hence it possess a less stable structure and 

more steric effect compared to the -1,4-D-glucosidic linkages of amylose (Khiar & 

Arof, 2010). By taking l = 10.4 Å, the transport parameters of all electrolytes in salted 

and plasticized systems are calculated and exhibited in Tables 6.4 and 6.5, respectively.  
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In chitosan, l between two units of amine is 10 Å as reported by Kadir et al.  

(2010). Tables 6.6 and 6.7 list the transport parameters of the electrolytes in salted and 

plasticized systems, respectively, using l = 10 Å. 

 

 

 

Sample  (S cm-1) s) n (cm-3) cm2 V-1 s-1) 

A1 (1.71 ± 1.24) × 10-9 1.15 × 10-13 1.64 × 1017 6.50 × 10-8 

A2 (5.31 ± 0.58) × 10-8 1.23 × 10-13 5.31 × 1017 6.24 × 10-7 

A3 (2.57 ± 1.70) × 10-6 1.39 × 10-13 1.29 × 1018 1.25 × 10-5 

A4 (3.04 ± 0.32) × 10-4 1.68 × 10-13 5.50 × 1018 3.45 × 10-4 

A5 (2.51 ± 0.83) × 10-6 1.39 × 10-13 1.26 × 1018 1.25 × 10-5 

A6 (1.49± 1.14) × 10-7 1.27 × 10-13 7.03 × 1017 1.32 × 10-6 

Sample  / S cm-1 / s n / cm-3  / cm2 V-1 s-1 

B1 (4.12 ± 0.65) × 10-4 1.69 × 10-13 6.93 × 1018 3.71 × 10-4 

B2 (6.63 ± 2.97) × 10-4 1.71 × 10-13 9.30 × 1018 4.45 × 10-4 

B3 (1.28 ± 0.07) × 10-3 1.76 × 10-13 1.20 × 1019 6.63 × 10-4 

B4 (8.56 ± 2.75) × 10-4 1.72 × 10-13 1.08 × 1019 4.96 × 10-4 

B5 (5.39 ± 2.18) × 10-4 1.70 × 10-13 7.84 × 1018 4.29 × 10-4 

Table 6.4: Transport parameters of starch/chitosan-NH4I system at room 
temperature using l = 10.4 Å. 
 

Table 6.5: Transport parameters of starch/chitosan-NH4I-glycerol system at room 
temperature using l = 10.4 Å. 
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 A work by Leal Filho, Seidl, Correia, & Cerqueira (2000) reported that the 

hydroxyl-hydroxyl distances in starch are in the range of 5.4 to 11.0 Å. Hence, the 

average point as l = 8.2 Å has been taken to calculate the transport parameters of the 

electrolytes in salted and plasticized systems, as listed in Tables 6.8 and 6.9, 

respectively. 

 

 

 

Sample  (S cm-1) s) n (cm-3) cm2 V-1 s-1) 

A1 (1.71 ± 1.24) × 10-9 1.10 × 10-13 1.71 × 1017 6.25 × 10-8 

A2 (5.31 ± 0.58) × 10-8 1.19 × 10-13 5.52 × 1017 6.00 × 10-7 

A3 (2.57 ± 1.70) × 10-6 1.34 × 10-13 1.34 × 1018 1.20 × 10-5 

A4 (3.04 ± 0.32) × 10-4 1.61 × 10-13 5.72 × 1018 3.32 × 10-4 

A5 (2.51 ± 0.83) × 10-6 1.34 × 10-13 1.31 × 1018 1.20 × 10-5 

A6 (1.49± 1.14) × 10-7 1.22 × 10-13 7.31 × 1017 1.27 × 10-6 

Sample  / S cm-1 / s n / cm-3  / cm2 V-1 s-1 

B1 (4.12 ± 0.65) × 10-4 1.62 × 10-13 7.21 × 1018 3.57 × 10-4 

B2 (6.63 ± 2.97) × 10-4 1.64 × 10-13 9.67 × 1018 4.28 × 10-4 

B3 (1.28 ± 0.07) × 10-3 1.69 × 10-13 1.25 × 1019 6.38 × 10-4 

B4 (8.56 ± 2.75) × 10-4 1.66 × 10-13 1.12 × 1019 4.77 × 10-4 

B5 (5.39 ± 2.18) × 10-4 1.64 × 10-13 8.15 × 1018 4.13 × 10-4 

Table 6.6: Transport parameters of starch/chitosan-NH4I system at room 
temperature using l = 10.0 Å. 

Table 6.7: Transport parameters of starch/chitosan-NH4I-glycerol system at 
room temperature using l = 10.0 Å. 
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 Tables 6.10 and 6.11 list the average values of the transport parameters for 

salted and plasticized systems at room temperature. All transport parameters in Tables 

6.4 to 6.9 using different l values show that the increasing conductivity value is 

influenced by the increasing mobility and number density of ions in the salted and 

plasticized systems.  

 

 

 

Sample  (S cm-1) s) n (cm-3) cm2 V-1 s-1) 

A1 (1.71 ± 1.24) × 10-9 9.03 × 10-14 2.08 × 1017 5.12 × 10-8 

A2 (5.31 ± 0.58) × 10-8 9.73 × 10-14 6.74 × 1017 4.92 × 10-7 

A3 (2.57 ± 1.70) × 10-6 1.10 × 10-13 1.63 × 1018 9.83 × 10-6 

A4 (3.04 ± 0.32) × 10-4 1.32 × 10-13 6.98 × 1018 2.72 × 10-4 

A5 (2.51 ± 0.83) × 10-6 1.10 × 10-13 1.59 × 1018 9.83 × 10-6 

A6 (1.49± 1.14) × 10-7 1.00 × 10-13 8.92 × 1017 1.04 × 10-6 

Sample  / S cm-1 / s n / cm-3  / cm2 V-1 s-1 

B1 (4.12 ± 0.65) × 10-4 1.33 × 10-13 8.79 × 1018 2.93 × 10-4 

B2 (6.63 ± 2.97) × 10-4 1.35 × 10-13 1.18 × 1019 3.51 × 10-4 

B3 (1.28 ± 0.07) × 10-3 1.39 × 10-13 1.53 × 1019 5.23 × 10-4 

B4 (8.56 ± 2.75) × 10-4 1.36 × 10-13 1.37 × 1019 3.91 × 10-4 

B5 (5.39 ± 2.18) × 10-4 1.34 × 10-13 9.94 × 1018 3.38 × 10-4 

Table 6.8: Transport parameters of starch/chitosan-NH4I system at room 
temperature using l = 8.2 Å. 

 

Table 6.9: Transport parameters of starch/chitosan-NH4I-glycerol system 
at room temperature using l = 8.2 Å. 
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The highest conducting sample in salted system with incorporation of 40 wt.% 

NH4I has the highest average n and  values of 6.07 × 1018 cm-3 and                          

3.16 × 10-4 cm2 V-1 s-1, respectively. A work by Shuhaimi et al. (2010)  reported  the  n  

value  of  methyl  cellulose  doped with 25  wt.% NH4NO3 electrolyte  was 4.86 × 1018 

cm-3 which is comparable with the present result. The addition of 50 and 60 wt.% of 

NH4I decreases the number density and mobility of ions due to excess of salt which 

form more ion pairs, leading to conductivity decrement. 

 

Sample  (S cm-1) s) n (cm-3) cm2 V-1 s-1) 

A1 (1.71 ± 1.24) × 10-9 1.05 × 10-13 1.81 × 1017 5.96 × 10-8 

A2 (5.31 ± 0.58) × 10-8 1.13 × 10-13 5.86 × 1017 5.72 × 10-7 

A3 (2.57 ± 1.70) × 10-6 1.28 × 10-13 1.42 × 1018 1.14 × 10-5 

A4 (3.04 ± 0.32) × 10-4 1.54 × 10-13 6.07 × 1018 3.16 × 10-4 

A5 (2.51 ± 0.83) × 10-6 1.28 × 10-13 1.39 × 1018 1.14 × 10-5 

A6 (1.49± 1.14) × 10-7 1.16 × 10-13 7.75 × 1017 1.21 × 10-6 

Sample  / S cm-1 / s n / cm-3  / cm2 V-1 s-1 

B1 (4.12 ± 0.65) × 10-4 1.55 × 10-13 7.64 × 1018 3.40 × 10-4 

B2 (6.63 ± 2.97) × 10-4 1.57 × 10-13 1.03 × 1019 4.08 × 10-4 

B3 (1.28 ± 0.07) × 10-3 1.61 × 10-13 1.33 × 1019 6.08 × 10-4 

B4 (8.56 ± 2.75) × 10-4 1.58 × 10-13 1.19 × 1019 4.55 × 10-4 

B5 (5.39 ± 2.18) × 10-4 1.56 × 10-13 8.64 × 1018 3.93 × 10-4 

Table 6.10: Average values of transport parameters of starch/chitosan-NH4I system 
at room temperature, where l = 9.5 Å. 

 

Table 6.11: Average values of transport parameters of starch/chitosan-NH4I-glycerol 
system at room temperature, where l = 9.5 Å. 
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For the plasticized system, the average value of n lies between 1018 and1019 cm-3 

and all  values are in the range of 10-4 cm2 V-1 s-1. From Table 6.11, it can be concluded 

that the increasing conductivity value is influenced by the increasing mobility and 

number density of ions. The highest conducting sample for this system has the highest 

average n and  values of 1.33 × 1019 cm-3 and 6.08 × 10-4 cm2 V-1 s-1, respectively. 

Shukur et al. (2013) reported that the  n  value  of  chitosan-PEO-NH4NO3 plasticized 

with 70 wt.% ethylene carbonate (EC) electrolyte was 1.87 × 1019 cm-3 which is 

comparable with the present result.  

 

The change in conductivity with glycerol composition is mainly due to the 

change in free ion concentration. When the total amount of salt is the same, the change 

in n observed should be ascribed to the permittivity effect of the plasticizer. Due to the 

high dielectric constant of glycerol, increasing the glycerol content will increase the 

degree of ion dissociation, thus the conductivity is increased by the increase in the 

number of free ions (Winie et al., 2009). The presence of glycerol in the electrolyte 

system produced more mobile ions and reduced the viscosity of the electrolyte which 

leads to an increase in ionic mobility (Arof et al., 2010). 

 

6.6 Transference Number Analysis 

 

The conducting species involved within an electrolyte can be measured by 

transference number analysis. The highest conducting electrolyte was sandwiched 

between two conducting species transparent electrodes which in this work is the 

stainless steel (SS) foils. The contribution of total ionic conductivity of the polymer 

electrolyte is determined by polarizing the blocking electrode cell configuration of 

SS/B3/SS and monitoring the potentiostatic current as a function of time. The ions will 
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be blocked while electrons are transparent to the electrodes. The transference numbers 

coresponding to ionic (tion) and electronic (te) have been evaluated using the equations: 

 

   
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where Ii is the initial current and ISS is the steady state current. The current flow within 

an electrode will show a rapid drop with time if it is an ionic conductor, which in the 

case of non ionic conductor, it will not happen (Yap, 2012).  A similar pattern is shown 

in Figure 6.10 where the current drop rapidly at the initial stage before being saturated 

at 0.30 A. The steady state current is achieved when the movement is balanced by 

diffusion process. tion and te for the B3 sample are found 0.991 and 0.009, respectively.  
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(6.12) 

Figure 6.10: Current relaxation curve during dc polarization for 
blocking electrodes (SS/ B3/SS). 
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 From the results, it can be seen that the transference number for ions is much 

larger compared to the transference number for electrons. This suggests that in these 

polymer electrolytes, the charge transport is predominantly due to ions (Woo et al., 

2011b). Shukur & Kadir (2015a) reported that the tion and te for the highest conducting 

electrolyte in starch-NH4Br-glycerol system were 0.98 and 0.02, respectively, which is 

comparable with the results presented in this work. 

