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ABSTRACT 

The development of a sensor for the precise and selective measurement of biological 

analytes (such as dopamine (DA), nitric oxide (NO), hydrogen peroxide (H2O2) and L-

Cysteine (L-Cys)) at the low levels characteristic of living systems can make a great 

contribution to disease diagnosis. The discovery of an electrochemical technique for the 

detection of various biological analytes was induced by the strong demand on 

developing a sensing technique that able to offer a rapid response, high sensitivity, 

simplicity and low operating cost. In order to enhance the analytical performance of 

electrochemical biosensor, several challenges associated with the sensors need to be 

solved including: (i) sluggish electron-transfer rate properties at the electrode's surface 

which led to the poor response signal; (ii) limited sensitivity and selectivity capabilities 

towards target analyte detection due to occurrence of fouling effect; and (iii) 

overlapping voltammetric response caused by the co-existence of various interfering 

species. We have sought to address these problems through chemical modification of 

conventional working electrode surface with an electrochemically active material, 

which is reduced graphene oxide (rGO)-based material. The thesis reports the 

preparation of novel reduced graphene oxide-nafion@metal (rGO-Nf@metal) 

nanohybrid materials which were then used to modify glassy carbon electrode (GCE) 

for the detection of various biological analytes. The strategy of using these nanohybrid 

materials is driven by the excellent individual properties owned by rGO and metal 

nanoparticles which essential in boosting the sensing performance. There are four 

important studies that have been presented in this thesis; (i) reduced graphene oxide-

nafion (rGO-Nf) nanohybrid modified electrode for electrochemical detection of DA 

and NO; (ii) reduced graphene oxide-nafion@silver (rGO-Nf@Ag) nanohybrid 

modified electrode for electrochemical detection of H2O2; (iii) reduced graphene oxide-
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nafion@gold (rGO-Nf@Au) nanohybrid modified electrode for electrochemical 

detection of NO; (iv) reduced graphene oxide-nafion@palladium (rGO-Nf@Pd) 

nanohybrid modified electrode for electrochemical detection of L-Cys. To sum up, we 

have successfully developed a simple, highly sensitive, and selective electrochemical 

sensor using rGO-Nf@metal-based nanohybrids for the detection of various biological 

analytes. The novelty of presented work lies in the used of simple, rapid, and facile 

method for synthesis that is hydrothermal method, and the used of small amount of 

metal which could reduce the cost of production. Moreover, the combination of three 

individual materials (rGO, Nf, and metal nanoparticles) to form a ternary nanohybrid 

material proven to be suitable material for boosting the electrochemical sensor 

performance, thus open up a new path to develop new catalyst for electrochemical 

sensor. 
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ABSTRAK 

Pembangunan alat pengesan analit biologi (seperti dopamine (DA), nitrik oksida 

(NO), hidrogen peroksida (H2O2), dan L-Cysteine (L-Cys)) bagi pengukuran yang tepat 

dan terpilih pada kepekatan yang rendah dalam sistem hidup boleh memberi sumbangan 

besar kepada bidang diagnosis penyakit. Permintaan yang tinggi untuk mewujudkan 

satu teknik penderiaan yang menyediakan tindak balas yang cepat dan sensitif, 

kemudahan penggunaan dan kos rendah, membawa kepada penemuan teknik 

elektrokimia untuk mengesan pelbagai analit biologi. Dalam usaha untuk meningkatkan 

prestasi biopenderia elektrokimia, beberapa isu yang perlu diselesaikan termasuklah: (i) 

Kadar pemindahan-elektron yang lembap pada permukaan elektrod membawa kepada 

isyarat tindak balas yang lemah; (ii) kepekaan dan kemampuan untuk memilih analit 

sasaran yang terhad kerana berlakunya kesan penempilan; dan (iii) tindak balas 

voltametri yang bertindih disebabkan oleh kewujudan bersama pelbagai spesies yang 

mengganggu. Kami telah berusaha untuk menangani masalah ini melalui 

pengubahsuaian kimia terhadap permukaan elektrod kerja yang konvensional dengan 

bahan aktif iaitu bahan berasaskan grafen. Tesis ini melaporkan penyediaan bahan 

nanohybrid bagi grafen teroksida-nafion@logam (rGO-Nf@logam) yang kemudiannya 

digunakan untuk mengubah suai elektrod karbon berkaca (GCE) untuk mengesan 

pelbagai analit biologi. Strategi untuk menggunakan bahan-bahan nanohybrid didorong 

oleh sifat-sifat cemerlang individu yang dimiliki oleh rGO dan nanopartikel logam yang 

mana penting dalam meningkatkan prestasi penderiaan. Terdapat empat kajian penting 

yang telah dibentangkan di dalam tesis ini; (i) Elektrod diubahsuai oleh grafen 

teroksida-nafion (rGO-Nf) nanohybrid digunakan untuk mengesan DA dan NO; (ii) 

Elektrod diubahsuai oleh grafen teroksida-nafion@argentum (rGO-Nf@Ag) nanohybrid 

digunakan untuk mengesan H2O2; (iii) Elektrod diubahsuai oleh grafen teroksida-

nafion@emas (rGO-Nf@Au) nanohybrid digunakan untuk mengesan NO; (iv) Elektrod 
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diubahsuai oleh grafen teroksida-nafion@palladium (rGO-Nf@Pd) nanohybrid 

digunakan untuk mengesan L-Cys. Kesimpulannya, kami telah berjaya membangunkan 

pengesan elektrokimia yang mudah, sangat sensitif, dan selektif menggunakan bahan 

berasaskan rGO-Nf@logam nanohybrid untuk mengesan pelbagai analit biologi. 

Sesuatu yang baru tentang kerja yang dibentangkan adalah terletak pada penggunaan 

kaedah sintesis yang mudah iaitu kaedah hidroterma, dan penggunaan sejumlah kecil 

logam yang boleh mengurangkan kos pengeluaran. Selain itu, gabungan tiga bahan 

individu (rGO, Nf dan partikel logam bersaiz nano) untuk membentuk bahan 

nanohybrid pertigaan terbukti berkesan untuk meningkatkan prestasi pengesan 

elektrokimia, sekali gus membuka laluan baru untuk membangunkan pemangkin baru 

untuk pengesan elektrokimia. 
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 CHAPTER 1  

 INTRODUCTION 

 

1.1 Research Background 

In general, sensor can be defined as a device that detect a physical stimulus such as 

heat, light, sound, temperature, pressure and magnetism, and then give responses in the 

way of transmitting the resulting impulse to a measuring or control instrument. In 

medical and biotechnology terms, sensor can be described as a tool used to detect 

specific biological, chemical, or physical processes and then translate it into a 

measurable signal. Meanwhile, an analytical device that combines a biological 

recognition element with a physicochemical detector to detect a biological analyte was 

known as biosensor (Turner, 2013). Sensor plays a vital role especially in medical 

technology as it aid in accurate monitoring, diagnosis and treatment. Up to date, there 

are plenty of sensors with various function have been commercialized that is convenient 

for self-care at home such as home pregnancy test which was used to detect the 

presence of a hormone named human chorionic gonadotrophin (hCG) in the urine of  

women as an indication of pregnancy. 

 

The history of sensor was started in 1956 when the concept of electrochemical 

oxygen sensor was proposed which consist of several components including platinum 

(Pt) cathode and silver anode which acts as an electron receiver and electron donor, 

respectively, potassium chloride (KCl) as an electrolyte solution, thin oxygen-

permeable membrane as a separator for electrodes and the electrolyte solution from the 

analyzed solution and a voltage source (Clark et al., 1953). This invention has remained 

as the guiding principle for measuring dissolved oxygen in biomedical, environmental 

and industrial applications. In 1962, Clark and Lyons from the Children’s Hospital of 
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Cincinnati have invented the first sensor to detect glucose levels in blood by combining 

the Clark oxygen sensor with glucose oxidase (GOx) (Clark et al., 1962). The idea was 

to monitor the oxygen consumed by the enzyme-catalyzed reaction when the GOx was 

entrapped at the oxygen electrode using dialysis membrane. The Yellow Springs 

Instrument Company analyzer (Model 23A YSI analyzer) has become the first glucose 

sensor uses Clark's technology launched in 1975. 

 

Since then, various techniques for detecting biological compounds have been 

developed as a result of the rapid development of nanotechnology and each technique 

has their own advantages and disadvantages. Among the techniques includes capillary 

electrophoresis mass spectrometry (Phan et al., 2013), chromatography (Kipping et al., 

1963), fluorimetry (Ito et al., 2013), rapid liquid chromatography/tandem mass 

spectrometry (LC-MS/MS) (Yang et al., 2006), chemiluminescence (Yang et al., 2015), 

electrochemiluminescence (ECL) (Lu et al., 2014), Surface enhanced Raman scattering 

(SERS) (Kuang et al., 2016) and colorimetric (Wu et al., 2016) techniques. Although 

these methods provide high sensitivity in the detection of biological analytes, they have 

several drawbacks like requiring a complex system, long time consumption, high cost 

and take a substantial large amount of workspace. Hence, the detection of biological 

analytes by electrochemical method is a more suitable approach in evaluating the low 

concentration of analytes under physiological conditions. 

 

An electrochemical sensor is defined as a device used to quantify the concentration 

of biomolecule by transforming the electrochemical information which generated by 

biochemical mechanism into an analytically useful signal. By comparing the 

electrochemical sensor with other existing sensor technique, it leading by a series of 

advantages including high sensitivity and selectivity towards electro active analytes, 
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rapid and accurate response, and most importantly it is portable and cost effective. 

Moreover, it also offers a wide linear response range and good stability and 

reproducibility. By principle, a working or sensing electrode consists of two basic 

components in the electrochemical sensor which works together that known as a 

chemical recognition system and physicochemical transducer. The reference and 

counter electrodes are also required in this sensor besides this working electrode. All 

three electrodes where next inserted in the sensor housing in contact with a liquid 

electrolyte and target analytes.  

 

The sensitivity of the electrochemical sensor will be affected based on; (i) the surface 

modification techniques, (ii) electrochemical transduction mechanisms and (iii) the 

choice of the recognition receptor molecules. The most common strategy used by most 

of the researchers to enhance the sensor performance is by chemically modifying the 

surface of working electrode. The surface architectures which link the sensing element 

with the biological samples play an important role in determining the performance of 

electrochemical sensor. Metal (Fawcett et al., 1994), metal oxide (Aydoğdu et al., 

2013), carbon nanotubes (Claussen et al., 2010) and polymer (Narayana et al., 2014) are 

some examples of active materials that frequently been used among the researcher to 

modify the sensor electrode. In the past few years, researchers have found that 

graphene-based material can further benefit electrochemical sensors because it 

possesses high electrical conductivity, large surface area, fast mass transfer and 

excellent stability which could enhance the electrochemical activity of important 

bioanalytes. Until now, an extensive research is still undergoing in finding the suitable 

modifier materials based on graphene with the intention to boost the performance of 

electrochemical sensor in terms of its sensitivity and selectivity. 
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1.2 Problem Statement 

In spite of good progress in developing an electrochemical sensor for the 

determination of various biological analytes, it holds several challenges in the 

fabrication of efficient electrochemical sensor including: 

 

 The slow heterogeneous electron transfer at the surface of electrode which led 

to the low sensitivity together with high detection limit.  

 The use of biological enzyme and DNAs has increased the cost of production 

as enzymes are expensive. Its positive response toward temperature, pH, toxic 

chemicals and humidity prompted the instability of the electrode besides 

making the immobilization process more challenging.   

 The occurrence of fouling effect which causes the simultaneous 

determination of several biological analytes is very difficult. 

 The slow response times has lowered the sensitivity of the electrode and 

further limit its application in the real time monitoring of biological 

processes. 

 

Therefore, the fundamental research in finding the suitable material for modifying 

the electrode needs to be conducted by taking into account the low cost of production, 

simple preparation method, high conductivity and large active surface area. 

 

1.3 Research Aim and Objectives 

The primary focus of the proposed research activity is to explore the potential of new 

materials that are the rGO-Nf and rGO-Nf@metal-based nanohybrids which could be 

use next in the development of a highly sensitive and selective electrochemical sensor 
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for determination of various biological compounds. In order to achieve this goal, a list 

of specific objectives has been made including: 

 

 To synthesize rGO-Nf and rGO-Nf@metal nanohybrid using hydrothermal 

method. 

 To characterize these materials using analytical techniques such as UV-

visible (UV-vis), X-ray diffraction (XRD), Raman, field emission scanning 

electron microscopy (FESEM) and etc. 

 To study the electrochemical properties of these nanohybrid materials-

modified electrode. 

 To investigate the electrochemical detection of biologically important 

analytes such as DA, NO, H2O2 and L-Cys using the nanohybrid modified 

electrode. 

 To employ the as-fabricated electrochemical sensors in real sample analysis. 

 

The drawback of enzymatic electrochemical sensor such as expensive cost of 

production and difficult immobilization process motivated us to develop a non-

enzymatic electrochemical sensor for detection of various biological compounds. 

Meanwhile, the selection of metal nanoparticles to be combined together with graphene 

is driven by its excellent physical and chemical properties, which is capable to enhance 

the electroactive surface area and improving the electrocatalytic features of the 

electrode. The incorporation of Nf in the nanohybrid helps to improve the dispersibility 

of the nanohybrid and at the same time increase the stability of the sensor electrode. In 

addition, the antifouling capacity and high permeability to cations properties owned by 

Nf helps in improving the sensitivity and selectivity of the sensor electrode. Several 

factors have been taken into account in realizing these objectives including the use of 
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simple technique to synthesize the nanohybrid materials, minimum use of raw material, 

effective sensing technique and validation of the proposed sensor electrode in term of its 

capability of the detection in real sample, reproducibility and stability. 

 

1.4 Outline of Thesis 

The brief introduction about this research has been elaborated in Chapters 1, 

covering several sub-topics including the problem statement, the aims and objectives of 

the proposed research, and significances of this research. The flow of the thesis has also 

been outlined in this chapter.  

 

Chapter 2 begins with a brief overview of the background and development of 

electrochemical sensor with particular emphasis on detecting DA, NO, H2O2 and L-Cys. 

Most of the topic discussed in this chapter has been published in RSC Advances and 

Microchimica Acta as a review paper. 

 

Chapter 3 outlines the procedure manuals for synthesizing the nanohybrids and 

materials used throughout the research studies. The general procedure for the fabrication 

chemically modified electrode has been discussed and the brief introduction about 

characterization techniques involved in this research has also been explained in this 

section. 

 

Chapter 4 reports a selective and sensitive electrochemical sensing platform based on 

hydrothermally prepared rGO-Nf modified electrodes toward the detection of DA and 

NO. The influences of experimental parameters such as the hydrothermal reaction time 

on electrocatalytic performance were also investigated. The ability of the sensor 

electrode to resist the interference from AA and UA will also been investigated in this 
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section. The proposed modified electrode also has been tested as a sensor electrode for 

DA detection in real sample analysis by using urine sample. A modified version of this 

chapter has been published in Science of Advanced Materials and Analytical Methods. 

 

Chapter 5 presents the findings of our study on the development of a sensitive and 

selective enzymeless electrochemical sensor for H2O2 based on the novel rGO-Nf@Ag 

nanohybrid material modified electrode. The nanohybrid was facilely synthesized using 

one-pot hydrothermal method with the aid of micromolar concentration of Ag. The 

influence of the AgNPs content in the nanohybrid on the electrocatalytic reduction of 

H2O2 was investigated and optimized to achieve a high sensor performance. The 

proposed sensor was successfully applied for the validation of known concentration of 

H2O2 in the apple juice sample. A version of this chapter has been published in 

Biosensors and Bioelectronics. 

 

Chapter 6 focuses on the development of a highly sensitive and selective 

electrochemical NO sensor by using self-designed electrode that was chemically 

modified using a nanohybrid of rGO-Nf and AuNPs. Graphene oxide (GO) and 

gold(III) chloride trihydrate (HAuCl4.3H2O) were used as the precursor for rGO and 

AuNPs, respectively. Three different concentration of HAuCl.H2O were used in order to 

study the effect of AuNPs content on the electrochemical sensing performance. Some 

possible coexisting electroactive components such as DA, AA, UA, glucose, NaCl and 

urea were examined in order to evaluate the anti-interference of the constructed 

modified sensor electrode. The study presented in this chapter has been compiled as a 

full research paper and has been published in Microchimica Acta. 
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Chapter 7 demonstrates the preparation of a novel rGO-Nf@Pd nanohybrid using 

hydrothermal method that was then employed as a sensing electrode material in an 

electrochemical sensor to study its sensitivity and selectivity toward L-Cys. Detection 

linearity, repeatability, reproducibility and long-term stability for the proposed sensor 

electrode were also been studied. Further, the analytical applicability of the sensor 

electrode was evaluated for the quantification of L-Cys in urine sample and the results 

were presented in the end of this section. The study presented in this chapter has been 

compiled as a full research paper and submitted for publication. 

 

The summary of our research works has been included in Chapter 8 by covering the 

important findings from each study. The suggestion of possible future work arising from 

this research works were proposed at the end of this chapter. The flowchart of the 

research work was illustrated in Figure 1.1 in order to give a basic idea of how the 

whole doctoral work was conducted. 
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Figure 1.1: Flowchart of the research studies. 
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 CHAPTER 2 

 LITERATURE REVIEW 

 

2.1 Biomolecules 

Biomolecules can be defined as an organic compound composed of two or more 

atoms that are bonded together and occurred naturally in living organisms. Most of the 

biomolecules are made up from basic element of atom such as oxygen, hydrogen, 

carbon, sulphur and nitrogen that acts as chemical building blocks of living organisms. 

These fundamental elements can be combined in many ways which determines the type 

of organic compound formed. Each of biomolecules have its own roles in the living 

system especially in human body in order to make sure all part of our body system can 

functioning well. Some example for important biomolecules in human body are 

dopamine (DA), nitric oxide (NO), hydrogen peroxide (H2O2) and l-cysteine (L-Cys), 

which has been discussed about its importance and functions in the next subtopic.   

 

2.1.1 Dopamine (DA) 

In the human body, all the neurologic information and signal from the brain is 

delivered to other cells, organs, muscles or tissues through an endogenous chemical 

messenger known as neurotransmitters. Neurotransmitters are synthesized by a number 

of amino acids that act as a building block. Various vitamins and minerals also play as 

cofactors which necessary for neurotransmitter production. Neurotransmitters are 

important for a large array of functions in both the central and the peripheral nervous 

systems as it delivers the message in the form of a nerve impulse from the brain. One 

example of important neurotransmitter is known as dopamine (DA). DA can be 

produced only in a few, very specific region of the brain such as at the substantia nigra 

Univ
ers

ity
 of

 M
ala

ya



11 

and the ventral tegmental area. Other than assist in regulating the movement and 

emotional responses, it also controls the brain's reward and pleasure centres. For 

example, the feelings of enjoyment to do certain activities and motivation to get things 

done are results of the excitation of DA in our body.  

 

In addition, DA has a significant role in the operation of the cardiovascular, renal, 

central nervous as well as hormonal systems which associated with memory, behaviour 

and cognition, learning, attention and inhibition of prolactin production. An abnormal 

DA level in the brain causes several disease conditions, such as pleasurable, rewarding 

feelings and sometimes even euphoria. Depression, stress, mental exhaustion, fatigue, 

low sex drive and low motivation are some of the symptoms of low DA level in human 

body. A deficiency of DA in motor area of the brain may lead to muscle rigidity that 

commonly known as Parkinson’s disease which involves uncontrollable muscle tremor. 

The neurological disorders such as schizophrenia and social anxiety or social phobia 

associated with the presence of excessive amounts of DA in human body (Pandikumar 

et al., 2014). Besides that, the disorder of DA in the prefrontal cortex and frontal lobes 

of the brain contribute to attention deficit disorder and decline in neurocognitive 

functions, especially memory, attention and problem solving, respectively.  

 

2.1.2 Nitric Oxide (NO) 

Other biomolecule that is important in living organism is nitric oxide (NO) or also 

known as nitrogen monoxide as it consists of one nitrogen and one oxygen atom. NO is 

a hydrophobic, highly labile free radical that is naturally produced within the body. In 

1992, NO has been announced as the ‘molecule of the year’ by Science Journal due to 

its importance in neuroscience, physiology and immunology (Cech et al., 1992). Since 

then, the research on this molecule has expanded rapidly and in 1998, Ignacio and his 
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team were awarded the Nobel Prize in Medicine for the finding of the function of NO as 

a cardiovascular signaling molecule (Ignarro, 2002). After this discovery, NO was not 

only known as a potent environmental pollutant but now has become an important 

biomolecule that plays a vital role in a wide range of biological and cellular functions. 

NO is used for communication between cells by transmitting signals throughout the 

entire body and is involved in the regulation of blood pressure, the immune response, 

platelet aggregation and clotting, neurotransmission and possibly respiration (Bredt et 

al., 1992; Burnett, 1997). It has been reported that the largest amount of NO was 

produced by the interior surface of arteries named endothelium.  

 

The capacity to produce NO will decreased upon the growth of plaque in the arteries 

which made up from fat, cholesterol, platelets and other substances, thus led to the 

atherosclerosis disease. As 70 to 90 % of NO will be washed away by blood, the 

remaining will diffuses to the wall of arteries and veins, next triggers a cascade of 

events which cause the smooth muscle relaxation and dilating the blood vessel 

(Malinski, 2000). When the level of NO release from endothelium was low due to the 

decrease in the blood flow, the vascular muscles do not relax to the appropriate degree, 

thus induce the vasoconstriction which responsible for hypertension. Other diseases 

caused by deficiency in NO production are diabetes (both type I and II), ischemia 

(stroke, heart Alzheimer’s disease), fibrosis and cancer (Napoli et al., 2001; Petros et 

al., 1991). Meanwhile, septic shock, hypotension, meningitis and rheumatoid arthritis 

are some example of disease associated with the overproduction of NO (Petros et al., 

1994). 
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2.1.3 Hydrogen Peroxide (H2O2) 

Hydrogen peroxide (H2O2) is another example of biomolecules that is beneficial to 

human body. This biomolecule is by-product in a variety of enzymatic reactions and it 

could directly produce by oxidase enzymes such as glycolate, glucose, cholesterol and 

monoamine oxidases (Edmondson, 2014). Research has found that H2O2 is also 

involved in several biological events and intracellular pathways including the 

peroxisomal pathway for ß-oxidation of fatty acids (de Groot et al., 1989). Therefore, 

the concentration of H2O2 can be used as an indicator of the progress of the reaction. In 

respiratory system, the existence of H2O2 could be detected in the exhaled air of humans 

from phagocytes or other lung cells. The increase in the level of exhaled H2O2 is the 

sign of inflammatory lung diseases (Halliwell et al., 2000).  

 

Recent studies have proved that H2O2 can also be utilized as a signaling molecule to 

regulate diverse biological processes (Stone et al., 2006). H2O2 which produced by a 

sub-class of white blood cells called neutrophils acts as a first line of defense against 

toxins, parasites, bacteria, viruses and yeast. Besides that, it also play a role in the 

regulation of renal function and as an antibacterial agent in the urine (Halliwell et al., 

2000). It was observed that increased H2O2 concentration in human body will induced 

the oxidative stress due to the production of hydroxyl radicals, which causes the damage 

on DNA and cell death. Parkinson, Alzheimer, diabetes, high blood pressure as well as 

increased rate in the aging process are some of the diseases related to the oxidative 

damage (Oikawa, 2005). Moreover, the excessive production of H2O2 generated in 

blood plasma could give a negative effect on human health and it also constitutes a 

pathogenic factor in vascular organ damage attendant upon systemic hypertension (Lacy 

et al., 1998). 
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2.1.4 L-Cysteine (L-Cys) 

L-Cysteine (L-Cys) is a type of biomolecule which belongs to the family of 

proteinogenic amino acid that is crucially important in human body. Under the normal 

physiological conditions, the L-Cys can be produced in human liver from essential 

amino acid known as methionine. An adequate amount of methionine is needed to 

produce L-Cys, however, methionine cannot be synthesized in the human body. 

Therefore, methionine has been supplied to our body by other sources such as meat, 

fish, eggs, dairy, quinoa, buckwheat, sesame seeds and Brazil nuts. Other than natural 

source, L-Cys can also be synthesized commercially using enzymatic and fermentative 

processes (Wada et al., 2006). L-Cys is a vital amino acid that plays significant roles in 

numerous biological functions that helps functioning our body properly. For example, 

L-Cys act as an antioxidant that can prevent the harmful effects of tobacco and alcohol 

including liver and skin damages.  

 

Besides that, it could also act as the antitoxin due to the presence of high sulfur 

content in L-Cys which helps in the conversion of toxic heavy metal compounds into 

stable complexes before disposal it from the body. L-Cys is also one of the building 

blocks for glutathione; one of the biomolecules that involve in inhibits inflammatory 

reactions and leads to an increased production of immune cells. The level of L-Cys in 

our body controls the rate of production of glutathione, thus, L-Cys could help in 

boosting the immune system of our body by stimulating natural killer cell production.  

 

Additionally, L-Cys involved in the formation of many structural proteins of the 

connective tissues, hence promotes the development of healthy skin, hair and nails. 

Others important functions of L-Cys are acting as the radiation protector and cancer 

indicator and also able to prevent debilitating diseases like Alzheimer’s and Parkinson’s 

Univ
ers

ity
 of

 M
ala

ya



15 

(Özkan et al., 2007). The L-Cys level in human body need to monitor because of it 

deficiency causes the liver damage, heart diseases, skin lesions, slow growth and 

depigmentation of hair (Prasad et al., 2015). Meanwhile the high level of L-Cys causes 

many diseases including L-cystinuria and Parkinson’s diseases while low level of L-Cys 

may associate to acquired immune deficiency syndrome (AIDS) (Dröge, 1993).  

 

2.2 Analytical Techniques for the Detection of Biomolecules  

The biological activity summary about these above said biomolecules including DA, 

NO, H2O2 and L-Cys was presented in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Summary information about four types of biomolecules. 

 

Over the past decade, several analytical techniques for biomolecule detection have 

been developed as a result of the rapid development of nanotechnology. However, each 

technique associated with their own merits and limitations. Some of these techniques 
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have been discussed in this subtopic including colorimetric, high performance liquid 

chromatography (HPLC), electrochemiluminescence (ECL), surface enhances Raman 

Spectroscopy (SERS) and electroanalytical techniques. Colorimetric sensing involves 

the measurement of the change in light absorption/emission which could be determined 

spectroscopically or directly observed by naked eyes. In the colorimetric sensing, an 

indicator that could changes its color upon interaction with analytes is required to 

produce optical signals where the observed optical signal is correlated with the 

concentration of target compounds. Despite the simplicity showed by colorimetric 

technique, there are few drawbacks that restrict their application in real sample analysis. 

One of the obstacles is the time dependent color change of the suspension resulted from 

the non-directive aggregation of nanoparticles (NPs) that formed an unstable solution 

with larger particle size and reduced surface repelling force. This would lead to the 

imprecise determination of the target, hence the results is unreliable. Second obstacle is 

the large aggregate NPs which reduce the detection sensitivity and stability.  

 

The high performance liquid chromatography (HPLC) is one of the advanced forms 

of liquid chromatography which has the ability to separate the complex mixture of 

substances in the mobile phase (liquid or gas) to their basic individual compound. Upon 

the separation, the identification and quantification of this individual compound will be 

made. This HPLC technique is suitable for separation of non-volatile chemical and 

biological compounds such as pharmaceuticals, organic chemicals like polymers, 

thermally unstable compounds like enzyme and heavy hydrocarbons like asphalt. 

Despite its advantages, this sensing technique suffer from bad reproductivity and back 

ground interference, besides require complicated system setup and large quantities of 

expensive organics. Moreover, HPLC also have low sensitivity for certain compounds, 

and there are certain compounds that cannot be detected using this technique.  
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The electrogenerated chemiluminescence or electrochemiluminescence (ECL) is a 

type of light emission that is produced directly or indirectly upon high-energy electron 

transfer reaction occurring between the electrogenerated species at the electrode which 

forms an excited state. By combining the ECL with the electroanalytical chemistry, an 

ECL sensor can be developed based on the principle that particular labels will generate 

an optical signal triggered by an electrochemical reaction that stimulated by the 

electrode potential. In the ECL analysis, high sensitivity and low detection limit were 

achieved by using a photodetector such as photomultiplier tube (PMT), photodiode or 

charge-coupled device camera (CCD) to detect the electro-triggered eye-invisible weak 

light. However, it needs a high cost to produce due to the consumption of the expensive 

reagent and extra pump to deliver the reagent to the electrochemical cell continuously. 

The one time use of probe, inherent toxicity, lower ECL signals and requirement of high 

negative potential limits its application in sensors.  

 

Surface-enhanced Raman scattering (SERS) technique offered several advantages 

over other techniques such as faster and simple as it requires minimum sample 

preparation, high sensitivity as it allowing for single molecule detection and can be used 

to detect various analytes such as metal ion (Shaban et al., 2016), organic molecules 

(Ignat et al., 2009) and biomolecules (Fazio et al., 2016). The SERS technique uses the 

idea that the molecules illuminated by fixed-frequency light to trigger inelastic 

scattering closely related to the vibrational and rotational modes excited in the 

molecules. These molecules when irradiated with different frequencies light generate a 

specific frequency pattern where this spectrum information is used as a fingerprint for 

detecting and identifying specific substances. The plasmon phenomenon will be 

generated on the metal surface induced by laser light and this phenomenon allowing us 

to collect rare information that could not be obtained from Raman signal. Therefore, this 
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technique has the potential as a sensor for the detection of various chemicals and 

biological molecules.  

 

However, the scattering properties of most substances are normally weak, therefore 

these substances need to be directly combined with metal surface such as gold (Au) and 

silver (Ag) to enhance the Raman signal that arise from the effect of electromagnetic 

field and chemical enhancement. In order to acts as a sensor, this frequency signal must 

be amplified; therefore a metallic surface is used to amplify the frequency signal 

generated by the target molecules. The intensity of Raman will increase when a high 

concentration of target analyte is used or located close to a metallic surface. In spite of 

all the advantages of SERS sensing technique, it has several limitations such as high 

cost of production and difficult in miniaturization as it requires expensive and 

sophisticated equipment.  

 

Even though there are many analytical techniques used for biomolecules detection, 

however all these reported analytical methods required a high cost with larger in size 

instrumentation facility and complicated multiple operations of the fabricated sensors, 

which is not convenient to handle. Besides that, it also has a low sensitivity towards 

specific biomolecules. Strong demand to create a sensing technique which provides a 

rapid response and sensitivity, ease of use and low cost led to the discovery of an 

electrochemical technique for the detection of biomolecules. An electrochemical is a 

technique that has been used to measure the concentration of biomolecules due to the 

direct transforms of electrochemical information produced by biochemical mechanism 

into an analytically useful signal. Electrochemical biosensor has a series of advantages 

such as high sensitivity and selectivity towards electroactive species, rapid and accurate 
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response and most importantly it is portable and inexpensive compared to other existing 

biosensor.  

 

Besides that, it also offers advantages of wide linear response range and good 

stability and reproducibility. There are two basic components of an electrochemical 

sensor which works together as a working or sensing electrode that are a chemical 

recognition system and physicochemical transducer. Other than working electrode 

(WE), reference and counter electrodes are also required in this sensor where next 

enclosed in the sensor housing in contact with a liquid electrolyte and biomolecules. In 

order to acts as biosensor, the recognition layers will interaction with the target 

biomolecules and the physicochemical transducer will translates the bio-recognition 

event into a useful electrical signal which can be detected by electrochemical 

workstation. Amperometry, cyclic voltammetry (CV) and potentiometry are some of the 

examples of electrical signal resulted from the transduction of biological signal.  

 

One of the most important components in electrochemical sensing technique is the 

WE because it is the place where all the electrochemical oxidation and reduction 

process occurs. There are various types of WE that have been commercialized such as 

platinum (Pt), gold (Au), mercury (Hg) and carbon electrode. Even though Pt electrode 

demonstrating good electrochemical inertness, however, it required high cost for 

production and it is easily be interrupted by the presence of small amounts of water or 

acid in the electrolyte. It will reduced hydrogen ion to form hydrogen gas (hydrogen 

evolution) at low negative potential, hence obscures any useful analytical signal.  
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Another metal electrode that behaves almost similar like Pt electrode is the Au 

electrode. Au electrode provide good electron transfer kinetics and a wide anodic 

potential range, however it have exhibit weakness in the positive potential range due to 

the oxidation of its surface. Mercury electrode is another example of WE that has been 

used in electrochemical sensing technique due to its high hydrogen over voltage which 

can extend the cathodic potential window. Besides that it also possesses highly 

reproducible, renewable and smooth surface, which is very beneficial in electrochemical 

analysis. The most common form of mercury electrode is dropping mercury electrode, 

hanging mercury drop electrode and mercury film electrode. Nevertheless, the toxicity 

and limited anodic range of mercury has lead to a limited use these days. Among the 

different types of electrode, carbon electrode such as carbon paste electrode (CPE) and 

glassy carbon electrode (GCE) has been commonly used as WE as it allow scans to 

more negative potentials than other electrode as well as good anodic potential windows. 

Moreover, carbon electrodes also have a low background current, rich surface chemistry 

as well as comparative chemical inertness. Therefore, researchers commonly used the 

carbon electrode as the WE in electrochemical sensing. Table 2.1 shows the example of 

modified electrode used for detecting biomolecules via electrochemical technique. 

