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ABSTRACT 

The main objective of this research work is to model and control the idle mode of a 

four cylinder spark ignition engine. The modeling approach is to handle the engine as 

a multi input multi output nonlinear black box model, where the inputs are the throttle 

angle and the spark timing and the outp'uts are the speed and manifold pressure. 

The input output data was collected from an experimental four cylinder spark ignition 

engine, then this data is fitted to a NARMAX model using a radial basis function 

network trained by the orthogonal least squares algorithm. After that the developed 

model is validated using nonlinear correlation tests and it could efficiently reproduce 

the plant dynamics. 

Tlie control teclmique used is the fuzzy control. The fuzzy controller is 

formulated as a radial basis function network trained by the orthogqnalleast squares 

algorithm to estimate the controller parameters. The train~ng data of the network is the 

entries of an optimal control table derived by analyzing the evolution of the state 

trajectories of the system under different initial conditions using the cell to cell 

mapping technique. The developed controller can efficiently stabilize the plant and 

compensate for different uncertainties and nonlinearities of the plant. 
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CHAPTER 1 

INTRODUCTION 

1.1 Engine Control 

Microprocessor based control systems have-been introduced to the realm 

of spark ignition engine control by the middle of the 1970's and have become 

dominating in the 1990's. Instead of mechanical, pneumatic · and hydraulic 

components used by conventional control systems, an electronic control system 

consists of sensors (pressure, temperature, ... ), electric actuators (solenoids, de 

motors, ... ) and an electronic control unit (a microprocessor and its attachments). 

Sensors measure the states of the plant and feed them back to the electronic 

control unit where the control decision is made and delivered to the engme 

through the actuators. 

Due to increasing performance requirements such as emission control, 

fuel consumption, driveability, .. . etc, the conventional control system are no 

longer able to meet these requirements. The supenor alternative to the 

conventional engine control system is the microprocessor based control system, 

and this is due to its superior flexibility, accuracy, tolerance and long term 

calibration stability . 

In generaL the aim of an engine control system is to regulate the amounts 

of air, fuel and spark timing to meet performance requirements under different 

operating conditions of the engine. The major states to be measured are the 

speed, manifold pressure, coolant temperature, oxygen content in the exhaust 



gases, throttle and exhaust gas recirculation valves positions. The major control 

signals are fuel control signal, ignition timing signal, idle air signal, and exhaust 

gas recirculation signal. 

Spark ignition engines have different operating modes depending on the 

operating conditions under which the engine is running (warming, idle , 

accelerating, decelerating ... ). Among these modes the one of interest to this 

research work is the idle mode which is the most frequently encountered 

operating condition in city driving. 

In its idle mode the engine is running on its minimum speed and suffering 

disturbances coming from different engine accessories such as air condition, 

automatic transmission (from neutral to drive condition), power steering, and 

other secondary loads. 

The idle mode control problem is a challenging one especially for small 

size engines as the engine in this mode is running at its minimum torque reserve 

and significant engine parameter changes can be expected over environmental 

conditions under which the engine operates. 

The key factors to be considered in idle mode control (Cook, 1996) include: 

a- Engine speed set point: The engine idle speed is kept at its minimum that can 

guarantee minimum fuel consumption, better combustion quality, enough 

power for accessories drive requirements, noise, vibration, and harslmess 

properties.Accessory load disturbances: The characteristics and range of 

operation of these loads determine the complexity of the control design and 

achievable performance. 
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b- Control authority and actuator limitations: The actuators involved in the 

process are subject to constraints imposed by the hardware itself as well as 

other engine control design considerations. 

c- Available measurements: Speed alone or speed and manifold pressure, m 

· addition to accessory load are the sfates to measure for control. 

d- Variations in engine characteristics over the engine operating range: The 

control system has to be robust to stand for plant parameter changes due to 

aging and unit-to-unit variability. 

1.2 Motivation for Nonlinear Modeling and Control of the Idle Mode 

Dynamical systems are always nonlinear in nature. Linearization of 

dynamic system models is only valid in small range of operation of the plant, but 

when the range of operation is large the assumption of linearity is no longer valid 

and the designed linear controller performs poorly. Spark ignition engines are 

strongly nonlinear plants and their physical dynamical models always contain 

uncertainties and spurious modeling assumptions and a lot of ad hoc in the 

experimental parameter determination. 

In the idle mode the system is highly nonlinear with time delays which 

may be of variable length making analytical treatment of the problem very 

difficult. Time wasted in making assumptions and trying to prove it, in addition 

to equipment settings, unavailability and other financial and administrative 

problems are other serious difficulties. In cases like this it could be reasonable to 

handle the problem as a black box modeling one guided by some a priori 

.., 
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knowledge about the physics of the plant. Simple models may merely portray the 

input output relationship of engine performance on a black box basis without 

characterizing the interrelationships among the internal engine processes or 

components. For control purposes the model need only portray the dominant 

dyl}amics while keeping the interre~ationships between measured variables 

consistent with the physical processes (Coat and Fru_:chte.l983 ). The black box 

solution will save a lot of time, cost and the developed model can be used 

efficiently for control purposes. 

Linear controllers are designed on the basis of a linearized model around 

an operating point and explicitly or partly ignore the delay elements of the model 

especially for the conventional PID controllers. A linear controller poorly 

compensates for nonlinearities and model uncertainties may happen in the 

system while a nonlinear controller can compensate well. A nonlinear controller 

can compensate for nonlinearities and uncertainties in addition it may be simpler 

and intuitive in its design (Slotin, 1991 ). As pointed out before the engine as a 

plant has a strong nonlinear behavior and uncertainties attend in their parametric 

and nonparametric forms . Linear controllers designed on the basis of inaccurate 

or obsolete parameters of the plant yield unsatisfactory and unstable performance 

in addition to their costly and lengthy periods of development. 

Nonlinear control techniques if applied can yield a lower in cost, robust 

and satisfactory performance control system. A common unconventional 

nonlinear controller is the fuzzy controller, which can be successfully applied to 

control nonlinear systems. A fuzzy control system, in addition to its ability to 

handle nonlinearities can be robust enough to compensate for uncertainties which 

results from abrupt changes of the plant parameters. These capabilities of the 

4 



fuzzy controllers make them an interesting control choice for plants which are 

not enough amenable to conventional control schemes. 

1.3 Previous Work in Modeling and Control of the Idle Mode 

Before 1970's engme control systems were model free based on 

calibration of production engines. The area of engine modeling has started to 

achieve advances since 1970, especially in conjunction with the introduction of 

microprocessor technology to automotive industry. Most of the first works in idle 

mode modeling and control rely on considering the overall system dynamics 

which results in a model of high order (usually near to eighteen state variables) . 

The second step in modeling is to simplify the model order to third or less order 

(usually second order). The model is then linearized and several modern and 

conventional linear control techniques are applied to control the engine. 

The first work in engine modeling was the work done by Hazell and Flower 

( 1971 ). Their work resulted in a discrete model based on crank angle events, in 

addition they performed frequency, z domain and stability analysis . A model 

developed by Prabhakar et al (1975) was the first one to contain spark advance ; 

throttle and fuel control variables and empirically based approximations of the 

engine emissions in addition to transmission/drive line. 

A tenth order nonlinear model with wide speed and load operating range 

was developed by Powell (1979). This model contained description for the 

induction process, engine power system, throttle mechanism, sonic EGR valve 

and the fuel injection system. 
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The most comprehensive model is the one developed by Delosh (1981 ), 

where all control mechanisms and sensors as well as versions of models suitable 

for four, six and eight cylinder engines with various derivations. 

Dobner ( 1983) developed a nonlinear engine model for control analysis. 

In this model the inputs are the throttle angle, the air to fuel ratio, the spark . . 

advance, the EGR command, and load torque. The outputs are manifold pressure, 

exhaust air/fuel, brake torque, and engine speed. For a survey on the history of 

engine modeling see Powell ( 1987). 

Of the first works done to the idle mode modeling and control, are those 

developed by Morris and Powell (1983) and Morris et al (1982). In their work 

they developed a detailed physical model of the engine idle mode consisting of 

eighteen states variables and then reduced the model order to a five states model. 

A two states linear black box model based on frequency response 

identification and combustion dynamics approximation was developed by 

Takahashi et al (1985), with a controller designed by the linear quadratic and 

integral optimum control theory (LQI technique). 

A recent physical model and controller design for an eight cylinder port 

fuel injected engine was developed by Livshiz et al (1994) where the problem 

was handled as a two inputs two outputs model and the controller is an optimal 

controller type. Another recent work is the multi inputs-single output model by 

Cook ( 1996) with a modern optimized PID controller. 

Many linear control techniques based on linear models have been applied 

to the idle mode control problem. As an example of the conventional technique is 

the PID controller. Examples of modern techniques are the linear quadratic 

6 



control (Powell,( 1986), adaptive control (L iubakka et al , 1996), H"' control 

(Williams et al, 1989), LQG technique with loop transfer recovery (Baumgartner 

et al, 1986). 

In most of these works the controller parameters are fine tuned using 

different optimization techniques and tl}.e final controller design is simplified and 

implemented in a classical PID format. 

Except for the next three studies all the previous studies depend on a 

linear approach to the problem. Although with the increasirig use of modern 
' 

control techniques better performance is achieved but still the problem of 

disability to handle nonlinearities exists . As mentioned before the linearity 

assumption can be deteriorated if the plant dynamics exceeds the limits of 

linearization. Most of the linear controllers designed in the previous works 

perform badly outside the limits of its operating point. 

Other unconventional approach such as fuzzy control and neural 

networks have been applied as in Abat and Dosio (1990) , and Feldkamp and 

Puskorius ( 1992, 1993), where different computational techniques were applied 

aimed at increasing the controller robustness and decreasing the number of rules. 

The aim of decreasing the number of rules reduces the memory 

requirements of the hardware but may cause discontinuities of the control surface 

and waste the advantage of existence and uniqueness of the solution in a closed 

loop system with fuzzy controller (Lewis, 1995). In this work it is noticed that 

the robustness and the range of operation of the control system is increased with 

increased number of rules. 
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Nonlinear black box modeling if done well and carefully planned can 

compensate well for different modeling uncertainties. In this work a nonlinear 

black box model will be developed and validated with correlation tests and a 

nonlinear fuzzy controller will be developed based on a full computational 

app_roach to avoid trial and error te.chniques used 111 the design of fuzzy 

controllers. 

1.4 Objective of Research 

The main goal of this research work is to develop a nonlinear black box 

mathematical model for a four cylinder port fuel injected engine idle mode that 

can be used for simulation and control purposes. The second goal is to develop a 

fuzzy controller based on a completely mathematical approach to stabilize the 

engine in its idle mode and compensate for different loads disturbing the engine. 

The controller must be robust enough to withstand abrupt changes of the engine 

parameters due to aging and unit to unit variability. 

1.5 Contributions 

Major contribution of this study can be listed as below 

• Practical design of the identification experiment to collect data from the engine. 

• Development of a multi input multi output nonlinear black box model for the 

idle mode using radial basis function network. 

• Validating the model using nonlinear correlation tests. 
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• Development of a fuzzy controller for the idle mode based on a complete 

justified mathematical approach. 

1.6 Organization of Thesis 

The text of the thesis ts organized in seven chapters including this 

chapter. Chapter 2 provides a backgrm.md to nonlinear black box modeling and 

its relation to neural network. Chapter 3 discusses-dynamic engine model and 

practical experimental setting for collecting the data used in the modeling. It 

presents the radial basis function network and its application · to ,develop a 

nonlinear black box model for the idle mode where the problem is handled as a 

two input two output process and the network is trained by the orthogonal least 

squares algoritlun. Chapter 4 is devoted to validate the model developed in 

chapter 3 by using nonlinear correlation tests. In chapter 5 a fuzzy controller is 

designed based on an optimum control table developed by the cell to cell 

mappmg concept and trained by the orthogonal least squares algorithm. 

Simulation of the designed controller is demonstrated in the same chapter. 

Chapter 6 summarizes the research and the conclusion, in addition to suggesting 

future research regarding the subject. 
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CHAPTER2 

BACKGROUND TO ARTIFICIAL NEURAL NETWORK AND NONLINEAR 

SYSTElVI IDENTIFICATION 

2.1 Introduction 

The purpose of this chapter is to describe briefly artificial neural networks 

(ANN) and its application to the system identification of nonlinear processes. First, 

neural network is quickly explored and the system identification problem is defined. 

Extension of linear model structure conventions to the nonlinear case is then treated and 

the problem is treated as a nonlinear function approximation problem in an ANN 

framework. This is followed by a discussion of networks architecture and modeling 

requirements. 