 

In polymer electrolyte system, it is well-known that different ions have different 

mobilities thus carry different portion of the total current (Ghosh, Wang, & Kofinas, 

2010). Both cation and anion have chances to move; hence it is important to clarify the 

cation transference number. In battery, only cations are responsible for intercalation and 

deintercalation processes at cathode during charge-discharge cycle (Arof, Shuhaimi, 

Amirudin, Kufian, Woo, & Careem, 2014; Shukur & Kadir, 2015b). Cation transference 

number analysis is applicable for electrolytes with two mobile ions sandwiched between 

two electrodes, which are blocking electrodes for one ion but non-blocking electrodes 

for the other (Watanabe, Nagano, Sanui, & Ogata, 1988).  MnO2 was chosen to be the 

reversible electrodes because it is transparent to the cations and electrons, hence suitable 

for anions blocking.  

 

The proton transference number was determined by Watanabe’s technique and 

calculated using:             
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where ∆V is the bias voltage from dc polarization, Rb is the bulk resistance and Rc is 

charge transfer resistance (Woo et al., 2011b). The values of Rb and Rc were measured 

from a complex impedance plot using reversible MnO2 electrodes. Rc is attributed to the 

charged-discharged at the electrode/electrolyte interface. Figure 6.11 depicts the plot of 

polarization current against time for MnO2/ B3/ MnO2 cell. Iss is found to be 47.5 μA 

after 3841 s. The Rb and Rc values are obtained from the impedance plot depicted in 

Figure 6.12. The inset in Figure 6.12 demonstrates the ohmic portion of Iss up to 1.80V 

before it deviates from linearity. The value of t+ is found to be 0.40. Other reports show 

that the cation transference numbers ranged from 0.21 to 0.46 (Arof et al., 2012; Shukur 

& Kadir, 2015a; Woo et al., 2011b). Although the transference number may affected by 

the ions association, it still offers an insight into the ion transport process (Watanabe et 

al., 1988). The long molecular chain within starch and chitosan can also be linked with 

each other and build a network through hydrogen bonding thus possible to limit the 

mobility of the large size of iodide, I- ion. This results on the higher cation transference 

number since H+ is smaller in size (Arof et al., 2012). 

 

 

 

 

  

  

 

 
Figure 6.11: Transference number of B3 at room temperature using 
MnO2 electrodes. 
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6.7 Dielectric Constant and Dielectric Loss Studies 

 

 Numerous dielectric data such as complex dielectric constant, * and complex 

modulus constant, M* are evaluated from the complex impedance data, Z*.  Both real, 

r and imaginary, i parts of complex dielectric constant are related to the measured Zr 

and Zi as followed: 
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Figure 6.12: Impedance plot for MnO2/B3/MnO2 cell at room temperature. 
Inset is Iss as a function of voltage at room temperature. 
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where C0 is vacuum capacitance and is angular frequency. Here, C0= ε0A/t and ω = 

2πf, ε0 is the permittivity of free space and f is the frequency. εr represents the dielectric 

constant or capacity to store the electric charge, while εi represents the amount of energy 

losses to move ions and align dipoles when the electric field polarity reverses rapidly 

(Woo, Majid, & Arof, 2012).   

 

The frequency dependence of r and i in salted system at room temperature are 

shown in Figures 6.13 (a) and (b) respectively while Figure 6.14 (a) and (b) shows the 

salt dependence of r and i at selected frequencies. Since the charge is made up of H+ 

ions, the increase in dielectric constant represents the increase in number of H+ ions. It 

is observed that the variation of r and i follow the same trend as the conductivity result 

as the highest conducting sample has the highest values ofr and i.  As the NH4I 

content increases up to 40 wt.%, it leads to the increment of charge stored in the 

electrolytes as well as the number density of mobile ions, hence increases the 

conductivity (Khiar & Arof, 2011). However, at larger salt concentration, distances 

between ions become smaller hence the ions re-associate to become neutral ion pairs. 

This reduces number density of free ions as well as its mobility that in turn loss their 

contribution on conductivity.  
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Figure 6.13: Frequency dependence of (a) r and (b) i at room 
temperature in salted system. 
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Figure 6.14: The dependence of (a) r and (b) i at room temperature 
for selected frequencies in salted system. 
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 The frequency dependence of r and i in plasticized system at room temperature 

are shown in Figures 6.15 (a) and (b) respectively while Figure 6.16 (a) and (b) show 

the glycerol dependence of r and i at selected frequencies, respectively. Similar 

phenomena as shown in salted system can be observed in plasticized system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.15: Frequency dependence of (a) r and (b) i at room temperature 
in plasticized system. 

 

0

90000

180000

270000

360000

450000

1 2 3 4 5 6 7

B1
B2
B3
B4
B5

Log f (Hz) 

 r
 

(a) 

 

0

50000

100000

150000

200000

1 2 3 4 5 6 7

B1

B2

B3

B4

B5

 i
 

Log f (Hz) 

(b) 

Univ
ers

ity
 of

 M
ala

ya



 
 136 

  

 

 

  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
Figure 6.16: The dependence of (a) r and (b) i at room temperature 
for selected frequencies in plasticized system. 
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 Dispersion with a high value of r and i is observed in the low frequency region 

which is attributed to the dielectric polarization effect. Due to its high dielectric constant, 

glycerol is able to dissociate more salt to cations and anions, resulting in an increase in 

number density of mobile ions (Buraidah et al., 2009).  This indicates that the increase 

in conductivity is due to the increase in the concentration of mobile ions (Khiar & Arof, 

2010). Both r and i rise towards low frequencies due to the electrode polarization and 

space charge effects, confirming the non-Debye behavior of all electrolytes in salted and 

plasticized systems (Khiar & Arof, 2010). The periodic reversal of the electric field 

occurs rapidly at high frequencies, which disable the ions from orienting according to 

the direction of the electric field hence the trapped ions start to accumulate at the 

interface of the electrode-electrolyte, leading to the decrease in the values of r and i 

(Woo et al., 2012). The dielectric trend presented in this work is comparable with the 

work done by Aziz et al. (2012). Khiar & Arof (2011) also reported that the dielectric 

study for starch/chitosan-NH4NO3 system follows the same trend as their conductivity 

result. However, beyond the addition of 30 wt% of glycerol, r is observed to decrease, 

which follows the same trend as their conductivity results. Shukur et al. (2013) also 

reported that as more plasticizer was added, more undissociated salt become ions, hence 

increased the stored charge in the electrolyte.  

 

 The variation of r and i, with temperature for the highest conducting electrolyte 

at selected frequencies in salted system are shown in Figure 6.17 (a) and (b) while in 

plasticized system are shown in Figure 6.18 (a) and (b). The values of r and i increase 

as the temperature increases. This phenomenon proves that the salt undergoes greater 

dissociation as the temperature increased, hence resulting in an increase in number of 

free ions and assists the conductivity increment (Winie & Arof, 2004). This result 
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supports the transport parameters analysis in Tables 6.4 to 6.11 where the number 

density of ion increases with temperature. 

 

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

(b) 

Figure 6.17: The dependence of (a) r and (b) i on temperature for A4 
at selected frequencies. 
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Figure 6.18: The dependence of (a) r and (b) i on temperature for B3 
at selected frequencies. 

(b) 

(a) 

T (K) 

 r
 

 

1.00E+04

1.00E+05

1.00E+06

290 300 310 320 330 340 350

5kHz

10kHz

20kHz

 i
 

T (K) 

 

1.00E+04

1.00E+05

1.00E+06

290 300 310 320 330 340 350

5kHz

10kHz

20kHz

Univ
ers

ity
 of

 M
ala

ya



 
 140 

6.8 Electrical Modulus Studies 

 

The dielectric studies can be further discussed based on electrical modulus 

studies. Complex electrical modulus, M* is defined from complex dielectric constant, * 

using the following equations:   

 

 *
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where Mr and Mi are real and imaginary parts of the electrical modulus. Electrical 

modulus is useful to analyze electrical relaxation processes because it is defined as the 

reciprocal of complex relative permittivity according to Equation (6.16). Figure 6.19 (a) 

and (b) show the variation of Mr with frequency for the electrolytes in salted and 

plasticized systems, respectively, at room temperature. It can be seen that Mr approaches 

zero at low frequency region which indicates the electrode polarization effect has been 

suppressed and neglected (Woo et al., 2012). The Mr values are increased with 

frequency where the peaks exist at high frequency. This is an indicator that the polymer 

electrolytes are ionic conductors (Ramesh & Arof, 2001). In Figure 6.19 (a), only A4 

peak cannot be observed. As the conductivity increased, the spectra are shifted to the 

(6.17) 

(6.16) 

(6.18) 
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Figure 6.19: The dependence of Mr on frequency at room temperature for 
electrolytes in (a) salted and (b) plasticized systems. The inset in (a) is the 
dependence of Mr for A4 at lower frequency region. 
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right beyond the frequency window hence show only the dispersion part. Figure 6.20 (a) 

and (b) show the variation of Mr with frequency for A4 and B3, respectively, at various 

temperatures. 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 
Figure 6.20: The dependence of Mr on temperature for (a) A4 and (b) B3. 
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 The reduction of Mr values with respect to the increment of temperature is due to 

the increased in mobility of the charge carriers and the polymer segments (Aziz, Abidin, 

& Arof, 2010). As the conductivity increases, the spectra shift to the right beyond the 

frequency window due to the distribution of relaxation processes spread over a wide 

range of frequencies (Patro & Hariharan, 2009a). The absence of peaks in the Mr figures 

results from the fact that Mr is equivalent to r which represents the ability of the 

materials to store charge or energy (Aziz et al., 2010). 

 

 Figure 6.21 (a) and (b) represents the variation of Mi with frequency for the 

electrolytes in salted and plasticized systems, respectively, at room temperature. The 

figures show similar pattern with Mr where the Mi values reduce with respect to the 

increment of temperature which is due to the large value of capacitance associated with 

the electrode polarization effect (Patro & Hariharan, 2009b). The relaxation time of Mi 

or tMi can be calculated from the relation of: 

 

1peakMit   

 

where peak is the angular frequency of the Mi relaxation peak. The peaks are shifted 

towards higher frequencies with shorter relaxation time as the conductivity increases is 

correlated with the relaxation mechanisms (Mishra & Rao, 1998). Generally, relaxation 

time represents the efforts of the charge carriers to obey the direction of applied field 

(Winie & Arof, 2004). In Figure 6.21 (a), only A4 peak cannot be observed within the 

frequency window while all peaks in plasticized systems are located beyond the 

frequency window. The values of tMi for selected electrolytes in salted system are 

presented in Table 6.12.  

 

(6.19) 
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Figure 6.21: The dependence of Mi on frequency at room temperature 
for electrolytes in (a) salted and (b) plasticized systems. 
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Sample tMi  (s) 

A1 7.96 × 10-4 

A2 1.06 × 10-5 

A3 1.85 × 10-7 

A5 2.79 × 10-7 

A6 6.12 × 10-6 

 

 

 The variation of the tMi values demonstrates the sequence of the conductivity 

trend. A3 is observed to possess the lowest tMi value of 1.85 × 10-7 following its highest 

conductivity value among others meanwhile A1, which has the lowest conductivity 

value possesses the tMi value of 7.96 × 10-4. Figure 6.22 (a) and (b) exhibit the variation 

of Mi with frequency at various temperatures for the highest conducting electrolyte in 

salted (A4) and plasticized (B3) systems, respectively. The long tail is also associated 

with the high capacitance values of the electrodes at low frequency due to accumulation 

of charge carriers at the electrode-electrolyte interface (Aziz et al., 2010). No peaks can 

be observed due to frequency limitation.  