 

Table 2.1: The comparison of various modified electrode towards the detection of 

biomolecules by using electroanalytical method. 

 

Modified 
electrode 

Target 
bioanalyte 

Detection 
method 

Detection 
limit 

Reference 

rGO-poly(Cu-
AMT)/GCE 

DA DPSV 3.48 nM (Yaru et al., 2017) 

FeS/rGO/GCE DA Amperometry 98 nM (Liu et al., 2017) 

MIP/NPAMR DA CV 7.63×10
−14

 M 

(Yingchun et al., 

2016) 

G-Au/GCE  NO LSV 0.04 µM (Geetha et al., 

2017) 

AuPt–rGO/GCE NO Amperometry 2.88 nM (Liu et al., 2016) 
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Table 2.1, continued 

 

Modified 
electrode 

Target 
bioanalyte 

Detection 
method 

Detection 
limit 

Reference 

Pt–GO–Fe2O3 NO LSV 13.04 mM (Adekunle et al., 

2015) 

ERGO/GCE H2O2 Amperometry 0.7 μM (Mutyala et al., 

2016) 

Sm2O3/GCE H2O2 Amperometry 1 µM (Yan et al., 2016) 

PAA/Au-SPE H2O2 Amperometry 2 μM (Zamfir et al., 

2016) 

GO/CCNTs/AuN
Ps@MnO2/GCE 

L-Cys DPV 3.4 nM (Wang et al., 2015) 

SnO2-
MWCNTs/GCE 

L-Cys Amperometry 0.03 μM (Dong et al., 2014) 

Au-SH-
SiO2@Cu-
MOF/GCE 

L-Cys DPV 0.008 μM (Hosseini et al., 

2013) 

rGO=reduced graphene oxide; poly(Cu-AMT)=copper-2-amino-5-mercapto-1,3,4-thiadiazole; 

GCE=glassy carbon electrode; DPSV=differential pulse stripping voltammetry; FeS=Iron(II) sulphide; 

MIP=molecularly imprinted polymer; NPAMR=nanoporous Au–Ag alloy microrod; G=graphene; LSV= 
linear sweep voltammetry; AuPt=gold platinum; GO=graphene oxide; Fe2O3=iron(III) oxide; 

ERGO=electrochemically reduced graphene oxide; Sm2O3=samarium oxide; PAA=polyamic acid; 

SPE=screen printed electrode; CCNTs=carboxylated multiwalled carbon nanotube; MnO2=manganese 

dioxide; SnO2=tin dioxide; MWCNTs=multiwall carbon nanotubes; SiO2=silicon dioxide; Cu=copper; 

MOF=metal organic framework.  

 

 

 

2.3 Materials for Electrode Modification 

The sensitivity of the electrochemical sensor will be affected based on the surface 

modification techniques, electrochemical transduction mechanisms and the choice of the 

recognition receptor molecules. Therefore, the surface architectures which link the 

sensing element with the biological samples play an important role in determining the 

performance of electrochemical sensor. The reason why electrode surface need to be 

modified is that electrode surface tends to absorb water molecules when dipped into a 

solution, hence blocking the access for the target molecules to reach the electrode 

surface. Thus, the current response obtained from electrochemical process will be 

smaller and lowering the sensitivity of the sensor. The discussion about several potential 

materials for modifying the electrode including graphene-based, Nafion (Nf) and metal 

nanoparticles were presented in this subtopic. 
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2.3.1 Graphene-based Materials 

In recent years, carbon-based materials have received considerable attention due to 

its unique properties such as high surface to volume ratio, high electrical conductivity, 

chemical stability, biocompatibility and robust mechanical strength (Avouris et al., 

2007). Besides that, it is also easy to prepared, reproducible, stable and has low ohmic 

resistance. Up to date, various types of carbon-based materials has been discovered to 

have valuable potential as electrode sensor including graphene (Zhang et al., 2016), 

carbon nanotube (CNT) (Musameh et al., 2002), multi walled carbon nanotube 

(MWCNT) (Jain et al., 2012) and single-walled carbon nanotube (SWCNT) (Weber et 

al., 2011). Among these materials, graphene have been extensively studied because of 

their fascinating properties such as high electrical conductivity, excellent mechanical 

flexibility and good chemical stability, which make it potentially useful for the 

fabrication of various electrochemical sensors (Atta et al., 2015). 

 

Graphene is a 2D sheet of sp
2
 bonded carbon atoms, densely packed in a honeycomb 

crystal lattice structure in which each of these layers is held together by weak van der 

Waals forces (Choi et al., 2010). The most important property of graphene is its 

excellent electrical conductivity which could enhance the mobility of charge carriers, 

thus improved the sensing performance. The sp
2
 hybridization, unique electronic 

configuration, its extraordinary electron transport property, so called ballistic 

conductivity, and the number and position of the oxygen functionalities of graphene 

helps to promote and accelerate the electron transfer process during electrochemical 

detection (Pandikumar et al., 2014).  
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Moreover, the ability of rapid electron transfer kinetics at the basal planes of 

graphene sheets that act as nanoconnectors and thus electrically facilitates the 

heterogeneous electron transfer between the biomolecules and electrode substrate, 

resulting in excellent sensing performance. The various forms of graphene-based 

materials include thermally reduced graphene oxide (TRGO), chemically reduced 

graphene oxide (CRGO) and electrochemically reduced graphene oxide (ERGO), 

contains oxygen-containing functional groups and certain amounts of defects.  

 

The rapid electron transfer takes place at the surface of edge planes and defects when 

compared to the basal planes for the electrochemical sensors fabricated with graphene-

based materials. The presence of these structural defects in the chemically modified 

graphene can be exploited for electrochemical sensors. The presence of oxygen-

containing functional groups in the graphene-based materials play a vital role in the 

electrochemical sensors, which makes the adsorption and preconcentration of the redox 

species (which is of our analytical interest) and effectively catalyst the redox reactions. 

In addition, the presence of these functional groups makes an effective functionalization 

with various biomolecules (Chen et al., 2011). The functionalization of these graphene-

based materials with specific functional groups enable the use of these excellent 

materials for electrochemical sensor applications with specific analytes. The 

functionalized graphene materials also make rapid electron transfer by pre-

concentrating the target analytes at the electrode surface. The graphene-based materials 

are commonly used for electrochemical sensing of various biomolecules and some of 

previous reports have been listed in Table 2.2. 
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Table 2.2: Comparison of various graphene-based modified electrodes for the detection 

of different bioanalytes using electrochemical technique. 

 

Electrode Target 
analyte 

Analytical 
method 

Linear 
range 

Detection 
limit 

Reference 

ERGO/ 
GCE  

H2O2 Amperometry 1–16 μM 0.7 μM (Mutyala et al., 

2016) 

PG/GCE DA Amperometry 5.00 –

710 μM 

2.0 µM (Qi et al., 

2015) 

GO/GCE DA DPV 1 – 15 µM 0.27 µM (Gao et al., 

2013) 

ERGO/ 
GCE 

DA DPV 0.5 –

60 μM 

0.5 µM (Yang et al., 

2014) 

MWCNT/ 
Ta 

H2O2 CV 5 µM –

0.025 mM 

0.09 µM (Vijayalakshmi 

et al., 2016) 
PG=pristine graphene; DPV=differential pulse voltammetry; Ta=tantalum. 

 

2.3.2 Nafion (Nf) 

Conducting polymers which also known as intrinsically conducting polymers (ICPs) 

are a new class of polymers that possesses a high electron affinity and high electronic 

conductivity by several orders of magnitude of doping (while maintaining mechanical 

flexibility and high thermal stability). These can be associated to the π-electron 

backbone owned by ICPs. ICPs have been long synthesized and used for the various 

applications including electrochemical biosensor. One of the advantages possess by 

ICPs is that it is easy to synthesize through chemical or electrochemical process which 

produces a stable and reproducible dispersion. This has encourages researchers to 

employ ICPs material in the fabrication of sensors especially for detecting 

biomolecules. Other remarkable advantages of using ICPs is that it provides an 

excellent signal transduction for molecular detection due to its high sensitivity in their 

conductivity and electrochemical activity towards molecular interaction, thus renders 

possibilities for sensor application (Janata et al., 2003). Moreover, ICPs can act as an 

electron promoter that are compatible with biological molecules in neutral aqueous 

solutions (Mulchandani et al., 1996). Besides that, the ICPs itself can be modified to 
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bind biomolecules to a sensor, thus able to increase the sensitivity of the sensor 

(Rahman et al., 2008). 

 

Some of the ICPs groups that are frequently used in sensors application are 

polyacetylene (Zeng et al., 2009), polythiophene (Védrine et al., 2003), poly(p-

phenylenevinylene) (Srinivas et al., 2012), poly(3,4-ethylenedioxythiophene) (Nien et 

al., 2006), polypyrrole (Uang et al., 2003) and polyaniline (Langer et al., 2004). Among 

them, Nf is one of the most extensively used ICPs in the design of bioanalytical sensors. 

Nf is a sulfonated tetrafluoroethylene based fluoropolymer-copolymer with a 

conductive properties. Due to the presence of perfluoroalkyl backbones in Nf, it has 

high hydrophobicity properties hence making it an effective matrix to disperse graphene 

in an aqueous solution as graphene tend to agglomerate or even restack to form graphite 

through strong π-π stacking and van der Waal’s interaction (Yin et al., 2010). In sensor 

application, Nf was used as an electrode modifier for sensor electrode fabrication due to 

its antifouling capacity, chemical inertness and high permeability to cations (Zarei et al., 

2015).  

 

Besides that, Nf also helps to enhance the stability of graphene modified electrodes 

due to its excellent film forming ability. As a cation exchange polymer, Nf helps to 

blocks the anionic species from reaching the electrode surfaces and allows the cation 

conduction to pass through, thus leads to good selectivity (Chou et al., 2009). 

Interestingly, the hydrophilic negatively charged sulfonate group in Nf film enables 

selective pre-concentration of positively charged biomolecules through electrostatic 

interaction, whereas, the hydrophobic fluorocarbon network of the polymer gives a 

selectivity for the hydrophobic part of the molecule (Nigović et al., 2014a). These 

advantages making Nf an ideal choice for the fabrication of electrochemical sensors. 
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The comparison of various conducting polymer-based modified electrodes for the 

detection of different bioanalytes by using electrochemical technique has been listed in 

Table 2.3. 

 

Table 2.3: Comparison of various conducting polymer-based modified electrodes for 

the detection of different bioanalytes using electrochemical technique. 

 

Electrode Target 
analyte 

Analytical 
method 

Linear 
range 

Detection 
limit 

Reference 

CPPDAN NE DPV 9.90 - 

90.9 µM 

1.82 µM (Guedes da 

Silva et al., 

2011) 

PAH/SPE NADH Amperometry 0.01 - 5 

mM 

0.22 µM (Rotariu et al., 

2014) 

nanoporous
PEDOT/ 
GCE 

NADH Amperometry 5 - 45 

µM 

3.8 µM (Rajaram et al., 

2015) 

Nf/p(FcAni
)-CNTsPE 

DA DPV 1-

150 μM 

0.21 µM (Sroysee et al.) 

Pty/GCE DA LSSV 1-7 µM 161 nM (Khudaish et 

al., 2012) 
CPPDAN=Cathodically Pretreated Poly(1,5-diaminonaphthalene); NE=norepinephrine; 

NADH=nicotinamide adenine dinucleotide; PAH=Poly(allylamine hydrochloride); SPE=screen-printed 

carbon electrode; PEDOT=poly(3,4)ethylenedioxythiophene; p(FcAni)=poly(m-ferrocenylaniline; 

CNTsPE=carbon nanotubes-paste electrode; Pty=polytyramine; LSSV=linear square stripping 

voltammetry. 

 

 

2.3.3 Metal Nanoparticles 

Metal nanoparticles such as gold (Au), silver (Ag), platinum (Pt), palladium (Pd), 

copper (Cu), zinc (Zn) and etc, have attracted much attention because of their 

extraordinary properties in different fields of optics (Augustine et al., 2014), 

optoelectronics (Borsella et al., 1999; Conoci et al., 2006), catalysts (Lesiak et al., 

2014; Li et al., 2014), solar cell (Hai et al., 2013; Kang et al., 2010) and sensors (Li et 

al., 2014). The unique chemical and physical properties of metal nanoparticles make it 

potentially useful for designing new and improved sensing devices, especially for 

electrochemical sensors. Their excellent electrocatalytic properties and high load 

capacity for biomolecules have given advantages for metal nanoparticles to be 
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employed as electrochemical signal enhancer in sensor application. With regard to this, 

silver nanoparticles (AgNPs) have been extensively investigated as an effective 

electrocatalyst for electrochemical sensor applications. AgNPs keep on being of 

enormous current research attention because it required low production cost, 

environmentally friendly, low toxicity and biocompatibility. Moreover, AgNPs 

possessed the advantages of excellent catalytic activity, high conductivity and high 

surface energy, which makes them a promising catalyst material. Furthermore, their 

high surface to volume ratio allows large fraction of metal atoms to get exposed to 

reactant molecules and it is very much desirable for sensor application (Rastogi et al., 

2014). Besides that, it is also the best conductor among all of the noble metals (Jiang et 

al., 2013). Due to these properties, AgNPs may facilitate more efficient electron transfer 

than the other noble metal nanoparticles. 

 

Besides AgNPs, gold nanoparticles (AuNPs) also have recently drawing an 

increasing attention of many researchers in the field of sensors. AuNPs have attracted 

more attention from researcher due to its novel chemical, optical and physical properties 

such as high effective surface to volume ratio, excellent electrical and heat conductivity, 

and strong absorption in the visible and near infrared wavelength region (380 to 

750 nm). Important physical properties of AuNPs include surface plasmon resonance 

(SPR) and the ability to quench fluorescence (Yeh et al., 2012). Besides that, it is also 

have an excellent biocompatibility and low toxicity which make is suitable to be applied 

in biotechnology (Khlebtsov et al., 2011). AuNPs also exhibit high chemical stability 

and inertness under physiological conditions as well as possesses excellent 

electrocatalysis properties. All these properties make AuNPs an attractive material for 

electrochemical and biological devices. More interestingly, the properties of Au can be 

controlled by tuning the shape and size (Jain et al., 2006). Because of its small size, Au 
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could provide high active surface area, thus, improve the electron transfer. This will 

lead to the enhancement in sensitivity and signal to noise ratio, therefore improve the 

analytical performance.  

 

Another noble metal that has the potential as a catalyst for the electrochemical sensor 

is palladium nanoparticles (PdNPs). PdNPs have attracted extensive attention because 

of their good chemical and physical properties, including its wear and corrosion 

resistance as well as good stability. Its high specific surface areas would increase the 

mass transport and enhance the electron transfer kinetics, thus, improves the 

electrocatalytic activity. Besides that, PdNPs is also an important material in 

applications involving hydrogen storage and gas sensing due to its ability to absorb 

hydrogen at high capacity (Tobiška et al., 2001). Table 2.4 compiles the analytical 

parameters for electrochemical sensing of biomolecules by using various metals 

nanoparticles as the sensor electrode that have been reported in literature. 

 

Table 2.4: Comparison of various metals nanoparticles-based modified electrodes for 

the detection of different bioanalytes by using electrochemical technique. 

 

Electrode Target 
analyte 

Analytical 
method 

Linear 
range 

Detection 
limit 

Reference 

AgNPs/ 
MCPE 

DA DPV 1 – 5 µM 0.085 μM (Vidya et al., 

2016) 

ITO/ 
AuNPs 

DA DPV 1×10
−7

 -

9×10
−4

 M 

34.5 µM (Aldana-

González et 

al., 2013) 

Ag–
Pd/GCE 

L-Cys CV - 2.8 µM (Murugavelu 

et al., 2014) 

Fe@Pt/C H2O2 Amperometry 2.5 μM-

41.605 

mM 

750 nM (Mei et al., 

2016) 

Au/ITO 5-HT SWV 1.0×10
−8

–

2.5×10
−4

 

M 

3 nM (Goyal et al., 

2007) 

AgNPs=silver nanoparticles; MCPE=modified carbon paste electrode; ITO=indium tin oxide; 

Pd=palladium; CV=cyclic voltammetry; Fe=ferum; Pt=platinum; C=carbon; 5-HT=serotonin; 

SWV=square wave voltammetry. 
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 CHAPTER 3 

 RESEARCH METHODOLOGY 

  

3.1 Materials 

All chemicals and solvents were used as-received without any further purification 

unless other-wise stated. Aqueous solutions were all made in deionized water (DI water) 

throughout the work. The materials and chemicals used in this work are summarized in 

Table 3.1. 

 

Table 3.1: List of chemicals and materials used in this work. 

 

Chemicals Formula Purity (%) Brand 
Graphite flakes - - Asbury Graphite 

Mills 

Nafion - - Ion Power Inc. 

Sulfuric acid H2SO4 95∼97 Merck 

Phosphoric acid H3PO4 85 Merck 

Hydrochloric acid HCl 37 Merck 

Ammonia solution NH4OH 25 Merck 

Hydrogen peroxide H2O2 35 Systerm 

Potassium 
permanganate 

KMnO4 - R&M 

Chemicals 

Silver nitrate AgNO3 99.9 Merck 

Gold(III) chloride 
trihydrate 

HAuCl4.3H2O 99.9 Abcr.Gmbh & 

Co. KG 

Sodium 
tetrachloropalladate(II)  

Na2PdCl4 98 Sigma-Aldrich 

Sodium phosphate 
monobasic 

NaH2PO4 99 Sigma-Aldrich 

Disodium phosphate 
dihydrate 

Na2HPO4.2H2O 99 Sigma-Aldrich 

3-hydroxytyraminium 
chloride 

3,4-

(OH)₂C₆H₃CH₂CH₂NH₂ 

.HCl 

- Merck 

Schuchardt 

OHG 

Sodium nitrite NaNO2 98 Sigma-Aldrich 

L(+)-Ascorbic acid C6H8O6 99 Sigma-Aldrich 

Sodium chloride NaCl 99.5 Sigma-Aldrich 

L-Cysteine C3H7NO2S 97 Sigma-Aldrich 

Uric acid  C5H4N4O3 99 Sigma-Aldrich 

D-(+)Glucose C6 H12O6 99.5 Sigma-Aldrich 

Urea  CO(NH2)2  98 Merck 
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3.2 Sample Preparation 

3.2.1 Preparation of Graphene Oxide (GO) 

In this work, GO was synthesized according to Simplified Hummers’ method which 

use graphite flakes as the precursor. The schematic diagram of the Simplified 

Hummers’ method for synthesizing GO is shown in Figure 3.1. Initially, 400 mL 

mixture that contained with concentrated H2SO4 and concentrated H3PO4 was prepared 

using a ratio of 9:1. Next, 3.0 g of graphite flakes was added into the mixture while 

stirring. Then, 18.0 g of KMnO4 was added slowly and the solution was left to oxidize 

for 3 days with continuous stirring. After 3 days, 400 mL ice with 20 mL of 35 % H2O2 

were poured into the solution in order to stop the oxidation process. The solution was 

left for few minutes to remove excessive KMnO4. Finally, the solution was washed with 

1.0 M HCl for 3 times and continued with DI water for 6 times. The solution was 

centrifuged at 12000 rpm for 10 min and finally, the GO was obtained.  

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic representation for synthesis of GO using Simplified Hummers’ 

method. 
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3.2.2 Synthesis of rGO-Nf Nanohybrid 

The rGO-Nf nanohybrid was prepared as follows. Briefly, 50 mL of a GO solution 

with a concentration of 0.5 mg/mL was sonicated for 30 min. Meanwhile, a Nf solution 

with concentration of 0.5 mg/mL was prepared by dissolving Nf powder in an ethanol-

DI water mixture solution with a ratio of 1:1. Then, 10 mL of the Nf solution was added 

to 10 mL of the GO solution, and this mixture was subjected to sonication for 30 min. 

Finally, the reaction mixture (GO-Nf) was transferred to a Teflon-lined stainless-steel 

autoclave and heated at 180 °C. Three samples were prepared with different 

hydrothermal treatment durations (8, 16 and 24 h) and labeled as rGO-Nf (8 h), rGO-Nf 

(16 h) and rGO-Nf (24 h). The whole process was schematically depicted in Figure 3.2. 

 

  

  

 

 

 

 

 

 

 

 

Figure 3.2: Illustration of preparation of rGO/Nf nanohybrid via hydrothermal method. 
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3.2.3 Synthesis of rGO-Nf@Ag Nanohybrid 

Initially, 10 mL of GO (0.5 mg/mL) solution were sonicated for 30 min. Meanwhile, 

10 mL of Nf solution were prepared by dissolving Nf powder in an ethanol:DI water 

(1:1 v/v) mixture. The prepared GO and Nf solutions were mixed together and sonicated 

continuously for 30 min. 2 mL of AgNO3 were added drop by dropwise into the GO-Nf 

solution and stirred for 15 min. Later, 13 mL of NH4OH were added drop by drop to the 

mixture and stirred at room temperature for another 15 min. The reaction mixture was 

transferred into a Teflon-lined stainless autoclave before subsequently being put into an 

oven maintained at 180 °C for 16 h. After cool to room temperature, the black 

precipitates were collected and washed with DI water and ethanol several times and 

then dried naturally. Three different concentrations of AgNO3 (4, 6 and 8 mM) were 

used to prepare three different nanohybrids. The final products were labeled as rGO-

Nf@Ag4, rGO-Nf@Ag6 and rGO-Nf@Ag8 nanohybrids. The above mentioned 

synthetic protocol is schematically illustrated in Figure 3.3. 

 

 

 

 

 

 

 

Figure 3.3: Schematic illustration for formation of rGO-Nf@Ag nanohybrid via 

hydrothermal method. 
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3.2.4 Synthesis of rGO-Nf@Au Nanohybrid 

In the first step, GO-Nf solution was prepared by using ultrasonication method 

according to the procedure given in section 3.2.2. Next, 20 mL of GO-Nf solution was 

mixed with 2 mL of HAuCl4.3H2O solution. Above mixture was then stirred for 15 min 

under room temperature. For a control experiment, three different concentrations of 

HAuCl4.3H2O (4, 8 and 12 mM) were used. Then, 13 mL of NH4OH were slowly added 

into the solution while stirring to avoid sudden agglomeration. Prior to transferring to a 

Teflon-lined autoclave, the solution mixture was homogeneously stirred for 15 min. The 

hydrothermal synthesis was carried out at temperature of 180 °C for 16 h and 

subsequently cooled down to room temperature naturally after the reaction. Afterwards, 

the black precipitate was collected by centrifugation and washed with DI water and 

ethanol for several times, and dried at 60 °C in the oven for 24 h. The obtained powder 

was labeled as rGO-Nf@Au4, rGO-Nf@Au8 and rGO-Nf@Au12. The schematic 

illustration for synthesizing rGO-Nf@Au nanohybrid was shown in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Schematic illustration for synthesis of rGO-Nf@Au nanohybrid. 
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3.2.5 Synthesis of rGO-Nf@Pd Nanohybrid 

Briefly, 10 mL Nf solution was added in10 mL GO solution and the mixture was 

subjected to horn type sonication for 30 min. The Nf solution was prepared by placing 

Nf powder in a glass beaker containing a mixture of ethanol and DI water (1:1 

v/v). Next, 2 mL Na2PdCl4 solution was added in the mixture and stirred for 15 min at 

room temperature. For a control experiment, three different concentration of Na2PdCl4 

(3, 6, and 9 mM) were used. Then, 13 mL NH4OH was added dropwise into the 

mixture. The mixture was stirred continuously for another 15 min to make sure the 

entire compounds used are well blended before transferred into an autoclave and 

subjected to the hydrothermal reduction at 180 °C for 16 h. Afterward, the black 

solution were washed several times with DI water and ethanol and then dried in oven 

for 24 h to get powder form samples. The final products were named as rGO-Nf@Pd3, 

rGO-Nf@Pd6 and rGO-Nf@Pd9. The schematic illustration for preparing these 

nanohybrids was shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Schematic diagram for the synthesis of PdNPs decorated rGO-Nf film using 

hydrothermal method. 
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3.3 Electrochemical Cell Set-up 

The electrochemical measurements were carried out at room temperature by using a 

VersaSTAT 3 workstation supplied by Princeton Applied Research and controlled by 

Nova software. A conventional three electrode electrochemical cell was used, consisting 

of modified electrode (GCE, dia. 3 mm) as the WE, a saturated calomel electrode (SCE) 

and silver/silver chloride (Ag/AgCl) as the reference electrode (depends on the 

bioanalyte measured) and platinum wire as the counter electrode. Unless otherwise 

stated, the WE potentials stated in this paper are with reference to the SCE and all 

electrochemical studies were carried out by flowing N2 gas atmosphere. As the 

supporting electrolyte, phosphate buffer solution (PBS) was prepared by mixing the 

NaH2PO4 and Na2HPO4.2H2O solutions which were prior dissolved in DI water. For the 

purpose of adjusting the pH, 1.0 M NaOH or H3PO4 were used when necessary. A 

schematic diagram showing the electrochemical cell setup was presented in Figure 3.6. 

 

 

 

 

 

 

 

Figure 3.6: Schematic representation of the electrochemical cell setup. 
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From the calibration plot of current response versus concentration of analyte, the 

values for limit of detection (LoD) and limit of quantitation (LoQ) were calculated 

based on Equations (1) and (2), as follows: 

                           
  

 
    (1) 

                             
   

 
   (2) 

where σ is the residual standard deviation of the linear regression and m is the slope of 

the regression line (Shrivastava et al., 2011). 

 

3.4 Fabrication of Chemically Modified Electrode (CME) 

The modified electrode was prepared by a simple drop-casting method. In a typical 

procedure, the GCE was polished with 0.05 μm alumina slurry on a polishing cloth for a 

few times before rinsed with DI water. Then, the electrode was undergone pretreatment 

by running 20 cycles of CV at potential between +1 and -1 V in 0.1 M H2SO4 solution. 

After the cleaning process, 5 µL of the as-prepared nanohybrids solution (1 mg/mL) 

were drop casted onto the pre-treated GCE surface and air dried at room temperature for 

about 30 min. 

 

3.5 Electrochemical Sensing Techniques 

In electrochemical sensor, there are a number of sensing techniques can be used to 

determine the interested analytes at low concentration level. In this work, we have used 

two different voltammetric techniques (linear sweep voltammetry (LSV), and cyclic 

voltammetry (CV)), three different pulse-voltammetric techniques (differential pulse 

voltammetry (DPV) and square wave voltammetry (SWV) and amperometric technique 

(chronoamperometry (CA)). It was chosen based on which sensing technique shows 

more sensitivity toward the detection of analytes at the modified electrode. 
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3.5.1 Linear Sweep Voltammetry (LSV) 

Linear sweep voltammetry (LSV) technique is one of the voltammetric methods that 

used to identify the existence of analytes in solution. The basic principle of LSV 

involves in monitoring the electroanalytical current signals generated upon applying a 

voltage to the WE that was immersed in an electrolyte solution containing target 

analytes. The electrode potential was varied linearly between two limits and the scan 

rate was kept constant throughout the process. The result obtained from LSV was 

presented as a plot of oxidation or reduction current response against the applied voltage 

that is the potential for working electrode. The current is measured between the WE and 

the counter electrode. The oxidation or reduction of analyte was represented by a peak 

or trough in the current signal at the potential at which the species begins to be oxidized 

or reduced. 

 

3.5.2 Cyclic Voltammetry (CV) 

 Cyclic voltammetry (CV) is one of the sensing techniques that are frequently used to 

detect the presence of bioanalyte in the solution due to its simple procedure. In CV, the 

applied potential was ramped in the opposite direction to return to the initial potential 

after it reached the set potential and these cycles of ramps in potential can be repeated. 

Basically, CV is the extension of LSV where two linear sweeps run back to back, 

however, CV has a few advantages over LSV. For example, CV can give more 

information about the chemical reactions existing at the electrode surface by observing 

the peaks that appeared in CV. The reversibility of a redox couple can be evaluated by 

determines the potential difference between the anodic and cathodic peak potential of 

corresponding redox couple. Moreover, CV allowing the conversion of a species back to 

its original form and in the same time prevents the accumulation of unwanted species 

due to the reverse scanning in CV. 
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3.5.3 Differential Pulse Voltammetry (DPV) 

Differential pulse voltammetry (DPV) is one of the pulse voltammetry techniques 

that is highly sensitive to trace the levels of the analytes. Theoretically, the potential 

wave form in DPV composed of small pulses with constant amplitude normally in the 

range of 10 to 100 mV. These small pulses were superimposed on a slowly changing 

base potential. The current was sampled twice in each pulse period that is at the 

beginning and ending of the same pulse to permit the decay of the nonfaradaic 

(charging) current. The final result was displayed in a plot of the current difference 

between these two points for each single pulse versus base potential. The height of DPV 

is directly proportional to the concentration of analyte. In DPV, the species of target 

analytes can be identified by observing the peak potential, therefore it give advantage 

especially for simultaneous detection of analytes. As compared to CV, the background 

current in DPV is smaller because the charging current contribution is negligible. In 

order to increase its sensitivity and achieve lowest limit of detection, several parameters 

need to be optimized including the modulation amplitude, step potential, and step width. 

 

3.5.4 Square Wave Voltammetry (SWV) 

The most advanced technique in the group of pulse voltammtery technique is the 

square wave voltammetry (SWV). The potential wave form in SWV was made up from 

a superimposed of symmetrical square wave pulses with constant amplitude on a 

staircase wave form of step height. In this case, the forward pulse of the square wave 

coincides with the staircase step. The current in this technique was determined at two 

points, intially at the end of the forward potential pulse and then at the end of the 

reverse potential pulse. The current measured at these two points are known as 

oxidation and reduction current and the difference between these two currents was 

calculated to obtain the net current in SWV. This net current is directly proportional to 
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the concentration of the analyte which often give a lowest detection limit in the range of 

nanomolar, thus make it more sensitive compared to DPV. The advantage of SWV over 

other techniques is the speed as it allows the experiments to be performed repeatedly 

and increase the signal to noise ratio. Moreover, the fast technique offered by SWV 

enable us to study the kinetics of fast electron transfer reactions and the kinetics of rapid 

chemical reactions coupled to the target analytes. 

 

3.5.5 Amperometry  

The amperometry is one of the sensing techniques belongs to the family of controlled 

potential technique. The relatively simple technique owned by amperometry making it 

the most frequently used for direct determination of the analyte concentration. In 

amperometry, a steady state current was measured as a function of time upon applying a 

constant square-wave potential to the working electrode. The constant potential value 

was selected based on the existing well-established essential point of reference provided 

by CV. In this work, the point of reference will be the oxidation or reduction potential 

for our target analytes. The mass transfer throughout this process is solely governed by 

diffusion. The final data collected from amperometry will be translated in the plot of 

current-time (I-t) dependence. The value of peak current measured over a linear 

potential range is directly proportional to the bulk concentration of the analyte. 

 

3.6 Optical Characterization Technique 

3.6.1 UV-visible Absorption Spectroscopy 

The UV-visible absorption spectra for the prepared samples were recorded on a 

Thermo Scientific Evolution 300 ultraviolet-visible (UV-Vis) absorption 

spectrophotometer (Figure 3.7). The sample in solution form was poured in quartz 

cuvettes to run the measurement which works in the range between 200 to 800 nm at 
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room temperature. UV-vis characterization was used to validate the chemical changes in 

GO after hydrothermal process to form rGO, by examining the shifting in wavelength 

position and its intensity. Besides that, the identification of as-prepared materials were 

also been made by using UV-vis characterization through comparison of the absorption 

spectra obtained from our samples with spectra of standard raw material. The 

appearance of absorption peak for rGO and metal nanoparticles in the same spectrum 

could be used as evidence of successful formation of nanohybrids. 

 

 

 

 

 

 

Figure 3.7: Thermo Scientific Evolution 300 ultraviolet-visible (UV-Vis) absorption 

spectrophotometer. 

 

3.7 Crystalline and Structural Characterization Techniques 

3.7.1 X-ray Diffraction (XRD) 

The crystalline structures of the powder samples were collected by X-ray diffraction 

(XRD; PANalytical Empyrean) with the used of copper Kα radiation (λ = 1.5418 Å) at a 

scan rate of 0.02 sec
−1

 (Figure 3.8). The XRD pattern was formed based on the plotting 

of the intensity of X-rays scattered at different angles produced by a sample. It is 

notable that each phase of material produced unique XRD pattern, thus XRD 

characterization was commonly used for phase identification of a crystalline material. 
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The XRD data was analysed using the PANanalytical X’pert Highscore software 

including compare the diffraction peak obtained with the standard diffraction pattern 

from Joint Committee on Powder Diffraction Standard (JCPDS) database in order to 

examine type of materials that has been produced. In this work, XRD measurements 

were employed mainly to confirm the existence of metal nanoparticles on the surface of 

the rGO sheets. The XRD pattern obtained from a composite material should contain all 

of the diffraction patterns produced by each material in the composite. 

 

 

  

 

 

 

 

 

Figure 3.8: X-ray diffraction (XRD) from PANalytical Empyrean. 

