CONTENTS

ACKNOWLEDGEMENTS ii

ABSTRACT iii

CONTENTS vi

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xvi

CHAPTER 1 OXIDATION OF TOCOTRIENOLS AND TOCOPHEROLS 1

1.1 INTRODUCTION 2

1.1.1 Vitamin E Components 2

1.1.2 Oxidation of Vitamin E 4

1.1.3 Oxidation of α-Tocopherol 4

1.1.4 Oxidation of γ-Tocopherol 11

1.1.5 Inhibition of Lipid Peroxidation by Vitamin E 16

1.1.6 Antioxidant Reactivity of Vitamin E Components 17

1.1.7 Regeneration of Vitamin E 19

1.1.8 Objectives of the Present Research 19

1.2 EXPERIMENTAL 21

1.2.1 Materials 21

1.2.2 General Procedures for the Oxidation of Vitamin E 21

1.2.3 Characterization of Vitamin E Oxidation Products 22

1.2.4 ESR Studies on Vitamin E Compounds 23

1.3 RESULTS AND DISCUSSION 25

1.3.1 Oxidation Products of γ-Tocotrienol and γ-Tocopherol 25

1.3.2 Oxidation Products of α-Tocotrienol and α-Tocopherol 45
CHAPTER 2 ELECTRON TRANSFER REACTIONS OF VITAMIN E

2.1 INTRODUCTION

2.1.1 Free Radical and Electron Transfer Reactions in Organic Chemistry

2.1.2 Consequences of Free Radical Attack in Biological Systems

2.1.3 Mechanisms for the Reactions of Some 4-Nitro-Compounds with Base

2.1.4 Electron Transfer Reaction of Triphenylmethyl Halides

2.1.5 Antioxidant Activity of Vitamin E in Free Radical Processes

2.1.6 Objectives of the Present Research

2.2 EXPERIMENTAL

2.2.1 Chemicals and Materials

2.2.2 Reactions of α-T₃ and α-T with 4-Nitrobenzyl Chloride

2.2.3 Reaction of α-T with Triphenylmethyl Chloride

2.2.4 Qualitative Analyses of Reaction Products

2.2.5 Kinetic Experiments

2.3 RESULTS AND DISCUSSION

2.3.1 Reactions of α-T₃ and α-T with 4-Nitrobenzyl Chloride

2.3.2 Reaction of α-T with Triphenylmethyl Chloride

2.3.3 Reactivity of Various Vitamin E Components

CHAPTER 3 EFFECTS OF DIETARY FATS AND VITAMIN E ON EXPERIMENTAL ATHEROSCLEROSIS

3.1 INTRODUCTION

3.1.1 Malaysian Palm Oil

3.1.2 Nutritional Value of Palm Oil

3.1.3 Atherosclerosis
3.1.4 Effect of Dietary Factors on Atherosclerosis
3.1.5 Lipoproteins and Atherosclerosis
3.1.6 Studies on Palm Oil and Atherosclerosis
3.1.7 Objectives of the Present Research

3.2 EXPERIMENTAL
3.2.1 Diets and Animals
3.2.2 Experimental Atherosclerosis in Rabbits
3.2.3 Analyses of Lipids and Atherosclerosis
3.2.4 Experiments on the Oxidative Susceptibility of Low Density Lipoproteins

3.3 RESULTS AND DISCUSSION
3.3.1 Lipidemic Effects of Various Dietary Fats
3.3.2 Lipidemic Effects of Various Antioxidants
3.3.3 Effects of Dietary Fats and Antioxidants on Atherosclerosis

CHAPTER 4 DISTRIBUTION AND BIOAVAILABILITY OF TOCOTRIENOLS IN ANIMALS
4.1 INTRODUCTION
4.1.1 Tocotrienols in Palm Oil
4.1.2 Bioavailability of Vitamin E
4.1.3 Fate of Ingested Vitamin E Components in Humans and Animals
4.1.4 Biokinetics and Biodiscrimination among Vitamin E Stereosomers
4.1.5 Biosynthesis of Vitamin E in Plants
4.1.6 Objectives of the Present Research

4.2 EXPERIMENTAL
4.2.1 Vitamin E Feeding Experiments on Guinea Pigs
4.2.2 Vitamin E Feeding Experiments on Rabbits
CHAPTER 5 ANTI-TUMOUR PROMOTING ACTIVITY OF PALM OIL TOCOTRIENOLS