 

 

 

 

 

 

 

 

 

Table 6.12: Relaxation time of Mi at room temperature in salted system. 
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 Figure 6.22: The dependence of Mi on frequency at various temperatures for 
(a) A4 and (b) B3. 
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6.9 Conduction Mechanisms 

The ionic conduction mechanism of an electrolyte can be determined by 

employing Jonscher’s universal power law (Murugaraj, Govindaraj, & George, 2003; 

Psarras, Manolakaki, & Tsangaris, 2003): 

 

dc

sA  )(  

 

where () is the total conductivity, A is temperature dependent parameter, s is the 

power law exponent and dc is frequency independent dc conductivity. The ac 

conductivity, ac is presented by As, hence: 

 

 dcac  )(  

 

Theac can also be obtained using: 

 

 ioac         

 

where r tan = i. By substituting σac = Aωs into Equation 6.22, the value of s can be 

evaluated from the following relation: 

 




 ln)1(lnln  s
A

o

i       

 

The value of exponent s is obtained from the slope of the plot of ln i against ln  in 

Figure 6.23. In the present work, the studied frequency range is 64 ≤ f ≤ 93 k Hz. 

(6.20) 

(6.21) 

(6.23) 

(6.22) 
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 Figure 6.23: ln i versus ln  at different temperatures for (a) A4 and (b) B3. 
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This is because at higher frequency region, the electrode polarization occurs at 

minimum rate or does not occur at all (Buraidah et al., 2009;  Kadir, Teo, Majid, & Arof, 

2009). Figure 6.24 shows the plot of s against temperature for the highest conducting 

electrolyte sample. The exponent s is found to be independent of temperature which is 

shown by the small gradient where in this work are 0.00008 and -0.00008 for A4 and 

B3, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A few theoretical models have been developed to correlate the behavior of the 

conduction mechanism within a material with the temperature dependence of exponent s. 

In correlated behavior hopping (CBH), the exponent s is temperature dependent where 

the exponent s → 1 as the T → 0 K (Winie & Arof, 2004). In the overlapping large 

polaron tunneling (OLPT), the exponent s will decrease up to certain temperature before 

decreases back (Kufian, Majid, & Arof, 2007).  When the exponent s increases with 

increasing temperature, the phenomena can be inferred as small polaron hopping (SPH) 

Figure 6.24: Plot s versus T for (a) A4 and (b) B3. 
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(Samsudin & Isa, 2012). The final model is quantum mechanical tunneling (QMT). In 

QMT, the exponent or index s is independent of temperature. From the observations on 

the behavior of the index s with temperature, it can be inferred that QMT model is more 

applicable in explaining the conduction mechanism of the polymer electrolytes in both 

systems (Buraidah & Arof, 2011). According to Majid & Arof (2007), these ions are 

able to tunnel through the potential barrier that exists between two possible 

complexation sites. Psarras et al. (2003) has defined hopping as the displacement of a 

charge carrier from one site to another neighboring site and occurs not just by jumping 

over a potential barrier but can also be accompanied by mechanical tunneling.  

 

6.10 Thermal Analysis 

 

 Thermal analysis has been used for many years as a suitable method to 

characterize the polymer materials. The thermal properties of polymer complexes give 

useful information regarding stability, stiffness and miscibility of the blends 

(Lewandowska, 2009; Mano, Koniarova, & Reis, 2003; Rao, Ashokan, & Shridhar, 

2000). Thermogravimetric analysis (TGA) analysis has been analyzed to study the 

thermal stability and decomposition temperature of the polymers. For example, Bonilla 

et al. (2014) reported the decomposition of PVA-chitosan occurred at three stages, 

which is similar with the results reported by Lewandowska (2009). Differential 

scanning calorimetry (DSC) has been accepted by most researchers as the most suitable 

technique to study the miscibility, phase transition and thermal behavior of the blends. 

(Barbani et al., 2005; Liu et al., 2009) mentioned that glass transition temperature; Tg; 

which can be determined by DSC, is one of the critical properties for a polymer blend.  

 

 

Univ
ers

ity
 of

 M
ala

ya



 
 151 

6.10.1 TGA Analysis 

 

On the addition of NH4I the decomposition temperature of pure starch/chitosan 

film has decreased as shown in Figure 6.25. During the heating process, the chains in 

polymer electrolyte are incapable to sustain its original form. This could be due to the 

interaction of the salt with polymer backbone as proven by FTIR and XRD 

characterizations. A2 and A4 samples start to decompose between 165 to 190˚C which 

is lower by ~60˚C of the unsalted polymer blending, PB2. A work by Noor, Majid, Arof, 

Djurado, Neto, & Pawlicka (2012) reported that during this degradation stage, the 

samples suffer the endothermic reactions of oxidation and hydrolysis followed by 

polysaccharide pyrolysis exothermic reactions. Moreover, salt is well-known as 

hygroscopic in nature (Liew et al., 2013).  

 

 

 

   

 

  

 

 

 

 

    Figure 6.25: TGA thermograms of PB2, A2, A4, B3 and B5 films. 
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Hence, they declined in heat resistivity resulted from the disruption of strong hydrogen-

bonding networks (Ramesh et al., 2012). However, the presence of NH4I has lessened 

the total weight loss, which provides evidence that the thermal stability of pure 

starch/chitosan film has been improved. At 130-170˚C temperature range, the 

plasticized polymer electrolyte starts to decompose due to the degradation of glycerol 

(Ayala et al., 2012). The glycerol has softened the polymer backbone; enhance the 

flexibility by increasing the amorphous area, hence easy for disruption. The total weight 

loss corresponds to this stage is ~ 60% with final residue of ~ 20%. Nevertheless, it is 

still a promising candidate for battery application where its operating temperature is 

normally reported in the range of 30-80°C (Liew, Ong, Lim, Lim, Teoh, & Ramesh, 

2013). 

 

6.10.2 DSC Analysis 

 

Segmental motions of polymer chain play a big role in ionic mobility as well as 

in conductivity (Woo, Majid, & Arof, 2013). Glass transition temperature or Tg is one of 

the important characteristics in determining the amorphousness of a material. The 

addition of salt has shifted the glass transition to lower Tg value, which indicates that the 

salt is able to break the intermolecular interaction and hydrogen bonding within the 

polymer molecules thus increased the segmental motion and became highly amorphous 

(Sudhakar & Selvakumar, 2013). Zeleznak & Hoseney (1987) also proposed that the Tg 

of a highly amorphous compound may occur below room temperature. A4 exhibits 

lower Tg compared to A2 as shown in Figures 6.26 and 6.27, proving the higher 

intermolecular motion in A4 which chosen to be plasticized with glycerol. Zeleznak & 

Hoseney (1987) reported that the Tg increases as the crystallinity increases due to more 

restriction of segmental motions which may lead to the formation of inter and intrachain  
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   Figure 6.27: The DSC thermogram of glass transition temperature, Tg of A4. 
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   Figure 6.26: The DSC thermogram of glass transition temperature, Tg of A2. 
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hydrogen bonding. The crystalline areas act as physical crosslinks in the polymer 

network thus restrict the movement of the polymer molecules, hence lead to the 

decrement of conducitivity.  

 

The addition of glycerol has further decreased the Tg as depicted in Figures 6.28 

and 6.29 for sample B3 and B5, respectively. The plasticizer has suppressed the 

crystallinity of the polymer electrolyte by promoting the segmental motion of the 

polymer chains (Bergo et al., 2009; Liu et al., 2013; Sakurai et al., 2000). B3 exhibits 

the lowest Tg, which support the conductivity result.  

 

 

   

  

 

 

  

 

 

 

 

 

 

 

The Tg value however is observed to increase as more than 30 wt.% of glycerol 

is added as shown in Figure 6.29 The existence of too much glycerol leading to ionic 

   Figure 6.28: The DSC thermogram of glass transition temperature, Tg of B3. 

 

-80 -50 -20 10 40
Temperature (˚C) 

H
ea

t f
lo

w
 (W

 g
-1

)  
 E

xo
  

-23.91˚C 

B3 

Univ
ers

ity
 of

 M
ala

ya



 
 155 

crosslinks and formation of linkages among the glycerol molecules which may increase 

the rigidity of the sample (Noor, Majid, & Arof, 2013). This phenomenon resulted in 

conductivity decrement. 
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   Figure 6.29: The DSC thermogram of glass transition temperature, Tg of B5. 
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6.11 Summary 

 
The conductivity trend at room and high temperature for both salted and 

plasticized systems are presented in this chapter. The addition of 40 wt.% NH4I (A4) in 

salted system leads to the highest conductivity of (3.04 ± 0.32) × 10-4 S cm-1 with Ea 

value of 0.20 eV. Further conductivity enhancement has been determined by the 

addition of glycerol which leads to a maximum value of (1.28 ± 0.07) × 10-3 S cm-1 with 

30 wt.% of glycerol (B3). The lowest Ea obtained is 0.18 eV. All electrolytes in salted 

and plasticized systems follow Arrhenius rule since linear relationships are observed in 

the temperature dependence conductivity plots. The Rice and Roth model has been 

applied to investigate the variation of number density, n and mobility of the ions, . It is 

proven that the n and  play an important roles in influencing the ionic conduction. 

Ionic transference number study has revealed that the charge transport in polymer 

electrolytes is dominated by the ions. The dielectric properties for both systems have 

also been presented in this chapter. The trend of r and i as well as Mr and Mi is in 

accordance with the conductivity trend. The variation of the tMi values demonstrates the 

sequence of the conductivity trend where a high conducting sample exhibits low tMi. The 

conduction mechanism represents A4 and B3 is QMT. TGA analysis indicates that the 

electrolyte can stand more than 150°C. DSC result has proved the homogeneity and 

miscibility of the blend among the components. The Tg values also verifies the 

conductivity trend. 
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CHAPTER 7: X-RAY DIFFRACTION (XRD) AND FIELD EMISSION 

SCANNING ELECTRON MICROSCOPY (FESEM) ANALYSES 

 

7.1 Introduction 

 

 In this chapter, X-ray diffraction (XRD) and field emission scanning electron 

microscopy (FESEM) results are discussed for selected samples in salted; 

starch/chitosan-NH4I and plasticized; starch/chitosan-NH4I-glycerol systems. Based on 

the results in previous chapter, further characterizations have been carried out for the 

salted and plasticized systems to ensure that the electrolytes show compatibility for 

fabrication purposes and are promising to provide good performance. XRD analysis has 

been carried out to study the crystallinity of the samples containing different 

concentrations of NH4I and glycerol. In conjunction with XRD study, FESEM analysis 

has been carried out to study the miscibility between the components in the polymer 

blend. Kadir et al. (2010) stated that micrographs analysis has given some answers to 

the decrement in conductivities in PVA-chitosan-NH4NO3-EC system. Alias et al. (2014) 

reported that the XRD and FESEM results showed changes due to the addition of salt 

and plasticizer with different concentrations in chitosan-NH4CH3COO-EC system. 

These studies give better understanding and support the FTIR and electrical impedance 

studies which have been discussed in Chapter 5 and 6, respectively. 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 
  158 

7.2 XRD and FESEM Micrographs of Starch/chitosan-NH4I System 

  

The XRD patterns for the selected unplasticized samples are shown in Figure 7.1. 

It can be observed that A1, A2 and A4 diffractograms show amorphous nature without 

any obvious crystalline peaks. The addition of 60 wt.% NH4I in A6 film is signified by 

the appearance of several sharp peaks which appear at 2 = 21.2°, 24.5°, 34.9°, 41.2°, 

43.1°, 50.2°, 55.1°, 56.6°, 62.7° and 67.0°. The sharp peaks are attributed to NH4I which 

are similar to those reported by Buraidah and Arof (2011). These peaks revealed that 

NH4I is crystalline in nature (Hema et al., 2009; Jyothi, Kumar, & Murthy, 2014). For 

further confirmation of the XRD patterns due to the occurrence of overlapping patterns, 

the diffractograms were deconvoluted using Gaussion distribution. The areas under the 

deconvoluted peaks were used to calculate the degree of crystallinity using the same 

equation as Equation (4.1). 