 

3.7.2 Raman Spectroscopy 

Raman spectroscopy is a powerful technique for the characterization of carbon-based 

materials. The dispersion of electromagnetic radiation by molecules or atoms upon the 

illumination by the laser provides us information including rotational, vibrational, and 

other low frequency modes of molecules. Besides that, Raman characterization can also 

be used to identify unknown materials by matching their unique Raman spectral 

fingerprints with the one listed in databases of known spectra. Further study on the 

characterization of sp
2
 and sp

3
 hybridized carbon atoms to determine ordered and 
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disordered crystal structures of graphene were made by using Raman spectroscopy. In 

this work, Raman spectra of the nanohybrid were carried out by using a Renishaw inVia 

Raman microscope linked to the 514 nm line of an argon ion laser as the excitation 

source and performed at room temperature (Figure 3.9). The samples with concentration 

1 mg/mL was drop casted on a cleaned glass slide and dried in oven for overnight 

before Raman characterization. 

 

 

 

 

 

 

 

 

 

Figure 3.9: Renishaw inVia Raman microscope. 

 

3.7.3 X-ray Photoelectron Spectroscopy (XPS) 

In XPS, the surface of a sample was illuminated with mono-energetic x-rays which 

trigger the emission of photoelectron from the surface of the sample. The energy of the 

emitted photoelectrons was measured by using an electron energy analyzer which was 

recorded as a plot of intensity of a photoelectron peak versus binding energy. The 

elemental identity, chemical state, and quantity of a detected element can be determined 

using XPS. In this work, XPS was performed to obtain evidence that the metal 

nanoparticles were formed on rGO-Nf surfaces and also to analyze the quantity of 

elements and the surface electronic state of the obtained products. XPS was measured at 
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the beam-line, BL3.2 (a), of the Synchrotron Light Research Institute in Thailand. All 

samples were prepared by depositing the nanohybrid material on washed silicon 

substrate using the drop-casting technique. 

 

3.8 Morphological Characterization Techniques 

3.8.1 Field Emission Scanning Electron Microscopy (FESEM) 

The surface morphology of the as-prepared samples were analyzed by using the field 

emission scanning electron microscopy (FESEM). In FESEM, a strong electric field 

was used to emit the electrons from the surface of a conductor and the acceleration 

voltages ranging from 0.5 to 30 kV was used. Compared to SEM, the image quality 

obtained from FESEM is better caused by the production of electron beam that is about 

1000 times smaller than in a standard microscope with a thermal electron gun. 

Therefore, FESEM has become one of the important tools in the fields of material 

science for high resolution surface imaging. 

 

 

 

  

 

 

 

 

Figure 3.10: FEI Nova NanoSEM 400 operated at 10.0 kV. 
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FESEM images were obtained by a JEOL JSM-7600F operated at 10.0 kV and the 

energy dispersive x-ray spectroscopy (EDX) analysis was also done along with FESEM 

to confirm the composition of the materials (Figure 3.10). The nanohybrid materials 

were drop-casted on a silicon wafer, which was used as the substrates for FESEM 

characterization and dried in oven for overnight. 

 

3.8.2 High Resolution Transmission Electron Microscopy (HRTEM) 

The morphology and structural features of the nanohybrids were elucidated by using 

the high resolution transmission electron microscopy (HRTEM). HRTEM is a powerful 

technique used in material science for analyzing the quality, surface structure, shape, 

and size of a material. Since HRTEM provides high resolution images at atomic scale 

level, the crystal structure and features in the structure such as dislocations and grain 

boundaries can also be observed. This is allowed to analyze the lattice imperfections in 

materials on an atomic resolution scale such as point defects and stacking faults.  

 

 

 

 

 

 

 

 

Figure 3.11: FEI Tecnai G2 F20 X-TWIN TEM. 
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HRTEM images were obtained by FEI Tecnai G2 F20 X-TWIN Transmission 

Electron Microscope (TEM) operated at 200 kV (Figure 3.11). The nanohybrid 

materials were drop casted on a lacey carbon copper grid which was used as the 

substrates for HRTEM. I-solution software was used to measure the size of metal 

nanoparticles and its lattice spacing. 

 

3.9 Electrochemical Characterization 

3.9.1 Electrochemical Impedance Spectroscopy (EIS) 

The electrochemical impedance spectroscopy (EIS) was used for the characterization 

of each modified electrode surface in order to clarify the differences among the 

electrochemical behaviour. Any intrinsic material property or specific processes that 

could influence the conductivity, resistivity or capacitivity of an electrochemical system 

and it can be studied by EIS technique (Grieshaber et al., 2008). In general, 

electrochemical impedance is the response of an electrochemical system to an applied 

potential which usually displayed in Nyquist plot and also can be presented as a Bode 

plot. The frequency dependence of this impedance can reveal underlying chemical 

processes that happen at the electrode/electrolyte interface. There are several parameters 

relevant to impedance could be obtained such as electrolyte resistance, double layer 

capacitance, charge transfer resistance and diffusion (Sekar et al., 2013). The EIS 

experiment was performed at a PAR-VersaSTAT 3 electrochemical work station using a 

conventional three electrodes system. It was carried out in a solution containing 5 mM 

K3[Fe(CN)6]
 
and 0.1 M KCl within the frequency range from 0.01 Hz to 100 KHz. 

From the Bode plot obtained, the electron recombination lifetime was calculated based 

on the Equation (3): 

                
     (3) 
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where    is the electron recombination lifetime and fmax is the frequency peak. 

 

 

 

 

 

 

 

 

 

Figure 3.12: PAR-VersaSTAT 3 electrochemical work station. 

 

3.9.2 Voltammetry Technique 

Another useful electrochemical technique used to characterize electrode material is 

cyclic voltammetry (CV). CV is a common electrochemical technique conducted in 

order to study the electrochemical reaction mechanisms that generate the 

electroanalytical current signals. These involve the mechanism of redox system 

(oxidation or reduction process) and transport properties of an electroactive species in 

solution. Moreover, several important informations can be gained by varying the 

concentration of analytes and scan rate including the number of electrons transferred in 

the redox process (n); the diffusion coefficient (D), the electroactive surface area, and 

electrochemical reversibility. The electrochemical experiments were performed with a 

VersaSTAT 3 by Princeton Applied Research using a conventional three electrodes 

system. The modified GCE was used as the WE, a platinum wire served as a counter 

electrode and Ag/AgCl and saturated calomel electrode (SCE) was used as a reference 

electrode. A solution containing 5 mM K3[Fe(CN)6]
 
and 0.1 M KCl was used as the 
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electrochemically reversible redox system. Based on the CV that obtained for different 

scan rate, the heterogeneous electron transfer rate constant (ks) was further estimated 

from the following Equation (4): 

                                
  

   
         

     

     
        (4) 

where α is the charge transfer coefficient; n is the number of electron transfers; R is 

the ideal gas constant; T is the temperature in Kelvin; F is the Faraday constant; and ∆Ep 

is the peak-to-peak potential separation. 

 

For diffusion controlled electrochemical process, the diffusion coefficient (D) can be 

calculated by using the Randles Sevcik Equation (5):  

                             
   

  

 
   
 

          (5) 

Therefore, the slope of graph peak currents versus square root of scan rate  

   =              
   

  
                          (6) 

where, Ip is the peak current, n is the number of electrons, F is the Faraday constant 

(9.65x10
4
 C/mol), T is the temperature in Kelvin, R is the gas constant (8.314 JK

-1
mol

-

1
), A is the surface area of the electrode (in cm

-2
), D is the diffusion coefficient (cm

2
s

-1
), 

and C is the concentration of the analytes (mol/cm
3
). 
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CHAPTER 4 

REDUCED GRAPHENE OXIDE-NAFION NANOHYBRID MODIFIED 

ELECTRODE FOR ELECTROCHEMICAL DETECTION OF DOPAMINE 

AND NITRIC OXIDE 

 

4.1 Introduction 

Dopamine (DA) is an important biomolecule. It is formed by the decarboxylation of 

DOPA and is a precursor of two other neurotransmitters; adrenaline and noradrenalin. 

DA is a well-known catecholamine neurotransmitter of the human central nervous 

system and brain. It controls the brain's reward and pleasure centers as well as helps to 

regulate movement and emotional responses. In addition, DA plays a vital role in the 

functioning of the central nervous, cardiovascular, renal and hormonal systems 

(Lévesque et al., 2007). An abnormal DA level in the brain causes several disease 

conditions, such as pleasurable, rewarding feelings and sometimes even euphoria. 

Meanwhile, a deficiency of DA in the brain may lead to neurological disorders, such as 

schizophrenia and Parkinson’s disease (Cederfjäll et al., 2013). Selvaraju et al. 

(Selvaraju et al., 2003a, 2003b; Selvaraju et al., 2005; Selvaraju et al., 2014) and 

Abraham John and his coworkers (Kalimuthu et al., 2009; Raj et al., 2013; Revin et al., 

2012) extensively investigated the electrochemical detection of DA in the presence of 

many interference such as ascorbic acid (AA), uric acid (UA), tyrosine (Tyr), 

methionine (Met) and serotonin (5-HT).  

 

Where else, nitric oxide (NO) is a hydrophobic, highly labile free radical that is 

naturally produced within the human body and plays a vital role in a wide range of 

biological and cellular functions. NO is used for communication in between cells and 
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involve in the regulation of blood pressure, the immune response, platelet aggregation 

and clotting, neurotransmission and possibly respiration (Bredt et al., 1992; Burnett, 

1997). Abnormal NO production and bioavailability may cause several diseases such as 

obesity, diabetes (both type I and II), atherosclerosis, hypertension and heart failure 

(Napoli et al., 2001; Petros et al., 1991). Thus, the development of sensor for the precise 

and selective measurement of NO that appears to be in low level within living systems 

can make a great contribution to disease diagnosis.  

 

Several methods have been reported to detect DA and NO, including 

chemiluminescence (Beckman et al., 1995), paramagnetic resonance spectrometry 

(Wennmalm et al., 1990), paramagnetic resonance imaging spectrophotometry 

(Kuppusamy et al., 1996) and bioassay (Wallace et al., 1995). Among these methods, 

the electrochemical detection of DA and NO is the only available technique sensitive 

enough to detect relevant concentrations of DA and NO in real time and in vivo. 

Electrochemical biosensor has a series of advantages such as high sensitivity towards 

electroactive species, rapid and accurate response and most importantly it is portable 

and inexpensive compared to other existing biosensor. Moreover, this technique is also 

highly selective toward DA and NO in the presence of interfering species such as nitrite, 

nitrate, AA, UA and L-arginine.  

 

A variety of materials have been reported to have potential as electrochemical 

sensors, including organic conjugated polymer (Mulchandani et al., 1995; Mulchandani 

et al., 1996), metal and semiconductor nanoparticles (Yin et al., 2011) and carbon 

nanomaterials (Shah et al., 2013). Among the carbon nanomaterials, graphene has been 

widely explored in the fabrication of electrochemical sensors, and especially biosensor, 

because of its fascinating two dimensional conjugated structures and unique properties 
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such as a high conductivity (Li et al., 2009), high electrocatalytic activity (Wang et al., 

2010) and large surface area (Reina et al., 2008). These properties give graphene an 

advantage as a sensor. For example, Zhou et al. has successfully fabricated the 

chemically reduced graphene oxide-modified GCE (CR-GO/GC) for the detection of 

inorganic and organic electroactive compounds (H2O2, NADH, DA, AA, UA, glucose) 

(Zhou et al., 2009). Their research has proved that CR-GO demonstrated favourable 

electrochemical activity which extremely attractive for a wide range of electrochemical 

sensing and biosensing applications. Moreover, the potential sensor application of 

graphene cooperated with metal such as platinum (Pt) were also been studied by some 

researchers. In 2011, Sun et al. have studied the simultaneous electrochemical detection 

of AA, DA and UA at the glassy carbon electrode modified by graphene-Pt 

nanocomposite (Sun et al., 2011). The observed results show that this new 

nanocomposite posses a great potential as electrochemical biosensors.  

 

Up to date, the hybridization of graphene with a polymer has attracted wide attention 

because this graphene-based polymer composite has remarkable electrocatalytic, 

mechanical, electrical and thermal properties. Many polymers have been used to 

synthesize graphene/polymer composites. For example, Liu and co-workers (Liu et al., 

2014) developing a poly(o-phenylenediamine) (PoPD)/graphene hybrid composite using 

electropolymerization technique which performed on the graphene/GCE for the 

detection of DA in human urine samples. This modified electrode has a detection limit 

of 7.5 mM. Meanwhile, Han and his co-workers (Han et al., 2010) has synthesize 

chitosan-graphene composite by a together-blending and in situ chemical reduction 

method to modify a GCE for DA sensor. The simultaneous detection of DA in the 

presence of AA and UA shows a detection limit of 1 µM. Thus, this study focused on 

the synthesis of a reduced graphene oxide-based polymer composite with Nf. Nf is a 

Univ
ers

ity
 of

 M
ala

ya



51 

conductive polymer, which is important in enhancing the properties of the hybrid 

material. It also acts as a dispersant for graphene because of it perfluoroalkyl backbone, 

which has a higher hydrophobicity and leads to a stronger interaction with graphene. In 

addition, Nf has advantages as an electrode modifier because it possess an excellent 

antifouling capacity, high permeability to cations and strong adsorption ability (Nigović 

et al., 2014b).  

 

Herein, we report a selective and sensitive electrochemical sensing platform based on 

hydrothermally prepared rGO-Nf nanohybrid modified electrode toward the detection of 

DA in the presence of AA and UA. The influences of experimental parameters such as 

hydrothermal process time, scan rate and pH of the electrolyte on electrocatalytic 

performance were also investigated. To the extent of our knowledge, there is little 

research focused on the rGO-Nf nanohybrid materials for the electrochemical detection 

of NO with a lowest detection limit. In this present work, the novel rGO-Nf nanohybrid 

was also employed as a sensing electrode material in an electrochemical sensor to study 

its sensitivity and selectivity toward NO. The electrochemical signal obtained from the 

NO sensor could be optimized by controlling the loading volume of the material on the 

electrode surface. The interference of AA and DA during the determination of NO was 

also studied. The high sensitivity and selectivity of the rGO-Nf nanohybrid modified 

electrode could make them a suitable candidate for detection of a wide range of 

biomolecules in biosensor. 

 

4.2 Results and Discussion 

4.2.1 Optical Characterization of rGO-Nf Nanohybrids  

The absorption spectra of the as-prepared samples were measured and their results 

were shown in Figure 4.1. As can be seen from Figure 4.1(i), the GO exhibits a strong 
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absorption peak at 230 nm and a shoulder at around 300 nm due to the π→π
*
 transitions 

of aromatic C-C bonds and the n→π
*
 transition of the C=O bonds (carbonyl groups), 

respectively. Meanwhile, the Nf shows an absorption peak at 190 nm (Figure 4.1(ii)) 

that could be assigned to the C=C bonds that are produced during the polymerization or 

modification reactions of Nf with water during ultrasonication (De Almeida et al., 

1997). After the hydrothermal treatment of the rGO-Nf for different duration of time, 

the absorption peaks occurred at ~190 and ~261 nm, due to the Nf and rGO, 

respectively (Figure 4.1(iv-vi)). Upon the hydrothermal treatment, the GO peak red-

shifted to 261 nm, which suggests the effective restoration of the sp
2
 carbon networks 

(C=C bonds) within the sheets. Moreover, this bathochromic shift further confirmed that 

the GO had been reduced to rGO during hydrothermal treatment. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: UV–vis absorption spectra of prepared (i) GO, (ii) Nf, (iii) GO-Nf, (iv) 

rGO-Nf (8 h), (v) rGO-Nf (16 h) and (vi) rGO-Nf (24 h) nanohybrids. 

 

As shown in Figure 4.2(A), the photoluminescence (PL) spectra for an aqueous 

solution of GO possess a broad emission peak at around 590 nm on excitation 

wavelength of 325 nm. The emission peak at longer wavelength is a result of significant 
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number of disorder-induced defect state within π→π* transition possess by GO (Chuang 

et al., 2014). After hydrothermal process, the PL spectra of all three rGO-Nf 

nanohybrids were blue shifted to 416 nm as shown in Figure 4.2(B). This result 

demonstrated that the number of sp
2
 domains in reducing GO has increased, hence 

proving the successful of reduction process. Moreover, the position of the emission peak 

was similar as previously reported by Liu et al. which indicate the formation of 

graphene quantum dots (Liu et al., 2014).  

 

The increases in degree of reduction of GO result in more shifted toward shorter 

wavelength due to the increase number of sp
2
 domain (Chuang et al., 2014). Therefore, 

rGO-Nf (16 h) nanohybrid has the highest degree of reduction as its peak shifting to the 

shortest wavelength. Besides that, one can find that the intensity of PL spectra decrease 

in order of: rGO-Nf (24 h) > rGO-Nf (8 h) > rGO-Nf (16 h). The PL emission is the 

result of the recombination of excited electrons and holes. Thus, the recombination rate 

of electrons and holes will affect the PL intensity. In general, a lower recombination rate 

for photogenerated electron and hole pairs will result in a lower PL intensity and thus 

possess higher photocatalytic activity (Hu et al., 2010; Kim et al., 2012). Therefore, the 

rGO-Nf (16 h) nanohybrid is believed to show great sensing performance due to high 

photocatalytic activity. 

 

 

 

 

 

 

 
Figure 4.2: PL spectra of (A) GO and (B) three different rGO-Nf nanohybrids. 
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4.2.2 Structural Characterization of rGO-Nf Nanohybrids  

The Raman spectra of GO and three different rGO-Nf nanohybrids were shown in 

Figure 4.3. Generally, the two of the most representative features of graphene could be 

detected from its Raman spectrum, namely the D and G bands. It has been reported that 

the D peak corresponds to the defects and disorder activated Raman mode arising from 

the vibrations of sp
3
 carbon atoms, while the G peak arises from sp² hybridized carbon 

atoms in a graphitic 2D hexagonal lattice (Ferrari et al., 2006). It can be seen in the 

Raman spectra for GO and the others that there were two prominent peaks at 1355 and 

1595 cm
−1

, which correspond to the D and G bands, respectively. The G band has 

slightly shifted to 1600 cm
-1

 for the rGO-Nf nanohybrids, which indicates the existence 

of a charge transfer between the graphene and Nf (Liu et al., 2009), thus confirming the 

formation of rGO-Nf nanohybrids. It has been reported that the intensity ratio of the D 

and G bands will give information on the establishment of sp
2 

hybridization and 

deoxygenation (Nyoni et al., 2014). 

 

From the Raman spectra, the ID/IG ratio for GO was 0.87, which markedly increased 

to 0.99 for rGO-Nf upon 8 h of hydrothermal treatment. This increase indicates the 

formation of the graphene lattice, which contained structural defects due to the 

decreases in the average size of the sp
2
 domains as a result of the hydrothermal 

treatment (Mehrali et al., 2014). Moreover, it reflects an increase in disorder after being 

hybridized with the Nf, and the ID/IG ratio further decreased to 0.97 after 16 h of 

hydrothermal treatment. This result was attributed to the further reduction of rGO and 

the lower concentration of defects due to the restoration of the majority of the conjugate 

structure in the rGO-Nf (16 h) nanohybrid as a result of the longer hydrothermal 

treatment. However, the ID/IG ratio for rGO-Nf (24 h) slightly increased to 1.03. This 

might indicate that a longer thermal exfoliation would form stacks of rGO, which would 
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increase the defects and disordered structure. These results also confirmed that the 

degrees of reduction and defectiveness of the rGO were varied by employing different 

times for the hydrothermal treatment during their fabrication (Liu et al., 2013). 

 

                                 

 

 

 

 

 

  

Figure 4.3: Raman spectra that obtained for the (i) GO, (ii) rGO-Nf (8 h), (iii) rGO-Nf 

(16 h) and (iv) rGO-Nf (24 h) nanohybrids. 

 

X-ray photoelectron spectroscopy (XPS) was employed to confirm the formation of 

nanohybrid in between rGO and Nf. The XPS C1s spectra of rGO, Nf, and three 

different rGO-Nf nanohybrids were shown in Figure 4.4. Curve fitting of the C1s 

spectra for rGO and Nf were performed using a Gaussian peak shape after performing a 

polynominal background correction. A main peak at binding energy of 284.8 eV can be 

observed in the C1s XPS spectra of rGO that can be fitted by four Gaussian components 

at 284.8, 286.6, 288.3 and 289.3 eV and thus assigned to C-C, C-O, C=O and O=C-O 

species, respectively (Figure 4.4(A)) (Choi et al., 2012). Meanwhile, the peak at 291.4 

eV which corresponded to the C–F group of Nf appeared in the C1s XPS spectra of Nf 

(Figure 4.4(B)) (Zhang et al., 2008). This peak can be fitted to three components that 
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centered at 289.2, 291.4, and 293.8 eV correspond to OCFSO2, CF2 and CF3 in Nf, 

respectively.  

 

As can be seen in Figure 4.4(C), the C1s XPS spectrum of all three nanohybrids 

contained two prominent peaks at binding energy of 284.8 and 291.4 eV which were 

assigned to the C-C and C-F groups, respectively. The sp
2
 carbon network of rGO was 

retained in all three nanohybrids, as indicated by the presence of C-C peak. This 

indicates that Nf and rGO presence in the nanohybrids, thus confirmed the successful 

formation of rGO-Nf nanohybrids via hydrothermal reaction. One can notice that the 

graphitic C-C species were dominant after reduction except for rGO-Nf (8 h) 

nanohybrid, as can be seen in Figure 4.4(C(i)). The appearance of C-C peak in rGO-Nf 

(8 h) nanohybrid that is broader than other nanohybrids may result from a quite high 

contribution of the oxygenated carbons as compared to other nanohybrids, indicating 

that deoxygenation has partially occurred at the carbon surface. 

 

  

  

  

  

  

  

 

 
 
 
 
 

Figure 4.4: C1s XPS spectra for the (A) rGO, (B) Nf and (C) three different 

nanohybrids; (i) rGO-Nf (8 h), (ii) rGO-Nf (16 h) and (iii) rGO-Nf (24 h) nanohybrids. 
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4.2.3 Morphological Characterization of rGO-Nf Nanohybrids  

The morphology and structural features of the rGO-Nf nanohybrids were elucidated 

by using FESEM. Figure 4.5 reveals the typical FESEM images of GO and three 

different nanohybrids. A sheet-like structure with wavy wrinkles on the surfaces can be 

observed from FESEM images of GO as shown in Figure 4.5(A). This corrugation of 

the GO sheets was attributed to the disruption of the planar sp
2
 carbon sheets by the 

introduction of sp
3
-hybridized carbon upon oxidation (Wang et al., 2009). Meanwhile, 

the FESEM images that obtained from three different rGO-Nf nanohybrids were shown 

in Figure 4.5(B) to (D) and we can notice that the images show more crumple and 

rougher surfaces. This result indicates that Nf was successfully inserted into rGO sheets, 

hence forming the nanohybrids. However, there is no obvious difference between all 

three samples; therefore, to get clearer picture on the morphology of rGO-Nf 

nanohybrids, HRTEM has been conducted. 

 

Figure 4.6 shows the HRTEM images of the GO and rGO-Nf nanohybrids, where we 

can clearly see the flake-like shapes. The GO flakes possess an average lateral 

dimension of more than 1.5 μm, with wavy wrinkles on their surfaces. They possess 

more sp
3
carbon atoms and have defects, as shown in Figure 4.6(A). According to Figure 

4.6(B-D), it can be observed that the rGO with the Nf layer coating has a rough surface, 

with an average diameter of approximately 18 nm. The lack of unchanged in the 

average diameter of rGO may be due to the use of the same sonication time before 

hydrothermal treatment. The thickening and roughening of the rGO-Nf nanohybrids 

suggest that Nf chains were successfully grafted on the rGO. However, the distribution 

of rGO was different upon a different period of hydrothermal treatment. The rGO 

tended to stack together to form agglomerations after 24 h of hydrothermal treatment as 

compared to 8 and 16 h, after which it looked more well distributed. This result 
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confirmed the higher defects detected in the Raman spectra for the rGO-Nf (24 h) 

nanohybrid, as indicated by the lower ID/IG ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: FESEM images of (A) GO, (B) rGO-Nf (8 h) nanohybrid, (C) rGO-Nf (16 

h) nanohybrid and (D) rGO-Nf (24 h) nanohybrid. 

 

 

 

 

 

A 

D C 

B 

Univ
ers

ity
 of

 M
ala

ya



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6: HRTEM images of (A) GO, (B) rGO-Nf (8 h) nanohybrid, (C) rGO-Nf (16 

h) nanohybrid and (D) rGO-Nf (24 h) nanohybrid. 

 

Figure 4.7 presents AFM phase contrast images of the rGO-Nf nanohybrids (top 

row), along with three-dimensional views of the same surfaces (bottom row). The 

heights of the samples are represented by different color codes from dark to bright, 

which show the rough surfaces of the as-obtained rGO-Nf nanohybrids. The rGO-Nf (8 

h) appeared to be built up from a few larger flakes of graphene that stacked together to 

form thicker flakes, as visualized by Figure 4.7(A). The stacking of a few laters of 

graphene sheets might cause an increase in the thickness of the sample. As the 
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hydrothermal processing time increases to 16 h, the rGO-Nf nanohybrid appears to be 

highly uniform with a smaller size and height compared to the rGO-Nf (8 h) hybrid 

(Figure 4.7(B)). In addition, the 3D view reveals a good smoothness on the surface, 

which demonstrates a uniform distribution. However, after 24 h of hydrothermal 

treatment, the nanosized graphene tended to combine together and form agglomerations 

which then led to an increase in thickness of the surface roughness, as shown in Figure 

4.7(C). 

  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.7: AFM phases and 3D topographic images of rGO-Nf nanohybrids obtained 

after hydrothermal treatment periods of (A) 8 h, (B) 16 h and (C) 24 h. 

 

4.2.4 Electrochemical Characterization of GC/rGO-Nf Modified Electrode 

The electrochemical properties of the GC/rGO-Nf modified electrodes were 

characterized by using CV and electrochemical impedance spectroscopy (EIS). Figure 

4.8(A) depicts a series of CV plots that obtained for rGO-Nf nanohybrids with different 

hydrothermal processing times in 0.1 M KCl containing 5 mM K3[Fe(CN)6]. The CV 

plots for the rGO-Nf (8 h), rGO-Nf (16 h) and rGO-Nf (24 h) nanohybrids show a 

quasi-reversible redox reaction with peak-to-peak separations of approximately 150 

mV, 99 mV and 170 mV, respectively. The redox peak current increased in the 

C B A 
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following order: rGO-Nf (24 h) < rGO-Nf (8 h) < rGO-Nf (16 h). It can be noticed that 

the redox peak current of the GC/rGO-Nf (16 h) modified electrode was higher than 

other modified electrodes. The high peak current and small peak-to-peak separation 

indicated that the electron transfer rate of the GC/rGO-Nf (16 h) modified electrode was 

promoted (Lee et al., 2013) and the effective surface area was increased. 

 

 Figure 4.8(B) presents the Nyquist plot recorded for GCE and three other GC/rGO-

Nf modified electrodes. The Nyquist plot for the bare GCE shows the existence of one 

semicircle in the high frequency range with an inclined line in the low frequency range. 

In general, the diameter of the semicircle represents the charge transfer resistance (Rct), 

whereas the inclined straight line can be considered to be the impedance attributed to 

the diffusion of ions through the graphene sheets (Jiang et al., 2014). The Nyquist plot 

for GC/rGO-Nf (24 h) also consists of one semicircle with an inclined straight line. 

However, the diameter of the semicircle for GC/rGO-Nf (24 h) was smaller than that of 

the bare GCE, which demonstrated that the Rct value decreased when the rGO-Nf (24 h) 

was coated on the bare GCE surface. The Rct values for GC/rGO-Nf (8 h) and GC/rGO-

Nf (16 h) were close to zero, which  suggest that rGO-Nf possessed the ability to 

accelerate the electron transfer between the electrochemical probe [Fe(CN)6]
3−/4−

 and 

the electrode surface with a higher rate (Xi et al., 2012). The uniform distributions of 

rGO-Nf (8 h) and rGO-Nf (16 h) nanohybrids on the GCE surface may produce a better 

electrical contact, and thus enhance the electrical conductivity compared to rGO-Nf (24 

h), which tended to agglomerate (based on the HRTEM results). The equivalent 

electrical circuit used for fitting the impedance spectra was shown in the inset of Figure 

4.8(C). This circuit consists of an active electrolyte resistance (Rs) that is in series with 

the parallel combination of Rct and a constant phase element (CPE). 
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Figure 4.8: (A) CV and (B) Nyquist plots of electrochemical impedance spectroscopy 

(EIS) for bare GCE and GC/rGO-Nf nanohybrids with different hydrothermal 

processing times obtained in presence of 0.1 M KCl with 5 mM K3[Fe(CN)6], (Inset 

shows the electrical equivalent circuit that fit the Nyquist plot of GC/rGO-Nf (16 h)) 

and (C and D) bode plots obtained for different modified electrodes. 

 

Figure 4.8(C) shows the Bode plots of the phase angle versus frequency for the bare 

GCE, GC/Nf, GC/GO, GC/GO-Nf and GC/rGO-Nf (16 h). Bare GCE shows a sharp 

peak at higher frequency, which gives an indication of a higher Rct value. This peak 

started to broaden when we coated the GCE surface with Nf, GO, GO-Nf and rGO-Nf 

(16 h). This showed a lower resistance when the charges were transferred, which 

improve the electrical conductivity. Figure 4.8(D) displays the Bode plots obtained from 

GC/rGO-Nf (8 h), GC/rGO-Nf (16 h) and GC/rGO-Nf (24 h). It is noticed that the peak 
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at a higher frequency started to shift to a lower frequency following the order of 

GC/rGO-Nf (24 h) < GC/rGO-Nf (8 h) < GC/rGO-Nf (16 h). The values of the 

corresponding electron recombination lifetime; τn of GC/rGO-Nf (24 h), GC/rGO-Nf (8 

h) and GC/rGO-Nf (16 h) could be calculated to be 9.05, 20.04 and 31.76 ms, 

respectively. These results demonstrate that rGO-Nf (16 h) has the longest electron 

recombination lifetime, which shows its application potential for electrocatalysis, 

photoelectrochemical cells, and solar cells (Yeh et al., 2012). 

 

4.2.5 Electrochemical Determination of Dopamine 

4.2.5.1 Electrocatalytic Oxidation of Dopamine  

CV curves were recorded for the different modified electrodes in the presence of DA 

to determine the best sensor electrode for the electrochemical detection of DA. The CV 

characteristics of bare GCE, GC/GO, GC/Nf, GC/GO-Nf and three different GC/rGO-

Nf modified electrodes were recorded in a 0.1 M PBS (pH 6.5) solution containing 100 

µM DA at a scan rate of 100 mV/s, and the results were shown in Figure 4.9. We can 

see that a pair of redox peaks appears for all the samples. Among these, the GC/rGO-Nf 

(16 h) modified electrode showed an excellent electrochemical response towards the 

oxidation of DA with a higher current as compared to the other electrodes. The response 

for the GC/rGO-Nf modified electrode toward DA was about five to six times greater 

than that of GC/GO-Nf. This enhanced electrocatalytic activity due to the rapid electron 

transfer process was confirmed by the lower peak to peak potential separation (∆Ep), 

which was calculated to be 36.80 mV. Hence, the rGO-Nf (16 h) nanohybrid will be 

chosen as the sensor electrode for further study of DA sensing. 
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Figure 4.9: CV curves obtained for bare GCE, GC/GO, GC/Nf, GC/GO-Nf and three 

different GC/rGO-Nf modified electrodes in presence of 0.1 M PBS (pH 6.5) solution 

containing 100 µM DA at a scan rate of 100 mV/s. 

 

An electrocatalytic mechanism is proposed in Figure 4.10 to understand the reaction 

process that occurs at the GC/rGO-Nf modified electrode.  

 

 

 

 

 

 

 

 

 

Figure 4.10: Schematic representation of detection of DA at GC/rGO-Nf modified 

electrode. 
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It is well known that DA can easily be oxidized electrocatalytically to produce 

dopamine-quinone (DAQ) at a conventional electrode. Under the optimized condition, 

DA was easily oxidized to form DAQ after the exchange of equal amounts of electrons 

and protons upon the application of a potential to the GC/rGO-Nf modified electrode. 

Later, a faradaic current was produced as a result of the donation of these electrons to 

the modified electrode (Huang et al., 2012). The higher current response occurs due to 

the possible electrostatic attraction between the DA cation and the negative surface of 

the rGO-Nf nanohybrid materials that deposited on the modified electrode.  

 

The GC/rGO-Nf (16 h) modified electrode showed the highest current response 

toward the oxidation of DA compared to the other modified electrodes because of the 

good synergistic effects between the rGO and Nf, which resulted in the a electronic 

conductivity and DA accessibility. The electron density in the plane of graphene was 

changed by the electron withdrawing groups of Nf (–CF2 and –SO3
-
) using p-type 

doping, which moved the Fermi level towards the valence band (Aragaw et al., 2013). 

The conductivity of the rGO in the hybrid material increased due to the movement of 

the Fermi level, which facilitated the electron transfer rate between the DA and the 

surface of the electrode, showing an excellent electrochemical performance. 

 

4.2.5.2 Optimization Studies  

(a) Effect of Different Concentration of Dopamine 

The redox behavior of DA at different concentration was investigated by using CV in 

0.1 M PBS (pH 6.5) at a scan rate of 50 mV/s with the intention of to study the 

electrochemical performance of the GC/rGO-Nf (16 h) modified electrode. It is 

evidenced from Figure 4.11(A) that the peak currents of DA increased linearly with the 

increase of concentrations over the range of 10 to 350 µM. As shown in Figure 4.11(B), 
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the calibration equation of DA was obtained in the range of 10 to 350 μM:        

                        with correlation coefficient of R
2 

= 0.9907. This result 

indicates that the GC/rGO-Nf (16 h) modified electrode exhibits a good linear behavior 

for DA in the examined concentration range. 