2.2 Artificial Neural Networks 

ANN has been used successfully in a wide range of engineering applications 

such as signal processing, image processing, pattern recognition .... etc. One of its 

important and popular application is system control and modeling, and this is mainly 

due to its ability to handle nonlinear problems. For a survey of ANN in control see Hunt 

et al ( 1992) and for modeling see Sjoberg et al (1995). In the following we will treat 

ANN as nonlinear function approximators which is the main reason for using them in 

modeling. 
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Definition of ANN: 

ANN models are algorithms for cognitive tasks, such as learning and 

optimization, which are in a loose .sense based on concepts derived from research into 

the nature of the brain, (Muller and Reinhardt, 1991 ) . 

. 
In general ANN are called connnectionist systems as it is a graph composed of 

interconnected nodes (neurons in network terminology). Mathematically, an ANN is a 

directed graph with the following properties (Figures 2.1 , 2.2 and 2.3): 

(1) An input vector Xi at time instant i. 

(2) A defined transfer function K( . ) associated with each node: 

(2.1) 

where each K(.) is a nonlinear function called the basis or the activation function and is 

considered as a node in the graph. 

(3) A scale or directional property parameters, f3 k of the transfer ft.mction K . 

( 4) A position or translation parameters r k of the function K . 

In general there are tlu·ee methods to construct K (.): 

(a) The tensor product where the output of the node is the multiplication of activation 

function output of every dilated input alone. 

(2.2 ) 

(b )The radial construction where the input to the activation function is the translation 

parameter (for example centers of the radial basis ft.mction) subtracted from the dilated 

input. 

(2 .3) 
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(c) The ridge construction, Figure 2.2 where the input to the activation function is the 

sum of the dilated inputs and the translation parameter 

(2.4) 

The whole graph or mapping can be expressed as 

(2.5) 

where a is the coordinate parameters and K can be a senes of nested functions 

depending upon the architecture of the network. 

Usually an ANN is referred to by the type of the basis fi.mction structure. For 

example sigmoidal network (Figure 2.2) has a feedforward structure with a sigmoidal 

activation function and the ridge structure. Radial basis networks has a feedforward 

architecture and a radial structure in the hidden layer. Other types are for example B­

splines network, wavelet networks, .. . etc. On the basis of their architecture (Figure 2.3) 

an ANN can be a feedforward network (static) , recurrent or feedback network (dynamic) 

or self-organizing network. 

Networks used in system identification are mainly nonlinear function approximators. 

The basis for treating them as nonlinear function approximators is the Stone-Weierstrass 

theorem or the Kolmogorov's theorem. 

The Kolomogorov 's theorem states that: 

If I is the interval [0 , 1] and rn. = [0, 1 ]" is a closed unit interval (n ~ 2 ) , the Cartesian 

product of I. The theorem states that: 
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Any continuous mapping NN = f(xJ ,X2, ..... ,xn) of several variables defined on the space 

Jn(n.C2) can be expressed in the form 

2n+l 11 

f(x) = I <Dj ( I 'f' i,j (xi) ) (2.6) 
i=l i= l 

·where <D j and IS 'f' i.j are continuous functions of single variable and 'f' i.j are 

monotonic functions which are independent of j : 

For network applications and as stated in Funahashi (1989), any continuous mapping 

f(-c)=(xJ,X2.···· ·····xnJ -----7 (f(xJ)./(Q), ...... J(xmJ) 

can be approximated in the sense of uniform topology on Rn by input-output mapping of 

k-layer ( k-2 hidden layers, k?. 3, where k is the numb~r of layers) network whose output 

functions for hidden layers are <D j(Y) , and whose output functions for input and output 

layers are linear. 

In conjunction with the prevwus discussion and the system identification 

problem definition in section (2.3) the function approximation problem can be defined 

as follows: 

Given NN = f ('c), a continuous function defined on a set X and an approximating 

function ¢ = F ( () .-~Y) , that depends on a set P of parameters and X ,determine the vector 

of parameters. () ( () E P , where () is the parameter vector which combines a, f3 , y ) 

such that 

d [ F((),X),f(-c) } ~ d [ F (() ,X) ,f(X) } (2. 7) 

for all () in the set P, where () is the estimated vector of parameters and dis the distance 

function. The problems associated with this approximation definition are related to the 
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choice of suitable F() for approximating the function/, which approximation schemes 

to use (sigmoidal, radial, ... etc) and which algorithms ( back propagation, recursive 

prediction error ... ) for finding the optimal vector of parameters () E P that minimizes the 

criterion associated with the function approximation scheme. 

Once the approximation scheme has been decided on, a parameter adaptation algorithm 

based on one of the search for the optimum-algorithms has to be chosen ie 

Equation(2.8). 

The process of training (or parameter estimation) is based on minimizing the 

sum of the square errors (over the number of input - output data points) between the 

estimated or approximated mapping and the real mapping, which is a nonlinear 

optimization process based on the following adaptation scheme 

B(i+l) =B(i)- a Rr' v], (2.8) 

where: 

a = step length. 

Rr' =search direction (Newton, Gause-Newton, Levenberg-Marquardet, .. . ) . 

\1}; = the gradient. 

How does an ANN work? 

In most ANN applications the computation is done in two phases: the phase of 

training and the phase of recall or generalization. During training, the network tries to 

learn the object function through both the input and the corresponding output, whilst in 

generalization the network tries to recall the output corresponding to a given input. The 

ability of the network to learn depends on the input (properties, type and number of 

inputs) , the type of activation function (some learn better than others ), and the number 
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of activation function( some of these points will be discussed in later chapters in relation 

to system identification). 

Training the network is an iterative process. Every network node combines the 

dilated translated inputs then, input the sum to the activation function to infer an output 

usually in the interval [0, 1]. The output of the nodes is again dilated and translated or 

dilated and compared with the object function to calculate the error. Based on the 

condition and value of that error an adaptation or learning rule is used for adapting the 

network parameters to produce the optimum output. The training process is stopped 

when the error goal or a specific criterion is achieved (usually the average sum of square 

errors between the real and approximated function). After training we have matrices and 

vectors for both the dilation and the translation parameters which are used later for the 

generalization purpose. 

In generalization, the network is given an input never given to it before and it is 

required to produce the optimum output corresponding to this input. 

There is a trade - off between training accuracy and generalization accuracy. Strict 

accuracy condition requires excessive training leading to overfitting or overtraining 

which in turn causes a biased output in generalization. Training accuracy is dependent 

upon increasing the number of basis function i.e. number of nodes while generalization 

accuracy increases with decreasing the number of nodes (this will be discussed under the 

architecture issue). 

2.3 Nonlinear System Identification and Networks 

Here the problem of system identification and its relation to ANN is defined for 

modeling purpose. 
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2.3.1 Problem definition 

The system identification problem is defined as follows : 

Given a series of input-output observations from a dynamical system 

Ll=[u(l) u(2) ...... ... ... ... ....... u(t)} (2.9) 

. 
l=fy(1) y (2) ... ... .... .. .. ...... .y(t)} (2.1 0) 

find a parameterized model structure to predict the future behavior of the system 

(predicted outputs y(t)). Generally this is done by introducing a family of nonlinear 

' 
finitely parameterized functions and searching one of these functions as the candidate 

model structure. Defining the parameters by 8 and the nonlinear function by g() then 

y(t) = g(ut-1,yt-1, ()) + v(t) (2.11) 

where v(t) represents the residuals of the model (the "dynamics which cannot be caught 

by the model). 

Usually Ll,/ are combined in one vector rp called the regressors vector. The 

general equation takes the form: 

y(t) = g( rp, ()) + v(t) (2.12) 

A good model is one which has minimum v(t), i.e. the model in which the real 

output y(t) can be represented approximately by the function g(.) ie y(t) ~ g(rp, f!J. The 

main problems in fitting Equation (2.12) to the real data are choosing the appropriate 

nonlinear function g(.) (model structure), the regressor vector <p for the best fit between 

the estimated model and the real process. The next step is to find the vector of 

parameters estimates B, which gives the best fit between the model Equation (2.12) and 
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the output y(t), and this is done through an optimization process aiming at minimizing 

N 

the following criterion: J= I 11 y(tJ - g(ut-1,yt-1 , fJJ r 
I 

2.3.2 Extension of the linear case to the nonlinear case 

The general form of the linear system model structure( input-output model) is 

given by 

A(q)y(t) = B(q)IF(q) u(t-n~J + C(q)ID(q) e(t) (2.13) 

where q is the shift operator (z·' may be used also), A , B , C arid F-are polynomials of 

q-1 , e(t) is the noise or residuals term(can be white noise) and nu is the time delay. 

Many variations can be done to this general form to give various model structures such 

as ARX model (F (q)= C(q) = D(q) = 1), ARMAX (F(q)=D(q)=l),impulse response 

model (A (q)= F (q)= C(q) = D(q) = 1),output error model (A(q)=C(q)=D(q) =1) and 

the Box Jenkins (BJ) model . The order of the model (number of poles) is defined by the 

order of polynomial A, the number of zeros is defined by the order of B. 

The regressors used in the general form of Equation (2.13) are: 

u(t-k) with the polynomial B 

y(t-k) with the polynomial A 

y (t-k) with the polynomial F 

e(t-k) =(y( t-k ) - y ( t-k)) with the polynomial C 

eu(t-k) = y(t-k) - ..Yu ( t-k ) with the D polynomial. 

The general form of the linear state space model is given by : 

x(t + 1) =A x(t) + B u(t) + K e(t) 

y(t) = C x(t) + D u(t) + e(t) (2 .1-1) 

where A , B , C , D are matrices and e(t) is the noise term. 
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By extending these concepts to the nonlinear case we can get the following 

variants (Sjoberg et al.(1995) and Billings et al (1988)): 

[ 1] Input output forms 

(a) NFIR (Nonlinear finite impulse response) models with u(t-k) as the regressors. 

(b) NARX models with u(t-k) and y(t-k) as the regressors( series-paralle l model) . 

(c) NARMAX models with u(t-k)andy(t-k) and e(t-k)as the regressors. 

(d) NOE models with u(t-k) andy (t-k) as the regressos(parallel model). 

(e) NBJ models with u(t-k), y (t-k), e(t-k) and eu(t-k) as the regressors. 

[2] Nonlinear state space models (Nerrand et al(1994), Nerrand et al(l993)): 

(a) State space OE model 

x(t+1)= j[x(t)),u(t)} 

y(t) =x(t) +v(k) 

(b) State space NARMAX model 

x(t+ 1)= f[x(t), u(t), v(t)] +v(t) 

y(t)=x(t) 

(c) State space NARX model 

x(t+ 1) = f[x(t)), u(t)j+v(t) 

y(t)=x(t) 

v(t) is the noise term, x(t-1) is the state vector and u(t) is the input. 

2.4 Formulation of System Identification Problem 

In this section the formulation of the system identification problem in discussed 

111 a network framework. The ANN is viewed as a nonlinear mapping ( g( <p,8) 

L:akgk(<p)) approximators and its relation to system identification is presented. 
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As mentioned before, difficulties associated with the system identification 

problem are mainly concerning the nonlinear function g(), the parameters vector 8 and 

the regression vector cp ,which define the model type (NARX, NARAMAX, .... ... ).The 

nonlinear mapping g() can be viewed as the function expansions : 

g( q;, B) = }; ak gk( q;) (2.15) 

where gk 's are called basis function (corresponds to model structure and may be 

sigmoidal, radial basis, B splines, ...... . ), gk 's are obtained by parameterizing a mother 

basis function (Sjoberg et al,1995), K (.)as follows: 

(2.16) 

fJk is the dilation or the scale parameter (weight matrix in ridge construction type( gk( cp) 

= K ( fJkTq;+yt) ) , Yk is a translational parameter (bias in ridge construction, centers in 

radial construction( gk( q;) = K (II q;- Yk II /3k ) ) and ak are coordinate parameters. 

The basis function expansions, Equation (2.15) which correspond to the model 

structure can be illustrated graphically in the form of a feedforward network as can be 

seen in Figure 2.l. Here the mother basis function gk(cp) = K (cp,~k,Yk) is illustrated as a 

node and repeated for a number of times. The number of nodes has to be determined and 

corresponds to the number of neurons in the network. The number of parameters in the 

identified model equation is dependent on the number of neurons, e now includes the 

whole set of the network parameters and the model structure (NARX, NARMAX, ... ) is 

determined by the regressors which are the inputs to the network. 

Except for NFIR and NAR.t"'<: , other model structures correspond to the structure 

of recurrent networks as parts of the regression vector are past outputs of the model. 
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Training the network corresponds to the process of parameter estimation (finding 

the optimum values for the parameters B, based on Equation (2 .8)), while generalization 

corresponds to model validation. 

