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ABSTRACT

In recent years, the paradigm of mobile cloud computing has been introduced to

extend capabilities of mobile devices, by taking advantage of high-speed wireless com-

munications and high-performance cloud platforms to help gather, store and process data

for the mobile devices. In this paradigm, the cloud-based mobile applications usually em-

ploy computational offloading for the augmentation of mobile device capabilities. Mo-

bile device OS vendors are focused toward native mobile applications lifecycle to im-

prove battery consumption and application execution performance. For example, Google

has introduced Android Runtime Environment (ART) featuring Ahead of Time (AHOT)

compilation to native instructions in place of Dalvik Virtual Machine (DVM) which con-

sumes extra time and energy because of the Just in Time (JIT) compilation. However,

current state-of-the-art offloading solutions do not consider AHOT compilations to native

binaries in the ART environment. To address the issue in offloading ART-based mo-

bile applications, we propose a lightweight computational offloading framework. The

lightweightedness is measured as the overhead energy consumption and application ex-

ecution time added up by the proposed framework. Further, we explain in details the

design and implementation of the proposed prototype framework. The proposed frame-

work requires infrastructural support from the remote computing platforms such as data

centers or cloudlets to provide Offloading as a Service (OaaS) for a heterogeneous mo-

bile cloud ecosystem. The proposed framework is evaluated using experimental testbed

and validated using statistical modeling. Numerical results from the testbed revealed that

the proposed framework saves almost 44% of the execution time and 84% of the energy

consumption of the experimental application used.

iii

Univ
ers

ity
 of

 M
ala

ya



ABSTRAK

Dalam tahun-tahun kebelakangan ini, paradigma pengkomputeran awan mudah alih

telah diperkenalkan untuk memperluaskan keupayaan peranti mudah alih, dengan meng-

ambil kesempatan daripada komunikasi tanpa wayar berkelajuan tinggi dan platform aw-

an berprestasi tinggi untuk membantu mengumpul, menyimpan dan memproses data un-

tuk peranti mudah alih. Dalam paradigma ini, aplikasi mudah alih berasaskan awan bi-

asanya mengambil kerja pemunggahan pengiraan untuk pembesaran keupayaan peranti

mudah alih. peranti mudah alih vendor OS memberi tumpuan ke arah aplikasi mudah

alih kitaran hayat berasal dari meningkatkan penggunaan bateri dan prestasi pelaksanaan

permohonan. Sebagai contoh, Google telah memperkenalkan gls ART menampilkan gls

AHOT kompilasi arahan asli di tempat gls DVM yang menggunakan masa dan tenaga

tambahan kerana gls JIT kompilasi. Walau bagaimanapun, penyelesaian pemunggah-

an state-of-the-art semasa tidak menganggap gls AHOT kompilasi untuk binari asli di

persekitaran ART. Untuk menangani isu ini dalam pemunggahan aplikasi mudah alih ber-

dasarkan ART-, kami mencadangkan rangka kerja pemunggahan pengiraan yang ringan.

lightweightedness diukur sebagai penggunaan tenaga dan pelaksanaan permohonan kali

overhed ditambah oleh rangka kerja yang dicadangkan. Selanjutnya, kami menerangkan

dengan terperinci tentang reka bentuk dan pelaksanaan rangka kerja prototaip yang dica-

dangkan. rangka kerja yang dicadangkan memerlukan sokongan yang padu dari platform

pengkomputeran jauh seperti pusat data atau cloudlets untuk menyediakan gls OaaS un-

tuk ekosistem awan mudah alih yang heterogen. rangka kerja yang dicadangkan dini-

lai dengan menggunakan tapak ujian eksperimen dan disahkan menggunakan pemodelan

statistik. Keputusan berangka dari tapak ujian menunjukkan bahawa rangka kerja yang

dicadangkan menjimatkan hampir 44 % daripada masa pelaksanaan dan 84 % daripada

penggunaan tenaga permohonan eksperimen digunakan.
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CHAPTER 1: INTRODUCTION

This chapter presents an overview of the research carried out in this thesis. We present

motivation in undertaking the research in this thesis and state the research problem that

is investigated and addressed in this research. Our research aim and objectives also are

presented in this chapter. Furthermore, the research methodology that is proposed to

address the research problem is described.

The remainder of this chapter is as follows. Section 1.1 presents the domain back-

ground of Mobile Cloud Computing (MCC), computational offloading, and process mi-

gration. Section 1.2 presents the motivation of research followed by Section 1.3 that

presents the identified and established research problem. We state the research aim and

objectives in Section 1.4 and describe our proposed methodology to address the research

problem in Section 1.5. Finally, Section 1.6 presents the layout of this thesis.

1.1 Background

This section describes the preliminary concepts and actors in MCE, its association with

cloud computing systems along with the essentials of computational offloading in MCEs.

1.1.1 Mobile cloud computing

The concept of MCC was introduced just after the introduction of ’cloud computing’

(Dinh, Lee, Niyato, & Wang, 2013). Since then, it has been attracting researchers from

academia and industry to improve the mobile application execution parameters such as

energy consumption, response time, and monetary cost (Abolfazli, Sanaei, Ahmed, Gani,

& Buyya, 2014; Ahmed, Gani, Khan, Buyya, & Khan, 2015; Shiraz, Gani, Khokhar, &

Buyya, 2013).

From a definition point of view, MCC is defined by (Dinh et al., 2013) as an infras-

tructure where both the data storage and data processing happen outside of the mobile
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device on a remote computing infrastructure. Currently, there are three types of deploy-

ment models in MCC ecosystem, i.e. (i) The conventional MCE, (ii) The Ad-Hoc MCE,

and (iii) The Hybrid MCE. Each of these models is briefly explained in the following

subsections.

1.1.1.1 The conventional MCE

In the conventional MCE as illustrated in Figure 1.1, the computational and storage ca-

pabilities of the smart mobile devices are augmented through stationary computing re-

sources. These resources are either provisioned through public or private datacenters or

local computing infrastructure (Satyanarayanan, Bahl, Caceres, & Davies, 2009).

CSP 1

CSP 2

CloudletCloudlet

Figure 1.1: A view of conventional MCE.

1.1.1.2 The Ad-Hoc MCE

The computational capabilities of mobile devices are increasing day by day, and these

devices can form a self-organizing mobile ad-hoc network of nearby devices and offer

their resources as on-demand services to available nodes in the network such a configu-

2
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ration is presented in Figure 1.2 . The ad-hoc MCE works on the principle of cooperation

and collaboration enhance the compute capabilities of a group of connected smart mobile

devices.

Ad-Hoc Mobile Cloud

Figure 1.2: A view of Ad-hoc MCE.

1.1.1.3 The Hybrid MCE

Hybrid MCE is an MCC system where the mobile device which has been augmented

or considered for augmentation is connected to both stationary and mobile computing

devices as explained in 1.1.1.1 and 1.1.1.2. In illustration of such an environment is

presented in Figure 1.3.

1.1.2 Actors in MCE

The ecosystem of the computational offloading process contains different types of re-

sources and may use any of them depending on availability and the scheduling decisions.

Theses resource are presented in a general MCC diagram shown in Figure 1.3. These

3
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CSP 1

CSP 2

CloudletCloudlet

Proximate Cloud

Figure 1.3: A view of Hybrid MCE.

resources lead to different actors in the ecosystems which are briefly described below.

1.1.2.1 Mobile user

The mobile device which has the application that needs remote computation and is the

subject of the computational offloading to any of the available remote resources. She

plays a direct role in offloading decision making and can influence the resource man-

agement decisions of the remote computing infrastructure on which the application is

offloaded.

1.1.2.2 Cloud provider

This actor provides infrastructure, platform, and software services to the Mobile Users for

migration of application/execution control from the end user mobile device to the cloud

computing system.

4
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1.1.2.3 Cloudlets

This Cloudlet (Satyanarayanan et al., 2009) actor is a trusted, resource-rich, and tran-

siently customized proximate computing infrastructure available to the nearby Mobile

User over one-hop network latency available for use by the nearby Mobile User.

1.1.2.4 Mobile nodes

This actor represents the resources in the local proximate mobile cloud which are based

on the formation of an ad-hoc network of mobile devices within vicinity to collectively

serve each other either by Wireless Fidelity (WiFi) or Bluetooth network interfaces.

1.1.3 Computational offloading

Smartphones gained enormous popularity in recent years, more and more new mobile ap-

plications such as face recognition, natural language processing, interactive gaming, and

augmented reality are emerging and attract significant attention (Cohen, 2008; Soyata,

Muraleedharan, Funai, Kwon, & Heinzelman, 2012). These kind of mobile applications

are typically resource-hungry, demanding intensive computation and high energy con-

sumption. Due to the physical size constraint, mobile devices, in general, have limited

computational resources and limited battery life. The tension between resource-hungry

applications and resource-constrained mobile devices hence poses a significant challenge

for the future mobile platform development (Cuervo et al., 2010).

In this context, computational offloading is a software-level solution which to some

extent mitigates the problem of resource constraint mobile devices by remote execution

of the complete or partial application at available remote computing infrastructure (Chun

& Maniatis, 2009; Kovachev, Cao, & Klamma, 2012). Previously it experiments that

remote execution can potentially reduce the power consumption and execution time for

applications executing on weak smart mobile devices (Chun & Maniatis, 2009). The

computational offloading frameworks manage the remote execution of mobile cloud ap-
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plications.

A basic computational offloading architecture as illustrated in Figure 1.4 is com-

posed of a client subsystem configured and executed on the mobile device and a server

subsystem executing in the remote cloud infrastructure (Chun, Ihm, Maniatis, Naik, &

Patti, 2011; Cuervo et al., 2010). The client subsystem performs three major tasks to

optimize the net system utility i.e. i) The client subsystem observes and estimates the

network performance metrics for the mobile device. ii) The client subsystem monitor,

estimates, and analyze the resource requirements of mobile applications regarding CPU

time on both the mobile device and the cloud server. iii) Using information from the pre-

viously explained two tasks the client subsystem decide to migrate a mobile application

to execute in the remote cloud infrastructure so that the total application execution time

is minimized (Shi et al., 2014). The server subsystem is explained in the next subsection.

Wireless 

MediumApplication Migration Client Sub-system

Mobile 
Application

Monitoring
Migrate 

Application

Application Migration Server Sub-system

Schedule Execute Response

Figure 1.4: Computational offloading sub-systems in MCE.

1.1.4 Cloud computing and computational offloading as a service

Cloud computing is a business model introducing a XaaS service delivery model while

simultaneously charging using an on-demand pay-as-you-go method and deployed across

different deployment models (Mell & Grance, 2011). Cloud computing systems revolu-

tionize the business life cycle by reducing the capital investment in infrastructure while

maintaining additional focus on business services and strategies(Yousafzai, Chang, Gani,

& Noor, 2016b). Given these prominent features, and the penetration of battery con-

strained smart and ubiquitous mobile devices, cloud computing systems expands into the

business model of MCC. Cloud computing offers it services (i.e. infrastructure, platform,
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or software) to the mobile device such that the mobile devices consume these services to

migrate a mobile application for battery saving and improvement in execution time.

The server subsystem as introduced in the previous section 1.1.3 also illustrated in

Figure 1.4 is provisioned through OaaS service delivery model. The OaaS computational

offloading service on the cloud side executes the migrated application straight away after

receiving the migrated application and returns the execution results or execution state to

the client sub-system so that the application can be resumed on the mobile device.

1.1.5 Process migration

Process migration is the act of transferring an active running process between two ma-

chines and restoring the process from the point it left off on the selected destination node

(Vasudevan & Venkatesh, n.d.). In conventional distributed environments such as clus-

ter and grid computing environments process migration is utilized to load balance, fault

recovery, resource sharing. The underlying technique behind process migration is check-

pointing. Checkpointing consists of saving a snapshot of the application’s state so that

it can restore/restart from that point in case future. This is particularly important for the

long running application that is executed in a vulnerable computing system. The most

basic way to implement checkpointing, is to stop the application, copy all the required

data from the memory to reliable storage (e.g., Parallel file system) and then continue

with the execution (Plank, Beck, Kingsley, & Li, n.d.). In this thesis, we exploit this con-

cept for an MCE and migrate an application from resource-constrained mobile device to

resource-rich remote computing platforms.

1.2 Research motivation

Local execution of compute intensive mobile applications on mobile devices via native

resources either is impossible or leads to fast battery drainage due to native resource

incapacitation. Thus, empowering computing capabilities of mobile devices become vital
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necessity to realize uninterrupted execution of compute intensive computations on mobile

devices without quick battery drainage, which is possible by exploiting the computing

power of remote computing infrastructure.

Compute intensive mobile applications that require intensive computational resources,

particularly CPU, RAM, storage, and battery to complete the expected resource intensive

computing operation. For instance, image processing applications, 3-D rendering ap-

plications, and video editing applications are exemplary compute intensive applications.

Functionality and operations of compute intensive applications are currently limited due

to resource scarceness of mobile devices. Execution of existing compute intensive appli-

cations immediately drains the mobile battery that significantly degrades the quality of

user interaction. Hence, mobile resource augmentation becomes necessary.

In recent years, MCC paradigm has been introduced to augment (extend) the capa-

bilities of mobile devices, by taking advantage of high-speed wireless communications

and high-performance cloud platforms (Chao & Sun, 2013) and (Lloret, Garcia, Tomas,

& Rodrigues, 2014) to help gather, store and process data for the mobile devices (Rahimi,

Ren, Liu, Vasilakos, & Venkatasubramanian, 2014) and (Kumar, Liu, Lu, & Bhargava,

2013). In this new paradigm, Android-based smartphones have opened real-world venues

for cloud-based mobile applications mainly because of the open source nature of Android.

However, most of the computational augmentations mechanism empowering Android-

based smartphones depends upon the application runtime environment in the Android

stack.

For a mobile device, the simplest means of augmentation is using mobile cloud

through service-oriented or client/server patterns. Such augmentation is feasible assum-

ing that the requested service, or application source code, or application binaries are avail-

able on the server. Despite its simplicity, this approach may result in computational losses

and increasing waiting times in case of network disconnection or service disruption. The
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most common computational offloading mechanism is code migration, which migrates

intermediate level instructions between a mobile device and a server. These intermedi-

ate level instructions must be executed on the same type of Application Level Virtual

Machine (ALVM) (i.e., DVM) on both the mobile device and server. The literature also

reveals offloading mechanisms that consider thread-state migration or thread-state syn-

chronization. Both code migration and thread-state synchronization are highly dependent

on ALVMs. That is, the computational offloading mechanisms of Android-based smart-

phones depend on DVM. This dependency invalidates the offloading mechanisms for the

newly launched ART. Apart from being a discontinued product, DVM consumes extra

time and energy because of the JIT compilation of DEX bytecode into machine instruc-

tions upon every invocation. With regard to this problem, Google has introduced ART

featuring AHOT compilation to native instructions in place of DVM. ART has obvious

benefits regarding execution time and battery consumption. ART uses AHOT compila-

tion to transform device-independent DEX code into device-specific machine binaries (F.,

2014).

1.3 Statement of the problem

In MCC, empowering computing capabilities of mobile devices, especially smartphones

and fulfilling required computational resources of compute intensive mobile applications

typically undertaken by offloading the compute intensive parts of the application to re-

mote computing infrastructures. Most of these offloading techniques leverage the under-

lying application environments which provides the abstractions of machine-independent

intermediate codes which can be migrated to and forth between the mobile device and

remote computing devices. However, mobile device vendors are dropping these appli-

cation execution environments to improve application performance and device battery

life. Apple iOS is already following the native application execution mode and Google
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recently introduced Android Runtime (ART) in favor of its the Dalvik runtime (DVM) en-

vironment. ART features ahead of time (AHOT) compilation to device specific binaries

(Google, 2013), to improve application execution performance and battery consumption

(Buckley, 2013). The obsolescence of DVM creates a gap as all migration primitives (e.g.

Method or Thread Based) or any other, based on DVM are not compatible with Android

ART. Therefore, to enable application migration for current and future Android releases a

process level migration (which is platform dependent) is required. The process migration

based offloading mechanism should transparently migrate a running application (process)

from resource-constrained mobile device to resource-rich computing infrastructure where

the application source code is neither required and can be annotated or not.

1.4 Statement of objectives

In this research, we aim to propose a computational offloading mechanism for the Android

Runtime Environment for efficient execution of compute-intensive mobile applications in

the resource-scarce mobile environment. We define following objectives that are to be

achieved to attain the aim of this research.

1. Review the computational offloading frameworks in MCC for acquiring the insight

on the state-of-the-art concerning migration mechanism during the execution and

migration of mobile application on remote infrastructure.

2. Investigate the computational offloading in general and then investigate the major

existing computational offloading mechanisms that can be used to migrate a mobile

application to the remote infrastructure.

3. Design and develop a lightweight process migration based computational offload-

ing solution to minimize the execution time,energy consumption and improve the

compute power of the mobile device.
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4. Evaluate the execution performance of the proposed lightweight process migration

based computational offloading framework from two views of application execu-

tion time, energy consumption and compute power via experimental testbed on an

Android-based smartphone.

5. Validate the results of performance evaluation of the proposal framework based on

execution time and energy consumption using statistical analysis.

1.5 Proposed research methodology

We review the credible research efforts in Chapter 2 to gain insight into the computational

offloading mechanism domain and determine the significant weaknesses and shortcom-

ings of the recent mobile empowerment approaches. We review recent literature collected

from online scholarly databases, particularly IEEE, ACM, Elsevier, and Web of Science

to identify inefficiencies of computational offloading mechanism domain and identify the

most critical inefficiency to address in this research.

In Chapter 3, we analytically analyze the identified inefficiency in the existing com-

putational mechanisms to demonstrate its significance on efficient computational offload-

ing mechanisms. For this purpose, experimental applications are designed to demonstrate

the research gap, and the impact of existing computational offloading mechanism on ap-

plication execution response time, application energy consumption time and data transfer.

In next phase of the research, Chapter 4 proposes a transparent, lightweight process

migration based computational mechanism that enables the native mobile application to

migrate transparently from mobile device to remote computing infrastructure and vice

versa. The aim of the proposed solution is to minimize the execution time and energy

consumption of an application and increase the compute power of the mobile device in

an MCE. The execution time is minimized by exchanging the checkpointed process from

the mobile device to remote device, where the execution is resumed on the server side.

11

Univ
ers

ity
 of

 M
ala

ya



The process is than re-checkpointed on the server side and are re-synchronized back with

the mobile device and restarted. Furthermore, the lightweightedness is measured as the

overhead energy consumption and application execution time added up by the proposed

framework in total energy consumption and total application execution time of the exper-

imental applications.

We implement and evaluate the proposed framework in a real MCC testbed the de-

tails are in listed in Chapter 5 and Chapter 6. A set of standard computation benchmarks

along with a prototype matrix multiplication application are utilized to evaluate the pro-

posed framework. We synthesize the time and energy results of execution using our

framework with the results of local execution on the mobile device. Moreover, we build a

statistical model to validate the results of performance evaluation. The statistical model is

generated using linear regression model which is a predominant observation-based mod-

eling method. The statistical model is validated using split-sample validation approach.

The statistical regression model is also validated against empirical results.

1.6 Layout of thesis

This thesis is a detailed study on "A Lightweight Process Migration based Computational

Offloading Framework for Mobile Device Augmentation" therefore the thesis has been

organized into chapters for a clear understanding of the matter. This thesis is composed

of seven chapters that are organized as follows:

• Chapter 2 presents a review of the state-of-the-art computational offloading frame-

works proposed for MCC and investigates the critical aspects of the frameworks

with respect to migration mechanism issues due to user mobility. We also clas-

sify the frameworks and devise a taxonomy. The frameworks are compared on the

basis of the parameters derived from the thematic taxonomy. The open research

issues to computational offloading frameworks are also identified and discussed in
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the chapter.

• Chapter 3 analyzes the computational offloading in general in a MCE. The com-

putational offloading mechanisms based on migration mechanisms is also studied.

The analysis shows that the state-of-the-art frameworks lack features to handle the

to migrate an ART-based mobile application on a cloud server. The research gap

is being experimentally demonstrated, and a proof-of-concept process migration

mechanism is presented to show the impact of process migration on application

execution time in MCE.

• Chapter 4 presents a lightweight process migration based computational offload-

ing mechanism that aims to solve the issue of computational offloading for native

mobile applications during the execution of the application in MCC. It explains the

architecture and algorithms of the proposed solution. The distinct features of the

proposed solution are also highlighted and discussed.

• Chapter 5 reports on the data collection method for the evaluation of the proposed

solution. We explain the tools used for evaluating the proposed solution, data col-

lection technique and the statistical method used for the data processing.

• Chapter 6 presents the effectiveness of the proposed solution by analyzing the ex-

perimental results reported in Chapter 5. It analyses the different aspects of the

proposed solution regarding application execution time, energy consumption, com-

pute power, and contributing factors. The performance of the proposed solution is

also compared with the state-of-the-art solutions in various scenarios.

• Chapter 7 concludes the thesis by reporting on the re-examination of the research

objectives. It summarizes the findings of the research work, highlights the signifi-
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cance of the proposed solution, discusses the limitations of the research work and

proposes future directions for this research.
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CHAPTER 2: LITERATURE REVIEW

Computational offloading in MCE is a hard problem, due to the complexity of modern

mobile applications and their inter-dependencies; the heterogeneity between the mobile

devices and the cloud infrastructure; the unpredictability and variability of the wireless

connectivity; as well as the range of objectives of the actors in a mobile cloud ecosys-

tem. Consequently, the problem has received a considerable amount of attention from

the research community. This chapter presents an overview of computational offloading

and its principal requirements using the taxonomy of issues on the client(mobile) device

subsystem along with a taxonomy of computational offloading functions. Furthermore,

we surveyed the recent literature and highlighted the key insights. Based on our analysis,

we identify eight challenges for future investigation. These relate to energy efficiency;

providing a better migration mechanism; mobility assisted server to server computational

offloading; computation security on the server; understanding economic and motivational

behavior for cooperation based mobile clouds; automatic application partitioning; parti-

tion scheduling for scalable resource management; and improved ARM emulation on the

cloud side.

The remainder of this chapter is as follows. Section 2.1 presents computational of-

floading issues on the mobile device using a taxonomy. Section 2.2 present a taxonomy

of computational offloading framework functions. The state-of-the-art computational of-

floading frameworks based on varied resources and the comparison is presented in section

2.3 and section 2.4, respectively. Major open research challenges are presented in section

2.5 and finally the chapter is concluded in section 2.6

2.1 Taxonomy of computational offloading issues in the client subsystem

Figure 2.1 presents the technical issues on the client subsystem using a taxonomy and pro-

vide a brief description about the issues and their underlying effects on the computational
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offloading process.

Application Migration issues in the client sub-system

Mobile Device Issues Networking Issues Application Issues

Heterogeneous OSs

Small Screen

Computing Power

Limited Memory

Limited Battery

Non volatile Capacity

Display Resolution

Protocol  Diversity

Multiple Execution Formats 

Local Resource Access

Bandwidth

Reliability

Heterogeneity 

Latency

Ad Hoc Cloud Management

Formation and Incentive 
Management

Device  Heterogeneity &
Interoperability

Monitoring

Performance 
Monitoring

Esitimation

Application Analysis

Figure 2.1: Taxonomy of computational offloading issues on the client subsystem in
MCE.

2.1.1 Mobile device issues

This mobile device issues presented in Figure 2.1 are actually the reasons and motiva-

tions for the computational offloading concept in mobile computing. The limitations of

the mobile device are due to the small form factor of mobile devices; the number and the

potential of mobile device resources are limited, such as low battery life, storage, input

methods, and screen sizes. The existing battery technology is not developing quickly (or

accordingly) compared with the rapid evolution of the memory and CPU power. The pro-

cessing of compute-intensive mobile application depletes battery quickly. Consequently,

the limited battery necessitates the design of energy-efficient hardware, protocols, algo-

rithms, and architecture for mobile environments. Another issue is device heterogeneity

due to different software (operating systems) and hardware architectures. Thus, the same

mobile application should be processed/tailored transparently and optimally for the users

according to the functional and systematic characteristics of mobile devices (Luo & Shyu,

2011).
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2.1.2 Networking issues

The dynamics of the wireless networks shown in 2.1, which affect the behavior of a

computational offloading mechanism. For instance, the synchronization interval between

applications execution on two end points can be effected by this issue cause a decrease in

Quality of Service (QoS)/Quality of Experience (QoE) and cloud system throughput also.

2.1.2.1 Low bandwidth

Low bandwidth is one of the challenging problems, which may deteriorate the computa-

tional offloading ecosystem. The computational offloading decision is a trades off com-

munication cost for computation gain. However, bandwidth in wireless radio networks

is significantly scarcer than in wired networks. Thus, the communication cost may be

higher, while the computation gain will be lower. Moreover, the network and execution

prediction may be inaccurate, causing the performance of these systems to be degraded.

2.1.2.2 Network reliability

Reliability of the wireless network is an important issue given that the QoE of migrating

applications strongly depends on the long-lasting network connectivity with an adequate

bandwidth, packet loss, jitter, and delay. A mobile application depends on the access

network and may be prevented from connecting to the cloud provider because of flow

congestion and failures, which are habitual with wireless radio networks. This discon-

nection is recurrent in places, such as subways and tunnels, and providing a reliable wire-

less connectivity that is scalable and cost efficient while the learner is commuting is a

challenge.

2.1.2.3 Heterogeneity

The users behind the smart handheld devices can migrate the application via a range of

radio interfaces available on the device, such as General Packet Radio Service (GPRS),

17

Univ
ers

ity
 of

 M
ala

ya



Long Term Evolution (LTE), WiFi, and WiMax. In such heterogeneous network availabil-

ity, deploying an efficient connectivity algorithm on the computational offloading client

subsystem and server subsystem becomes imperative, which allows the users to perma-

nently stay connected as well as seamlessly and transparently switch established network

connections from one interface to another while staying connected/attached to the server

subsystem.

2.1.2.4 High access latency

Longer access latencies in wireless radio networks are a major barrier faced by computa-

tional offloading in MCE. Longer delays and connection interruption significantly dete-

riorate the QoS and QoE of the mobile application. Humans are sensitive to this quality

deterioration caused by jitter and longer delays that are tough to regulate in the wire-

less and Wide Area Network (WAN). Conversely, bandwidth is significantly enhanced in

modern access networks; latency is unlikely to improve (Bourguiba, Agha, & Haddadou,

2012).

2.1.3 Application issues

Besides the structural and architectural computational offloading issues discussed in the

above subsections. The application itself is a matter to be considered due to its com-

plexity such as protocol diversity, packaging mechanism, access to local mobile device

hardware, and linkage with local libraries. In addition to these, the most important issues

with respect to the application are whether the application is available as a compiled in-

termediate code to be executed on an ALVM or the application is compiled in a binary

executable packaged as Executable and Linking Format (ELF).
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2.1.3.1 Protocol diversity

On the application layer Transmission Control Protocol (TCP) and User Datagram Pro-

tocol (UDP) are used to transport packets between connected devices. In a MCE, mobile

applications may utilize different transport protocols depending upon their requirement.

Further from a communication point of view the computational offloading transaction can

be either performed using an RPC or SOAP based mechanism. This diversity in protocols

poses an issue for a comprehensive computational offloading system for mobile devices.

2.1.3.2 Multiple execution formats

The applications on mobile devices are available in multiple execution formats. Such as

applications which run in an ALVM. These applications are relatively easy for migration.

Another format is the native compiled mobile application. Natively compiled application

are platform dependent and requires homogeneous hardware and software platform on

the server side. The last format is about interpreted applications, this may involve bash

scripts, Perl or any other system shell.

2.1.3.3 Local resource access

Local resources can be of two type i) hardware resources like(sensors, camera, micro-

phone) and, soft resources such as shared libraries. The application calling for this re-

sources may hinder and deteriorate the computational offloading process. Careful consid-

eration is required to tackle this aspect of applications while designing a computational

offloading system.

2.1.4 Monitoring

Monitoring and analyzing the mobile application, system utilization, and network per-

formance is a critical issue which needs to be addressed while designing a computational

offloading system. The monitoring data is used to decide dynamic partition sizes, offload-
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ing decisions and long-term planning of the computational offloading system. However,

monitoring also comes with an overhead energy consumption and compute capacity shar-

ing due to the execution of the monitoring application on the computing infrastrcuture.

If exhaustive monitoring is performed it might provide best offloading decisions but the

net benefit may be outnumbered due to the energy consumed by the monitoring process

itself. Careful consideration is required while addressing this issue.

2.1.5 Ad-hoc mobile cloud management

When the computational offloading system opts for utilizing the ad-hoc mobile cloud

resources, it becomes extremely important to manage the ad-hoc cloud resources. There

are two key management issues

2.1.5.1 Formation and incentive management

Mobile devices are becoming powerful day by day and can form a self-organizing mo-

bile ad-hoc network of nearby devices and offer their resources as on-demand services

to available nodes in the network. In the ad-hoc mobile cloud, devices can move af-

ter consuming or providing services to one another. During this process, the problem

of incentives arises for a node to provide service to another device (or other devices) in

the network, which ultimately decreases the motivation of the mobile device to form an

ad-hoc mobile cloud.

2.1.5.2 Heterogeneity and interoperability

The mobile device differs in their underlying hardware and software platforms. This

difference emerges the issue of heterogeneity and interoperability. In case, when a mobile

device is consuming and providing service in an ad-hoc MCE, then it is necessary to

understand and model the behaviors such that the computational offloading system is

interoperable (Yousafzai, Gani, et al., 2016; Yousafzai, Chang, Gani, & Noor, 2016a).
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2.2 Taxonomy of computational offloading Functions in MCE

In this section, we outline the main functionalities embodied in computational offloading

systems for MCE using a thematic taxonomy illustrated in Figure 2.2. The taxonomy

represents the decomposition of steps involved in a computational offloading system de-

picting logical functional elements which are required by any computational offloading

mechanism. These functional elements should coordinate to provide a complete appli-

cation solution in line with migration objectives. A brief discussion on each of these

computational offloading function is presented in the subsequent subsections.

Link Selection
Application 
Partitioning

Resource 
Discovery

Migration 
Decision

Migration 
Mechanism

VM Migration

Code Migration

Thread 
Synchronization

Special Migration 
Runtimes

Network-aware

Energy-aware

Cost-aware

Deadline-aware

Static

Dynamic

Peer-to-Peer

Centralized

Decentralized

Static

Dynamic

MCDA

Deployment 
Model

Conventional MCE

Ad Hoc MCE

Hybrid MCE

Computational offloading functions in mobile cloud environment

Figure 2.2: Taxonomy of computational offloading functions in MCE.

2.2.1 Migration mechanism

A migration mechanism is the techniques which define the underlying granularity or ab-

straction through which the application data and application code is bundled and trans-

ferred from one device to another device for remote execution of the application. Current

state-of-the-art computational offloading mechanism’s achieves the remote execution of

application either using Virtual Machine (VM) Migration, Code Migration, or Thread

Migration.
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2.2.1.1 VM/Phone clone migration

VM/Phone clone migration use virtualization technology to keep a synchronized mirror

for each connected smartphone on a computing infrastructure allowing some operations

to be performed directly on the mirror. A high-level diagram of components and mech-

anisms involved in VM based augmentation of the mobile device is presented in Figure

2.3. In essence as presented in Figure 2.3, cloud-based smartphones augmentation using

VMs/phone clones either delivers and obtain an overlay image (the difference between

two consecutive VM images) or a replay trace to and from the computing infrastructure.