 

 

 

 

 

Figure 4.11: (A) CV curves obtained for the GC/rGO-Nf (16 h) modified electrode in 

the presence of 0.1 M PBS (pH 6.5) and different concentration of DA (10 to 350 µM) 

at a scan rate of 50 mV/s and (B) linear relationship between Ipa and the concentration 

of DA. 

 

(b) Effect of Scan Rate 

The influence of the scan rate on the electrochemical performance of the GC/rGO-Nf 

(16 h) modified electrode toward DA was investigated, and the results are depicted in 

Figure 4.12(A). The anodic peak was positively shifted with an increase in the scan rate, 

and it showed good linearity between the peak current and scan rate in the range of 10 

to 500 mV/s (Figure 4.12(B)). The anodic and cathodic peak currents followed the 

linear equations of                  and                     with 

regression coefficien (R²) values of 0.994 and 0.996, respectively. These results 

confirmed that the direct electron transfer between the rGO-Nf and DA was mainly 

controlled by an adsorption process (Dessie et al., 2014). The kinetic parameters 
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αc (cathodic transfer coefficient) and αa (anodic transfer coefficient) were obtained by 

plotting the peak potentials of the redox peaks against the logarithmic scan rate (Figure 

4.12(C)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: (A) CV plot obtained for GC/rGO-Nf (16 h) modified electrode in 0.1 M 

PBS (pH 6.5) with presence of 100 µM DA at a scan rates of 10–500 mV/s, (B) the 

corresponding plot of anodic and cathodic peak currents versus scan rate, (C) 

relationships of anodic and cathodic peak potentials against natural logarithm of scan 

rate (10–3000 mV/s) and (D) relationships of the anodic and cathodic peak potentials 

against natural logarithm of scan rate at a scan rate of 300–900 mV/s. 

 

The relationships between the anodic and cathodic peak potentials and the natural 

logarithm of the scan rate were linear up to the scan rate of 300 to 900 mV/s (Figure 

4.12(D)). The calculated slopes of the linear segments are equal to 
       

       
 and 

        

   
 

for the anodic and cathodic peaks, respectively, based on the Laviron equation 
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(Mazloum et al., 2010). The estimated value for the anodic transfer coefficient (αa) was 

0.565, which is consistent with the typical value of 0.5 as-observed for electrochemical 

reactions (Skúlason et al., 2007). The standard electron transfer rate constant; ks was 

calculated to be 6.26 s
-1 

by taking the scan rate of 300 mV/s. The calculated ks value was 

quite high for the GC/rGO-Nf (16 h) modified electrode, and it exhibited a rapid 

electron transfer rate toward the electrocatalytic oxidation of DA. 

 

(c) Effect of rGO-Nf (16 h) Loading 

The loading content of rGO-Nf (16 h) nanohybrid was optimized in order to get the 

best performance of the sensor. The CVs responses of GC/rGO-Nf (16 h) modified 

electrode in Figure 4.13(A) clearly show that the current response is mainly influenced 

by the rGO-Nf (16 h) loading content.  

 

 

 

 

 

 

Figure 4.13: (A) CV curves obtained for GC/rGO-Nf (16 h) modified electrode with 

different amount of sample loading and (B) plot of anodic peak current response versus 

rGO-Nf (16 h) loading obtained for the 50 µM DA in 0.1 M PBS (pH 6.5) at a scan rate 

of 50 mV/s. 
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As can be seen in Figure 4.13(B), the DA redox current increased as we increase the 

loading content from 1 to 4 µL and it reached the maximum current at 5 µL of rGO-Nf 

(16 h) nanohybrid. This is due to increament of number of effective surface area for DA 

oxidation. However, when we gradually increased the aliquots from 6 to 10 µL, the 

current response started to decrease. This happen because of the formation of thick 

layers on the surface of electrode which blocks the electron from reaches the electrode 

and thus lowering its sensitivity. Hence, 5 µL of rGO-Nf (16 h) nanohybrid was used 

throughout the study. 

 

(d) Effect of pH 

The influence of the pH on the electrocatalytic oxidation of DA with the GC/rGO-Nf 

(16 h) modified electrode was studied, and the results are shown in Figure 4.14(A). The 

oxidation peak potential toward DA oxidation was shifted from a higher to lower 

potential value with increasing of pH values ranging from 3 to 10, which clearly 

suggests that protons participate in the electrode reaction processes (Huang et al., 2008). 

Moreover, the plot of the peak potential versus pH value shows a well linear 

relationship between oxidation peak potential and pH, with the equation     

                  and a correlation coefficient of 0.994 (Figure 4.14(B)).  

 

The observed slope value of -58.7 mV/pH was very close to the theoretical value (-

59 mV/pH), which indicates that equal numbers of electrons and protons were involved 

in  the electrochemical reaction (Ghorbani et al., 2010). Besides that, this is a 

consequence of a deprotonation step involved in all oxidation processes that is 

facilitated at higher pH values. The result also showed that the peak currents are the 

largest in near neutral pH of 6.5, thus, the subsequent determination experiment was 

performed in 0.1 M PBS with the pH of 6.5 under the consideration of peak current. 
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Figure 4.14: (A) CV curves obtained for GC/G-Nf (16 h) modified electrode in 

presence of 50 µM DA in 0.1 M PBS at different pH values ranging from pH 3 to 10 at 

a scan rate of 100 mV/s and (B) the corresponding plot of peak potential versus pH 

values. 

  

4.2.5.3 Linear Sweep Voltammetry (LSV) Response of Dopamine 

In order to study the electrochemical detection of DA on the GC/rGO-Nf (16 h) 

modified electrode, a series of linear sweep voltammetry (LSV) plots were recorded as 

can be seen in Figure 4.15. From Figure 4.15(A), we can see that the oxidation peak 

current at a position around +0.23 V increases with successive additions of 100 nM DA 

into the buffer solution. Besides that, the peak potential shifts in the positive direction 

with the increase in the concentration and the peak current also increases with the 

increase in the DA concentration. The calibration plot of as plotted in Figure 4.15(B) 

shows the linear relation between the anodic peak current and the DA concentration in 

the range of 100 nM to 1 µM. The calibration plot has a correlation coefficient (R
2
) of 

0.984 with a regression equation:                         . The limit of 

detection was calculated to be 102 nM (signal-to-noise ratio (S/N) = 3) by substituting 

the blank standard deviation (  = 0.262µ) and sensitivity (  = 7.695  A/ M) in the 
  

 
 

criterion.  
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Figure 4.15: (A) LSV obtained for GC/rGO-Nf (16 h) modified electrode in the 

presence of DA at concentrations of 100 nM to 200 µM in 0.1 M pH 6.5 PBS with a 

scan rate of 100 mV/s and (B) the corresponding plot of anodic peak current (I) against 

concentration of DA in the range of 100 nM to 1 µM DA. 

 

4.2.5.4 Simultaneous Determination of Dopamine and Ascorbic Acid 

In order to investigate the selectivity and sensitivity of the GC/rGO-Nf (16 h) 

modified electrode toward the detection of DA in the presence of AA, a series of square 

wave voltammmetry (SWV) plots were recorded and are shown in Figure 4.16, which 

demonstrate the well-resolved peaks of DA and AA. Figure 4.16(A) reveals that the 

oxidation peak current of AA increase proportionally with an increasing concentration 

of AA, whereas the peak current of DA remain constant (300 µM), indicating that the 

GC/rGO-Nf (16 h) modified electrode was only sensitive to AA. The detection limit for 

AA was calculated to be about 0.748 mM (S/N = 3), based on the calibration plot shown 

in Figure 4.16(B). When the DA concentration was increased, the peak current 

increased linearly in the presence of a fixed concentration of AA (5 mM) (Figure 

4.16(C)), and it showed a linear relationship between the peak current and the DA 

concentration when the AA concentration was fixed at a constant 5 mM (Figure 

4.16(D)). The detection limit for DA was 166 nM. Table 4.1 shows the comparison of 

analytical parameters of several modified electrodes for DA determination. 
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Figure 4.16: (A) SWV curves and their corresponding, (B) calibration plots obtained 

for GC/rGO-Nf (16 h) modified electrode in presence of 300 µM DA and different 

concentrations of AA (4 to 10 mM) in PBS (pH 6.5), (C) SWV curves and their 

corresponding and (D) calibration plots obtained for GC/rGO-Nf (16 h) modified 

electrode in the presence of 5 mM AA and different concentrations of DA (300 nM to 

0.7 µM). 

 

Table 4.1: Comparison of analytical parameters of several modified electrode based on 

graphene-polymer composite for DA determination. 

 

Electrode Detection 
Method 

Limit of 
Detection 

Interferent Reference 

GC/rGO/ 
PpPD 
 

Amperometry 0.36 µM AA, UA (Liu et al., 2013) 

GC/GNs/PEI/ 
AuNP 

DPV 0.2 µM AA (Ponnusamy et 

al., 2014) 

GC/G/  
Chitosan 

DPV 1 µM AA, UA (Han et al., 2010) 

GC/rGO-Nf SWV 166 nM AA This work 
PpPD= poly(p-phenylenediamine); GNs= Graphene nanosheets; PEI= Polyethyleneimine; G=graphene;  
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4.2.5.5 Interference Study 

The GC/rGO-Nf (16 h) modified electrode was further used to simultaneously detect 

the three analytes; DA, AA and UA. Figure 4.17 shows the LSV curves recorded at the 

GC/rGO-Nf (16 h) modified electrode in a mixture of DA, AA and UA with 

concentrations of 50 µM, 5 mM and 5 µM, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: LSV obtained for GC/rGO-Nf (16 h) modified electrode in presence of (i) 

5 mM AA, (ii) 50 µM DA, (iii) mixture of 5 mM AA and 50 µM DA, and (iv) mixture 

of 5 mM AA, 50 µM DA and 5 µM UA in 0.1 M PBS (pH 6.5). 

 

Based on these results, it can be observed that the simultaneous determinations of 

DA, AA and UA could be possible because the anodic current peaks of these analytes 

are well separated. This selectivity and well resolved oxidation peaks for DA, AA and 

UA are arises due the following reasons. The Nf in the hybrid film swelled in water, 

which resulted in the expansion of the interconnected sulfonate (-SO3
-
) ionic cluster 
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regions and the pinholes in the Nf (Bennett, 2005). At pH 6.5, the cationic DA 

molecules were preconcentrated at the swelled rGO-Nf film and the DA oxidation 

current increased at the GC/rGO-Nf modified electrode. In the case of electrochemical 

response of AA and UA, both the biomolecules interacted with rGO that was exposed 

upon the swelling of Nf in the rGO-Nf film and underwent electrochemical oxidation. 

The oxidation potentials of DA, AA and UA were influenced by the type of interaction 

with the rGO-Nf material, which brought about the shift in the oxidation potentials of 

these molecules, paving the way for the simultaneous detection of all three 

biomolecules. This clearly suggests that the fabricated GC/rGO-Nf (16 h) modified 

electrode shows excellent selectivity toward the DA in the presence of interference from 

AA and UA.  

 

4.2.5.6 Reproducibility, Repeatability, and Stability Studies 

The reproducibility of the GC/rGO-Nf (16 h) modified electrode for the detection of 

50 µM DA in the PBS (pH 6.5) solution was evaluated by recording the CV curves at a 

series of freshly prepared five electrodes (Figure 4.18(A)). The result revealed that this 

modified electrode showed good reproducibility with a relative standard deviation 

(RSD) of 4.19 %. The repeatability of GC/rGO-Nf (16 h) modified electrode was 

investigated by recording the CV curves for five repetitive measurements of 50 µM DA 

on a single sensor electrode (Figure 4.18(B)). DI water was used to rinse the electrode 

surface after each measurement. The results indicated that the modified electrode 

possessed an excellent repeatability with a RSD of 5.71 % for five successive 

measurements.  
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Figure 4.18: (A) CV curves of five different GC/rGO-Nf (16 h) modified electrodes, 

(B) CV curves of five successive measurement of single GC/rGO-Nf (16 h) modified 

electrode with 50 µM DA in 0.1 M PBS (pH 6.5) at a scan rate of 100 mV/s and (C) CV 

curves of GC/rGO-Nf (16 h) modified electrode up to 100 continuous cycles. 

 

The operational stability of the GC/rGO-Nf (16 h) modified electrode was also 

investigated by measuring the electrode response with 50 µM DA for 100 cycles and the 

result was plotted in Figure 4.18(C). After 100 cycles, it continued to show stable 

behavior where the response of this modified electrode to DA lost about 9.35 % of its 

original response indicating that the GC/rGO-Nf (16 h) modified electrode did not 

undergo surface fouling by the oxidized products. The results obtained from the 

reproducibility, repeatability, stability, and interference tests indicated that GC/rGO-Nf 

(16 h) modified electrode are suitable for testing in real samples. 
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4.2.5.7 Real Sample Analysis 

The GC/rGO-Nf (16 h) modified electrode was used for the determination of DA in 

urine samples in order to evaluate the practical applicability of the as prepared sensor. 

The urine samples did not show any DA signal. Hence, the determination of DA was 

performed by the standard addition method and the results were listed in Table 4.2. 

Three different urine samples were used to detect the DA concentration and the DA 

contents of the same samples were measured three times. The obtained results showed 

good agreement with the actual addition with the recoveries of the developed method 

varying from 96.58 to 103.0 %. The RSD were calculated to be 1.5 to 5.8 % for three 

measurements, indicating good electrode reproducibility. Based on these results, it is 

clear that the fabricated GC/rGO-Nf (16 h) modified electrode demonstrated a high 

ability to detect DA in real samples and the interferences in urine samples can be 

neglected. 

 

Table 4.2: Results of DA determination in urine samples (n = 3) using GC/rGO-Nf (16 

h) modified electrode. 

 

Sample DA added  
(µM) 

DA detected a 
(µM) 

RSD 
 (%) 

Recovery 
 (%) 

Urine 1 6 6.18 3.1 103.00 

Urine 2 20 19.48 5.8 97.40 

Urine 3 50 48.29 1.5 96.58 
a
 Average of three determinations. 

 

4.2.6 Electrochemical Determination of Nitric Oxide 

4.2.6.1 Electrocatalytic Oxidation of Nitric Oxide 

It is well known that sodium nitrite (NaNO2) serves as a source of NO by undergoing 

a disproportionation reaction (1) in an acidic solution (pH < 4) (Tripatara et al., 2007). 

Hence, NaNO2 was used as a precursor to produce NO in solution during the 

electrochemical study. The concentration of NO was determined by controlling the 

concentration of the injected NaNO2 (Pandikumar et al., 2011; Sivanesan et al., 2010). 
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      [                    
       ]                                  (1)  

 

CV curves were recorded by using a 1 mM NO solution in 0.1 M PBS (pH 2.5) at a 

scan rate of 50 mV/s, and are shown in Figure 4.19. The modified electrode did not 

show any voltammetric response in the blank PBS, as can be seen in Figure 4.19(A). 

Upon the addition of the 1 mM NO in the PBS, an anodic peak potential at +0.85 V 

which can be related to the direct oxidation of NO can only be observed on the 

GC/rGO-Nf modified electrode. Upon hydrothermal treatment the GO is reduced to 

form rGO in the rGO-Nf nanohybrid. It is known from the literature, the rGO have 

better conductivity and electrocatalytic activity than the GO. Hence the hydrothermally 

prepared rGO-Nf nanohybrid showed better electrocatalytic activity thereby increases 

the current response towards NO oxidation than the other electrode.  

 

 

 

 

 

 

 

Figure 4.19: (A) CV curves obtained for the bare GCE, GC/GO, GC/Nf, GC/GO-Nf 

and GC/rGO-Nf (16 h) modified electrodes in the presence of 0.1 M PBS (pH 2.5) 

containing 1 mM NO at a scan rate of 50 mV/s and (B) CVobtained for the GC/GO-Nf, 

GC/rGO-Nf (8 h), GC/rGO-Nf (16 h) and GC/rGO-Nf (24 h) modified electrodes in the 

presence of 0.1 M PBS (pH 2.5) containing 1 mM NO at a scan rate of 50 mV/s. 
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Moreover, the synergic effect results from the hybridization of nanosized rGO and 

Nf facilitates the electron-transfer processes between the electrolyte and the GCE, thus 

increases the current respond. It was found that the current response toward the 

NO oxidation was higher for the GC/rGO-Nf (16 h) modified electrode compared to the 

bare GCE and other modified electrodes (Figure 4.19(B)). This result indicates a high 

electrocatalytic activity of GC/rGO-Nf (16 h) modified electrode toward the oxidation 

of NO. Moreover, this result also revealed that the high degree of reduction and low 

defectiveness of the rGO-Nf (16 h) nanohybrid may lead to a high current response for 

NO oxidation. Hence, this GC/rGO-Nf (16 h) modified electrode was chosen as a sensor 

electrode for the sensitive and selective detection of NO. 

 

The schematic view of the process of the detection of NO is given in Figure 4.20 and 

the possible reaction involved is shown in Equation (2) (Li et al., 2006). 

                                                          (2) 

 

 

 

 

 

 

 

Figure 4.20: Schematic diagram for the electrocatalytic oxidation of NO at the 

GC/rGO-Nf modified electrode. 
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It is suggested that the rGO-Nf acted as an electrocatalyst for the oxidation of NO to 

form nitrosonium ion (NO
+
) during the electrocalytic process (Wang et al., 2011). The 

GC/rGO-Nf modified electrode exhibited high electrocatalytic activity towards NO 

oxidation, which enhances the electron transfer kinetics and improved the performance 

for detecting NO.  

 

4.2.6.2 Optimization Studies  

(a) Effect of Different Concentration of Nitric Oxide 

The effect of different concentrations of NO on the current response of the GC/rGO-

Nf (16 h) modified electrode was evaluated by CV, as shown in Figure 4.21. It is 

obvious that the anodic peak current increase with the increament in the NO 

concentration. The relationship between peak current and concentration can be 

described with the linear regression equations of                        (R
2
 = 

0.993), for the concentration of NO ranging between 1 to 10 mM. 

 

 

 

 

 

Figure 4.21: (A) CV curves obtained for the GC/rGO-Nf (16 h) modified electrode in 

the presence of 0.1 M PBS (pH 2.5) and different concentration of NO (1 to 10 mM) at 

a scan rate of 50 mV/s and (B) linear relationship between Ipa and the concentration of 

NO. 
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(b) Effect of Scan Rate 

The influence of the scan rate on the oxidation peak potential (Epa) and peak current 

for NO at the GC/rGO-Nf (16 h) modified electrode in 0.1 M PBS (pH 2.5) were 

studied by using CV, as shown in Figure 4.22. The current responses were found to 

increase with the increament in the scan rate from 10 to 500 mV/s (Figure 4.22(A)). The 

linear relation between the anodic peak currents and the square root of the scan rate was 

shown in Figure 4.22(B). As can be seen, the anodic peak current (Ipa) for the 1 mM 

NO varied linearly with the square root of the scan rate (ν
1/2

), with a linear regression 

equation of                         and a correlation coefficient R
2
 = 0.986. This 

result indicates that the electron transfer of the GC/rGO-Nf (16 h) modified electrode 

was mainly controlled by a diffusion-controlled electrochemical process (Wang et al., 

2011). The diffusion coefficient was calculated and gives a value of 8.51× 10
-7

 cm
2
 s

-1
. 

 

 

 

 

 

 

 

Figure 4.22: (A) CV curves obtained for the GC/rGO-Nf (16 h) modified electrode in 

the presence of 0.1 M PBS (pH 2.5) containing 1 mM NO at different scan rates and (B) 

plot of anodic peak current versus square root of the scan rate obtained for the GC/rGO-

Nf (16 h) modified electrode. 

 

(c) Effect of rGO-Nf Loading 

The influence of the rGO-Nf loading amount on the electrocatalytic oxidation 

performance was investigated and shown in Figure 4.23(A). Figure 4.23(B) displays the 
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relation between the current response after the injection of 1 mM NO and the loading 

amount of the rGO-Nf (16 h) nanohybrid. It can be seen that the current response 

increases when the volume of rGO-Nf (16 h) increases from 1 to 5 µL. The current 

response started to decrease after more than 5 µL was used to modify the GCE. This 

may have been due to the limited mass transport of the NO inside a thicker layer of 

rGO-Nf (16 h) formed on the surface of the GCE. Hence, 5 µL of rGO-Nf (16 h) was 

chosen to modify the GCE. 

 

 

 

 

 

 

 

 

Figure 4.23: (A) CV curves obtained for GC/rGO-Nf (16 h) modified electrode with 

different amount of sample loading and (B) plot of rGO-Nf (16 h) loading versus anodic 

peak current response obtained for the 1 mM NO in 0.1 M PBS (pH 2.5) at a scan rate 

of 50 mV/s. 

 

4.2.6.3 Square Wave Voltammetry (SWV) Response of Nitric Oxide 

The sensitivity and selectivity of the sensor under the optimized detection conditions 

were tested, and a series of SWV curves were recorded with different NO 

concentrations at the GC/rGO-Nf (16 h) modified electrode, as shown in Figure 

4.24(A). It could be observed that the anodic peak current increased linearly with an 

increase in the concentration of NO in the range of 0.05 to 0.45 mM, with a linear 

regression equation of                        (R
2
 = 0.998) (Figure 4.24(B)).  
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Figure 4.24: (A) SWV obtained for GC/rGO-Nf (16 h) modified electrode in 0.1 M 

PBS pH 2.5 containing different concentration of NO (50 µM to 10 mM) at a scan rate 

of 50 mV/s and (B) correlation between the concentrations of NO and peak current 

quantified from the SWV (Inset shows the enlarged view of plot obtained for the peak 

current versus concentration of NO at lower concentration level). 

 

The limit of detection and sensitivity were calculated at a signal-to-noise ratio (S/N) 

of 3 and gave values of 11 µM and 62 µA mM
-1

, respectively. The sensitivity was 

determined from slope of the calibration figure. The very low detection limit observed 

can be ascribed to the tightly binding and well distributed rGO-Nf (16 h) nanohybrid on 

the surface of the GCE, which provided a larger surface area with better contact on the 

electrode surface. This resulted in an increase in the electron transfer reaction rate at the 

electrode–solution interface. In addition, the high degree of reduction and low 

defectiveness of the rGO-Nf (16 h) nanohybrid helps to increase the electrocatalytic 

activity, thus improve the sensing performance. The comparison of analytical 

parameters of several modified electrode for NO determination were showed in Table 

4.3. 
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Table 4.3: Comparison of analytical parameters of several modified electrode for NO 

determination. 

 

Electrode Fabrication 
method 

Detection 
Method 

Linear range 
(M) 

Detection 
limit (M) 

Reference 

Nano-
TiO2/Nafion 
film/GC 

- DPV 3.6x10
-7

 – 

5.4x10
-5

 

5.4 x 10
-8 

(Yazhen et 

al., 2006)  

PEI/[(PSS/PAH)2
/PSS/AuNP]3 

Infiltration, 

layer by layer 

CV 0.05x10
-3

 – 

0.5x10
-3 

0.010 x 

10
-3 

(Yu et al., 

2003) 

Hemoglobin–
DNA/PG 

Deposition DPV 0.1x10
-3

 – 

1x10
-3

 

1.8 x 10
-5

 (Fan et al., 

2000)  

GC/rGO-Nf Hydrothermal SWV 0.05x10
-3

 – 

0.45x10
-3 

11 x 10
-6 This work 

PEI/[(PSS/PAH)2/PSS/AuNP]
3
=poly-(ethylenimine)/[(poly(sodium 4 styrenesulfonate)/,poly(allylamine 

hydrochloride))2/ poly(sodium 4-styrenesulfonate)/gold nanoparticles]
3
,  PG=pyrolytic graphite. 

 

 

4.2.6.4 Interference Study 

In order to verify the selectivity of the GC/rGO-Nf (16 h) modified electrode toward 

NO, the current response toward a ternary mixture containing 5 mM AA, 50 µM DA 

and 5 mM NO was investigated by using LSV and the result shows in Figure 2.45.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: LSV obtained for the GC/rGO-Nf (16 h) modified electrode in 0.1 M PBS 

(pH 2.5) with the mixture of 5 mM AA, 50 µM DA and 5 mM NO. 
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As shown in Figure 4.25, the anodic peaks of all three analytes were well resolved at 

the GC/rGO-Nf (16 h) modified electrode, with peak potentials at -0.02, +2.0 and +0.85 

V, respectively, for AA, DA and NO. These observations suggest that the GC/rGO-Nf 

(16 h) modified electrode had a good selectivity toward NO and the simultaneous 

determinations of AA, DA and NO could be possible in a real sample because the 

anodic peaks of these analytes were well separated. 

 

4.2.6.5 Reproducibility and Repeatability Studies 

In order to evaluate the fabrication reproducibility of our proposed NO sensor, four 

GC/rGO-Nf (16 h) modified electrodes were prepared by the same procedure and the 

modified electrodes were used to detect 1 mM NO by CV in 0.1 M PBS (pH 2.5).  

 

  

  

  

  

  

  

  

Figure 4.26: (A) CV curves of five different GC/rGO-Nf (16 h) modified electrodes 

and (B) CV curves of five successive measurements of single GC/rGO-Nf (16 h) 

modified electrode with 1 mM NO in 0.1 M PBS (pH 2.5) at a scan rate of 100 mV/s. 

 

As can be seen in Figure 4.26(A), there was no obvious peak current changes could 

be observed for all four modified electrode. A RSD of 0.71 % was obtained which 

demonstrated the good reproducibility of the proposed NO sensor. The repeatability of 

the GC/rGO-Nf (16 h) modified electrode was also investigated by recording the CV 
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curves for 1 mM NO in 0.1 M PBS (pH 2.5) on a single electrode for four repetitive 

measurements. DI water was used to rinse the electrode before each measurement.  The 

results obtained for four successive detections were presented in Figure 4.26(B) and the 

RSD value was calculated to be 2.24 %. The low RSD values obtained suggest that the 

GC/rGO-Nf (16 h) modified electrode exhibited excellent reproducibility and 

repeatability. 

 

4.3 Summary 

As a conclusion, stable rGO-Nf nanohybrid was formed in a nanosized rGO solution 

with the aid of Nf as a dispersant using a hydrothermal process. HRTEM study revealed 

that the nanosized rGO had an average size of ~18 nm after hydrothermal treatment. 

Further, well dispersed nanosized rGO were successfully synthesized in an Nf matrix 

under a hydrothermal process at 180 °C. The influence of the hydrothermal treatment 

time on the formation of the rGO-Nf nanohybrid was studied, and it was found that the 

rGO-Nf nanohybrid formed after 16 h of hydrothermal treatment had a more uniform 

distribution compared to rGO-Nf nanohybrids obtained after 8 h and 24 h of 

hydrothermal treatment, which tended to agglomerate. These optimized hydrothermal 

conditions led to the excellent electrochemical detection of DA with a lower detection 

limit of about 166 nM which is comparable with other existing modified electrodes. The 

results of this study demonstrate that this sample also exhibited an extraordinarily high 

sensitivity and selectivity to DA in the presence of interference from AA and UA.  

 

Besides that, we also demonstrated the benefits of using rGO-Nf as the active 

material for NO sensing. The developed NO sensor showed a lower detection limit of 

11 µM and a higher sensitivity of 62 µA mM
-1

. The lower detection limit for DA and 

NO at the GC/rGO-Nf (16 h) modified electrode seemed to result from the high degree 
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of reduction and low defectiveness of rGO-Nf (16 h), which helped to increase the 

electrocatalytic activity and thus improved the sensing performance. This modified 

electrode also allowed the simultaneous selective detections of NO, AA and DA. The 

results indicate that the proposed modified electrode has great potential to be applied as 

a sensor for DA and NO detection in real sample analysis. Moreover, the modified 

electrode also showed a good reproducibility and high stability. Hence, this GC/rGO-Nf 

modified electrode has great potential for biosensor applications. 
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CHAPTER 5  

REDUCED GRAPHENE OXIDE-NAFION@SILVER NANOHYBRID 

MODIFIED ELECTRODE FOR ELECTROCHEMICAL DETECTION OF 

HYDROGEN PEROXIDE 

  

5.1 Introduction 

Hydrogen peroxide (H2O2) is a compound that not only beneficial to the human 

body, it is also a well known by-product in a variety of enzymatic reactions, but it also 

plays a crucial role in diverse fields of practice, such as the cosmetic, food, diagnostic, 

pharmaceutical, clinical and environmental protection industries (Chen et al., 2012; 

Clifford et al., 1982; Pryor et al., 1991). In the human body, H2O2 which is produced by 

a subclass of white blood cells called neutrophils acts as the first line of defence against 

toxins, parasites, bacteria, viruses and yeast (Clifford et al., 1982). H2O2 also play a 

vital role in regulating of renal function and as an antibacterial agent in urine (Halliwell 

et al., 2000).  

 

Additionally, it signals the immune system to send more white blood cells to the site 

of an injury. High concentrations of H2O2 generated in blood plasma can adversely 

affect on human health, including irritating the eyes, skin, mouth, stomach and 

intestines and it can constitute a pathogenic factor in vascular organ damage attendant 

upon systemic hypertension (Lacy et al., 1998). In industrial applications, H2O2 is one 

of the components as tooth whitening paste, laundry detergent and other products for 

cleaning, hygiene, and healing purposes and it also used for the bleaching of textiles and 

paper. In the food industry, H2O2 is used as a chemical agent for sterilization due to its 

powerful oxidizing properties that allow it to react with bacteria, viruses, spores and 
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yeasts, making it an excellent disinfectant. Because of the importance of H2O2 in all of 

the above applications, the creation of an instrument that can detect concentrations of 

H2O2 is of practical significance, especially for industrial and medical purposes. 

 

The electrochemical techniques are advantageous in the detection of biologically 

relevant analytes because of their easy operation, high sensitivity, fast response and low 

cost fabrication (Chen et al., 2006). Basically there are two categories of 

electrochemical H2O2 sensors that are enzymatic and non-enzymatic sensors. Among 

these two developed sensor techniques, the enzyme-based electrochemical H2O2 sensors 

has been rapidly used by the researcher as it possesses high selectivity of the biological 

recognition elements and excellent sensitivity of electrochemical transduction process. 

However, the enzymatic sensors suffer from limitations such as high costs as it used 

expensive materials, restricted activity and storage time, elaborate immobilization 

procedure and insufficient reproducibility. By considering these drawbacks, the 

developments of non-enzymatic H2O2 electrochemical sensors without standing 

properties have received extensive attention in recent years. In comparison with the 

enzymatic sensor, the non-enzymatic technique has a series of advantages including low 

operational cost, high stability, good reproducibility, simple operational procedure as 

well as high selectivity and sensitivity. In order to improve the sensing performance of 

enzymeless H2O2 sensor, the modification of the sensor electrode using graphene-based 

nanocomposites has been developed. 

 

Graphene has offered great potential in electrochemical sensor applications ever 

since its discovery in 2004 due to its remarkable physicochemical properties. It is a 

single layer of carbon atoms organized in a closely packed honeycomb two dimensional 

lattice, has attracted great attention because of its unique nanostructure and 
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extraordinary properties, such as high surface area, excellent conductivity, high 

mechanical strength and ease of functionalization and mass production (Chabot et al., 

2014; Pandikumar et al., 2014). The high surface area of electrically conductive 

graphene sheets can give rise to high densities of attached analyte molecules. This in 

turn can facilitate high selectivity, sensitivity and device miniaturization in 

electrochemical sensors.  

 

Variety of graphene-based materials, such as graphene-metal composite (Cui et al., 

2014; Palanisamy et al., 2015), graphene-metal oxide composite (Li et al., 2014; 

Palanisamy et al., 2012) and graphene-polymer composite (Nguyen et al., 2014), have 

proven to be very effective as electrochemical sensors for the detection of H2O2. Jiang 

et al. have reported an H2O2 sensor made of a cuprous oxide/nitrogen-doped 

graphene/Nafion (Cu2O/N-graphene/Nafion) nanocomposite modified GCE (Jiang et 

al., 2014). This Cu2O/N-graphene/Nafion-modified electrode exhibited excellent 

sensing behavior toward H2O2, with a low detection limit (LoD) of 0.8 µM and high 

sensitivity of 26.67 μA mM
−1

. It is believed that the enhancement of electrocatalytic 

reduction of H2O2 was caused by the direct incorporation of Cu2O on rGO matrix which 

provides good electrical contact between Cu2O and rGO and affords an efficient 

pathway for charge transfer.  

 

Meanwhile, due to the excellent properties of silver  nanoparticles (AgNPs) such as 

good biocompatibility and conductivity, and a large surface area with sufficient binding 

points for biomolecule immobilization, Li and co-workers have constructed an non-

enzymatic biosensor for H2O2 based on AgNPs/rGO nanocomposites (Li et al., 2012). 

The amperometric response of the AgNPs/rGO/GC modified electrode exhibits an 

increment upon addition of H2O2 and a LoD of 3.6 µM (S/N=3), with a linear detection 
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range of 0.1 to 100 mM. However, most of the reported sensors for H2O2 exhibit some 

limitations including intrinsic simplicity of preparing the sensor electrode, low 

sensitivity and selectivity, poor repeatability and reproducibility. Therefore, we have 

sought to address those issues through fabricating a sensor electrode based on the novel 

nanohybrid material, which allows for the reliable, accurate, sensitive, selective, rapid 

and low cost determination of H2O2. 