2.5 Network Architecture and Modeling Requirements 

System identification mainly concerns two things: the first is the model structure 

identification and the second is the parameter set identification. In this section some 

general topics related to neural network architecture are discussed in relation to 

parameter set identification. This is closely related to model quality measures, namely 

bias and variance of estimation and their relation to the architecture of the network. 

By quality of the model we mean the ability of the model to catch (from the 

estimation data set) and reproduce (from the validation data set) the dynamics of the real 

process. Catching the whole dynamics of the model is a matter of having an efficient 

fitting procedure, whilst reproduction of the dynamics is a matter of having a suitable 

model structure in conjunction with efficient fitting procedure. Model quality which 

corresponds to the fitting procedure is closely related to network architecture where the 

approximation potential of the network depends strongly on the number of the basis 

functions in the hidden layer (nodes). On the other hand model quality aspect which 

corresponds to model ability to reproduce the dynamics of the system is dependent upon 

the input to the network, in other words the dimension of the regressor vector. 

It is generally known that model quality can be studied by analyzing the 

residuals of the model estimation process . By residuals of a model we mean the 
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prediction error c( t) = y(t) - y( t, B, rp) where y(t) IS the real process output 

and y(t, B, rp) is the estimated model output of the process. 

The residuals evolve from two different sources; the first one is the noise that 

.contaminates the measured data of the process, whilst the second source comes from the 

process of constructing the mathematical model Jrom even noise - free data. Residuals 

evolving from the first source are known as variance errors whilst residuals from the 

second source are known as bias errors. Residuals of the first · typ~ can be theoretically 

made negligible by using an infinite series of data points N ~ co whilst the second one 

can be overcome by using suitable model structure and parameter set. 

_In tem1s of the its parameters a good model is judged by the criterion 

min V(B) = E{(y(t)- g(rp(t),B)(y(t)- g(rp(t),B)r} (2.17) 

f1 (B) represents the covanance matrix of the parameters, g( rp( t ), B) represents the 

estimated model , rp(t) are the regressors and f) is the set of parameters. 

Assuming that the measurement noise has a variance A- then 

(2.18) 

In practice the criterion V (B) can be represented as the sample mean 

V(B) = _2_ I [(y(t)- g(rp(t),B)(y(t)- g(rp(t),B)'] 
N J;J 

(2.19) 

Let B. (m) represents the optimum parameter set, then the best model can be represented 

by: 
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(),(m) = arg{ min V (())} (2.20) 

where m is the dimension of the parameters vector (which is proportional to the number 

.. 
of basis functions) . A measure of the model quality which describes the model fit when 

31pplied to a new data set is: 

- ~ 

E{V (()) }= V.(m) (2.21) 

Based on the assumption of white measurement noise Equation (2 .13) can be 

decomposed into three basic terms 

f1.(m)=A + E(g,(rp)- g(rp(t),B.(m))(g,(rp)- g(rp(t) ,B.(m))r 

~ ~ 1' 
+ E(g(rp,B.(m))- g(rp,BN))(g(rp,B,(m))- g(rp,BN)) (2.22) 

where ()N is the parameter estimate from the estimation data set. 

The second and third terms of Equation (2.22) respectively represent the bias and 

variance of estimation. As the number of data points N tends to infinity the variance of 

estimation will be negligible and the model parameters ()N , will tend to the best or 

optimum parameter set B •. 

BN ---+ (),(m) = arg min V (()) 
e (2.23) 

which implies 

1 N -I (y(t)- g(rp(t),B)(y(t)- g(rp(t),B/ ---+ E{c2 (t)}= V(B) (2.24) 
N 1= 1 

Under the assumption of predicted white noise and zero bias term the variance 

term in Equation (2.22) can be treated as follows (Ljung, 1994) 
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' A A 1' 
E(g(q; ,B,(m))- g(q; ,BN))(g(q;,B,(m))- g(q;,BN)) 

1 
::::::-:tR-1 

N 
(2 .25) 

R-1 represents the parameter covananc.e matrix R = E l.f( t, (}.) lf(t , (}, )rand 

d A (} lf(t ,e.)= -y(t, ) 
d(} 

(an m· x 1 vector) 

From Equation (2.25) it can be concluded that the uncertainty in a component of 

e is related to the sensitivity of the model Y(t,B) to a change in that component. In 

other words, a small change of y( t , B) for a change in component' of the parameters (} 

will produce a small change in R , consequently a large uncertainty of (}. In Sjoberg et 

a! (1995) Equation (2.25) is approximated to 

A A I' 
E{(g(q;,B.(m))- g(q;,BN))(g(q;,B,(m))- g(q;,BN)) } 

then Equation (2.22) can be expressed as 

1 
:::::-:tm 

N 

V.(m) = :t + _!_ :t m + E(g"(q;)- g(q;(t),B.(m))(gJq;)- g(q;(J),B.(m)) r 
N 

- . 1 -
V. ( m) = :t + - :t m+ V ( (}, ( m)) 

N 

(2.26) 

(2.27) 

(2.28) 

Equation (2.27) describes the expected loss when the model is applied to a new 

data set. It also describes the effect of changing the number of parameters m, (changing 

network architecture directly changes m) on the loss function of Equation (2.26). In 

Equation (2.26), V.(m) is a nonincreasing function of m. Increasing the number of basis 

functions (which implies increased m) increases the approximation potential of the 

network, and hence directly increases the estimation variance term and unless the 
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decrease in V.(m) is not less than A I N the increase of m will increase the importance 

of the unimportant parameters and severely affects the overall quality criterion tl:(m) of 

the model leading to overfitting. The number of parameters is proportional to the 

number of basis functions used in· the hidden layer. It therefore depends on network 

architecture. Increasing the number of basis function in seeking for more approximation 

capacity results in increasing the number of parameters, consequently leading to 

overfitting. 

In the case of the adaptive model both the second and third terms of Equation 

(2.22) are considered, while all the terms are considered in relation to the radial basis 

function model case. In the radial basis model case the error tolerance ratio t; controls 

the structure of the network and consequently the complexity of the model. Very small 

values of t; increase the number of hidden layer nodes and small values decreases the 

number of these nodes. 
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CHAPTER3 

ENGINE MODELING USING RADIAL BASIS FUNCTIONS NETWORKS 

3.1 Problem Formulation 

In the idle mode the engine is under the control of two control variables, the first 

one is the throttle angle which regulate quantity of air breathed by the engine while the 

second one is the spark timing before the top dead center (spark advance or retard) . The 

outputs or the states to be stabilized (or regulated) are the engine speed and manifold 

pressure. 

Under the condition of perfect air fuel ratio typical physical dynamic models of 

the idle condition employ two principle states which are speed and manifold pressure, 

and two control variables which are throttle angle (or idle air actuator position) and 

spark timing [Morris and Powel (1983) , Powell (1995)] , to model the engine. Different 

approaches to idle mode modeling have been in existence (see the references of section 

1.3). Some of them handle the process as single input single output (throttle is the input 

and speed is the output) . Others handle it as two inputs one output where throttle angle 

and ignition timing are the inputs and speed is the output. In this work the process is 

handled as a multi-input multi-output (MIMO) process where including the manifold 

pr sure in the model helps in making the idle speed more stable. The manifold pressure 

is sensitive to the ignition advance and throttle angle, pressure overshoot severely affects 

th speed dy namics . This can be shown from simulating the model under different initial 

condition of the pressure. 
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In black box modeling a process is viewed as a black box and attention is only 

paid to both the output and input variations irrespective of what is going on inside the 

process. Keeping this principle in mind we construct a nonlinear black box dynamical 

model for the idle mode of our engine. The inputs observed are the throttle an ale and 0 

spark timing while the outputs observed are the speed and manifold pressure. Both the 

outputs of the process are interacting with each other to yield the following nonlinear 

discrete mathematical form: 

y(k+1) = f(y (k) ,u(k)) 

where y(k+ 1) is the output vector f (.) is a vector function and u(k) is the control vector. 

y(k +1) =[ yJ(k+1) Y2(k+1) ]T , f=[fi f2JT , y(k) =[yft (k) yl2(k) JT 

u(k)=[ ul1(k) ull(k)jT The control vector 

y 1 (k+ 1) engine speed 

Y2(k+ 1) manifold pressure 

yl t(k)=[ y 1(k-1), .. . , y,(k-ny)} 

yl2(k)=[ yJ(k-1) . .. . , Y2(k-ny)} 

~/ j (k)=[ u 1 (k- l) . ... , u1 (k- nu) J throttle angle 

ul2(k)= [ uJ(k-1), ... , u2(k- n~JJ spark timing 

where ny and nu represent both the number of delayed outputs and inputs involved in 

fitting the dynamics of the model. 
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With the principle of black box model we handle the engine as a black box injected with 

two inputs u 1 , u2 and producing two outputs y 1 .y2 . A series of random input output 

signals are injected to the plant and the two outputs are observed and recorded. 

3.2 Radial Basis Functions Networl\.s 

In usmg networks for system identification two approaches can be used for 

determining the parameters of the network a,~ and y. The first approach is to estimate 

a , ~ and y simultaneously using suitable training algorithm (e .g. back propagation, error 

prediction algorithm, ... ). This approach yields a highly nonlinear in the parameters 

network model which results in a nonlinear learning rule leading to the problem of local 

m1mma. 

In the second approach which is called constructive approach (Sjoberg et al, 

1995), the network parameters a and ~ are fixed (for example with suitable clustering 

technique ART2 or K means clustering). Thus estimation of the coordinate parameter a 

's can be done with a linear regression algorithm. In this way we avoid the local minima 

and overtraining troubles mentioned previously. Radial basis function network with 

radial structure in the hidden layer is one of the networks that can be used with the 

second approach to approximate nonlinear functions. 

Radial basis function networks (RBF) are two layer networks with nonlinearities 

of fi xed parameters in the hidden layer and adjustable parameters in the output layer 

which are adjusted by a linear regression algorithm. The approximation capabilities of 

the RBF networks stems from its localization properties as the gradient of the function is 

within bounded support or at least vanishing rapidly at infinity . 
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RBF networks have the structure 

"" 
/(((J. a.jJ) = ao + L ai g ( II ((J- r ll.oJ 

t= 
(3.1) 

where 

a " =constant. 

g = nonlinearity. 

((J = input x (the regressors ). 

ai = coordinate parameters. 

y =dilation parameters or centers of the RBF which are some fixed points in the n-

dimensional space sampling the input domain. 

II . 11 13 =any norm (usually the quadratic norm). 

nh = number of hidden layers. 

Nonlinearities in the hidden layers can be taken to be one of the following nonlinearities 

-The thin plate function. g (c) = x2 log (r:) 
(3.2) 

-The Gaussian function. 
(3 .3) 

-The multiquadratic function. g (r:) = ( x2 + 0 2 ) 0. 5 
(3.-1) 

-The inverse multiquadratic function. g (r:) = (x2 +a2 ;- 0.5 (3.5) 
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The chosen nonlinearity does not affect the approximation capabilities of the 

function but may affect the numerical properties of the algorithm and this is especially 

so with the gaussian function. 

The main problem of the RBF network is the determination of the centers while 
' 

coordinate parameters can be determined by a linear regression algorithm. When RBF 

networks were first introduced these centers were taken as the whole data set or some 

centers were taken randomly from the data set. This proves to be unpractical especially 

for large input space. Chen et al ( 1989) derived a feedforward algorithm called the 

011hogonal least squares algorithm (OLS) for subset model selection. This algorithm is 

then used to train RBF networks to choose the centers of the RBF network from the 

collected input output data points in conjunction with the determination of the 

coordinate parameters <X;. The authors viewed the problem of choosing centers as 

choosing a set of subset regressors from an extended set of regressors. 

In the following sections the OLS algorithm will be used to train an RBF to find 

a two state two input equation etTor model (NARMAX) for modeling the engine idle 

mode. 

3.3 The Orthogonal Least Squares Algorithm 

OLS algorithm mainly selects the basis ft.mction (which are formed by the whole 

set of regressors), that best fit the estimated data then, repeatedly selects the basis 

function from the remainder of the set of basis ft.mctions while combining and 

orthogonalizing with the earlier selected basis functions. In this way, a group of radial 

bas is fLmctions which can span the input space is obtained. 
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Assuming that the centers of the RBF 's are chosen as the whole data set with 

each center having the dimension of the input regressor vector x, then RBF network can 

be viewed as a linear regression model of the form 

,\/ 

Yi(l) =I gj (t) Bji +ei(t) l~i~m 
J=l 

(3.6) 

where Yi (t) is the ith output signal and m is the number of outputs. 

& (t)=[ & (1), g1 (2), ........... .. &· (N)j l~j~ i\..1 (3. 7) 

gi (t) is the ith. nonlinear basis function. 