Via the overlay, smartphones synchronize part of execution on the remote VMs and vice

versa. However, this mechanism is being hindered by the amount of data transfer (Hung,

Shih, Shieh, Lee, & Huang, 2012).

Make Phone image or overlay 
image

Deploy Phone Image

Record Phone Events Trace for 
replay 

Replay Event Trace

Computing 

Infrastructure

Deploy Phone Image

Make VM image or overlay 
image

Replay Event Trace

Record Phone Events Trace for 
replay 

User’s Phone

Virtualized Phone

Figure 2.3: VM based augmentation of mobile devices.

2.2.1.2 Code migration and delegation

The most popular and common technique to leverage the computational power of cloud

from mobile devices is delegating code execution to remote cloud servers either by mi-

grating the platform independent intermediate code or use a service oriented client/server
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Figure 2.4: Remote execution using code migration and delegation.

setup. An illustration of code migration and remote execution is presented in Figure 2.4.

In this figure the difference between the code migration and remote execution via plain

client/server or SOA fashion is clearly presented. In code migration, in case the server

is disconnected or not available the mobile application can be re-executed locally on the

mobile device while in the SOA fashion the execution halts until the service become

available, in both these fashion upon interruption the remote computation performed is

lost.

2.2.1.3 Thread state migration

In MCE, thread migration is the migration of low-level thread state (heap contents, stack,

descriptors, register values) from one ALVM (e.g. DVM, Java Virtual Machine (JVM),

.Net Runtime) to an ALVM residing on a remote computing devices. A generalized view

of thread migration is presented in Figure 2.5. The thread synchronization can cause a

lot of compute and energy overhead in the mobile devices as the ALVMs need to heavily

modified in order to synchronize threads between the two connected endpoints.
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Figure 2.5: Generalized representation of thread synchronization used in MCE.

2.2.2 Migration decision

This is the objective function which actually triggers the process of computational of-

floading. Migration decisions are dependent upon the resources discovered, the link se-

lected, partition size and the objective of the migration. Current state-of-the-art computa-

tional offloading mechanism either employs a network aware, energy aware, cost aware,

or deadline aware computational offloading decision mechanism (energy efficiency, or

response time minimization). Migration decision is agnostic to the migration primitive.

2.2.3 Application partitioning

Application partitioning is a technique of splitting up the application into separate compo-

nents, while preserving the semantics of the original application(Liu et al., 2015). Com-

putational offloading may use partitioning of the mobile application to divide a mobile

application into separate discrete partitions, which can be executed independently in a

distributed MCE. The original mobile application source may or may not be designed,

implemented to be partitioned; this depends upon the migration mechanism, which is

being used. Partitioning of the mobile application is a pre-phase of computational of-

floading in the contemporary computational offloading systems for MCC. The current
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state-of-the-art computational offloading mechanism requires either a static application

partition scheme or a dynamic application partition scheme. The static application par-

tition scheme is defined by the programmer through annotations and other programming

skeletons; in addition, for already developed applications, the application needs to be

modified and recompiled for partitioning. On the other hand, in the dynamic application

partitioning scheme the application partitions are determined on run-time and the already

developed application does not need modification.

2.2.4 Resource discovery

In the context of computational offloading in MCE, resource discovery activity involves

searching for the appropriate cloud resource/service, or ad hoc mobile node, that match

the requirements of applications which is being migrated. The resource discovery meth-

ods can be engineered based on various network models including centralized, decen-

tralized, and peer-to-peer with varying degree of cost, scalability, fault-tolerance, and

performance (Ranjan & Buyya, 2009).

2.2.5 Link selection

Modern mobile devices are equipped with multiple radio interfaces, e.g. WiFi, Bluetooth,

and 3G/4G network interfaces. In order to migrate an application from the mobile device

to the remote computing the device can employ any of these interfaces. The link deci-

sion can be either static (locked to a single interface) or dynamic where the selection of

interface is based on an objective or based on a multi-criteria decision analysis (Drissi &

Oumsis, 2015).

2.2.6 Deployment model

As previously described in Section 1.1.1 MCC systems can be deployed in three different

deployment models. The computational offloading mechanism strictly depends upon the
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deployment model as with the change in deployment model may force the administrators

to change the computational offloading mechanisms. For instance in ad-hoc MCE, the

VM migration based computational offloading is not practical due to the fact that current

virtualization technologies for mobile devices are in infancy (Gu & Zhao, 2012). Further-

more, the data transmission overhead of VM migration(due to VM image sizes) restricts

its practicality and can not be beneficial in highly mobile ad-hoc mobile clouds or low

bandwidth mobile clouds.

2.3 State-of-the-art computational offloading mechanisms in MCE

In this section, we review the state-of-the-art computational offloading mechanisms in

MCE.

2.3.1 AlfredO

AlfredO (Rellermeyer, Riva, & Alonso, 2008) depends on the R-OSGi (Rellermeyer,

Alonso, & Roscoe, 2007; Alliance, 2009) a device agnostic, distributed, and loosely

coupled Java based middleware. From architectural point of view, AlfredO provides a

multi-tier service architecture, consisting of the presentation tier, logic tier, and data tier.

AlfredO envision to utilize mobile phones as generic interfaces to remote computing de-

vices, while preserving security to some extent. AlfredO distributes Java applications

using Service Oriented Architecture (SOA) to be executed by the R-OSGi framework.

The application components are dynamically distributed multiple remote computing re-

sources within the boundaries of the defined tiers. As the framework is based on R-OSGi

and OSGi, it requires the mobile device to be equipped with JVM, and support the con-

cepts of R-OSGi. Furthermore, AlfredO restricts it applicability as it requires the appli-

cation developers to provide a static application partitioning scheme for local and remote

executions. Therefore, a fine-grained dynamic partitioning is not possible with AlfredO.
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2.3.2 Misco

Misco (Dou, Kalogeraki, Gunopulos, Mielikainen, & Tuulos, 2010) employs a MapRe-

duce (Dean & Ghemawat, 2008) programming model to execution tasks. MapReduce

splits tasks into similar sub-tasks and executes them in a parallel fashion. The MapRe-

duce task execution takes place in two phases i.e. a map phase, and a reduce phase. Map

phase yields in intermediate results while, the reduce phase, aggregates the intermediate

results for the final solutions. The Misco server component, enables the end mobile users

to submit new tasks through a web interface, while multiple mobile worker nodes process

these tasks. At a particular time, an individual worker node executes either a single map

or reduces task. From a computational offloading perspective, the underlying difference

between Misco and other described frameworks is the way how tasks are submitted and

managed. Due to the centeral Misco server, the framework is prone to single point of

failure. Misco is developed in Python while ensuring a compatibility interface with ex-

isting computational offloading systems. Regardless the fact that Python is lightweight

and does not have a drastic resource consumption impact on mobile devices, it is still a

challenging and costly task to port existing mobile applications to this framework.

2.3.3 MAUI

The main goal of MAUI (Cuervo et al., 2010) is to be as energy efficient as possible.

MAUI prototype introduced by the author is for instance limited to Microsoft .Net run-

time environment (an ALVM). MAUI employs a method-level granularity to migrate the

.Net Common Language Runtime (CLR) machine independent code. Methods that might

need to be offloaded are annotated as remote. The offloading decision is made through

an optimization framework considering current network dynamics, or the cost (regard-

ing energy and time) required to migrate a method annotated as remote. MAUI main

focus is on the migration mechanism part (similar to our research objective) and not on
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details on how to manage server resources and network issues. If the connection to re-

mote server is lost, MAUI restart the computation on local device, resulting in a delay

and computation lost. MAUI utilized a profiling and solver model, where all executions

are monitored and are recorded by the profiler. The historical data is then utilized as in-

put for the optimization solver to take the offloading decisions. The most distinguished

feature of MAUI is its simplicity and does not require any apriori knowledge to make use

of MAUI. However, a limited few internals need to be known by the application develop-

ers to utilize the computational offloading framework. Albeit MAUI is prototyped in the

.Net programming language, but the concept can be easily adapted to other programming

environments. However, it is time consuming and costly and may not be of interest for

platform and application vendors. Lastly, if MAUI is ported to other programming envi-

ronments, compatibility issues needs to be addressed for cross-platform communications.

2.3.4 CloneCloud

CloneClouds (Chun et al., 2011) aims to offload a compute intensive task to platform

clones residing in the remote computing infrastructure to minimize the application exe-

cution time and energy consumption on the mobile device. The cloned VM in the cloud

need to be as similar to the mobile device as possible both from architectural point of

view and contents. CloneCloud can operate on and is able to offload unmodified appli-

cations, by utilizing a mixture of static and dynamic application partitioning algorithms.

The static analysis of application intermediate code is to store migration and reintegra-

tion points based on three properties. First, the partition must not contain device specific

feature calls. Second, the partitions methods which access native resources needs to be

executed only on the local device. Lastly, nested partitions are not permitted. The dy-

namic analysis is performed for cost estimation of the application partitions using various

execution characteristics. On the basis of the collected data, the optimization solver exer-
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cise the offloading decisions. The CloneCloud prototype is based on DVM and Android.

Therefore, theoretically CloneCloud is able to operate on every DVM based Android mo-

bile application. The migration and reintegration markers are incited using special DVM

commands, introduced into DVM. Therefore, for CloneCloud, it is necessary to provide

a modified DVM version, which brings in computational overhead to the DVM in terms

of energy consumption and application execution time overhead.

2.3.5 ThinkAir

ThinkAir, introduced by (Kosta, Aucinas, Hui, Mortier, & Zhang, 2012), amalgamate

the concepts of CloneCloud and MAUI and, while introducing the notion of scalability,

in the amalgamate model. ThinkAir dynamically allocate cloud resources by dynamic

initiation and termination of VMs. ThinkAir objective was to dynamically adapt accord-

ing to workload variations such that the the performance of applications is increased and

energy consumption is minimized. ThinkAir provides a static partitioning mechanism

like MAUI. (Kosta et al., 2012) prototype has been developed for Dalvik and is based

on Android. It eliminates the limitations induced from CloneCloud by combining the

approaches from MAUI and CloneCloud. However, it incurs the VM provisioning over-

head.

2.3.6 Cuckoo

Cuckoo (Kemp, Palmer, Kielmann, & Bal, 2012), a computational offloading framework

with a slightly different goal compared to CloneCloud or ThinkAir. The main focus of

Cuckoo is to achieve a transparent integration in the application development life-cycle

and in Integrated Development Environment (IDE)s to enhance the ease in application

development. Cuckoo does not utilizes a hardware level VM. Instead, it works with JVM,

which can be provisioned low server resources. Cuckoo does not requires the same par-

titions to be executed locally and remotely. The IDE produce interfaces for the remote

29

Univ
ers

ity
 of

 M
ala

ya



partitions of the application. The application developers can either choose the same im-

plementation or provide different implementations for the partitions depending on the

locality of partitions where it would be executed. As a matter of fact, during the process

of compilation, the resulting application will contains a library embodying the remote

parts. In general, Cuckoo seems more efficient than executing the same implementations

on all platforms without the possibility to optimize it for certain platforms. On the other

hand, Cuckoo does not fulfill the requirement of an easy migration of applications to the

cloud.

2.3.7 COSMOS

COSMOS (Shi et al., 2014) a VM-based computational offloading approach for Android

aims to provide OaaS for minimizing offloading costs. COSMOS unlike other systems

such as CloneCloud consolidate the workload to as few VMs as possible. COSMOS han-

dle this allocation and scheduling problem by introducing a Master server, which manages

all available resources and can prevent workload spikes. The migration mechanism has

not been described in detail. However, the COSMOS concepts eliminate the delay for

starting new resources due to the Master server and focus on cost minimization due to a

smart control of the resources. Lastly, due to the centralized server COSMOS are prone

to single point of failure.

2.3.8 Hyrax

Hyrax (Marinelli, 2009) leverages local nearby mobile devices to from a cluster of mo-

bile devices to run compute intensive tasks. Hyrax utilizes the fault tolerance principles of

Hadoop to tackle the intermittent disconnections of highly mobile proximate devices. In

the case, where proximate mobile cluster resources are not sufficient, Hyrax provides ac-

cessibility functions to augment the computational capabilities of the cluster through the

remote clouds. The Hyrax server employs two client side processes of MapReduce, to
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coordinate the execution of process on a mobile device cluster. The mobile devices con-

nect to the server and other mobile devices via WiFi technology over an adhoc settings.

The Hyrax seamlessly uses distributed resources and provides interoperability across the

heterogeneous proximate mobile cloud platform. However, the Hyrax has high computa-

tional overhead because of the complexity of Hadoop system.

2.3.9 VM-based cloudlet

VM-based cloudlet (Satyanarayanan et al., 2009), address the limitations of computa-

tional offloading caused by network dynamics (WAN latency, jitter, packet losses ) using

a resource rich computing infrastructure in geographical proximity. VM-based cloudlet

reduces latency and provides a single hop, high bandwidth wireless access to the nearby

mobile devices. Cloudlets provides before use modifications and after use restoration to

initial state, ensuring the infrastructure stability. Cloudlets utilizes the dynamic VM syn-

thesis approach to synchronize the mobile device and VM residing in the cloud. Dynamic

synthesis approach sends a small VM overlay to the cloudlet that already has the base

VM from which the overlay VM was derived. The cloudlet infrastructure then derives the

launching VM by applying the overlay to the base VM. The approach reduces the VM

migration overhead caused by large VM image sizes. Moreover, the performance of dy-

namic synthesis is further improved by employing parallel processing and by employing

caching and pre-fetching techniques. However, privacy and access control are issues with

the migration of entire application execution environment that needs to be addressed.

2.3.10 COMET

COMET (Gordon, Jamshidi, Mahlke, Mao, & Chen, 2012) aims on the transparent mi-

gration of the multi-threaded DVM-based Android applications to the remote comput-

ing platforms. The framework takes a runtime offloading decision while considering the

workload of machines and the characteristics of the application. COMET leverage the
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benefit of Distributed Shared Memory (DSM) techniques to share the resources and main-

tain the consistency among the endpoints. Multiple threads of application in COMET can

simultaneously coordinate on a field granularity level in order to handle the reader and

writer consistency (Courtois, Heymans, & Parnas, 1971). COMET constitute a through-

put optimized scheduler which migrates the threads between the endpoints. The scheduler

utilizes the historical behavior of thread execution in offloading decision process. The

historical behavior is captured by constant monitoring about how long a thread executes

on local mobile device without calling a native method. COMET provides transparent

and seamless migration of partial and multiple threads of an application. However, the

framework does not consider the security concerns and generates huge volume of network

traffic.

2.3.11 Virtual smartphone

Virtual Smartphone over IP(Chen & Itoh, 2010) provision a user to initialize an Android

VM, which we call Virtual Smartphone (VSmart), in the cloud. The VM act as a ded-

icated remote execution environment of the user’s physical smartphone. The end user

can offload an entire mobile application to the VSmart VM and manage the applica-

tion through remote desktop sharing such as VNC (Richardson, Stafford-Fraser, Wood,

& Hopper, 1998). VSmart synchronizes sensor readings, such as GPS, accelerometer,

orientation, magnetic field and temperature from the physical to virtual instance. The ap-

plication installed in the remote VM generates the same sensory results as of the physical

smartphone. Virtual Smartphone can be utilized to improve processing power, to pre-

serve smartphone’s battery life, and to avoid untrusted applications from accessing local

data on the physical device, and to prevent data leakage. However, this approach is being

hindered by the heterogeneity of mobile device hardware.
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2.3.12 AIOLOS

AIOLOS (Verbelen, Simoens, Turck, & Dhoedt, 2012), a mobile middleware framework,

which has an adaptive application migration decision engine that considers dynamic avail-

able resources of the server and varying network conditions. The framework predicts the

execution time for each method call at both local and external execution considering ar-

gument size. Subsequently, on the basis of the estimated results, AIOLOS selects the

optimum execution location. The migration decision algorithm objective is to minimize

the application execution time and battery consumption. Similar to many other compu-

tational offloading systems AIOLOS uses a history-based profile to aid in predicting the

local execution time and network dynamics. The predication mechanism adds up the

computational complexity of the proposed solution while the central middle-ware leads

to portability issues as implementation is dependent on the platforms and protocols.

2.4 Discussion on computational offloading frameworks

The classification discussed in Section 2.2.1 is summarized in Table 2.1. The table also

outlines the dependencies and limitations in current state-of-the-art offloading mecha-

nisms.

Table 2.1: Comparison of Computational Offloading Mechanism used in MCE

Computational
Offloading
Mechanisms

Application
Modification

Dependency Major Drawback

VM/Phone
Clone Migration

No
Hardware
Virtualization

High communication overhead caused by large
VM image sizes and the computational overhead
it takes to generate migration overlay state.

Code
Migration and
Delegation

Yes ALVMs

Static Partitioning using annotations for high-end
mobile devices with intermittent connectivity is
not useful. Further, in the case of SOA or client-server
setup disconnection/server failure computation is
lost and restarted.

Thread
Synchronization

No/
Auto

ALVMs
The computational overhead (of profiling and analyzing)
caused by the modification of the ALVM for executing
an application which does not need offloading.

Cloudlets (Satyanarayanan et al., 2009) , Paranoid Android (Portokalidis, Homburg,
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Anagnostakis, & Bos, 2010) , Virtual Smartphone (Chen & Itoh, 2010), and Phone Mir-

roring (Zhao, Xu, Chi, Zhu, & Cao, 2012) utilizes VM/phone clone migration class

of computational offloading from mobile device to a remote computing infrastructure.

Cloudlets(Satyanarayanan et al., 2009) proposes the use of nearby resource-rich comput-

ers, to which a smartphone connects to single hop wireless LAN, and migrates a current

system image. Paranoid Android (Portokalidis et al., 2010) uses QEMU to run replica

Android images in the cloud to enable multiple exploit and attack detection techniques to

run simultaneously with minimal impact on phone performance and battery life. Virtual

Smartphone (Chen & Itoh, 2010) uses Android x86 port to execute Android images in

the cloud efficiently on VMWare ESXi virtualization platform. Phone Mirroring (Zhao et

al., 2012) framework which keeps a synchronized mirror for each connected smartphone

on a computing infrastructure allowing some operations to be performed on the mirror

directly.

Similarly (Cuervo et al., 2010; Kosta et al., 2012; Simanta, Ha, Lewis, Morris, &

Satyanarayanan, 2013; Kovachev, Cao, & Klamma, 2012; Kovachev, Yu, & Klamma,

2012; Lee, 2012; Verbelen, Stevens, Simoens, Turck, & Dhoedt, 2011; Verbelen et al.,

2012; Kemp et al., 2012; Flores, Srirama, & Buyya, 2014) use code offloading to improve

performance and energy consumption. Most of these migration and delegation based of-

floading attempts rely, on programmers – to specify program partitions using code anno-

tation and skeletons to adapt the program for specification of local and remote application

partitions. Whereas some of the code offloading based mechanisms (Saab, Saab, Kayssi,

Chehab, & Elhajj, 2015) replicates the application binary, intermediate representation

or source-code at the server and perform remote execution in a client-server or service

oriented fashion. Besides the significant improvement in the execution time, code mi-

gration approach do not support already developed applications which does not consider

the notion of MCE. In addition, static partitioning by the programmers for high-end mo-
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bile devices with intermittent connectivity might not be useful. Further, in the case of

SOA or client-server setup disconnection, or server failure remote computation may be

lost and the execution on the phone might need to be restarted from scratch. Finally,

code migration in the case where there is no application ALVM is not an easy task due

to the underlying heterogeneity of hardware and software platform across the connected

systems.

Likewise, CloneCloud (Chun et al., 2011) and its variants (Yang et al., 2014) and

COMET (Gordon et al., 2012) exploit the concept of thread migration to improve the

overall mobile device performance. The thread state migration mechanism is strictly

dependent on ALVM, as these ALVMs provides the abstraction and interoperability of

threads across different hardware platforms. These ALVMs needs extensive modifications

to enable thread state synchronization mechanisms. CloneCloud (Chun et al., 2011) uses

a combination of static analysis and dynamic profiling to partition applications at runtime,

the application partition is migrated as a thread from the mobile device at a chosen point to

the clone in the cloud, executing there for the remainder of the partition, and re-integrating

the migrated thread back to the mobile device. On the other hand, COMET (Gordon et al.,

2012) leverages the underlying memory model of Dalvik runtime and modifies the Dalvik

running on both phone and server to implement DSM for enabling thread synchronization

between the mobile device and the server. The modification of Dalvik on smartphone side

has a very worse impact on an application which cannot be offloaded due to reasons such

as not designed for offloading, or the server is disconnected, or because of any reason the

application is running locally on the mobile device.

2.5 Research challenges

Through analyzing the literature we found that some research challenges are about com-

putational offloading systems. These challenges are presented in the forthcoming subsec-
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tions.

2.5.1 Energy efficiency

As the mobile device has increasing processing capability, the energy consumption be-

comes the major issue for mobile applications. Most device vendors look for approaches

to increase the battery life. Besides inventing new battery technologies, there are many

methods to save the energy consumption at the system and application layer. Compu-

tational offloading is considered as a critical approach to saving energy consumption on

mobile devices (Kumar & Lu, 2010). By using the approach, the components of the ap-

plication that consume a lot of energy, e.g., compute-intensive algorithms, are offloaded

onto remote computing devices. However, the difficulty in this approach is to design ef-

fective mechanisms to monitor and profile the energy consumption for the applications on

mobile devices. Designing the models for the estimation of energy consumption in data

transmission is not easy as well. Both the profiled information and models are critical

to partitioning the application for energy saving. We need to design the lightweight and

energy efficient supporting computational offloading mechanisms. The costly function in

a computational offloading is the computation partitioning optimization, offloading deci-

sions based on network profile and device context, and diversity of application execution

formats and runtimes. The issues of energy consumption in data transmission also need

to be addressed in computational offloading.

2.5.2 Process migration based computational offloading

As illustrated in Table 2.1, the existing computation offloading mechanisms depends upon

virtualization technology (i.e. application level or system level). However in the ab-

sence of the virtualization middleware software’s these computational offloading solution

becomes invalid. Further, mobile device OS vendors are now more focused toward in-

tegrated machine dependent native compiled mobile applications such as Google intro-
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duced Android Runtime (ART) to reduce the application execution overhead in term of

energy consumption and application mainly caused due to the repetitive process of JIT.

Now with the introduction of such new runtime environments which executes native com-

piled applications, computational offloading mechanisms should be revisited. Compared

with virtualization based computational offloading, process migration based offloading

mechanisms consumes significantly fewer network and computing resources. Efficient

decision making and replication of applications would render process migration a cost-

effective choice over virtualization based computational offloading mechanisms. Further-

more, in volunteer and self-organizing mobile clouds, end users have limited bandwidth,

so process migration ultimately becomes a feasible solution. Current process migration

solutions issues are related to inter-process communication, open file descriptors, hard-

ware and software platform heterogeneity, network socket states, and interoperability of

network sockets.

2.5.3 Mobility-assisted server-to-server computational offloading

In MCE, due to intermittent connectivity and non-seamless wireless coverage, and mo-

bility of the end user remote computing infrastructure (such as Cloud, Cloudlet, Ad-Hoc

Mobile Nodes) may not be available or disconnected once an application is migrated to

any of the mentioned remote computing infrastructure (Wang, Li, & Jin, 2014). How-

ever, this disconnection may results in loss of computation and deteriorate the end user

QoS/QoE requirements. Furthermore, due to the mobility of the user a device cannot re-

establish the connection with one-hop augmentation devices such as cloudlet or ad-hoc

mobile nodes. To save the computation once performed mobility-assisted server-to-server

computational offloading mechanism is the need of the day for MCEs. In addition a push

based mechanism should be employed in the mobile devices to inform them about the

migration of their computation from one server to another server based upon the device
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mobility profile.

2.5.4 Secure computations on server side

Most of the identified security vulnerabilities can be fulfilled using available technologies.

If the remote computing infrastructure is only used as a storage provider then, reliability

can be guaranteed by using multiple providers and by replicating content (AlZain, Pard-

ede, Soh, & Thom, 2012). Integrity can be assured by additionally storing hash values

or digital signatures (Wohlmacher, 2000). Privacy and confidentiality can be preserved

by applying strong encryption and by limiting the storage of data to trusted entities. The

requirement for non-repudiation does not apply to storage providers but is comparable

with applying digital signatures to preserve integrity. The requirement for a high isola-

tion level finally maps to the use of strong passwords and two-factor authentication. In

case the remote computing service does not only store data but does also process it, the

situation gets more complex. One promising approach is the use of fully homomorphic

encryption, which enables operations on encrypted data. Other solutions require the pro-

vision of the used encryption key to the remote computing infrastructure, which has an

equal protection level as applying no encryption at all (Gentry et al., 2009).

2.5.5 Incentive management and resource discovery

The actors in MCE are often different parties having their benefits (Yousafzai, Chang, et

al., 2016a). The service providers goal is to attain as much monetary benefit as possible

with as low investment as possible. Toward their goal, they might squeeze their computa-

tional resources or reduce the service timing. In other words, service wishes to maximize

resource utilization, but allocating too many VMs on a single physical machine will re-

sult in performance degradation and unpredictability due to the interference of collocated

VMs with each other, which in turn impact the mobile application QoS/QoE. On the other

hand, these resources are most of the time not free and sometimes not available. However,
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modern mobile devices have much more resources than before. As a result, researchers

have begun to consider the possibility of mobile devices themselves sharing resources

using an ad-hoc mobile cloud model. Now the problem with the devices in the ad-hoc

MCE is their mobility, which put questions about how to provide incentives to devices

sharing their resources. This incentive problem also decreases the motivation for devices

to join the self-organizing proximate MCE, provide, and consume services to and from

other devices. So in this response, to solve the retribution and reward problem for devices

in the proximate MCE, we proposed a directory based framework which will mitigate

the issue of incentives to the nodes in the ad-hoc environment, even after their movement

from one environment to another. The assurance of the incentives to devices will help in

motivation for devices to join the self-organizing proximate MCE.

2.5.6 Automatic application partitioning

All the previous DVM based partitioning mechanism will not work for ART. To allow

the already developed application to take advantage of the mobile cloud using compu-

tational offloading those application must be partitioned so that the migration/synchro-

nization points are identified. These partitioning should be automatic such as employed

in CloneCloud (Chun et al., 2011) and its variants to transform any mobile applications

to a mobile cloud application. The partitioning mechanism should work in such a way

when an application is installed on a mobile device using ART, the compilation process

of Android runtime should be modified to annotate and add special migration primitives

to the code. The schematic of the original ART process and the envisioned modified ART

process is presented in Figure 2.6 (a) and (b) respectively. An illustration through pseudo-

code of how the DEX code will look like before and after migration markers are inserted,

is presented in Table 2.2.

By putting migration markers, the application will be migrated with much ease as
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Figure 2.6: (a) The original ART schematics (b) Modified ART schematics.

Table 2.2: Pseudo-codic Illustration of Unmodified Original Code with no synchroniza-
tion points and the modified code with synchronization points.

Orignal Code Modified Code

Function Main()
do something...

if some_condition

return;

end if
File access

do something...

return
End Function

Function Main()
Migration_Marker_Send
do something...
if some_condition
Migration_Marker_Receive
return
end if
Migration_Marker_Receive
File access
Migration_Marker_Send
do something...
Migration_Marker_Receive
return
End Function

40

Univ
ers

ity
 of

 M
ala

ya



the synchronization points will be defined the migration can be performed in a controlled

fashion by a user level migration mechanism surpassing the kernel level state acquisition.

That modified ART compilation process should be and must be same on both the mobile

side and cloud side to generate a similarly partitioned application.

2.5.7 Scheduling partitions

In case the mobile cloud the user is connected is a complex mobile cloud scenario con-

taining multiple types of resources as illustrated in Figure 1.3. The partitioning of the

application in the above-discussed manner (section 2.5.6) will help us to make a graph

representation of the application which will be useful in formulating the scheduling prob-

lem (Mahmoodi, Uma, & Subbalakshmi, 2016a). Once the partitioning of application is

done, now two problems arise from the partitioned code i) to identify the dependencies

between the partitions, (ii) schedule the offloading decisions/partitions over the resources

available in the mobile cloud taking into account the partition dependencies (such that in-

dependent partitions can be executed in parallel) and other factors such as device context.

A scheduling decision would of whether to offload a particular partition to CSP/ cloudlet

/ ad-hoc cloud node or not will be based on an objective function considering the depen-

dencies between the partitions and the cost model. An illustration of such a schedule of an

application with fourteen partitions on different types of resources available in the mobile

cloud is presented in Figure 2.7.

2.5.8 Better ARM emulation in cloud

ARM is the most common processing architecture found in the current smartphone market

(Forbes, 2013; Bent, 2012) and most of the time the cloud infrastructure is based on

x86 architecture so to utilizes the current existing cloud infrastructure to truly envision

the MCC ecosystem such as: phone clone mirroring and process migration, emulation

of ARM is contemporary. However, the current emulators such as (Bellard, 2005) are
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Figure 2.7: Schedule of automatically generated application partitions on mobile cloud
resources.

designed to support generalized emulation and can be extended to any new platform with

little efforts. This generalization comes at a cost of a performance degradtion due to

factors such as translation of guest instruction into intermediate code. This intermediate

code generation can be avoided and an ARM specific emulators (such as Bochs (Lawton,

1996) PC-x86 emulator) with direct mappings from guest ARM instructions to the host

x86, which will improve the performance of ARM emulation. A generalized schematic of

the translation process of the current emulator (QEMU (Bellard, 2005)) used to emulate

ARM instruction set is presented in Figure 2.5.8 (a), and the schematic of envisioned

translation process for ARM emulator is presented in Figure 2.5.8 (b). As seen in the

figure the removal of stage 1 of intermediate representation can substantially improve the

ARM emulation performance on the cloud side enabling the cloud infrastructure to better

utilized for mobile cloud services.

2.6 Conclusion

In this chapter, an overview of computational offloading in MCE is presented, and the

most credible computational offloading efforts in MCC are reviewed. We also identified

several research problems and challenges that hinder the success are of computational of-
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Figure 2.8: (a) Schematics of QEMU translation process from guest to host code
blocks(b) Schematics of translation process from guest to host code blocks of envisioned
emulator.

floading in MCE. Our analysis of the state-of-art computational offloading system unveils

that augmenting computing capabilities of mobile devices are feasible via different types

of remote computing resources, including public cloud service providers, one-hop clouds,

and proximate resources. However, employing these resources and migrating application

to them from mobile devices is not a trivial task and originates several complexities. One

of the most significant inefficiencies considering the importance of energy efficiency, ap-

plication execution time and alleviating the impact of application execution latency is a

significant challenging problem of the mobile cloud application that is considered to be

addressed in this research.
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CHAPTER 3: PROBLEM ANALYSIS

In this chapter, we investigate and analyze based on numerical data the benefit of compu-

tational offloading concept regarding application execution time and energy savings. Fur-

thermore, in this chapter, we analyze the existing computational offloading classes based

upon the migration mechanisms discussed in Chapter 2. Lastly, by presenting the benefits

and limitation of the existing methods based on empirical data we draw the scenario for

our proposed research and provide with a preliminary investigation into the possibility

and feasibility of this research.

The rest of the chapter is organized into five sections. Section 3.1, provides a de-

tailed investigation on the benefit of computational offloading and the factors affecting

the benefit of offloading computation to remote computing devices. Section 3.2, provides

empirically experiments of the existing computational offloading mechanisms classified

based on the broader concept of migration mechanism. After the discussion on existing

methods Section 3.3, provides the details for the motivation towards the idea of process

migration based computational offloading mechanism. The feasibility of the process mi-

gration based computational is verified using an experimental application in Section 3.4.