 

5.2 Results and Discussion 

5.2.1 Optical Characterization of rGO-Nf@Ag Nanohybrids  

The successful preparation of rGO-Nf@Ag nanohybrids was confirmed by the 

ultraviolet–visible (UV-vis) absorption spectroscopic method. Figure 5.1 shows the UV-

vis absorption spectra of aqueous dispersion of the nanohybrids, scanned from the 

wavelength of 190 to 800 nm. It can be clearly seen that the GO exhibits a strong 

absorption peak at 228 nm and a shoulder at around 300 nm due to the π→π* transitions 

of aromatic C–C bonds and the n→π* transitions of C=O bonds (carbonyl groups), 

respectively (Yusoff et al., 2015) (Figure 5.1(A)).  

 

Upon hydrothermal treatment, the GO peak shifted from 228 to 261 nm and the 

shoulder at 300 nm disappeared as a result of effective restoration of the sp
2
 carbon 

networks (C-C bonds) within the sheets. The successful decoration of AgNPs on the 

rGO-Nf surface was confirmed by the appearance of a broad peak at around 448 nm due 

to the characteristic feature of surface plasmon resonance (SPR band), as can be seen in 

Figure 5.1(B) (Zainy et al., 2012). The increase in SPR band intensity with increasing 

AgNO3 concentration (from 4 to 8 mM) in the ternary nanohybrid indicates the 

existence of greater amounts of AgNPs in the nanohybrids. Moreover, the absorption 

edge of rGO-Nf@Ag nanohybrids also displays a slight red-shift to higher wavelengths 
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with increasing AgNPs loading, which is ascribed to the chemical interaction between 

AgNPs and rGO-Nf.  

 

 

 

 

 

Figure 5.1: UV-vis absorption spectra of (A) GO, rGO, Nf, rGO-Nf and (B) rGO-

Nf@Ag nanohybrids with three different Ag contents. 

  

5.2.2 Crystalline and Structural Characterization of rGO-Nf@Ag Nanohybrids  

The X-ray diffraction (XRD) analysis was conducted in order to verify the formation 

of the rGO-Nf@Ag nanohybrids. Figure 5.2 shows the XRD patterns of three different 

rGO-Nf@Ag nanohybrids. A broad rGO characteristic peak at 26° which corresponding 

to the (0 0 2) crystalline plane can be observed in the XRD pattern of all three 

nanohybrids, demonstrate the existence of rGO in the nanohybrids (Khan et al., 

2015).  It can be seen in the XRD pattern of rGO-Nf@Ag8 nanohybrid (Figure 5.2(iii)), 

that four peaks appeared at 2θ of 38.2°, 44.5°, 64.6° and 77.4°, which assigned to the (1 

1 1), (2 0 0), (2 2 0), and (3 1 1) planes of Ag (JCPDS No. 65–2871). This result reveals 

the presence of AgNPs in the nanohybrids. However, only a certain peaks of Ag could 

be seen in the XRD patterns of rGO-Nf@Ag4 and rGO-Nf@Ag6 nanohybrids as 

depicted in Figure 5.2(i) and 5.2(ii), respectively. This may due to the low content of 

AgNPs in the nanohybrids. The intensity of the diffraction peaks also varies with 

increasing concentration of the Ag precursors. 
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Figure 5.2: XRD patterns of (i) rGO-Nf@Ag4, (ii) rGO-Nf@Ag6 and (iii) rGO-

Nf@Ag8 nanohybrids. 

 

Further study on the characterization of sp
2
 and sp

3
 hybridized carbon atoms to 

determine ordered and disordered crystal structures of graphene were made by using 

Raman spectroscopy. Figure 5.3 shows the Raman spectra for the as-prepared materials 

scanned from 1100 to 1800 cm
-1

. The broad D (1350 cm
-1

) and G bands (1597 cm
-1

) 

observed in Raman spectra for GO, rGO, rGO-Nf and three different ternary 

nanohybrids were associated with the signature peaks of carbon (the building block for 

graphene). According to previously reported work, the D peak corresponds to the 

defects and disorder in activated Raman mode arising from the vibrations of sp
3
 carbon 

atoms, while the G peak arises from sp
2
 hybridized carbon atoms in a graphitic 2D 

hexagonal lattice (Ferrari et al., 2006). Meanwhile, the intensity ratio between D and G 

peaks provides information about the establishment of sp
2
 hybridization and 

deoxygenation (Nyoni et al., 2014). The as-obtained result shows that the ID/IG ratio for 
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rGO increased from 0.92 to 1.07 after the hydrothermal treatment, as indicated in Figure 

5.3(A). This increment is attributed to the defect cause by the removal of oxygen groups 

as well as the introduction of large amounts of sp
2
 domain with small average sizes after 

the hydrothermal treatment (Wong et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Raman spectra of (A) GO, rGO, rGO-Nf and (B) rGO-Nf@Ag nanohybrids 

with three different Ag contents in the range of 1100 to 1800 cm
-1

.   

 

Representative Raman spectra measured for three different rGO-Nf@Ag 

nanohybrids were plotted in Figure 5.3(B). As can be seen, the signals measured at all 

three nanohybrids maintained the fine features of a graphene peak, where as the 

intensity was increased, and D and G peak positions were slightly shifted to 1353 and 

1602 cm
-1

, respectively. The enhancement in intensity and shifting in peak position 

toward higher wavenumbers after coupling with AgNPs mainly arose from the 

electromagnetic mechanism effect, based on the charge transfer between graphene and 

AgNPs (Lee et al., 2010), thus efficiently attesting to the existence of AgNPs in the 
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nanohybrids. It is worth noting that the ID/IG ratio of the ternary nanohybrids was 

significantly enhanced by deposition of AgNPs. This is because the insertion of AgNPs 

within the rGO-Nf layers leads to an increase in the defects on the nanohybrid materials. 

One can also notice significant increment in the ID/IG ratio, from 0.98 to 1.03, as the 

AgNO3 concentration increased from 4 to 8 mM, which was associated with the higher 

defectiveness induced by the increment of AgNPs content in the nanohybrids. 

 

XPS was performed to obtain evidence that the AgNPs were formed on rGO-Nf 

surfaces. The C1s core-level spectra of GO in Figure 5.4(A) shows a broadened peak 

that can be fitted by four Gaussian components at 283.3, 284.8, 286.1 and 287.3 eV and 

assigned to the C-C (aromatic rings), C-O (hydroxyl and epoxyl), C=O (carbonyl) and 

O=C-O (carboxyl) functional groups, respectively (Ganguly et al., 2011). It is notable 

that the intensity of all oxide functional groups had reduced after the hydrothermal 

treatment indicating the successful deoxygenation of GO to form rGO (Figure 5.4(B)). 

As to the C1s core-level spectra of rGO-Nf and three different nanohybrids (Figure 

5.4(C)), the binding energy at 284.9 eV can be assigned to the C-C group from rGO, 

while the appearance of binding energy at 291.2 eV can be ascribed to the C–F (CF2, 

FCO, CF3, OCFSO2) group from Nf (Aragaw et al., 2013). Figure 5.4(D) shows the 

Ag3d core-level spectra of all three nanohybrids, which exhibit well defined double 

peak formations located at binding energies of 368.3 and 374.4 eV, corresponding to the 

Ag3d5/2 and Ag3d3/2, respectively. The difference of about 6.1 eV between these two 

binding energies verifies the formation of metallic AgNPs (Lim et al., 2015). Overall 

results obtained from the XPS core-level spectra suggest the successful coupling 

between AgNPs, rGO and Nf to form ternary nanohybrid materials.  
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Figure 5.4: XPS spectra of GO, rGO, rGO-Nf and rGO-Nf@Ag nanohybrids with three 

different Ag contents and their corresponding (A-C) C1s and (D) Ag3d core-level 

spectra.  

 

5.2.3 Morphological Characterization of rGO-Nf@Ag Nanohybrids  

Figure 5.5(A) presents the representative FESEM image of free standing GO 

nanosheets. The GO flakes possess an average lateral dimension of more than 3 μm that 

appears to be built up from a few larger flakes of graphene that stack together to form 
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thicker GO flakes with wavy wrinkles on their surfaces. This corrugation of the GO 

sheets was attributed to the disruption of the planar sp
2
 carbon sheets by the introduction 

of sp
3
 hybridized carbon upon oxidation (Wang et al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: FESEM images of (A) GO, (B) rGO, (C) rGO-Nf, (D) rGO-Nf@Ag4 

nanohybrid, (E) rGO-Nf@Ag6 nanohybrid and (F) rGO-Nf@Ag8 nanohybrid. 
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Most of the wrinkle on the surface disappeared after the hydrothermal reduction 

process, as shown in Figure 5.5(B), due to the removal of oxygen-containing functional 

groups in GO. The rGO-Nf nanohybrid exhibits a rough wrinkle and crumpled surface 

due to the incorporation of the Nf layer into the nanohybrid, thus confirming the 

formation of rGO-Nf nanohybrid (Figure5.5(C)). The morphologies of rGO-Nf@Ag 

nanohybrids with different AgNPs loading were shown in Figure 5.5(D-F). The well 

formed AgNPs covering the surface of rGO-Nf with high dispersion can be clearly 

observed in all three nanohybrids. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: (A) Mapping of rGO-Nf@Ag8 nanohybrid at the selected area and (B) its 

EDX spectrum captured for the selected region. 
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The composite energy dispersive X-ray spectroscopic (EDX) characterization and 

elemental mapping were carried out to verify the composition of the rGO-Nf@Ag8 

nanohybrid and the results were shown in Figure 5.6. The presence of AgNPs, Nf and 

rGO in the nanohybrid was confirmed by element mapping, as shown in Figure 5.6(A). 

Four main elements can be observed in which carbon (C) and oxygen (O) elements 

corresponding to rGO while fluorine (F) and Ag elements are correlates to Nf and 

AgNPs, respectively. The element mapping images also shows homogeneous Ag 

distributions with major concentration located on the rGO-Nf sheets. EDX analysis 

was conducted and the result further confirmed that the nanohybrid comprised of C, 

O, F and Ag elements, as shown in Figure 5.6(B). The silicon (Si) element is 

originate from the Si substrate that been used. 

 

The surface morphology of the rGO-Nf@Ag nanohybrids were analyzed by using 

HRTEM. Figure 5.7 shows the HRTEM images of the three different rGO-Nf@Ag 

nanohybrids. It can be seen that the AgNPs are almost uniformly decorated on the 

wrinkled surfaces of rGO-Nf sheets with spherical shapes (Figure 5.7(A-C)). The 

HRTEM results reveal that the AgNPs morphology remains the same despite the 

increase in the AgNO3 loading, although the coverage of AgNPs on the rGO-Nf sheets 

increases significantly with the increment of the AgNO3 concentrations from 4 to 8 mM. 

The histogram of the AgNPs size collected from all three nanohybrids was illustrated in 

Figure 5.7(D-F).  The diameters of AgNPs were ranging from 2 to 12 nm with average 

diameter of 3, 4 and 5 nm for rGO-Nf@Ag4, rGO-Nf@Ag6 and rGO-Nf@Ag8, 

respectively. The particle size in rGO-Nf@Ag4 was slightly smaller than the size in 

rGO-Nf@Ag6 and rGO-Nf@Ag8.  
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Figure 5.7: (A-C) HRTEM images of rGO-Nf@Ag4 nanohybrid, rGO-Nf@Ag6 

nanohybrid and rGO-Nf@Ag8 nanohybrids with their corresponding histogram of 

AgNPs sizes (D-F) (Inset shows the individual AgNPs on rGO-Nf sheet). 
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This is because even though the concentration of AgNO3 increased, the concentration 

of rGO-Nf remained the same. Thus, the limited nucleation sites on the rGO-Nf sheets 

led to the formation of a larger particle size as compared with the ones with lower 

AgNO3 concentrations. The morphology corresponding to the individual AgNPs on the 

rGO-Nf sheets is illustrated in inset of Figure 5.7(C). The clear lattice fringes can be 

easily observed with the d spacing value of 0.28 nm, which can be attributed to the (1 2 

2) planes of the face-centered cubic (FCC) phase of AgNPs (according to JCPDS: File 

No. 4-783) (Roy et al., 2014). The FESEM and HRTEM results further reveal that the 

AgNPs are firmly anchored on the surface of rGO-Nf@Ag nanohybrids.   

 

5.2.4 Electrochemical Characterization of GC/rGO-Nf@Ag Modified Electrode 

All of the modified electrodes were characterized and compared using 

electrochemical impedance spectroscopy (EIS), which was carried out in a solution 

containing 5 mM K3[Fe(CN)6]
 
and 0.1 M KCl within the frequency range from 0.01 Hz 

to 100 KHz. The Nyquist plot for modified electrodes is shown in Figure 5.8. As seen in 

Figure 5.8(A), a semicircle followed by a 45° straight line can be observed in all 

Nyquist plots for bare GC, Nf, GO and rGO modified GCE. The semicircular portion 

obtained at the lower frequency region corresponds to a charge transfer-limited process, 

while the linear portion in the higher frequency region can be ascribed to the diffusion-

limited electron transfer process (Devadas et al., 2014). The diameter of this semicircle 

provides a measure of the charge-transfer resistance (Rct) of the as-prepared electrode 

where higher Rct values insulate the conductive support and the interfacial electron 

transfer process between the electrode and electrolyte interfaces. 
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Figure 5.8: (A&B) Nyquist plots obtained for bare GCE, GC/GO, GC/Nf, and three 

different GC/rGO-Nf@Ag modified electrodes obtained in presence of 0.1 M KCl with 

5 mM K3[Fe(CN)6] (Inset shows the equivalent circuit that fits the impedance spectrum 

of GC/rGO-Nf@Ag6) and (C&D) bode plots obtained for above said different modified 

electrodes. 

 

The Nyquist plots for all of the nanohybrids exhibit only a straight oblique line at 

lower frequencies, with an almost diminished semicircle (Figure 5.8(B)), thus 

demonstrating the successful modification of the electrode with the prepared 

nanohybrids. This indicates that these modified electrodes possess a rapid electron-

transfer rate and higher electrocatalytic activity due to the reduced Rct value compared 

with bare GCE. It has been reported that the intersection at the real axis in Nyquist plots 

corresponds to the ohmic resistance of the electrolyte and the internal resistance of the 
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electrode (Rs) (Norazriena et al., 2016). The Rs values rGO-Nf@Ag4, rGO-Nf@Ag6 

and rGO-Nf@Ag8 are 204.4, 99.2 and 235.98 Ω, respectively. It was observed that the 

rGO-Nf@Ag6 nanohybrids exhibit efficient charge transfer across the electrode-

electrolyte interface due to the good electrical communication and conduction path 

between the electrode and electrolyte with lower Rs values compared with other 

modified electrodes. The impedance data obtained from rGO-Nf@Ag6 nanohybrid was 

fitted using an equivalent circuit model with NOVA 1.11 software (Metrohm) (inserted 

in Figure 5.8(B)).  

 

The equivalent circuit was composed of several parameters including Rs, which is in 

series with the complex component consisting of the constant phase element (CPE) that 

was in parallel with Rct and the Warburg constant (W). The Warburg impedance (Zw) 

resulted from diffusion of the redox probe, whereas the interfacial properties of the 

electrode, which were highly sensitive to surface modification, were represented by Rct 

and CPE (Olowu et al., 2010). The frequency dependence of the phase angle of the 

modified electrode and bare GCE is depicted in Figure 5.8(C) and 5.8(D). A phase 

angle of greater than or equal to 90° is expected for a pure capacitive behavior. 

However, it can be clearly seen that none of these modified electrodes behave like an 

ideal capacitor as the phase angle is less than 90°. At low frequencies, the shifting in 

the characteristic frequency peak toward lower frequencies could be observed, 

following the order of: bare GC < GC/Nf < GC/GO < GC/rGO < GC/rGO-Nf < 

GC/rGO-Nf@Ag8 < GC/rGO-Nf@Ag4 < GC/rGO-Nf@Ag6.  

 

The τn value for GC/rGO-Nf, GC/rGO-Nf@Ag4, GC/rGO-Nf@Ag6 and GC/rGO-

Nf@Ag8 was calculated to be 62, 100.5, 110.5 and 89.3 ms, respectively. Obviously, 

the combination of AgNPs with rGO-Nf leads to a longer lifetime and faster diffusion 
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rate. The overall results interpreted from EIS data can attributed to the ternary 

nanohybrid materials, especially the rGO-Nf@Ag6 nanohybrid, having good electrical 

conductivity that was beneficial for the electron transfer process during electrocatalytic 

reactions, thus leading to the highest electrocatalytic performance with fastest diffusion 

rate. 

 

The comparative CV profile demonstrating the [Fe(CN)6]
3-/4-

 redox process by bare 

GCE and various modified electrodes were shown in Figure 5.9. Apparently, there was 

no recognizable redox peak on the CV profile obtained from GC/Nf, probably due to the 

insulating and blocking of the [Fe(CN)6]
3-/4-

 ions to reach the electrode surface caused 

by the electrostatic repulsion between negatively charged Nf and [Fe(CN)6]
3- /4- 

(inserted 

in Figure 5.9). After modifying the GCE with GO, several redox peaks were observed 

with lower faradic current of the [Fe(CN)6]
3-/4-

 ions, which could be attributed to the 

non-conductive properties of GO that reduced the interfacial electron transfer rate, thus 

giving rise to the low current response. 

 

 The CV plots of bare GCE and three different GC/rGO-Nf@Ag modified electrodes 

shows well defined redox peaks, corresponding to the reversible redox reaction of 

[Fe(CN)6]
3-/4-

 ions. Peak-to-peak potential separation (ΔEp) values of 92.8, 84.3 and 

100.9 mV were observed for GC/rGO-Nf@Ag4, GC/rGO-Nf@Ag6 and GC/rGO-

Nf@Ag8, respectively. The incorporation between AgNPs and rGO-Nf provides more 

electroactive surfaces that give rise to the higher electron transfer rate at the 

electrode/electrolyte interface, thus improving the electrochemical behavior of the 

modified electrode. Note that the higher redox current with smaller ΔEp between 

cathodic and anodic peaks of GC/rGO-Nf@Ag6 demonstrates the fast response 
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resulting from the excellent electrical conductivity of the newly prepared ternary 

nanohybrid material. 

 

 

  

 

  

  

 

Figure 5.9: CV curves for control modified electrode as well as three different 

nanohybrids modified electrodes obtained in the presence of 0.1 M KCl with 5 mM 

K3[Fe(CN)6] (Inset shows the enlargement of CV curves obtained from GC/Nf and 

GC/GO). 

 

5.2.5 Electrochemical Determination of Hydrogen Peroxide 

5.2.5.1 Electrocatalytic Reduction of Hydrogen Peroxide 

The applicability of the rGO-Nf@Ag nanohybrid modified GCE was explored for 

the electrocatalytic reduction and detection of H2O2. Figure 5.10 shows the 

representative CV curves of 10 mM H2O2 concentrations in 0.2 M PBS (pH 7.2) using 

different modified electrodes at a scan rate of 50 mV/s. In the absence of H2O2, no 

redox peak was observed for the bare GCE (Figure 5.10(A)). Upon the addition of 1 

mM H2O2 into the PBS, the reduction peak of H2O2 still could not be observed by using 

the bare GCE and several modified electrodes, including GC/Nf, GC/GO, and GC/rGO.  
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In contrast, the existence of a cathodic peak due to the electrocatalytic reduction of 

H2O2 was observed at a potential of around -0.47 V obtained from the GC/rGO-Nf 

modified electrode. As can be seen from Figure 5.10(B), no peak could be observed 

on GC/rGO-Nf@Ag6 without the presence of H2O2. The reduction peak of H2O2 

appeared on GC/rGO-Nf, GC/rGO-Nf@Ag4, GC/rGO-Nf@Ag6 and GC/rGO-Nf@Ag8 

with a peak current of 114.96, 142.26, 190.04 and 139.47 µA, respectively. It was found 

that GC/rGO-Nf@Ag6 displays the highest catalytic current response and demonstrates 

excellent electrocatalytic activity toward the reduction of H2O2 in comparison with other 

modified electrodes. The high surface area provided by AgNPs and excellent 

conductivity of rGO-Nf greatly contributed to enhancing the electrocatalytic activity for 

reducing H2O2.  

 

 

 

 

 

 

Figure 5.10: (A&B) CV curves obtained for bare GCE, GC/GO, GC/Nf, GC/rGO, 

GC/rGO-Nf and three different GC/rGO-Nf@Ag modified electrodes in the presence of 

0.2 M PBS (pH 7.2) containing 10 mM H2O2 at a scan rate of 50 mV/s. 

 

Although the enhancement of sensor performance was related to the concentration of 

electrocatalytic active sites on the electrode surface provided by AgNPs, excessive 

AgNPs content forms the aggregation deteriorates the quality of the sensor electrode. 

The degradation of electrocatalytic ability to reduce H2O2 was the consequences of the 
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increased diffusion layer thickness, which hinders the electron transfer between 

electrode/electrolyte surfaces, as occurred with the GC/rGO-Nf@Ag8 modified 

electrode. A possible mechanism of H2O2 reduction at the modified electrode is 

proposed below (Figure 5.11):   

 

                       (1) 

  

 

 

 

 

 

 

 

Figure 5.11: Schematic representation for the fabrication of rGO-Nf@Ag nanohybrid 

modified GCE and the mechanism of electrocatalytic reduction of H2O2. 

 

In the case of neutral solution (PBS pH 7.2), the cathodic reduction occurs for H2O2 

upon an applied constant potential of about -0.65 V, producing a final product of H2O. 

The electron transfer was mainly controlled by the diffusion process. The lower Rs 

value and thinner diffusion layer thickness facilitates the electron transfer rate. The 

increased amount of AgNPs with smaller size deposited on rGO-Nf layers provides 

larger active surface areas, thereby enhancing the electrocatalytic activity and boost the 
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analytical performance. The GC/rGO-Nf@Ag6 modified electrode was chosen as the 

sensor electrode for further investigation of H2O2 sensing due to the outstanding 

electrochemical behavior and good electrocatalytic reduction performance demonstrated 

by this modified electrode towards H2O2 detection.  

 

5.2.5.2 Optimization Studies  

(a) Effect of Different Concentration of Hydrogen Peroxide 

The effect of H2O2 concentrations on the cathodic peak current due to the 

electroctalytic reduction of H2O2 was investigated by CV method. A series of CV 

curves for the GC/rGO-Nf@Ag6 modified electrode in 0.2 M PBS (pH 7.2) with the 

successive injection of H2O2 were recorded and the current response against the time 

was plotted as shown in Figure 5.12(A). The characteristic shape of CV curve in this 

potential region indicates that the cathodic peak at a potential around -0.65 V was 

responsible for the electrocatalytic reduction of H2O2.  

 

 

 

 

 

Figure 5.12: (A) CV curves obtained for the GC/rGO-Nf@Ag6 modified electrode in 

the presence of 0.2 M PBS (pH 7.2) and different concentrations of H2O2 (1 to 30 mM) 

at a scan rate of 50 mV/s and (B) the corresponding plot of cathodic peak currents 

versus different H2O2 concentrations. 
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The efficient electrocatalytic performance of the modified electrode was proven by 

the linear relationship between cathodic peak current and H2O2 concentrations, as can 

be seen in Figure 5.12(B). A linear relationship was observed within the range from 1 to 

30 mM and can be described by the linear regression equation of                 

               , with a correlation coefficient, R
2
 = 0.986.  

 

(b) Effect of Scan Rate 

In order to elucidate the variation in the scan rate on the voltammetric behaviors of 

H2O2 at the modified electrode, a control experiment was performed by changing the 

scan rate from 10 to 300 mV/s. As can be seen in Figure 5.13(A), the cathodic peak 

current observed at -0.65 V was enhanced markedly as the scan rates increased, whereas 

the cathodic peak potentials shifted toward more positive potential with increasing scan 

rate. The shift of the cathodic peak potential clearly suggests that the reduction of H2O2 

was an irreversible electrochemical reaction and a kinetic limitation in the reaction 

between the active sites of GC/rGO-Nf@Ag6 and analyte, H2O2.  

 

 

 

 

 

 

Figure 5.13: (A) CV plots obtained for GC/rGO-Nf@Ag6 modified electrode in 0.2 M 

PBS (pH 7.2) with presence of 10 mM H2O2 at a scan rates of 10–300 mV/s and (B) the 

corresponding plot of cathodic peak currents versus square root of scan rate.  
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As indicated from the resulting calibration plots of cathodic peak currents versus 

square root of scan rate (Figure 5.13(B)), a linear relationship was observed for the 

electrocatalytic reduction of H2O2, with a correlation coefficient of 0.9928. On the basis 

of the obtained results, it can be stated that the reduction of H2O2 at the GC/rGO-

Nf@Ag6-modified electrode was diffusion controlled process. The D value was 

calculated to be about 1.584 x 10
-9

 cm
2
s

-1
. 

 

(c) Effect of rGO-Nf@Ag6 Loading  

In order to evaluate the effect of rGO-Nf@Ag6 loading on the electrocatalytic 

activity of the modified electrode, the CV curves were measured using the GC/rGO-

Nf@Ag6 modified electrode with 5 mM H2O2 in 0.2 M PBS as shown in Figure 

5.14(A).  

 

 

 

 

 

Figure 5.14: (A) CV curves obtained for GC/rGO-Nf@Ag6 modified electrode with 

different amount of sample loading and (B) plot of rGO-Nf@Ag6 loading versus 

cathodic peak current response obtained for the 5 mM H2O2 in 0.2 M PBS (pH 7.2) at a 

scan rate of 50 mV/s. 
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As can be seen in Figure 5.14(B), the reduction peak current increased when the 

amount of rGO-Nf@Ag6 coating on the electrode surface increased from 1 to 5 μL. 

This might due to the increased in the amount of effective surface area for H2O2 

reduction, thus allowed rapid electron transfers which then increase the current 

response. However, the reduction peak current started to decrease when the volume of 

rGO-Nf@Ag6 solution was increased from 6 to 9 μL. The thick rGO-Nf@Ag6 films 

formed on the surface of electrode have increased the diffusion distance of H2O2 hence 

hindering the target analytes from reaching the electrode surface where the reaction 

occurs. As a result, the current response will decrease. This result demonstrates that the 

amount of rGO-Nf@Ag6 loaded on the electrode surface affecting the electrocatalytic 

performance toward the reduction of H2O2. 

 

5.2.5.3 Amperometric Response of Hydrogen Peroxide 

The GC/rGO-Nf@Ag6 modified electrode was chosen as a sensor electrode for 

further investigation of H2O2 sensing due to the outstanding electrochemical behavior 

and good electrocatalytic reduction performance demonstrated by this modified 

electrode towards H2O2 detection. The reduction current with respect to time was 

recorded for successive additions of H2O2 in 0.2 M PBS (pH 7.2) using the fabricated 

electrode sensor at the applied potential of -0.6 V (Figure 5.15). Figure 5.15(A) shows 

the typical amperometric curve for the GC/rGO-Nf@Ag6 modified electrode with the 

successive addition of H2O2 concentration.  

 

The enhancement in current response was obvious for the successive injection of 

different concentrations of H2O2 and a linear relationship was observed between the 

current response and H2O2 concentration. Based on the results plotted in Figure 5.15(B), 

three different linear curves could be observed. The first one corresponds to the 
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concentration range from 1 to 10 µM with a linear regression equation of       

                             . The second and third linear curves correspond to 

the concentration ranges from 15–80 µM and 90–300 µM with linear regression 

equations of                                      and 

                                   , respectively. The limit of detection 

(LoD) and limit of quantification (LoQ) were calculated to be 5 x 10
-7

 M and 1 µM, 

respectively, with the S/N of 3 and correlation coefficients of 0.993. The sensitivity 

calculated from the slope of the calibration curve, was found to be 0.4508 µA µM
-1

.  

 

 

 

 

 

Figure 5.15: (A) Amperometric (I-t) curve of the GC/rGO-Nf@Ag6 modified electrode 

on successive additions of H2O2 stirred into 0.2 M PBS (pH 7.2) at an applied potential 

of -0.6 V and (B) the corresponding calibration plot of current against concentration of 

H2O2. 

 

The obtained results confirmed that the existence of AgNPs in rGO-Nf film plays an 

important role in boosting the sensing performance toward H2O2 detection by providing 

more active surface area for the reaction to occur. Moreover, the strong synergetic effect 

between each element in these ternary nanohybrids further facilitates the electron 

transfer kinetics during the electrocatalytic reduction of H2O2, thereby enhancing the 

sensitivity of the sensor electrode. The rough surfaces and layered structure of the rGO-

Nf@Ag nanohybrids could provide an advantage in facilitating the diffusion of analytes 
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into the rGO-Nf@Ag sheets during the electrocatalytic activity reaction, thereby 

increasing the effectiveness of the electrode surface. 

 

Table 5.1 compiles the analytical parameters for electrochemical H2O2 sensing using 

various materials for modifying the GCE that have been reported in literature. It can be 

seen that the LoD for our sensor electrode is competitive with other modified electrodes, 

such that one can conclude that the GC/rGO-Nf@Ag6 modified electrode can be a good 

H2O2 amperometric sensor. 

 

Table 5.1: Comparison of the analytical performance of various electrodes in 

electrochemical detection of H2O2. 

 
Electrode Analytical 

method 
Analysis 

times 
(sec) 

Limit of 
detection 

(µM)  

Sensitivity 

 

Interferences Reference 

 

GC/Co-
MOF 

 

Ampero-

metry 

 

2 

 

3.76  

 

83.10 μA 

mM
−1

 cm
2
 

Saccharin 

sodium, 

Glycerol, 

Ethanol, 

Glucose, Lactic 

acid 

(Yang et al., 

2015) 

GC/PDDA
-rGO/ 
AgNPs 

Ampero-

metry 

5 35  9.17 m µA 

µM
-1

 

UA, AA (Liu et al., 

2013) 

FTO|α-
Fe2O3NR|F
ePO4 

Ampero-

metry 

15 1.3  181 µA 

mM
-1

 cm
-2

 

UA, AA, DA (Lin et al., 

2015) 

GC/Ag/C Ampero-

metry 

- 1.3  - UA, AA, 

Glucose 

(Jiang et al., 

2014) 

GC/Ag@ 
Pt–
graphene 

Ampero-

metry 

- 0.9  - AA, DA, 

Glucose 

(Liu et al., 

2016) 

GC/Grap
hene–
AgNPLs 

Ampero-

metry 

2 3  183.5 µA 

mM
-1

 cm
-2

 

- (Zhong et al., 

2013) 

GC/AgNP
–
MWCNT–
rGO 

Ampero-

metry 

3 0.9  - AA, Ethanol, 

Glucose, Glycin 

(Lorestani et 

al., 2015) 

AgNPs-
rGO-
2/ITO 

Ampero-

metry 

2 5  - - (Golsheikh et 

al., 2013) 

GC/CNT-
PDDA 
@Ag 

Ampero-

metry 

2 1.6 - - (Shi et al., 

2011) 

GC/GO-
Ag 

Ampero-

metry 

- 28.3  0.1218 µA 

mM
-1

 

DA, UA, AA, 

Glucose 

(Noor et al., 

2015) 
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Table 5.1, continued 

 
Electrode Analytical 

method 
Analysis 

times 
(sec) 

Limit of 
detection 

(µM)  

Sensitivity 

 

Interferences Reference 

AgPs-
SWCNT 

Ampero-

metry 

2 2.76 10.92 μA 

mM
−1

 mm
−

2
 

AA (Bui et al., 

2010) 

GC/AgNP
/rGO 

Ampero-

metry 

- 3.6 

 

- - (Li et al., 2012) 

GC/AgNP
–TiO2 NW 

Ampero-

metry 

2 1.7 

 

- UA, AA, DA, 

Glucose 

(Qin et al., 

2012) 

GC/ERG
O-Nafion/ 
AuNPs  

Ampero-

metry 

1 2.0 574.8 μA 

mM
-1

 cm
-2

 

AA, Methanol, 

Ethanol, 

Glucose 

(Lv et al., 2016) 

GC/rGO-
Nf@Ag6 

Ampero-

metry 

1 

 

0.535 0.4508 µA 

µM
-1 

DA, UA, AA, 

Glucose, Urea, 

NaCl 

This work 

Co-MOF=cobalt-metal organic frameworks; PDDA=poly(diallydimethylammonium chloride); FTO|α-

Fe2O3NR|FePO4=Flourine-doped tin oxide coated glass/iron oxide nanorod arrays/ iron phosphate; 

C=amorphous carbon; Pt=platinum; AgNPLs=silver nanoplates; MWCNT=multi-walled carbon 

nanotube; ITO=indium-tin-oxide; CNT-PDDA=carbon nanotubes functionalized by 

poly(diallyldimethylammonium chloride); SWCNT=single-walled carbon nanotube film; 

TiO2 NW=titanium dioxide nanowires. 