. 

Figures 7.2 to 7.5 show the results of deconvolution pattern of PB2, A1, A2 and 

A4 films. All patterns reveal the existence of two distinct amorphous peaks which are 

originated from PB2. This observation proves that the amorphousness of pure blend is 

retained in the salted electrolytes. In amorphous region, rapid segmental motions due to 

flexible backbones of the polymeric chain increases the chance for the charge carriers to 

mobile which leads to higher ionic conductivity (Rajendran et al., 2001). Figure 7.2 

shows that PB2 exhibits four crystalline peaks located at 2θ = 14.2°, 16.9°, 23.9° and 

27.9°. 
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 In the XRD patterns of A1 in Figure 7.3, the crystalline peak attributed to NH4I 

is situated at 2θ = 21.0°. The two peaks as depicted in the diffractogram of PB2 in 

Figure 7.2 disappear with the addition of NH4I. A work by Bhide & Hariharan (2007) 

suggested that the diffraction peaks become broader and less intense with the addition 

of salt. However, another two crystalline peaks in PB2 at 2θ = 23.9° and 27.9° can be 

observed in the XRD patterns of A1 with small shifts, which located at 2θ = 23.1° and 

26.7°. This result proves that the polymer blend is interacted with the salt and still 

retained its behavior. 

 

 

Figure 7.1: XRD patterns of selected samples in salted system.  
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A2 shows almost similar diffraction pattern with A1 as can be seen in Figure 7.4. 

The crystalline peak which attributed to NH4I is found at 2θ = 20.7°. The other two 

crystalline peaks originated from PB2 are further shifted and located at 2θ = 22.4° and 

25.9°. 

Figure 7.3: Deconvolution pattern of A1. 

Figure 7.2: Deconvolution pattern of PB2. 
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However, in A4 diffraction pattern as shown in Figure 7.5, only one peak from 

PB2 is observed at 2θ = 22.6° while two new peaks have appeared at 2θ = 19.7° and 

24.7°, which suggests a good interaction between salt and polymer blend host (Noor et 

al., 2013). Hodge, Edward, & Simon (1996) reported that the addition of other 

molecules such as water and salt will attach to the hydroxyl groups on the 

macromolecules hence destroys the crystallinity by changing the configuration from 

crystalline to amorphous. The molecules will become free mobile ions and the hydrogen 

bonding is destructed or relocated. At this salt concentration, the highest conductivity in 

salted system has been achieved. 

 

 

 

 

Figure 7.4: Deconvolution pattern of A2. 
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Table 7.1 lists the crystallinity values for selected electrolytes in the salted 

system. The changes in crystallinity can be used to interpret the conductivity behavior 

of the samples (Mohamad, Mohamed, Yahya, Othman, Ramesh, Alias, & Arof, 2003). 

A4 which has the highest conductivity value exhibits the lowest degree of crystallinity 

indicating that the conductivity increases as the amorphousness of the electrolyte is 

improved. 

 

 

 

 

 

 

 

Samples Degree of crystallinity 

PB2 15.30 

A1 10.95 

A2 10.24 

A4 6.13 

Figure 7.5: Deconvolution pattern of A4. 

Table 7.1: Degree of crystallinity of selected samples in salted system. 
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The electrolyte which contains more than 40 wt.% of NH4I exhibits high 

intensity of crystalline peak as shown in Figure 7.1. It can be clearly seen that A6 is 

highly crystalline which is attributed to the recrystallization of NH4I out of the film 

surface. At this concentration, there are too many ions where the ions become closer to 

each other. The polymer host is no longer able to accommodate the salt which leads to 

the recombination of the ions and resulted in conductivity decrement (Kadir et al., 2010).   

 

Figures 7.6 to 7.9 show the FESEM micrographs at 1K × and 5K × 

magnifications of A1, A2, A4 and A5, respectively, in salted system. A1 and A2 show 

small particles with rough surfaces which attributed to the salt accommodated by the 

starch/chitosan blend. A4 has been detected as the most amorphous film in salted 

system according to the deconvolution of XRD diffractograms. From the micrographs 

as depicted in Figure 7.8, it can be clearly seen that A4 exhibits a porous structure 

compared to A1 and A2 in Figures 7.6 and 7.7, respectively. As mentioned in a report 

written by Xi et al. (2006), the ionic conductivity of an electrolyte is influenced by the 

porosity since the pore connectivity is important for the transportation of the charge 

carriers in the electrolyte. Thus, the conductivity increment on the addition of 40 wt.% 

salt in this work is affected by the porous structure of the electrolyte. 
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Figure 7.7: FESEM micrograph of A2. 

Figure 7.6: FESEM micrograph of A1. 
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When more than 40 wt.% salt was added, the morphology consists of solid 

particles that have suspended out of the surface, as shown in Figure 7.9 and 7.10 for A5 

and A6, respectively. These solid particles are attributed to the recrystallization of the 

salt since the polymer host is unable to accommodate the salt, resulting in 

recombination of the ions. This phenomenon contributes to the loss of a significant 

amount of charge carriers, which leads to a decrease in conductivity (Kadir et al., 2010). 

Moreover, the result is in good agreement with XRD pattern which shows that the 

samples are highly crystallined when more than 40 wt.% NH4I is added.  Thus, FESEM 

has helped to support and strengthen the conductivity studies in the present work. 

 

 

 

Figure 7.8: FESEM micrograph of A4. 
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Figure 7.9: FESEM micrograph of A5. 

Figure 7.10: FESEM micrograph of A6. 

5K × 

5K × 1K × 

1K × 

Univ
ers

ity
 of

 M
ala

ya



 
  167 

7.3 XRD and FESEM Micrographs in Starch/chitosan-NH4I-Glycerol  System 

 

XRD analysis has also been carried out to study the crystallinity of the samples 

containing different concentrations of glycerol. The incorporation of glycerol is 

expected to reduce the crystalline phase of the salted electrolytes. The XRD patterns for 

selected plasticized samples are shown in Figure 7.11, where B3 exhibits the broadest 

peak. Further addition of glycerol beyond this optimized concentration increases the 

crystalline region of the sample. Thus, the changes in crystallinity can be used to 

interpret the conductivity behavior of the samples. For further confirmation of the XRD 

patterns due to the occurrence of overlapping patterns, the diffractograms are 

deconvoluted using the same method applied for salted system. 

 

 

 

 

 

 

  

 

 

 

 

 

   

 

 

Figure 7.11: XRD patterns of selected samples in plasticized system. 
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The deconvolution patterns of B1, B2, B3 and B4 are shown in Figures 7.12 to 

7.15, respectively. Three amorphous peaks are observed in all of the XRD patterns. This 

amorphous nature produces greater ionic diffusivity as well as higher ionic conductivity 

(Mohamad et al., 2003). Crystalline peaks which attributed to the salt have appeared at 

2θ = 21.5°, 22.5°, 20.2° and 22.2° in B1, B2, B3 and B4 electrolytes, respectively. The 

existence of these crystalline peaks proves that the salt characteristic is retained in the 

plasticized electrolytes. As can be seen in Figure 7.12, a new peak appears at 2θ = 27.9° 

in B1 XRD pattern, which proves the interaction between the polymer blend, salt and 

glycerol.   

 

 

 

 

 

   

 

 

 

 The appearance of a new peak at 2θ = 28.6° in B2 electrolyte as shown in  

Figure 7.13; is inferred as a good interaction between the components. However, the 

intensity of the new peak is found decreased in B3 as shown in Figure 7.14, inferring 

that the presence of 30 wt.% glycerol promotes the salt dissociation that turns the excess  

 

Figure 7.12: Deconvolution patterns of B1. 
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salt to become ions, hence prevent the salt from being recrystallized. Moreover, the 

amorphous peak at 2θ = 48.4° is found broader in B3 compared to other electrolytes. At 

this glycerol concentration, the highest conductivity in plasticized system has been 

achieved. 

 

 

 

   

 

  

 

 

 

 

 

Further addition of glycerol beyond this optimized concentration increases the 

crystalline region of the sample. The appearance of new crystalline peaks at 2θ = 19.8°, 

25.4° and 32.0° has increased the degree of crystallinity of the electrolyte. The 

conductivity of B4 starts to drop since there is too much glycerol content which leads to 

more interaction of the glycerol molecules among themselves.  

 

  

Figure 7.13: Deconvolution patterns of B2. 
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Figure 7.14: Deconvolution patterns of B3. 

Figure 7.15: Deconvolution patterns of B4. 
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Table 7.2 lists the degree of crystallinity for electrolytes in plasticized system. 

Conductivity increases as the degree of crystallinity decreases. The decrease in the 

degree of crystallinity can be evidenced from the disappearance of several peaks in the 

films (Liu et al., 2013). In amorphous region, rapid segmental motions of polymeric 

chain increases the mobility of charge carriers, which leads to higher ionic conductivity 

(Rajendran, Kannan, & Mahendran, 2001). A work by Liu et al. (2013) also reported 

that the crystallinity of starch/chitosan films was decreased with the increasing amount 

of glycerol up to 10% (w/w), which leads to conductivity increment. 

 

    

Samples Degree of Crystallinity 

B1 5.38 

B2 5.21 

B3 4.25 

B4 6.00 

 

   

Figures 7.16 to 7.19 show the micrographs of starch/chitosan samples with      40 

wt.% NH4I at different glycerol concentrations. From these micrographs, it can be seen 

that glycerol has prevented the salt from recrystallizing out of the membrane and assists 

the salt dissociation hence leading to an increase in number density of mobile ions 

(Kadir et al., 2010). As depicted in Figure 7.16, the addition of 10 wt.% of glycerol in 

B1 has transformed the surface to become clear and smoother which is influenced by 

the existence of plasticizer.  

 

 

Table 7.2: Degree of crystallinity of selected electrolytes in plasticized system. 

Univ
ers

ity
 of

 M
ala

ya



 
  172 

 

 

  

 

  

 

 

 

 

 

Figure 7.17 shows that the morphology consists of grains which are uniformly 

dispersed on the surface with the addition of 20 wt.% glycerol in B2. The addition of 30 

wt.% glycerol in B3 shows the presence of indistinct spherulites with some boundaries 

separating a few regions as can be seen in Figure 7.18. This result proves a decrease in 

crystallinity of the electrolytes where the highest ionic conductivity is attained (Pradhan, 

Choudhary, & Samantaray, 2008; Ravi, Song, Gu, Tang, & Zhang, 2015). 

 

 

 

 

 

 

Figure 7.16: FESEM micrograph of B1. 

1K × 5K × 

Univ
ers

ity
 of

 M
ala

ya



 
  173 

 

 

 

     

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.17: FESEM micrograph of B2. 

Figure 7.18: FESEM micrograph of B3. 
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With further addition of glycerol up to 40 wt.% as shown in Figure 7.19, the film 

becomes denser as the spherulites reappeared. This allows the formation of 

microcrystalline junctions and promotes recrystallization of salt resulting in the 

decrement of conductivity, which consistent with XRD results as discussed in previous 

section. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19: FESEM micrograph of B4. 
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7.4 Summary 

 

 From XRD and FESEM analysis of electrolytes in salted and plasticized systems, 

it can be seen that pure polymer blend becomes more amorphous with the addition of 

NH4I, followed by plasticization with glycerol. Deconvolution plays a big role in 

studying the crystallinity and structural changes due to overlapping in the XRD patterns. 