Lastly, Section 3.5 concludes the chapter.

3.1 Computation offloading benefit analysis

Various benefit studies have been previously focused on whether to offload computation

from a resource constraint mobile device to a remote computing device (Wang & Li,

2004; Wolski, Gurun, Krintz, & Nurmi, 2008; Kumar & Lu, 2010) or not. We have

utilized a modified formulation of (Kumar & Lu, 2010) for analyzing the benefit analysis

of computational offloading in term of energy saving.

Suppose the computation which needs to be offloaded has I instructions. Let Sc and

Sm be the speeds, in instructions per second, of the remote computing device (server) and
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the mobile device, respectively. The same task thus takes I/Sc seconds on the remote

computing device and I/Sm seconds on the mobile system. The mobile device sends α

bytes of data to the server and the server in response sends γ bytes of data to the mobile

device. The network uplink and downlink bandwidth is βu and βd , respectively. The

mobile devices take α/βu seconds to transmit and γ/βd receive data. The mobile system

consumes, in watts, Ec for computing, Ei while being idle, Et for sending, and Er for

receiving data.

If the mobile device performs the computation, the energy consumption is Ec ×

(I/Sm). If the server performs the computation, the energy consumption is:

[Ei×
I
Sc
)]+ [Et×

α

βu
]+ [Er×

γ

βd
] (3.1)

The amount of energy saved is:

[Ec×
I

Sm
]− [Ei×

I
Sc
]− [Et×

α

βu
]− [Er×

γ

βd
] (3.2)

Energy is saved when equation (3.2) produces a positive number. The equation is

positive if α/βu + γ/βd is sufficiently small compared with I/Sm is sufficiently large.

The values of Sm, Ei, Ec,Et , and Er are parameters specific to the mobile device.

To empirically analyze the energy saving from the computational offloading accord-

ing to the basic equation (3.2). The values for the simulation is gathered from (Mahmoodi,

Uma, & Subbalakshmi, 2016b), for quick reference also presented in Table 3.1. The av-

erage transmission and reception power levels of the mobile device for WiFi service were

257.83 and 123.74mW, respectively. The active and idle power levels of the phone were

644.9 and 22mW, respectively. The average wireless service rates for WiFi obtained

using, were 0.80Mbps for the uplink transmission and 1.76Mbps for the downlink trans-
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Table 3.1: Simulation Settings

Symbol Value

Et 257.83 mW
Er 123.74 mW
Ec 644.90 mW
Ei 22 mW
βu 0.80 Mbps (100000 bytes/s)
βd 1.76 Mbps (220000 bytes/s)

mission, respectively. These uplink and downlink rates are estimated using TCPdump1

by (Mahmoodi et al., 2016b).

Furthermore, the compute power for a mobile device is considered as 2750 MIPS,

and the compute speed for the cloud server is assumed to be 7000 these ratings are as-

sumed based on the BogoMips 2 calculated from real devices. Now we will present

two scenarios to show energy gain and no energy gain of an application task having

7,689,434,795 instructions calculated through Valgrind (Nethercote & Seward, 2007).

In the first instance, the application transferred and received 250000 bytes data, while the

second scenario transferred 8000000 bytes of received 4000000 bytes of data from the

remote server. Now if expand the equation (3.2) and put the value in equation for the both

scenarios.

[644.9× 7,689,434,795
2750×1,000,000

]−[22× 7,689,434,795
7000×1,000,000

]−[257.83× 250000
100000

]−[123.74× 250000
220000

]

(3.3)

[644.9×2.79]− [22×1.01]− [257.83×2.5]− [123.74×1.13] (3.4)

1799.27−22.22−644.575−139.82 = 992 (3.5)

1http://www.tcpdump.org/
2https://en.wikipedia.org/wiki/BogoMips
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[644.9× 7,689,434,795
2750×1,000,000

]−[22× 7,689,434,795
7000×1,000,000

]−[257.83× 8000000
100000

]−[123.74× 4000000
220000

]

(3.6)

[644.9×2.79]− [22×1.01]− [257.83×80]− [123.74×18.18] (3.7)

1799.27−22.22−20626.4−2249.59 =−21098.94 (3.8)

The results of offloading decision for scenario 1 is presented in 3.1. It is quite ob-

vious that the mobile device has saved a considerable amount of almost 55% energy by

offloading the task. However, the behavior in equation 3.2 is quite different, and the en-

ergy saving goes to negative and this due to the fact which we already explained that if

α/βu + γ/βd is large as compared with I/Sm than the offloading does not give us any

benefit regarding energy consumption. Simply we can infer that offloading data-intensive

task to remote computing infrastructure is not beneficial.

Figure 3.1: Energy consumption on mobile device in scenario 1.

In addition to the above analysis, we simulated two other scenarios. In scenario 1,

we have variated the upload and download data transmission sizes and kept the upload
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Figure 3.2: Energy consumption on mobile device in scenario 2.

and download bandwidth constant along with other parameters of equation (3.2). The

variation range is in between 0...10MB on the interval of 0.5MB for both variables. The

result of variating the uplink and downlink data transmission and benefit according to

equation (3.2) is presented in Table 3.2 and illustrated graphically in Figure 3.3.

Figure 3.3: Energy benefit indication while varying upload and download transmission
data sizes.

According to the data presented in Table 3.2 and in Figure 3.3 it is clear that with the

simulation settings we used for our analysis; computational offloading is not beneficial if
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Table 3.2: Data Observation while variating Upload and Download Transmission Sizes

Upload Download Benefit

0 0 1779.075568
0.5 0.5 1582.778409
1 1 1386.48125
1.5 1.5 1190.184091
2 2 993.8869319
2.5 2.5 797.5897729
3 3 601.2926138
3.5 3.5 404.9954547
4 4 208.6982956
4.5 4.5 12.40113649
5 5 -183.8960226
5.5 5.5 -380.1931817
6 6 -576.4903408
6.5 6.5 -772.7874999
7 7 -969.084659
7.5 7.5 -1165.381818
8 8 -1361.678977
8.5 8.5 -1557.976136
9 9 -1754.273295
9.5 9.5 -1950.570454
10 10 -2146.867614

α+β > 11MB. A more rigorous analysis is done by the Cartesian product3 of the Upload

and Download columns in Table 3.2, and the data is graphically presented in Figure 3.4.

Figure 3.4: Energy benefit indication while varying upload and download transmission
data sizes.

Similarly to scenario 1, in scenario 2 we variate the upload and download bandwidth

3https://en.wikipedia.org/wiki/Cartesian_product
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Table 3.3: Data Observation while variating Upload and Download Transmission Rates

Upload Rate Download Rate Benefit

0.5 0.5 -4326.044432
0.6 0.6 -3308.524432
0.7 0.7 -2581.724432
0.8 0.8 -2036.624432
0.9 0.9 -1612.657765
1 1 -1273.484432
1.1 1.1 -995.9789771
1.2 1.2 -764.7244317
1.3 1.3 -569.0475086
1.4 1.4 -401.3244317
1.5 1.5 -255.9644317
1.6 1.6 -128.7744317
1.7 1.7 -16.5479611
1.8 1.8 83.20890164
1.9 1.9 172.465042
2 2 252.7955683

from 0.5...2MBPS over an interval of 0.1 Mbps and kept α = 8MB and β = 8MB so that

it is large enough to show the effect of offloading benefit. The data observation from this

variation is presented in Table 3.3 and presented graphically in Figure 3.5, the Cartesian

product based data observation of upload rate and download rate column (variation range

from 0.5...4MBPS) is presented graphically in Figure 3.6.

Figure 3.5: Energy benefit indication while varying upload and download transmission
data rates.
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Figure 3.6: Energy benefit indication while varying upload and download transmission
data rates.

From the observations presented in the graphs shown in Figure 3.6 and 3.6, we found

that for an offloading transaction to be beneficial in which 16 MB is transferred collec-

tively should have the following network bandwidth requirement βu ≥ 1.4MBPS if and

only if βd ≥ 3.3MBPS or βd ≥ 0.8MBPS if and only if βu ≥ 3.9MBPS)

3.2 Analyzing the existing computational offloading mechanisms

In this section, we analyze the existing computational offloading mechanisms based upon

the broader classification of migration mechanism presented in Section 2.2.1.

3.2.1 VM/Phone clone migration

VM migration based computational offloading solutions uses hardware virtualization tech-

nology to synchronize replicas for each connected smartphone on a remote computing

infrastructure. As already discussed 2.2.1.1, the VM migration mechanism is being hin-

dered by the amount of data transfer (Hung et al., 2012). An example of the image size

(in MB) for a non-live image transfer of Samsung Galaxy SII i9100g with Android Jelly

Beans is presented in Figure 3.7.

Additionally, an illustration of the time required to backup and restore these images
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Figure 3.7: Phone image sizes of Samsung Galaxy SII-i9100g.

from and to the phone is illustrated in Figure 3.8.

Figure 3.8: Phone image backup and restore time.

Furthermore, with advancement in the Android operating system and the production

of new releases with tons of feature further increase the amount of data generated in

between successive iterations which subsequently increased the turnaround time. This

claim is supported by our another observation of slightly new model smartphone (Xiaomi

Mi4i). The observation is presented in Figure 3.9.
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Figure 3.9: Phone image sizes of Xiaomi Mi4i.

To analyze, how such amount of data transfer using different network interfaces

impact on the energy depletion of the mobile device, we emulate the scenario using an

Android application that performs small data uploads of 10 KB and 100 KB to a remote

computing infrastructure using either 3G or WiFi one after another. While the applica-

tion is executed, the battery status is observed using PowerTutor (Kalic, Bojic, & Kusek,

2012). The experiment employs Samsung Galaxy SII i9100g smartphone. While the re-

mote server uses a network emulator (Hemminger, 2005) that adds a controlled amount of

queuing delay to the network interfaces between the smartphone and the server. Similarly

like (Cuervo et al., 2010), we then evaluated two scenarios: (1) the smartphone using

WiFi to reach the server (adding 25 ms or 50 ms of queuing delay); and (2) the smart-

phone using 3G with a measured RTT of 200 ms. Figure 3.10 shows the energy consumed

by the smartphone during the two uploads. Using 3G, the smartphone consumes almost

2.5 times as much energy as it does while using WiFi with a 50 ms RTT, and nearly five

times the energy of WiFi with a 25 ms RTT. By analyzing the drastic discrepancies of

energy consumption shown in Figure 3.10 for such small data uploads, one can estimate

how drastic would be to perform VM Migration based computational offloading in term
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of energy consumption.

Figure 3.10: The energy consumption of WiFi connectivity vs. 3G connectivity.

Along with the insight presented in Figure 3.10 and according to our analysis in sec-

tion 3.1, computational offloading could not be beneficial if a significant amount of data

is being sent or received as compared with the network metrics. To mitigate this behav-

ior, replay mechanisms (Hung et al., 2012; Flinn & Mao, 2011; Surie, Lagar-Cavilla, de

Lara, & Satyanarayanan, 2008; Gomez, Neamtiu, Azim, & Millstein, 2013), in which

execution of mobile device instructions are captured as a trace and then executed on re-

mote VMs and vice versa, can be used while synchronizing remote VMs with phone state.

However, reply mechanisms generate large trace files and require extensive modifications

to the Virtual Machine Monitors (VMM) and phone kernel and remote computing device

kernel. From a practical point of view, the phone clones/VMs needs the same hardware

platform as the server-side to retain a working synchronized image.

3.2.2 Code migration and delegation

Code Migration mechanisms exploit the platform independence feature of ALVM (such

as JVM, .Net Runtime Environment and DVM). Code migration uses source code anno-

tation, reflection, and dynamic class loading features of ALVMs yo to enable execution
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Figure 3.11: Code migration framework for Android devices.

on of run-time migrated platform independent intermediate code. To investigate the code

migration based computational offloading mechanism, we have developed a conceptual

framework which is presented in Figure 3.11.

The offloading run-time on the mobile device presented in Figure 3.11 utilizes the

reflection features to identify potentially annotated methods for offloading. Whereas, the

offloading application server on the server side may utilize reflection or dynamic class

loading depending upon the offloading request parameters. The service method of the

offloading application server is listed in Listing 3.1.
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Listing 3.1: The service function of our experimental code offloading mechanism

p u b l i c vo id s e r v i c e ( O f f l o a d i n g R e q u e s t r e q u e s t , O f f l o a d i n g R e s p o n s e r e s p o n s e ) throws E x c e p t i o n {

S t r i n g name = r e q u e s t . getMethodName ( ) ;

C l a s s [ ] paramTypes = r e q u e s t . g e t P a r a m e t e r s ( ) ;

O b j e c t [ ] paramValues = r e q u e s t . g e t P a r a m e t e r s V a l u e s ( ) ;

/ / Get t h e c l a s s

C l a s s c l a s s N = r e q u e s t . g e t C l a s s O b j e c t ( ) . g e t C l a s s ( ) ;

/ / C o n s t r u c t c l a s s a t s e r v e r s i d e

j a v a . l a n g . r e f l e c t . C o n s t r u c t o r C o n s t r u c t o r c o n s t r u c t o r = c l a s s N . g e t C o n s t r u c t o r ( ) ;

O b j e c t i n s t a n c e = c o n s t r u c t o r . n e w I n s t a n c e ( ) ;

/ / Get t h e o f f l o a d i n g method

j a v a . l a n g . r e f l e c t . Method runMethod = c l a s s N . g e t D ec l a r ed Me th od ( name , paramTypes ) ;

runMethod . s e t A c c e s s i b l e ( t rue ) ;

/ / i n v o k e t h e remote method w i t h i n p u t p a r a m e t e r s

O b j e c t r e s u l t = runMethod . i n vo ke ( c lassN , paramValues ) ;

r e s p o n s e . w r i t e ( r e s u l t ) ;

}

To analyze the impact of application performance in term of execution time and

energy, we have developed an experimental matrix multiplication application. The crim-

inality of matrices used in the experimental application is 1000× 1000. The network

topology of the experimental setup is presented in Figure 3.12, in which the mobile de-

vice (Samsung Galaxy i9100g) connect to the offloading server over a single hop (access

point). The energy consumption values are gathered used PowerTutor.

Figure 3.12: Network topology of code migration experimental setup.

Figure 3.13 and 3.14 provides the result of an average of three runs of an experiment
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performed using the developed framework for android devices.

Figure 3.13: Impact on the execution time of experimental application using code migra-
tion.

Figure 3.14: Impact on the energy consumption of experimental application using code
migration.

The results presented in 3.13 and 3.14 are showing significant improvement in appli-

cation execution time and energy consumption. Now the question arises why we are intro-

ducing a new computational offloading method while code migration provides exquisite

results. The details answer is explained in Section 3.3, but the brief answer is the strict
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dependency of code migration on ALVMs and its platform independence features which

now even Google dropped the Android DVM in favor of ART.

3.2.3 Thread state migration

Similarly like Code Migration (discussed in 3.2.2), Thread synchronization based mech-

anisms also exploits the platform independence feature of ALVM (such as DVM, JVM,

and .Net Runtime Environment). However, instead of migrating code components thread

migration primitive migrate a complete thread from one machine to another. Further-

more, thread state synchronization mechanisms can exploit the parallel compute power

available on the remote computing infrastructure thriving up to the magnitude of perfor-

mance improvement. To experimentally evaluate the thread synchronization primitive we

once again utilized the same experimental setup as presented in Figure 3.12. The thread

state migration mechanism utilized for experimentation is COMET (Gordon et al., 2012)

which uses DSM to synchronize threads memory across DVM. In order to analyses the

behavior of COMET, we have selected some standard benchmarks (such as Linpack, and

SciMark). However, COMET seems is not beneficial in every type application. This

phenomenon is presented in Figure using experimentation of the popular Linpack Bench-

mark developed by two different developers (rs.pedjapps.Linpack.apk 4 and roylongbot-

tom.LinpackJava.apk 5).

Moreover as discussed in section 2.2.1.3, the thread state migration mechanism re-

quires extensive modification of ALVMs to synchronize computation between the mobile

device and the remote server. Here, we analyse the effect of the modification of ALVMs

on applications running locally on the mobile device which either cannot be executed

remotely, or cannot be offloaded, or the server is disconnected. In order to analyze this

4https://play.google.com/store/apps/details?id=rs.pedjaapps.Linpack
5http://www.roylongbottom.org.uk/android%20benchmarks32.htm
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Figure 3.15: COMET discrepancies with same applications from different developers.

behavior we gather two similar devices (Samsung Galaxy SII i9100g ) with the same

specifications in terms of hardware and software configurations to show its impact. One

of the phones has a modified Dalvik (DVM) from COMET (Gordon et al., 2012), whereas

the other has the original stock Android DVM. The benchmark results in Figure 3.16 and

3.15 measures the mega floating-point operations per second (MFLOPs), which clearly

demonstrate the effect on performance caused by the modification of DVM. The modi-

fication adds some extra steps in original lifecycle of the ALVMs which brings in extra

energy consumption and also shares the compute capacity which reduces the compute

power.

Lastly, when we have analyzed the network performance of the COMET we found

a large number of packets are transferred between connected end points. The analysis is

done using Wireshark 6, and it was done overnight, while the phone was running no ap-

plications except the defaults. The analysis was started on 8:15 PM 4th September 2015

and was ended on 12:15 PM 5th September 2015. The overnight analysis reveals that al-

most 17 million (17473214) packets are exchanged between the two connected end point

6https://www.wireshark.org/
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Figure 3.16: Performance comparison of modified DVM vs. stock DVM using Linpack
benchmarks (in Mega FLOPS).

(i.e. mobile device and a local server). Each packet size was investigated and was found

around 90 bytes which in total leads to approximately 1.572 GB. Hence, in the case where

the user is on a cellular data plan COMET could be disastrously expensive. In addition

to this, it would drain the battery out rigorously without any substantial benefit. Conclu-

sively, thread migration also suffer from strict dependency on ALVMs and which mobile

device OS vendors are dropping for performance issues (detailed in coming Section 3.3).

3.3 Why process migration based computational offloading?

These code migration and thread-state migration mechanisms besides their benefits be-

come automatically invalid in environments where the application execution runtime is

based upon platform specific native binary machine code instead of platform indepen-

dent intermediate code. Apple iOS was already using such environment to provide better

application performance and lower energy depletion. From the Android Open Source

Project (AOSP) point of view, Google introduces ART environment (Google, 2013), in

place of the Dalvik runtime environment. ART features AHOT (ahead of Time) compila-
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tion to device-specific native binaries; this feature expedites the application execution by

reducing the overhead energy consumption and application execution time caused mainly

by the repetitive just-in-time (JIT) compilation in DVM (Buckley, 2013).

Now as already discussed in Chapter 2 and Section 3.2, current computational of-

floading based solution are based on primitives such as VM/phone clone migration, or

migration of intermediate language codes executing inside an ALVM (such as DVM), or

ALVM thread synchronization or the classical client/server SOA. Each of these augmen-

tation techniques is deficient in its own respective ways such as communication overhead

caused due to transmission of large VM image sizes, dependency on ALVMs and loss of

execution in case of disconnection. Apart from this, the existing computational offload-

ing solution for android based smartphones are strictly dependent on the Dalvik VM.

However, the introduced Android Runtime (ART) environment featuring ahead-of-time

(AHOT) compilation of mobile applications into native machine-dependent binaries upon

installation; and these state-of-the-art offloading solutions do not consider the native code

of ART-based mobile applications.

To verify the native code behavior of ART, we gathered the DEX files of an in-

stalled application from two Android devices. One device is running Dalvik, whereas the

other is running ART. The gathered files are checked with the file7 tool available in most

Linux distributions (Figures 3.17 and 3.18). The DEX files gathered from Dalvik- and

ART-based phones are in bytecode format and Executable and Linking Format (ELF),

respectively.

Figure 3.17: File type of Dalvik compiled DEX file.

7http://linux.die.net/man/1/file
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Figure 3.18: File type of ART compiled DEX file.

The ELF file is platform dependent (Committee et al., 2001). For instance, the ELF

file compiled for an ARM platform cannot be executed on an x86-based platform. Most

current state-of-the-art computational offloading mechanisms are exploiting Dalvik byte-

code, which is platform independent. The same Dalvik bytecode can be executed without

any modification on any platform where DVM is running.

Furthermore recently, 1,208,476 mobile applications from the Google Play Store

have been statistically analyzed to investigate the number of mobile applications utilizing

native libraries (Afonso et al., 2016). The authors reported, a total of 446,562 mobile

applications (37.0%) used at least one natively compiled library. Considering the result of

this recent study which also emphasizes the growth of applications toward native codes,

computational offloading mechanisms should be reevaluated to overcome the issue of

native code. Therefore, we are interested in a process migration-based computational

offloading mechanism utilizing checkpoint/restore method.

3.4 Feasibility analysis of process migration based computational offloading

In order to analyze the process migration based computational offloading system, we ex-

ploit the concept of context switching in an operating system process. The process state of

any computer program, as well as the ART-generated ELF file, is architecture dependent.

A process state from an ARM-based machine cannot be used to restart the process on an

x86-based machine. This condition is due to the difference in assembly, hardware com-

ponents, instruction sizes, application binary interface, and other related factors. In most

cases (almost 90%–95%), mobile devices use an ARM-based machine (Forbes, 2013;
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Bent, 2012), whereas the physical or virtual machines in the cloud are normally based

on x86 architectures. Thus, we have three options for the checkpoint/restore or process

migration-based computational offloading for native and ART-based mobile applications.

First, we can use a certain type of manual transformation of a process state from one

architecture to another (Chanchio & Sun, 2002). We can disregard this option because it

requires extensive modification of the compiler or source code for both endpoints. Sec-

ond, we can emulate the ARM instruction set in the cloud using binary translators, such

as QEMU (Bellard, 2005), which is not feasible for deadline and performance sensitive

applications. This hypothesis is being verified by a simple experiment (presented in Fig.

3.19) where we executed several times a 1000x1000 matrix multiplication program (na-

tively compiled) on a real device (Samsung Galaxy SII) and the QEMU emulator. The

difference of performance cannot compensate the data transfer time and provide no per-

formance improvement to mobile applications, as emulator are developed for behavioral

testing, not performance sensitive fulfillment (Yousafzai, Gani, et al., 2016). Further, in

the case of high-end mobile devices, the hypothesis would be even stronger. That’s why

we outline the emulator performance problem as a research challenge in section 2.5.8.

Figure 3.19: Comparison of emulator performance with real device.
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Finally, the third case we are left with is to utilize a compatible infrastructure (e.g.,

ARM) on the server. The availability of ARM infrastructure in the remote cloud or local

cloudlet is crucial to actually envision the MCC ecosystem and enable phone clones and

VMs in the remote servers.

For the sake of analysis, we assume that the network conditions are stable, that no

disconnection occurs during an offloading transaction, and that an offloading transaction

is atomic. These assumptions are made to retain the focus on analyzing migration mecha-

nism rather than network analysis and disconnection management, although these options

should be explored in the future.

For analyzing the process migration based computational offloading, we have mod-

ified the original Android kernel to enable the insertion of custom kernel modules. With

this additional kernel module, which exploits the concept of context switching. Primarily,

the module is configured to connect to the remote offloading server via an associated user

space communicator, which also resides and is running on the mobile device.

For the feasibility analysis, we deployed an ARM infrastructure box (Compulab

Utilite8) at the server. We also deployed an x86 machine to facilitate and administer

the ARM Box. The topology of the experimental setup is presented in Figure 3.20

Figure 3.20: Experimental setup.

The server PC configuration comprises Ubuntu 14.04, 4 GB Ram, and Core i7 CPU

8http://www.compulab.co.il/utilite-computer/web/utilite-overview
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3.4 GHz. A Samsung GT-I9100G smartphone is used as the client device. The experi-

mental application is a 1000× 1000 matrix multiplication program written in C with no

migration or annotations and interfaces. The experimental application is compiled with

the standard Android toolchain downloaded along with the AOSP/CyanogenMod source

code.

3.4.1 Experiment details

To migrate an application state from the client device (Samsung GT-I9100G) to the ARM

box, both devices are flushed with the custom kernel to enable the insertion of kernel

modules. Both devices (client device and ARM box) execute a user-space program to

communicate with each other and transfer the process state over the socket. For the

proof-of-concept experiment, the experimental applications are installed and executed on

both devices. Once the communicators residing on the devices set up the link with each

other, the modules on both sides detect the setup and start synchronizing the process

state. However, the kernel modules periodically synchronize the applications executing

on the other device because of the lack of synchronization markers in the experimental

application. Thus, the migration control is unsuitable. We have performed ten runs of

the experiment and then used the average results for presentations. Our first parameter of

interest is the improvement in the execution time of the offloaded matrix multiplication

application. Figure 3.21 presents the results of this parameter.

The second significant parameter is the number of bytes transferred between suc-

cessive synchronizations of application states from the client device to the server ARM

box. The application declares and stores three 1000× 1000 matrices (two are operands,

one is the resultant). Thus, the memory acquired by the process for these three matrices

are 12 MB (1,000,000×3×4bytes). The bookkeeping of process state supplements an

additional 200 KB to the process snapshot size.
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Figure 3.21: Execution time impact (in milliseconds).

The experimental analysis, reveals that using kernel module is not suitable for the

migration for a number of reasons. They include code complexity, the difference in kernel

version between devices, disabled kernel modules by default, needs a rooted and custom

ROM on the phone to exploit this method, and the user curiosity on the security and pri-

vacy exploitation, which can be made in the kernel space. Above all, the kernel module

based process migration mechanism is hard to port to other applications. Lastly, the anal-

ysis also reveals that the application binaries are required on both ends, and applications

on both should be in running state and synchronized on an interval which effectively leads

to miss utilization of computational resources.

3.5 Conclusion

In this chapter, we empirically analyze the benefits of computational offloading and the

factors affecting the decision of computational offloading algorithms. Using empirical

analysis of variating the offloading data transmission sizes and bandwidth data rates, we

identified the benefits range according to some static settings of energy consumption and

computational powers of the devices involved. Our finding complement the work by other

researchers in this domain (Kumar & Lu, 2010) who emphasize on the trade-off between
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computation and communication before offloading.

In addition to this benefit analysis, we empirically evaluate the current computational

offloading solutions using a broader classification based upon migration mechanism. Us-

ing the empirical analysis and the research gap we provide a feasibility experiment on the

checkpoint restore based computational offloading mechanism using a matrix multiplica-

tion program. In this study, we found that performance gain of utilizing remote resource

is highly influenced by the number of synchronizations along with the amount of data

transmission between mobile and remote computing devices.

Our investigation advocate that kernel module based process migration computa-

tional is not suitable for the migration in MCE. The reason behind unsuitability includes

code complexity, security, privacy, and kernel version mismatch between devices and

modification of kernel because that most of the mobile device are stuck with kernel ver-

sion 3.4.x to 3.10.x. Concluding, the kernel module based process migration mechanism

in mobile devices in current is difficult to port to support all applications. Finally, the

analysis also reveals that the application binaries are required on both ends, and both

should be in running state and synchronized on an interval which effectively leads to miss

utilization of computational and network resources.
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CHAPTER 4: LIGHTWEIGHT COMPUTATIONAL OFFLOADING
FRAMEWORK FOR MOBILE DEVICE AUGMENTATION

This chapter presents the framework proposed in this research. With the help of few

schematic diagrams, we present the main building blocks and components of the pro-

posed framework and describe their functionality. Moreover, the interaction among major

elements of the framework is illustrated using flow diagrams and described in detail. The

design of data to evaluate the performance of our work is also presented, to analyze and

synthesize the finding.

The remainder of this chapter is as follows. Section 4.1 presents the comprehensive

description of the proposed framework. Section 4.2 describes the major building blocks

and algorithms in the proposed framework. Section 4.3 identifies data to be generated

from the framework and explains how to generate required data. The chapter is concluded

in section 4.4.

4.1 A Lightweight process migration based computational offloading framework
for mobile device augmentation

We proposed a lightweight PMCO framework that is capable of augmenting resource-

constraint mobile devices to improve native applications performance and energy con-

sumption. As already discussed in Section 1.1.5, the basic idea behind process migration

is of checkpointing which in turns stems out from the process context switching in op-

erating systems. As obvious from the name, process checkpoint/restart has two phases.

The first phase is to save the running state of a process. This usually includes register

set, address space, allocated resources, and other related process private data. The second

phase is to re-construct the original running process from the saved image and resume the

execution from exactly the interrupted point.

Designing our framework based on process migration based computational offload-

ing framework for mobile device augmentations has the following benefits:
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• Generalized: Process migration based upon checkpoint/restart provide the ability to

handle both migration-aware and non migration-aware applications unlike the many

migration mechanism discussed in literature review in Chapter 2, which only con-

sider offloading migration-aware applications. Migration-aware applications have

been coded to explicitly take advantage of process migration. Dynamic process mi-

gration can automatically migrate these applications to save mobile device energy

and improve its computational power. While in non migration-aware applications,

the application developers does not design them to take benifits of offloading.

• Ability offloading application without needing application binary on the server side

similarly, like COMET (Gordon et al., 2012). The checkpoint/restore methods in

user space package the application binary and state into one package which can be

transferred to the remote device and executed directly. Eliminating the requirement

of application binaries availability, in the remote computing platform.

• Portability: Process migration can be performed almost on every type of computing

infrastructure with minimal modification to the operating system kernel. So the

proposed computational offloading system can be ported to any of the supported

hardware and software platforms which has the checkpoint features.

• Loose Coupling: Process migration based computational is loosely coupled with

the underlying mobile device environment, unlike the state-of-the art which de-

pends on ALVMs or modification of these ALVMs.

• Saving Computations: Unlike any other computational offloading mechanism the

checkpoint/restart in mobile devices can also help mobile applications to check-

pointed in critical battery conditions and then later restarted either locally or re-

motely.
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• Resource localization: Mobile applications which are distant from the device which

has the data that the application is using tend to spend most of their time in per-

forming communication between the mobile device and remote computing device

for the sake of accessing the data. The process migration framework can be used

to migrate the process closer to the data that it is processing, thereby ensuring it

spends most of its time doing useful work.

• User Preference: Our framework, is based upon preference based system defined

by the user to control the behavior of the computational offloading system. Further,

most of the existing offloading mechanism uses HTTP-based communication while

we focused on using single TCP socket to get some improvement.

Additionally, our framework based on Checkpoint/Restore in user space has a short-

coming also, but it applies to any process migration based mechanism and also applies to

VM Migration based computational offloading:

• Platform Dependent: Our proposed checkpoint restore based computational mech-

anism is platform dependent meaning that if the mobile device hardware platform

is ARM, then one needs an ARM hardware platform on the server side. This short-

coming also applies to VM Migration based computational offloading systems.

4.1.1 System requirements

To support process migration based computational offloading effectively in MCE, a mo-

bile device should be able to provide the following functionality:

• Import/Export of Process soft state: The mobile device must provide some import/-

export interfaces that allow the process migration mechanism to extract a process’s

soft state and import this state on the destination remote computing device. These

interfaces should be provided by the underlying operating system, supported by the
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programming language, or other elements of the programming environment of the

process. Process soft state includes processor registers, process address space and

communication state, such as open message channels in the case of message based

systems, or open files and signal masks.

• Naming/accessing the process and its resources: After migration, the migrated pro-

cess must be accessible by the same name and mechanisms as it was before migra-

tion as though migration never occurred. The same applies to its resources, namely

open files, threads, etc.

Our proposed framework consists of five major building blocks, namely Migration

Preference Manager, Migration Manager, Migration Coordinator and Admission Control

illustrated in Figure 4.1. the high-level components of the proposed framework.
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Figure 4.1: Bird eye view of proposed PMCO for mobile device augmentation.