5.1 INTRODUCTION

5.1.1 Biological Activity of Vitamin E

5.1.2 Chemical Carcinogenesis

5.1.3 The Role of Free Radicals in Carcinogenesis

5.1.4 Epstein-Barr Virus and Nasopharyngeal Carcinoma

5.1.5 Tumour Promoters

5.1.6 Naturally Occurring Anti-tumour Promoters

5.1.7 Anti-cancer and Anti-tumour Properties of Vitamin E and Other Antioxidants

5.1.8 Anti-Cancer Constituents in Palm Oil

5.1.9 Objectives of the Present Research

5.2 EXPERIMENTAL

5.2.1 Chemicals

5.2.2 Cells and Culture Medium

5.2.3 Assay for EBV-activation Activity

5.2.4 Two-stage Skin Carcinogenesis Experiment on Mouse

5.3 RESULTS AND DISCUSSION

5.3.1 In Vitro Anti-tumour Promoting Activity of Tocotrienols
5.3.2 Two-stage Skin Carcinogenesis Experiments

REFERENCES

APPENDIX
LIST OF TABLES

Table 1.1 Structures of naturally occurring vitamin E components 3
Table 1.2 Characteristics of the oxidation products of γ-T₃ and γ-T 27
Table 1.3 ¹H NMR spectral data of γ-tocotrienol, γ-tocopherol and their dimers 28
Table 1.4 ¹³C NMR spectral data of γ-tocotrienol, γ-tocopherol and their dimers 29
Table 1.5 Characteristics and ¹³C NMR spectral data of bichromanyl dimers 34
Table 1.6 Oxidation products of α-T₃ and α-T 46
Table 1.7 ¹H NMR spectral data of α-T₃, α-T, their dimers and trimers 48
Table 1.8 ¹³C NMR spectral data of α-T₃, α-T, their dimers and trimers 49
Table 2.1 Characteristics of products from the reactions of α-T₃ and α-T with 4-nitrobenzyl chloride 84
Table 2.2 ¹³C NMR data and assignments for the reaction products of vitamin E and 4-nitrobenzyl chloride 86
Table 2.3 ¹H NMR data and assignments for the reaction products of vitamin E and 4-nitrobenzyl chloride 87
Table 2.4 NMR and molecular simulation data for the diastereomeric carbon-carbon cross products from α-T and 4-nitrobenzyl chloride 91
Table 2.5 Characteristics of products from the reaction of α-T with triphenylmethyl chloride 109
Table 3.1 Fatty acid compositions of palm and other vegetable oils 122
Table 3.2 Formulation of semi-synthetic feed 136
Table 3.3 Antioxidant contents in the palm oil diets 137
Table 3.4 Fatty acid compositions of dietary fats 141
Table 3.5 Fatty acid composition of plasma lipids 142
Table 3.6 Fatty acid composition of LDL lipids 144
Table 3.7 Plasma lipids and the susceptibility parameters for LDL oxidation 146
Table 3.8 Fatty acid compositions and vitamin E contents of plasma lipids of rabbits fed palm oil diets enhanced with various antioxidants 152
Table 4.1 Vitamin E composition in various vegetable oils 163
Table 4.2 Vitamin E content in various palm oil products 164
Table 4.3 Vitamin E composition in various diets 173
Table 4.4 Vitamin E compositions in palm-oil diets enhanced with various vitamin E components 175
Table 4.5 Compositions of the vitamin E components in various diets 176
Table 4.6 Vitamin E composition in guinea pig plasma, liver and kidney 180
Table 4.7 Vitamin E components in rabbit plasma 183
Table 4.8 Vitamin E composition in organs of rabbits 184
Table 4.9 Compositions of the vitamin E components in rabbit plasma 187
Table 4.10 Compositions of the vitamin E components in the liver of rabbits 189
Table 4.11 Compositions of vitamin E components in the plasma of rabbits 195
Table 4.12 Incubation of liver microsomal fraction with S-adenosyl-14C-methylmethionine 197
Table 5.1 Classes of Various Tumour Promoters 206
Table 5.2 Anti-tumour Promoting Activity of Vitamin E Components 217
Table 5.3 Anti-tumour Promoter Activity of γ-T, γ-T3 and Their Dimers 219
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>ESR spectra of α-tocopheroxyl and α-tocotrienoxy radicals</td>
<td>6</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Possible radicals and intermediates formed in the oxidation of α-T</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Some oxidation products of α-tocopherol</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Several possible structures of α-tocopherol dimers</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Possible structures of α-tocopherol trimers</td>
<td>10</td>
</tr>
<tr>
<td>Fig. 1.6</td>
<td>Possible structures of various α-T dihydroxy dimers and spiroadienone</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>diastereomers</td>
<td></td>
</tr>
<tr>
<td>Fig. 1.7</td>
<td>Possible diastereomeric structures of α-T trimers</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 1.8</td>
<td>ESR spectra of γ-tocotrienoxy and γ-tocotrienol dichromanyl ether</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>dimer radicals</td>
<td></td>
</tr>
<tr>
<td>Fig. 1.9</td>
<td>Structures of the dimers of γ-T₃ and γ-T</td>
<td>16</td>
</tr>
<tr>
<td>Fig. 1.10</td>
<td>Energy-minimized models of (R)- and (S)-5,5'-bi-γ-T₃</td>
<td>26</td>
</tr>
<tr>
<td>Fig. 1.11</td>
<td>Energy-minimized models of (R)- and (S)-5,5'-bi-γ-T</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 1.12</td>
<td>Mechanism for the formation of dimers and tetramer of γ-vitamers</td>
<td>37</td>
</tr>
<tr>
<td>Fig. 1.13</td>
<td>ESR spectra recorded when (R)-5,5'-bi-γ-tocotrienyl dimer in hexane</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>subjected to oxidation by K₃Fe(CN)₆ and in methylcyclohexane mixed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with di-ter-butyl peroxide and irradiated by UV light at 300 K</td>
<td></td>
</tr>
<tr>
<td>Fig. 1.14</td>
<td>Mechanisms for the reactions of (R)-5,5'-bi-γ-T and (S)-5,5'-bi-γ-T</td>
<td>43</td>
</tr>
<tr>
<td>Fig. 1.15</td>
<td>Structures of various dimers derived from α-T₃ and α-T</td>
<td>44</td>
</tr>
<tr>
<td>Fig. 1.16</td>
<td>ESR spectrum for the radicals generated from α-T spiroadienone dimer</td>
<td>47</td>
</tr>
<tr>
<td>Fig. 1.17</td>
<td>The ¹H NMR spectrum of 5α-O-α-T ether dimer</td>
<td>47</td>
</tr>
<tr>
<td>Fig. 1.18</td>
<td>Possible mechanistic pathways for the dimerization of α-T₃ or α-T</td>
<td>53</td>
</tr>
<tr>
<td>Fig. 1.19</td>
<td>Formation of the trimers of α-T₃ and α-T</td>
<td>54</td>
</tr>
<tr>
<td>Fig. 1.20</td>
<td>Logarithm of the intensities of the central peak of the decaying ESR spectra</td>
<td>55</td>
</tr>
<tr>
<td>Fig. 1.21</td>
<td>Changes of ESR signals when γ-T₃ was added into a solution containing</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>δ-tocotrienol dichromanyl ether dimer radicals</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1.22 Changes of ESR signals when α-T$_3$ was added into a solution containing γ-tocotrienol dichromanyl ether dimer radicals