  

  

5.2.5.4 Interference Study 

Since there are few species such as NaCl, urea, glucose, DA, UA, and AA were 

naturally coexist with H2O2 in the extracellular fluid of the central nervous system/body 

fluids, thus, they tend to intervene in detecting the presence of H2O2 and determining 

the concentration of H2O2 (Zhu et al., 2016). Moreover, they are also highly active at 

enzyme-free electrode systems; therefore, it is crucial to study the influence of 

mentioned species as potential interfering compounds on the H2O2 determination. In 

order to demonstrate the capability of the GC/rGO-Nf@Ag6 modified electrode to 

distinguish the interfering species from the analyte in the non-enzymatic 

electrochemical H2O2 sensors, the amperometric responses were carried out at an 

applied potential of -0.65 V in a continuously stirred 0.2 M PBS (pH 7.2) with gradually 

injected H2O2, NaCl, urea, glucose, DA, UA and AA.  
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Figure 5.16 depicts the typical amperometric response curves obtained for the 

GC/rGO-Nf@Ag6 modified electrode in the presence of 1 mM H2O2 and a few 

conventional substances that potentially interfere with the detection of H2O2.  

 

 

 

 

 

 

 

Figure 5.16: Amperometric (I-t) curve responses obtained at GC/rGO-Nf@Ag6 

modified electrode for the successive addition of (a) 1 mM H2O2 and each 5 mM of (b) 

NaCl, (c) urea, (d) glucose, (e) DA, (f) UA and (g) AA in 0.2 M PBS (pH 7.2) at a 

regular time interval of 60 sec at an applied potential of -0.6 V versus SCE. 

 

It is observed that the current signal of H2O2 was not significantly affected by the 

presence of potential interfering species. The results obtained from selectivity 

experiment suggested that the GC/rGO-Nf@Ag6 modified electrode can detect H2O2 

even with a five-fold excess concentration of NaCl, urea, glucose, DA, UA, and AA 

compared with the concentration of H2O2. Consequently, the results prove that the 

GC/rGO-Nf@Ag6 modified electrode can be used as an ideal sensor electrode to 

achieve the selective detection of H2O2 despite the presence of high concentrations of 

interfering analytes. Thus, the sensitivity and selectivity of the sensor electrode for 

determining H2O2 increased significantly. Recently, Lv et al. (2016) developed an 

amperometric sensor using an electrochemically rGO-Nf/AuNPs modified GCE for the 
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successful detection of H2O2. However, the present sensor stands out for its facile 

hydrothermal synthesis, easy fabrication, usage of low-cost metal, LoD and high 

sensitivity towards H2O2 in the presence of interferents. 

 

5.2.5.5 Reproducibility, Repeatability, and Stability Studies 

The reproducibility of the GC/rGO-Nf@Ag6 modified electrode was analyzed by 

recording the CV response to the reduction of 1 mM H2O2 carried out at 5 different 

GC/rGO-Nf@Ag6 modified electrodes that had been prepared separately under the 

same conditions (Figure 5.17(A)). No obvious cathodic current decay was observed. 

The as-obtained results imply at high reproducibility for the sensor electrode, where the 

RSD was calculated to be 0.6 %. The repeatability of the GC/rGO-Nf@Ag6 modified 

electrode was investigated by repetitive measurements of its response to 1 mM H2O2 

carried out by using a single modified electrode (Figure 5.17(B)). It was found that the 

H2O2 reduction peak currents maintained about 94.8 % of their initial peak current 

values after five successive CV measurements, with a RSD of about 2.0 %, for the 

GC/rGO-Nf@Ag6 modified electrode.  

 

In order to evaluate the stability of the sensor electrode, the GC/rGO-Nf@Ag6 

modified electrode was stored in air at ambient temperature for a period of time, and the 

CV curves were recorded every 24 hours (Figure 5.17(C)). This confirmed that the 

sensor electrode has good stability, as it was able to retain 96.2 % of its initial current 

response after a total storage period of 5 days. Overall, the sensor electrode displayed 

high repeatability, reproducibility, and stability for determining H2O2, which are 

essential characteristics features for a sensor in practical application. 
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Figure 5.17: (A) CV curves of five different GC/rGO-Nf@Ag6 modified electrodes, 

(B) CV curves of five successive measurements of single GC/rGO-Nf@Ag6 modified 

electrode with 20 mM H2O2 in 0.2 M PBS (pH 7.2) at a scan rate of 50 mV/s and (C) 

CV curves of GC/rGO-Nf@Ag6 modified electrode after placed in air for five days. 

  

5.2.5.6 Real Sample Analysis 

In food industries, H2O2 has been used as the antimicrobial agent for E. coli 

O157:H7 and Salmonella spp. in the processed fruit juice and also used as a chemical 

agent for sterilization (Ansari et al., 2003; Schurman, 2001). Thus, determination of 

H2O2 residues in processed fruit juice is crucial as the remaining of H2O2 in high 

concentration may cause several human health problems such as skin irritants. In order 

to demonstrate the feasibility of the GC/rGO-Nf@Ag6 nanohybrid modified electrode 

in the analysis of real sample, the quantification of H2O2 in apple juice was carried out 
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using the GC/rGO-Nf@Ag6 modified electrode. For the validation studies, the apple 

juice sample was divided into three fractions, and each fractions was diluted by DI 

water in a ratio of 1:9 (Apple juice:DI water).   

 

Because none of the apple juice samples contained any H2O2, the standard addition 

method was used to measure the H2O2 concentration for real sample analysis. Recovery 

of the measurement was calculated by comparing the results obtained before and after 

the addition of standard H2O2 solution. The results reveal that the sensor electrode 

achieved high recoveries of H2O2 between 98.8 % and 100 %, with an RSD of 1.09 to 

3.97 %, proving that the GC/rGO-Nf@Ag6 modified electrode has strong potential to 

facilitate applications in biomedical analyse. A summary of the real sample analysis 

results was presented in Table 5.2. 

 

Table 5.2: Detection and recovery of H2O2 in apple juice by using the novel GC/rGO-

Nf@Ag6 modified electrode. 

 

Samples H2O2 Added 
(µM) 

H2O2 Found 
(µM) a 

Recovery 
(%) 

RSD (%) 

 
Apple juice 

1 0.99 99.0 3.97 

5 4.94 98.8 1.96 

10 10.00 100.0 1.09 
a
 Average of three determinations. 

 

5.3 Summary 

This study demonstrates homogenous incorporation of AgNPs on the rGO-Nf surface 

via a simple hydrothermal method. A study on the influence of Ag content on the 

electrocatalytic reduction of H2O2 was performed, and the results show that rGO-

Nf@Ag6 nanohybrid exhibits excellent electrocatalytic reduction toward H2O2, 

demonstrating the highest cathodic current response than that of other control 

electrodes. A sensitive and selective electrochemical sensor based on modification of 

GCE using rGO-Nf@Ag6 nanohybrid has been developed to determine H2O2. 
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Impressively, sensor electrode presents competitive detection limits for H2O2 compared 

with those reported in the literature with LoD and LoQ of 5 x 10
-7

 M and 1 µM, 

respectively.  

 

Further investigations on the selectivity of the sensor electrode indicated that the 

GC/rGO-Nf@Ag6 modified electrode could serve as a highly selective electrochemical 

sensor for H2O2 in the presence of NaCl, urea, glucose, DA, UA and AA. Additionally, 

the GC/rGO-Nf@Ag6 modified electrode was found to be highly stable and consistent 

in detecting H2O2, with good repeatability and reproducibility. Furthermore, the results 

from aforementioned studies show good accuracy and high precision for detecting H2O2 

concentration in apple juice. Taking advantage of individual components present in this 

ternary nanohybrid (i.e. the good electron conducting ability of rGO, the additional 

active surface sites provided by AgNPs and the anti-fouling and anti-interferential 

ability of Nf), the sensing performance for quantification of H2O2 has been successfully 

enriched, thus, making this a highly attractive candidate for practical applications. 
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CHAPTER 6 

REDUCED GRAPHENE OXIDE-NAFION@GOLD NANOHYBRID 

MODIFIED ELECTRODE FOR ELECTROCHEMICAL DETECTION OF 

NITRIC OXIDE  

  

6.1 Introduction 

One of the highly labile free radical and hydrophobic molecules that is produced 

naturally within the human body is the nitric oxide (NO). In 1987, a research led by 

Ignarro had discovered that NO is responsible for the vascular smooth muscle relaxation 

elicited by endothelium-derived relaxing factor (EDRF) (Ignarro et al., 1987). Later, 

more research investigations were successfully proved the involvement of NO in a 

range of defense stress responses and its ability to alleviate the deleterious effects of 

regulating reactive oxygen species (ROS) by regulating ROS production and 

degradation (Palmieri et al., 2008).  

 

Moreover, NO was also used for communication between cells and is involved in the 

regulation of blood pressure, the immune response, platelet aggregation and clotting, as 

well as neurotransmission (Bredt et al., 1992). The concentration of NO in exhaled 

breath was also used as a biomarker for several diseases such as asthma (Smith et al., 

2005), ulcerative colitis (UC) and Crohn’s disease (CD) (Avdagić et al., 2013). The 

determination of NO level in human body was significant due to the abnormality of its 

production and bioavailability may led to several diseases such as obesity, diabetes 

(both type I and II), atherosclerosis, hypertension and heart failure (Özden et al., 2003; 

Shiekh et al., 2011; Yu et al., 2001). Therefore, the fabrication of an efficient sensor 
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probe which have a compact design and highly sensitive and selective toward NO is 

important as it can make a great contribution to disease diagnosis. 

 

One of the effective ways to determine NO is electrochemical detection which has 

been a primary method for monitoring neurotransmitters in vivo due to its simplicity, 

long term high stability, rapid response, low cost and higher level of sensitivity and 

selectivity. Since NO is an electroactive molecule which could be detected 

electrochemically, therefore electrochemical technique is suitable to detect NO level. 

Several materials has been used for modifying the electrode surface for the 

determination of NO such as metal (silver (Gan et al., 2004), gold (Kannan et al., 

2010)), metal oxide (molybdenum oxides (Kosminsky et al., 2001), titanium dioxide 

(Wang et al., 2006)), polymer (porphyrins (Lei et al., 2004), poly-o-phenylenediamine 

(Wynne et al., 2014)) and carbon based material (Kan et al., 2009; Xu et al., 2011).  

 

Among these materials, graphene incorporated with metal/metal oxide nanoparticles 

has attracted much attention because these nanocomposites exhibit unique properties 

which cannot be found in conventional materials. Hu et al. has successfully synthesized 

reduced graphene oxide-ceria (rGO–CeO2) composites nanostructures which offered a 

facile and reliable platform to in situ real-time detect bio-signal NO molecules released 

by living cells (Hu et al., 2015). The improvement in the sensing performance was 

believed due to the synergic effect from high catalytic activity of the specifically shaped 

metal oxide nanocrystal and good conductivity and high surface area of rGO.  

 

Meanwhile, Shahid and co-workers had used reduced graphene oxide-cobalt oxide 

nanocube@platinum (rGO–Co3O4@Pt) nanocomposite as active material for the 

detection of in situ generated NO (Shahid et al., 2015). The high catalytic effect of the 
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rGO–Co3O4@Pt nanocomposite was attributed to the synergistic effect of Co3O4 

nanocubes and Pt nanoparticles present in the rGO matrix, which then contributed to 

better sensing performance.  

 

Inspired by the large surface area and unique conductivity of rGO, and the excellent 

electrocatalytic activity of gold nanoparticles (AuNPs), a nanohybrid of rGO-Nf and 

AuNPs was synthesized for the study of highly sensitive and selective electrochemical 

detection of NO. The use of ion exchange membranes that is Nf, could enhance the 

surface area scaffold for the deposition of AuNPs and provide the ion conductive 

pathway for the electrochemical cell as well as act as a stabilizer.  

 

In this study, one step hydrothermal method was employed to produce rGO-Nf films 

incorporated with AuNPs. GO and gold(III) chloride trihydrate (HAuCl4.3H2O) were 

used as the precursor for rGO and AuNPs, respectively. The rGO-Nf@Au nanohybrid 

has been used as the electroactive material for modifying the GCE. This modified 

electrode was used for the first time in electrochemical detection of NO. Three different 

concentrations of HAuCl.H2O were used in order to study the effect of AuNPs content 

on the electrochemical sensing performance. To the best of our knowledge, there has 

been no report on the use of rGO-Nf@Au nanohybrid modified GCE as an 

electrochemical sensor for NO. 

 

6.2 Results and Discussion 

6.2.1 Optical Characterization of rGO-Nf@Au Nanohybrids  

The UV-vis absorption spectra of rGO-Nf@Au nanohybrids were presented in 

Figure 6.1, while the UV-vis spectra for GO, rGO and rGO-Nf were depicted in the 

inset of Figure 6.1.  
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Figure 6.1: UV-vis spectra of three different rGO-Nf@Au nanohybrids (Inset shows 

the UV-vis spectra for GO, rGO and rGO-Nf nanohybrid). 

 

UV-vis spectra for GO shows a sharp absorption peak at 230 nm corresponds to the 

π→π
*
 transitions of aromatic C-C bonds, and a bump at around 300 nm is due to the 

n→π
*
 transition of the C=O bonds (carbonyl groups). Upon the hydrothermal treatment, 

the absorbance peak of GO was shifted to around 260 nm and the bump disappeared, 

indicating the successfully removal of oxygen containing functional groups on the 

surface of GO and restoration of the π-conjugation network after the reduction of GO to 

form rGO (Johra et al., 2014). According to the UV-vis spectrum of rGO-Nf 

nanohybrid, Nf present its characteristic absorption peak at 190 nm while the 

characteristic absorption peaks of rGO remained in this nanohybrid. This indicates that 

Nf has grafted on the surface of rGO. The UV-vis spectra of AuNPs decorated rGO-Nf 

sheets gives a characteristic peak at 556 nm which indicates the formation of AuNPs 

due to its characteristic surface plasmon resonance band and a peak at 267 and 190 nm 
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arises due to the presence of rGO and Nf, respectively. The results demonstrate the 

hybridization of AuNPs with the rGO-Nf sheets was succeeding. 

 

6.2.2 Crystalline and Structural Characterization of rGO-Nf@Au Nanohybrids  

The crystalline nature of rGO-Nf@Au nanohybrids with different Au content were 

analyzed by using XRD and the results were shown in Figure 6.2. In general, the XRD 

pattern for GO shows a characteristic diffraction peak at around 10.5° with an interlayer 

d-spacing of 8.36 Å (Figure 6.2(A)) (Mhamane et al., 2011). Upon the hydrothermal 

treatment, this peak disappeared and a new broad peak emerges at round 25° which 

corresponds to the (0 0 2) plane of hexagonal reduced graphene oxide structure and 

thus, confirmed the formation of rGO (Khandelwal et al., 2015). The peak at 42.8° 

which appeared in XRD pattern for rGO corresponded to the turbostratic band of 

disordered carbon materials (Xu et al., 2010).  

 

 

 

 

 

 

 

 

Figure 6.2: XRD patterns of (A) GO and rGO. (B) XRD pattern of (i) rGO-Nf@Au4, 

(ii) rGO-Nf@Au8 and (iii) rGO-Nf@Au12 nanohybrids. 
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The decrease in d spacing after hydrothermal reaction due to the removal of the 

oxide functional groups in GO and also suggested the recovery of graphitic crystal 

structure after the reduction of GO via hydrothermal treatment. The XRD patterns for 

three different rGO-Nf@Au nanohybrids were demonstrated in Figure 6.2(B). The 

diffraction peaks observed at 38.29°, 44.48°, 64.68°,and 77.68° were assigned to the (1 

1 1), (2 0 0), (2 2 0) and (3 1 1) planes of Au (Shen et al., 2009). All the obtained peaks 

were well matched and consistent with the standard database (JCPDS card: 65-2870), 

thus confirmed the existence of AuNPs on the surface of rGO-Nf sheets.  

 

As can be seen, no rGO peak was observed in all XRD patterns of nanohybrids. This 

was due to the extreme low diffraction intensity of rGO compared to AuNPs suggesting 

that the surface of the rGO-Nf was covered with AuNPs. All the peaks appeared to be 

sharp with high intensities and no impurity peak could be observed, indicating the 

higher crystallinity and purity of the rGO-Nf@Au nanohybrids. The only notable 

difference between the XRD patterns of all three rGO-Nf@Au nanohybrids was the 

intensity of their peaks that increased with the increase in AuNPs content from 4 to 12 

mM. This result indicated that the existence of AuNPs became dominant in the 

nanohybrid because more AuNPs were formed on the surface of rGO-Nf sheets when 

high concentration of AuNPs precursor was used. 

 

A Raman scattering study was performed to confirm the presence of rGO in the 

nanohybrids. The comparative Raman spectra of rGO and three different rGO-Nf@Au 

nanohybrids were depicted in Figure 6.3. The Raman spectra obtained from all the 

nanohybrids exhibited two prominent peaks which can be referred to the characteristic 

peaks of carbon-based material. As indicated in inset of Figure 6.3, Raman spectra for 
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GO showed two peak at 1355 and 1602 cm
−1

 which corresponds to the D and G band, 

respectively.  

 

As is known, the D peak arises from defects in the hexagonal sp
3
 carbon network or 

finite particle size effects, whereas the G peak originates from sp² hybridized carbon 

atoms in a graphitic 2D hexagonal lattice (Yusoff et al., 2014). After the hydrothermal 

treatment, these peaks were slightly shifted to 1360 and 1600 cm
-1

 (Figure 6.3(i)). The 

red-shifted trend observed in G band relate to the transformation of sp
3
 amorphous GO 

to sp
2
 nanocrystalline graphene, thus attested the success of reduction process to form 

rGO (Abdolhosseinzadeh et al., 2015). Moreover, the increased ratio of ID/IG intensity 

was interpreted to indicate the defects and disorder in the hexagonal graphitic layers. 

The ID/IG ratio for GO is 0.92 which markedly increased to 1.09 for rGO upon 

hydrothermal process. The increment attributed to the formation of defects occurs in 

addition to the removal of oxide functional groups attached to the GO surface, hence 

give further evidence to the successful reduction of GO (How et al., 2014). It is notable 

that there was an increment in the Raman spectra intensity upon the incorporation 

between AuNPs and rGO-Nf sheets (Figure 6.3(ii)-(iv)). These enhancements were 

occurred due to the surface-enhanced Raman scattering (SERS) properties owned by 

AuNPs (Wang et al., 2014).  

 

Meanwhile, the ID/IG ratios for all nanohybrids were slightly decreased following the 

order of: rGO-Nf@Au8 (1.03) > rGO-Nf@Au4 (1.02) > rGO-Nf@Au12 (1.01). This 

may due to the presence of AuNPs that has occupied most of the vacancies in rGO-Nf 

sheets, thus recovered its defects. Besides that, the G band for all rGO-Nf@Au 

nanohybrids were further shifted to higher frequency, demonstrated the strong 

electronic interaction between rGO-Nf sheets and AuNPs. Therefore, it was confirmed 
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that the successful formation of AuNPs in the rGO-Nf sheets using hydrothermal 

method. 

 

 

 

 

 

 

 

 

Figure 6.3: Raman spectra of (i) rGO, (ii) rGO-Nf@Au4, (iii) rGO-Nf@Au8 and (iv) 

rGO-Nf@Au12 nanohybrids (Inset shows the Raman spectrum for GO). 

 

The presence of functional groups on the surfaces of rGO-Nf@Au nanohybrids were 

evaluated by XPS and the results were shown in Figure 6.4. Figure 6.4(A) shows the 

XPS peak deconvolution of C1s core levels of the rGO-Nf@Au nanohybrids. It was 

noted that two characteristic peaks of C-C and C-F were observed at binding energy 

of 284.5 and 291.1 eV, respectively. It could be attributed to the presence of rGO and 

Nf in the nanohybrids material. One can also noticed that the intensity of C-C peak 

for rGO-Nf@Au8 nanohybrid was the highest compared to other nanohybrids.  

 

The results demonstrated that the rGO in this nanohybrid has higher degree of 

reduction due to effective removal of oxygen functional groups after hydrothermal 

process. Figure 6.4(B) presents the XPS spectra of Au4f core level in the rGO-Nf@Au 

nanohybrids. The deconvoluted peaks located at the binding energies of 83.8 and 
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87.5 eV were assigned to the Au4f7/2 and Au4f5/2, respectively (Pocklanova et al., 2016). 

Therefore, the XPS results further confirmed the formation of AuNPs on the rGO-Nf 

surface. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: XPS spectra of the (A) C1s and (B) Au4f core level region for (i) rGO-

Nf@Au4, (ii) rGO-Nf@Au8 and (iii) rGO-Nf@Au12 nanohybrids. 

 

6.2.3 Morphological Characterization of rGO-Nf@Au Nanohybrids  

The morphology of the rGO-Nf@Au nanohybrids was characterized using FESEM 

analysis. Figure 6.5 shows the FESEM images of the rGO-Nf@Au nanohybrids 

obtained from various AuNPs content and their corresponding histogram represented 

the particle size distribution. The images indicated that the AuNPs were spherical in 

shape and it was well wrapped by rGO-Nf matrix but have different size and content for 

each other. The rough surface of sheets observed in all images reveals the existence of 

Nf in all nanohybrids.  
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Figure 6.5: FESEM images and particle size distribution histograms of (A, D) rGO-

Nf@Au4 nanohybrid, (B,E) rGO-Nf@Au8 nanohybrid and (C,F) rGO-Nf@Au12 

nanohybrid. 
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The FESEM results obtained from rGO-Nf@Au4 nanohybrid disclose a number of 

spherical AuNPs with diameter ranging from 100 to 175 nm were tightly embedded in 

the rGO-Nf sheets as depicted in Figure 6.5(A). Furthermore, upon increasing the 

AuNPs content to 8 mM, more AuNPs were intercalated into the rGO-Nf sheets with 

diameter of 50 to 125 nm (Figure 6.5(B)). The 75-200 nm diameters of AuNPs with a 

small portion of particles tend to aggregate could be observed in the FESEM image of 

rGO-Nf@Au12 nanohybrid as demonstrated in Figure 6.5(C). As we increase the 

AuNPs content in the nanohybrids, more AuNPs would grow on a limited nucleation 

sites on the rGO-Nf sheets, resulting in the aggregation of AuNPs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: (A) Elemental mapping images and (B) EDX of rGO-Nf@Au8 nanohybrid. 
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The elemental mapping and energy-dispersive X-ray spectrometer (EDX) analysis 

were employed to determine the composition of rGO-Nf@Au8 nanohybrid and 

demonstrated in Figure 6.6. The elemental mappings of carbon (C), oxygen (O), 

fluorine (F) and Au as shown in Figure 6.6(A) reveal that these elements were 

uniformly distributed in the rGO-Nf@Au8 nanohybrid. Furthermore, the EDX analysis 

of individual rGO-Nf@Au8 nanohybrid elucidated that there appears a strong signal of 

C, O, F and Au elements on the rGO-Nf@Au8 nanohybrid (Figure 6.6(B)). The F 

element was traced from the Nf while C and O elements were originated from the rGO. 

These results confirmed the attachment of AuNPs to rGO-Nf sheets. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: HRTEM images of (A) rGO-Nf@Au4 nanohybrid, (B) rGO-Nf@Au8 

nanohybrid, (C) rGO-Nf@Au12 nanohybrid and (D) lattice resolved TEM image of 

individual AuNPs on the rGO-Nf sheet. 
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The HRTEM was conducted to further analyze the successful loading of AuNPs on 

rGO-Nf sheets and the results were depicted in Figure 6.7. Figure 6.7(A-C) clearly 

showed that AuNPs are spherical in shape within nanometer range that embedded on the 

surface of rGO-Nf sheets. Further, the deposition of distributed Au spherical becomes 

higher as we increase the Au precursor concentration from 4 to 12 mM. These observations 

are in good agreement with FESEM results. Meanwhile, in the HRTEM image of the rGO-

Nf@Au8 nanohybrid (Figure 6.7(D)), lattice fringes with d spacing values of 0.236 nm 

was observed, which corresponds to the (1 1 1) plane of the AuNPs. The obtained 

results demonstrated the formation of AuNPs on rGO-Nf during hydrothermal process. 

 

6.2.4 Electrochemical Characterization of GC/rGO-Nf@Au Modified Electrode 

The CV and electrochemical impedance spectroscopy (EIS) were used as the 

analytical techniques for the characterization of each modified electrode surface in order 

to clarify the differences among the electrochemical behaviour of each of it. Figure 

6.8(A) demonstrated the comparative CV behavior of the bare and modified GCE using 

three different rGO-Nf@Au nanohybrids, rGO-Nf, GO and Nf, in solution containing 5 

mM K3[Fe(CN)6]
 
and 0.1 M KCl. A well-defined reversible redox peaks were observed 

in all the CV curves of modified electrodes and bare GCE. The GC/rGO-Nf@Au8 

modified electrode displayed the highest current response which suggested the 

occurrence of rapid electron transfer at the electrode-solution interface due to the good 

electrical communication between electrode and electrolyte.  

 

The higher redox current response associated with the low peak-to-peak potential 

separation (78.5 mV) obtained for GC/rGO-Nf@Au8 modified electrode indicated that 

the electrochemical reversibility of [Fe(CN)6]
3-/4-

 ions was greatly improved, as a result 

of  effective surface area provided by rGO-Nf@Au8 nanohybrid. As depicted in inset of 
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Figure 6.8(A), a redox couple peak with low current signal could be observed at 

GC/GO, however, no redox peak can be seen in the CV profile for GC/Nf. The 

electrostatic repulsion between negatively charged Nf and [Fe(CN)6]
3-/4- 

hindered the 

diffusion of [Fe(CN)6]
3-/4-

 ions toward the electrode surface (Ye et al., 2015). In order to 

gain more insight into electrode behavior, the Nyquist plot for all modified electrodes 

were recorded in 5 mM K3[Fe(CN)6] and 0.1 M KCl and were depicted in Figure 

6.8(B).  

 

A straight oblique line could be observed in the Nyquist plot for GC/rGO-Nf@Au 

which implies the decrease in the charge transfer resistance of the electrode surface and 

increase in the charge transfer rate upon employing GC/rGO-Nf@Au modified 

electrode. However, one semicircle in the high frequency range with an inclined line in 

the low frequency range were occurred in the Nyquist plot obtained at bare GCE and 

GC/GO modified electrode as shown in inset of Figure 6.8(B). The diameter of the 

semicircle represents the charge transfer resistance (Rct), whereas the inclined straight 

line can be considered to be the impedance attributed to the diffusion of ions through 

the graphene sheets (Yusoff et al., 2015). The analysis showed that the charge transfer 

resistance (Rct) at the electrode/electrolyte interface decreased in following the order of: 

GC/GO (1.01 MΩ) > bare GCE (749 kΩ) > GC/rGO-Nf (578 kΩ) > GC/rGO-Nf@Au4 

(262 kΩ) > GC/rGO-Nf@Au12 (77 kΩ) > GC/rGO-Nf@Au8 (10.5 kΩ).  

 

As can be seen, the Rct value was significantly decreased upon decorating rGO-Nf 

sheets with AuNPs. Among the three nanohybrids, electrode modifying by rGO-

Nf@Au8 nanohybrids possess the lowest Rct value. The Bode plots of the phase angle 

versus frequency for different modified electrode were presented in Figure 6.8(C). A 
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sharp peak at a higher frequency could be observed in Bode plot obtained at bare GCE 

and GC/GO which indicates the high Rct value (inserted in Figure 6.8(C)).  

 

 

 

 

 

 

 

 

 

 

Figure 6.8: (A) CV, (B) Nyquist, and (C) Bode plots obtained for several modified 

electrodes in a solution containing 0.1 M KCl and 5 mM K3[Fe(CN)6] (the scan rate of 

CV is 50 mV/s and the frequency range of EIS is from 0.01 Hz to 100 kHz) and (D) 

equivalent circuit for the impedance spectroscopy obtained using GC/rGO-Nf@Au8 

modified electrode. 

 

Upon coating the electrode with rGO-Nf and three different rGO-Nf@Au 

nanohybrids, the existence of a broad peak can be observed with shifted in position 

toward lower frequency. The characteristic frequency peak shifted to lower frequencies 

in the following order: GC/rGO-Nf > GC/rGO-Nf@Au4 > GC/rGO-Nf@Au12 > 

GC/rGO-Nf@Au8. This result attests the ability of rGO-Nf@Au8 as the potential 
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material for electrocatalysis, photoelectrochemical cells and solar cells applications. The 

excellent behavior shown by GC/rGO-Nf@Au8 modified electrode emphasizes that this 

sensor electrode could be a promising candidate for the development of new 

electrochemical sensing devices. Figure 6.8(D) shows the respective electrochemical 

equivalent circuit generated for GC/rGO-Nf@Au8 modified electrode that consists of 

electrolyte resistance (Rs), charge transfer resistance (Rp), Warburg impedance (Zw) and 

constant phase element (CPE). The CPE depicts the non-ideal capacitance of the 

surface layer, while Zw accounts for the diffusion of ions from the bulk electrolyte to the 

electrode interface (Yusoff et al., 2016). 

 

6.2.5 Electrochemical Determination of Nitric Oxide 

6.2.5.1 Electrocatalytic Oxidation of Nitric Oxide 

The electrocatalytic NO oxidation at the rGO-Nf@Au nanohybrid modified electrode 

was investigated by recording the CV response. In order to produce NO, sodium nitrite 

(NaNO2) was used as the precursor where it undergoes disproportionation reaction in 

acidic solution (pH ≤4) to generate free NO (Equation (2) and (3)) (Kannan et al., 

2010). The concentration of NO was determined by controlling the concentration of the 

NaNO2 injected into the bulk electrolyte solution at pH 2.5. 

                              (2) 

             
                         (3) 

Figure 6.9 compares the electrochemical behavior of all modified electrodes 

investigated in this work towards the oxidation of 1 mM NO in 0.1 M PBS at pH 2.5 

with the scan rate of 50 mV/s. Upon the addition of 1 mM NO in the solution, an anodic 

peak occurred in CV curves for bare GCE and other modified electrodes due to NO 

oxidation, but with different amount of current response and peak position were 
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observed. This anodic peak was assigned to the oxidation of NO at the surface of sensor 

electrode. As can be seen in Figure 6.7(B), the GC/rGO-Nf@Au8 modified electrode 

shows higher anodic peak current for the oxidation of NO compared to bare GCE and 

other modified electrode, suggesting that the incorporation of 8 mM AuNPs with rGO-

Nf has significantly improved the performance of the electrode toward NO oxidation.  

 

The current response for each sensor electrode increased follows the order of: 

GC/GO < GC/Nf < Bare GCE < GC/rGO < GC/rGO-Nf < GC/rGO-Nf@Au4 < 

GC/rGO-Nf@Au12 < GC/rGO-Nf@Au8. The high current response was the result of 

enhancement in the electron transfer kinetics at the GC/rGO-Nf@Au8 due to the 

excellent electrical conductivity of rGO and AuNPs as well as large amount of active 

surface area on the modified electrode. There was no apparent oxidation peak in the CV 

curve of rGO-Nf@Au8 could be observed in the absence of NO in the solution as 

shown in Figure 6.9(B). 

 

 

 

 

 

Figure 6.9: (A and B) CV curves recorded at different modified electrodes for 1 mM of 

NO in 0.1 M PBS (pH 2.5) at a scan rate of 50 mV/s.   
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6.2.5.2 Optimization Studies  

(a) Effect of Different Concentration of Nitric Oxide 

Among the various investigated modified electrode, GC/rGO-Nf@Au8 modified 

electrode showed better electrocatalytic activity towards NO oxidation and hence it was 

chosen for further optimization studies to achieve better sensing performance. A series 

of CV curves were recorded at the GC/rGO-Nf@Au8 modified electrode for different 

concentrations of NO in 0.1 M of PBS (pH 2.5) and plotted in Figure 6.10. When 1 mM 

of NO was added in the PBS, an anodic peak appeared at potential of +0.8 V which 

assigned to the oxidation peak of NO (Figure 6.10(A)).  

 

Upon increasing the NO concentration from 1 to 10 mM, the current for this anodic 

peak was increased linearly with the concentration of NO as can be seen in calibration 

plot shown in Figure 6.10(B). The linear regression equation for NO was given by 

                        with a correlation coefficient, R
2
 of 0.9923. Therefore, 

GC/rGO-Nf@Au8 modified electrode demonstrates an effective electrocatalytic 

oxidation of NO. 

 

 

 

 

 

Figure 6.10: (A) CV responses of GC/rGO-Nf@Au8 modified electrode with change in 

NO concentrations from 1 to 10 mM at a scan rate of 50 mV/s and (B) the 

corresponding plot of anodic peak current versus concentration of NO. 
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(b) Effect of Scan Rate 

The CV responses of the GC/rGO-Nf@Au8 modified electrode at different scan rates 

were examined to study the kinetic behavior of the rGO-Nf@Au nanohybrids material 

in the oxidation of NO (Figure 6.11). The CV curves of 1 mM NO in 0.1 M PBS (pH 

2.5) at GC/rGO-Nf@Au8 were recorded at different scan rates in the range of 10 to 

500 mV/s as displayed in Figure 6.11(A). Obviously, there was an increment in the 

anodic peak current with its position shifted toward higher potential as the scan rate 

increased from 10 to 500 mV/s. The shifting in peak position demonstrates that the 

electrochemical reaction was irreversible (Raoof et al., 2016).  

 

 

 

 

 

 

Figure 6.11: (A) CV curves of GC/rGO-Nf@Au8 modified electrode collected at 

different scan rates ranging from 10 to 500 mV/s in 0.1 M PBS (pH 2.5) containing 1 

mM NO and (B) the corresponding plot of anodic peak current versus square root of 

scan rate.  