A4 which gives the highest conductivity in salted system has the most amorphous and 

porous structure with low crystallinity value. Due to the lowest degree of crystallinity 

and smooth surface based on XRD and FESEM results, respectively, B3 gives the 

highest conductivity and satisfies its impedance spectroscopy results. This electrolyte 

was used in the fabrication of electrochemical devices in this work.  
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CHAPTER 8: CHARACTERIZATIONS AND FABRICATION OF 

ELECTROCHEMICAL DEVICES 

 

8.1 Introduction 

 

The properties of starch/chitosan-NH4I have been analyzed and discussed in the 

previous chapters. In this chapter, the highest conducting electrolyte in the plasticized 

system has been used for the fabrication of the EDLC and proton batteries. B3 attains 

the conductivity value of (1.28 ± 0.07) × 10-3 S cm-1 and the characterization results 

exhibit good characteristics for electrochemical devices application purposes. 

Electrochemical device based on hydrogen ion; H+; have the potential to perform as 

other types of devices including solar cell, nickel and lithium batteries. 

 

8.2 Electrochemical Stability of Electrolyte 

 

Determination of the electrochemical stability window in order to evaluate the 

feasibility of these materials as well as the ability of the electrolytes to endure the 

operating voltage is found important to study prior to applications in electrochemical 

devices (Ng & Mohamad, 2008). The working voltage range is tested using LSV and 

the corresponding voltammogram is presented in Figure 8.1. The voltage applied for 

this study was in the range of 0 to 2.5 V at sweep rate 1 mV s-1. From the LSV 

voltammogram, it is observed that the decomposition voltage of the polymer electrolyte 

is around 1.90 V. This potential window range is sufficient from the EDLC application 

point of view since the standard electrochemical window for energy devices is ~1 V 

(Pratap, Singh, & Chandra, 2006). Other researchers also reported the same range of the 

decomposition voltage for their polymer electrolytes. For example, Shukur et al. (2013) 
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reported that the voltage breakdown for the chitosan-PEO-NH4NO3-EC electrolyte is 

1.75 V. Kadir et al., (2010) reported that the voltage breakdown for PVA-chitosan-

NH4NO3-EC is ~1.70 V.  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

8.3 Primary Proton Battery 

The open circuit potential (OCP) characteristic of the fabricated battery was 

measured at room temperature using B3 for 24 hours and is shown in Figure 8.2. Both 

primary and secondary batteries employ the same anodes and cathodes materials, hence 

the occurrence of reactions are the same in both type of batteries. It can be seen that the 

cell potential is initially higher for a few hours before stabilized at (1.31 ± 0.03) V. This 

phenomenon could be due to the oxidation of anode (Samsudin et al., 2014). Based on 
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Figure 8.1: Linear sweep voltammetry curve for B3 at 1 mV s-1. 
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the result, it can be concluded that the battery is practically stable in an open circuit 

condition. All possible reactions that take place at anode and cathode are listed from 

Equation 8.1 to 8.4 (Alias et al., 2014; Shukur & Kadir 2015b). At cathode, MnO2 is 

reduced by accepting two electrons. At the anode, two electrons are released to the outer 

circuit thus the Zn is oxidized, while ZnSO4∙7H2O provides the H+ ions. Other 

researchers also reported similar reactions (Alias et al., 2014; Samsudin et al., 2014; 

Shukur & Kadir, 2015b). 
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Figure 8.2: OCP of proton battery for 24 hrs. 

Zn              Zn2+ + 2e- 

                    ZnSO4∙7H2O             7H+ + 7OH- + ZnSO4
   

                               MnO2 + 2e + 4H+              Mn2+ + 2H2O 

Zn +  ZnSO4∙7H2O +                   Zn2+ + 2e-  + 7H+ + 7OH- + 
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There are few factors that may affect the difference between the theoretical and 

experimental result of OCP, including the concentration and transportation of ions 

within the electrolyte (Samsudin et al., 2014). In theory, the overall reaction of the 

proton battery should provide the potential of 1.28 V. Result of OCP shows that the 

potential of the proton battery in this work is 1.31 V, which is higher than the expected 

proton battery potential. This suggests that the fabricated proton battery is practically 

stable in an open cell condition (Jamaludin & Mohamad, 2010; Samsudin et al., 2014). 

Deraman et al. (2013) reported that the OCP of electrolyte; polyvinyl chloride (PVC) 

with ammonium trifluoromethane sulfonate (NH4CF3SO3) and ionic liquid, 

butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (BATS) as plasticizer; 

remained constant at ~ 1.30 V for 24 h. Samsudin et al. (2014) reported that their 

batteries based on carboxymethyl cellulose-NH4Br; resulted on an OCP of 1.36 V for  

24 h. Table 8.1 exhibits the comparison of OCP value in the present work with other 

works which employ the same anode and cathode active materials.  

 

Figure 8.3 depicts the discharge profiles of the proton batteries at different 

constant currents. As the current increases, the plateau region shortens. It can be 

observed that the voltage reaches its flat plateau at ~ 1.10 V for a few hours before it 

dropped  significantly. A  plateau region is  the region where the proton battery potential 

reaches a flat discharge rate (Samsudin et al., 2014). At 0.10 mA, the proton battery 

reaches its plateau discharge and lasted for around 70 hours before the voltage dropped 

immediately. The difference can be seen when the battery was discharged at 2.00 mA, 

the plateau region was lasted after 45 minutes. The oxidation of Zn and reduction of 

MnO2 has formed secondary product; Mn2O3-ZnO which is a semiconductor particle 

(Rahman, Gruner, Al-Ghamdi, Daous,Khan, & Asiri, 2013).   This   formation   is   the  

 

Univ
ers

ity
 of

 M
ala

ya



  

 
180 

 

                                                   

 

 

reason  of  potential   decrement  at  ~ 1.10 V  due  to  increment  of  the  charge transfer 

resistance (Wang et al., 2005). Using the value of the discharge time at plateau region 

(tplateau) and i which is the constant current, the discharge capacity (Q) was calculated 

using the following equation: 

 

  
plateau

itQ   

 

Table 8.2 shows the discharge capacity of primary proton batteries at different 

constant currents. The discharge capacity shows an increment as the discharge current 

decreases. A faster reaction is required at higher discharge current. However, the charge 

and proton transfer cannot attain the required speed (Wang et al., 2005). In addition, the 

ion concentration varies along the pores depth thus leading to a more non-uniform H+  

insertion  process  (Roscher, Bohlen, & Vetter, 2011). Samsudin  et  al. (2014)  reported 

 

 

 

Electrolytes OCP (V) Time (h) References 

PVP-sulfamic acid (SA)-PEG 
~1.36 Not stated Bella, Hirankumar, 

& Devaraj, 2014 

PVC-NH4CF3SO3-BATS 
~1.30 24 Deraman et al., 

2013 

Carboxymethyl cellulose-

NH4Br 

1.36 24 Samsudin et al., 

2014 

Starch/chitosan-NH4I-glycerol 1.31 24 Present work 

(8.5) 

Table 8.1: Comparison of OCP value in the present work with other reports. 
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Figure 8.3: Discharge profiles of primary proton batteries at different constant currents. 
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that at 0.50 mA, the battery lasted less than 2 hours which could be attributed to the low 

diffusion rate of H+ ions and the ability of the cell to deliver its electrical energy. From 

the literature, the Q value obtained in this work is found comparable with other reports 

as presented in Table 8.3.  

 

The I-V and J-P characteristics for the primary proton batteries are presented in 

Figure 8.4. The ohmic contributions which dominated the electrode polarization give a 

linear type of I-V plot as shown in the figure. The I-V plot is represented by the equation:  

 

 IrVV  0  

 

where V0 is the OCP and r is the internal resistance which is calculated from the 

gradient of the plot. 

 

 

 

Discharge current (mA) Q (mA h) 

2.00 1.10 

1.00 1.50 

0.50 1.70 

0.20 1.75 

0.10 6.00 

Table 8.2: Discharge capacity of the primary proton batteries at different constant 

currents. 

 

(8.6) 
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Discharge 

current 

(mA) 

Discharge capacity, Q (mA h) 

Starch/chitos

an-NH4I-

glycerol  

(present 

work) 

Carboxymethyl 

cellulose-NH4Br 

(Samsudin et 

al., 2014) 

Chitosan-

NH4NO3-EC 

(Ng & 

Mohamad, 

2006) 

Starch/chitosan-

NH4Cl-glycerol 

(Shukur & 

Kadir, 2015) 

0.10 6.00 3.73 - 9.36 

0.20 1.75 - - - 

0.25 - 2.70 - 4.57 

0.40 - - - 1.37 

0.50 1.70 0.35 - - 

0.60 - - - 1.04 

1.00 1.50 - 17 - 

2.00 1.10 - - - 

Table 8.3: Comparison of discharge capacity (Q) value in the present work with 

other reports at different constant discharge currents. 
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Figure 8.4: Plot of I-V and J-P of primary proton batteries. 
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The value of the internal resistance is found to be 62.30  which could be 

attributed to the oxidation of the electrodes. From the J-P plot, it can be observed that 

the maximum power density is (4.00 ± 0.06) mW cm-2 while the short circuit current of 

the batteries is 17.70 mA. This power density value is higher than those reported by 

Jamaludin et al. (2010) and Alias et al. (2014).  

 

8.4 Secondary Proton Battery 

 

 Stabilizing and maintaining the H+ supply in anode is crucial in order to obtain a 

rechargeable battery hence good and suitable reversible cathodic/anodic half-cell 

reactions are required (Pandey, Lakshmi, & Chandra, 1998). The highest conducting 

electrolyte solution (B3) has been added as one of the components in cathode which is 

believed may assist the intercalation and deintercalation of proton in the cathode active 

materials. The proton is then entering the anode through the electrolyte during the 

battery is recharging (Kadir et al., 2010). Figure 8.5 depicts the charge-discharge 

profiles of secondary or rechargeable proton battery using a constant current of 0.40 mA. 

The cycle starts with the discharging of the battery to 1.00 V before regain its potential 

up to 1.33 V after been recharged. The charge-discharge process cycled for 60 times and 

lasted for about ~80 hours. 

 

The specific discharge capacities (QS) have been calculated with respect to the 

weight of active cathode material (MnO2) and plotted as shown in Figure 8.6. The Qs 

value is found to decrease from 3.17 mAh g-1 to 1.36 mAh g-1 at the 2nd cycle. This 

phenomenon is attributed to the imperfection of the electrode-electrolyte contact at the 

beginning of the battery cycle (Mohamad et al., 2003). The Qs value is then increases 

during  the 3rd and  the 4th cycle and reached 3.06 mA h g-1. This shows an improvement  
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Figure 8.5: Charge-discharge profiles of the secondary proton battery. 

 

Figure 8.6: Specific discharge capacity versus cycle number.  
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in the electrode-electrolyte contact which generates active materials on the electrodes 

surface to oscillate in ZnSO4.7H2O discharge state hence increases the Qs value 

(Samsudin et al., 2014). The Qs value is found almost constant from the 6th cycle to the 

60th cycle since the intercalation of proton at cathode has been stabilized at an almost 

constant rate (Shukur & Kadir, 2015b). The same phenomenon has also been reported 

by other researchers (Kadir et al., 2010; Samsudin et al., 2014; Shukur & Kadir, 2015b). 

Beyond the 60th cycle, Qs value is gradually decreases due to the poor interfacial 

stability of the electrode. This phenomenon will develop a large interfacial resistance 

between the electrode and the electrolyte. Kadir et al. (2010) reported that their 

rechargeable proton battery was studied at 0.30 mA with Qs values between 0.50-2.20 

mAh g-1. The discharge capacity reported in the present work is found higher than their 

results. A discharge capacity of ~0.53 mAh was reported by Lakshmi and Chandra 

(2002) for their cell which recharged up to 7 cycles for 36 hours. Pratap et al. (2006) 

reported that their battery can be recharged for 9 cycles before having significant loss in 

voltage. They concluded that their battery was found more suitable for low current 

density applications, which is relevant with the present work. 