An abstract description of the system and its operational tasks are briefly presented

in Figure 4.2 and described as follows, and the in-depth description is presented in section
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Figure 4.2: Interactive flow of the proposed PMCO based mobile device augmentation
framework.

Initially, on the mobile side, the user defines migration preferences of installed ap-

plication by defining application absolute path along with a binary migration indicator.

After setting up the application migration preferences, application migration manager

should be started which is responsible to select, and communicate with offloading ser-

vice providers and also coordinate with application migration coordinator. Afterward,

the migration manager will initiate the application migration coordinator (a checkpoint

coordinator) which is used to assist the checkpointing process. The migration coordina-

tor receives commands from application migration manager to checkpoint an application

which is not migration-aware. The applications which are migration-aware checkpoint

itself and signal the application migration manager after checkpointing itself. Once the

application is checkpointed the migration manager will transfer the checkpoint file to the
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remote computing infrastructure.

On the server side, there are three modules the first one is the Admission control.

Admission control modules enforce the fair-usage policy of server resources. Applica-

tion migration manager on the server receives the checkpoint file and restart the process

on the server from the checkpoint file. The application migration manager will wait for

the completion of execution of the restarted process. In the case of non migration-aware

applications the server side application migration coordinator will periodically check-

point the restarted applications. For the case of migration-aware application, it will au-

tomatically checkpoint once the re-checkpoint marker is reached. Once the application

execution is complete, the application migration manager will fetch the checkpoint file

and transfer it to the mobile device where it can be restarted to finish the final process exit

point.

4.1.2 Process execution

Application binaries are required to started under the checkpoint launcher, causing them

to connect to the application migration coordinator upon startup. As a results threads are

spawned, child processes are forked, libraries are dynamically loaded, the checkpointing

mechanism will automatically and transparently tracks accordingly. Figure 4.3, shows

the relationship between the application migration coordinator and the process which is

executed using the checkpoint launcher.

Application 
Migration 

Coordinator

User Process

App Thread

Checkpoint Thread

Figure 4.3: Application execution in our proposed framework.
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The checkpoint launcher will preload the checkpoint library as a checkpoint thread

before calling the main function of the original process which needs to be migrated. The

checkpoint thread is connected to the application coordinator using a local socket.

At any given moment either the application threads are active, or the checkpoint

thread is active at the process signal handler. Due to the checkpoint thread, the pro-

cess is being able to be checkpointed for both migration-aware applications (using self-

checkpointing) and non migration-aware applications using a signal from the application

migration coordinator to the checkpoint thread in the process to checkpoint itself and

respond, this behavior is presented in Figure 4.4.

Application 
Migration 

Coordinator

User Process

App Thread

Checkpoint Thread

Checkpoint

Figure 4.4: Checkpoint message from coordinator to the user process.

4.2 Proposed Components in PMCO framework

4.2.1 Migration Preference Manager (MPM)

Migration Preference Manager is a conceptual user space non-migratable registry that

will allow the user to manage (enable and disable) the migration preference for all the

user space installed native mobile applications on the mobile device. This preference

manager is added keeping in view of deficiency of existing computational frameworks

which are being burdened by the static analysis (using at least one pre-execution) of ap-

plication which is counter productive in the offloading process. The preferences are stored

in a key/value based fashion in the registry. The preferences defined in this registry are

of two types global preferences and application specific preferences. Global preferences
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define the preferences for parameters which are device specific and can apply to all the

mobile applications this includes Ec,Ei,Et ,Er,Sm,Bt and server selection criteria such as

cost per service. Where Ec stands for active energy consumption of the device CPU, Ei

stands for idle energy consumption of device CPU, Et and Er correspond to the energy

consumption while the wireless interface is in transmission and reception mode. Sm rep-

resent the compute power of the device in MIPS, and Bt is the benefit threshold. The

Bt value indicates the amount of energy saving of the computational offloading process

that is required by offloading decision function (Equation (4.1)) to trigger the offloading

process.

[[Ec×
I

Sm
]− [Ei×

I
Sc
]− [Et×

α

βu
]− [Er×

γ

βd
]]> Bt ,whereBt > 0 (4.1)

On the other hand, application specific parameters preference value will be a 4-tuple

< I,α,γ,Pf >. Where I is the number of instruction in the application, α represent the

amount of data which will be at least transferred in a single offloading transaction; this

is the only value which the offloading engine can get accurately with minimal compute

overhead as it can calculated at the time of offloading. γ is the amount of data which

will be received in a single offloading transaction. Intuitively, this cannot be known at

the time of offloading decision without prediction, estimation or pre-execution, which

becomes expensive and counter-productive as it increases the offloading decision time.

Due to these reasons, the preference manager will simplify the offloading process with

user assistance. Pf is a binary variable which can set to enable forced migration or disable

migration for a specific application.

4.2.2 Application Migration Manager (AMM)

Application migration manager is responsible for discovering, selecting and provisioning

the communication channel to OSP (they could be either ad-hoc mobile nodes, cloudlets
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or CSP depending upon the MCC deployment model). An OSP is selected based upon

the preferences (cost and QoS metrics) defined by the mobile user and the offloading de-

cision function. Once an OSP is selected, and a connection is successful it will initiate

the offloading workflow on the mobile device. The first step would be to start/initiate

the application migration coordinator. The second step would be to iterate over MPM

application list and if there is an application which needs to executed in an offloadable

fashion such that the offloading decision equation also results positive, it will launch the

application using the application checkpointing mechanism (ACM). AMM will wait for a

signal from ACC that a checkpoint package is ready to be shipped to a remote computing

device on the OSP’s infrastructure. The AMM communicator will fetch the checkpoint

package from the local temporary storage designated by the coordinator for the process

and will first deliver a meta package to the remote computing device containing check-

point file name and size. The meta package will also define the type of application which

is being migrated such migration-aware application and applications which do not have

any semantical and syntactical checkpointing information. This meta package is required

by the remote computing device checkpoint manager. Once the package is transferred

to the remote device AMM will wait for the response from the remote computing de-

vice. Once the response package (also a checkpoint image) is received from the OSP, the

AMM is also responsible for restarting the received checkpoint file in the client device.

Furthermore, AMM will store the network performance metrics which are gathered from

the communicator modules results. The network performance metrics will be used in the

next subsequent offloading decision (offload or not to offload).

4.2.3 Application Migration Coordinator (AMC)

The application migration coordinator is a modified over the counter checkpointing tool

which can checkpoint a running process and later restart on remote computing infrastruc-
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ture and back on mobile devices 1. An application executed through AMC will cause

a coordinator process to be launched on the local client device to assist the checkpoint-

ing process (Ansel, Arya, & Cooperman, 2009). The coordinator is stateless, explicitly,

if the coordinator is killed or crashed the process needs to be restarted. Furthermore,

there are two approaches for the coordinator to issue checkpoint signal to the running

applications. The first approach is applied to applications which do not have checkpoint-

ing/migration markers (i.e. non migration-aware applications). Meaning that they cannot

self-checkpoint themselves. In MCC such applications can be termed as a unmodified

application which does not have programmer defined migration/checkpointing markers.

On the other hand, the second approach applies to the application which can be modified

(either by the developer or automatically during the compilation process of application)

to put migration markers which can readily checkpoint themselves. The first approach is

resource hungry because it can checkpoints the application may be more than one time as

it requires a manual checkpoint signals forwarded through AMM or checkpointing based

upon time intervals. While the second approach is lightweight as it has the ability to

checkpoint upon reaching a checkpoint marker.

The checkpoint mechanism interrogates kernel state (open file descriptors, file de-

scriptor offset, etc.) and saves register values using available kernel data structures.

Lastly, all user-space memory is stored to checkpoint image (/proc/self/maps). The check-

point mechanism was configured to uses gzip to compress the checkpoint images. The

compression is performed to reduce the effect on network traffic unless the data in mem-

ory is incompressible. The checkpointing process includes any libraries that the process

was using. This strategy improves the portability of the checkpoint images and it even

in some cases allows migration of the process to hosts with different Linux distributions,

different Linux kernels, etc.

1https://github.com/dmtcp/dmtcp
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4.2.4 Server side admission control

Admission control modules enforce the fair-usage policy of server resources. In the case

of a cloudlet with a weak pricing model based admission control, ensuring the efficacy of

the system is vital (Whaiduzzaman, Gani, & Naveed, 2014b, 2014a). Admission control

can regulate the number of active server users depending on the system utilization or a

manual policy defined by the system administrator. To share the resources among differ-

ent devices, requests will be queued and processed using any available scheduling policy

(e.g., FIFO, round-robin) defined by the system administrator or dynamically selected

based on the system load and other metrics. Furthermore, whenever a mobile device

sends requests to the offloading server, the admission control will communicate with the

instance manager to verify whether the device can be emulated/virtualized or not. After-

ward, the admission control verifies the availability of the software platform is available.

If both conditions are satisfied, the request is transferred and the ID of the emulated/virtu-

alized instance received from the instance manager is sent back to the requesting mobile

device. Once the request is granted, the subsequent process state synchronization packets

from that device are directly transmitted/forwarded to the instance manager.

4.2.5 Server side application migration manager

The server side application migration manager will reside in a virtualized/emulated de-

vice or physical device instance depending upon the availability. This manager will serve

as a server to the AMM residing on the user’s mobile device. To maintain the policies

implemented by the admission control, this coordinator will track the service time and

active time that user uses the server resource and if there is a violation of that policy or

the requested/paid time is over the will stop servicing the mobile device. Once the server-

side migration manager starts receiving packets (meta information and checkpoint file)

from the mobile device. The manager will then signal the checkpoint manager to along
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with the location of the checkpoint which needs to be restarted. Once the application is

restarted then either, it would be re-checkpointed based upon regular intervals for unmod-

ified applications or applications which do not have checkpointing/migration markers. On

the other hand, if the application is migration-aware then it will re-checkpoint itself once

it reaches a checkpoint marker. The re-checkpointing is done to transfer the computation

and pending execution back to the mobile device.

4.2.6 Proposed PMCO Algorithms

In this section, we present our proposed algorithms which originally correspond to the

interaction between the components of the drafted framework detailed in section 4.2. The

implementations of process migration based computational offloading algorithm employ-

ing checkpoint can vary depending upon the checkpointing methodology, hardware and

software architecture. However, the primary steps in generic process migration according

to (Vasudevan & Venkatesh, n.d.) can be summarized in the following steps:

1. A process migration request is issued to a remote computing device. After negoti-

ation with server side Admission control, migration has been accepted.

2. The process is detached by suspending its execution on the mobile device, declaring

it to be in a migrating state.

3. The process soft state is extracted, including memory contents, processor state (reg-

ister contents), communication state (e.g., opened files and message channels) and

relevant kernel context. The extracted process soft state is stored in a checkpoint

file and is hardware & OS dependent.

4. Checkpoint file is transferred and restarted as a new process on the remote comput-

ing device.
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Based on these generic step and the components of our proposed solution we present

our process migration based computational offloading algorithm and a server side service

algorithm to serve the end users as Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Offloading Algorithm
1: Ec,Ei,Et ,Er,Sm,Bt ←MPMGetGlobalPrefrences()
2: S← AMMGetFindServer()
3: βu,Et ← TestUpload()
4: βd,Er← TestDownload()
5: while isConnected(S) do
6: P, I,α,γ,Pf ,Pt ←MPMGetProcessInfo()
7: if P 6= NULL then
8: AMC← LaunchApplicationMigrationCoordinator(Ec,Ei,Et ,Er,βu,βd,α,γ)
9: LaunchProcess(P)

10: if Pt = MigrationAware then
11: Ot ← AMMInfoPolling()
12: if Ot 6= NULL then
13: βu← TransferCheckpoint(Ot ,Pt ,S)
14: βd ← ReceiveCheckpoint(Or,S)
15: RestartCheckpoint(Or)
16: end if
17: else
18: if Benefit(Ec,Ei,Et ,Er,βu,βd,α,γ) > 0) orPf = 1 then
19: AMMSignalCheckpoint(P)
20: Ot ← AMMInfoPolling()
21: AMMSignalKill(P)
22: if Ot 6= NULL then
23: βu← TransferCheckpoint(Ot ,Pt ,S)
24: βd ← ReceiveCheckpoint(Or,S)
25: RestartCheckpoint(Or)
26: end if
27: else
28: ExecuteProcessLocally(P)
29: end if
30: end if
31: end if
32: end while
33: while isNotConnected(S) do
34: P←MPMGetProcessInfo()
35: if P 6= NULL then
36: ExecuteProcessLocally(P)
37: end if
38: end while

In the Algorithm 1, Line 1, initialize the algorithm with the global parameter values

defined by the user in the MPM registry. Line 2, calls the AMM to find and negotiate
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a suitable server according to the criteria defined by the user. Once the mobile device

is connected to the server, a small test upload and download transmission is performed

in Line (3-4). The test transmission is performed to gather the upload bandwidth βu

and download bandwidth βd along with Et and Er if not set by the user in the global

setting. Afterward, Line (5-32) is the main offloading loop conditioned by the server

connectivity. Line 6, will query the MPM registry and get a process if listed along with the

preferences defined for the process. Once an application listing has been discovered, Line

8, will execute the AMC along with, the parameters required for an offloading decision.

Once the AMC starts running the application needs to be offloaded is Launched in Line

9. After that, Line 10, checks whether the application is migration-aware or not if the

application is migration-aware the offloading decision benefit function equation (4.2) will

be called inside the application execution life cycle on the point of offloading. Once that

function is called and returns true, the application will be checkpointed, and AMC will

be acknowledged about the checkpoint. This acknowledgment will be received on Line

11 (AMMInfoPolling()) of the offloading algorithm. The acknowledgment means that a

checkpoint is ready and needs to be offloaded. Line 13, will transfer the checkpoint to

the remote device. While line 14, will wait for receiving the updated checkpoint from the

remote device. On the other hand, if the application is not migration-aware, the control

will then jumped to Line 18, where the offloading algorithm will call the benefit function

listed in equation (4.2). If the offloading benefit function returns true then in Line 19,

AMM will signal the AMC to send a checkpoint signal to the process checkpoint thread.

Once the process receive that signal, it will checkpoint itself and acknowledge AMC,

which will be handled by the polling function in Line 20. Once the acknowledgment is

received, the process would be then killed, and the checkpoint would be transferred to

the remote device in Line 23. While Line 24, will wait for a response. If the benefit

function listed in Line 18 returns false, then the application would be executed locally.
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Line 33-37 will execute the application locally on the mobile device if and only if an

MPM entry for the mobile application is available and is set to true, but the mobile device

is not connected to an OSP.

The offloading decision function Equation (1), present a modified offloading deci-

sion function from Equation (4.1) which is tuned to consider process migration based

computational offloading.

[E p
m−E

′p
m −E

′′p
m −E p

t −E p
r ]> Bt ,whereBt > 0 (4.2)

Where E p
m, presents the energy consumption of process p on source mobile device

m. E
′p
m is the energy consumption of the check-pointing of process p on source mobile

device m, while E
′′p
m represents the energy consumption of restarting the process from

a checkpoint state (received from a remote computing device) on the on source mobile

device m. While E p
t and E p

r is the energy consumption to transfer a checkpoint and

receive a checkpoint of process p. The modification of the decision function is done due

to the nature of process migration. Where the process is killed after the checkpointing

and then transferred to the remote device, and then again received and restarted on the

source device from the updated state.

Now from the prescriptive of the server side, there should be a service which should

be published to enable its consumption by the process migration based computational

offloading listed in Algorithm 1. The server side service function is listed as Algorithm

2.

The server side algorithm is straightforward, Line 2-3 accept a client connection

and then a checkpoint file. Once the checkpoint file is received Line 4, will check if the

application for which the checkpoint file is received is migration-aware, if so then will

restart it with the process with its own coordinator on Line 5. Line 6, the AMM will
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Algorithm 2 Offloading Service
1: while 1 do
2: C← AcceptConnection()
3: ReceiveCheckpoint(Or,Pt ,C)
4: if Pt = MigrationAware then
5: P← RestartCheckpoint(Or)
6: Ot ← AMMInfoPolling()
7: if Ot 6= NULL then
8: TransferCheckpoint(Ot ,S)
9: end if

10: else
11: P← RestartCheckpoint(Or, Interval)
12: if isProcessExecutionFinished(P) then
13: Ot ← AMMInfoPolling()
14: if Ot 6= NULL then
15: TransferCheckpoint(Ot ,S)
16: end if
17: end if
18: end if
19: end while

start polling for readiness of the new checkpoint image to be sent to the client device.

On the other hand, if the process is not migration-aware than control will be jumped to

Line 11, where the process will be restarted with its own coordinator on an interval based

checkpointing. Once the process is restarted Line 12, will wait until the process execution

is not finished. Once the execution is finished Line 13, will poll for the latest checkpoint

image (which is generated based on interval timeout during program execution). The

checkpoint image will be then sent back to client device where it is restarted.

Besides the algorithms presented above, to simplify and better the depict the process

migration based computational offloading we have presented the flow diagrams of the

process. The flow diagram represents use cases of (i) migration of a process from the

mobile device to remote computing device; (ii) restarting of the process at both of the

endpoints; and (iii) migration of the process back from the remote computing device to

the mobile device.

Figure 4.5, presents the use case (i) where the application is under execution and

needs to be offloaded will take an offloading decision based upon assistance from other
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modules of the framework. Once the offloading decision is successful the process is

paused and checkpointed, and the checkpoint file is then transferred to the remote com-

puting device.

Start
Application Running 

on Mobile Device
Offloading 
Decesion

No

Pause Process
Checkpoint Process Send the 

checkpoint 
file

Finish

Figure 4.5: Flow diagram of process migration from mobile device to remote computing
device.

Figure 4.6, present the use case (ii) where a process is restarted from a checkpoint

file on both the remote computing device and mobile device ( once returned from the

remote computing device).

Start

Receive 
Checkpoint 

File from 
remote 
device

Restart the 
checkpoint file as a 

new process
Finish

Figure 4.6: Restarting a process from the checkpoint file.

Figure 4.7, present the use case (iii) where once an application is executing on the

remote computing infrastructure and finished after a checkpoint marker is reached or

execution of the process finished completely. The checkpoint file generated on the remote

computing device is then sent back to the requesting mobile device.

Start
Process running in 
remote computing 

device
Pause process

Checkpoint Process
Send the 

checkpoint 
file to mobile 

device

Finish

Figure 4.7: Flow diagram of process migration from remote computing device to mobile
device.
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4.2.7 PMCO execution flow using sequence diagram

To represent the interaction and execution flow of the components of the proposed frame-

work according to algorithmic analogy sequence diagram sound to be the best candidate

due to its ability of presentation based upon object lifeline. Figure 4.8 and 4.9 present the

sequence diagram computational offloading using the proposed framework. Figure 4.8

present the computational offloading scenario of offloading migration-aware mobile ap-

plications. Whereas, Figure 4.9 presents the scenario of offloading non migration-aware

mobile applications. The description in the following lines can be easily tracked using

the components lifelines.

W
ireless C

h
an

n
el

M-AMM AC

MPMGetGlobalPrefrences()

Connect

MPM

getProcessInfo()

M-MC

PE

StartProcess() RegisterWithCoordinator

MigrationMarkerReached()

SelfCheckpoint

InformCoordinator

InformForOffloadFileAvailable()

OffloadDecesion

S-AMM

MigrateCheckpointFile()

S-MC

C-PE

Signal

SendResponseMigrationFile

C-PE

StartExecutionFromCheckpointFile

StartCheckpointFile

RegisterWith
Coordinator

UpdateBandwidth

FindServer

TestUpload/Download()

LaunchCoordinator()

MigrationMarkerReached

Checkpoint

Figure 4.8: Sequence diagram of offloading a migration-aware application using the pro-
posed PMCO based mobile device augmentation framework.
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InformForOffloadFileAvailable

S-AMM
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S-MC
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RegisterWith
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LaunchCoordinator()

OffloadDecesion

CheckpointCommand()
Checkpoint()

CheckpointOnInterval

Figure 4.9: Sequence diagram of offloading a non migration-aware application using the
proposed PMCO based mobile device augmentation framework.

In the sequence diagram presented in Figure 4.8 and 4.9 M-AMM stands for a mo-

bile side application migration manager. MPM stands for Migration Preference Manager.

M-MC stands for a mobile side application migration coordinator. AC stands for Admis-

sion control. S-AMM stands for server side application migration coordinator, and S-MC

stands for server side application migration coordinator. PE stands for the process execu-

tion, while C-PE stands for starting execution from a checkpoint file. The interaction of

these components is as follow.

The first seven steps in both the sequence diagrams (Figure 4.8 and 4.9) are same

and correspond to: (i) getting global preferences; (ii) connection with server; (iii) test

upload and download transmission; (iv) get process from MPM; (v) launch the applica-

tion migration coordinator; (vi) execute the program which needs to be offloaded using
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the checkpoint launcher program discussed in section 4.1.2; and finally register the ap-

plication with the mobile side M-MC. Afterward, in scenario 1 Figure 4.8 application

itself take the offloading decision, and if it yields true, the application will checkpoint

itself and inform the coordinator which will in turn signal the mobile side M-AMM that

a checkpoint parcel is ready to be shipped to a remote computing device.

On the other hand, in scenario 2 Figure 4.9 the M-AMM will take the offloading de-

cision, and if it yields true, then the signal will be sent to M-MC to forward a checkpoint

message to the application under execution. Once the checkpoint thread in the applica-

tion receives the checkpoint signal from the M-MC, it will self-checkpoint the complete

process and acknowledge M-MC and this acknowledgment will be relayed to M-AMM

for migrating the checkpoint file to the remote device.

Once the checkpoint file is migrated from the client device, it is received by the S-

AMM on the server side and restarted immediately. The sending back of the computation

of both the scenarios are little different for scenario 1 Figure 4.8 the application after

restarting will again checkpoint itself on the migration marker marked from where the

computation needs to be done on the mobile device, and the checkpoint file will be sent

to the device for restarting again. However, the non migration-aware applications after

restarting at the server side will be checkpointed on an interval basis and only the last

checkpoint after once the execution finishes will be sent to requesting mobile device.

On the server side, the AMM will restart the checkpoint file as a new process using

a restart tool which will also span its own coordinator process. The application infor-

mation received by server-side AMM will be used to define setting of sending back the

result. If the application is migration-aware, then the application will re-checkpoint it-

self on the migration exit point while if the application is non migration-aware then the

server coordinator will be configured and started in a way to perform an interval based

checkpoint until the execution of the process does not finish. In the first case if the appli-
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Table 4.1: Metrics for Performance Assesment of the Proposed Framework

Metric Definition Unit

Consumed Energy
Total amount of energy consumed on the device to
complete one entire life cycle of a single program

Joule

Compute Power

From a benchmarking perspective, the compute power
can be measured as the total amount of mega floating
point operation or mega instruction per seconds computed for
our experimental environment using standardized
benchmark methods

MFLOPS, MIPS

Execution Time
Total time takes to complete one entire life cycle
of a single workload

Seconds

Data Transfer
The amount of data transferred between a single
offloading transaction

Bytes

cation is migration-aware the re-checkpoint file is straight away forwarded to the mobile

device where it can be restart from the execution point where the server left it. While

for non migration-aware applications once the application execution is finished the last

checkpoint which is acquired will be transferred to the mobile device.

4.3 Data design

In this section, we describe the methods used to evaluate the performance of this frame-

work. We also identify the performance evaluation metrics that are identified for evalua-

tion of the framework.

4.3.1 Evaluation metrics

We identify the framework performance and consumed energy as two metrics of evalua-

tion that are presented in Table 4.1 and explained as follows. These two metrics help us

to obtain our aim and objectives in this study. Consumed energy and framework perfor-

mance are the most important established metrics to evaluate the lightweight properties

of a typical computing system.

• Consumed Energy: Consumed energy is the amount of energy consumed to com-

plete the entire life cycle of one complete execution cycle of a program which
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is measured and stated in Joules. The energy data is collected using PowerAPI

(Bourdon, Noureddine, Rouvoy, & Seinturier, 2013) which is capable of collecting

energy data for the computing devices which is based upon procfs. The energy

consumed by the other components such as storage and LCD are disregarded in

this study. To avoid man-made mistakes, the energy values are extracted and are

processed using specialized results parser written to suit our data requirements.

• Compute Power: We measure the effectiveness of our proposed framework in a

controlled environment and consider compute power as one of the important per-

formance indicator. The compute power of the any (including the proposed) com-

puting system can be better expressed as the amount of instruction per second or

mega flop operations per second which are available to program to complete an

entire life cycle of its execution. Theses performance metrics can be generated us-

ing different methods. However, we used standardized methods explained in next

chapter. Similar to the energy consumption, to avoid man-made mistakes, the val-

ues are extracted and are processed using a specialized results parser written to suit

our data requirements.

• Execution Time: Besides measuring the performance using standardized bench-

marks. We measure another performance metric in term of the reduction of the

total execution time of a set of the workload when executed locally and when of-

floading using the proposed method. Likewise, to avoid man-made mistakes, the

values are extracted and are processed using specialized results parser written to

suit our data requirements.

• Data Transfer: The third performance metric which we measured is the amount of

data transferred between two endpoints in a successful offloading transaction. The

extraction mechanism is same as for the other parameters.
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4.4 Conclusion

In this chapter, we illustrated the proposed framework in this research and described its

requirements, and characteristics. The schematic presentation of the proposed framework

and its major building blocks are depicted. We also described our proposed framework

by explaining functional and non-functional characteristics of its main components. Flow

diagrams and sequence diagrams are used to outline the functional behaviors of major

components of the framework. Moreover, several significant features of the framework

are highlighted. Data design is described, and data generation procedures are explained.

We have identified consumed energy, compute power, application execution time and the

amount of data transfer in a successful offloading transaction as the performance eval-

uation metrics. Statistical modeling is determined as the performance evaluation and

validation techniques. The data analysis methods that are utilized in the evaluation of this

framework are presented.
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CHAPTER 5: EVALUATION

This chapter presents the performance evaluation methods used to evaluate and validate

the performance metrics of our proposed framework. To evaluate the proposed model and

its lightweight features, we use standardized synthetic benchmarking experiments, also

with a synthetic compute intensive application for measuring mega floating point opera-

tion per seconds, mega instruction per seconds application execution time, the amount of

data transfer and consumed energy. Using thirty observation of each benchmark applica-

tion, we collect and analyze the performance metrics. The evaluation results are validated

via statistical modeling. To build our statistical model, we used independent replication

method and validated the proposed model using split-sample approach. In another set

of experiments, we build a separate test-bed for the comparative study of our proposed

technique with the other offloading migration mechanisms to demonstrate the lightweight

feature of our framework. Lastly, we describe the statistical data analysis methods used

to analyze and synthesize the results.

The remainder of this chapter is as follows. Section 5.1 presents the experimental

setup along with data generation methods. Section 5.2 presents the evaluation methods

and explain how the statistical models are validated. Section 5.3 presents our parametric

analysis and describes the statistical data analysis observations to analyze and synthesize

the results. The chapter concludes in section 5.4.

5.1 Experimental setup

To benchmark the proposed prototype we selected four standard and different synthetic

computing benchmarks, and a synthetic compute intensive application with various gran-

ularity of execution inputs. The selected synthetic benchmarks are (i) Dhrystone1, (ii)

1https://en.wikipedia.org/wiki/Dhrystone
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Table 5.1: Benchmark Matrix Multiplication Granularity

Workload#1 Matrix Granularity

1 300x300

2 400x400

3 500x500

4 600x600

5 700x700

6 800x800

7 900x900

8 1000x1000

Whetstone2, (iii) Linpack 3, and (iv) Scimark24. The Scimark benchmark was configured

to execute the large instance; the configuration can be set as command line parameter

using the source code provided by NIST. While the compute intensive application is a

matrix multiplication application with different matrix granularities presented in Table

5.1. Furthermore, all the applications (benchmarks+matrix multiplication program) have

been annotated with migration points enabling their self-checkpointing and compiled us-

ing standard GNU Compiler Collection (GCC) with -FPIC (position independent machine

code) switch enabled while compiling the applications. Which is essentially required by

the checkpointing engine to checkpoint and restart the process transparently in user space.

The primary data of performance evaluation are collected by testing the prototype

applications on both the Android and real mobile cloud environment in three different

scenarios. In the first scenario, all the components of the mobile application are executed

on the local mobile device to analyze performance evaluation metrics of the application

on the local mobile device. In the second scenario, the application is again executed on

the local mobile device using the proposed framework so that the framework overhead

energy consumption and application execution time can be analyzed. In the last scenario,

2https://en.wikipedia.org/wiki/Whetstone_(benchmark)
3https://en.wikipedia.org/wiki/LINPACK
4http://math.nist.gov/scimark2/
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the components of the mobile application are offloaded at runtime by implementing the

proposed computational offloading techniques. The schematic presentation of our bench-

marking setup is illustrated in Figure 5.1 and described as follows.

Figure 5.1: Network topology of experimental setup.

Previously discussed in section 3.3 and in the preamble of Chapter 4 the process state

is platform dependent. To prepare the real experimentation environment, we need same

hardware and operating system architecture on both endpoints of the experimental setup

presented in Figure 5.1. In this response to prototype the proposed mechanism we used

a Samsung Galaxy S-II i9100g as the client devices. The client device is equipped with

a Dual-core 1.2 GHz TI OMAP 4430 ARM Cortex-A9 SoC and 1 GB RAM. The client

device is connected to the server device using campus WiFi network. The server device is

a high-performance Sony Xperia Z Ultra equipped with Quad-core 2.2 GHz Qualcomm

MSM8274 ARM Cortex-A9 SoC. To further make a difference between the client and

server device, we down-clocked the client device from 1.2 GHz to 600 MHz to emulate a

resource-poor client device and a resource-rich server device.

From the operating system point of view, both devices are by default coming with

Android OS. However, for our experimental setup, we utilized the Android kernel but de-

ployed a standard ARM port of Ubuntu 13.10 Saucy Salamander in a chroot environment

over both of the devices. This chroot jail over Android allows us to take advantage of
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full capabilities of standard GNU Glibc (missing in Android) and Android kernel (Linux

kernel), especially in accessing process state from user spaces.

From the component implementation point view, the application migration manager

is written in Java providing the client-server communication interface between both end-

points. While for the checkpoint management and coordination, we exploited and mod-

ified DMTCP 5, a multi-purpose checkpointing mechanism for parallel and distributed

computing environment. DMTCP is a community driven having progressive enhance-

ment by which the framework can be ported to newer platforms and environments en-

abling its portability to a large extent.

We evaluate the performance of each of the benchmark and eight different granular-

ities of the matrix multiplication workload in three modes of Local, Local_PMCO, and

the proposed PMCO. Each benchmark and matrix multiplication workloads are executed

thirty times whose mean value is considered for analysis. To enhance the reliability of

the results the findings are presented with 95% confidence interval in this experiment to

ensure data collection is unbiased.

To collect the energy consumption of the complete application under execution, we

monitor the application and the framework components using PowerAPI (Bourdon et al.,

2013) in console mode, a granular tool for investigating power consumption of running

applications based on chipset Thermal Design Power (TDP). The TDP value for the client

device (Samsung Galaxy SII i9100g) in our case is set to 0.6W 6. PowerAPI also provides

a feature to monitor the aggregate energy consumption of a group of processes, which in

our scenario of remote execution (i.e. process migration) is configured to monitor the

power consumption of the AMM and AMC components of the proposed framework. En-

ergy consumed by other software components are not considered in this data collection

5http://dmtcp.sourceforge.net/
6http://www.notebookcheck.net/Texas-Instruments-TI-OMAP-4430-SoC.86865.0.html
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phase, and we run the applications in active mode throughout the experiment by pre-

venting from pausing or blocking the application execution. Furthermore, we parse the

power profile output generated by PowerAPI using bash scripts to generate CSV files for

analysis.