Yi (t) =[yi (1). Yi (2 ) , ................. Yi (N )} l~i~m (3.8) 

ei (t) is the ith residual of the model 

ei (t) =[ ei (1), ei (2), ........ .. ei (N)] 1 ~i~m (3.9) 

ei (t) is assumed to be uncorrelated with the regressors. 

~i are the parameters. 

In Equation (3 .6) we notice that & (t) 's are equivalent to the regressors of a 

linear regression model. & (t) 's are some fixed basis functions of the inputx, i.e. 

g1 (t)=gJ (x(t)) . It has the dimension V which is equal to the number of data points. 

For the MIMO case Equation (3.6) can be rewritten as 

e2m 
(3.1 0) 

f) ,\/1 e/V/111 
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which can be written as 

Y = GG + E (3 .11) 

Equation (3. ll ) has an interesting geometric interpretation; the regressor vectors 

gi form a set of basis vectors which span the output space Y. and consequently the set gi 

must be an orthogonal set to specify the contribution of each gi to the output Y. The 

parameters 8 satisfy the condition that Y is the projection onto the space spanned by the 

The coh.unns of the regession matrix are always nonorthogonal and the OLS 

aims at orthogonalizing the matrix to yield a compact set of basis vectors which can 

span the output space Y. In other words, this is contribution of each individual regressor 

to the output energy. From the above representation it can be concluded that the center 

selecting process is equivalent to selecting a subset of regressors from a given set of 

regressors . The regressor matrix G can be decomposed into : 

G = W B 

where W=[w1 , vv2 , . . .. .. , WM J 

(3.12 ) 

(3.13) 

is an orthogonal matrix of dimension N x M with the property that wl w1 = 0 i -::t:. j. 

B is an Mx M triangular matrix of elements equal to one on the diagonal . 
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/312 f3n /31 111/ 

0 1 fJJ..J j32t'vl 

0 0 

B= 0 0 (3. 1-1) 

0 0 

0 0 f3.H-1 .M 

0 0 0 

The set w; span the same space spanned by the set Gi and consequently the 

system of Equation (3 .11) is transformed to the following system: 

Y=WBE>+E (3. 15) 

Y=Wf+E (3.16) 

where r=B e (3.1 7) 

w is called the auxiliary regressor matrix and r is called the auxiliary parameters 

matrix. 

The OLS solution is then given by: 

~ 

Y1111 

r = (3. 18) 

~ 

r .\II r ,..,,Ill 

f =( w n~v J-' wr r 

r Jl = W/ y; I VII/ v\j 1 ~j~lvf (3. 19) 

wh re the OL solution f and the LS solution G satisfy the triangular system 
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A A 

Be =r (3 .20) 

The decomposition Equation (3 .12) can be done with any of the decomposition 

methods (Gram-Schmidt, House Hold transformation, ... ). In this work here the Gram-

Schmidt process (GS) will be used to determine this composition .The GS process is 

used to infer a set of orthogonal vector set (basis vectors) to span the vector space 

containing the set of this basis vectors. The problem is described as follows: 

Given a set of vectors G, find a set of orthogonal vectors, W which can span the 

space G. The GS process is described as follows: 

( 1) Select a vector g 1 as the first basis vector 

(2) Select w2 as the vector formed from g2 by subtracting out the component of g2 in the 

direction of w1 , this is equivalent to requiring that the inner product <w1 w2> = 0 

/3 12 is the first column ofB 

The condition of orthogonality is 

f3 =<w1 a 7 >l <w1 w1 > 
12 ' O-
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k- 1 

W k = gk - 2.JJ ik Wi k=2, ...... .... .... M 
i = l 

ie one column of B is calculated at a time and the kth column is made orthogonal to each 

of the k-1 previously orthogonalized columns and the operation is repeated for M-1 

times. The previous procedure leads to excessively increased number of parameters and 

consequently to a complex model structure. 

As a few number of regressors lvfs < < M can be enough to describe effectively 

the dynamic behavior of the system the OLS employs a criterion to limit the number of 

regressors to a compact number. This criterion is called the error reduction ratio , which 

is explained as follows: 

The trace of the covariance of y(t) is given by: 

trace( yT Y IN) 1 "'" ( 
111 

? ) (ErE) - I I r Ji WJT WJ +trace --
N J= l I N 

(3.21) 

The first right hand term of Equation (3 .21) represents the explained part of the 

covariance of the desired output due to the regressors while the second part represents 

that part which is the unexplained part of the desired output. Thus, the first term is the 

increment to the explained trace introduced by W ; and the error reduction can be defined 

as given in Chen (1 991): 

(

Ill ) 

[err}i = ~y ~, I (ErE) 
w .T w · trace -

1
iV .J ) 

} <S, i <S,/v/ (3 .22) 
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Equation (3.22) represents the contribution of the ith regressor wi and 

consequently the ith regressor that maximizes the error reduction ratio . Centers which 

produce this ith regressor will thus be se lected as candidate centers. 

The algorithm steps can be represented as follows: 

Step 1 . 

For/5,i5,M 

Find [err}i = [errj 1il =max {[errj,i, 15,i5,M } 

At the kth step where k2: 2 , for 15,i5,M i=t= ij , ..................... ,i=t= ik-1 

k- 1 

wi k = g i - L~ .. J3',k WJ 
J= i 
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·, 
( 

Find [err]k = [err}kik =max {[err}ki , 1 -5.i-5.M , i";t: i1 , ..................... ,i;t: ik_1 } 

k-1 

Wk = wikk = g;k - L {J~k Wj 
)=1 

M .• 

1 - L [err}j < ' 
i=1 

0 <' <1 

The process is repeated until a predefined value for the summation of the error 

reduction ratios is reached. The value of the parameter ' indirectly affects the 

complexity of the network (i.e. the model). It may increase the number of the hidden 

layer n~des leading to overparametrization of the model. In applying the RBF for the 

modeling process using the OLS algorithm, the RBF numerical properties are sensitive 

to two factors: the first one is the spread parameter of the Gaussian function, cr and the 

second one is the ill conditioned matrix W. The first factor cr can be selected by trial and 

error .The second factor is adjusted by introducing a threshold value to w T w where w 

T w = 0 , implying that the regressors g (k) and g (k -1) are linearly dependent. 

3.4 Mathematical Form of the MIMO Nonlinear Model 

The ge~eral expression for a MIMO nonlinear model struct~e is 

where 

y(t) = [ y J(t) , Yl(t) , · · 

u(t) = [ uJ(t) , u2( t) , · 

y(t) = f( yt-1 ,ut-I, 8 '-
1
) + e(t) 

T . 'yq(t)} 

. ,ur(t) JT 
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The output vector 

The input vector 

The residuals vector . 
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f= [Ji ,jj, .... 

1-1 _ { 1-1 1-1 1-1 1T 
Y - Y1 • Y 2 ' · · · · · 'Y q 

1-l [ 1-1 1-1 l l-11 u = l/1 ' u2 ' . . . . . ' l r 

1-1 [ 1-1 1-1 l -1 1 c = £
1 

, £ 2 •• . • ..• , cq 

y:- 1 = [Yi (t-1 ), Yi (t-2), . . . . . , y/t-ny) 1 delayed output vector 

u:- 1 = [ui(t-1) , ui(t-2), ...... ,Ui (t-n~J 1 delayed input vector 

c;- 1 = [ £
1

(t-l), &;t -2) , . ..... , c;U-nc)1 delayed error 

In our case and for the sake of simplicity of the model a first order assumption is 

first demonstrated where, q=2 and ny=nu= nc =1 and the inputs are: 

ul-1 = [u(- 1 u~- 1 ] =[ T(k-1) D(k-1) 1 where Tis the throttle angle [degree]and Dis the 

ignition advance[ degree]. The outputs are: 

y(l) = [ y,(t) y
2
(t)1T =[ N(k) P(k)1T where N(k) is the speed [r.p.m] and P(k) is the 

manifold pressure [kpa]. 

Th previous multi input model structure corresponds to the nonlinear 

ARM X state space form (Nerrand, 1994,1993): 

where 

x ( k ) p = f (.t (k -1) , u (k -1) ) + e ( k ) 

I ts a n x 1 state vector . 
. . . . . . . . , Xn ' 

f (. ) is a n x 1 nonlinear vector function 
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u ( k) =· { Ul (k -1) , . .. ' u, (k -b) ' . um(k -1), ... urn (k -b)} 1s a m x b mput 

matrix and e ( k) is the noise term ( n x 1 vector) . 

For our multi input model in the above representation n = 2 , m = 2 ,b = 1 . 

The regressors (or the input vector Xi to the network) wi ll be : 

rp ={Xi (k-1) . X] (k -1) , X] (k-1) ,X.J (k-1)} . 

where x 1 is equivalent to the state variable Pm (manifold pressure) and x2 1s 

equivalent to the state variable Nand XJ (k-1) is equivalent to the first input Th (the 

throttle command ), x-1 (k-1) is equivalent to the second input D (The spark advance 

command) . 

3.5 Design of the Identification Experiment 

Based on the previous discussion we need to design an identification experiment 

in which we handle the engine as a black box injected with two different input signals 

(throttle angle and spark timing) and producing two different output signals (engine 

speed and manifold pressure). Both of the input and the output signals are measured and 

throuah this data a mathematical dynamic model is constructed to emulate the enaine 
0 0 

dynamics. 

Desianina an identification experiment is a matter of experience and ad hoc 
0 0 ' 

which differs from a plant to another. Among the most important issues to be considered 

are the input characteristics, the sampling interval of collecting the data and the amount 

of data points required. The input signal must be rich enough to excite the whole 

possible modes of interest over the whole amplitude range of operation of the plant 

which is the condition of "persistently exciting "of a signal (Johansson, 1993). Also it 
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should be of different amplitudes (Ljung, 1994) conforming with the practical constraints 

of the plant and give the plant a chance to more or less settle to give insight about the 

rise time of the plant. 

Two practical sources of constraints affected our experiment. The first arises 

from the signals issuing device and the second arises from the plant itself. The first 

constraint source in our experiment is produced by the DC motor which actuates the 

throttle valve (in a step up-step down time steps) through a wire drive . That gives rise to 

the constraint that the input period allowed to the signal must not be less than 0.3-0.4 

seconds, otherwise the input signal will be completely or partly distorted. Under this 

constraint the first input signal was chosen as a variable frequency, variable amplitude 

signal (a rough form of a pseudo random binary sequence signal). 

The plant constraint comes from the fact that the plant responds very fast to 

small changes of the throttle. This means that the input signal must change in a manner 

allowing the dynamics of the engine to change over its whole amplitude range of 

operation to reflect how will be its behavior when rising and settling. According to this 

the input signal was made of small period in its maximum condition and large period in 

its minimum condition with variable amplitude and frequency in both conditions (a 

rough form of a pseudo random binary sequence signal) see Figure 3.3. 

The second input signal which is the ignition timing is commanded to the plant 

through manifold pressure-spark timing map where we linked the signal value to 

manifold pressure variations through open ECU ignition map (a manifold pressure -

ignition timing map). This signal also has the form of a rough PRBS signal and have 
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maximum- minimum range values which can practically be applied to the engine (in the 

interval [7 ,41]) see Figure 3 .4. 

Sampling interval is an important issue concerning collecting the data. It can be 

chosen to be correspondent to 5-8 sampling points over the rise time of the plant 's step 

response (Ljung, 1994) and it is better to sample too fast than too slow ;also the aliasing 

effect must be considered. We used a sampling rate for collecting the data of a value 

equal to 100 points per second. 

The amount of data required is a constraint imposed by the processing power of 

the computer used for applying the modeling algoritlun computations. It is indirectly 

related to sampling interval where high sampling rate implies a redundant amount of 

data but this can be treated by decimating the data (Ljung, 1994). 

3.6 Experiment Procedure 

Experiment procedure is performed in two stages, the first one is the calibration stage 

and the second one is the test stage. Schematic diagram of the experiment is shown 

below(see also appendix A). 

Engine map 
(Open ECU) 

Throttle sign a I 
Ignition signal 

• 
DC motor ... Engine ... Sensors 

-,. -,.. 