 

Based on the calibration curve displayed in Figure 6.11(B), it shows a linear 

relationship between peak currents and square root of the scan rates with linearity 

coefficients of 0.9902. The respective linear equations obtained from the plot can be 

expressed as                            This result implies that the electrode 

reaction of NO on the GC/rGO-Nf@Au8 modified electrode was mainly controlled by 

Univ
ers

ity
 of

 M
ala

ya



138 

0.4 0.6 0.8 1.0

0

20

40

60

80

I 
(

A
)

E (V vs. SCE)

 1 L

 2 L

 4 L

 6 L

 8 L

 10 L

A

2 4 6 8 10

76

78

80

82

I p
a
 (

A

)

rGO-Nf@Au8 loading (L)

B

diffusion process. The diffusion coefficient value was calculated to be about 1.08 x 10
-4

 

cm
2
s

-1
. 

 

(c) Effect of rGO-Nf@Au8 Loading  

The influence of sample loading on the CV peak current of 1 mM NO was 

investigated in the volume range from 1 to 10 µL, as plotted in Figure 6.12. As shown 

in Figure 6.12(A), the current response was increased when we increase the rGO-

Nf@Au8 loading content. The maximum value of current response appears at the 

sample volume of 6 µL, however the current started to decrease with the further 

increase of sample volume loaded on the surface of electrode (Figure 6.12(B)). This 

result demonstrates that the film thickness was affecting high current efficiency. 

Considering the obtained results, therefore, the rGO-Nf@Au8 loading content of 6 µL 

was selected as optimal condition for the detection throughout the study. 

 

 

 

 

 

 

 

Figure 6.12: (A) CV curves obtained for GC/rGO-Nf@Au8 modified electrode with 

different amount of sample loading and (B) plot of rGO-Nf@Au8 loading versus anodic 

peak current response obtained for the 1 mM NO in 0.1 M PBS (pH 2.5) at a scan rate 

of 50 mV/s. 
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6.2.5.3 Amperometric Response of Nitric Oxide 

The electrochemical NO sensors were fabricated and tested accordingly in order to 

examine the application of the rGO-Nf@Au nanohybrids. For an explicit comparison, 

the amperometric responses were recorded at different modified electrode in 0.1 M PBS 

(pH 2.5) with successive addition of 50 µM NO and plotted in Figure 6.13. After the 

addition of 50 µM NO, an increase in the current response with increasing NO 

concentration could be detected for all modified electrode as can be seen in Figure 

6.13(A). This result reveals that the GC/rGO-Nf@Au8 modified electrode provides 

more amplified responses than bare GCE and other modified electrodes.  

 

 

 

 

 

 

Figure 6.13: (A) Amperometric (I-t) response of different modified electrodes to 

subsequent additions of 50 µM NO in 0.1 M PBS (pH 2.5) at an applied potential of 

+0.8 V and (B) the corresponding calibration curve of current versus concentration of 

NO for different modified electrode. 

 

The calibration plots obtained from the amperometric responses were presented in 

Figure 6.13(B). The enhancement of analyte interaction surface area and high electrical 

conductivity provided by rGO-Nf@Au8 nanohybrid contribute to the improvement in 

sensing performances of the GC/rGO-Nf@Au modified electrode over the other 

modified electrodes. However, when overloaded the AuNPs content in the nanohybrid, 
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the AuNPs may form agglomeration and increase the diffusion layer thickness, therefore 

reducing the electron transfer rate, thus lower the sensitivity of the sensor electrode. To 

put these results in perspective, the sensitivity of GC/rGO-Nf@Au8 modified electrode 

was the larger than that obtained with other modified electrode, hence this sensor 

electrode was chosen for further study in determine the low detection limit for NO in 

acidic solution. 

 

The amperometric was recorded at an applied potential of +0.8 V for different NO 

concentrations in order to investigate the concentration detection limits for GC/rGO-

Nf@Au8 modified electrode and was plotted in Figure 6.14. Figure 6.14(A) shows an 

excellent amperometric response with successive additions of different NO 

concentration for every 60 sec recorded at GC/rGO-Nf@Au8 modified electrode. Upon 

the injection of NO in the solution, a significant increase in the current response with 

increase in the concentration of NO could be observed.  

 

The current response against the NO concentration in the response time ranging from 

200 to 850 sec was shown in inset of Figure 6.14(A). Interestingly, the response time of 

the modified electrode was recorded to be within a second, indicating the rapid diffusion 

of NO on the GC/rGO-Nf@Au8 modified electrode surface; thereby this sensor 

electrode could be used for real time measurements. It can also be notices that the 

oxidation current increases linearly with the successive addition of NO into PBS (Figure 

6.14(B)). The calibration curve between the peak currents and different NO 

concentrations in the range from 1 to 10 µM was showed in the inset of Figure 

6.14(B). The linear regression equation was expressed as                      

  (R
2
 = 0.994) with the limit of detection of 5 x 10

-7
 M (S/N= 3).   
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Figure 6.14: (A) Amperometric (I-t) response of GC/rGO-Nf@Au8 modified electrode 

in 0.1 M PBS (pH 2.5) at an applied potential of +0.8 V upon successive additions 

of different concentration of NO in a step of 1, 5, and 10 μM. Inset shows the I-t 

response from 200 to 850 sec and (B) the corresponding calibration curve of 

current versus concentration of NO. Inset shows the enlargement of the calibration 

curve from 1 to 10 µM of NO concentration. 

 

Table 6.1 presents the performance of the GC/rGO-Nf@Au8 modified electrode in 

comparison with other amperometric sensors for the detection of NO. By comparison, 

the NO sensor presented in this work exhibits a comparable sensing performance with 

other sensor electrodes. It was believed that the good synergetic effect between rGO-Nf 

and AuNPs in forming the nanohybrids leads to the improvement in conductivity which 

will reduce the electron transfer resistance, hence increase the efficiency of the electron 

transfer between electrode and electrolyte. Moreover, the enhancement of the active 

surface area provided by rGO-Nf@Au8 nanohybrids allowed more analytes molecule to 

be adsorbed.  

 

These factors give a positive effect in sensing performance of GC/rGO-Nf@Au8 

modified electrode especially in increase its sensitivity toward detecting of NO. The low 

detection limit and high sensitivity with fast response time demonstrated by GC/rGO-

Nf@Au8 modified electrode shows the potentiality of the GC/rGO-Nf@Au8 as the 
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alternative material for fabricating a sensor electrode for determining NO in biological 

analysis. 

 

Table 6.1: Comparison in the sensing performance of GC/rGO-Nf@Au8 modified 

electrode with other reported sensor electrodes for the determination of NO. 

 
Electrode Analytical 

method 
Limit of 
detection 

Linear 
range 

Interferences Reference 

GC/Cytc–
SDS-PAM 

Ampero-

metry 

0.1 µM 0.8-95 µM DA, AA, K
+
, Na

+
, 

NH4
+
, Mg

2+
, Al

3+
, 

Ca
2+

, Cu
2+

, SO4
2-

, 

CO3
2-

, NO3
-
, Cl

-
 

(Chen et al., 2009) 

ITO/MPTS-
FAuNPs 

Ampero-

metry 

0.31 nM 12 nM-700 

µM 

DA, AA, UA, 

cysteine, Na
+
, K

+
, 

Mg
2+

, Ni
2+

 

(Kannan et al., 2010) 

Au/trans-
[Ru(NH3)4 
(Ist)(SO4)]+ 

SWV 77.3 nM 2.85-28.2 

µM 

DA, serotonin, 

NO2
-
 

(Santos et al., 2011) 

GC/Hb–CPB-
PAM 

CV 9.3 µM 9.8–100 

µM 

- (He et al., 2006) 

 

GC/Pt-Fe(III) 

 

DPV 

 

18 nM 

 

84 nM-780 

µM 

H2O2, DA, AA, 

UA, glucose, 

epinephrine, nor-

epinephrine, L-

glutamic acid,  

 

(Wang et al., 2005) 

GC/rGO-
CeO2 

Ampero-

metry 

9.6 nM 18.0 nM-

5.6 µM 

Ca
2+

, K
+
, Na

+
, 

CO3
2-

, NO3
-
, Cl

-
, 

UA 

(Hu et al., 2015) 

PG/ Hb-
sodium 
montmorillo-
nite 

CV 20 pM 4x10
-5

–5 

µM 

DA, ascorbate, 

UA, nitrite, 

epinephrine 

(Fan et al., 2004) 

PG/Hb-
MMT-PVA 

CV 0.5 µM 1-250 µM - (Pang et al., 2003) 

GC/PADA-
Au25 Ag75 NCs 

Ampero-

metry 

10 nM 10-900 nM glucose, urea, 

oxalate, NaCl, 

NO3
-
 

(Viswanathan et al., 

2015) 

GC/rGO–Au–
TPDT 

Ampero-

metry 

6.5 nM 10-140 nM glucose, urea, 

oxalate, NaCl 

(Jayabal et al., 2014) 

Pt/GO-PB LSV 16.50 µM - Cl
-
 , NO3

-
 , SO3

2-
, 

SO4
2-

, NO2
-
 

(Adekunle et al., 

2015) 

Pt/GO-Fe2O3 LSV 13.04 µM - Cl
-
 , NO3

-
 , SO3

2-
, 

SO4
2-

, NO2
-
 

(Adekunle et al., 

2015) 

GC/G-Nf SWV 11.61 µM 0.05-0.45 

mM 

DA, AA (Yusoff et al., 2015) 

GC/rGO–
Co3O4@Pt 

Ampero-

metry 

1.73 µM 10-650 µM DA, AA, UA, 

glucose, urea, 

NaCl 

(Shahid et al., 2015) 

GC/rGO-
Nf@Au8 

Ampero-

metry 

0.5 µM 1-160 µM DA, AA, UA, 

glucose, urea, 

NaCl 

This work 

Cyt c=cytochrome c; SDS=sodium dodecyl sulfate; ITO=indium tin oxide; MPTS=(3-mercaptopropyl)-

trimethoxysilane; FAuNPs=fused spherical gold nanoparticles; CPB=cetylpyridinium bromide; 

PAM=polyacrylamide, Fe(III)=iron nanoparticles; rGO=reduced graphene oxide; CeO2=ceria; 

MMT=montmorillonite; PVA=polyvinyl alcohol; Hb=hemoglobin; PG=pyrolytic graphite; TPDT= N1 -

[3-(trimethoxysilyl)propyl];diethylene triamine; Pt=platinum;  
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6.2.5.4 Interference Study 

Some possible coexisting components such as DA, AA, UA, glucose, NaCl, and urea 

were examined in order to evaluate the anti-interference of the constructed GC/rGO-

Nf@Au8 modified electrode. Figure 6.15 shows the amperometric responses of 

GC/rGO-Nf@Au8 modified electrode for the successive addition of 1 µM NO and 10 

μM DA, AA, UA, glucose, NaCl and urea at a regular interval of 60 sec in 0.1 M PBS 

(pH 2.5) at an applied potential value of +0.8 V. It can be seen that the aforementioned 

interference species did not influenced any amperometric responses despite higher 

concentrations had been used. However, the apparent current increase could be 

observed with the instantaneous addition of NO in the same solution, attest that this 

GC/rGO-Nf@Au8 modified electrode exhibits a favorable anti-interference capacity 

and selectivity characteristics toward the detection of NO. These results suggest that 

rGO-Nf@Au8 showed potential applications for the detection of NO in real sample 

analysis owing to its immunity against the common interfering species. 

 

 

 

 

 

 

Figure 6.15: Amperometric (I-t) response of (a) 1 µM NO at GC/rGO-Nf@Au8 

modified electrode in 0.1 M PBS (pH 2.5) with successive additions of different 

interfering species such as (b) DA, (c) AA, (d) UA, (e) NaCl, (f) glucose and (g) urea; 

each with 10 µM concentration. 
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6.2.5.5 Reproducibility, Repeatability, and Stability Studies 

CV was used to determine the repeatability and reproducibility of the GC/rGO-

Nf@Au8 modified electrode towards detection of NO. For the purpose of 

reproducibility study, ten GC/rGO-Nf@Au8 modified electrodes were prepared 

following the same fabrication method. The CV curves measured from ten sensor 

electrodes were demonstrated in Figure 6.16(A). It was shown that the sensor electrode 

exhibits a good reproducibility with a RSD of 2.99 % was obtained towards 1 mM NO, 

indicating the reliability of the method.  

 

Moreover, the repeatability of GC/rGO-Nf@Au8 modified electrode was 

investigated by recording the CV curves for ten repetitive measurements of 1 mM NO 

on a single sensor electrode (Figure 6.16(B)). DI water was used to rinse the electrode 

surface after each measurement. It was found that the change in current response over 

the ten repetitive measurement was minimal with 93.13 % of its initial current response 

was retained. The RSD was calculated to be 2.13 %, indicating that the modified 

electrode was highly reproducible.  

 

Furthermore, the stability of proposed sensor was investigated by comparing daily 

responses obtained after storing it at ambient temperature (Figure 6.16(C)). It was 

observed that the peak currents remained more than 95.12 % of their initial values after 

five days. The presence of Nf in the nanohybrid helped to improve the stability of the 

sensor electrode and in the same time prevent the nanohybrids from easily detached 

from surface of GCE. The above results suggest that the GC/rGO-Nf@Au8 modified 

electrode is suitable for practical use in detecting the NO due to its good stability, 

reproducibility and repeatability with high precision (low RDS). 
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Figure 6.16: (A) CV curves of ten different GC/rGO-Nf@Au8 modified electrodes, (B) 

CV curves of ten successive measurements of GC/rGO-Nf@Au8 modified electrode 

with 1 mM NO in 0.1 M PBS (pH 2.5) at a scan rate of 50 mV/s and (C) CV curves of 

GC/rGO-Nf@Au8 modified electrode after placed in air for five days. 

 

6.2.5.6 Real Sample Analysis 

In order to certify the practicability of the GC/rGO-Nf@Au8 modified electrode in 

analytical applications, it was applied to detect NO in real water samples by the 

standard addition method. The recoveries of different concentrations (10, 50 and 100 

µM) of NO were detected in the tap and lake waters which were sampled from 

University of Malaya. The recovery values for three parallel measurements were 

calculated to evaluate the accuracy of the sensor and the results were listed in Table 6.2. 

It is clear that the proposed sensor shows satisfactory results with the recovery in the 

range of 89 to 100.8 % and RSD values in the range of from 0.6 to 2.1 %, indicating 

that this method could be efficiently applied to determine NO with good accuracy. 
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Table 6.2: Detection and recovery of NO in real water samples by using the novel 

GC/rGO-Nf@Au8 modified electrode. 

 

Real 
samples 

NO added 
(µM) 

NO detecteda (µM) RSD (%) Recovery (%) 

Tap water 10 9.7 1.7 97 

50 50.4 0.7 100.8 

100 100.7 1.5 100.7 

Lake water 10 8.9 2.1 89 

50 49.1 0.6 98.2 

100 97.9 0.6 97.9 
a
Average of three determinations 

 

6.3 Summary 

The rGO-Nf@Au nanohybrids has been successfully synthesized by simple 

hydrothermal method and has been used to modify GCE before further applied to 

quantify NO in acidic solution. Three different rGO-Nf@Au nanohybrids has been 

synthesized where each of it has different Au content (4, 8 and 12 mM). All the 

GC/rGO-Nf@Au modified electrodes exhibit a good electrocatalytic activity towards 

the oxidation of NO and among these; the GC/rGO-Nf@Au8 modified electrode 

displayed the best sensing performance for determination of NO.  

 

The GC/rGO-Nf@Au8 modified electrode has strong and sensitive current responses 

to NO with an amperometric detection limit of 5 x 10
-7

 M. It is noteworthy that this 

modified electrode is also highly resistant toward common interfering species such as 

DA, AA, UA, glucose, NaCl and urea, making it highly selective toward NO. Besides 

that, it also demonstrates an acceptable reproducibility, repeatability and excellent 

stability, which could be used as an amperometric biosensor for determination of NO. 

The excellent sensing performance shown by rGO-Nf@Au8 nanohybrids were 

attributed to the high conductivity and surface area provided by rGO-Nf sheets as well 

as the interface-dominated properties owned by AuNPs.  

 

Univ
ers

ity
 of

 M
ala

ya



147 

The strong synergistic effect between rGO-Nf and AuNPs was further enhancing the 

sensing performance as it leads to the effective electron transfer, hence improved the 

sensitivity of the sensor electrode. The satisfactory results obtained for NO analyses of 

tap and lake waters suggest that the proposed sensor is suitable for practical 

applications. In view of the above results, it has proven that the rGO-Nf@Au8 

nanohybrid has a great potential for the development of new electrochemical sensing 

devices especially for the detection of NO. 
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CHAPTER 7 

REDUCED GRAPHENE OXIDE/NAFION@PALLADIUM NANOHYBRID 

MODIFIED ELECTRODE FOR ELECTROCHEMICAL DETECTION OF   

L-CYSTEINE  

  

7.1 Introduction 

An organic compound which contain at least one amino group (-NH2) and a carboxy 

(-COOH) group is known as amino acid. There are twenty types of amino acid in human 

genome which act as the precursor for proteins and incorporated into proteins during 

translation. This type of amino acid is called proteinogenic amino acid and one of it is 

the L-Cysteine (L-Cys). L-Cys is the simplest amino acid and fall in the non-essential 

amino acid category as it can be produced in the human liver from an essential amino 

acid called methionine. L-Cys is needed to protect the cells from free radicals and 

prevents it from harmful effects of tobacco and alcohol use as well as involved in the 

detoxification process.  

 

Besides that, L-Cys play a critical role in antioxidant defenses due to the presence of 

sulfur-containing group in L-Cys and it also helps in boosting the immune system. The 

abnormal level of L-Cys may lead to several clinical situations that consisted of the 

slow growth, hair depigmentations, edema, liver damage, muscle and fat loss, skin 

lesions and weakness are the effect of L-Cys deficiency (Santhiago et al., 2007; Wang 

et al., 2005). Meanwhile, the excessive levels of L-Cys link to the Alzheimer’s disease, 

Parkinson’s disease and autoimmune deficiency syndrome (Zhang et al., 2016). 

Therefore, the development of a simple and effective method for quantification of L-

Univ
ers

ity
 of

 M
ala

ya



149 

Cys is of great significance in biological and clinical application especially in the 

disease diagnosis. 

 

Up to now, various analytical methods have been reported in the literature with the 

attempt to determine L-Cys level such as colorimetric (Jongjinakool et al., 2014; Wu et 

al., 2016), high-performance liquid chromatography (Deáková et al., 2015), 

fluorescence (Shankar et al., 2015; Xu et al., 2015) and mass spectrometry (Burford et 

al., 2003). However, all these techniques has several limitation such as require complex 

instrument which is high cost, time consuming and suffer from low sensitivity and 

specificity. In order to overcome these problems, electrochemical method has been the 

best approach for developing a simple selective and sensitive sensor for L-Cys 

associated with their easy operation with low cost, rapid response, low detection limit 

and high sensitivity. In this regard, carbon-based materials including multi-walled 

carbon nanotubes (MWCNTs) (Azadbakht et al., 2013),  ordered mesoporous carbon 

(OMC) (Zhou et al., 2007) and graphene (Falkowski et al., 2017) were commonly 

employed as electrode materials for electrochemical sensor.  

 

Considering the merits of graphene including large specific surface area, excellent 

conductivity, and good biocompatibility, it has been widely applied in electrochemical 

sensor especially for detecting various biomolecules. Up to date, the strategy of 

combining the metal nanoparticles with graphene to produce graphene-metal 

nanocomposites tend to showed great improvement in sensing performance (Zare et al., 

2016). Among the diverse metal nanomaterials, palladium nanoparticles (PdNPs) have 

attracted enormous attention owing to their outstanding physical and chemical 

properties including excellent electrical conductivity, good catalytic activity and 

excellent binding capability with graphene (Wu et al., 2017). Nevertheless, the use of 
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graphene-metal nanocomposites as electrode modifier faces several problems like 

agglomeration, stability and cross-interference issues. In order to address those issues, 

several modified electrodes have been constructed with conducting polymer especially 

Nf. Nf is one of the most intensively investigated conducting polymer due to its 

excellent antifouling properties, high permeability to cations and chemical inertness. 

The hydrophobic backbone owned by Nf helps to improve the dispersity of graphene 

and imparted stability to the nanohybrid material (Liu et al., 2009). 

 

Herein, we synthesized a nanohybrid material based on reduced graphene oxide 

(rGO), Nf and PdNPs using simple hydrothermal technique. The prepared rGO-Nf@Pd 

nanohybrid was used to modify GCE to fabricate novel GC/rGO-Nf@Pd sensor for 

accurate detection of L-Cys. The rGO-Nf@Pd nanohybrids with three different Pd 

content were prepared to investigate the influence of Pd content on the electrocatalytic 

activity toward oxidation of L-Cys. The performance of the modified electrode at 

various experimental conditions (concentration of analyte, scan rates, sample loaded and 

pH) were tested with the intention of getting the optimum condition for the 

electrochemical determination of L-Cys. The proposed sensor exhibits a low detection 

limit with high sensitivity and selectivity under the optimized condition due to the 

synergetic effect between rGO-Nf films and PdNPs.  

 

It is believed that the existence of large number of electrochemically favorable edge 

carbons per mass of graphene could greatly facilitate the electron transfer between the 

electroactive species and the electrode surface, thus promoting the electrocatalytic 

process (Bagheri et al., 2017). Moreover, the presence of PdNPs in nanohybrid further 

induces the effective electrocatalytic oxidation of L-Cys. Nf was used to improve the 

dispersion of graphene in aqueous solution which at the same time enhance the stability 
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of the modified electrode. Other than that, it also play an important role as a binder to 

help other modifiers effectively adheres on electrode surface, thereby leading to faster 

diffusion of analyte into the electrode (Yang et al., 2015). Additionally, this method was 

also successfully applied to determine L-Cys concentration in human urine and 

interestingly, it shows highly satisfactory results with excellent recoveries revealing its 

potential for practical application.  

 

7.2 Results and Discussion 

7.2.1 Crystalline and Structural Characterization of rGO-Nf@Pd Nanohybrids 

The crystalline nature of the nanohybrids was examined by using X-ray diffraction 

(XRD) and the results were presented in Figure 7.1. The XRD patterns in inset of Figure 

7.1 illustrate the diffraction obtained from GO and rGO. One sharp characteristic peak 

can be observed in the XRD pattern for GO that centered at 2θ = 10.5°, which attributed 

to the introduction of various oxygen functional groups (hydroxyl, epoxy, carbonyl 

groups, etc.) on both sides of the graphene layers (Choi et al., 2017). The appearance of 

a big bump at about 2θ = 25° in the XRD patterns of rGO demonstrates that the 

occurrence of GO reduction during the hydrothermal process to form rGO (Khandelwal 

et al., 2015). A small peak at 2θ of 42.3° can be correlated with the (1 0 0) plane of the 

hexagonal structure of carbon (Zhang et al., 2011).  

 

Meanwhile, three obvious peaks can be seen at 40.2, 46.7 and 68.2° which can be 

well indexed to the (1 1 1), (2 0 0) and (2 2 0) planes respectively, that derived from the 

standard Pd phase (JCPDS 01-089-4897) (Figure 7.1(i-iii)). The XRD features owning 

to the rGO almost disappear in the XRD patterns of rGO-Nf@Pd nanohybrids due to the 

strong diffraction pattern of Pd that become dominant. The sharp characteristic 

peaks observed in all XRD patterns of nanohybrids indicating the good crystallization of 
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the rGO-Nf@Pd nanohybrids. Moreover, it is important to note that the peak intensity 

increased with the increase in the concentration of Pd precursor from 3 to 9 mM, 

implying that more PdNPs has formed on the rGO-Nf sheets. The results of the XRD 

analysis reveal that the rGO-Nf@Pd nanohybrids have been successfully synthesized. 

 

 

 

 

 

 

 

Figure 7.1: XRD patterns of (i) rGO-Nf@Pd3, (ii) rGO-Nf@Pd6, and (iii) rGO-

Nf@Pd9 nanohybrids (Inset shows the XRD patterns for GO and rGO). 

 

Raman spectroscopy is widely used to characterize the carbon based material as it 

provides information regarding the ordered and disordered crystalline structure. Figure 

7.2 presents the Raman spectra of GO and three different rGO-Nf@Pd nanohybrids 

from 1200 to 1800 cm
-1

, which reveal two prominent peaks appeared in Raman spectra 

for all samples. The first peak observed at 1355 cm
-1

 can be assigned to the D band 

which associated with structural defects and partially disordered structures of the 

sp
2
 domains (Some et al., 2016). The second peak observed at 1602 cm

-1
 was ascribed 

to the G band which originated from the vibrations of sp
2
 carbon atom domains of 

graphite (Lv et al., 2013). The intensity ratio of D to G bands (ID/IG) provides the 

information regarding the degree of graphitization. The ID/IG of nanohybrid samples 
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were higher than GO due to the defect after the removal of oxygen functional groups 

during the reduction process and introduction of large amounts of sp
2
 carbon networks 

with small average sizes (Wong et al., 2015).  

 

These results further confirm the successfully reduction of GO to form rGO after 

hydrothermal process. The blue shift in G band position of rGO-Nf@Pd nanohybrids 

compared with that of GO can be observed, which reveal the occurrence of chemical 

interaction between rGO-Nf and PdNPs. This shift in the G band could be attributed to 

the charge transfer from rGO-Nf to PdNPs as well as formation of a new bonding 

between them (Rao et al., 1997). Among these nanohybrids, rGO-Nf@Pd6 nanohybrid 

showed highest blue shift in the G band (+10 cm
-1

 from G band position for GO), thus 

indicate that it has the strongest interaction between rGO, Nf and PdNPs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Raman spectra of (i) rGO-Nf@Pd3, (ii) rGO-Nf@Pd6 and (iii) rGO-

Nf@Pd9 nanohybrids (Inset shows the Raman spectrum for GO). 
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7.2.2 Morphological Characterization of rGO-Nf@Pd Nanohybrids  

The morphological characterization of rGO-Nf and rGO-Nf@Pd nanohybrids has 

been carried out by FESEM and the results were shown in Figure 7.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: FESEM images of (A) rGO-Nf, (B) rGO-Nf@Pd3, (C) rGO-Nf@Pd6 and 

(D) rGO-Nf@Pd9 nanohybrids. 

 

As illustrated in Figure 7.3(A), the rough surface structure suggesting that the Nf was 

adsorbed on the surfaces of rGO through π–π interaction, thus confirming the formation 

of rGO-Nf nanohybrid. Presence of PdNPs on the surface after hybridization with rGO-

Nf was clearly evident in the FESEM image illustrated in Figure 7.3(B-D). It can be 
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observed that the rGO-Nf@Pd nanohybrids were composed of irregular Pd particles 

with spherical structure and a size less than 50 nm in diameter. The adherence of PdNPs 

between layers of rGO-Nf sheets illustrates the efficient nanohybrids formation by using 

the hydrothermal method. 

 

The elemental mapping images obtained from FESEM of rGO-Nf@Pd6 nanohybrid 

revealed the distribution of Pd, carbon (C), oxygen (O) and fluorine (F) in the selected 

area of the rGO-Nf@Pd6 nanohybrid (Figure 7.4(A)). Notably, the presence of Pd 

element indicated that the PdNPs were uniformly distributed on the rGO-Nf surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: (A) Qualitative elemental mapping and (B) EDX analysis of rGO-Nf@Pd6 

nanohybrid. 
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In order to further examine the chemical composition presence in the nanohybrid, the 

EDX was conducted and the result was shown in Figure 7.4(B). In the EDX spectra, 

strong signal was exhibited from C, F and Pd along with small signal from O atom. The 

C and O elements were arising from rGO while F element originates from Nf. This 

result was in accordance with the mapping results and it signified that the nanohybrid 

was composed of highly pure PdNPs decorating on the surface of rGO-Nf sheets. Note 

that the Si signal was arise from the Si substrate that used to deposite the sample. 

 

In order to get clearer picture on the morphology of the rGO-Nf@Pd nanohybrids, 

the HRTEM analysis was conducted. It was clearly seen in Figure 7.5(A-C) that PdNPs 

has sphere structure with nanosize successfully loading on the surface of rGO-Nf sheets. 

This indicates that rGO-Nf is an effective supports for PdNPs. Notably, the PdNPs that 

attached to the rGO-Nf surface were scattered uniformly on the sheets with a large 

deposition density as the concentration of Pd precursor was increased, but the particles 

sizes do not change obviously. However, the PdNPs started to form agglomeration when 

increase the Pd precursor content to 9 mM due to the aggregative growth of the small 

particles during the reduction process. As shown in the inserted picture at the right 

bottom corner of Figure 7.5(C), the individual Pd particle on the rGO-Nf sheet shows a 

lattice spacing of 0.225 nm which corresponds to the (1 1 1) crystal plane for 

PdNPs. Figure 7.5(D-F) displays the particle size distribution histograms of PdNPs from 

HRTEM images of rGO-Nf@Pd nanohybrids. The particle sizes of Pd calculated from 

HRTEM image of rGO-Nf@Pd3 nanohybrid were found to be in the range of 4 to 

16 nm. In the case of rGO-Nf@Pd6 nanohybrid, the PdNPs distributed on rGO-Nf sheet 

have a diameter size ranging from 4 to 12 nm. Meanwhile, the diameter size of PdNPs 

embedded on the surface was analyzed to be in the range of 6 to 10 nm. These 

observations prove that PdNPs were successfully embedded into the rGO-Nf sheet and 
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the concentration of Pd precursor does not obviously affect the particle size and 

morphology but it does influencing the distribution of PdNPs on the rGO-Nf surface. 

               

 

 

 

 

 

 

 

   

 

 

 

 

 

 

Figure 7.5: (A-C) HRTEM images of rGO-Nf@Pd3, rGO-Nf@Pd6 and rGO-Nf@Pd9 

nanohybrids with their corresponding histogram of PdNPs sizes (D-F) (Inset shows the 

individual PdNPs on rGO-Nf sheet). 
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7.2.3 Electrochemical Characterization of GC/rGO-Nf@Pd Modified Electrode 

A CV and electrochemical impedance spectroscopy (EIS) were used to investigate 

the electrochemical behavior of various modified electrodes. The CV test were 

performed at a scan rate of 50 mV/s in 0.1 M KCl with 5 mM K3[Fe(CN)6] and the 

results were depicted in Figure 7.6. When GCE is modified with Nf, there was no 

obvious peak could be observed (Figure 7.6(A)). It was reported that the [Fe(CN)6]
3-/4-

 

has been blocked from reaching the electrode surface resulted from the electrostatic 

interaction between negatively charged Nf and [Fe(CN)6]
3-/4-

 which tend to repel from 

each other. The GC/GO and GC/GO-Nf modified electrode exhibit a redox behavior 

with low current respond and peak to peak separation (ΔEp) value higher than 150 mV. 

This result indicated that GO exhibits a slow electron transfer as a result of its structural 

effects such as oxygen-containing groups that might repel the negative redox couple as 

well as low edge plane content and low specific surface area (Jia et al., 2015). 

 

Meanwhile, it could be seen that a couple of well defined redox peaks appear on the 

bare GCE, GC/rGO, GC/rGO-Nf and three different GC/rGO-Nf@Pd modified 

electrodes as shown in Figure 7.6(B). These peaks were attributed to the quasireversible 

one-electron redox behaviour of [Fe(CN)6]
3-/4-

 ion. The ΔEp was estimated for rGO-

Nf@Pd3, rGO-Nf@Pd6 and rGO-Nf@Pd9 modified GCE to be 91, 82 and 89 mV, 

respectively. The lower ΔEp obtained for rGO-Nf@Pd6 nanohybrid modified GCE 

indicates its improved electron transfer kinetics at the electrode surface when compared 

to other modified electrodes. These experimental results attributed to the fact that large 

surface area of the rGO-Nf films and the excellent conductivity owned by PdNPs, thus 

improved the electron transfer between [Fe(CN)6]
3-/4-

 ions and the electrode surface. An 

obvious increase of both cathodic and anodic peak currents could also been observed at 
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GC/rGO-Nf@Pd6 modified electrode which indicates the higher electrical conductivity 

due to the synergetic effect aroused between rGO-Nf and PdNPs. 

 

 

 

 

 

Figure 7.6: (A & B) CV curves obtained at various modified electrode in a 0.1 M KCl 

with 5 mM K3[Fe(CN)6] (scan rate: 50 mV/s). 

 

Figure 7.7(A) shows the Nyquist plot for bare GCE, GC/rGO-Nf@Pd3, GC/rGO-

Nf@Pd6, and GC/rGO-Nf@Pd9 modified electrodes. As can be seen, the Nyquist plot 

obtained for bare GCE comprise of a semicircle portion at higher frequencies and a 

linear line in the lower frequency range which attribute to the electron transfer-limited 

process and limited mass transfer of the [Fe(CN)6]
3-/4-

 ion, respectively (Bagheri et al., 

2016). The diameter of this semicircle indicates the charge transfer resistance (Rct) 

which controls the electron-transfer kinetics of the redox couple at the electrode 

interface (Kaur et al., 2015). After the modification of GCE with rGO-Nf@Pd 

nanohybrids, the Nyquist plots displayed a nearly straight line indicating negligible Rct. 