The improvement in the compute power is measured by executing the benchmark

applications, which are specifically designed for this purpose and used widely for bench-

marking computing systems and hardware. The migration segments of the benchmark

applications comprise the start and end of the main function of the application so that the

generated benchmark values are not biased and provide with a real increase in the compute

power based upon the server device. The benchmark execution results are encapsulated

automatically in the checkpoint parcel by the checkpoint manager on the server as we

used the output redirection to a file on the server device which enabling the checkpoint-

ing process to store that file in the parcel also and once restarted on the client device the

file is created then.

The improvement in execution time is measured using the matrix multiplication ap-

plications, as benchmarks are not designed for this purpose as they would in most of the

cases run for the same time units on all devices to provide an unbiased analysis of the com-

pute capabilities. The execution time of matrix multiplication application is measured by

the application itself as we enclosed the migration segment of the source code with timers

to provide details about the execution time while executing locally or remotely. This will

provide the execution time of the program on the system on which it is executing now. To

compute the remote execution time we have added the checkpoint restart overhead time,

and added the transmission and reception time as well. Their respective components gen-

erated these values and stored them, in a formatted log file which is then processed using

bash scripts to generate CSV files for analysis.

Our last parameter is the amount of data transfer; it is the size of the checkpoint file
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which is first migrated from the mobile device, and then an updated checkpoint state is

transferred by the mobile device from the server. The amount of data transfer is logged by

the AMM which to provide the bandwidth consumption details. The log file is processed

as the other parameters.

5.2 Evaluation methods

To assess reliability and validity of our research, we perform several statistical analyses on

primary data generated via executing workloads and statistical modeling. In the following

section, we describe each of the statistical methods being used in this research.

5.2.1 Descriptive statistics

To analyze data, describe improvements, and highlight significance of achievements in

consumed energy, compute power, execution time and the amount of data transfer for lo-

cal and PMCO modes, descriptive statistics including minimum, maximum, and mean are

determined. Desired descriptive data are obtained for data collected and are summarized

in tabular and graphical presentations to fulfill the desired objectives.

5.2.2 Confidence interval

According to the sample central limit theorem, approximately 95% of the sample means

fall within 1.96 standard deviation of the population mean, provided that the sample size

is greater than or equal to 30 (n > 30). Hence, application in the experiments is exe-

cuted 30 times for the evaluation of each parameter to derive the value and verify that

the sample is one of the representative samples. The measurement of central tendency

of the data sample of each experiment is calculated by using the sample mean, for the

reason that sample mean is ascertained the better point estimate of the population mean

as compared to median or mode. Data sampling involves the factor of sampling error;

hence the sample mean can differ from the population mean. Hence, to signify the good-
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ness of the calculated point estimate; the interval estimate of each sample is determined.

The interval estimate for each sample mean of the primary data is calculated with 95%

confidence interval by using the following equation. Therefore, we raise the confidence

and reliability of results up to 95% when reporting the parametric results.

X̄±1.96
σ√

n
(5.1)

Whereas, σ indicates the standard deviation in the sample values and n indicates the

size of sample space.

5.2.3 Paired samples t-test

In this research, we use Paired Samples T-Test to ensure that there is a significant dif-

ference between the mean values of the identical measurement made in two different

execution modes (Local execution vs. PMCO). In our study, local parametric values and

PMCO parametric values are paired data of the same workloads executed in two separate

modes. We use this test to ensure if execution modes (local and PMCO) have significant

impacts on energy, compute power and time or not. In other words, with the help of the

results from paired samples t-test we can show that consumed energy, compute power,

and execution time values in local and PMCO modes have significant differences.

5.2.4 Linear regression

In this section, we describe our statistical analysis model, using the results of the statistical

model we can verify the reliability of the concluded results from the experiments data.

For producing the statistical model of consumed energy, execution time and the

amount of data transfer for local and PMCO modes, we employ independent replication

method to generate independent dataset consisting of the measured consumed energy,

execution time and amount of data transfer for new independent workloads in local and
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PMCO modes. The same testbed described in Section 5.1 is used, except the fact, the

benchmarks workloads are not used in regression analysis as there is a no correlation

and cannot be configured to execute in different intensity levels. However, the prototype

matrix multiplication is used for regression analysis due to correlation between the com-

putational intensity of different configurations. This is enough to verify and validate the

behavior of the data generated by the experiments.

We train the linear regression model to identify the correlations between the matrix

multiplication workloads and execution time as well as multiplication workloads and ex-

ecution time and amount of data transfer and also between execution time and consumed

energy to derive the regression models of time and energy. Using the regression models,

the consumed energy, execution time and amount of data transfer can be generated to

validate the performance evaluation findings undertaken via experimental analysis.

To validate our regression model, we leverage split-sample approach and perform the

calibration-validation exercise. Thus partial dataset is used to build the model and the rest

to validate the results of the model. To perform validation, we randomly split the sample

into two different size samples and identify the correlations between the dependent and

independent variables. If the results are supporting each other, the model is valid.

5.3 Parametric evaluations

The following section presents the data collected in different experiments for the evalua-

tion of the proposed process migration based computational offloading framework. The

data are presented from the perspective of performance metrics (i) Compute Power, (ii)

Execution Time, (iii) Energy Consumed, and (iv) Data Transfer by the workloads in three

different scenarios i.e.: 1) Execution of the application on local mobile device, 2) Ex-

ecution of the application on local mobile device by the components of the proposed

framework referred as Local_PMCO beyond this point 3) Execution of the application

98

Univ
ers

ity
 of

 M
ala

ya



using process migration to the remote device referred as PMCO.

5.3.1 Data transmission

The amount of data transfer and reception is investigated to support the accuracy of exe-

cution response time and energy consumed in the proposed PMCO framework. However,

when a workload is executed on local mobile devices it does not need to transfer its

computations to the remote computing device, so this parameter does not apply to the

local computing. However, as stated earlier the execution time and energy consumed

when a computation is offloaded depends upon the data transfer. Table 5.2, represents the

mean data transfer and reception in bytes of 30 observations with error margin according

to 95% confidence interval while executing the workload in PMCO mode of execution

(where the application is migrated using the proposed framework when it reaches a mi-

gration marker). Table 5.7, presents the mean execution time plus the error rate based

on 95% confidence interval of matrix multiplication workloads having different compu-

tational intensities determined by the criminality of matrices. Table 5.7, also presents the

average amount of time it takes to transfer and receive the workload to the remote com-

puting infrastructure upon migration time and response time, based on the experimental

setup detailed in section 5.1. The time values are also based upon the 95% confidence

interval. As it is evident, when the workload size increases the amount of data trans-

mission will also increase but on the other hand the amount of time required to transfer

and receive does not have a strong correlation with workload size as compared with the

network dynamics. To investigate this behavior, we have statistically modeled the data

transfer and reception time in an offloading transaction.

The statistical modeling details are already presented in section 5.2.4. Furthermore,

the statistical model for the data transfer and reception time will be then used in the model

for execution time and consumed energy for corresponding workloads to identify the
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Table 5.2: Average amount of data transfer and received, along with the average time it
takes, based on 95% confidence interval

Data Transfer(Bytes) Data Received(Bytes) Transfer Time (Seconds) Data Reception Time (Seconds)

Dhrystone 1873158 ± 406 1907801 ± 365 0.07016 ± 0.00245 0.05074 ± 0.00321
Whetstone 1870997 ± 363 1903545 ± 358 0.0709 ± 0.00348 0.04913 ± 0.00232
Linpack 1878427 ± 448 2067430 ± 316 0.07773 ± 0.00314 0.05792 ± 0.00321
Scimark-FFT 1870491 ± 267 1902899 ± 212 0.0859 ± 0.01911 0.06034 ± 0.00977
Scimark-SOR 1870839 ± 339 2026929 ± 337 0.07825 ± 0.00543 0.06978 ± 0.00581
Scimark-MonteCarlo 1870536 ± 182 1903174 ± 146 0.0774 ± 0.00277 0.08029 ± 0.00639
Scimark-SparseMatMult 1870997 ± 363 1903545 ± 358 0.0709 ± 0.00348 0.04913 ± 0.00232
Scimark-LU 1870734 ± 273 2030351 ± 299 0.07254 ± 0.00157 0.06863 ± 0.01187
Mat. Mult. (300x300) 2189342 ± 384 2201717 ± 136 0.21606 ± 0.02481 0.17327 ± 0.0082
Mat. Mult. (400x400) 2438353 ± 834 2437188 ± 245 0.19705 ± 0.02534 0.17371 ± 0.01027
Mat. Mult. (500x500) 2754353 ± 637 2738264 ± 372 0.19631 ± 0.0207 0.19269 ± 0.01218
Mat. Mult. (600x600) 3144045 ± 633 3109320 ± 556 0.49064 ± 0.12438 0.22865 ± 0.01946
Mat. Mult. (700x700) 3602758 ± 291 3559345 ± 578 0.66713 ± 0.24228 0.3476 ± 0.03194
Mat. Mult. (800x800) 4132230 ± 284 4057875 ± 582 0.42294 ± 0.04018 0.44645 ± 0.03209
Mat. Mult. (900x900) 4732427 ± 238 4636233 ± 552 0.47579 ± 0.0361 0.39975 ± 0.01981
Mat. Mult. (1000x1000) 5403381 ± 280 5283824 ± 581 0.63774 ± 0.02102 0.46386 ± 0.02316

correlations between the workloads and execution time as well as between execution time

and consumed energy. For the sake of simplicity, we are using the matrix multiplication

workloads to statistical model the amount of data transmission (transfer and receive) in

PMCO mode of execution.

Let us assume that to transmit n bytes of data from the mobile device to the remote

server it takes O(n) time and the same also applies for reception of n bytes. Then in matrix

multiplication offloading transaction the asymptotic upper bound to for the transmission

time as:

Ttransmission(Wi) = Ttrasn f er(Wi)+Treceive(Wi) (5.2)

whereas, Ttrans f er(Wi) and Treceive(Wi) are:

Ttrans f er(Wi) = O(2×χ× (N×N)) (5.3)

Treceive(Wi) = O(χ× (N×N)) (5.4)

where, N is the granularity of the matrix workload, and χ is the amount of bytes
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it takes by the data type of the matrix elements. The multiplication with 2 is because

when an offloading transaction a matrix workload is initiated only the input matrices are

declared and initialized, so it becomes a factor of two. However, this is not the case on

the reception time from the server, as the matrix multiplication process restarted on the

server-side while only send back the resultant matrix.

Now the data transfer and reception time complexity is used as an input variable to

the regression model as:

Ttransmission(Wi) = O(2×χ× (N×N))+O(χ× (N×N)) (5.5)

Now first we will model the data transfer time. For the sake of simplicity and ac-

curacy, we consider ci = 2× χ × (N ×N), ci represents the number of bytes needs to

be transferred. Additionally, we consider di = χ × (N×N), di represents the number of

bytes needs to be received in an offloading transaction. Hence, the statistical model of the

data transmission time for the matrix multiplication workload is:

Ttransmission(Wi) = ((m× ci)+ j)+((l×di)+ k) (5.6)

Now before regression, the linearity of matrix multiplication data transfer and re-

ception time must be ensured; otherwise, the linear regression can be misleading. The

scatter diagram for matrix multiplication workload and corresponding data transfer time

and data reception is presented in Figure 5.2 and 5.3, respectively. As the results show

in Figure 5.2, the relationship between the workload sizes and data transfer time of ma-

trix multiplication is non-linear verified the R2 also which is about 0.17. Furthermore, in

Figure 5.3, the relationship between the workload sizes and data reception time of matrix

multiplication is a better linear fit as compared to the transfer time. This is non-linearity
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is dues to the dynamics of the underlying wireless network, which fluctuates and depress

the workload size as the predictor by noisy observations.

Figure 5.2: Scatter plot of matrix multiplication noisy data transfer time, with the linearity
correlation determined by the line of best fit.

Figure 5.3: Scatter plot of matrix multiplication noisy data reception time, with the lin-
earity correlation determined by the line of best fit.

However, due to the large sample size (240 observations), we can remove some
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outliers to move the model towards linearity and increase its validity and usefulness in

determining the execution time for remote processing using PMCO. The noisy outliers

are removed for corresponding observations of the data transfer and reception time so

that the model are consistent. After removing the noisy outliers we have improved the

adjusted R2 of the data transfer time from 0.17 to 0.92, the scatter plot of the removed

noised from data transfer time is presented in Figure 5.4. Similarly, after removing the

noisy outliers we have improved the adjusted R2 of the data reception time from 0.70 to

0.82, the scatter plot of the removed noised from data transfer time is presented in Figure

5.5. The noise removal process has improved the model and its linearity to be used in

further analysis.

Figure 5.4: Scatter plot of matrix multiplication normalized data transfer time, with the
linearity correlation determined by the line of best fit.

Thus the linear regression is feasible to model this relationship. The linear regression

results for the normalized data transfer time to determine the m and j are summarized in

Table 5.3.

To determine the m and j values, we utilize matrix sizes of the measured data set and
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Figure 5.5: Scatter plot of matrix multiplication normalized data reception time, with the
linearity correlation determined by the line of best fit.

Table 5.3: Regression statistics summary for data transfer time of matrix multiplication
in PMCO mode

Multiple R 0.962390523
R Square 0.926195519
Adjusted R Square 0.925716269
F 1932.594176
Significance F 4.63737×10−89

Intercept 0.064535721
X Variable 1 6.97687×10−8

Observations 156

their corresponding normalized data transfer time to train the linear regression model.

The results of the linear regression analysis for the matrix multiplication are given in

Table 5.3. The R value in the Table testifies correlation between the workload size and

the amount of data transfer time. The R2 in the Table explains that the data transfer time

can be 92.61% explained using the given workload dimension. Adjusted R2 ensures that

the predictor (workload sizes as independent variable) is almost an appropriate regressor.

The results of m and j values coefficients are determined by the linear regression line

fitting as 6.97687× 10−8 and 0.064535721. Therefore, the data transfer time model of
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Table 5.4: Regression statistics summary for data reception time of matrix multiplication
in PMCO mode

Multiple R 0.922889885
R Square 0.851725741
Adjusted R Square 0.850762921
F 884.6158767
Significance F 1.03254×10−65

Intercept 0.130619288
X Variable 1 8.46526×10−8

Observations 156

the matrix multiplication in PMCO execution mode is:

Ttrans f er(Wi) = (6.97687×10−8× ci)+0.064535721 (5.7)

Now, the linear regression results for the normalized data reception time to determine

the l and k are summarized in Table 5.4.

The R value in the Table 5.4, testifies correlation between the workload size and the

amount of data reception time. The R2 in the Table explains that the data transfer time can

be 85.17% explained using the given workload dimension. Adjusted R2 ensures that the

predictor (workload sizes as independent variable) is almost an appropriate regressor. The

results of l and k values coefficients are determined by the linear regression line fiEtting

as 8.46526×10−8 and 0.1306192. Therefore, the data reception time model of the matrix

multiplication in PMCO execution mode is

Treceive(Wi) = (8.46526×10−8×di)+0.1306192 (5.8)

Now, the data transmission time model of the matrix multiplication in PMCO exe-

cution mode presented in equation (5.6), can be re-written as:

(5.9)Ttransmission(Wi) = ((6.97687× 10−8 × ci) + 0.064535721)
+ ((8.46526× 10−8 × di) + 0.1306192)
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Table 5.5: Validation of data transfer time statistical model using split-sample approach

Split Sample 1 Split Sample 2 Orignal Sample

Multiple R 0.962846183 Multiple R 0.963859585 Multiple R 0.962390523
R Square 0.927072772 R Square 0.9290253 R Square 0.926195519
Adjusted R Square 0.92636474 Adjusted R Square 0.927576837 Adjusted R Square 0.925716269
df 104 df 50 df 155
Observations 105 Observations 51 Observations 156

Table 5.6: Validation of data reception time statistical model using split-sample approach

Split Sample 1 Split Sample 2 Original Sample

Multiple R 0.932895243 Multiple R 0.901898535 Multiple R 0.922889885
R Square 0.870293535 R Square 0.813420968 R Square 0.851725741
Adjusted R Square 0.869034249 Adjusted R Square 0.809613233 Adjusted R Square 0.850762921
df 104 df 50 df 155
Observations 105 Observations 51 Observations 156

To validate our devised model, we perform split-sample procedure explained earlier.

We split the sample data into two randomly selected partitions for PMCO data transmis-

sion time. For each partition, we determine the correlation coefficients and compare the

results of both partitions with the full sample to ensure validity. The comparison results

are summarized in Table 5.5 and 5.6. As the results in Table 5.5 shows, the model pro-

duces identical R, R2, and adjusted R2 for all three different samples, whereas in Table

5.6 there is slight deviation of up to 0.4% in the values of R2, and adjusted R2 from the

original sample. The degree of freedom (d f ) column in the tables shows that the size of

each sample is unique and random. The adjusted R2 is alike for all the splits which is an

evidence of the validity of our proposed statistical model.

5.3.2 Execution time

To analyze the impact and decrease in the execution time of the matrix multiplication

workload based on the experimental setup explained in section 5.1, each of the ma-

trix workloads with different granularity is executed thirty times in all of the execution

modes. The reason why the benchmark workload are not included in this analysis is

because benchmarks application normally executed for the same amount of time (except

Scimark2) over different systems, so that make fair comparisons. Table 5.7, represents the
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Table 5.7: Mean execution time of matrix multiplication workloads with 95% confidence
interval, Using three execution modes

Workload # Workload Local Local_PMCO Deterioration % PMCO Improvement %

1 Mat. Mult. (300x300) 4.36 ± 0.026 4.46 ± 0.04 2.29 2.32 ± 0.03 46.78899083
2 Mat. Mult. (400x400) 11.04 ± 0.070 11.36 ± 0.08 2.90 5.24 ± 0.04 52.53623188
3 Mat. Mult. (500x500) 22.36 ± 0.173 22.75 ± 0.2 1.74 9.91 ± 0.03 55.67978533
4 Mat. Mult. (600x600) 36.12 ± 0.083 36.31 ± 0.13 0.53 17.02 ± 0.14 52.87929125
5 Mat. Mult. (700x700) 60.94 ± 0.184 61.77 ± 0.38 1.36 27.93 ± 0.26 54.16803413
6 Mat. Mult. (800x800) 107.70 ± 0.271 108.79 ± 0.2 1.01 42.01 ± 0.07 60.99350046
7 Mat. Mult. (900x900) 141.06 ± 0.418 141.8 ± 0.36 0.52 62.49 ± 0.07 55.69970225
8 Mat. Mult. (1000x1000) 199.73 ± 0.664 200.93 ± 0.54 0.60 87.61 ± 0.15 56.13578331

mean execution time of thirty observations of each matrix multiplication workload and

Scimark components along with error margin according to 95% confidence interval while

executing the workload on the local mobile device, Local_PMCO, and using PMCO to

the remote computing devices. Table 5.7, presents the mean execution time plus the error

rate based on 95% confidence interval of matrix multiplication workloads having differ-

ent computational intensities determined by the criminality of matrices. Table 5.7, also

presents the deterioration percentage (increase in execution time), when the workload is

executed locally through the components of the proposed frameworks. The deterioration

is observed to be as less as 0.6% and at max is around 2.9%. Furthermore, the Table

5.7, also represents the percentage of improvement (reduction in execution time) of cor-

responding matrix multiplication workloads. The improvement is substantially ranging

from almost 46% to 61%.

Linear regression method is applied to statistically model the behavior of execution

time in local execution mode and PMCO mode. The details of the linear regression setting

are described in subsection 5.2.4. We describe the statistical modeling of execution time

in local and PMCO execution modes as follows. The devised models are validated using

split-sample approach.

5.3.2.1 Statistical modeling of execution time in local execution mode

For the matrix multiplication workload, the application generates two random matrices of

size [N×N] matrices and calculates the product of these two matrices into another [N×
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N] matrix. The matrix multiplication algorithm is implemented using the classical tri-loop

method with running time of O(N3), where N represents the dimension of the generated

matrices. Therefore, the upper asymptotic runtime bound for the matrix multiplication

application on local mobile device is

Tlocal(Wi) = O((Ni)
3) (5.10)

The multiplication complexity is used an input variable to the regression model. For the

sake of simplicity and accuracy, we consider ci = N3
i , where ci represents the number

of the coefficient of the matrices involved and will allow use to convert the cubic equa-

tion to a linear equation. Hence, the statistical model of execution time for the matrix

multiplication is:

Tlocal(Wi) = (m× ci)+ j (5.11)

which is a linear equation. Before performing regression modeling, the linearity of

matrix multiplication function must be ensured; otherwise, the linear regression can be

misleading. The scatter diagram for matrix multiplication workloads and corresponding

execution times appears in Figure 5.6. As the results show, the relationship between the

workload sizes and the respective execution time of matrix multiplication function as

expected is linear. Thus the linear regression is feasible to model this relationship. The

linear regression results for determining the m and j are summarized in Table 5.8.

To determine the m and j values, we utilize workload sizes of the measured data set

and their corresponding execution time to train the linear regression model. The results

of the linear regression analysis for the matrix multiplication are given in Table 5.8. The

R value in the Table testifies full correlation between the workload value and its execution
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Figure 5.6: Scatter plot of Local matrix multiplication execution time, with the linearity
correlation determined by the line of best fit.

Table 5.8: Regression Statistics Summary for Local execution time of matrix multiplica-
tion

Multiple R 0.998221727
R Square 0.996446615
Adjusted R Square 0.996431685
F 66740.39731
Significance F 1.7393×10−293

Intercept -3.315317243
X Variable 1 2.02212695240863 ×10−7

Observations 240

time. The R2 in the Table explains that the execution time values can be 99.64% explained

using the given workload dimension. Adjusted R2 ensures that the predictor (workload

sizes as independent variable) is an appropriate regressor. The results of m and j val-

ues coefficients are determined by the linear regression line fitting as 2.02212695240863

×10−7 and -3.315317243 respectively. Therefore, the execution time model of the matrix

109

Univ
ers

ity
 of

 M
ala

ya



Table 5.9: Validation of Local Execution Time Statistical Model using Sample Split Ap-
proach

Sample Partition 1 Sample Partition 2 Original Sample

Multiple R 0.9981812 Multiple R 0.998279439 Multiple R 0.998221727
R Square 0.996365708 R Square 0.996561838 R Square 0.996446615
Adjusted R Square 0.99634256 Adjusted R Square 0.996518317 Adjusted R Square 0.996431685
df 158 df 80 df 239
Observations 159 Observations 81 Observations 240

multiplication in local execution mode is

Tlocal(Wi) = (2.02212695240863×10−7× ci)−3.315317243 (5.12)

To validate our devised model, we used the split-sample procedure. We split our

sample into two randomly selected partitions. For each partition, we determine the corre-

lation coefficients and compare the results of both partitions with the unpartitioned sample

to ensure validity. The results of our comparison are presented in Table 5.9. As the re-

sults show, the model produces identical R, R2, and adjusted R2 for all three different

samples. The degree of freedom (d f ) and the observation rows in the table shows that the

size of each partitioned sample is unique and random. The adjusted R2 is similar for all

the groups which are evidence of the validity of our proposed statistical model of local

execution time.

5.3.2.2 Statistical modeling of execution time in PMCO execution mode

PMCO is the second execution mode, is when the local execution is offloaded using the

proposed process migration based computational offloading method to the remote device.

The execution time in PMCO mode is being influenced by the execution time on the server

device, communication time, and overhead in terms of time consumed on checkpointing

and restarting the process on both the client device and the server device. T MatMult
PMCO (Wi)

is the maximum time that the entire cycle of the ith matrix multiplication workload takes
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for execution in PMCO mode and is:

TPMCO(Wi) = 2× (Tcheckpoint(Wi)+Trestart(Wi))+Ttransmission(Wi)+Tremote(Wi) (5.13)

Where Tcheckpoint , is the time it takes to checkpoint the ith workload process on local

device and Trestart is the time it takes to restart the ith workload from a checkpoint file on

the local device. It is multiplied by two because the same process happens on the remote

side also. The Tcheckpoint and Trestart time on the server device can be lower than the

client devices due to the difference in the compute power. However, we have calculated

this turnaround time checkpoint and restore time and fixed the value to 0.5. Ttrans f er

and Treceive is the transfer and receive time for a checkpoint file from local device to the

remote server and vice versa and off-course this time strictly depends upon the network

dynamics. Lastly, Tremote is the execution of the offloaded ith workload. The execution

for the PMCO based execution presented in Table 5.7 and next chapter are calculated as:

(5.14)TPMCO(Wi) = 0.5 + (((6.97687× 10−8 × ci) + 0.064535721)
+ ((8.46526× 10−8 × di) + 0.1306192)) + Tremote(Wi)

In contrast with the execution time in local execution mode that depends on the com-

puting power of the host mobile device. The execution time in PMCO execution mode

strongly depends on the computing capabilities of the remote servers which are not iden-

tical even if the computing specifications are the same (due to existing heterogeneity); in

addition with underlying network dynamics. In equation (5.14), the most computational

expensive is the server side matrix multiplication process. Hence, the input to the linear

regression is the complexity of the matrix multiplication algorithm and their workloads.

As described in local execution mode, the complexity of matrix multiply application is
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O(N3). So the size of the matrices that are sent for execution to the remote server using

PMCO, called gi, are used to measure the application complexity.

Tremote(Wi) = (m×gi)+ j (5.15)

To accurately estimate the m and j values, the server-side measured execution time of

the matrix multiplication execution in PMCO mode are used to draw the linear regression.

Before we perform regression modeling, we depict the linearity of matrix multipli-

cation and PMCO execution time. We have depicted the scatter diagram for matrix sizes

of workloads and corresponding server side execution times in Figure 5.7. As the results

show, the relationship between the workload sizes and respective execution time is linear.

Thus the linear regression is feasible to model this relationship.

Figure 5.7: Scatter plot of server side matrix multiplication execution time, with the
linearity correlation determined by the line of best fit.

The results of the linear regression are given in Table 5.10. The R value in Table

testifies 99.99% correlation between the matrix workload size value and its corresponding

server side execution time. The R2 explains that 99.85 of the PMCO execution response

time values can be explained using the given matrix workload sizes. The F and Sig.
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Table 5.10: Regression Statistics Summary for server side execution time of matrix mul-
tiplication

Multiple R 0.999249279
R Square 0.998499121
Adjusted R Square 0.998492815
F 158335.7415
Significance F 0
Intercept -2.113132585
X Variable 1 8.67706×10−8

Observations 240

values in the Table show significant direct correlations between the workload size and

the PMCO execution. These results enable us to leverage linear regression to derive our

statistical model for the PMCO execution time of the matrix multiplication application.

The linear regression analysis determines the coefficients values for the waiting time of

the multiply as m = 8.67706×10−8 and j =−2.113132585. Hence, the statistical model

of execution response time for the PMCO execution time is written as:

(5.16)
TPMCO(Wi) = 0.5 + (((6.97687× 10−8 × ci) + 0.064535721) +

((8.46526× 10−8 × di) + 0.1306192))
+ ((8.67706× 10−8 × gi)− 2.113132585)

To validate our devised model, we previously validated our devised model for data

transmission model. Now, we will validate the server side execution time to validate the

whole PMCO model presented in equation (5.16). Similarly, like the other devised model

we used the split-sample procedure. We split our sample into two randomly selected

partitions. For each partition, we determine the correlation coefficients and compare the

results of both partitions with the un-partitioned original sample to ensure validity. The

results of our comparison are presented in Table 5.11. As the results show, the model

produces identical R, R2, and adjusted R2 for all three different samples. The degree of

freedom (d f ) and the observation rows in the table shows that the size of each partitioned

sample is unique and random. The adjusted R2 is similar for all the groups which is an
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Table 5.11: Validation of server side execution time statistical model using sample split
approach

Sample Partition 1 Sample Partition 2 Original Sample

Multiple R 0.99928393 Multiple R 0.999169677 Multiple R 0.999249279
R Square 0.998568372 R Square 0.998340043 R Square 0.998499121
Adjusted R Square 0.998559253 Adjusted R Square 0.998319031 Adjusted R Square 0.998492815
df 158 df 80 df 239
Observations 159 Observations 81 Observations 240

evidence of the validity of our proposed statistical model of server side execution time,

which in turn validate the model presented in equation (5.16).

5.3.3 Energy consumed

To analyze the energy consumption of the experimental workloads, each workload is exe-

cuted thirty times in all of the execution modes. Table 5.12, represents the mean of energy

consumption of thirty observations of each workload along with error margin according

to 95% confidence interval while executing the workload on the local mobile device, Lo-

cal_PMCO, and using PMCO to the remote computing devices. The granularity of the

matrix multiplication indicates the computational intensity which varies from 300x300 to

1000x1000. The overhead column in Table 5.12, presents the energy overhead i.e. differ-

ence between Local_PMCO and local, when the application is executed locally with the

checkpoint thread injected. The difference is ranging from 0.01% to 5.7634% compared

to the original energy consumption of the workload. Table 5.12 also presents the benefit

percentage in energy consumption from the local execution and execution using PMCO.

The energy consumption benefit based upon descriptive statistics is almost about from

53% to 91% on average.

The second statistics method is the regression analysis of the energy consumed by the

experimental workloads. As already discussed in Section in 5.2.4, the regression analysis

can be done only for the matrix multiplication workload as it has a correlation and has

the data for different computational intensities to verify the behavior for unknown data
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Table 5.12: Workload Energy Consumption in Joules with 95% confidence interval, Using
three execution modes

Workload # Workload Local Local_PMCO Overhead % Process Migration Benefit %

1 Dhrystone 1.46 ± 0.01 1.46 ± 0.01 0.108937057 0.68 ± 0.03 53.12534436
2 Whetstone 6.81 ± 0.13 7.2 ± 0.05 5.763452626 2.37 ± 0.14 65.26221583
3 Linpack 6.24 ± 0.05 6.44 ± 0.06 3.196366752 2.15 ± 0.06 65.55407922
4 Scimark-FFT 4.97 ± 0.03 4.97 ± 0.03 0.069632963 0.35 ± 0.01 92.90256872
5 Scimark-SOR 2.67 ± 0.01 2.8 ± 0.01 4.555613101 0.66 ± 0.06 75.38408935
6 Scimark-MonteCarlo 2.28 ± 0 2.28 ± 0.01 0.309088031 0.78 ± 0.02 65.56103235
7 Scimark-SparseMatMult 2.06 ± 0.01 2.07 ± 0.01 0.301181829 0.67 ± 0.02 67.45402674
8 Scimark-LU 7.83 ± 0.11 8.18 ± 0.11 4.38841816 0.69 ± 0.02 91.20458107
9 Mat. Mult. (300x300) 1.27 ± 0.02 1.33 ± 0.01 4.88273489 0.26 ± 0.01 79.76313523
10 Mat. Mult. (400x400) 3.65 ± 0.03 3.85 ± 0.03 5.418546485 0.65 ± 0.02 82.21512205
11 Mat. Mult. (500x500) 7.68 ± 0.09 7.99 ± 0.09 4.044797353 1.17 ± 0.04 84.74104488
12 Mat. Mult. (600x600) 7.1 ± 0.01 7.11 ± 0.02 0.060987027 1.13 ± 0.01 84.06025846
13 Mat. Mult. (700x700) 12.17 ± 0.03 12.23 ± 0.06 0.460964246 1.95 ± 0.03 84.01468844
14 Mat. Mult. (800x800) 21.68 ± 0.01 21.78 ± 0.02 0.447504338 3.02 ± 0.02 86.0528725
15 Mat. Mult. (900x900) 28.4 ± 0.06 28.4 ± 0.06 0.010991418 4.7 ± 0.04 83.45021109
16 Mat. Mult. (1000x1000) 40.33 ± 0.09 40.48 ± 0.09 0.362594848 6.33 ± 0.03 84.31202949

points.