~ 
PC + cadet tO _... Interfacing 
software ..-
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3.6.1 Engine calibration 

The subject of the test experiment is a four cylinder spark ignition engine 

without any control attachments. The engine is connected to an open ECU without any 

control strategy installed in it. This implies that the engine should be first calibrated to 

run in its idle mode under the action of the throttle valve and ignition advance command 

from the open ECU. Through trial and error the roughly optimum control actions for the 

idle mode were 6 degrees for the throttle angle and 7.5 degrees before the top dead 

center for the spark timing. The engine under these conditions is running at slightly 

fluctuating speed around 750 r.p.m and manifold pressure around 450 kPa. Another 

important calibration was done to test the engine under disturbance that was necessary to 

estimate the maximum control action to be taken to stabilize the states of the engine 

under disturbance when running in its idle mode. This was found to be 25 degrees for · 

the throttle angle and 41 degrees before top dead center for spark timing. This also was 

vital to the input magnitude design and the output magnitude range as the ANN models 

and the fuzzy controllers are some sort of autoassociative memory that can only 

interpolate. 

3.6.2 Final test 

After calibration the engine is allowed to run for a period of time to be warm 

enough to emulate its operating condition in the idle mode. A series of step up-step 

down inputs is given to the engine (Figures 3.3 and 3.4) and the resulting outputs are 

measured and recorded through the computer unit(Figures 3 .l and 3 .2). A number of 

tests were run under the same input conditions to compensate for errors which may 
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result from the noise contaminating the readings of the measuring equipments and to 

compensate for variable operating conditions. 

3. 7 Results and Discussion of the Modeling Process 

Preprocessing of the data involved removal of the data outliers only, the mean 

value or trends of the data were not removed as the constant term will compensate for 

them (Chen, 1991 ). 

A data record of 925 pairs was used to fit the model. In the first step a set of 925 

regressors gi is formed (including a constant term) with one delay unit for both the 

output variables Nand Pm and the input variables T.D. A network of 925 nodes with 

Gaussian nonlinearity and initial value of s =0. 0003 was initialized and the selecting 

procedures explained above were implemented in an iterative manner until the errors 

term in cp converge to the possible minimum value. The value of t; is chosen guided by 

the discussion of section 2.5; in all cases the values of t; less than 0.0016 led to over 

fitting. The nonlinearity in the hidden layer was taken as the Gaussian function form: 

(3.25) 

x, =T(k-1) , X] =D(k-1) ' Xj =N(k-1) ' X-i =P(k-1) 

x
5 

=e J(k) x6 =e2(k) where e, is the speed error e2 is the pressure error and 1111 is the 

Euclidean norm. 

Thus the regressors vector will be: 
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cpr= [T(k-1) D(k-1) N(k-1) P (k-1) eJ(k) e2(k)} (3.26) 

After applying the OLS procedures to the RBF network the model was found to have 

the form: 

16 

Yp(k)=a "+ l:Bg(/1 CfJr-Ci /1 2 )+e(k) (3.2 7) 
1= 1 

where B is outer layer parameters (a 16 x 2 matrix) . 

The set of Ci is given by C=( cl c11 c~ ] 

0.9869 0.9657 0.8970 0.9275 0.9900 0.9793 0.2684 

0.9944 0.9931 0.9972 0.9924 0.9904 0.9933 0.1 697 
C= 

0.9724 0.3606 0.2633 0.4445 0.4372 0.8494 0.9894 

0.7208 0.6384 0.4995 0.6533 0.9144 0.8134 0.2831 

0.3524 0.9680 0.9852 0.3673 0.3306 0.3670 0.3689 

0.1653 0.9940 0.9986 0.1739 0.1689 0.9958 0.9904 
cl = 

0.4351 0.3045 0.5243 0.2417 0.4029 0.9384 0.2933 

0.2551 0.9624 0.9013 0.4321 0.4065 0.5926 0.5399 

0.2778 0.3388 

0.1742 0.1720 
c2 = 

0.9408 0.2861 

0.3403 0.3508 

The matrix f is given by: 
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0.5129 0.5049 

14. 7949 -18.1 493 

-2.9547 - 2.4148 

9.3792 26.3677 

27.9733 -31.7979 

37.981 3 95.6234 

0.2 170 - 0.0074 

-3 .1684 - 1.8885 
[ = 

-37.7862 70 .8630 

-1 2.9692 -138.48 

-1.2844 8.0316 

-22.2706 -200 .99 

-3 .5719 8.4571 

4.461 5 -24.1425 

-11.5229 -22.6919 

-90.6233 -430.3944 

The matrix B is given by: 

I 0.9913 1.0627 1.0-16 1.0059 1.021-1 1. 1165 1.1805 0.9995 1.0055 1. 1793 1.1846 1.0599 1.1 116 1.1288 I 18 18 

0 I -0.3184 -1.6378 -2 .5666 -2.G489 10 7295 8.7200 -3.2509 -2 .227 6.78 1 7.8253 3 6255 1.4324 10 27 10 7 5604 

0 0 I 0.8659 0.2255 0.371 3.342 -1 .046 0.3542 0. 1-1 56 -1 .0306 3.9706 1.2344 2. 1049 3.35 15 .j 1264 

0 0 0 I 1.5828 0.9904 35.0403 34. 1998 2.45 14 1.2266 36.186 36.7372 11.0655 10.7130 35.75 19 35 5538 

0 0 0 0 0.5725 -6.47 - 16.6875 1.6786 1. 1988 -20. 1388 - 17.3729 10.641 6.9683 -7.6295 - 18 999 

0 0 0 0 0 I -1 02 .9242 - 134.542 -0. 1999 -0.1839 -1 46. 10 15 - 141.4062 -33.5204 --14 .6232 -107.6492 - 145 35 

0 0 0 0 0 0 I 1.0659 -0.0 11 5 -0.0 109 1.0234 1.0386 -0. 11 08 -0. 11 1 0.9976 1.0366 

0 0 0 0 0 0 0 I -0.0185 -0.0276 0.982 0.7477 -0.99 19 -0 .8724 -0.04 1.0 51 
8 = 

0 0 0 0 0 0 0 I 1.3796 2 1. 133 20 .2994 57.599 5 1.9496 8.-1 173 12.383 0 

0 0 0 0 0 0 0 0 0 I 17. 1064 15. 137 52.0206 30.3 104 7.292 8.89~ 

I) 0 0 0 0 0 0 0 0 0 I 0.8704 1.048 1.189 0 -12-19 0 385 

0 0 0 0 0 0 0 0 0 0 0 I 4.67-16 3.077 0.9913 -0 087-l 

0 0 () 0 0 0 0 0 0 0 0 0 I I 001 -0 .0695 0 Il-l 

0 0 0 0 0 0 0 0 0 0 0 0 0 I -0 091 0 11~3 

() 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 738 

() 0 () 0 0 0 0 0 0 0 0 0 0 0 0 

The set of the outer linear parameters is given by 
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-0.8862 - 58.6023 

8.3020 29.5961 

-0 .0357 -32.1639 

21.7317 84 .9413 

164.5250 - 131 .76 

-80.8180 -59.5667 

42.9980 10.3037 

-66.2205 164.2967 
B= 

-41. 1091 - 23.2040 

-70.9367 192.7255 

-110.107 310.0413 

35.7035 12. 1405 

-7 . 170 1 -3.7111 

-2.8292 - 7.9520 

-46 .9839 - 23.6342 

157.7728 -511.83 

where B = B-' f .The final model form is: 

"' _v,,(k) = rl(a, , + L:exp~J(aT(k - 1) -c,Y +(bDJ- 1) -c2Y +(cN(k- 1)-c,Y +(dR..k-1) -c,;)
2 
+(e,(k)-clj +(e1(k)-c,,YJJ! cl)) 

,., 
(3.28) 

"' Y,z (k) = B(a,
1 

+ L:exp~(aT(k -1)-c,} +(bfJ..k- 1)-c2./ +(c V(k -1)-cJi )
2 
+(dR.,k- 1)-cS +(e,(k)-clj +(ez(k)-c6,)

2JJ! if)) 
,., 

+el(k)) (3.29) 

A =2-126.9 B=97.28 

where 
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-0.8862 

8.3020 

-0.0357 

21.7317 

164.525 

-80.818 

42 .9980 

~ -66.2205 
el = 

-41.1091 

-70.9367 

-110.107 

35.7035 

-7.1701 

-2.8292 

-46.9839 

157.7728 

-58 .6023 

29.5961 

-32. 1639 

84.9413 

-131.7587 

-59.5667 

10.3037 

164.2967 
82 = 

-23 .2040 

192.7255 

310.0413 

12.1405 

-3.7111 

-7 .9520 

-23.6342 

-511.8278 

a=0.0386 b=O. 02 -+ c= 0.0004122 d=O.l03 
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The cotTesponding state space form will be: 

,,, 
x,.,(k) = A(-0.00 I I+ I exp(~~(az1(k -I)- c,j +(bz~{k -1)-c,)' +(cx,(k -I)- c,,)' +(d-s(k -1)-c,, i +(e,(k)-c,,)2 + (e,(k)-c,,.)'ll a' ))+e,(k) ,., 

(3.30) 

x,,, (k} = 8( -0.14+ I ~xp(/~ au, (k -I)- c,, )
2 +(bz~(k -I)- c,, )

2 
+ (cx,(k -I)- c,, )' +(dx,(k -I)- c,, )' + (e,(k)- c,,)' + (e,(k)- c,..)'/11 ci ))+ e,(k) ,., 

(3-31) 

The deterministic forms of the model are given by: 

16 

y"1(k) =A( -0.00 II+ L expc jJcaT(k -I)- c,, / + (bD(k -I) -c2Y +(cN(k -I)- c,j + (dP(k -I)- c.YII I a')) 
1=1 

(3.31) 

II> 

y"1(k) = 8( -0.14 + L exp(ll(aT(k -I)- c,, )
2 

+ (bD(k- I)- c2, )
2 

+ (cN(k- I)- c3, )
1 + (dP(k- I)- c,,J'III a 2 )) 

1=1 

(3.32) 

16 

x,,,(k) = rl( -0.00 II+ L exp( ll(au,(k -I)- c,Y + (bu2(k -I)- c,Y + (cx,(k- I)- c
3
;/ + (d.x

2
(k -I)- c.YIII a')) ,., 

(3.33) 

f(, 

x
1
, 1 ( k) = 8( -0.14 + L exp( J/(au,(k- I) - c,Y + ( bttz(k- I)- C2j +(ex, (k- I)- c3; )' + ( dr:

2
( k- 1)- c

4
, J1 J/ 1 a 1 )) 

t= l 

(3.3-1) 

a,= -0.0011 
II 

a 1 = -0.14 
0 -

The fitting and prediction results of the model are given in Figures 3 . l to 3 .I 0 at 

the end of the chapter. 
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An important factor which is important to consider, is the threshold value for the 

product wT vv, where this value affect the number of vectors involved in the 

orthogonalization process. Too small value of the threshold increases the number of 

vectors involved in the process leading to spurious orthogonalized vectors . The selected 

auxiliary regressors (or subset regressors) were found to be sixteen regressors which 

implies that the number of the basis functions is equal to sixteen and the number of the 

auxiliary parameters is thirty two parameters (sixteen for each output ). The final 

network structure is sixteen nodes in the hidden layer, six input nodes and two output 

nodes (see Figure 3.11). In the beginning of the modeling process different model 

structures with different orders were tried, namely the ARX (or the equation error) and 

the NARMAX structures . 

The ARX requires a directed algorithm in its training, while the NARMAX 

requires a semi-directed algorithm (Nerrand, 1994, 1993). In training both the structures 

the NARMAX one could efficiently fit the model better than the ARX structure. Four 

iterations only were enough for the NARMAX structure to fit the model and yield the 

minimum error. Also different model orders were tried but the results were not superior 

to the first order assumption. Verification of the first order assumption is checked for in 

the next chapter, where it can be concluded that the resulting model is giving good 

results and able to reproduce the plant dynamics . Fittting accuracy can be seen from 

F
. .., 1 .., 2 and 3.5 ,3.6 where the input vector ts tgures .J. , .J. 

gtven by 

are the real plant outputs. Prediction accuracy check of the model is performed by the 
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the estimated model outputs. The prediction accuracy of the model can be seen in 

Figures 3. 9 and 3.1 0 which is good for model derived from a real plant. Adequacy of the 

model is checked for in the next chapter where the first order assumption is justified. In 

the experiment the plant was excited by a not so random signal ; exciting the system with 

a real random signal could be better to represent more efficiently the dynamics of the 

system but this couldn't be done because of the hardware constraints of the sianal ' ~ 

issuing devices. 
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CHAPTER4 

MODEL VALIDATION TESTS 

4.1 Introduction 

Model quality has been highlighted in Chapter 2 where model quality has been 

defined as the ability of the model to describe and reproduce the dynamics of the process. 

The first aspect has been addressed previously and the second aspect will be discussed 

here. 