 

8.5 EDLC Characterization 

 

 The EDLC was characterized using cyclic voltammetry (CV) and galvanostatic 

charge-discharge analysis. CV analysis may help to further understand the electrolyte 

electrochemical behavior during the charge-discharge process. The CV is studied at 

various scan rates, as shown in Figure 8.7. The figure shows that the curves are nearly 

rectangular without any obvious peaks observed, which justifies the absence of redox 

reactions or electron transfer process in the electrolyte (Arof et al., 2012; Lim, Teoh, 

Liew, & Ramesh, 2014b). This also proves that reversible charge-discharge processes 
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occur at a constant rate on the electrode-electrolyte interfaces over the complete cycles 

(Lim et al., 2014a).  

 

The slight deviation from the rectangular shape of the CV curves is attributed to 

the internal resistance and carbon porosity (Kadir & Arof, 2011). Liew & Ramesh (2015) 

reported a CV profile with almost similar shape reported in this work and suggested that 

is due to poor electrode-electrolyte interfaces contact. The poor contact will give 

difficulties to the ions to be absorbed onto the electrode surface. The rectangular area 

becomes larger at higher scan rate, meaning that the voltammetric current is directly 

proportional to the scan rate. This voltammogram explains that EDLC is scan rate 

dependent which is a characteristic of capacitor cells.  
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Figure 8.7: Cyclic voltammograms of B3 at different scan rates. 
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The behavior of EDLC is examined under constant current of charge-discharge 

condition. Selected cycles of the charging and discharging curves performance of EDLC 

using the highest conducting electrolyte; B3; are shown in Figure 8.8. The charge-

discharge process is carried out at room temperature at a current density of                

0.04 mA cm-2 between 0 to 0.85 V. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

An internal resistance drop or referred as equivalent series resistance (ESR) 

represents the resistive behavior of EDLC (Pandey et al., 2011). ESR is determined 

from the potential drop when discharging the EDLC using equation: 

 

i

V
ESR

drop
  

 

(8.7) 

Figure 8.8: Charge-discharge curves of EDLC. 
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where Vdrop is the potential drop during the charge-discharge process and i is current in 

unit ampere. ESR ranges from 2.0 to 3.0 k. ESR is caused from the resistance of the 

electrode-electrolyte contact, hence may affect the process during the early stage (Arof 

et al., 2014). This sudden drop upon discharging process is directed to the resistance 

within the electrolyte, current collector and the inter-resistance between the current 

collector and the electrolyte (Lim et al., 2014b). The ohmic loss could also attribute to 

the voltage drop due to current leakage through the side area of the EDLC (Matsuda, 

Honjo, Tatsumisago, & Minami, 1998). This phenomenon leads to polymer electrolyte 

depletion which then developed the cell resistance. The migration and accumulation of 

ions on the double layer of the EDLC can also decrease the amount of mobile charge 

carriers and finally deplete the electrolyte film.  

 

 The value of specific capacitance, Cs on selected cycles from the galvanostatic 

charge-discharge measurement is calculated using the equation: 

 

  









sm

i
Cs

1
   

 

where m is the mass of active material and s is the slope of the discharge curve. The 

specific capacity, QS refers to the amount of charge passing through outer circuit during 

charge-discharge process per unit mass. The values of QS were obtained from the 

following equation: 

 

     
m

it
Q d

S
  

 

where td is the discharge time. 

(8.8) 

(8.9) 
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Figure 8.9 represents the calculated discharge Cs and Qs on selected cycles from 

the galvanostatic charge-discharge measurement. The capacitance of the EDLC starts at 

5240 mF g-1 and decreases before remains constant up to 50th cycle where the Cs is 

1820 mF g-1. The higher Cs during the first 20 cycles suggests that the material has a 

good potential for EDLC fabrication (Arof et al., 2012). The reduction of capacitance 

over the cycle number suggests the formation of ion pairs due to the ion aggregation 

process which then caused the electrolyte depletion (Liew & Ramesh, 2015). During the 

rapid charge-discharge process, more ions might paired up compared to transported 

which leads to the decrement of the number of mobile charge carriers. The ions which 

should accumulate to form an electrical double layer at the electrode-electrolyte 

boundaries also have reduced, hence reducing the capacitance of EDLC and increasing 

the internal resistance (Liew, Ramesh, & Arof, 2014b). During the charging state, few 

ions  still  remain  in  the polymer  matrix  which  significantly  affects  the charging and  

      

 

 

 

 

 

 

 

 

 

 

 

 Figure 8.9: Specific discharge capacitance and capacity versus cycle number. 
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discharging process (Sudhakar & Selvakumar, 2012). The value of Qs obtained is 

almost constant at ~0.15 mA h g-1 and exhibits the same trend with Cs as shown in 

Figure 8.9. The Cs value obtained in this work is compared with other reports as 

presented in Table 8.4. 

  

The processes involve absorption and desorption of ions where both anions and 

cations contribute over the formation of electrical double layer. The cations; H+ or NH4
+; 

are attracted to the negatively charge electrode and form the charge accumulation on its 

surface. At the same time, the electrons are released and moved from positive to 

negative electrode once the electric field is applied (Liew et al., 2014b). The anions 

from polymer electrolyte; iodide ion or I-; attracted to the positively charged surface and 

replace the electrons by ion absorption process when the voltage is applied within the 

EDLC. However, due to large atomic size (radius = 140 pm) and its bulky characteristic, 

I ion is hard to be attached and adsorbed on the electrode surface. The mobility of an ion 

will reduce as the size is increased (Shukur et al., 2013). This will reduce the amount of 

ions which will accumulate to form the double layer, hence produces a lower 

capacitance. 
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Electrolytes Electrode 

materials 

Specific 

capacitance, 

Cs on the first 

cycle  (mF g-1) 

Cycle 

number 

References 

PMMA-

LiBOB-PC-EC 

Carbonaceous 

material from 

mata kucing 

(Dimocarpus 

longan) fruit 

shells 

685 50 Arof et al., 2012 

PMMA-

LiBOB-PC-EC 

Activated carbon 521 50 Arof et al., 2012 

MC-NH4NO3 Activated carbon 1670 15 Shuhaimi, 

Majid, & Arof, 

2009 

Chitosan-PEO-

NH4NO3-EC 

Activated carbon 106.53 140 Shukur et al., 

2013 

PEO-LiTf-

EMITf 

MWCNT (multi 

walled carbon 

nanotube) 

1700-2100 NA Pandey et al., 

2011 

PEO-Mg(Tf)2-

EMITf 

MWCNT 2600-3000 NA Pandey et al., 

2011 

Starch/chitosan

-NH4I-glycerol 

Activated carbon 5240 50 Present work 

 

    

  

 

  

Table 8.4: Comparison of specific discharge capacity (Cs) values in the 
present work with other reports. 
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8.6 Summary 

 

The EDLC and proton batteries have been fabricated by employing the B3 

sample.  From the LSV result, it can be observed that the sample is electrochemically 

stable up to 1.9 V. The OCP of the proton batteries after 24 hours is (1.31 ± 0.03) V, 

which is higher than the theoretical potential. The discharged capacity of the primary 

batteries is enhanced by lowering the discharge current where the primary proton 

battery can stand up to 65 hours when discharged at 0.10 mA. The internal resistance, 

short circuit current and the power density of the primary proton batteries are          

62.30 17.70 mA and (4.00 ± 0.06) mW cm-2, respectively. The secondary proton 

battery has been charged and discharged at 0.40 mA for 60 cycles. The EDLC provides 

the specific capacitance value of 1820-5240 mF g-1. CV analysis shows that the faradaic 

or electron transfer process did not occur during the charge-discharge process. These 

results conclude that NH4I can be a good proton provider in this biomaterial proton 

battery for low current density devices. 
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CHAPTER 9: DISCUSSION 

  

 Polymer electrolyte (PE) is an interdisciplinary field which combined the 

disciplines of polymer science, advanced materials, electrochemistry and inorganic 

chemistry. The science of electrolyte has attracted vast interest and demand since the 

past few decades from both industry and academia due to the potential shown for 

applications in energy devices including proton batteries (Bella et al., 2014), 

supercapacitors (Sivaraman et al., 2003), fuel cells (Urban et al., 2001) and sensors 

(Vonau et al., 2012).  

 

Liquid electrolyte has been well-known in energy technology as a separator in 

devices that helps the ions to carry the charges. The use of liquid electrolytes has caused 

several disadvantages such as flammable, volatile and corrosive solvent and gas leakage 

which can cause irritation to human body (Noor et al., 2013). As the problems arose, 

researchers start to replace liquid electrolytes with polymer electrolytes. The research on 

PE which inspired by Armand (1994) has started to get intense research and 

development on new types of polymer electrolytes by varying the polymers selection 

and the charge provider along with its physical and chemical properties.  

 

 Pollution and shortage of fossil resources has become the reasons to mankind to 

look for cheap and safe but efficient technology that could replace the current energy 

devices. The development of PE based on natural polymers has been evolved due to 

environmental concerns and also to overcome the increasing price of petroleum sources 

to build energy devices (Bouchet et al., 2013). These natural polymers are easily 

biodegradable, which makes these materials interesting and good options for 

replacement. Several natural biopolymers that receive most attentions are including 
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cellulose (Kim et al., 2016), chitosan (Winie & Arof, 2004) and starch (Khiar & Arof, 

2011). 

 

In the present work, attention is given on developing starch/chitosan blend based 

biopolymer electrolytes. Corn starch has been chosen since the amylose content which 

is highly amorphous constitute of 27 % (Amaka et al., 2013; Association, 2006). This 

amount is higher compared to other types of starches. Furthermore, corn starch is a low 

cost material and easy to obtain for electrolyte preparation. The hydroxyl group in 

starch is available for formation of hydrogen bondings which in turn will favor the ionic 

mobility (Lu et al., 2009). The choice of chitosan to be blended with starch in this work 

has been made since previous works by other researchers have shown that this blend 

film exhibits improved characteristics compared to when they present individually. 

These characteristics are including more flexible, biodegradable, good mechanical 

strength as well as high ionic conductivity (Shukur & Kadir, 2015a; Shukur et al., 2013; 

Xu et al., 2005). The amino and hydroxyl groups attach to chitosan have prepared this 

polymer readily for hydrogen bonding interactions (Sugimoto et al., 1998). 

 

 In the present work, acetic acid is used as solvent. Blending polymer in acetic 

acid medium has been reported to obtain good functional properties and mechanical 

strength (Prokhorov et al., 2016). Meanwhile, the heating process up to 80˚C will 

activate the starch molecules hence enhance the reaction rate by gelatinization (Diop, Li, 

Xie, & Shi, 2011). It is important for the starch granules to undergo gelatinization 

process because the existence of amylose and amylopectin exhibits semi-crystalline 

structure in the granules hence requires more energy for disruption (Park et al., 2007).  
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 The compatibility of starch and chitosan to serve as polymer blend host is 

proven in Chapter 4. FTIR analysis has revealed that dissolving starch and chitosan in 

acetic acid has shifted the hydroxyl bands, showing that hydrogen bonding interactions 

have occurred between OH group of starch, OH and NH group of chitosan and OH 

group of acetic acid. The shiftings at carboxamide and amine regions as shown in 

Figure 4.3 are correlated to the protonated of NH2 group to become NH3
+ and also the 

hydrogen bonding formed at O atom of O=C-NHR (Nie et al., 2005). Deconvolution of 

XRD patterns is carried out in order to investigate the crystallinity of the various ratios 

of starch and chitosan and presented in Figures 4.8 and 4.9. The deconvolution of 

overlapping peaks has revealed that the polymers still retain their individual behaviors 

in the polymer blend film based on the existence of the original peaks. PB2 exhibits the 

lowest degree of crystallinity among all, proving that the crystalline domains is 

suppressed by blending starch and chitosan hence ready to serve as polymer host. 