Fig. 2.1 Structures of the cross products from 4-nitrobenzyl chloride and α-vitamers

Fig. 2.2 NOESY spectra of the carbon-carbon cross products 2b (R-configuration) and 3b (S-configuration)

Fig. 2.3 1H and 13C NMR spectra of 5

Fig. 2.4 1H NMR spectrum of 6

Fig. 2.5 Reactions of 0.1 M 4-nitrobenzyl chloride with 0.1 M α-T$_3$ and α-T in basic medium in the presence or absence of 0.1 M p-dinitrobenzene

Fig. 2.6 1H and 13C NMR spectra of 7

Fig. 2.7 Reactions of 4-nitrobenzyl chloride in basic media in the presence of α-T$_3$ and α-T, with and without p-dinitrobenzene

Fig. 2.8 Postulated radical mechanism for the reaction of α-T and 4-nitrobenzyl chloride with base

Fig. 2.9 1H and 13C NMR spectra of 8

Fig. 2.10 Relative reactivity of α-T with various electron-accepting agents in basic medium

Fig. 2.11 Structures of γ-T$_3$, γ-T, their dimers and cross-products with 4-nitrobenzyl chloride

Fig. 2.12 Relative reactivities of tocopherols (α-T & γ-T), tocotrienols (α-T$_3$ & γ-T$_3$) and γ-T dichromanyl ether dimer (γ-TDED) in the reactions with 4-nitrobenzyl chloride