5.3.3.1 Statistical modeling of energy consumed in local execution mode

The energy consumption of the mobile device running a matrix multiplication workload

mainly comprises of the total energy used by the CPU as obviously there will not be any

wireless communication. Hence, the only power consuming components is CPU. If E i
m is

the mean energy consumed for the local execution of the ith workload, therefore we have

Em(Wi) = Pm× (CPUWi) (5.17)

where Em(Wi) is the total CPU energy consumed to execute the entire ith workload

locally. While Pm is power rating of the CPU when active.

CPU power consumption for each computational workload highly depends on the

computational intensity of the workload. However, the computational intensity of the

workload is also correlated with the execution time. So, the intenser is the workload, the

higher will be the execution time, and the more will be CPU power consumption.

Because of significant dependency of the consumed energy to the execution time, we

study the consumed energy of a workload as whole regardless of the energy consumption
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of each component. Therefore, we consider the workload in whole for presenting energy

model of our model.

Similar to the statistical model of execution time, to present a reliable and accurate

estimation model of the CPU energy, we perform linear regression using measured real

data on the mobile device. We use datasets of workloads including the execution time

and energy consumption of each workload and use them for training the regression model

to produce the energy model. For validation of our proposed model, we use the split

sample approach. Hence, the power model can be presented as a function of execution

time written as:

Em(Wi) = (z×Tlocal(Wi))+ c (5.18)

where Tlocal(Wi) is the total execution time for the ith workload and c is a constant

value. Both z and c values can be determined using training over linear regression.

Before regression analysis, the type of regression should be identified whether it

is linear or non-linear. The scatter diagram for the local energy consumption is plotted

in Figure 5.8. As the results show, the relationship between the energy and respective

execution time of workloads is linear. Thus, we perform a linear regression to model this

relationship and derive the statistical model.

The detail statistics of the statistical model of our linear regression are summarized

in Table 5.13. The R value shows a significant correlation between the execution time and

consumed energy. The R2 value in the Table testifies that 99.41% of the energy values

can be explained using execution time due to significant direct correlation adjusted R2

advocates that the predictor (time) is an appropriate regressor to model energy. The F

and Signi f icanceF values in the Table ensure that available dataset is appropriate to be

used for linear regression. Hence, performing linear regression is applicable to our model
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Figure 5.8: Scatter plot showing linearity correlation between local execution time and
consumed energy.

Table 5.13: Regression Statistics Summary for energy consumption in local execution
mode

Multiple R 0.997052147
R Square 0.994112985
Adjusted R Square 0.994088249
F 40189.95571
Significance F 2.1478−267

Intercept 1.14220578
X Variable 1 0.193971484
Observations 240

and derived model is reliable and beneficial.

The coefficient values for the regression model are z= 0.193971484 and c= 1.14220578.

Hence, Equation (5.18) is

Em(Wi) = (0.193971484×Tlocal(Wi))+1.14220578 (5.19)

Validation of the devised energy model of local execution mode is carried out using

the split-sample procedure. The sample is divided into two randomly selected partitions.

For each partition, we determine the correlation coefficients and compare the results of
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Table 5.14: Validation of local device energy consumption model using sample split ap-
proach

Sample Partition 1 Sample Partition 2 Original Sample

Multiple R 0.996883776 Multiple R 0.997325672 Multiple R 0.997052147
R Square 0.993777262 R Square 0.994658497 R Square 0.994112985
Adjusted R Square 0.993735217 Adjusted R Square 0.994597798 Adjusted R Square 0.994088249
df 149 df 89 df 239
Observations 150 Observations 90 Observations 240

both partitions with the full sample to demonstrate validity. The results of our comparison

are presented in Table 5.14. As the results show, the model produces identical R, R2, and

adjusted R2 for all three different samples. The degree of freedom (d f ) column in the table

shows that the size of each sample is uniquely accidental. The adjusted R2 is identical for

all the splits which is an evidence of the validity of our proposed statistical model.

5.3.3.2 Statistical modeling of energy consumed in PMCO execution mode

In the proposed PMCO execution mode CPU and communication energy are two ma-

jor energy consumers who will be considered for devising the energy model. Hence, if

EPMCO(Wi) is the total energy consumed for execution in PMCO of the ith workload,

therefore we have

EPMCO(Wi) = Echeckpoint
m (Wi)+Erestart

m (Wi)+Et(Wi)+Er(Wi) (5.20)

where, Echeckpoint
m (Wi), and Erestart

m (Wi) is the energy consumption it takes a check-

point and restarts a process, while Et(Wi) and Er(Wi), is the amount of energy spend while

transmitting and receiving the checkpoint image. Similarly, as discussed in the energy

consumption of the application execution on the local mobile device, the consumption of

energy is a function of activity time. The more, the longer an activity is performing, the

higher the energy consumption will be. Furthermore, PowerAPI allows us to collect the

energy consumption of the all the processes in equation (5.20) collectively, so it would

be much more logical to model the energy consumption as a function of total PMCO ac-
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tivity time. Hence, the power equation (5.20) can be described as a function of PMCO

execution response:

EPMCO(Wi) = Pm×TPMCO(Wi) (5.21)

where Pm is power rating, while PMCO activity is ongoing. Hence the linear model

can be re-written as:

EPMCO(Wi) = (z×TPMCO(Wi))+ c (5.22)

where TPMCO(Wi) is the total execution time for the ith workload and c is a constant

value. Both z and c values can be determined using training over linear regression.

Prior to the regression analysis, the type of regression should be identified whether

it is linear or non-linear. The scatter diagram for the energy consumption in PMCO

execution mode is plotted in Figure 5.9. As the results show, the relationship between

the application energy consumption and its respective PMCO execution response time of

is linear. Thus, we perform a linear regression to model this relationship and derive the

statistical model.

The detail statistics of the statistical model of our linear regression are summarized

in Table 5.15. The R value shows a significant correlation between the execution time and

consumed energy. The R2 value in the Table testifies that 99.15% of the energy values

can be explained using execution time due to significant direct correlation adjusted R2

advocates that the predictor (time) is an appropriate regressor to model energy. The F

and Signi f icanceF values in the Table ensure that available dataset is appropriate to be

used for linear regression. Hence, performing linear regression applies to our model, and

the derived model is reliable and beneficial.

The coefficient values for the regression model are z= 0.070284574 and c= 0.164839255.
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Figure 5.9: Scatter plot showing linearity correlation between PMCO execution response
time and consumed energy.

Table 5.15: Regression Statistics Summary for energy consumption in PMCO execution
mode

Multiple R 0.995785437
R Square 0.991588636
Adjusted R Square 0.991553294
F 28057.05329
Significance F 5.9446×10−249

Intercept 0.164839255
X Variable 1 0.070284574
Observations 240

Hence, Equation (5.22) is:

EPMCO(Wi) = (0.070284574×TPMCO(Wi))+0.164839255 (5.23)

Validation of the devised energy model of local execution mode is carried out using

the split-sample procedure. The sample is divided into two randomly selected partitions.

For each partition, we determine the correlation coefficients and compare the results of

both partitions with the full sample to demonstrate validity. The results of our comparison

are presented in Table 5.16. As the results show, the model produces identical R, R2, and

adjusted R2 for all three different samples. The degree of freedom (d f ) column in the table
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Table 5.16: Validation of PMCO energy consumption model using sample split approach

Sample Partition 1 Sample Partition 2 Original Sample

Multiple R 0.995594996 Multiple R 0.996160946 Multiple R 0.995785437
R Square 0.991209395 R Square 0.992336631 R Square 0.991588636
Adjusted R Square 0.991148349 Adjusted R Square 0.992253333 Adjusted R Square 0.991553294
df 145 df 93 df 239
Observations 146 Observations 94 Observations 240

shows that the size of each sample is uniquely accidental. The adjusted R2 is identical for

all the splits which is an evidence of the validity of our proposed statistical model.

5.3.4 Compute power

To analyze the impact and improvement in the compute power of the client device based

on the experimental setup explained in section 5.1, we have utilized the standard CPU

performance benchmarks also explained in section 5.1. The selected benchmarking ap-

plications are executed in three execution modes of local and Local_PMCO, and PMCO

for performance evaluation of the proposed framework in terms of MFLOPS, MIPS, exe-

cution time, data transfer amount and consumed energy. In the local execution mode, we

execute the entire task locally on the mobile device without utilizing remote resources. In

the Local_PMCO, we again execute the entire task locally on the mobile device without

utilizing remote resources, but this time the program is executed using the checkpoint

launcher discussed in 4.1.2, which will in-turn inject the checkpoint thread into it. While

the last execution mode is the proposed offloaded execution in which once the application

execution reach a migration marker the process is migrated to a nearby remote comput-

ing infrastructure available on one hop. The schematic presentation of our benchmarking

setup is illustrated in Figure 5.1.

Each of the benchmark workload is executed thirty times in all of the execution

modes. Table 5.17, represents the mean of compute power (MIPS,MWIPS or MFLOPS)

of thirty observations of each workload along with error margin according to 95% con-

fidence interval while executing the workload on the local mobile device, Local_PMCO,

121

Univ
ers

ity
 of

 M
ala

ya



Table 5.17: Benchmark workloads descriptive statistics depicting the improvement in the
compute power

Workload # Workload Local Local_PMCO Deterioration % PMCO Improvement %

1 Dhrystone (MIPS) 372.24 ± 2.63 365.02 ± 2.75 1.94 1326.52 ± 44.7 256.3614872
2 Whetstone (MWIPS) 171.22 ± 0.55 166.71 ± 1.3 2.63 665.63 ± 10.79 288.7571545
3 Linpack (MFLOPS) 36.62 ± 0.33 35.74 ± 0.26 2.40 148.64 ± 0.72 305.8984162
4 Scimark-FFT (MFLOPS) 8.73 ± 0.055 8.72 ± 0.03 0.11 40.86 ± 0.45 368.0412371
5 Scimark-SOR (MFLOPS) 53.24 ± 0.042 53.24 ± 0.04 0.00 174.05 ± 5.88 226.9158527
6 Scimark-MonteCarlo (MFLOPS) 10.73 ± 0.005 10.72 ± 0.01 0.09 38.19 ± 0.79 255.917987
7 Scimark-SparseMatMult (MFLOPS) 23.22 ± 0.018 23.22 ± 0.02 0.00 86.1 ± 2.96 270.8010336
8 Scimark-LU (MFLOPS) 33.95 ± 0.018 33.95 ± 0.01 0.00 110.42 ± 2.02 225.2430044

and using PMCO to the remote computing devices.

The deterioration, column in Table 5.17 represents the percentage of the deterioration

in the compute power of the client device when the benchmark is executed locally through

the checkpoint launcher of the AMC. The deterioration percentage is calculated using the

following formula.

Di
m = (CPi

m−C̄Pi
m)×100 (5.24)

where Di
m is the deterioration in compute power observed by the ith workload, CPi

m

is the compute power observed by the ith workload on the local device, and C̄Pi
m is the

compute power observed by the ith workload on the local device while the workload

process is also accompanied by the checkpoint thread. The deterioration is observed to be

around 0 to 2.63% for the selected benchmark workloads. Similarly, to the deterioration

Table 5.17 also reports the improvement in compute power with PMCO when compared

with the local compute power. The improvement percentage is the actually the percentage

of the difference between the compute power of PMCO and local compute power. It is

observed that compute power is increased almost about 200% to 300% for corresponding

benchmark workloads; this improvement is directly proportional to the compute power of

the server device, the more it is powerful, the more compute power the client can draw

from it.
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5.4 Conclusion

In this chapter, we describe the evaluation procedure in two parts of descriptive and in-

ferential statistics. In each section, the detailed description of data generation process

for compute power, data transfer, execution time and consumed energy are described and

evaluated using statistical t-test inference method. Furthermore, we employed statisti-

cal modeling and used observation-based analysis focusing on independent replication

method to devise the models for execution time and energy consumption in both local

and PMCO execution modes. The devised models are validated through the split-sample

approach, and the results of validation are reported. The results of performance evalua-

tion are presented in next chapter that will be used to signify the strength and weaknesses

our proposed framework.
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CHAPTER 6: RESULTS AND DISCUSSION

In this chapter, we present results of our performance evaluation of the proposed model

by analyzing system-level metrics, namely compute power, execution time and energy

consumption of the device for execution of the experimental applications using series

of experiments. The evaluation results are validated via statistical modeling built using

independent replication of new dataset.

The remainder of this chapter is as follows. Section 6.1 presents our experimen-

tal results, and reports compute power of the experimental setup, impact on application

execution time and energy consumption of the experimental workloads in local and pro-

cess migration based computational offloading (PMCO) execution modes. The results of

our statistical modeling are presented in section 6.1 to validate the empirical data. Com-

parative evaluations are presented in section 6.2, and finally, the chapter is concluded in

section 6.3.

6.1 Performance evaluation results

Results of performance evaluation generated via experimental analysis are presented in

this section in three parts. In the first part, data related to compute power, execution

time analysis and consumed energy analysis are presented in part two and three respec-

tively. The experimental analysis is performed to evaluate the performance of the pro-

posed framework.

6.1.1 Execution time

This section presents temporal results of executing the experimental application of ma-

trix multiplication in three execution environments. One environment is local in which

the entire application, including intensive and non-intensive are executed on the mobile

device. Whereas in the second environment which is Local_PMCO, the experimental ap-
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plication of matrix multiplication is executed locally, through the environment of PMCO.

While the last environment is PMCO, in which the experimental matrix multiplication ap-

plication execution starts locally and then once the execution reaches a migration marker

the application is offloaded to performed remotely using any of mobile cloud resource.

Data related to execution in this section are gathered using experimental analysis. Several

Tables and charts are used to demonstrate the findings.

Tables 6.1, 6.2 and 6.3 presents the temporal data related to application execution

time collected in the local environment, in Local_PMCO and PMCO execution environ-

ments, respectively. Each of the tables presents mean execution time, standard deviation,

error estimate, and execution time of eight workloads in eight intensity levels with 95%

confidence interval.

The small error estimates based on the 95% confidence interval shown in the Tables

6.1, 6.2 and 6.3 ensure the reliability of the collected data during the experimentation

process. For example, the maximum error estimate for the 600x600 matrix multiplication

workload executed in PMCO execution time with 95% confidence interval is 17.02±0.14

seconds, it can be interpreted as the PMCO execution time of the workload falls in the

range of (17.02− 0.14) < µ < (17.02+ 0.14). This inequality range presents the fact

that if the experiment is repeated for that workload, the execution time value will fall in

between this range with 95% confidence. To better demonstrate the significance of our

achievements and efficiently interpret the results, we perform a comprehensive statistical

analysis which is presented as follows.

Descriptive statistics of results in local and PMCO execution modes, including min-

imum, maximum, and mean execution time of the matrix multiplication workloads are

summarized in Table 6.4 in eight intensity levels beside the mean execution time of all

granularity levels. As descriptive statistics in the Table shows, executing the task on re-

mote computing infrastructure instead of local device can reduce the execution time as
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Table 6.1: Execution Time with 95% Confidence Interval in Local Execution Mode Gen-
erated via Experiments

Matrix Multiplication Granularity

Execution
Trace

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000
Execution Time (in seconds)

1 4.29 11.09 22.06 36.25 62.22 107.81 142.34 202.68
2 4.32 10.98 22.11 36.28 60.71 107.15 140.42 198.90
3 4.37 11.00 22.15 36.18 60.81 106.09 141.65 197.00
4 4.34 11.08 22.28 35.98 61.31 108.44 140.40 199.03
5 4.51 11.25 22.95 36.15 61.01 108.40 140.13 197.74
6 4.43 10.92 22.68 35.72 61.09 106.99 140.47 200.79
7 4.31 11.04 22.35 35.83 60.76 106.60 139.56 200.33
8 4.30 11.13 22.33 36.07 61.48 108.29 141.21 200.46
9 4.29 11.00 22.46 36.09 59.82 106.47 141.86 200.20
10 4.39 11.13 22.71 36.04 61.18 108.37 142.37 198.24
11 4.32 11.14 22.05 35.97 61.03 107.86 141.07 198.15
12 4.34 11.17 22.11 36.03 60.98 107.78 140.31 195.59
13 4.57 10.87 22.20 35.90 61.26 107.61 140.58 199.75
14 4.43 10.97 22.14 35.98 60.71 108.04 139.40 199.48
15 4.30 11.08 22.21 36.00 61.67 107.80 141.76 200.47
16 4.36 10.91 22.46 35.97 60.50 107.38 144.03 205.09
17 4.34 10.87 22.64 36.02 60.06 108.28 139.40 198.09
18 4.33 11.03 22.08 35.98 61.76 108.56 141.26 200.55
19 4.39 11.00 22.17 36.42 60.98 108.31 140.18 198.38
20 4.34 10.87 22.27 36.36 60.49 107.75 140.27 199.04
21 4.46 10.98 22.12 36.19 60.86 108.23 141.61 200.57
22 4.49 11.06 22.20 36.29 61.24 108.48 139.53 200.84
23 4.34 10.88 22.20 36.08 61.05 108.10 141.87 198.68
24 4.31 10.85 22.44 36.13 60.82 107.51 142.34 199.32
25 4.29 10.98 22.07 36.42 59.99 106.99 139.40 200.15
26 4.32 11.15 22.20 35.99 61.47 105.78 140.40 200.05
27 4.31 10.84 22.30 35.80 61.09 107.05 141.57 201.26
28 4.46 10.99 24.65 36.26 60.36 108.19 143.23 203.28
29 4.41 11.09 22.06 36.69 60.84 108.65 141.87 198.88
30 4.34 11.92 22.16 36.71 60.92 108.11 141.58 199.05

Min 4.29 10.84 22.05 35.72 59.82 105.78 139.40 195.59
Mean 4.37 11.04 22.36 36.13 60.95 107.70 141.07 199.73
Median 4.34 11.00 22.20 36.08 60.98 107.83 141.14 199.61
Maximum 4.57 11.92 24.65 36.71 62.22 108.65 144.03 205.09
Std. Deviation 0.07 0.20 0.49 0.23 0.52 0.76 1.17 1.86
Confidence Int. 0.03 0.07 0.17 0.08 0.18 0.27 0.42 0.66
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Table 6.2: Execution Time with 95% Confidence Interval in Local_PMCO Execution
Mode Generated via Experiments

Matrix Multiplication Granularity

Execution
Trace

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000
Execution Time (in seconds)

1 4.38 11.66 22.77 36.20 62.65 109.76 141.58 199.52
2 4.36 11.46 22.60 36.11 60.83 108.44 141.07 200.32
3 4.47 11.16 22.75 36.43 60.90 108.91 142.19 201.50
4 4.37 11.22 24.00 36.69 62.73 108.90 141.14 201.10
5 4.43 11.29 22.87 36.34 61.12 109.29 141.06 201.83
6 4.41 11.04 22.88 37.42 62.12 108.83 141.64 203.88
7 4.40 11.79 22.72 36.18 62.28 108.56 141.16 203.02
8 4.37 11.17 22.50 36.15 61.48 108.90 141.75 201.37
9 4.39 11.42 22.50 36.47 65.10 109.47 141.80 200.66
10 4.45 11.17 22.49 36.39 60.73 108.76 141.83 200.10
11 4.39 11.86 22.55 36.29 60.68 109.50 142.34 200.13
12 4.56 11.30 22.71 36.43 61.78 108.86 141.59 201.04
13 4.60 11.16 22.59 35.82 61.46 107.80 141.62 203.11
14 4.56 11.26 22.46 36.60 60.84 107.98 143.29 199.54
15 4.62 11.25 22.56 36.51 60.82 108.40 141.42 198.44
16 4.60 11.11 22.52 35.99 61.39 109.02 142.78 199.69
17 4.56 11.48 22.47 36.33 61.68 109.21 142.11 200.48
18 4.32 11.26 22.53 36.03 61.47 108.94 143.97 201.17
19 4.37 11.20 22.61 36.26 61.92 108.85 144.01 200.92
20 4.38 11.37 22.98 36.98 60.05 107.80 139.04 200.22
21 4.37 11.38 22.39 36.82 61.07 108.50 142.46 201.14
22 4.36 11.39 22.47 35.95 61.64 107.97 142.41 203.11
23 4.64 11.31 22.49 36.23 60.83 108.38 140.59 203.04
24 4.57 12.03 22.53 36.16 62.84 108.97 140.75 202.96
25 4.61 11.65 22.57 36.24 62.18 107.75 141.38 197.91
26 4.62 11.27 22.69 35.43 61.46 108.52 141.27 199.12
27 4.46 11.39 22.91 36.43 61.61 109.70 140.87 198.72
28 4.32 11.44 22.56 36.43 62.44 109.56 142.10 201.66
29 4.41 11.27 25.36 35.83 64.39 108.99 141.62 200.43
30 4.53 11.09 22.62 36.12 62.52 109.17 143.01 201.70

Min 4.32 11.04 22.39 35.43 60.05 107.75 139.04 197.91
Mean 4.46 11.36 22.75 36.31 61.77 108.79 141.80 200.93
Median 4.42 11.29 22.58 36.27 61.54 108.88 141.63 200.98
Maximum 4.64 12.03 25.36 37.42 65.10 109.76 144.01 203.88
Std. Deviation 0.10 0.23 0.57 0.37 1.07 0.56 1.01 1.50
Confidence Int. 0.04 0.08 0.20 0.13 0.38 0.20 0.36 0.54
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Table 6.3: Execution Time with 95% Confidence Interval in PMCO Execution Mode
Generated via Experiments

Matrix Multiplication Granularity

Execution
Trace

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000
Execution Time (in seconds)

1 2.35 5.42 9.76 16.94 27.12 41.76 62.38 87.95
2 2.32 5.22 10.00 17.44 27.32 42.01 62.58 87.99
3 2.24 5.28 9.99 17.08 29.18 42.14 62.36 87.75
4 2.28 5.20 9.90 16.81 27.36 42.00 62.55 87.04
5 2.28 5.41 9.80 16.86 29.75 41.82 62.68 88.17
6 2.35 5.25 9.88 16.93 29.24 41.80 62.57 87.51
7 2.36 5.16 9.90 17.03 27.77 42.07 62.48 87.86
8 2.32 5.44 9.75 16.61 28.50 42.12 62.73 87.42
9 2.35 5.22 9.89 18.34 28.16 41.65 62.41 87.59
10 2.35 5.18 9.87 16.86 27.33 42.10 62.55 87.75
11 2.41 5.22 9.91 17.27 27.39 41.96 62.32 87.75
12 2.32 5.27 9.96 16.83 27.30 42.18 62.19 87.73
13 2.45 5.37 9.93 16.90 27.82 42.34 62.48 86.34
14 2.40 5.21 9.92 16.66 27.62 42.12 62.54 87.64
15 2.23 5.22 9.97 16.81 27.96 42.07 62.68 87.91
16 2.26 5.11 9.86 16.88 28.02 41.94 62.81 88.08
17 2.20 5.14 9.86 16.65 29.97 42.06 62.32 86.54
18 2.16 5.24 9.95 16.81 28.07 41.77 62.41 87.58
19 2.33 5.18 9.93 17.12 28.09 42.36 62.25 87.55
20 2.42 5.13 9.91 16.82 27.68 41.98 62.47 87.80
21 2.22 5.26 9.99 17.45 27.33 41.94 62.75 87.58
22 2.23 5.34 9.95 16.65 28.14 41.85 62.38 87.73
23 2.28 5.11 9.95 16.69 27.42 41.90 62.02 88.10
24 2.45 5.37 9.88 17.89 27.81 41.93 62.24 87.52
25 2.26 5.33 9.90 16.69 27.53 42.26 62.67 87.64
26 2.41 5.33 9.86 17.42 27.36 41.62 62.14 87.70
27 2.27 5.10 9.83 16.63 27.64 42.17 62.77 87.88
28 2.34 5.21 10.10 17.30 27.82 41.84 62.61 87.76
29 2.30 5.18 9.92 17.34 27.83 42.49 62.67 87.73
30 2.40 5.11 9.92 16.73 27.48 42.01 62.67 86.72

Min 2.16 5.10 9.75 16.61 27.12 41.62 62.02 86.34
Mean 2.32 5.24 9.91 17.02 27.93 42.01 62.49 87.61
Median 2.32 5.22 9.91 16.87 27.79 42.00 62.51 87.73
Maximum 2.45 5.44 10.10 18.34 29.97 42.49 62.81 88.17
Std. Deviation 0.08 0.10 0.07 0.40 0.73 0.20 0.20 0.43
Confidence Int. 0.03 0.04 0.03 0.14 0.26 0.07 0.07 0.15
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Table 6.4: Descriptive Statistics of Execution Time Data Generated by standard experi-
mentation

Min Mean Median Maximum Std. Deviation Confidence Int.

Mat. Mult. (300x300)
Local 4.29 4.37 4.34 4.57 0.07 0.03
Local_PMCO 4.32 4.46 4.42 4.64 0.10 0.04
PMCO 2.16 2.32 2.32 2.45 0.08 0.03

Mat. Mult. (400x400)
Local 10.84 11.04 11.00 11.92 0.20 0.07
Local_PMCO 11.04 11.36 11.29 12.03 0.23 0.08
PMCO 5.10 5.24 5.22 5.44 0.10 0.04

Mat. Mult. (500x500)
Local 22.05 22.36 22.20 24.65 0.49 0.17
Local_PMCO 22.39 22.75 22.58 25.36 0.57 0.20
PMCO 9.75 9.91 9.91 10.10 0.07 0.03

Mat. Mult. (600x600)
Local 35.72 36.13 36.08 36.71 0.23 0.08
Local_PMCO 35.43 36.31 36.27 37.42 0.37 0.13
PMCO 16.61 17.02 16.87 18.34 0.40 0.14

Mat. Mult. (700x700)
Local 59.82 60.95 60.98 62.22 0.52 0.18
Local_PMCO 60.05 61.77 61.54 65.10 1.07 0.38
PMCO 27.12 27.93 27.79 29.97 0.73 0.26

Mat. Mult. (800x800)
Local 105.78 107.70 107.83 108.65 0.76 0.27
Local_PMCO 107.75 108.79 108.88 109.76 0.56 0.20
PMCO 41.62 42.01 42.00 42.49 0.20 0.07

Mat. Mult. (900x900)
Local 139.40 141.07 141.14 144.03 1.17 0.42
Local_PMCO 139.04 141.80 141.63 144.01 1.01 0.36
PMCO 62.02 62.49 62.51 62.81 0.20 0.07

Mat. Mult. (1000x1000)
Local 195.59 199.73 199.61 205.09 1.86 0.66
Local_PMCO 197.91 200.93 200.98 203.88 1.50 0.54
PMCO 86.34 87.61 87.73 88.17 0.43 0.15

significant as 53%.

The improvement in execution time is not a function of intensity levels of the work-

load but is a function of compute power of the remote server and the underlying network

conditions. The mean execution time savings are as high as 53%, 47%, 44%, 47%, 45%,

39%, 44%, 43% according to the increasing order of the workload intensities. As it is

evident from this, and also discussed in the previous chapter that the data transmission

time plays a significant role in the overall execution response time of the workload. Sim-

ilarly, from the application execution time overhead point of view when the workloads

are executed locally through the PMCO framework the degradation in increasing order of

workload intensities are 2.16%,2.81%,1.73%, 0.50%, 1.32%, 0.99%, 0.51%, 0.59%. The

degradation is not that much and is as low as 0.50% and goes up to 2.81%. Still, we could

not find a correlation between the intensity level and the percentage of degradation as it is

influenced by the internal operating system process/thread context switching which can
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periodically or upon interrupts traverse to the checkpoint thread.

The mean execution time of workloads in local execution mode is as much as 1.88,

2.10, 2.25, 2.12, 2.18, 2.56, 2.25, 2.27 times more than PMCO execution according to

the increasing intensity level which is remarkable despite the workloads. As described in

the previous chapter, execution of each workload is repeated thirty times to enhance the

reliability of performance evaluation. So, data plotted in Figure 6.1 are mean execution

time of the workloads for Local, Local_PMCO and PMCO execution modes. Each diag-

onal bricks bar in Figure 6.1, represents the mean value of execution time measured using

PMCO mode of thirty iterations for each corresponding matrix multiplication workload.

Similarly, each diagonal strips bar represents the mean execution time measured using

Local_PMCO mode of execution, while each checker patterned bar represents the corre-

sponding execution time for local execution.

Figure 6.1: Execution time for matrix multiplication workloads generated via experimen-
tation.

The graph in Figure 6.1 clearly depicts increasing complexity as the matrix multipli-

cation intensity increases from left to right. The growth of the workloads intensity has a

significant impact on the execution times when the workloads are entirely executed on the

mobile device. However, the growth rate in PMCO execution mode is remarkably smaller
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Table 6.5: t-Test: Paired Two Sample for Mean Execution Time of Local and PMCO

Pearson Correlation 0.9976199
Hypothesized Mean Difference 0
df 239
t Stat 16.98225931
P(T<=t) one-tail 2.91029×10−43

t Critical one-tail 1.651254165
P(T<=t) two-tail 5.82057×10−43

t Critical two-tail 1.969939406

than local execution. Execution of the last workload in our experiment takes more than

199 seconds to complete, which suggest incapacitation of executing higher workloads in

the mobile device. Although the results of descriptive statistics summarized in Tables

6.1, 6.2, 6.3, and 6.4 and demonstrated in Figure 6.1 advocate remarkable improvement

in execution time of the application in PMCO, further analysis is undertaken via paired

samples t-test to ensure that the mean application execution times in local and PMCO

modes are significantly different.

For this purpose, our null hypothesis Ho is that there is no reduction in the mean

execution time of a workload when it is executed in PMCO mode as compared to the

local execution mode. Table 6.5 presents the results of t-test over the mean execution of

local execution and execution using PMCO based upon the experimental setup explained

in section 5.1. Table indicates, that t(239) = 16.98,p < 0.05. The t-value and p-value ad-

vocate the significance of the difference between mean local device and PMCO execution

time values. Positive t-value advocates that local execution takes more time than PMCO

on average. The two-tail p-value is observed to 5.82057× 10−43. Hence, we reject the

null hypothesis Ho and accept the alternate hypothesis that there is a significant improve-

ment in the execution time when the workload is executed using PMCO execution mode.

Therefore, the time saving using our proposed framework is significant compared to local

execution mode.

For the local execution of low-intensity workloads, the native computing resources
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of the mobile device suffice to complete the task without much maintenance operations

(e.g., loading data into memory and interrupting CPU execution). At the beginning of

the execution, all the data are loaded into the main memory and execution starts by the

CPU. Once the execution is completed, the results are sent back to the main memory to

present to the user. Such operation does not entertain I/O tasks unnecessarily. However,

when workload intensity is high, computation in local execution mode demands more re-

sources, including CPU, cache, RAM, and storage which are not available natively. Such

constraints cause execution to prolong. For instance, in the absence of high clock speed

CPU, the execution takes more CPU cycle to complete. Moreover, due to limitation in

the main memory, it is not possible to store the entire data into the RAM for medium and

high-intensity workloads. Thus, there will be continuous time-consuming I/O operations

to load data into the main memory and store them into the peripheral RAM (storage) and

vice versa. Such switching and I/O operations are highly contributing to the execution

time prolonging in higher workloads.