 

 TGA analysis of the blend film also shows that it possesses both starch and 

chitosan characteristics by reducing the decomposition temperature compared to 

chitosan film and increasing the remaining material if compared to starch film. The Tg of 

selected polymer blend films exhibit the intermediate value between the Tg of starch and 

the Tg of chitosan, proving the interaction effects of miscible and compatible polymers 

(Bonilla et al., 2014). The addition of starch and chitosan has interrupted the molecules 

arrangement in starch film, hence shifted slightly the Tg value.  It is presented in Figure 

4.15 that PB2 possesses the lowest Tg value, confirming the high amorphous region in 

the blend compared to other ratios. The smoothness of PB2 surface area and the surface 

of cross-sections is another strong evidence on the compatibility and miscibility of 

starch and chitosan for this ratio. The absence of undissolved granules and the shrinkage 
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pattern based on the surface and cross-sections micrographs as shown in Figure 4.21 has 

brought to the conclusion that PB2 is the best candidate to serve as the blend host. 

 

The results on the interaction at molecular level of the components in polymer 

blend can be proven based on FTIR analysis in Chapter 5. The deconvolution technique 

has been used to verify the overlapping patterns of different bands. The peaks of the 

asymmetry vibration; as (NH4
+) mode and symmetry vibration; s (NH4

+) from salt are 

detected to be overlapped with OH bonding in salted and plasticized systems, which 

implied that the salt characteristic is retained in all electrolytes. The broad and intensed 

hydroxyl bands prove the multihydroxyl structure exist in the electrolytes which will 

provide good interactions with polysaccharide group through hydrogen bonding (Liu et 

al., 2013).  The shifting of the bands in carboxamide region is inferred due to hydrogen 

bonding interaction of H+ and NH4
+ at C=O (Nie et al., 2005). The bands shifting at 

1490-1570 cm-1 are attributed to hydrogen bonding interaction at amine group. The 

changes in wavenumbers 955-1055 cm-1 can further justify the interactions between the 

components in the polymer blend. 

 

 Ionic conductivity is the most important study in this work in order to verify the 

suitability of this polymer electrolyte to be fabricated in electrochemical devices. As 

discussed and calculated based on Cole-Cole plots in Chapter 6, B3 exhibits the highest 

capacitance value which suggests that the addition of glycerol as plasticizer has created 

new pathways for ion conduction hence promoted ions dissociation and increased the 

number density and mobility of ions (Buraidah et al, 2009). The highest conductivity at 

room temperature in salted system is (3.04 ± 0.32) × 10-4 S cm-1, which is achieved 

when 40 wt.% of NH4I is added. This A4 sample gives the lowest Ea which is 0.200 eV 

and the highest average values of  n and   which are 6.07× 1018 cm-3 and 3.16 × 10-4 
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cm2 V-1 s-1, respectively, in salted system. All electrolytes in salted system show 

Arrhenian characteristic as the conductivities exhibit linear relation with temperature, 

which presented in Figure 6.8. The Ea values are determined from Arrhenius plots 

where Ea, n and  values are correlated by Rice and Roth model using Equation (2.2). 

These results imply that in salted system, A4 has the highest number of mobility and 

density of charge carriers hence reducing the energy barrier for ion conduction. Higher 

conductivity is obtained in this work if compared to the starch-NH4I electrolyte (~ 2.40 

× 10-4 S cm-1) which is done by Kumar et al. (2012) and chitosan-NH4I electrolyte (3.73 

× 10−7 S cm−1) which is done by Buraidah et al. (2009). This result justifies the 

contribution of polymer blending technique in conductivity enhancement where A4 

gives the highest ionic conductivity and requires the lowest energy to move around due 

to the lowest Ea value.  

 

This A4 sample is then plasticized with various concentrations of glycerol. 

Plasticization method has been widely used by researchers to optimize the ionic 

conductivity as well as to improve their electrolytes in term of mechanical and 

electrochemical properties (Ramesh & Arof, 2001). Glycerol is chosen in this work due 

to its compatibility with starch-based film as reported by Marcondes et al. (2010) and 

Zhai, Yoshii, & Kume (2003). Compatibility is the most significant and major 

characteristic for effective plasticization (Vieira, da Silva, dos Santos, & Beppu, 2011).  

Furthermore, its low melting point (18˚C) and high boiling point (290˚C) avoids 

glycerol from boiling or melting at the temperature range used in this study (Speight & 

Speight, 2002). High dielectric constant () possessed by glycerol is 42.5, which is 

higher than some other plasticizer including ethylene sulfite or ES (=39.6) (Azli, 

Manan, & Kadir, 2015) and dimethylacetamide or DMA (=37.8). The high dielectric 

constant of glycerol which can weaken the force between the cation and anion of the salt 
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will cause the salt to be easily dissociated to become free ions (Gondaliya et al., 2013). 

In addition, glycerol provides the new pathways for ion conduction due to the existence 

of hydroxyl groups which will complex with cations (H+ and NH4
+) during ionic 

conduction (Shukur & Kadir, 2015).  

 

The highest conductivity at room temperature which is (1.28 ± 0.07) × 10-3 S 

cm-1 is obtained when 30 wt.% of glycerol is added (B3). The addition of more that 30 

wt.% glycerol has decreased the conductivity due to the formation of microcrystalline 

linkages among the glycerol molecules and further allow the recrystallization of salt 

(Bergo et al., 2009). Marcondes et al. (2010) also reported that the plasticization of 

starch-based film is best with 30 wt.% of glycerol. The films start to be difficult to 

handle and failed to form a good film when more than 30 wt.% of glycerol is used. This 

result is supported with transport properties by Rice and Roth model as tabulated in 

Tables 6.4 to 6.11. B3 gives the lowest Ea which is 0.182 eV and the highest average 

values of n and which are 1.33 × 1019 cm-3 and 6.08 × 10-4 cm2 V-1 s-1, respectively. It 

can be concluded that the conductivity enhancement is influenced by the mobility and 

number density of ions as related by Equation (2.1). All electrolytes in plasticized 

system follow Arrhenius rule as the conductivities exhibit linear relation with 

temperature and the plots are presented in Figure 6.8. 

 

Transference number analysis is important to be carried out to determine the 

type of conducting species involved in this work (Sekhar et al., 2012). Since ions play 

the biggest role in conduction, the ionic transference number, tion; must be higher than 

the electronic transference number, te. As calculated in Equation (6.11), the tion for the 

highest conducting electrolyte is 0.991 while the te is 0.009. Based on Figure 6.10, it can 

be seen that the initial current is high before drop and saturated at 0.3 A. The 
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electrodes used for transference number is ion blocking stainless steel electrodes, where 

only electrons can pass through the electrodes and carry the current while the ions will 

be trapped between the electrodes (Woo et al., 2011).  

 

Another critical parameter to be analyzed is cation transference number, t+; since 

cation is the major contributor during the charge-discharge process of a proton battery. 

Watanabe’s technique has been used to calculate t+ by sandwiching the highest 

conducting electrolyte between two reversible MnO2 electrodes. By using Equation 

(5.12), the value of t+ is calculated to be 0.40. This measurement could be affected by 

ions association, but this observation is sufficient for the determination of ions 

transportation process. 

 

The study of dielectric constant; r and dielectric loss; i at room temperature has 

been carried out for both salted and plasticized systems. The variation of r and i follow 

the same trend as conductivity results, as the highest conducting sample has the highest 

values ofr and i. The charge stored is increased in electrolytes as the conductivity 

increases. In plasticized system, glycerol is able to dissociate more salt to become ions 

hence produced higher number of density and mobility of ions. It also can be seen from 

Figure 6.13 that at high frequencies, both r and i are unable to follow the fast reversal 

of electric field and finally the ions will accumulate at the electrode-electrolyte interface. 

This phenomenon will decrease the values of r and i and confirmed the non-Debye 

behavior of the electrolytes. The electrical modulus where Mr and Mi are real and 

imaginary parts of the electrical modulus, respectively, has also been studied to analyze 

the electrical relaxation process of the electrolytes. Electrical modulus is most suitable 

to be studied at low frequencies region according to Equation (6.16). The low Mr and Mi 

at low frequencies indicates that the electrode polarization effect is neglected (Woo et 
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al., 2012). At high temperature, the electrical modulus is reduced due to the increased of 

charge carriers mobility (Aziz et al., 2010). Relaxation time which represents the effort 

of the charge carriers to obey the applied field direction is also found lower as the 

conductivity increased. The conduction mechanism predicted based on Jonscher’s 

universal power law is quatum mechanical tunneling or QMT for both systems. Besides 

hopping, the ions are tunneling through the potential barrier between the complexation 

sites (Majid & Arof, 2007).  

 

The stability of the electrolytes is further investigated based on TGA analysis. 

The decomposition temperature of A2 and A4 is in the range of 165 to 190˚C as shown 

in Figure 6.25, which is lower than the polymer blending electrolyte. B3 and B5 

samples start to decompose at 130-170˚C temperature range. This decrement is 

attributed to the improvement of flexibility by enhancing the amorphous area, hence 

easier for disruption (Ramesh et al., 2012). In this amorphous region, the polymer 

segmental region will support the ionic migration hence lowering the Tg (Woo et al., 

2013). Determination of Tg is significant to enhance the understanding of the 

conductivity trend due to the attribution of segmental motion. The Tg is found lower as 

the conductivity increased due to the flexible polymer backbone which allows an easy 

ions movement (Liew et al., 2014b). As the crystallinity increases, the Tg is found higher 

due to the restricted segmental motions which then leads to the formation of cross-

linkings within the polymer and resulted on declining of conductivity.    

 

 The compatibility of the electrolytes is further characterized using XRD and 

FESEM analyses. The deconvolution technique has been carried out to differentiate the 

overlapping patterns. It can be seen from Figure 7.1 that the amorphousness of the 

polymer blend is increased with the addition of salt. The FESEM micrographs exhibit 
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small particles with rough surface pattern as depicted in Figures 7.6 and 7.7. A4 exhibits 

porous structure as shown in Figure 7.8 which can be related to the pore connectivity 

during the charge carriers transportation (Xi et al., 2006). The ionic conductivity is high 

while the crystallinity is low at this salt percentage. However, when more than 40 wt.% 

of salt is added, the sharp peaks which attributed to salt start to appear. As shown in 

Figure 7.9 and 7.10, the solid particles which suspended out of surface are attributed to 

the recrystallization of salt. The ions recombine since the polymer host is failed to 

accommodate the salt, hence decreases the conductivity (Kadir et al., 2010). The degree 

of crystallinity is also calculated and discovered that a high conducting electrolyte 

exhibits high amorphousness with low crystallinity value. This result proves that in 

amorphous region, the flexible backbones of polymer will cause to rapid segmental 

motions thus increases the chances of the charge carriers to move around and leads to 

higher conductivity (Rajendran et al., 2001). The salt molecules will react with the 

hydroxyl groups of the polymers and destruct the local hydrogen bonding which able 

the ions for movement.  

 

The addition of glycerol will further suppress the crystalline region which 

proven from the absence of several crystalline peaks as depicted in Figures 7.12 to 7.14. 

The FESEM micrographs exhibit smoother surface during the addition of plasticizer. 

Different surface pattern are obtained as the glycerol content is increased. For the 

highest conducting electrolyte, indistinct spherulites with some boundaries appear 

which a proof of low crystallinity as reported by Ravi et al. (2015). This result is further 

strengthen when the degree of crystallinity values are found lower for the plasticized 

electrolytes. Glycerol promotes the dissociation of salt to become free ions by providing 

new pathways for ion conduction (Shukur, 2015). The addition of more than 30 wt.% 

glycerol leads to the appearance of new crystalline peaks hence resulting on high degree 
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of crytallinity as tabulated in Table 7.2. This accompanied with the decrement of ionic 

conductivity due to excess of glycerol content.  