In general reproducing the dynamics of the system is a matter of having an 

efficient model structure (sufficient delayed inputs and outputs), a matter which has no 

guideline or theory to define it (Ljung, 1991 ). At the beginning of the identification 

process some model structure is first postulated, then a structure is chosen as the null 

hypothesis. This structure is subsequently justified or proved, otherwise an alternative 

hypothesis is chosen. Deciding which model structure is the optimum in representing the 

real process is the subject of model validation.Model validation is the last decision to be 

made before submitting the model for its intended use. Model validation tests make use 

of the model residuals and give some statistics about them (Ljung and 

Hjalmarsson, 1996). 

Model residuals are given by & =y - .Y where Y is the real process output and y is 

the identified model output. The statistics which are often used include: 

( 1) Maximum absolute value of the residuals 
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[ £ lmax =max j&(t)j 1-:;,t-:;,N (4.1) 

(2) Mean Variance and Mean square of the residuals 

1 .v 
,u •. =-I&U) 

N I =! 

(4.2) 

(4.3) 

1 1 ~ ( )2 Jl ·· = -L....£ t 
N I = ! 

(4.4) 

(3) Correlation between residuals and past inputs 

"' = E{u &} = o V i ,J· "f111: I I (4.5) 

Several methods exist for model validation [Leontarits and Billings (1987), 

Johansson (1993)]. Some of these methods rely on comparing postulated different models 

of different orders and parameters and then based on some statistical criterion a structure 

is chosen. The F -test, Akiake information criterion (AIC) and Akiake final prediction 

error (FPE) are examples of these methods. Other methods rely on analyzing the residuals 

and its whiteness, normality and independence of both lagged inputs and outputs. These 

are nonparametric tests and an example ofthem is the 'correlation tests'. 

Model validation problem can be formulated as a statistical hypothesis testing 

problem as we have to decide which model can best represent the real process. A null 

hypothesis H0 
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and an alternative hypothesis H] is postulated. The null hypothesis is the one that is not 

rejected unless the data provide strong evidence that it is not cotTect. It is always taken as 

the identified model. 

In this study the nonlinear correlation tests developed by Billing and his 

coworkers [Billings and Voon ( 1983), Billings and Voon (1986), Leontaritis and Billing, 

(1987) Billings and Zhu (1994, Billings and Zhu (1995)] will be used for the purpose of 

model validation. 

4.2 Correlation Analysis 

Mathematically correlation of two random variables is equal to the time average 

of the product of their expected values; it indicates to which extent the variables are 

dependent on each other. If the variables come from the same signal, the correlation 

function between the signals at two different time instants is called autocorrelation 

function which is a measure of the predictability of the signal at the future time based on 

knowledge of the present value of the signal. When the variables come from two different 

signals the correlation ftmction is called the crosscorrelation function. 

The autocorrelation function is defined as 

r 

cpu = E { &(t)&(t + r)} = lim f- J &(t)&(t + r)dt 
_T _.,. 

The crosscorrelation function is defined as 

.,. 

m = E {u(t)&(t + r) } = lim-
1
- Ju(t)&(t + r)dt 

't'u ,· 2T -r 

61 

(4 .6) 

(4.7) 



In model validation correlational tests usually amount to calculating the 

autocorrelation function of the residuals qJ ,.8 and the crosscorrelation function 

cp
11

,. between the residuals and the input. Then to check if both of them are asymptotically 

normal with zero mean and finite variance or not, where the standard deviations are 

1 - 1 I . 1 1.96 .JN and the 9J % confidence eves are approx1mate y .JN. Traces of any lagged inputs 

or outputs in the residuals can be discovered if ({J 11 • happens to be outside the confidence 

levels while traces oflagged residuals (dependent or future predicted residuals) are 

checked for by confidence levels banded qJ •.• . This is given by: 

{
1 r = 0 

cpu( r) = ~' otherwise 
(4.8) 

(/J/1& = 0, ( r = time steps) 

Correlation model validity tests are straightforward for linear systems. They are 

given in any of Billing et al previous papers. Linear correlation tests fail to diagnose 

inadequacies in the nonlinear models. A number of tests for nonlinear models are given in 

the previous references. The tests given in Billings and Zhu (1995) are used here. As 

stated in Billings and Zhu (1994, 1995) the involvement of the output enhances the 

discriminatory performance compared with the tests based only on the input and 

residuals. The test equations are given as follows: 

m . = E {((t)ry(t+ r)} 
"'"'' 

(4.9) 

cp
9

, = E {9(t)ry(t + r)} ( 4.1 0) 
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where 

(4.11) 

(4.12) 

(4.13) 

The nom1alized correlation tests are 

(4.14) 

( 4.15) 

where 

( 4.16) 

•(t) = (yl (t)£1 (t))" 
TJ 1 N ~ ( - I (y, (t)£, (t)) ) 2 

N1 

( 4.17) 

( 4 .18) 
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) .., - 1 

Ej. (t) = Ej (t)-£; 

) ) ) ) 
u ~ · = u-(r - u-

1 I I 

i=l ... q, j=l . . .. . r 

? 1 N J 

Ej = -Ic;(t) 
N ~ ~ ~ 

J 1 ~ ) 
u~=-Lu-(t) 

.t N .t 
t~i 

( 4.19) 

(4.20) 

(4.21) 

The above tests check for correlation among all the sub-modes input, output and 

residual vectors. If every subsystem in the model is valid (cp u= 0) correlation tests will 

yield : 

{
k , 

CfJ r;q(r) = 0, 

k is a constant. 

r=O 
otherwise 

(4.22) 

(4.22) 

(4.24) 

If it happens to discover model global inadequacies, another set of local tests are 

used to specify the submodel source of these inadequacies. 
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4.3 Formulation of Model Validity Tests 

Typical model validity statistical tests consist of the following three steps [Bohlin 

(1978)]: 

( 1) The first step is to find a parameter free statistics (say c) which is a function of the 

validation data such that the distribution of c is known if the null hypothesis H
0 

is true. 

(2) The second step is to define a domain Da such that 

where a is the risk level of rejecting a model when it is actually valid. 

(3) The third step is to reject H0 if c ~ Da. 

In residual analysis the formulation of the test problem is as follows 

The null hypothesis is 

{ c k } Comprise a white noise with zero mean and minimum possible variance 

i.e. E{c(t)c(t + -r)}= o. 

{ c k } Are normally and symmetrically distributed. 

{ c k } Are independent (uncorrelated) of both lagged inputs and outputs i.e. 

E{u(t)c(t+r)} = O. 

The parameter free statistic will be the residuals vector c . 
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The domain Da is Da ={ cl¢ < Ka}, ¢ is the test, Ka is the decision value and 

a is the probability of accepting the incorrect model a = 0. 05 

~ f- l l K K 1.96 . · The 9.)% con 1dence eve a = O. 05 = ± fN 1s used when ¢ IS normally 

distributed. The hypothesis H0 is rejected when £ (l Da. 

4.4 Application of Correlation Tests to the Engine Idle Speed Nonlinear Model 

The previously given tests (Equations 4.9 to 4.20) are applied to the MIMO 

nonlinear deterministic model: 

16 

Yp1 (k) =A(I el exp(jj(al{k-1)-cj +(biJ..,k-i)-s/ +(cN(k-1)-ey/ +(df{k-!)-c4illll-0. 0011) 
i = l 

(4.25) 

16 

Yp2(k) =B(L B2 exp~j(al{k-!)-cli i +(biX.,k-i)-s/ +(cN(k-1)-c;; / +(c!Etk-J)-c4i )t ) +0.14) 
i= l 

(-1.26) 

y 1 (k) = N(k) (speed) Y2(k) = P(k) (manifold pressure) (q =2) where 

model parameters are give in Chapter3. 

First the model is tested with a data set (validation data set) different from that set 

used for fitting the model in chapter3, a data record of 1000 data points is used. Testing 

results are shown in Figures 4.1 to 4.8 After that the tests of Equations 4.3 to 4.4 were 

applied to the simulation results where: 

The inputs are: 
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uj =T(k-1) (throttle) U2 =D(k-1) (ignition timing) (r=2) 

The outputs are: 

y 1 (k) = N(k) (speed) Y2(k) = P(k) (manifold pressure) (q=2) 

The model residuals are: 

(speed error) 

(manifold pressure error) 

K=0.95 

4.5 Discussion and Conclusion 

Testing of the model in its deterministic form is done with the validation data set. 

The regressor vector is composed of the delayed input and the delayed output of the 

model. It takes the form: 

where, y
1 

( k - 1 ), y
2 

( k -l) are the outputs of the estimated model. 

It can be seen from Figures 4.1 and 4.2 that the model and the plant are very close 

to each other. The model is able to reproduce the plant dynamics efficiently for different 

input signals. This can be easily noticed from the difference between the input signal used 

for fittina the model and the input signal for validating the model in the last chapter t:> , 

where the frequencies and the amplitudes of the input signals are different as can be seen 
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from Figures 4.3 and -1..4. Prediction errors of both the two outputs can be seen in F. ~...:re-s 

4.5 and 4.6. 

Correlation results are shown in Figures 4.7 and 4.8 where it can be seen thai the 

values of the correlation functions cp r;,,( -r), cp 9,( -r) are within the bands of the cont1dcce 

interval [0.05 -0.05]. This means that the model is able to reproduce the dynamics ufthe 

system for different input frequencies and amplitudes to the plant. This also implies :hat 

there is no need to increase the model order, as the first order for each submodd is aok to 

reproduce the plant dynamics. Another implication is that the input signal was :i.ch 

enough to excite the different frequency modes of the plant. 
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CHAPTERS 

FUZZY CONTROLLER DESIGN 

In this chapter a fuzzy stabilizer is designed for the engine idle mode. The 

design is based on a full computational approach where a phase plane analysis 

alike method (called cell to cell mapping) is used for studying the global behavior 

of the system. Through the study of the system trajectories an optimal control 

table (OCT) is obtained and used as the knowledge base of the fuzzy controller. 

The fuzzy controller is formulated in the form of a radial basis function network 

where the entries of the optimal control table are used as training data for 

estimating the controller design parameters. 

5.1 Introduction 

Idle condition is a stand alone control module. In this mode the goal of the 

controller is to stabilize the speed and manifold pressure at the equilibrium point 

while the system is suffering from disturbances coming from different engine 

accessories. The stabilizing problem (set point control), is defined as follows , 

(S lotin, 1991): 

Given a nonlinear dynamical system: 

x = f(x,u,t) (5 .1) 

where f is a nonlinear vector function, x is the state vector, u is the control vector 

and t is the time, find a control law such that starting from anywhere in a region 

n in the neighborhood of the equilibrium point;x -7 0 as t -7 cx:J. 
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Some of the common methods used in designing controllers for nonlinear 

systems are the phase plane method, Lyapunov stability analysis and describing 

function methods (Slotine, 1991 ). Phase plane analysis relies on studying the 

global behavior of the autonomous point map .X= f(x, u,t). Global behavior 

means the evolution of system states corresponding to various initial conditions. 

Analyzing the global behavior of the system through numerical evaluation 

of the point map (Equation 5.1) is inefficient and time consuming. Instead Hsu 

(1980a) proposed the concept of "cell to cell mapping" (CCM) to study the global 

behavior of nonlinear dynamic systems. In this method the state space of the 

system is handled as a group of cells rather than a quantum of points. In the 

method the state space is discretized to a group of disjoint sets which are called 

cells, each center of a cell represents a value of the state vector at that point. The 

interval in which a value of a state variable X; (i= I , 2, ... ,N) is located is defined by: 

where Z; is an integer and h; is the interval size. A vector cell z is defined by the 

N-tuple Z; where: 

z = ! Z;e; where e; is the unit vector in the Z; -direction 
1=1 

i=l,2, ... ,N. A point x (x; , i=l,2 , ... ,N) belongs to a cell z (Z;=l,2, ... ,N) if x; 

belongs to Z; for all i. Now the system state space can be seen as a collection of 

cells rather than a quantum of points where the number of the cells is integer. 

The mapping, which represents the system can be written in the form, (Hsu, 1985) 

z(n) = C(z(n -1), u(n), r(n)) (5.2) 
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z E Z"' , Z"' is the set of integers , u(n) is the control vector at n time step. 

C is the mapping rule, which maps a set of integers to a set of integers. 

Equation (5.2) represents the nth step mapping from z(n-1) to z(n) under 

the action of u(n) during the time interval r (n). z(n-1) is called the domain cell 

while z(n) is called the image cell. The image cell is evaluated by integrating the 

corresponding point mapping over the time interval T (n). As the cell size shrinks 
' 

the CCM can preserve the qualitative nature of the point map. A large cell size 

leads to increased cumulative errors while smaller cell size produces better 

accuracy but more memory is required for the computations. The CCM can be 

used to study the evolution of the state trajectories and detect equilibrium points 

(x = 0 in point map and z=C(z) in CCM (called a P-1 motion)), periodic motions 

(limit cycles (called P-k motion)) and their domain of attraction (Hsu,l980b). An 

advantage is that it is applicable to systems of large dimensions more than two. 