Nevertheless, significant differences in local and PMCO execution enable mobile

users to initiate PMCO execution of extremely huge workloads on their mobile devices

toward gaining similar functionality experience as desktop computers. Such differences

are better visible in Figure 6.2. Scattered triangles and squares across the graph and cor-

responding interpolating lines show the differences in achievements and the correlation

between the workloads intensity and time saving. In the first workloads with low in-

tensity, the difference between circle and triangle is comparatively smaller than of high

intensity.

Execution time in local mode highly is affected by workload intensity and computing

power of the mobile device (including CPU clock speed, RAM, storage, cache). However,

as stated in the previous chapter, the PMCO execution time is dependent on other metrics,

checkpoint/restart time, and underlying network bandwidth dynamics. Figure 6.3 shows
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Figure 6.2: Scattered plot with interpolation lines for matrix multiplication execution
time.

a stacked chart which details the timing of each contributing entity to the total execution

time in PMCO execution mode. However, these contributing factors play a significant

role in the overall offloading benefit. Figure 6.4 shows a 100% stacked chart, from which

it is clear that in our experiment for the first workload the overhead in the application

execution time because of the contributing factors is about 40%, while as the workload

intensity increases this overhead of the contributing factors also decreases, so it further

extend our discussion in the previous paragraphs that intenser the workload the beneficial

it would be to offload. The solid black color in the bar represents the offloading time, the

white chunk represents the response time, while the grey chunk is the checkpoint restart

overhead in the application execution time. Finally, the blue chunk presents the execution

time it takes on the remote server.

6.1.1.1 Validation

To validate the results of performance evaluation produced via experimental analysis pre-

sented in the main body of this section, statistical modeling is undertaken in this study

whose results are shown in this section and we provide data related to the analysis of the

execution time of eight workloads in two execution modes of local and PMCO.
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Figure 6.3: Breakdown of the contributing factors of remote execution time using PMCO.

Figure 6.4: Impact of the contributing factors on remote execution time using PMCO.

In Chapter 5, we have presented the statistical model for execution time on local exe-

cution and PMCO execution mode. The statistical model for local execution is presented

in equation (5.12), for quick reference, it is written here as:

Tlocal(Wi) = (2.02212695240863×10−7× ci)−3.315317243 (6.1)

Similarly, the statistical model for PMCO based execution is presented in equation

(5.16), for quick reference it is written here as:
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Table 6.6: The execution time data generated via statistical modeling for local and PMCO
execution modes

Workload Intensity Local PMCO

Mat. Mult. (300x300) 2.144425528 0.945005636
Mat. Mult. (400x400) 9.626295252 4.171211136
Mat. Mult. (500x500) 21.96126966 9.484394836
Mat. Mult. (600x600) 40.36262493 17.40518034
Mat. Mult. (700x700) 66.04363722 28.45419124
Mat. Mult. (800x800) 100.2175827 43.15205114
Mat. Mult. (900x900) 144.0977376 62.01938364
Mat. Mult. (1000x1000) 198.897378 85.57681234

(6.2)
TPMCO(Wi) = 0.5 + (((6.97687× 10−8 × ci) + 0.064535721) +

((8.46526× 10−8 × di) + 0.1306192))
+ ((8.67706× 10−8 × gi)− 2.113132585)

Table 6.6, presents the data generated using these two equations for local execution

and PMCO execution according to the matrix multiplication workloads corresponding

asymptotic bounds presented and explained in details in corresponding sections in Chap-

ter 5.

The numerical results in Table 6.6 indicate that achievements in higher workloads

are considerably higher than lower workloads. However, from a percentage point view,

all the eight workloads save almost 43% to 44% of its execution time. This can also be

explained the local execution takes up to 2.2 to 2.3 times more than the execution time on

PMCO. Figure 6.5, presents the comparison between the mean execution time for the ma-

trix multiplication workloads gathered via experimentation in both local and PMCO mode

of execution vs. the execution time values generated by the statistical model. Each diago-

nal bricks bar in Figure 6.5, represents the mean value of execution time measured using

PMCO mode executions of thirty iterations for each corresponding matrix multiplication

workload. Similarly, each checker patterned bar represents the mean execution time of

the corresponding workload in local execution. Each diagonal strips bar represents the
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execution time generated using a statistical model for local execution. Similarly, each

dotted pattern bar presents the execution time generated using statistical model PMCO

based execution.

Figure 6.5: Execution time validation by experimentation vs. statistical model.

The graph shows there is no significant difference between the experimental mean

execution time and of that generated using a statistical model for both execution modes.

However, the experimental values and model slightly fluctuate from each other. This phe-

nomenon can be better presented in scatter line plot in Figure 6.6, and 6.7 showing the

local execution and PMCO execution time, respectively. Scattered triangles and squares

across the graph and corresponding interpolating lines show the differences in achieve-

ments and the correlation between the workloads intensity and time saving through ex-

perimental data and statistical model. In Figure 6.6, and 6.7, the lines clearly overlapped

each other and seemed that there is no difference between the experimental observations

and model values.

In overall, the results of experimental analysis on the execution time show signifi-

cant improvement in improving the application response time when our proposed model

is deployed. This remarkable achievement is due to several factors including, lightweight

136

Univ
ers

ity
 of

 M
ala

ya



Figure 6.6: Scattered plot with interpolation lines for matrix multiplication execution time
in local mode using experiments vs. statistical model.

Figure 6.7: Scattered plot with interpolation lines for Matrix multiplication execution
time in PMCO mode using experiments vs. statistical model.

nature of underlying checkpoint/restart technology,single-hop remote computing infras-

tructure, and homogeneity of the hardware and software infrastructure which are sig-

nificant characteristics that are considered in design and development of the proposed

framework. The results in this section are comparable with and supporting and validating

the findings in the statistical analysis section.
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6.1.2 Consumed energy

In this section, we present energy consumption in Joules of executing the experimental

matrix multiplication application in Local, Local_PMCO and PMCO execution modes

along with statistical comparison. Tables 6.7, 6.8, and 6.9 presents the data related to the

energy consumed by the mobile device which are collected in Local, Local_PMCO and

PMCO execution modes for eight granularity levels of matrices, respectively. Each table

summarizes mean consumed energy, standard deviation, error estimate, and consumed

energy with 95% confidence interval for thirty workloads of each eight intensity levels.

Similar to the execution time, we present consumed energy with 95% confidence interval

to enhance the reliability of our data. The small value of error estimates based on 95%

confidence interval at the end of Tables 6.7, 6.8, and 6.9 testify reliability of collected

energy data.

The minimum energy savings are as high as 80% to 87% for varying workloads.

The mean energy saving is 79% to 86% for varying workloads. Descriptive statistics

of analyzing consumed energy data are summarized in Table 6.10 including minimum,

maximum, and mean consumed energy of eight workload intensities. As shown in the

Table, there is significant energy saving when performing a task outside the mobile on the

remote computing infrastructure. PMCO execution reduces mobile consumed energy as

significant as 87% compared to the local execution. In average, consumed energy testifies

the fact that local execution of the compute intensive workloads consumes 6.3 times more

energy compared to the PMCO execution.

Moreover, executing workloads (according to the increasing order of intensity) in-

side the mobile device consumes as high as 4.94, 5.62, 6.55, 6.27, 6.25, 7.16, 6.04, and

6.37 times more energy than PMCO execution which is a remarkable achievement. Mean

energy consumption for eight workloads, as the last segment in the Table 6.10 shows, is
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Table 6.7: Consumed energy observations with 95% confidence interval in local execution
mode gathered via PowerAPI during experimentation

Matrix Multiplication Granularity

Execution
Trace

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000
Energy Consumed (in Joules)

1 1.27 3.63 7.57 7.08 12.33 21.73 28.57 40.49
2 1.28 3.63 7.61 7.09 12.09 21.68 28.37 40.20
3 1.28 3.66 7.66 7.09 12.23 21.67 28.33 40.12
4 1.29 3.67 7.41 7.09 12.17 21.70 28.32 40.19
5 1.33 3.72 7.95 7.09 12.14 21.67 28.24 40.22
6 1.31 3.65 7.83 7.10 12.17 21.65 28.21 40.31
7 1.27 3.52 7.70 7.08 12.12 21.70 28.32 40.17
8 1.26 3.71 7.72 7.09 12.22 21.69 28.30 40.30
9 1.26 3.65 7.77 7.11 12.11 21.67 28.45 40.23
10 1.19 3.72 7.86 7.09 12.12 21.64 28.40 40.22
11 1.29 3.70 7.63 7.07 12.14 21.68 28.51 40.19
12 1.13 3.69 7.41 7.09 12.15 21.71 28.30 40.24
13 1.33 3.63 7.65 7.10 12.16 21.67 28.36 40.28
14 1.29 3.62 7.67 7.10 12.07 21.64 28.18 40.28
15 1.23 3.67 7.67 7.10 12.27 21.69 28.51 40.46
16 1.24 3.64 7.76 7.10 12.13 21.66 28.85 41.30
17 1.25 3.59 7.83 7.11 12.11 21.67 28.24 40.26
18 1.30 3.63 7.64 7.10 12.28 21.66 28.39 40.37
19 1.31 3.63 7.63 7.12 12.14 21.82 28.21 40.36
20 1.29 3.57 7.71 7.11 12.13 21.67 28.36 40.27
21 1.33 3.60 7.68 7.10 12.16 21.68 28.56 40.19
22 1.30 3.63 7.70 7.09 12.12 21.68 28.31 40.35
23 1.25 3.57 7.67 7.10 12.16 21.68 28.62 40.20
24 1.25 3.64 7.76 7.10 12.12 21.67 28.74 40.21
25 1.22 3.63 7.63 7.10 12.14 21.64 28.22 40.32
26 1.25 3.69 7.67 7.11 12.38 21.61 28.29 40.26
27 1.28 3.63 7.61 7.08 12.15 21.67 28.38 40.34
28 1.30 3.64 8.55 7.10 12.23 21.67 28.67 41.03
29 1.30 3.67 6.85 7.22 12.23 21.68 28.35 40.28
30 1.24 3.99 7.62 7.20 12.12 21.68 28.46 40.34

Min 1.13 3.52 6.85 7.07 12.07 21.61 28.18 40.12
Mean 1.27 3.65 7.68 7.10 12.17 21.68 28.40 40.33
Median 1.28 3.64 7.67 7.10 12.14 21.67 28.36 40.27
Maximum 1.33 3.99 8.55 7.22 12.38 21.82 28.85 41.30
Std. Deviation 0.04 0.08 0.25 0.03 0.07 0.04 0.17 0.24
Confidence Int. 0.02 0.03 0.09 0.01 0.03 0.01 0.06 0.09
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Table 6.8: Consumed Energy observations with 95% Confidence Interval in Lo-
cal_PMCO Execution Mode gathered via PowerAPI during experimentation

Matrix Multiplication Granularity

Execution
Trace

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000
Energy Consumed (in Joules)

1 1.33 3.94 8.07 7.10 12.30 21.87 28.45 40.38
2 1.30 3.90 7.99 7.07 12.17 21.78 28.26 40.21
3 1.33 3.78 8.03 7.08 12.12 21.76 28.32 40.24
4 1.30 3.80 8.47 7.13 12.38 21.79 28.30 40.47
5 1.30 3.76 8.07 7.09 12.12 21.76 28.30 40.76
6 1.29 3.77 8.02 7.26 12.29 21.79 28.25 40.81
7 1.34 3.99 7.94 7.08 12.24 21.70 28.36 40.65
8 1.33 3.77 7.92 7.11 12.05 21.75 28.29 40.50
9 1.29 3.87 7.94 7.09 12.91 21.77 28.37 40.69
10 1.32 3.77 7.92 7.11 12.11 21.79 28.40 40.38
11 1.33 3.99 7.97 7.08 12.13 21.73 28.38 40.39
12 1.36 3.79 8.03 7.08 12.16 21.75 28.54 40.22
13 1.31 3.82 7.95 7.09 12.17 21.79 28.27 40.43
14 1.34 3.82 7.94 7.19 12.04 21.79 28.63 40.47
15 1.41 3.79 7.93 7.17 12.07 21.78 28.38 40.23
16 1.38 3.79 7.83 7.11 12.11 21.75 28.38 40.26
17 1.38 3.94 7.96 7.07 12.15 21.63 28.89 40.43
18 1.31 3.80 7.95 7.10 12.15 21.73 28.79 40.59
19 1.30 3.80 7.97 7.11 12.32 21.77 28.72 40.25
20 1.32 3.90 8.06 7.18 12.08 21.77 28.31 40.46
21 1.29 3.86 7.91 7.19 12.13 21.78 28.54 40.27
22 1.26 3.84 7.90 7.07 12.13 21.82 28.35 41.02
23 1.41 3.87 7.91 7.09 12.13 21.80 28.26 41.05
24 1.38 4.12 7.86 7.14 12.34 21.84 28.34 40.97
25 1.37 3.94 8.00 7.07 12.37 21.83 28.19 40.39
26 1.39 3.80 7.98 7.10 12.13 21.81 28.29 40.57
27 1.35 3.90 8.04 7.08 12.16 21.77 28.35 40.40
28 1.26 3.88 7.18 7.08 12.32 21.79 28.44 40.29
29 1.29 3.80 8.99 7.06 12.60 21.83 28.28 40.26
30 1.36 3.77 8.01 7.08 12.40 21.74 28.50 40.37

Min 1.26 3.76 7.18 7.06 12.04 21.63 28.19 40.21
Mean 1.33 3.85 7.99 7.11 12.23 21.78 28.40 40.48
Median 1.33 3.82 7.97 7.09 12.15 21.78 28.36 40.41
Maximum 1.41 4.12 8.99 7.26 12.91 21.87 28.89 41.05
Std. Deviation 0.04 0.09 0.26 0.05 0.18 0.05 0.17 0.24
Confidence Int. 0.01 0.03 0.09 0.02 0.06 0.02 0.06 0.09
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Table 6.9: Consumed Energy observations with 95% Confidence Interval in PMCO Exe-
cution Mode gathered via PowerAPI during experimentation

Matrix Multiplication Granularity

Execution
Trace

300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000
Energy Consumed (in Joules)

1 0.28 0.55 1.23 1.05 1.88 2.94 4.67 6.34
2 0.28 0.56 1.25 1.16 1.80 3.07 4.73 6.28
3 0.24 0.58 1.17 1.13 2.06 3.07 4.75 6.16
4 0.26 0.62 1.19 1.14 1.84 3.04 4.75 6.39
5 0.25 0.72 1.18 1.13 2.17 3.02 4.88 6.14
6 0.24 0.68 1.21 1.12 2.08 3.06 4.33 6.26
7 0.27 0.66 1.33 1.13 1.93 3.03 4.76 6.36
8 0.24 0.65 1.20 1.12 2.01 2.97 4.72 6.31
9 0.27 0.66 1.31 1.20 1.94 2.99 4.69 6.28
10 0.25 0.60 1.25 1.12 1.88 3.12 4.77 6.27
11 0.28 0.67 0.98 1.16 1.87 3.06 4.71 6.41
12 0.25 0.70 1.16 1.11 1.93 2.94 4.76 6.22
13 0.25 0.69 0.78 1.14 1.95 3.10 4.66 6.30
14 0.26 0.62 1.13 1.12 1.89 3.07 4.74 6.47
15 0.22 0.68 1.14 1.13 1.95 3.04 4.79 6.43
16 0.25 0.67 1.25 1.14 1.98 3.00 4.72 6.39
17 0.24 0.62 1.12 1.11 2.18 2.99 4.66 6.22
18 0.26 0.67 1.27 1.11 1.99 3.02 4.76 6.38
19 0.26 0.59 1.18 1.14 1.99 3.10 4.63 6.39
20 0.26 0.66 1.24 1.13 1.90 3.07 4.60 6.31
21 0.22 0.61 1.20 1.21 1.91 3.07 4.70 6.44
22 0.25 0.71 1.22 1.08 1.97 2.81 4.76 6.16
23 0.26 0.59 1.10 1.10 1.86 3.06 4.68 6.35
24 0.27 0.67 1.15 1.19 1.86 3.02 4.70 6.45
25 0.25 0.70 1.20 1.12 1.93 2.99 4.84 6.41
26 0.27 0.71 1.14 1.16 1.90 3.00 4.28 6.37
27 0.24 0.65 1.07 1.10 1.86 2.93 4.69 6.34
28 0.26 0.63 1.21 1.19 1.97 3.00 4.77 6.27
29 0.28 0.67 1.11 1.15 1.96 3.09 4.77 6.38
30 0.29 0.67 1.17 1.10 1.91 3.05 4.72 6.33

Min 0.22 0.55 0.78 1.05 1.80 2.81 4.28 6.14
Mean 0.26 0.65 1.17 1.13 1.95 3.02 4.70 6.33
Median 0.26 0.66 1.19 1.13 1.93 3.03 4.72 6.34
Maximum 0.29 0.72 1.33 1.21 2.18 3.12 4.88 6.47
Std. Deviation 0.02 0.05 0.10 0.03 0.09 0.06 0.12 0.09
Confidence Int. 0.01 0.02 0.04 0.01 0.03 0.02 0.04 0.03
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Table 6.10: Descriptive Statistics of Consumed Energy Data gathered via PowerAPI

Min Mean Median Maximum Std. Deviation Confidence Int.

Mat. Mult. (300x300)
Local 1.13 1.27 1.28 1.33 0.04 0.02
Local_PMCO 1.26 1.33 1.33 1.41 0.04 0.01
PMCO 0.22 0.26 0.26 0.29 0.02 0.01

Mat. Mult. (400x400)
Local 3.52 3.65 3.64 3.99 0.08 0.03
Local_PMCO 3.76 3.85 3.82 4.12 0.09 0.03
PMCO 0.55 0.65 0.66 0.72 0.05 0.02

Mat. Mult. (500x500)
Local 6.85 7.68 7.67 8.55 0.25 0.09
Local_PMCO 7.18 7.99 7.97 8.99 0.26 0.09
PMCO 0.78 1.17 1.19 1.33 0.10 0.04

Mat. Mult. (600x600)
Local 7.07 7.10 7.10 7.22 0.03 0.01
Local_PMCO 7.06 7.11 7.09 7.26 0.05 0.02
PMCO 1.05 1.13 1.13 1.21 0.03 0.01

Mat. Mult. (700x700)
Local 12.07 12.17 12.14 12.38 0.07 0.03
Local_PMCO 12.04 12.23 12.15 12.91 0.18 0.06
PMCO 1.80 1.95 1.93 2.18 0.09 0.03

Mat. Mult. (800x800)
Local 21.61 21.68 21.67 21.82 0.04 0.01
Local_PMCO 21.63 21.78 21.78 21.87 0.05 0.02
PMCO 2.81 3.02 3.03 3.12 0.06 0.02

Mat. Mult. (900x900)
Local 28.18 28.40 28.36 28.85 0.17 0.06
Local_PMCO 28.19 28.40 28.36 28.89 0.17 0.06
PMCO 4.28 4.70 4.72 4.88 0.12 0.04

Mat. Mult. (1000x1000)
Local 40.12 40.33 40.27 41.30 0.24 0.09
Local_PMCO 40.21 40.48 40.41 41.05 0.24 0.09
PMCO 6.14 6.33 6.34 6.47 0.09 0.03

observed as high as 6.15 times more than energy consumption of the application when in-

tensive tasks run outside the mobile device. For instance, if the energy required to locally

run the eighth workload is 40.33J, by utilizing the proposed framework in this study, the

same workload consumes as low as 6.33J+ energy by performing intensive task(s) out-

side the mobile device which is remarkable. Similarly, from the overhead point of view

when the workloads are executed locally through the PMCO framework the degradation

are not that much and is as low as 0.01% to 5%, approximately. As described in the previ-

ous chapter, execution of each workload is repeated thirty times to enhance the reliability

of performance evaluation. So, data plotted in Figure 6.8 are mean consumed energy

of the workloads for Local, Local_PMCO and PMCO execution modes. Each diagonal

bricks bar in Figure 6.8, represents the mean value of compute power measured using

PMCO mode of thirty iterations for each corresponding matrix multiplication workload.

Similarly, each diagonal strips bar represents the mean consumed energy measured us-

ing Local_PMCO mode of execution, while each checker patterned bar represents the
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corresponding compute power for local execution.

Figure 6.8: Energy consumed for matrix multiplication workloads gathered via Power-
API.

The graph in Figure 6.8 clearly depicts increasing complexity as the matrix multipli-

cation intensity increases from left to right. The growth of the workloads has a significant

impact on the consumed energy when the workloads are entirely executed on the mo-

bile device. However, the reduction growth rate of consumed energy in PMCO execution

mode is remarkably smaller than local execution. Execution of the last workload in our

experiment takes more than 40.33 joules to complete, which suggest incapacitation of

executing higher workloads in the mobile device. Although the results of descriptive

statistics summarized in Tables 6.7, 6.8, 6.9, and 6.10 and demonstrated in Figure 6.8

advocate remarkable improvement in execution time of the application in PMCO, further

analysis is undertaken via paired samples t-test to ensure that the mean application energy

consumption in local and PMCO modes are significantly different.

For this purpose, our null hypothesis Ho is that there is no reduction in the mean en-

ergy consumption of a workload when it is executed in PMCO mode as compared to the

local execution mode. Table 6.11 presents the results of t-test over the mean execution of
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Table 6.11: t-Test: Paired Two Sample Mean of Consumed Energy of workloads of Local
and PMCO Mode of execution

Pearson Correlation 0.995926991
Hypothesized Mean Difference 0
df 239
t Stat 18.46918176
P(T<=t) one-tail 3.19384×10−48

t Critical one-tail 1.651254165
P(T<=t) two-tail 6.38767×10−48

t Critical two-tail 1.969939406

local execution and execution using PMCO based upon the experimental setup explained

in section 5.1. Table indicates, that t(239) = 18.46,p < 0.05. The t-value and p-value ad-

vocate the significance of the difference between mean local device and PMCO execution

time values. Positive t-value advocates that local execution takes more time than PMCO

on average. The two-tail p-value is observed to 6.38767× 10−48. Hence, we reject the

null hypothesis Ho and accept the alternate hypothesis that there is a significant reduction

in the consumed energy when the workloads are executed using PMCO execution mode.

Therefore, the time saving using our proposed framework is significant compared to local

execution mode.

Nevertheless, significant differences in local and PMCO energy consumption enable

mobile users to offload workloads using the proposal PMCO of extremely huge work-

loads on their mobile devices toward gaining increased battery lifetime. Such differences

are better visible in Figure 6.9. Scattered triangles and squares across the graph and cor-

responding interpolating lines show the differences in achievements and the correlation

between the workloads intensity and time saving. In the first workloads with low in-

tensity, the difference between circle and triangle is comparatively smaller than of high

intensity. However, when we observe the line of PMCO energy consumed it is not going

up abruptly as the local execution is going, as the workload intensity increases.

Energy Consumption in local execution mode is highly affected by workload inten-
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Figure 6.9: Scattered plot with interpolation lines for matrix multiplication energy con-
sumption.

sity and its execution time, along with the power rating of the mobile device. However,

as stated in the previous chapter the PMCO energy consumption is dependent on the total

execution response time which is also presented in the previous section. For the sake of

completeness, this phenomenon is again presented here by scattered plots in Figure 6.10

and 6.11. The figures clearly represent this behavior as the execution increases the energy

consumption also increases.

Figure 6.10: Scatter plot showing linearity correlation between local execution time and
consumed energy.
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Figure 6.11: Scatter plot showing linearity correlation between PMCO execution re-
sponse time and consumed energy.

Lastly, we would like show the energy consumption of the benchmark applications

we utilized to measure the compute power of the proposed framework. Figure 6.12 are

mean consumed energy of the benchmark workloads for Local, Local_PMCO and PMCO

execution modes. Each diagonal bricks bar in the Figure 6.12, represents the mean value

of compute power measured using PMCO mode of thirty iterations for each correspond-

ing benchmark application. Similarly, each diagonal strips bar represents the mean con-

sumed energy measured using Local_PMCO mode of execution, while each checker pat-

terned bar represents the corresponding compute power for local execution.

The graph in Figure 6.12 clearly depicts the reduction growth rate of consumed en-

ergy in PMCO execution mode and is remarkably smaller than local execution. Execution

of the Linpack workload in our experiment takes 6.24 joules to complete in local execu-

tion mode and has an overhead of around 0.20 joule on it when the same workload is

executing locally using the PMCO. While the improvement is substantial as it only takes

2.15 joules on average when executed using PMCO, which is almost 2.5 to 3 times less

than the local consumption.
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Figure 6.12: Energy consumed for benchmark application workloads gathered via Pow-
erAPI.

6.1.2.1 Validation

To validate the results of consumed energy evaluation produced via experimental analysis

presented in the main body of this section, statistical modeling is undertaken in this study

whose results are shown in this section and we provide data related to the analysis of

consumption of eight workloads in two execution modes of local and PMCO.

In Chapter 5, we have presented the statistical model for consumed energy on local

execution and PMCO execution mode. The statistical model for energy consumption in

local execution is presented in equation (5.18), for quick reference it is written here as:

Em(Wi) = (0.193971484×Tlocal(Wi))+1.14220578 (6.3)

Similarly, the statistical model for PMCO based execution is presented in equation

(5.23), for quick reference it is written here as:

EPMCO(Wi) = (0.070284574×TPMCO(Wi))+0.164839255 (6.4)
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Table 6.12: The energy consumption data generated via statistical modeling for local and
PMCO execution modes

Workload Intensity Local PMCO

Mat. Mult. (300x300) 1.558163182 0.231258573
Mat. Mult. (400x400) 3.009432558 0.458011053
Mat. Mult. (500x500) 5.402065853 0.831445906
Mat. Mult. (600x600) 8.971404048 1.388154941
Mat. Mult. (700x700) 13.95278812 2.164729966
Mat. Mult. (800x800) 20.58155905 3.197762789
Mat. Mult. (900x900) 29.09305783 4.523845218
Mat. Mult. (1000x1000) 39.72262542 6.17956906

Table 6.12, presents the data generated using these two equations of statistical model

for consumed energy in local execution and PMCO execution according to the matrix

multiplication workloads corresponding asymptotic bounds presented and explained in

details in corresponding sections in Chapter 5.

The numerical results in Table 6.12 indicate that achievements in higher workloads

are considerably higher than lower workloads. However, from a percentage point view,

all the eight workloads save almost 84 to 85% of its energy consumption when executed

using PMCO according to the statistical model. This can also be explained the local

execution takes up to 14 to 15 times more energy than the execution time on PMCO. Fig-

ure 6.13, presents the comparison between the mean energy consumption for the matrix

multiplication workloads gathered via experimentation in both local and PMCO mode of

execution vs the energy consumption data generated by the statistical model. Each di-

agonal bricks bar in the Figure 6.13, represents the mean value of energy consumption

measured using PMCO mode executions of thirty iterations for each corresponding ma-

trix multiplication workload. Similarly, each checker patterned bar represents the mean

energy consumption of the corresponding workload in local execution. Each diagonal

strips bar represents the energy consumption generated using statistical model for local

execution. Similarly, each dotted pattern bar presents the energy consumption generated

using the statistical model PMCO based execution.
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Figure 6.13: Consumed energy validation by experimentation vs. statistical model.

The graph shows there is no significant difference between the experimental mean

energy consumption and of that generated using statistical model for both execution

modes. However, the experimental values and model slightly fluctuate from each other.

This phenomenon can be better presented in scatter line plot in Figure 6.14, and 6.15

presented the local execution and PMCO energy consumption, respectively. Scattered

triangles and squares across the graph and corresponding interpolating lines show the dif-

ferences in achievements and the correlation between the workloads intensity and time

saving through experimental data and statistical model.

In Figures 6.14, and 6.15 the lines clearly overlapped in most of the workloads.

However, the real experiments details deviate slightly as the power consumption of the

mobile device depends on many internal components and operating systems procedure

which in some instance may consume extra energy. From these scatter line plots it seems

that there is no significant difference between the experimental observations and model

values as they are nearly overlapping each other.

In overall, the results of experimental analysis on the energy consumption show

significant improvement in reducing the energy consumption of a mobile device when

our proposed model is deployed. This remarkable achievement is due to several factors
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Figure 6.14: Scattered plot with interpolation lines for matrix multiplication energy con-
sumption in local mode using experiments vs. statistical model.

Figure 6.15: Scattered plot with interpolation lines for matrix multiplication energy con-
sumption in PMCO mode using experiments vs. statistical model.

including, lightweight nature of underlying checkpoint/restart technology,single-hop re-

mote computing infrastructure which are the significant characteristics that are considered

in the design and development of the proposed framework. The results in this section are

comparable with and supporting the findings in the statistical analysis section.
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6.1.3 Compute power

This section presents temporal results of executing experimental benchmarking applica-

tions in three execution environments. One environment is local whereas in the second

environment which is Local_PMCO, the benchmark is executed locally through the envi-

ronment of PMCO, while the last environment is PMCO, in which the benchmark execu-

tion starts locally and then once the execution reaches a migration marker is offloaded to

performed remotely using any of mobile cloud resource. Data related to compute power

in this section are gathered using experimental analysis. Several tables and charts are

used to demonstrate the findings.

Tables 6.13, 6.14, and 6.15 presents the temporal data related to the compute power

measured by executing the benchmarking applications in local environment, in Local_PMCO

and PMCO execution environments, respectively. Each of theses tables presents individ-

ual values of each execution and followed by a summary of descriptive statistics con-

taining mean compute power measured, standard deviation, error estimate based on 95%

confidence interval. Column Execution trace contains the trace number of the execu-

tion of the benchmarking workloads whose measurement of compute power are used to

calculate mean values of the minimum, maximum, and mean represented in the Tables.