 

The development of lithium (Li+) based energy devices is not foreign to 

researchers from industry and academia. Major attention has been given to Li+ ion due 

to high energy density, hence Li+ ion batteries have been exposed to various applications 

(Xu, 2004). This popularity however failed to deny the problems implicated from this 

technology, from exploded hand phones to grounded airplanes (Williard, He, Hendricks, 

& Pecht, 2013). Polymer electrolyte is used to separate the electrodes in a cell by 

preventing internal short circuit. The organic solvent containing lithium salt in the cell 

plays a role as a medium for ions transportation but this solution is easily volatile hence 

this type of battery faces major drawbacks due to safety, cost and difficult to handle 

(Bouchet et al., 2013). Another type of battery that has been investigated for few 

decades is alkaline batteries. However, the formation of intermediate species during the 

battery cycling process leads to chemical corrosion enhancement and leakage (Dell, 

2000). 

 

Proton (H+) based conducting electrolytes have been recognized as an alternative 

ionic conductor in electrochemical device applications (Alias et al., 2014; Buraidah & 

Arof, 2011). This is because of the small radius of H+ compared to Li+ which makes H+ 

better for intercalation into the layered structure of cathode (Mishra et al., 2014). For 

battery application, most of the proton conducting electrolytes are electrochemically 

decomposed at 1 to 2 V compared to Li+ electrolytes (4 V) (Kadir et al., 2010; Pratap et 

al., 2006; Yang et al., 2008). However, due to the low cost of electrode and electrolyte 

materials used for proton batteries as well as no safety issues associated with them, 

proton batteries appear as a good alternative for low energy density battery applications 

Univ
ers

ity
 of

 M
ala

ya



 
 204 

(Mishra et al., 2014; Pratap et al., 2006). Even though throw-away or primary batteries 

are still desirable, consumers start to pay attention to the rechargeable or secondary 

batteries due to economical benefits (Dell, 2000). 

 

 LSV has been carried out to study the operating voltage that can be endured by 

the electrolyte prior to electrochemical devices applications. It is found that B3 

decomposed at around 1.90 V which concludes that this sample is suitable and ready to 

be fabricated. The open circuit potential (OCP) shows that cell potential is initially 

higher for a few hours before stabilized at (1.31 ± 0.03) V. It is concluded that the 

battery is practically stable in an open circuit condition. 

 

Primary batteries are discharged at different constant currents. All discharge 

profiles show that the voltage reaches flat plateau at ~1.10 V before dropped 

significantly due to the increment of charge transfer resistance (Wang et al., 2005). The 

discharge capacities of the proton batteries are calculated using Equation (8.5) and 

tabulated in Table 8.2. The discharge capacity value is high when low discharge current 

is used. At high discharge current, a fast reaction is required but the charge transfer 

cannot attain the required speed which leads to a low diffusion rate of H+ ions hence 

unable to deliver the electrical energy (Samsudin et al., 2014). The Q values obtained in 

this work are found comparable with other reports as presented in Table 8.3. From the I-

V and J-P plots, the internal resistance is found to be 62.30  which could be attributed 

to the oxidation of the electrodes. The maximum power density is (4.00 ± 0.06) mW cm-

2 while the short circuit current of the batteries is 17.70 mA. This power density value is 

higher than those reported by Jamaludin et al. (2010) and Alias et al. (2014).  
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 Secondary proton battery fabrication has been tested at 0.40 mA and cycled for 

60 times. The Qs value is found to decrease from 3.17 mAh g-1 to 1.36 mAh g-1 during 

the 2nd cycle due to the imperfection of the electrode-electrolyte contact at the early 

stage of the process (Mohamad et al., 2003). The Qs value is then increases during the 

3rd and the 4th cycle and reaches 3.06 mA h g-1 due to the improvement of electrode-

electrolyte contact (Samsudin et al., 2014). During the 6th cycle to the 60th cycle, the Qs 

value is found constant since the intercalation of proton at cathode has been stabilized at 

an almost constant rate (Shukur & Kadir, 2015b). These results are better than that 

reported by Kadir et al. (2010) and concluded as suitable to be applied in low current 

density devices. 

  

 The cyclic voltammetry or CV analysis has been carried out to study the 

electrochemical behavior of B3 during the charge-discharge process. It is observed the 

redox reaction or electron transfer process does not occur during the process due to the 

absence of any visible peaks based on the plots presented in Figure 8.7 (Lim et al., 

2014b).  It also clarifies the reversible charge-discharge process occurs at a constant rate 

on the electrode-electrolyte interfaces and explained the scan rate dependent behavior of 

an EDLC. The capacitance of the EDLC starts at 5240 mF g-1 and decreases before 

remains constant up to 50th cycle where the Cs is 1820 mF g-1, which suggests that the 

material has a good potential for EDLC fabrication (Arof et al., 2012). The Cs value 

obtained in this work is compared with other reports as presented in Table 8.4. 

 

The reduction of capacitance over the cycle number suggests the formation of 

ion pairs due to the ion aggregation process which then caused the reduction of mobile 

charge carriers number (Liew & Ramesh, 2015). Both anions and cations contribute 

over the formation of electrical double layer in an EDLC. The cations; H+ or NH4
+; are 
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attracted to the negatively charge electrode and form the charge accumulation on its 

surface while the anions from polymer electrolyte; iodide ion or I-; attracted to the 

positively charged surface and replace the electrons by ion absorption process when the 

voltage is applied within the EDLC (Liew et al., 2014b). However, the large atomic size 

(radius = 211 pm) of I ion makes it hard to be attached and adsorbed on the electrode 

surface. The mobility of an ion will reduce as the size is increased (Shukur et al., 2013). 

This will reduce the amount of ions which will accumulate to form the double layer, 

hence produces a lower capacitance.  
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CHAPTER 10: CONCLUSIONS AND FUTURE WORKS 

 

10.1 Conclusions 

 

 Three polymer electrolytes systems were successfully prepared via solution 

casting technique; starch/chitosan, starch/chitosan-NH4I and starch/chitosan-NH4I-

glycerol. The preparation of salted system was made based on characterization results 

on the starch/chitosan blend films including: 

 FTIR results have revealed the interaction at molecular level when starch was 

blending with chitosan.  

 The degree of crystallinity of each ratio of starch and chitosan was calculated 

based on XRD analysis and 80 wt.% of starch/20 wt.% of chitosan was found as 

the most amorphous ratio.  

 The water content and the decomposition temperature of the blend film exhibits 

intermediate characteristics of both starch and chitosan individual films, 

proving that the thermal stability behavior of both films were retained in PB2 

film.  

 The Tg values of the blended films fell at the intermediate range of the 

individual polymers which confirmed a good miscibility of both polymers. The 

lowest Tg value given by PB2 is another proof that PB2 is highly amorphous 

compared to other ratios.  

 The smooth pattern of the cross-sections surface exhibited by PB2 has 

concluded that PB2 is the most suitable and compatible blend to serve as 

polymer host.  
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The addition of 40 wt.% NH4I has enhanced the conductivity in salted system up 

to (3.04 ± 0.32) × 10-4 S cm-1 due to several reasons: 

 Highly amorphous which resulted on higher conductivity. Amorphousness was 

determined based on low degree of crystallinity value and low value of Tg. 

 The enhancement of mobility and number density of charge carriers as the salt 

was added. 

 The lower lattice energy of salt (605.3 kJ mol-1) and larger anionic size of I (211 

pm) resulted on easier dissociation of salt. 

 Conductivity values are increased as the temperature increased which follows 

the Arrhenius theory. During the heating process, the ions vibrate faster hence 

less energy was needed for ionic conduction hence produced lower Ea. 

 

Plasticization technique has increased the conductivity up to (1.28 ± 0.07) × 10-3 

S cm-1 with the addition of 30 wt.% of glycerol due to some reason as listed below: 

 The high dielectric constant possessed by the glycerol helped in the dissociation 

of salt to become free ions. 

 The number of density and mobility of ions were further increased since more 

free ions were produced. This also can be determined based on dielectric studies.  

 Glycerol also provides alternative pathways for ionic conduction which was 

proven by lower Ea value. 

 The amorphousness of plasticized electrolytes was further enhanced which was 

proven by lower degree of crystallinity. 

 

In transference number analysis, the total ionic transference number obtained 

was 0.991 while the cation transference number, t+ for the highest conducting 

electrolyte was found to be 0.40. LSV measurements reveal that the electrolyte was 
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electrochemically stable up to 1.90 V. The discharged capacity of the primary batteries 

was enhanced by lowering the discharge current e. g. primary proton battery can stand 

up to 65 hours when discharged at 0.10 mA. The internal resistance, short circuit current 

and the power density of the primary proton batteries were 62.30 17.70 mA and 

(4.00 ± 0.06) mW cm-2, respectively. The secondary proton battery has been charged 

and discharged at 0.40 mA for 60 cycles. The capacitance of the EDLC started at 5240 

mF g-1 and decreased before it remained constant up to 50th cycle where the Cs is 1820 

mF g-1. These results concluded that NH4I can be a good proton provider in this 

biomaterial proton battery for low current density devices. 

 

10.2 Contribution of the Thesis 

  

 The aim of this thesis is to prepare a natural polymer electrolyte-based which 

approach a reliable and compatible energy device performance with high conductivities. 

The motivation behind this doctoral work is to produce a stable electrolyte in term of 

physical, chemical and thermal through a cost-effective methodology. This work 

focuses on the selection of NH4I as the dopant salt which not yet used in proton batteries 

and EDLC applications, hence giving rise to novel material with promising 

characteristics for low current density devices. This work also shows an effort on 

understanding the characteristics of a good electrolyte which may enhance the devices 

performance and provide the guidelines for energy devices designs in the future. 
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10.3 Future Works 

 

 In the future, a few significant steps should be taken to produce an improved 

electrolyte in term of electrical, physical and chemical characteristics including: 

 Increasing the conductivity by employing double salt system technique. Two 

different sources of charge carriers may prevent the formation of ions 

aggregation hence increases the density of ions (Ramesh & Arof, 2000; 

Subramaniam et al., 2012). 

 Modifying the structure and enhancing the ionic conductivity by introducing 

inorganic nanosize-filler such as aluminium oxide (Al2O3) (Chand, Rai, Agrawal, 

& Patel, 2011), zinc oxide (ZnO) (Noor et al., 2011) and cadmium oxide (CdO) 

(Ravindran et al., 2015). 

  Applying comb-branched or grafting copolymers. This method involving low 

molecular weight of polymer which will be grafted to another polymer backbone 

(Subramaniam et al., 2012). The flexibility of the polymer chain will be 

improved while reducing the degree of crystallinity and Tg which in turn 

resulting on higher conductivity (Zhang et al., 2011). 

 Employing mixed aprotic solvent system for example the mixture of propylene 

carbonate, PC and ethylene carbonate, EC. This technique give the possibility to 

enhance the conductivity by two orders of magnitude due to high degree of 

dissociation and rapid ionic migration (Deepa et al., 2002; Tobishima, Hayashi, 

Nemoto, & Yamaki, 1997) 

  

Further improvements can be done on proton batteries and EDLC performance 

including: 
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 Varying the electrode material such as employing vanadium (IV) oxide (V2O5) 

as positive electrode (Alias et al., 2014) or synthesizing new anode or cathode 

materials for better electrochemical performance (Liu et al., 2017; Liu et al., 

2017). 

 Building nanostructure material with various carbon-based materials to avoid 

significant loss and poor cyclic stability including carbon nanotube or CNT, 

carbon fibers and graphene (Guo et al., 2015; Liu et al., 2017). 

 Employing gold nanowires for higher power storage, improving stability and 

longer cycle lifetime (Le Thai, Chandran, Dutta, Li, & Penner, 2016). 

 Insertion of mixed metal oxide for the electrodes (Choi et al., 2016) or 

increasing the activated carbon surface area (Shukur, 2015). 

 

Even though the fabrication carried out in this work is more suitable for low-

power applications, a device with stable performance and friendly to the environment is 

expected to be used for a long time. Further improvements are necessary; hence the 

resulting products are not just following the latest trend but instead will be beneficial to 

the human race.  
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