CCM was used to develop an optimal control algorithm for set point 

controllers (Hsu, 1985). These controllers rely on an optimal control table (OCT) 

which contains the near to optimum control action for each cell in the cell space 

(direct digital controllers). As the system trajectory moves from one cell to 

another, the optimum control signal is looked up from the optimal control table 

and applied to the system. These controllers require a large memory size and their 

action is leading to the problem of chattering. 

Smith (1991 , 1992 and 1994) matched the OCT derived by the CCM to a 

fuzzy controller. The result is a reduced memory controller with smooth 

transitions without chattering. In this work the methodology of Smith ( 1991 , 1992 
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and1994) with some alterations (to suit the multi input output nature of the 

problem in simulation conditions and controller parameters estimation) to match 

the problem being considered, is used to design a fuzzy stabilizer for the engine 

idle mode. 

5.2 Obtaining the Optimal Control Table 

In the idle mode control problem we have a two dimensional space of 

states x1 ,x2 ,where x, is the speed and x2 is the manifold pressure. Determination 

of the equilibrium point is done by applying the basic idea of the unraveling 

algorithm (Hsu, 1980). Equilibrium points are characterized by their zero gradient 

of the state vector (;( = 0 in point map). In the cell space the equilibrium is 

defined by: z=C{z) (called a P-1 motion). An equilibrium point is detected by 

evaluating the model equation until the simulation time becomes very large and 

the state trajectories cannot penetrate the next cells, or the distance travelled in 

each direction is too small to exit the cell. 

In this case the speed is required to converge to the value of 750 r.p.m 

with a pressure where the engine can run in a stable way without any fluctuation 

in the state (i.e. z= (z) (a P-1 motion)). The no load equilibrium point was found 

to be N=750 r.p.m and P=30 kPa (no load condition) . In the load condition the 

equilibrium point is allowed to move in the direction of the state x2 (manifold 

pressure) as near as possible to the value of 30 kPa, but still at the same point for 

x, (750 r.p .m). The control goal is to keep the engine at the equilibrium point 

when it is in its idle mode and suffering disturbances coming from different 
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engine accessories. The control signals are the throttle angle in the interval { 5 25} 

and the ignition timing interval is {7 41} while the load is in the interval { 0 

60}N.m. 

The state space of the system is discretized to intervals of variable size 

which are fine near the equilibrium point and coarse far from it (Smith (1994)). 

The load is also discretized into intervals. 

All possible control actions and load are applied to all possible initial 

conditions of interest. The possible initial conditions of interest are in the interval 

{450 1150} for the speed (state x1) and { 11 105} for the pressure (state x2). The 

possible control actions are {5 25} for the control action u1 and {7.5 42} for the 

control action u2 while the load is in the interval {0 60}. 

Simulation of the plant is run for a number of times equal to the number 

n1 x n2 x n3 x n4 x n5 where n, is the number of cells in the x 1 direction and n2 is 

the number of cells in the x2 direction, n3 is equal to the number of control actions 

u 1 , n-1 is equal to the number of control actions u2 , n5 is the number of load 

intervals. After running the simulation a search algorithm is applied to extract the 

optimal control table (OCT) from the simulation results. 

5.2.1 Obtaining the state trajectories 

The two dimensional space is quantized to the following cells: 

[450 550 600 650 700 750 800 850 900 1000 1100 1150], for the first state x1 (12 

intervals). 

[11.4286 22 .8571 34.2857 45.7143 57.1429 68.5714 80 91.4286 105] , for the 

second state x1 (9 intervals) . 
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cells are not considered. A sorting algorithm must be applied to sort the results to 

figure out the optimum cell transitions i.e. the optimum control table OCT. 

Details of the sorting algorithm can be found in Hsu (1985). 

5.2.2 Search procedure 

The resulting table must be sorted to figure out the optimum path of each cell 

to the target cell (equilibrium point). We apply a rough copy of the algorithm in 

Hsu ( 1985) in the following steps 

1- Starting from the target cell find the next cells to it which have a direct 

transition to the target cell, then put them in a set A. 

2- Each cell in the set A has different paths to the target cell from these paths the 

one with the minimum cost function is taken (Figure 5.1). 

3- For each cell in the set A find a set Bi which contains cells having a path to a 

cell in A, now each cell in A is considered as a target cell. 

4- For each set Bi apply step 2. 

5- Each cell in a set Bi is now considered as a target cell and the above 

procedures are applied to it. 

6- Keep ba.ck propagating in this manner until the whole data set is exhausted. 

After the search steps are applied we have a set of cells transitions and the 

corresponding optimal control action which can drive them to the target cell, 

which is called the optimal control table. The optimal control table itself can be 

used as a direct digital controller with its known disadvantages. Instead this OCT 
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can be used as the source of knowledge of the fuzzy controller. The entries of the 

table will be used as a training data to estimate the parameters of the fuzzy 

controller in the next section. 

5.3 Construction of the Fuzzy Controller 

Typical fuzzy controllers consist mainly of a rule base, a fuzzy inference 

engine, input interface (fuzzifier) and output interface (defuzzifier). 

The rule base is constructed from a collection of IF -then rules and the 

inference engine operates on the rule base to determine a mapping from fuzzy sets 

in the input universe of discourse X c R" to a fuzzy set in the output universe of 

discourse V c R111 

A fuzzy rule base has the form: 

R1
: IF x1 isft' and x2 is / 2

1 
••• and x" is/,,

1 
THEN u, is G,' and u1 is G~ .. . and u, is GL 

R' :!Fx1 isf/ andx2 is/2
1 

. . . andx" is/,: THENu , is G: andu2 is G; . .. and u, is G,;, 

where 1 = 1. 2 .... ,M and lvf is the number of rules, /,
1

, G~ are fuzzy sets and 

x 
1 

,x
2

, . .. ,x
11 

are the states of the plant and u, UJ, .. . Um are the control actions 
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The fuzzy inference engine operates on the fuzzy IF-THEN rule to perform a 

mapping : 

~I X };
1 

X rl Gl Gl I 
X j/1 ~ I X ) X ... X G 

- Ill (5 .3) 

where, G/, G~, .. . , G,~, are fuzzy sets in X x U and x 1s the composition 

operator. Rewriting the previous rule in the implication form: 

(5.4) 

There are many methods for interpreting the previous implication. The 

most common of them are the minimum (min) operation rule of fuzzy 

implication: 

(6.5) 

The product operation rule of fuzzy implication: 

(5.6) 

The fuzzifier performs a mapping from a crisp point x = (.,y 1 ,x2 , ... Xn) 

into a fuzzy set A. The fuzzifier may be of the singletone type: 

or a nonsingletone type (Lee(l990)): 

ifx· = x 

ifx· ::F. x 
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{

1 ifx'=x 
Jl ~ = T · exp[-(x'-x) (x'-x) / o-2

] 

(5.8) 

The defuzzifier performs a mapping from fuzzy sets in U to crisp point in 

V. The most common defuzzifier is the center average defuzzifier: 

t'vl 

I u' JL~1 (u
1 ) 

H 
U = lvl 

I )-l~,(u') 
/=I 

(5.9) 

The whole mapping of the fuzzy logic system (Wang, 1994) with 

singleton fuzzifier, product inference rule and center average defuzzfier can be 

represented by: 

u= (5.10) 

If the gaussian function is taken as the membership function then: 

M II I u'TI exp[-(x'- xJr(x'- xc) I o-
2

] 

I I (5.11) 
u= \·t 11 t TI exp[-(x' -x,. )r(x' -x,. ) l o-

2
] 

I I 

The fuzzy logic system (Equation 5.11) has three design parameters which 

ar : u' . x.L and a-;. These parameters are design parameters of the fuzzy logic 

controllers, they can be trained to find the optimum values for them. 

R writing Equation (5 .10) in the form: 
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M 

u= IpJx)B, 
i= l 

(5.12) 

Where 

[J;'JL ~ (u') 
~(x) = -. ~o--,--f ___ _ 

I IT~ JL ~ c~/) 
/=1 

j= 1, 2, ... , J\.1. 

Pi is called fuzzy basis function (FBF) (Wang, 1994). 

The expansiOn (5.12) (called the fuzzy logic expansion) with the 

definition of Pi and the gaussian function (which has a radial structure) is 

equivalent to the expansion (3 .6) of Chapter 3, which can be clearly represented 

as radial basis expansion. 

The fuzzy logic system can be represented as a radial basis function alike 

network. This network can be trained using the OLS algorithm used in Chapter 3. 

In this work OLS algorithm was used to train the system. The input and output 

values are the entries of the optimum control table derived before. The inputs are 

the states of the plant x1 • x2 and the load. The outputs are the control actions u, 

. u_ . The same treatment of Equation (3.6) is used here to solve the problem of 

findina the set of centers Xc and the set of parameters u1 
. 

b 

The OL algorithm code has to be modified to match the new problem, Equation 

(5 .1 2) i rewritten in the matrix form: 

u =P (5.13) 

u = [u(l). u(2), .... u( )] , P = [pi P2, ... ,pM J ' P; = [p;(I), P;(2), .. . , p;(N)f 
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· The OLS algorithm transforms the set of p; into a set of orthogonal basis 

functions, and uses only the significant vectors to form the final FBF expansion. 

The algorithm steps will be as follows: 

For 1 ~ i ~ N, compute 

w<l)_p g1 =(W1 )r d" l ((w:/w:) 
I - I' I I 

Find 

[errf') =max([ err]; , 1 ~ i ~ N) 

select 

kth Step 

k-1 
I "\' i 

w* = P~ - L.. a i* w i ' 
J=l 
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select 

Solve the triangular system: 

AM, = 

1 

0 

0 0 

0 0 0 

a"~'. 
1,\/, 

n\ 1 
a2 ,~1. 

M , [ r '" [BM'· BM ]r g = g,, ... ,gMJ ' B ' = I , ... , M: 

The final FBF expansion is 

,It/,. 

~ ( )B ;\t/,. u= LPiJ x J . 
j= l 

The same code used for modeling in Chapter 3 is also used here with some 

little modification to suit the problem discussed here. 

For the load condition the set of centers is given by the matrix C~ 

C'=WJ 
While the set of parameters is given by P : 

P=[~] 
(5.13) 

For the no load condition: 
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(5.14) 

C/ C_r, P,, P1.c/ c'l .. pt,andp2aregivenonpages 90-95 . 

5.4 Simulation, Results and Discussion 

A block diagram of the fuzzy controller and the plant is shown in Figure 

5.2. The contro ll er has two control modes, a mode under no load condition and a 

mode under load condition In the load condition the controller has three input 

signals, which are; the speed, manifold pressure, and the load and two output 

signals, which are the throttle angle and the ignition timing. In the no load 

condition the inputs to the controller are the two states( P and N) and the outputs 

are the throttle and ignition timing signals . 

The idle mode controller designed here starts control at speed I I 50 [r.p.mJ 

when the engine is decelerating to the idle condition. In Figure 5.3 a,b the 

response curves for the speed and pressure under no load condition are shown 

with the control sianals in Figure 5.3c,d and the state trajectories in Figure 5 "' 
o . .Je. 

Control p rformance in no load condition for different initial conditions is shown 

in Figures 5.3 to 5.4 where we can see that the states ofthe system are converging 

to the quilibrium point (750 r.p.m,JO kPa). 

Th number of rules in the no load mode is 34 while in the load condition 

76. Th number of rules depends mainly on the number of cells in the domain 

of int r t. (in other words depends on the speed at which the idle mode control is 

nabled). If v e reduce the domain of interest of the cells in the no load or load 

. . h b 1. of rules will be reduced. For example the number of rul es n rt10n t num 
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required to control the idle mode under load condition at 750 r.p.m is 14 rules (if 

the idle mode is enabled at 850 r.p.m). We prefer to enlarge the domain of cell's 

space and consequently the number of rules to compensate for variations of the 

plant parameters over its time life and unexpected operating conditions (speed or 

pressure overshoots). A second reason is the nature of fuzzy controller, as the 

fuzzy controller is nothing more than a predefined associative memory (F AM) 

which cannot extrapolate unless it is designed to be a self organizing or adaptive. 

In other words, for our case (where operating conditions and plant parameters can 

abruptly change) the control strategy will be more robust and reliable with 

Increased number of rules. 