The small error estimates presented using 95% confidence interval shown at the end

of the Tables 6.13, 6.14, and 6.15 ensure the reliability of the collected data during real

time experimentation. For example, the maximum error estimate for the Linpack work-

load executed in PMCO execution with 95% confidence interval means that the PMCO

execution of the Linpack workload falls in the range of (148.64 − 0.72) < µ < (148.64

+ 0.72). This range shows that if the execution is repeated, the compute power value

falls in this range with 95% confidence. To better demonstrate the significance of our

achievements and effectively interpret the results, we perform a comprehensive statistical
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Table 6.13: Compute Power Observations in Local Execution Environment Generated via
Standardized Benchmarking Mechanisms

Scimark2

Execution D.Stone W.Stone L.Pack FFT SOR MC Mat. LU
Trace MIPS MWIPS MFLOPS MFLOPS

1 374.90 170.32 36.68 9.06 52.93 10.75 23.19 33.94
2 374.43 169.95 37.54 8.88 52.93 10.75 23.27 33.94
3 377.59 171.94 37.09 8.72 53.23 10.75 23.19 33.96
4 378.00 172.66 36.36 8.61 53.37 10.75 23.19 33.96
5 375.20 170.23 36.62 8.5 53.37 10.75 23.36 33.96
6 374.75 170.69 37.2 8.67 53.23 10.75 23.1 33.96
7 375.17 173.72 37.22 9 53.23 10.75 23.19 33.96
8 375.56 172.14 37.5 8.56 53.23 10.72 23.19 33.96
9 378.45 169.79 36.53 8.56 53.37 10.75 23.19 33.96
10 375.44 170.27 37.07 8.63 53.37 10.72 23.19 33.96
11 373.02 170.18 36.51 8.86 53.23 10.72 23.27 33.96
12 374.80 171.82 37.19 9.02 53.37 10.72 23.19 33.94
13 364.56 169.67 36.47 8.87 53.23 10.75 23.19 33.93
14 374.64 169.43 36.41 8.63 53.23 10.72 23.27 33.94
15 378.23 170.25 36.97 8.65 53.37 10.75 23.27 33.91
16 353.79 173.31 36.11 8.75 53.37 10.72 23.19 33.96
17 375.86 172.71 36.55 8.63 53.37 10.75 23.27 33.94
18 365.60 168.71 37.44 8.6 53.23 10.72 23.27 33.94
19 372.15 170.11 36.39 8.71 53.23 10.72 23.27 33.93
20 375.32 172.55 36.47 8.89 53.23 10.72 23.19 33.96
21 377.88 172.78 37.31 8.61 53.23 10.75 23.19 33.96
22 373.98 171.77 36.35 8.66 53.37 10.72 23.19 33.96
23 377.87 168.61 36.66 8.76 53.37 10.75 23.27 33.96
24 365.87 170.34 37.36 8.88 53.23 10.72 23.19 33.96
25 374.00 173.01 36.26 8.71 53.08 10.75 23.19 33.98
26 372.85 172.79 36.55 8.6 53.23 10.72 23.27 33.98
27 372.63 169.63 32.34 8.73 53.23 10.72 23.19 33.98
28 379.01 170.78 36.45 8.59 53.23 10.72 23.27 33.98
29 352.71 173.61 35.98 8.65 53.08 10.75 23.19 33.98
30 353.14 172.90 37.07 9.03 53.23 10.75 23.27 33.96

Min 352.71 168.61 32.34 8.5 52.93 10.72 23.1 33.91
Mean 372.25 171.22 36.62 8.73 53.25 10.74 23.22 33.96
Median 374.78 170.73 36.59 8.69 53.23 10.75 23.19 33.96
Maximum 379.01 173.72 37.54 9.06 53.37 10.75 23.36 33.98
Std. Deviation 7.37 1.53 0.92 0.15 0.12 0.015 0.051 0.016
Confidence Int. 2.64 0.55 0.33 0.06 0.042 0.005 0.018 0.005
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Table 6.14: Compute Power Observations in Local_PMCO Execution Environment Gen-
erated via Standardized Benchmarking Mechanisms

Scimark2

Execution D.Stone W.Stone L.Pack FFT SOR MC Mat. LU
Trace MIPS MWIPS MFLOPS MFLOPS

1 369.42 165.73 35.72 9.01 52.93 10.75 23.27 33.96
2 362.00 166.04 35.07 8.66 53.37 10.75 23.27 33.96
3 370.71 169.12 36.04 8.76 53.23 10.75 23.19 33.94
4 367.20 166.92 34.61 8.70 53.37 10.69 23.27 33.94
5 364.41 167.51 36.21 8.68 53.23 10.69 23.1 33.93
6 362.27 166.81 35.61 8.72 53.23 10.69 23.19 33.93
7 356.09 169.78 36.17 8.74 53.23 10.69 23.27 33.86
8 364.00 163.79 35.16 8.65 53.23 10.69 23.27 33.93
9 370.38 166.27 33.12 8.70 53.23 10.75 23.27 33.96
10 370.89 167.44 35.92 8.57 53.23 10.72 23.19 33.98
11 368.64 167.11 36.25 8.72 53.23 10.75 23.19 33.96
12 365.90 169.96 35.84 8.69 53.08 10.72 23.27 33.94
13 364.48 152.87 36.45 8.76 53.23 10.65 23.19 33.98
14 367.75 168.70 35.19 8.75 53.23 10.75 23.19 33.94
15 370.43 169.38 36.23 8.72 53.23 10.72 23.19 33.89
16 366.82 165.78 35.73 8.69 53.23 10.75 23.19 33.89
17 367.46 166.14 36.21 8.75 53.08 10.79 23.27 33.96
18 371.42 167.29 35.30 8.65 53.37 10.72 23.27 33.96
19 346.76 169.87 35.93 8.72 53.37 10.69 23.27 33.98
20 341.84 169.85 36.67 8.69 53.37 10.69 23.27 33.94
21 345.28 167.12 35.25 8.71 53.23 10.69 23.19 33.94
22 368.00 167.47 36.34 9.01 53.23 10.69 23.19 33.93
23 371.05 166.88 36.48 8.71 53.08 10.69 23.19 33.96
24 370.77 170.55 36.10 8.73 53.37 10.72 23.19 33.98
25 370.41 168.56 36.28 8.65 53.23 10.75 23.19 33.98
26 367.94 165.59 35.63 8.66 53.37 10.75 23.27 33.93
27 367.28 156.71 36.18 8.7 53.37 10.75 23.27 33.93
28 366.4 166.797 34.8 8.75 53.08 10.75 23.19 33.96
29 366.86 168.037 35.92 8.58 53.23 10.75 23.1 33.94
30 367.59 167.282 35.8 8.77 53.23 10.75 23.19 33.98

Min 341.84 152.87 33.12 8.57 52.93 10.65 23.10 33.86
Mean 365.02 166.71 35.74 8.72 53.24 10.72 23.22 33.95
Median 367.37 167.20 35.92 8.71 53.23 10.72 23.19 33.94
Maximum 371.42 170.55 36.67 9.01 53.37 10.79 23.27 33.98
Std. Deviation 7.68 3.64 0.71 0.09 0.11 0.03 0.05 0.03
Confidence Int. 2.75 1.30 0.26 0.03 0.04 0.01 0.02 0.01
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Table 6.15: Compute Power Observations in PMCO Execution Environment Generated
via Standardized Benchmarking Mechanisms

Scimark2

Execution D.Stone W.Stone L.Pack FFT SOR MC Mat. LU
Trace MIPS MWIPS MFLOPS MFLOPS

1 1321.49 673.973 150.68 39.91 165.19 36.47 78.29 116.35
2 1183.74 679.497 150.68 44.2 161.02 36.28 78.29 105.49
3 1242.79 669.178 150.66 41.62 161.02 43.44 78.29 107.18
4 1461.87 678.755 150.62 40.98 160.35 40.18 81.53 106.5
5 1485.42 660.74 150.65 40.21 186.04 36.18 78.05 108.4
6 1485.34 678.905 150.55 40.82 176.6 36.37 78.29 108.75
7 1477.70 668.609 150.65 40.67 161.02 36.28 92.09 106.16
8 1484.01 656.2 150.65 41.3 161.02 37.18 94.81 105.99
9 1458.32 679.355 150.66 41.14 162.39 37.49 95.17 110.01
10 1484.34 675.035 149.48 44.2 163.77 37.91 95.17 107.18
11 1459.59 678.985 149.31 39.76 160.35 40.18 95.17 110.74
12 1473.17 680.827 149.48 42.11 161.02 39.71 95.17 119.26
13 1202.26 679.488 149.47 40.82 161.02 36.18 94.81 106.16
14 1283.93 678.666 149.45 40.98 161.02 38.79 95.17 117.79
15 1200.83 661.582 148.06 40.67 161.02 40.92 95.17 106.5
16 1201.83 667.007 149.04 39.91 160.35 39.24 95.17 106.33
17 1201.19 679.832 145.71 39.32 194.04 43.02 78.29 106.33
18 1459.60 671.305 149.12 40.98 196.03 36.18 78.29 112.42
19 1368.67 679.703 146.75 38.75 193.55 37.91 78.29 106.5
20 1202.82 679.34 146.16 39.03 195.53 36.18 78.53 106.5
21 1424.17 678.056 144.61 39.76 196.03 36.28 78.05 116.35
22 1450.49 679.731 148.95 41.62 196.53 42.47 77.58 105.99
23 1320.51 677.679 147.17 40.67 196.03 39.83 81.53 115.34
24 1182.77 678.727 144.56 42.44 196.53 36.18 76.65 117.37
25 1279.18 672.571 148.52 41.78 161.02 36.28 95.17 116.96
26 1202.41 605.06 148.89 40.67 161.02 37.7 93.43 106.5
27 1192.62 603.506 149.1 40.67 159.02 37.7 94.81 107.7
28 1199.95 680.891 146.26 39.61 196.53 36.18 94.81 110.38
29 1202.46 674.217 149.06 39.76 196.03 37.7 78.29 128.95
30 1202.22 541.573 144.33 41.3 160.35 39.36 78.53 106.5

Min 1182.77 541.57 144.33 38.75 159.02 36.18 76.65 105.49
Mean 1326.52 665.63 148.64 40.85 174.05 38.19 86.10 110.42
Median 1302.22 677.85 149.11 40.745 161.705 37.7 81.53 107.44
Maximum 1485.42 680.89 150.68 44.2 196.53 43.44 95.17 128.95
Std. Deviation 124.91 30.16 2.02 1.27 16.43 2.19 8.28 5.65
Confidence Int. 44.70 10.79 0.72 0.45 5.88 0.79 2.96 2.02
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Table 6.16: Descriptive Statistics of Compute Power Data Generated by standard bench-
marking applications

Min Mean Median Maximum Std. Deviation Confidence Int.

Dhrystone
Local 352.71 372.25 374.78 379.01 7.37 2.64
Local_PMCO 341.84 365.02 367.37 371.42 7.68 2.75
PMCO 1182.77 1326.52 1302.22 1485.42 124.91 44.70

Whetstone
Local 168.61 171.22 170.73 173.72 1.53 0.55
Local_PMCO 152.87 166.71 167.20 170.55 3.64 1.30
PMCO 541.57 665.63 677.87 680.89 30.16 10.79

Linpack (MFLOPS)
Local 32.34 36.62 36.59 37.54 0.92 0.33
Local_PMCO 33.12 35.74 35.92 36.67 0.71 0.26
PMCO 144.33 148.64 149.11 150.68 2.02 0.72

Scimark-FFT (MFLOPS)
Local 8.50 8.73 8.69 9.06 0.16 0.06
Local_PMCO 8.57 8.72 8.71 9.01 0.09 0.03
PMCO 38.75 40.86 40.75 44.20 1.27 0.45

Scimark-SOR (MFLOPS)
Local 52.93 53.25 53.23 53.37 0.12 0.04
Local_PMCO 52.93 53.24 53.23 53.37 0.11 0.04
PMCO 159.02 174.05 161.71 196.53 16.44 5.88

Scimark-MonteCarlo (MFLOPS)
Local 10.72 10.74 10.75 10.75 0.02 0.01
Local_PMCO 10.65 10.72 10.72 10.79 0.03 0.01
PMCO 36.18 38.19 37.70 43.44 2.20 0.79

Scimark-SparseMatMult (MFLOPS)
Local 23.10 23.22 23.19 23.36 0.05 0.02
Local_PMCO 23.10 23.22 23.19 23.27 0.05 0.02
PMCO 76.65 86.10 81.53 95.17 8.28 2.96

Scimark-LU (MFLOPS)
Local 33.91 33.96 33.96 33.98 0.02 0.01
Local_PMCO 33.86 33.95 33.94 33.98 0.03 0.01
PMCO 105.49 110.42 107.44 128.95 5.65 2.02

analysis which is presented as follows.

Descriptive statistics of results in local, Local_PMCO and PMCO execution modes,

including minimum, maximum, and mean compute power measured using benchmarking

workloads are summarized in Table 6.16. As descriptive statistics in the Table shows,

executing the task on remote computing devices instead of local device can improve the

compute capabilities significantly, depending upon the compute capabilities of the remote

computing infrastructure

As presented in Table 6.16, in dhrystone, the minimum increase in compute power

using the PMCO mode are as high as 317.73% from the mean compute power in local

execution. The maximum increase for dhrystone MIPS is approximately 399.038% from

the mean value of dhrystone MIPS on the local execution. Similarly, for the benchmark-

ing workloads, the mean compute power measured in PMCO execution environment, is

at least three times more than the local execution which is remarkably high. Similarly, to

ensure the lightweight feature of our proposed PMCO, we infer that it should light over-
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head, which also evident. For example, if the dhrystone workload when executed local

using PMCO components only deteriorates as low as 0.33% and as high as 8.17%.

As described in the previous chapter, execution of each benchmark is repeated thirty

times to enhance the reliability of performance evaluation. So, data plotted in Figure

6.16 and 6.17 are mean compute power measured from the benchmark workloads for

both local, Local_PMCO and PMCO execution modes. Each diagonal bricks bar in the

Figure, represents the mean value of compute power measured using PMCO mode of

thirty iterations for each corresponding benchmark workload. Similarly, each diagonal

strips bar represents the mean compute power measured using Local_PMCO mode of

execution, while each checker patterned bar represents the corresponding compute power

for local execution.

Figure 6.16: Mean MFLOPS values for 30 observations of Linpack and Scimark bench-
marks generated via Local, Local_PMCO and PMCO executions.

The graph clearly depicts the increase in compute power which is disposed to the

local mobile device through PMCO mode of execution. The graph also clearly demon-

strates that there is very less margin of degradation if a benchmark is executed locally
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Figure 6.17: Mean MIPS and MWIPS values for 30 observations of Dhrystone and Whet-
stone benchmarks generated via Local, Local_PMCO and PMCO executions.

using the PMCO components.

From the perspective of inferential statistics, we have applied a one-tailed t-test over

the results of local compute and compute power improved through PMCO. The t-test

will allow us to verify the significance of the results and decrease the possibility that an

observation of data does not occur due to chance. The null hypothesis Ho is that there

is no improvement in the compute power when the benchmark is executed locally over

the when the benchmark is executed using the PMCO framework. Table 6.17, presents

the details of the t-test over the means of compute power of the local device and the

compute power when the benchmarks are executing using the proposed framework on

the experimental setup discussed in section 5.1. The p-value is observed around 0.041

which according to the central theorem is less than 0.05 for 95% confidence interval.

Hence we reject the null hypothesis Ho and infer that there is a significant improvement

in the compute power of local mobile device when utilizing the PMCO based framework.

Lastly, due to the no correlation between the independent variable (the computational

intensity of the each benchmark workload over the coarse of the experimental observation

of thirty runs), it is not possible to produce a linear model for the compute power. But still
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Table 6.17: t-Test: Paired Two Sample for Mean Compute power in local execution mode
and PMCO mode

Local PMCO

Mean 88.74375 323.80125
Variance 15847.70277 205580.2379
Pearson Correlation 0.998857957
Hypothesized Mean Difference 0
df 7
t Stat -2.028686764
P(T<=t) one-tail 0.041035829
t Critical one-tail 1.894578605

the t-test gives us enough verification about the improvement measured in the proposed

technique.

6.2 Comparative evaluations

The results of our comparative study are presented in this section. The discussion in sec-

tion demonstrates that the performance of our framework is comparatively more efficient

that of offloading in using contemporary techniques of Code Offloading, Thread Synchro-

nization. The comparisons are done based on the qualitative as the effect in execution time

may not be different from other systems as it is a function of compute power of the re-

mote computing power. Furthermore, the code migration and thread synchronization are

different paradigms, and the comparison would be biased, as they need application level

virtualization, which on its own has performance bottlenecks as compared with native

execution which is the focus of this research.

However, from the compute overhead point view Table 6.18 presents a comparison

when a benchmark workload is executed locally using the components of proposed model

and one of the contemporary thread synchronization method (i.e. COMET). The values

in the table are based upon 95% confidence interval of thirty observations. Now the table

testifies that the proposed PMCO approach is significantly better than the COMET when

the network is disconnected or the application cannot be offloaded as we did not modify
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Table 6.18: Comparison when benchmark are executed locally using COMET and PMCO

COMET Local PMCO Local

SciMark (FFT) 4.23 8.72
SciMark (SOR) 11.647 53.24
SciMark (MonteCarlo) 0.717 10.72
SciMark (Sparse MatMult) 6.806 23.22
SciMark (LU) 7.785 33.95

any system default components to enable migration. This phenomenon is also presented

in Figure 6.18

Figure 6.18: Comparison between Comet and PMCO when applications cannot be of-
floaded.

The graph clearly, shows the performance degradation caused by COMET when the

applications are not offloaded. Besides the performance difference of application level

virtualization and native execution, the performance difference 2 times to almost 10 times

when we see the results of Scimark Monte Carlo benchmark.

Moreover, the amount data transfer can be considered as a factor in reducing the

offloading expense and can be used as comparison criterion with other offloading systems.

Now from a data transmission point of view, the comparison between the proposed model

and COMET is purely qualitative as our analysis in Chapter 3 shows that COMET’s

communication with the server cannot be controlled as they are synchronizing the shared
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Table 6.19: Comparision between conventional code offloading and PMCO

Code Offloading PMCO Difference

Mat. Mult. (300x300) 1084116 4391059.067 -3306943.067
Mat. Mult. (400x400) 1924116 4875541.233 -2951425.233
Mat. Mult. (500x500) 3004116 5492616.867 -2488500.867
Mat. Mult. (600x600) 4324116 6253364.567 -1929248.567
Mat. Mult. (700x700) 5884116 7162103.2 -1277987.2
Mat. Mult. (800x800) 7684116 8190105.033 -505989.0333
Mat. Mult. (900x900) 9724116 9368659.467 355456.5333
Mat. Mult. (1000x1000) 12004116 10687204.8 1316911.2

memory all time. However, the proposed system utilize the network on-demand basis.

When it is required to offload, then offload otherwise stay sleep.

Similarly, when compared with code offloading systems, the results for the amount

of data transfer for matrix multiplication workload of different granularity is presented

in Table 6.19. The conventional code offloading system will offload the data and code

segment both and in our experimental setting, the size of the code segment is (4116

bytes) while the rest is the N3× 3× 4. Where N is the dimension of the matrix, the

factor 3 is the number of matrices (two input and one output), while 4 is the number

of bytes for a single coefficient. The difference column in the table is calculated using

CodeO f f loading−PMCO. Now the table clearly, demonstrates, the larger the problem

instance, the more efficient PMCO becomes. PMCO compress the data and executable

checkpoint in a package for delivery. Finally, the overhead both in term of bytes contain-

ing metadata and compute time it takes in the serialization process of the code offloading

is not added it up. Lastly, the proposed PMCO framework does not need the application

binary on the server side make it much secure and independent and loosely coupled as

compared with the other traditional systems.

6.3 Conclusion

In this chapter, the results of performance evaluation of our proposed framework via ex-

perimental analysis and statistical analysis are reported and illustrated using several t
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ables and figures. The results are presented in sections 6.1, and 6.2 are synthesized in

section 6.6. Using paired samples t-test, we demonstrated significant time and energy

efficiency yield from experimental and statistical modeling when offloading a compute

intensive executing process using PMCO over the experimental infrastructure. The per-

formance evaluation of the framework is carried out using workloads of eight intensity

levels to effectively highlight the correlation between workloads and time saving as well

as energy saving. Although the proposed solution is remarkably effective at all intensity

levels, the findings are more significant when the workloads are highly intensive. Time

and energy efficiency rates are increasing as the workload intensities are increased.

The evaluation results testified about 44% time efficiency as well as 85% energy effi-

ciency when the execution of the experimental workload is performed outside the mobile

device, using the proposal PMCO. The results of empirical setup and statistical modeling

are synthesized to demonstrate petty differences between the reported achievements. The

supportive results of real-time experiments and statistical modeling unveil lightweight

nature of the framework and its usability and successful adoption in real scenarios. Our

secondary experiments testified that the lightweight feature of our proposed framework

does not deteriorate the performance of the mobile device when it is used to trigger local

execution.
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CHAPTER 7: CONCLUSION

In this chapter, we present conclusions on the research undertaken in this thesis and high-

light the future works. We re-examine the aim and objectives of this research to ensure

that they are realized through the work reported in this thesis. We present the contribu-

tions of this study and highlight the significance and novelty of the proposed framework.

The remainder of this chapter is as follows. Section 7.1 presents the efforts under-

taken to fulfill the aim and objectives of this study. The contributions of the thesis are

presented in section 7.2. Significance and limitation of the framework proposed in this

research are highlighted in section 7.3. Finally, Section 7.4 presents and future works.

7.1 Retrospection of the research objectives

The problem of computational offloading due to the introduction Android Runtime Envi-

ronment for efficient execution of compute-intensive mobile applications in the resource-

scarce mobile environment because and its impact on application execution time and en-

ergy consumption has been investigated and addressed in this thesis. Five objectives were

set for the research in Section 1.4. We revisit these objectives and highlight how the

research study met the objectives.

The first objective was to review the computational offloading frameworks in MCC

for acquiring the insight on the state-of-the-art concerning migration mechanism issues

during the execution and migration of mobile application on remote infrastructure. A the-

matic taxonomy of conducted literature review has been devised to achieve the objective

of the literature review. We have studied the state-of-the-art literature from web resources

and online digital libraries including IEEE, ACM, Springer, and Elsevier. We have col-

lected and credible research literature in the broader domain of mobile computing and

mobile cloud computing and reviewed the literature on computational offloading frame-

works. Some features employed by frameworks to optimize the computational offloading
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performance have been identified. Qualitative analysis was done to investigate the critical

aspects of state-of-the-art computational offloading frameworks performance and to de-

termine the open issues for computational offloading in MCC. The second objective was

to investigate the computational offloading in general and then investigate the major exist-

ing computational offloading mechanisms that can be used to migrate a mobile application

to the remote infrastructure. To achieve this objective, we have simulated the computa-

tional offloading benefit analysis and provide insights over the limitation of computational

offloading. Furthermore, we have implemented the classified computational mechanisms;

the analysis shows that under very realistic conditions, the existing frameworks inefficien-

cies. The research gap identified in the review is experimental demonstrated and proof

of concept experiment is performed. This established the problem of process migration

based computational offloading in MCE as non-trivial.

The third objective was to design and develop the solution for process migration

based computational offloading to minimize the execution time, energy consumption and

increase the compute power of the local mobile device. A process migration based com-

putational offloading framework along with an offloading algorithm has been proposed

to address the issue of application migration on the cloud server and vice versa. The of-

floading algorithm exchanges the process using checkpointed states of the process under

execution with the remote server and the mobile device during the offloading transaction.

For the fourth objective, we successfully attain our objective by evaluating the per-

formance of proposed MCC framework via series of experiments in real MCC environ-

ment using Android based smartphones. We performed several experiments for evalua-

tion purpose. Firstly, we performed a series of experiments developed using experimental

workloads on an Android-based smartphone. Application execution time and consumed

energy of the compute intensive mobile application in local and remote execution modes

are measured, collected, analyzed, and synthesized to demonstrate the performance of
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the proposed framework. The results of this performance evaluation experiments un-

veiled more than 56% time saving and more than 84% energy saving which is significant.

We further evaluated the lightweight feature of the proposed framework by measuring the

energy consumption and application execution time overhead caused by the framework.

The overhead is observed by comparing the results of workloads executed in a local exe-

cution with workload executed through the environment of the proposed framework, and

the overhead seems to be less than 5%. Furthermore, the overhead when compared with

COMET which is around ten times worse when an application is executed locally using

COMET. This feature, in turn, testifies the lightweight characteristics of the proposed

solution.

For the final objective, the performance evaluation results are validated using statis-

tical modeling. We use linear regression analysis as the most predominant observation-

based modeling approach to derive the statistical models of execution time and energy

consumption of the mobile application on local and PMCO execution modes. We cre-

ate a data set using independent replication method to train the regression models and

derive the statistical models. The statistical models are validated using split-sample ap-

proach, and the results are used to verify the model’s validity. We synthesize the results of

time and energy generated via experimentation and statistical modeling to validate perfor-

mance evaluation results of our framework. The results advocate reliability and validity

of the proposed framework and ensure that we achieved our aim.

Considering successful accomplishment of our objectives in this thesis, we conclude

that the aim of this research is successfully realized.

7.2 Research contributions

In this thesis, we have produced several contributions to the body of knowledge that are

described as follows.
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7.2.1 Taxonomy of computational offloading issues in the client sub-system

In this thesis, we produced a comprehensive taxonomy on the technical issues that arises

in mobile devices. Some of these issues are the root causes and motivation for the of-

floading of the mobile applications to the remote computing infrastructure. While some

the issues in the taxonomy present the technical issues that needs to addressed while de-

veloping a computational offloading system for augmentation of mobile devices. The

taxonomy is presented in Section 2.1.

7.2.2 Taxonomy of computational offloading functions

In this thesis, we produced a comprehensive survey of computation offloading mecha-

nisms that are published in the literature. We have reviewed computational offloading

frameworks by critically reviewing literary articles extracted from major scholarly digital

libraries that are presenting the state-of-the-art research to devise the taxonomy of the

computation offloading functions in MCC. The taxonomy based on the functional aspects

of the computational offloading solutions is first of its kind in the literature, and it as one

of the significant contributions of this research. The taxonomy is presented in Chapter 2,

Section 2.2.

7.2.3 Empirical analysis of existing computation offloading solutions

We contributed to the body of knowledge by investigating the benefit analysis of com-

putational offloading in general and the factors affecting the computational benefits and

their implications of utilizing computational offloading in mobile empowerment solu-

tions. We perform comprehensive analytical and experimental analyses on the classified

computational offloading migration mechanism to augment the computational resource

of mobile devices. We investigated and demonstrated significant limitations of utilizing

the existing migration mechanism during the computational offloading transaction. The

analytical experiment revealed the impact on the augmentation performance, whereas
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the volume of data transfer has remarkable impacts on the efficacy of augmentation of

resource-constraint mobile devices using remote computing resources.

7.2.4 Lightweight process migration based computational offloading framework

In this thesis, we presented one of the earliest works to leverage process migration em-

ploying checkpoint/restart in design and development of a lightweight computational of-

floading framework in MCC. Our proposed framework exploits computational powers

of available homogeneous remote computing devices available in the mobile cloud en-

vironment and aims to achieve efficiency in execution of compute intensive mobile ap-

plications. This framework achieves its aim by transparently checkpointing the process

that needs to be offloaded. Once checkpointed the checkpoint package is transfered to

the the nearby connected resource rich computing device and restart the execution over

there. Afterward, the execution at the server-side reach a synchronization point it is again

checkpointed on the server and the updated checkpoint image is then sent to the request-

ing mobile device to restart the process. The proposed framework is loosely coupled from

the availability of application source code or binary on the server side as the checkpoint

package itself contain the binary instruction of the checkpointed process. The proposed

lightweight computational offloading framework is presented in Chapter 4, as an effort

to deploy checkpoint-restart mechanism for mobile device augmentation. The proposed

framework could address high computational and communication limitations of access-

ing remote resources, by providing high scalability features. Using extensive analysis and

experimentation we observed capabilities of proposed solution can increase the network

life of wireless network based computational systems.

7.2.5 Evaluation and validation of the proposed solution

We contributed to the knowledge by implementing, evaluating, and validating the perfor-

mance of our lightweight process migration based computational offloading framework to
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demonstrate its reliable and valid functionality, and significance. A detailed description

of the systems and data that are used to evaluate and validate the proposal are reported

in Chapter 5, and the results of performance evaluation and validation are presented in

Chapter 6. The results reveal feasibility and functionality of our proposed framework.

The results also verify that utilizing our proposed framework can achieve execution effi-

ciency and save execution time and energy as significant as 50% in average. The results

explicitly ensure feasibility and lightweight characteristics of the framework and advocate

that objectives of this study are fulfilled and the aim is realized.

7.3 Significance and limitations of the proposed solution

Designing our framework based on process migration based computational offloading

framework for mobile device augmentations has the following benefits:

• Generalized: Process migration based upon checkpoint/restart provide the ability to

handle both migration-aware and unaware applications. Migration-aware applica-

tions have been coded to take advantage of process migration explicitly. Dynamic

process migration can automatically migrate these applications to save mobile de-

vice energy and improve its computational power.

• Ability offloading application without needing application binary on the server side:

Checkpoint/Restore methods in user space package the application binary and state

into one package which can be transferred to the remote device and executed di-

rectly. Removing the requirement of application binary or source on the remote

computing platform, as the checkpoint image is a package of both the application

plus its data.

• Portability: Process migration can be performed almost on every type of computing

infrastructure with minimal modification to the operating system kernel. So the
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proposed computational offloading system can be ported to any of the supported

hardware and software platforms which has the checkpoint features.

• Loose Coupling: Process migration based computational is loosely coupled with

the underlying mobile device environment so if an application which does not need

to be migrated can still be executed locally with minimal performance losses.

• Saving Computations: As an underlying principle of process migration the only

checkpoint/restart in mobile devices can also help mobile applications to check-

pointed in critical battery conditions and then later restarted either locally or re-

motely.

• Resource localization: Mobile applications which are distant from the device which

has the data that the application is using tend to spend most of their time in per-

forming communication between the mobile device and remote computing device

for the sake of accessing the data. The process migration framework can be used

to migrate the process closer to the data that it is processing, thereby ensuring it

spends most of its time doing useful work.

• User Preference: Our framework, is based upon preference based system defined

by the user to control the behavior of the computational offloading system. Further,

most of the existing offloading mechanism uses HTTP-based communication while

we focused to use a single TCP socket to get some improvement using a single

connection.

Additionally, our framework based on Checkpoint/Restore in user space has a short-

coming also, but it applies to any process migration based mechanism and also applies to

VM Migration:
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• Platform Dependent: Our proposed checkpoint restore based computational mech-

anism is platform dependent meaning that if the mobile device hardware platform

is ARM, then you need an ARM hardware platform on the server side. This plat-

form independence also applies to VM Migration based computational offloading

systems. The proposed framework requires a homogeneous hardware and software

environments in the mobile device and remote compute infrastructure because the

checkpointed process state is platform dependent not agnostic. However, to enable

the process migration based computational offloading between heterogeneous sys-

tems one can use a certain type of manual transformation of a process state from

one architecture to another (Chanchio & Sun, 2002). However, this will also have a

mapping overhead in term of compute power along with differently compiled appli-

cation for every platform. Second, emulating the alien platform over the available

platform using binary translators, such as QEMU (Bellard, 2005) which can also

bring a lot of performance degradation and the purpose of offloading will not be

achieved.

7.4 Future prospects

Through our theoretical and experimental analysis on computational offloading in gen-

eral and our designed framework, we know that there are still some issues which can be

studied further in the future using the lens of process migration in computational offload-

ing for mobile systems. Here we present two important issues that needs to addressed in

order establish an optimal process migration based computational offloading ecosystem.

• In MCE, due to intermittent connectivity and non-seamless wireless coverage, and

mobility of the end user remote computing infrastructure (such as Clouds, Cloudlets,

Ad-Hoc Mobile Nodes) may not be available or disconnected once an application

is migrated to any of the mentioned remote computing infrastructure (Wang et al.,
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2014). However, this disconnection may results in loss of computation and deteri-

orate the end user QoS/QoE requirements. Furthermore, due to the mobility of the

user a device cannot re-establish the connection with one-hop augmentation devices

such as cloudlet or ad-hoc mobile nodes. To save the computation once performed

mobility assisted server-to-server computational offloading mechanism is the need

of the day for MCEs.

• To attain optimal performance from any computational offloading system, the code

must be partitioned to identify the intensive, non-intensive, local resource and user

interacting fragments. To allow the already developed application to take advan-

tage of the mobile cloud using computational offloading those application must be

partitioned so that the migration/synchronization points are identified. These par-

titioning should be automatic such as employed in CloneCloud (Chun et al., 2011)

and its variants to transform any mobile applications to a mobile cloud application.

The partitioning mechanism should exploit and modify the AHOT compilation pro-

cess of ART, to modify, annotate and add special migration primitives to the DEX

intermediate code before transforming it into machine dependent binaries. These

migration markers should be then used to trigger the checkpoint-restart the appli-

cation on different nodes in mobile cloud systems.
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