This result reflects the improvement in electrocatalytic activity and high interfacial 

electron transfer ability of the modified electrode. Based on the above characterizations, 

it were proven that the incorporation of PdNPs with rGO-Nf films enhance the 

conductivity of the electrode thus permitting rapid diffusion of [Fe(CN)6]
3-/4-

 ion toward 

the electrode surface. Figure 7.7(B) shows the equivalent circuit that fits the impedance 
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spectra of rGO-Nf@Pd6 that consists of resistance of the electrolyte (Rs), Rp (Rct), CPE 

and Warburg impedance (Zw). Zw is used to model the linear semi-infinite diffusion, 

which occurs when the diffusion layer has an infinite thickness. It appears as a straight 

line with a 45º slope (phase angle) at low frequencies in the Nyquist plot. 

 

 

 

 

 

 

 

Figure 7.7: (A) Nyquist plots for bare GCE, GC/rGO-Nf@Pd3, GC/rGO-Nf@Pd6, and 

GC/rGO-Nf@Pd9 in a solution of 0.1 M KCl with 5 mM K3[Fe(CN)6] (frequency 

range: 10 mHz to 10 kHz) and (B) the equivalent circuit for modelling of EIS 

experimental data of GC/rGO-Nf@Pd6. 

 

7.2.4 Electrochemical Determination of L-Cysteine 

7.2.4.1 Electrocatalytic Oxidation of L-Cysteine 

Figure 7.8 exhibits the CV curves for bare GCE and other modified electrodes in the 

presence of 5 mM L-Cys. It can be seen in Figure 7.8(A) that there was no apparent 

redox peaks appeared under the applied potential range of 0 to +0.8 V in the presence of 

5 mM L-Cys for bare GCE. However, there is negligible current response when the 

GC/Nf was used as working electrode. An apparent oxidation peak at +0.58 V could be 

observed in CV curves for GC/GO and GC/rGO where the current response for L-Cys at 

GC/rGO obviously higher than at GC/GO, as a result of high conductivity and large 
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specific surface area of rGO. It is notable that the peak current of L-Cys clearly 

increased after modifying the GC electrode with rGO-Nf@Pd nanohybrids as depicted 

in Figure 7.8(B).  

 

 

 

 

 

Figure 7.8: (A & B) CV curves of different modified electrodes in 0.1 M PBS (pH 7) 

containing 5 mM L-Cys at a scan rate of 50 mV/s. 

 

This indicated that the rGO-Nf@Pd nanohybrids have excellent electrocatalytic 

ability towards the oxidation of L-Cys. The enhanced electrochemical performance of 

the GC/rGO-Nf@Pd modified electrode could be attributed to the following factors: (1) 

excellent electrical conductivity owned by rGO helps to promote and accelerate the 

electron transfer between modified electrode and target analytes, (2) synergistic effects 

of rGO-Nf films and PdNPs further facilitates the electron transfer processes between 

the electrolyte and the modified electrode, (3) the unique sheets-like structure of rGO-

Nf films with large surface-to-volume ratio and high dispersity offers more active 

surface areas for the occurrence of the reaction, (4) the presence of nano size Pd 

particles provides higher effective surface area for analyte adsorption. The high density 

of PdNPs decorated rGO-Nf sheets (compare to rGO-Nf@Pd3 nanohybrid) with well 

distribution (compare to rGO-Nf@Pd9 nanohybrid) led to fast diffusion of target 

analyte into the nanohybrid film thus be the reason for the excellent electrocatalytic 
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performance of rGO-Nf@Pd6 nanohybrid compared to other nanohybrids. Based on 

this result, the GC/rGO-Nf@Pd6 modified electrode is suitable for detecting the L-Cys, 

therefore this sensor electrode will be used for the further studies. 

 

As reported in previous literature, L-Cys will be electro-oxidized and forming 

Cystine upon the application of a potential to the GC/rGO-Nf@Pd modified electrode 

(Hosseini et al., 2013). This electro-oxidation process of L-Cys involves the transfer of 

two electrons and two protons. The schematic diagram of the proposed sensing 

mechanism was presented in Figure 7.9. The electrochemical reaction was believed 

happen by following the equation expressed below (Geng et al., 2016): 

 

                     (1) 

                    (2) 

                    (3) 

 The overall reaction can be written as: 

                             

 

 

 

 

 

 

 

Figure 7.9: Schematic diagram of the electrocatalytic oxidation of L-Cys at the 

GCE/rGO-Nf@Pd modified electrode. 
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7.2.4.2 Optimization Studies  

(a) Effect of Different Concentration of L-Cysteine 

In order to evaluate the catalytic response of GC/rGO-Nf@Pd6 modified electrode 

toward the oxidation of L-Cys, a series of CV curves were recorded for different 

concentrations of L-Cys as shown in Figure 7.10(A). The enhancement in the current 

response could be observed as increased the concentration of L-Cys, indicating the 

dependence of current response with the concentration of L-Cys. Figure 7.10(B) shows 

that the sensor exhibits good linearity in the concentration ranging from 200 µM to 

5 mM. The corresponding linear regression equation for the variation of Ip versus 

concentration of L-Cys is given as                          with a correlation 

coefficient (R
2
) of 0.995. The oxidation peak current of L-Cys was linearly increased 

with increasing the L-Cys concentration reveals the electrocatalytic activity of GC/rGO-

Nf@Pd6 modified electrode toward the oxidation of L-Cys. 

 

 

 

 

 

Figure 7.10: (A) CV curves of GC/rGO-Nf@Pd6 modified electrode in a 0.1 M PBS 

(pH 7) containing different concentrations of L-Cys scanning at a scan rate of 50 mV/s 

and (B) the corresponding plot of peak current versus concentration of L-Cys. 
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(b) Effect of Scan Rate 

The influence of scan rates on the electrochemical oxidation of L-Cys at GC/rGO-

Nf@Pd6 modified electrode was investigated by CV and the results are shown in Figure 

7.11. According to the result in Figure 7.11(A), the scan rate of CV apparently affecting 

the peak potential and oxidation peak current of L-Cys. It was found that the oxidation 

peak potentials of L-Cys shift positively along with the increment of scan rates. 

Meanwhile, Figure 7.11(B) shows the relationship between anodic peak current with 

square root of scan rates. The oxidation peak current of L-Cys was increased when 

increasing the scan rate from 50 to 500 mV/s and are proportional to the square roots of 

the scan rates. The linear regression equation is expressed as                 

        with R
2 

= 0.998. This result demonstrate that the electrode process is diffusion-

controlled process (Liu et al., 2016). 

 

 

 

 

 

Figure 7.11: (A) CV curves of GC/rGO-Nf@Pd6 modified electrode in 0.1 M PBS (pH 

7) containing 1 mM L-Cys scanning at different scan rates and (B) plotting of peak 

current as a function of scan rate ranging from 50 to 500 mV/s. 

 

(c) Effect of rGO-Nf@Pd6 Loading  

The effect of rGO-Nf@Pd6 nanohybrid loading amount on the electrocatalytic 

oxidation of L-Cys at the GC/rGO-Nf@Pd6 modified electrode was investigated by CV. 
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Figure 7.12(A) presents the CV curves of 1 mM L-Cys oxidized at the GC electrode that 

had been modified with different content of rGO-Nf@Pd6 nanohybrid. Obviously, the 

current response is mainly influenced by the loading amount of rGO-Nf@Pd6 

nanohybrid. As can be seen in Figure7.12(B), the anodic peak current increased with the 

increase amount of rGO-Nf@Pd6 loading in the range of 2 to 10 µL. However, further 

increase in the loading amount (more than 10 µL) leads to the decrease in the current 

response. The use of more sample content will lead to the formation of thick layer on 

the surface of electrode which then hinders the electron transfer, thus results in the low 

current response. Therefore, the loading amount of 10 µL was selected as optimal 

condition for the detection of L-Cys. 

 

 

 

 

 

Figure 7.12: (A) CV curves of GCE modified by rGO-Nf@Pd6 nanohybrid with 

different loading amounts in 0.1 M PBS (pH 7) with the presence of 1 mM L-Cys at a 

scan rate of 50 mV/s and (B) the corresponding plot of anodic peak current as a function 

of different loading amount of rGO-Nf@Pd6 nanohybrid. 

 

(d) Effect of pH 

A series of CV curves were employed to investigate the influence of pH on the 

electrochemical behaviour of the GC/rGO-Nf@Pd6 modified electrode with 1 mM L-

Cys in 0.1 M PBS. Different pH values were used ranging from 4 to 10 and the results 

were demonstrated in Figure 7.13. It can be observed that the anodic peak current of L-
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Cys increased from pH 4 until it reached a maximum value at pH 7 (Figure 7.13(A)). 

Then, the anodic peak current started to decrease after pH 7, therefore pH 7 was used as 

an optimum pH for subsequent experiments. Furthermore, the anodic peak potentials 

shifted to more negative potentials with increased pH from 4 to 10. Evidently, the equal 

number of electron and proton involved in the electrode reaction, as the slope from the 

graph of anodic peak potential versus pH value shows a straight line (   

                              with a slope value of -0.056 V/pH (Figure 

7.13(B)). This value is close to the Nernstian value of -0.059 V/pH which indicate that 

the proportion of the electron and proton involved in the reactions is 1:1 (Rajabi et al., 

2010). 

 

 

 

 

 

Figure 7.13: (A) CV curves of GC/rGO-Nf@Pd6 in 1 mM L-Cys at different pH (0.1 

M PBS) at a scan rate of 50 mV/s and (B) plot of anodic peak potential versus pH 

values. 

 

7.2.4.3 Amperometric Response of L-Cysteine 

The amperometric method was employed under the optimum condition in order to 

determine L-Cys using GC/rGO-Nf@Pd6 modified electrode. Figure 7.14(A) shows the 

amperometric response of the GC/rGO-Nf@Pd6 modified electrode for successive 

addition of L-Cys into a stirred 0.1 M PBS (pH 7) under the ambient condition and with 
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a time interval of 60 sec. The amperometric detection was carried out at +0.6 V versus 

SCE reference electrode. The sensor does not show any current response in the 0.1 M 

PBS but the current started to increase upon the addition of 0.5 µM L-Cys. Interestingly, 

the proposed sensor electrode shows a fast respond as it took about 2 sec to achieve the 

steady-state current, hence suggesting the good catalytic activity toward                       

L-Cys that owned by GC/rGO-Nf@Pd6 modified electrode.  

 

 

 

 

 

Figure 7.14: (A) Amperometric current response of GC/rGO-Nf@Pd6 for successive 

addition of L-Cys range from 0.5 μM to 65 μM in 0.1 M PBS (pH 7) at an applied 

potential of +0.6 V (Inset shows the enlarge image of the amperometric current 

response from 0 to 1240 sec) and (B) the corresponding calibration plot of current 

response versus L-Cys concentration (Inset shows the enlarge image of calibration plot 

for the low L-Cys concentration of 0.5 to 10 μM). 

 

As presented in Figure 7.14(B), the calibration curve demonstrates three linear 

regimes in the regression line of current response dependence on the L-Cys 

concentration. The linear regression equation of the first regime was expressed as 

                        with R
2 

= 0.997 which responded to the concentration 

ranges of 0.5 to 10 µM. The second regime corresponds to the concentration ranging 

from 12.5 to 35 µM with a linear regression equation of                         

and R
2
 = 0.982. The third linear sections in the regression line fit the equation of 

Univ
ers

ity
 of

 M
ala

ya



168 

                        with R
2
 = 0.994, for the concentration in the range from 

40 to 65 µM. Based on the slope of first section in the linear regression line, the limit of 

detection (LoD) of this sensing system was calculated to be 145 nM, at a signal-to-noise 

(S/N) ratio of 3 and sensitivity of 0.092 µA µM
−1

.  

 

Table 7.1 reviewed the comparison of analytical performance of the present study 

with earlier reports based on electrochemical sensors towards the detection of L-Cys. 

Particularly, this proposed GC/rGO-Nf@Pd6 modified electrode shows a comparable 

result with that reported previously. The excellent sensing performance with low 

detection limit at rapid response time as well as high sensitivity and selectivity toward 

L-Cys detection exhibited by GC/rGO-Nf@Pd6 modified electrode making it a 

promising platform for developing L-Cys sensors in biological applications. 

 

Table 7.1: Comparison of the sensing performance of the proposed GC/rGO-Nf@Pd6 

modified electrode with previously reported sensor electrodes for L-Cys detection. 

 
Electrode Detection 

technique 

Response 
time 
(sec) 

Detection 
limit 

Sensitivity Interferences Reference 

GC/MoN/
N-
MWNTs 

Ampero-

metry 

1.5 3.64 μM  198.59 nA 

µM
-1

 cm
-2

 

L-Glu, L-Val, L-

Ile, L-Phe, L-Tyr 

and Glucose 

(Geng et al., 

2016) 

GC/GO/C
CNTs/Au
NPs@Mn
O2 

DPV - 3.4 nM - AA, Glutathione, 

Cystine, NH4
+
, 

Na
+
, K

+
, Fe

2 +
, 

SO4
2 −

, CO3
2 −

  

(Wang et 

al., 2015) 

GC/Au-
SH-
SiO2@Cu-
MOF 

DPV - 8 nM - - (Hosseini et 

al., 2013) 

GC/MnO2
–C/chit 

Ampero-

metry 

7 22 nM - Glutathione, 

Tryptophan,  

Tyrosine,  

L-lysine, 

Methionine 

(Xiao et al., 

2011) 

CPE/Y2O3
NPs/N-
rGO 

Ampero-

metry 

5 0.8 µM 12.33 µA 

µM
-1

 

Tyrosine, 

Glucose, BSA, 

UA, AA 

(Yang et al., 

2016) 

GC/OMC Ampero-

metry 

- 2 nM 23.6 µA 

mM
-1

 

Tyrosine, 

tryptophan, UA 

(Zhou et al., 

2007) 

GC/NPG Ampero-

metry 

- 50 nM 0.374 µA 

µM
-1

 

Tryptophan, 

Tyrosine 

(Liu et al., 

2012) 
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Table 7.1, continued 

 
Electrode Detection 

technique 

Response 
time 
(sec) 

Detection 
limit 

Sensitivity Interferences Reference 

 

GC/Q–
AgNPs–
GNs 

 

DPV 

 

- 

 

0.28 µM 

 

- 

L-tryptophan,  

L-tyrosine,  

L-alanine,  

L-asparagine, 

Glycine, 

Methionine, 

Guanine, 

Glutathione, 

Glucose, Folic 

acid 

 

(Zare et al., 

2016) 

GC/Ag–
Pd BNPs 

CV - 2.8 µM - - (Murugavel

u et al., 

2014) 

GC/AuNR
/MWCNT 

Ampero-

metry 

1 8.25 nM 120 nA  

µM
-1 

Glutathione, 

homocystein, 

N-acetylcysteine 

mixture. AA, UA, 

NADH 

(Silva et al., 

2013) 

GC/MWC
NTs–
PVP/Cu2+ 

Ampero-

metry 

0.1 1.5 µM 0.007 µA 

µM
-1

 

L-glutathione, L-

histidine,  

L-lysine, Glycine, 

 L-tryptophan,  

(e Silva et 

al., 2012) 

Ni(OH)2 N
P 

CV - 1.2 µM - Homocysteine, 

Glutathione, AA, 

UA 

(Jia et al., 

2011) 

GC/rGO-
Nf@Pd6 

Ampero-

metry 

2 145 nM 0.092 µA 

µM
-1

 

DA, UA, AA, 

H2O2, glucose, 

urea. 

This work 

MoN/N-MWNTs=Molybdenum nitride/nitrogen-doped multi-walled carbon nanotubes; L-Glu=L-

glutamic; L-Val=L-valine; L-Ile=L-isoleucine; L-Phe=L-phenylalanine; L-Tyr=L-tyrosine; GO/CCNTs/ 

AuNPs@MnO2=graphene oxide/carboxylated multiwalled carbon nanotube/manganese dioxide/gold 

nanoparticles; Au-SH-SiO2@Cu-MOF=gold-silicon dioxide-metal-organic framework; MnO2–

C/chit=manganese dioxide–carbon/chitosan; CPE/Y2O3-NPs/N-rGO=Carbon paste electrode/Yttrium 

oxide nanoparticles/nitrogen-doped reduced graphene oxide; BSA=Bovine serum albumin; OMC= 

ordered mesoporous carbon; Q–AgNPs–GNs= Quercetin silver nanoparticles graphene nanosheets; 

NPG=Nanoporous gold; Ag–Pd BNPs=Silver-palladium bimetallic nanoparticles; AuNR/MWCNT= 
multi-walled carbon nanotubes/gold nanorods; MWCNTs–PVP/Cu

2+
=multi-walled carbon nanotubes-

poly(4-vinylpyridine)/copper ions. 

 

 7.2.4.4 Interference Study 

The selectivity study is crucial for the practical application, therefore the interference 

study of the proposed sensor electrode in the presence of various common interfering 

species were tested. The amperometric response of GC/rGO-Nf@Pd6 modified 

electrode for the successive injections of L-Cys and several possible interfering 

substances into a continuously stirred 0.1 M PBS (pH 7) at a fixed potential of +0.6 V 

versus SCE was measured. As shown in Figure 7.15, a significant increase in the current 
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response was observed in the presence of 5 μM L-Cys, but no further obvious current 

change is observed with the subsequent addition of 100 µM of AA, UA, DA, H2O2, urea 

and glucose. This result confirms that the stated substances do not interfere in the 

determination of L-Cys even though high concentrations of interfering substance (20 

fold) were used. Therefore, the obtained results suggest that the proposed sensor 

electrode has excellent selectivity toward the detection of L-Cys. 

 

 

 

 

 

 

 

Figure 7.15: Amperometric (I-t) response of GC/rGO-Nf@Pd6 modified electrode at 

+0.6 V versus SCE in 0.1 M PBS (pH 7) with the successive addition of 5 μM L-Cys, 

and each 100 μM of AA, UA, DA, H2O2, urea and glucose. 

 

7.2.4.5 Reproducibility, Repeatability, and Stability Studies 

Five electrodes modified by rGO-Nf@Pd6 nanohybrid were prepared under the same 

condition which used to study the reproducibility of the proposed sensor electrode. 

Their current responses to 1 mM concentration of L-Cys were recorded using CV and 

the result was presented in Figure 7.16(A). No obvious current changing can be 

observed and the RSD was calculated to be 1.48 %, thus verifying the high 

reproducibility of the proposed sensor electrode.  
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Figure 7.16: (A) CV curves of five different GC/rGO-Nf@Pd6 modified electrodes, 

(B) CV curves of five successive measurements of GC/rGO-Nf@Pd6 modified 

electrode with 1 mM L-Cys in 0.1 M PBS (pH 7) at a scan rate of 50 mV/s and (C) CV 

curves of GC/rGO-Nf@Pd6 modified electrode after placed in air at room temperature 

for five days. 

 

Furthermore, to study the repeatability of the GC/rGO-Nf@Pd6 modified electrode 

for the determination of L-Cys, CV curves of 1 mM L-Cys were recorded over five 

repeating measurements on a single electrode (Figure 7.16(B)). The proposed sensor 

electrode was rinsed with DI water before taking each measurement. It was found that 

the GC/rGO-Nf@Pd6 modified electrode exhibit good repeatability with a RSD of 

about 1.88 % after being re-used for five successive measurements. In order to 

investigate the stability of the prepared GC/rGO-Nf@Pd6 modified electrode, CV was 

employed and the results were depicted in Figure 7.16(C). This modified electrode was 
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placed in air at room temperature for five days and CV curves in 1 mM of L-Cys were 

tested each day. The GC/rGO-Nf@Pd6 modified electrode retains 92.27 % of its initial 

current response of L-Cys after five days and have a RSD of 3.25 %, thereby revealing 

the good stability of the proposed sensor electrode for L-Cys determination. 

 

7.2.4.6 Real Sample Analysis 

An amperometric detection method was conducted to evaluate the practical 

applications of the sensor and the standard addition method was used to detect L-Cys in 

human urine samples. The urine samples were collected from two healthy individuals 

and it has been diluted 10 times with DI water before being used as the blank solution. 

Then, the diluted samples were spiked with appropriate concentration of L-Cys. A 

minimum of three determinations were recorded for each target concentration and the 

percentages of the recovery values were calculated by comparing the concentration that 

obtained from the samples with actually added concentration.  

 

Table 7.2: Detection and recovery of L-Cys in human urine samples by using the novel 

GC/rGO-Nf@Pd6 modified electrode. 

 

Real 
samples 

L-Cys added  
(µM) 

L-Cys 
detecteda (µM) 

RSD 
 (%) 

Recovery 
 (%) 

Urine 1 5 4.87 2.01 97.40 

10 10.10 3.05 101.00 

20 19.45 1.08 97.25 

Urine 2 5 4.86 2.05 97.20 

10 10.04 1.36 100.4 

20 19.70 1.16 98.50 
a
Average of three determinations. 

 

The results of real sample analyses were summarized in Table 7.2. According to the 

obtained results, the calculated recovery percentage for three different concentration of 

L-Cys ranging from 97.2 to 101 % with RSD values ranging from 1.08 to 3.05 %. These 
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results verify the practical applicability of the proposed sensor for the determination of 

L-Cys in human urine samples with satisfactory results. 

  

7.3 Summary 

A well decorated spherical PdNPs on the rGO-Nf were synthesized using simple 

hydrothermal method. Three nanohybrids with different concentrations of Pd precursor 

were prepared in order to investigate its effect on the electrochemical sensing 

performance. The GC/rGO-Nf@Pd modified electrodes were fabricated using a simple 

drop-cast method and applied them for the electroanalytical determination of L-Cys. 

Under optimized experimental condition, the GC/rGO-Nf@Pd6 modified electrode 

shows the better sensing performance compared to other modified electrodes. This 

sensor electrode demonstrated a good sensing performance in terms of rapid response 

(less than 2 sec), lowest detection limit (145 nM), sensitivity (0.092 µA µM
-1

), 

selectivity, reproducibility, repeatability and stability.  

 

The excellent performance of the GC/rGO-Nf@Pd6 modified electrode towards L-

Cys can be attributed to the high conductivity and large specific surface area possessed 

by rGO which facilitate the electron transfer. Moreover, the excellent catalytic activity 

toward the electrochemical oxidation of L-Cys owned by PdNPs further helps to 

enhance the sensitivity of this sensing system. The presence of Nf in this nanohybrid 

material was helped to increase the stability and selectivity of the proposed sensor as 

well as improve the dispersity of rGO and the adsorption of target analyte to electrode 

surface. The interference analysis result shows that the proposed sensor exhibits an 

excellent anti-interference performance toward coexisting compounds such as AA, UA, 

DA, H2O2, urea, and glucose (up to 20-fold). Additionally, it was proven from the real 

sample analysis that the proposed method can be used for the detection of L-Cys in 
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practical samples such as human urine with satisfactory results. Overall, the rGO-

Nf@Pd nanohybrid could be a promising sensing material for electrochemical sensing 

application. 
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 CHAPTER 8 

 CONCLUSIONS 

 

8.1 Conclusion 

Over the past decade, carbon based nanomaterials have been extensively used in 

multi-functional applications especially in the fabrication of novel electrochemical 

sensors for the detection of biomolecules including DA, NO, H2O2 and L-Cys. Among 

all the carbon based materials, graphene have been widely used for the fabrication of 

electrochemical sensor because it offers the advantage features of high electrochemical 

active sites, favourable electron transfer and excellent electrocatalytic activity. 

However, several drawbacks associated with graphene such as poor solubility especially 

in water and high tendency to aggregate has become a serious drawback to the 

development of electrochemical sensor based on graphene material. Therefore, the study 

on the new material based on graphene that able to overcome these obstacles would give 

a great contribution to the field of electrochemical sensor application.  

 

The main aim of this thesis is to provide fundamental knowledge on the newly 

synthesized materials based on graphene, Nf and metal nanoparticles. These nanohybrid 

materials were then being tested as an efficient electrocatalyst in electrochemical sensor 

for detecting various bioanalytes. The introduction about graphene, principle of 

electrochemical sensor and importance of biomolecules are discussed in Chapter 1. 

Detailed literature survey has been done and summarized in Chapter 2. The chemical 

reagents, methodology adopted for nanohybrid synthesis and characterization, 

fabrication of electrochemical sensor were provided in the Chapter 3. In order to 

achieve the above said goals, four main studies have been conducted and the results 
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were presented in Chapter 4 to 7. The findings in each study were summarized as 

below.  

 

In Chapter 4, we present the preparation of the rGO-Nf nanohybrids by a facile two-

steps process consisting of ultrasonication followed by hydrothermal treatment and used 

for the detection of DA in the presence of AA and UA. HRTEM study revealed that the 

rGO had a size of ~ 18 nm after 16 h of hydrothermal treatment. Furthermore, the rGO 

were well dispersed in the Nf matrix under the hydrothermal process at 180 °C. The 

influence of the hydrothermal treatment time on the formation of the rGO-Nf 

nanohybrids was studied. This showed that the rGO-Nf nanohybrid formed after 16 h of 

hydrothermal treatment had a more uniform distribution than the rGO-Nf nanohybrids 

obtained after 8 h and 24 h of hydrothermal treatment, which tended to agglomerate. 

These optimized hydrothermal conditions led to the excellent electrochemical detection 

of DA, with a lower detection limit of about 102 nM (S/N=3).  

 

The results of this study demonstrated that this sample also exhibited an 

extraordinarily high sensitivity and selectivity to DA despite the interference of AA and 

UA. The as-modified electrode also shows a great potential as a sensor for DA detection 

in real sample analysis by using urine sample. Besides that, the novel GC/rGO-Nf (16 h) 

modified electrode also demonstrated an excellent performance toward the detection of 

NO, with a limit of detection of 11 µM (S/N=3) in a linear range of 0.05 to 0.45 mM. 

Moreover, this GC/rGO-Nf (16 h) modified electrode exhibited higher sensitivity of 

approximately 62 µA mM
-1

 and had a great selectivity toward NO in the presence of 

interference such as DA and AA. The combination of rGO and Nf generate a synergic 

effect, which facilitates excellent electron-transfer processes between the electrolyte and 

the GCE thus improved the sensing performance of the fabricated modified electrode. 
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In Chapter 5, a sensitive and novel electrochemical sensor was developed for the 

detection of H2O2 using GC/rGO-Nf@Ag. The GC/rGO-Nf@Ag electrode exhibited an 

excellent electrochemical sensing ability for determining H2O2 with high sensitivity and 

selectivity. The detection limit of the electrochemical sensor using the GC/rGO-Nf@Ag 

electrode for H2O2 determination was calculated to be 5.0 x 10
-7

 M with sensitivity of 

0.4508 μA μM
-1

. The coupling between rGO-Nf with AgNPs significantly boosted the 

electroanalytical performance by providing more electroactive surface area for analyte 

interaction, thereby allowing more rapid interfacial electron transfer process. The 

interfering effect on the signal response of H2O2 was studied and the results revealed 

that the sensor electrode exhibited an excellent immunity from most common 

interferents. The proposed non-enzymatic electrochemical sensor was used for 

determining H2O2 in apple juice, and the sensor electrode provided satisfactory results 

with reliable recovery values. These studies revealed that the novel GC/rGO-Nf@Ag 

sensor electrode could be a potential candidate for the detection of H2O2. 

 

In Chapter 6, the formation of AuNPs with different concentration on the rGO-Nf 

film was studied for the purpose of enhancing the electrocatalytic performance toward 

the detection of NO. The nanohybrid consisting of AuNPs and rGO-Nf was synthesized 

via a simple hydrothermal method where ammonia acted as the reducing agent for the 

formation of AuNPs and rGO. The size distribution of the AuNPs was in the range of 50 

to 200 nm with spherical in shape as proven by the FESEM analysis. As compared to 

other controlled modified electrodes, the rGO-Nf@Au nanohybrid modified GCE with 

8 mM of Au precursor demonstrated an excellent electrocatalytic activity towards NO 

oxidation. The GC/rGO-Nf@Au modified electrode exhibited a high sensitivity for NO 

with an amperometric detection limit of 5.0 x 10
-7

 M (S/N=3) with a wide linear 

response ranging from 1 µM to 0.16 mM. The high surface area of the smaller AuNPs 
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with stronger synergistic effect between AuNPs and rGO-Nf film were believed to 

contribute the enhanced electrocatalytic activity of the rGO-Nf@Au nanohybrids and 

improved the sensitivity towards the detection of NO. The rGO-Nf@Au nanohybrid 

displayed a high selectivity over common interferent molecules such as DA, AA, UA, 

glucose, urea and NaCl despite of 5-fold concentration has been used. The result of the 

reproducibility study showed that this modified electrode was highly reproducible with 

high precision. The large surface area and unique conductivity of rGO, and the excellent 

electrocatalytic activity of AuNPs were the key factors for the sensitivity and selectivity 

of the rGO-Nf@Au nanohybrid. Therefore, the GC/rGO-Nf@Au modified electrode is 

a promising candidate for highly sensitive and selective electrochemical NO sensing 

application. Moreover, the effective recovery of NO in real water sample has further 

revealed the practicability of rGO-Nf@Au nanohybrid towards detection of NO in real 

sample. 

 

Finally in Chapter 7, a novel electrochemical sensor based on rGO-Nf hybridized 

with PdNPs has been developed for the detection of L-Cys. The rGO-Nf films decorated 

by PdNPs was successfully synthesized using simple hydrothermal method where GO 

and Na2PdCl4 has been used as the precursor for rGO and PdNPs, respectively. Three 

different concentration of Pd precursor that are 3, 6 and 9 mM has been used in order to 

study how it is affecting the electrochemical sensing performance. Among three 

nanohybrids, rGO-Nf@Pd nanohybrid with 6 mM Pd precursor shows the excellent 

electro-oxidation behavior to L-Cys with highest current response under the optimum 

experimental conditions. Based on the amperometry result, the GC/rGO-Nf@Pd 

modified electrode exhibits a rapid response which is less than 2 sec and low detection 

limit of 145 nM (S/N=3) with the analytical sensitivity of 0.092 µA µM
-1

. Furthermore, 

the proposed electrochemical sensor shows an excellent selectivity toward interfering 
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elements, such as AA, UA, DA, H2O2, urea and glucose as well as good reproducibility, 

repeatability and stability. The applicability of the GC/rGO-Nf@Pd modified electrode 

has been verified as it achieved a good and reliable recovery and RSD value when 

applied for the determination of L-Cys in human urine samples. These results indicated 

that rGO-Nf@Pd nanohybrid is a good candidate of advanced electrode materials that 

could be used for more applications in the fields of bioelectroanalysis. 

 

In this research, the candidate used ammonia solution as the reducing agent for all 

three metals in the presence of particular temperature. The AgNPs and PdNPs with the 

size less than 20 nm have successfully synthesized. Meanwhile, the size of AuNPs is in 

the range of 50 to 200 nm. The particle size might vary with respect to the oxidation 

states of precursor metal ions (Au
3+

 and Ag
+
) with the same reducing agent. So the 

nucleation and growth of nanoparticles were changed during the course of the reaction. 

The concentration of reducing agent also plays a vital role in controlling the nucleation 

of nanoparticles formation. Another factor that might influence the size of particles 

formed on the rGO-Nf sheets is the types of reducing agent that has been used. In order 

to reduce the size of AuNPs, other reducing agent can be use such as sodium 

borohydride (NaBH4) because different reaction will occur if different reducing agent is 

used. 

 

It has been demonstrated in this study that the introduction of metal nanoparticles to 

the nanohybrid materials had enhanced the electrocatalytic activity of the new material 

thereby improved the sensing performance toward the detection of bioanalytes. By 

taking the advantage of strong synergistic effect between rGO-Nf films and metal 

nanoparticles, these new nanohybrid materials proven to facilitate electron transfer thus 

enhanced the electrochemical reactivity. The high surface to volume ratio and excellent 
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catalytic activity owned by metal nanoparticles proved to be valuable in increasing the 

immobilization of target analytes concentration and provide a rapid response toward the 

target analytes. Moreover, the presence of Nf in these nanohybrids improved the 

solubility and dispersibility of graphene whereas the metal nanoparticles help to prevent 

the aggregation of graphene. As a conclusion, this study has open up new possibilities 

to use the rGO-Nf films hybridized with metal nanoparticles as electrocatalysts for 

advanced electrochemical sensor applications in the future. 

 

8.2 Recommendations for Future Works 

This thesis presents the preliminary work on developing an electrochemical sensor 

for detecting various biomolecules by using rGO-Nf films incorporated with metal 

nanoparticles as an electrocatalyst. By taking the results into consideration, some 

suggestions that are worth investigating in the future for electrochemical sensor 

developments were listed below: 

1. It is believed that the structure of metal would affect the sensing performance 

in term of the sensitivity, selectivity, stability and reproducibility. This is due 

to different surface area, size and electronic properties owned by different 

structure of metal particles. Therefore, future efforts should focus on 

synthesizing rGO-Nf@metal nanohybrids with various metal nanostructures 

such as flower, cube, rod and other structures. The control synthesis of metal 

with different structure can be prepared by manipulating the pH, introduction 

of surfactant and capping agent in the reaction mixture before undergo 

hydrothermal process. 

 

2. It will be advantageous to discover how anchoring other materials like metal 

oxide (titanium dioxide, copper oxide, nickel oxide, zinc oxide and etc.) and 
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conductive polymer (polypyrrole, polyaniline, polythiophene and etc.) on the 

rGO-Nf films would affect the electrocatalytic reaction toward target 

analytes. Recent years, both materials have been proven capable to act as a 

signal-enhancing element in electroanalytical applications due to their unique 

properties such as high electrical conductivity and excellent catalytic activity. 

By taking the advantage of both materials in term of green and simple 

preparation protocol, this will reduce the production cost, thus could be an 

alternative materials in fabricating the electrochemical sensor.  
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