Convergence to the equilibrium and dynamic response characteristics 

(especially the settling time) of the plant were severely affected by the spread 

factor of the aaussian membership function. The spread factor determines the .:;, 

degree of overlap between the labels of the rule base. It can severely affect the 

performance of the designed fuzzy controller in the load mode. That is mainly 

because of two reasons. The first reason is that the designed controller is a multi 

input multi output fuzzy controller (three input variables and two output control 

actions). The s cond reason is the rough quantization of the third input variable 

(torque) in tr, ing to reduce the number of rules. The spread factor has been tuned 

wh n th · t ·es are approaching the equilibrium point under different tat traJec on 

load · d' . Th method of choosing this parameter proposed by Wang mg con Itions. e 

( 1994) ., a · 1 · our case However the same spread factor was initially • not pract1ca m · 

d 1 b e Later on it was tuned on-Iine under the load u for the " hole ru e as · ' 

conditi n o th tat V rge to the equilibrium point. can con 
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Simulation under load condition is shown in Figures 5.5, where in all 

cases the plant states still converge to the required equilibrium points of the speed 

with higher manifold pressure. In all situation the states of the system converge to 

the equilibrium point or to a very small region Q around it. 

Quantitative analysis of nonlinear control systems behavior is not so 

obvious like the one of linear control systems. For the linear type it is possible to 

systematically specify some specifications like settling time, overshoot and rise 

time. For a nonlinear control system the situation is different as the system 

response for an input signal is different from the response to another input signal 

and a frequency response domain analysis is not possible. Instead some 

qualitative specifications such as stability, accuracy and speed of response, 

robustness and cost are used. 

For the fuzzy control system designed here it can be seen that system is 

globally stable because over all its controllable space, the system states converge 

to the equilibrium point and stay in Q. Accuracy of the outputs responses can be 

seen in all Figure 5.3a.b,e and Figure 5.4a,b.e where the speed response 

converaes to 748 to 752 of a nominal value 750, the manifold pressure converaes 
0 0 

to 29.6 kPa of a nominal value 30 kPa. The speed of response can also seen from 

the arne fiaure where in all cases the states settle in less than 0.4 second. 
0 

s a proof of the robustness of the control system the parameters of the 

plant are changed with small percentages. It can be seen from Figure 5.6a,b,e. 

that th state of the plant still converge roughly to the neighborhood of the 

Pol.nt. From the above discussion it can be concluded that the quilibrium 

ntr ller d loped here performs efficiently as can be seen from the simulation 
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results. It can compensate for plant uncertainties and drive the states of the system 

accurately to their equilibrium point. 

Controller parameters are given in the following matrices: 

0.9190 

0.7-168 

0.8356 

0.9186 

1.0022 

0.9148 

0.7-173 

0.8345 

0.8344 

0.7441 

0.6545 

0.6589 

0.8327 

0.6588 

0.6597 

1.0061 

0.6547 

0.9205 

0.8309 

c~ _ o.9131 
I - 0.9196 

0.7481 

0.7485 

0.8358 

0.6587 

0.6599 

0.6546 

0.6544 

0.6527 

0.6583 
0.6-25 

0.7394 

0.6574 

0.9 143 

0.6-91 

0.8273 

0.8298 
1.00--

0.9174 

0.6 -n 

0.5087 

0.7530 

0.6261 

0.2552 

03776 

0.3810 

0.6344 

0.3827 

0.6341 

0.8782 
o. -o24 

0.8833 

0.3771 

0.8763 

0.2572 

0.1254 

0.2548 

0.5027 

0.7585 

0.2577 

0.2555 

0.7531 

0.8761 

0.5021 

0.8791 

0.5029 

0.2513 

0.6318 

0.2556 

1.0008 

0.3839 

0.3807 

0.5083 

0.1345 

o. -o53 

0.7566 

o. -o39 

o ·o33 

0.6 '23 

0.6258 

0.6444 

0.6440 

1.0086 

0.3205 

1.0082 

0.6498 

0.3220 

0.3277 

0.6459 

1.006 7 

1.0069 

0.6500 

1.0002 

0.3238 

1.0047 
0 ~?'' . .)!..J.) 

0.6497 

1.0011 

1.0052 

0.6486 

1.000-1 

0.3209 

0.6499 

0.3206 

1.0057 

0.6487 

0.3270 

1.0082 

0.1635 

1.0016 

1.0093 

0.6423 

0.1614 

0.3263 

0.3249 

0.6482 

0.6475 

0.6-1-17 

0.6403 

0 6431 
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!.0061 0.2550 0.32 80 

0.8297 0.2550 0.32 15 

0.9226 0.3786 0.3204 

0.8273 0.5096 1.0056 

0.6598 0.3765 0.3271 

0.6578 0.7532 1.0054 

1.0021 0.2542 0.6423 

0.9146 0.6314 !.0010 

1.0023 0.5080 1.0016 

1.0037 0.2551 1.0095 

0.8266 0.2548 1.0052 

0.6599 0.6320 0.1692 

0.6566 0.3835 0.1607 

0.8269 0.2589 0.6452 

0.6558 0.3800 0.6485 

0.6533 1.0084 0.3220 

c; = 0.6590 1.0053 0.6464 

0.8330 0.3823 0.6403 

!.00 II 0.3795 0.6444 

0.7489 0.2542 0.6433 

0.6567 0.6263 0.3226 

0.7434 0.5094 0.3222 

0.6597 0.7527 0.6415 

0.7393 0.5061 1.0070 

0.7417 0.2523 0.3252 

0.7399 0.5046 0.6454 

0.9147 0.3753 1.0034 

0.7483 0.3770 !.0074 

0.7453 0.2600 1.0067 

0.6548 0.7557 0.3271 

0. 7451 0.6254 1.0002 

0. 7441 0.6287 0.6443 

0.7 416 0.3790 0.3293 
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0.6306 0.0346 

1.6755 0.1194 

1.2814 0.2421 

0.4750 0.0471 

1.4035 0.9942 

0.9360 0.7310 

1.5810 0.1899 

1.1660 0.2705 

1.0888 0.2217 

1.4989 -0.1604 

0.3761 1.3127 

-0.1551 1.6961 

0.3937 0.0592 

1.2637 0.1670 

1.3963 - 0.2967 

~= 
1.3060 0.1946 

-0.2427 0.9847 

0.4260 0.6745 

0.4893 0.6471 

0.3672 0.9873 

0.3717 " 0.5247 

0.2442 0.5966 

0.430 I 0.7442 

-0.0803 0.2010 

0.2838 0.2910 

0.7678 0.5868 

0.440 I 0.4926 

0.7571 0.3795 

1.4629 0.4306 

0.9773 0.2854 

1.0225 0.2272 

0 . .> 131 0.5227 
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0.9353 0.5494 

1.1859 0.5144 

0.7482 0.2399 

1.3637 0.3763 

0.4287 0.5083 

0.4221 0.4536 

0.5733 0.3102 

0.8200 0.1341 

0.7458 0.2129 

0.7341 0.5412 

0.7115 0.3522 

0.2797 0.1560 

0.2691 0.1711 

0.0991 0.2766 

0.3409 0.5217 

0.2400 0.0683 

~= 0.2518 -0.0162 

1.0943 0.0749 

o·.6870 0.0269 

0.3516 -0.1542 

-0.2019 0.1429 

-0.3117 0.0397 

-0.2273 0.0572 

-0.2174 -0.1443 

-0.1841 -0.1238 

-0.2552 -0.1060 

-0.2126 -0.1815 

-0.2481 0.0706 

0.2055 0.0218 

-0.0853 0.0222 

-0 .0210 -0.1377 

-0 .0041 0.1338 

-0 .1293 -0.0005 
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0.9213 0. 1746 

0.9143 0.3354 

0.5694 1.0039 

0.4829 0.5050 

0.3916 0.6717 

0.3970 0.3397 

1.0076 0.6751 

0.4800 0.8382 

0.7491 0. 1703 

0.5736 0.6677 

0.6557 0.3362 

0.4798 1.0085 

0.6573 0.50 18 

1.0077 0.8386 

1.0094 0.34 13 

0.8324 0.3347 

0.7422 0.6756 

c, == 0.9132 0.502 1 

1.0046 0. 1757 

0.8348 0.1675 

0.3966 0.8338 

0.5737 0.3427 

0.5679 0.8392 

0.4811 0.6677 

0.8333 0.6662 

0.7415 0.5071 

0.3993 0.5096 

0.3963 1.0098 

0.7480 0.334 1 

0.4836 0.3377 

0.9199 0.6733 

0.5693 0.5065 

0.8334 0.5027 

1.0005 0.5055 

0.6581 0.6694 
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0.9406 0.1774 

0.7701 0.1785 

0.3386 1.0408 

0.7444 1.7152 

0.6780 0.9612 

0.2543 1.3957 

1.4418 0.1823 

0.3090 0.8090 

0.6173 0.2700 

0 .4 3 91 0. 6 144 

0.5245 0.4063 

0.3880 1.0045 

0.3686 0.6714 

0.4801 0.1842 

1.0888 0.1848 

1.6705 0.1941 

0.3554 0.2490 

P1 = 0.2997 0.2521 

1.0199 0.2256 

1.1617 0.154 1 

0.2133 0.7266 

0.2428 0.4682 

0.3688 0.1433 

0.0363 0.4776 

0.3354 0.1593 

0.2834 0.0652 

0.0518 -0.3337 

0.2663 -0.0874 

-0.4087 0.1492 

-0.2370 -0.0127 

-0.1140 0.1913 

0.1200 -0.2152 

0.0034 0.2847 

0.0467 0.1578 

0.1"'67 0.1309 
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Figw·e 5.1 First step of the search 
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Figure 5.2 Block diagram of the fu zzy control system 
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Figure 5.3a Speed response (no load) 
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Figure S.3b Manifold pressure response (no load) 
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Figure 5.3d Ignition timing (no load) 
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Figure 5.4b Manifold pressure response(no load) 
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Figure 5.5a Speed response (under load) 
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Figure S.5b Manifold pressure response (under load) 
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Figure 5.5c Throttle angle (under load) 
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Figure 5.5d Ignition timing (under load) 
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Figure 5.6a Speed response (under load (robustness test)) 
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Figure s.6b Manifold pressure response (under load (robustness test)) 
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Figure 5.6c Throttle angle (under load (robustness test)) 
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Figure 5.6d Ignition timing (under load (robustness test)) 
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CHAPTER6 

CONCLUSIONS 

6.1 Conclusions 

The main conclusions to be drawn from this study are: 

MIMO nonlinear black box input output model of a first order 

nonlinear difference equation for each submodel was found to re present 

efficiently the dynamics of the idle mode. This was verified by the 

corr lation tests. 

Including the manifold pressure in the modeling process helps to make 

the speed more stable in control as the manifold dynamics play an 

important role in the whole plant dynamics and strongly affects the 

speed dynamics. 

The identification experiment must be run carefully to emulate the real 

time operating condition of the engine in every day life. 

The designed fuzzy controller can drive the system to its equilibrium 

point efficiently under different loading conditions. 

The reliability and robustness of the fuzzy control system developed in 

this \ ork depends on increasing the domain of interest of the cell space 

and consequently the number of rules increases. This can be concluded 

from the increasing number of basis function required by the radial basis 

functions network to approximate the mapping of the fuzzy system. 

6.2 Future "Vork 

Th m thod applied in this work for modeling and control of the engine 

idl mode were found to be successful. However we recommend the 

ollo\ ing: 
u ssful r a1 time implementation of the work done here will be an 

d th ro,iect to include other engine control modes like e a nu to 'ten e p J 

fu I inj tion and the cruise control. 
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Different operating and maintenance conditions, different users and the 

maintenance individual's skills, and weathers in different places can 

affect the aging conditions of the engine and make drastic changes to the 

engine parameters. In cases like that it is preferred to use adaptive 

control strategies to compensate for the aging of the engine parts and 

unit to unit variability. 

A fuzzy controller is some sort of an associative memory, which is 

call d "F ANf". The ability of an associative memory to enlarge different 

system changes is limited unless it is self organizing or adaptive. As 

m ntioned before the system being controlled may suffers drastic 

changes in its parameters, which could make the FAM performance 

unsatisfactory. An adaptive fuzzy controller could be an interesting 

solution, but this solution requires a model in a feedback linearized form 

(a linear in control form) [Wang (1994), Vandegrift et al (1995), 

Jagannthan and Lewis (1996), Ying and Lewis (1994)]. That depends 

mainly on the mathematical form of the state equation of the model 

(Slotine (1991 )) and the possibility of making the suitable state 

transformations to the mathematical form of the plant model. An 

interestina solution to this problem will be to investigate a black box 
0 

model which is nonlinear in the system states and linear in control. 
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PI t 5.1 the left side of the engine mounted on the engine test bed 



Plate 5.2 the right side of the engine mounted on the engine test bed 



Engine Interface . 
witp the computer 

Plate 5.3 the interfacing computer with engine test bed 