Fig. 3.1 The multistage events of atherosclerosis in the arterial wall

Fig. 3.2 Time course of absorption at 234 nm for the Cu$^{2+}$-catalyzed oxidation of LDL isolated from the rabbits fed atherogenic diets containing coconut oil and corn oil (CNO), refined-bleached-deodorized palm olein (RBDPO) and soyabean oil (SO)
Fig. 3.3 The effects of vitamin E and vitamin C supplementation in protecting oxidation of LDL 154
Fig. 3.4 Correlation between the atheroma area and the total plasma cholesterol level 156
Fig. 3.5 The effects of various dietary fats on atherosclerosis development 157
Fig. 3.6 The effects of vitamin E and vitamin C dietary supplementation in the inhibition of atherosclerosis development 159
Fig. 4.1 Possible biosynthetic pathways of vitamin E in plants 169
Fig. 4.2 Ratio of the tocopherols to tocotrienols (T:T₃) in the plasma, liver and kidney of guinea pigs orally administered with palm-oil vitamin E 181
Fig. 4.3 HPLC profiles of vitamin E components in the feed, plasma and liver of rabbits treated with PO+γ-T₃ diet. 190
Fig. 4.4 HPLC profiles of vitamin E components in the feed, plasma and liver of PO+δ-T group of rabbits. 191
Fig. 5.1 Structures of DMBA (a carcinogen) and TPA (a tumour promoter) 207
Fig. 5.2 Effect of tocotrienols on the percentage of mice with skin tumours chemically-induced by DMBA and croton oil 221
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>ESR hyperfine coupling constant</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>13C</td>
<td>carbon-13</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CDCl<sub>3</sub></td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>COSY</td>
<td>correlated spectroscopy</td>
</tr>
<tr>
<td>δ_C</td>
<td>carbon chemical shift</td>
</tr>
<tr>
<td>δ_H</td>
<td>proton chemical shift</td>
</tr>
<tr>
<td>DMBA</td>
<td>7,12-dimethylbenz[a]anthracene</td>
</tr>
<tr>
<td>EBV EA</td>
<td>Epstein Barr virus early antigen</td>
</tr>
<tr>
<td>EI</td>
<td>electron impact</td>
</tr>
<tr>
<td>ESR</td>
<td>electron spin resonance</td>
</tr>
<tr>
<td>Fig.</td>
<td>figure</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transformed</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G</td>
<td>gauss (for ESR)</td>
</tr>
<tr>
<td>G</td>
<td>gravitational force (for centrifugation)</td>
</tr>
<tr>
<td>GHz</td>
<td>gigahertz</td>
</tr>
<tr>
<td>1H</td>
<td>proton</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoproteins</td>
</tr>
<tr>
<td>HETCOR</td>
<td>heteronuclear correlated spectroscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>i.d.</td>
<td>internal diameter</td>
</tr>
<tr>
<td>IDL</td>
<td>intermediate density lipoproteins</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
</tbody>
</table>
K Kelvin
\(K_3\text{Fe(CN)}_6\) potassium ferricyanide
kcal kilocalories
KOH potassium hydroxide
kHz kilohertz
LDL low density lipoproteins
M molarity (mol/dm\(^3\))
mg milligram
MHz megahertz
min minute
mL millilitre
mm millimetre
mm\(^2\) millimeter square
MS mass spectrum/spectra
mV millivolt
m.w. molecular weight
m/z mass/charge
nm nanometre
N\(_2\) nitrogen gas
N.A. not available
NaOH sodium hydroxide
NMR nuclear magnetic resonance
NOE nuclear Overhauser effect
NOESY nuclear Overhauser effect spectroscopy
OFR off-resonance
\(p\)-DNB \textit{para}-dinitrobenzene
PFAD palm fatty acid distillate
Ph₃CH triphenylmethane
Ph₃C' triphenylmethyl radical
ppm parts per million
RBD refined, bleached and deodorized
rpm revolutions per minute
r.t. retention time
s second
SET single electron transfer
S_N nucleophilic substitution
S_{N2} bimolecular nucleophilic substitution
S_{RN1} unimolecular nucleophilic radical substitution
T tocopherol
T' tocopheroxy radical
γ-T_3DED γ-tocotrienol dichromanyl ether dimer
T_3 tocotrienol
T_3' tocotrienoxyl radical
γ-TDED γ-tocopherol dichromanyl ether dimer
TLC thin layer chromatography
TMS tetramethylsilane
TPA 12-Ο-tetradecanoylphorbol-13-acetate
UV ultra-violet
v volume
VLDL very low density lipoproteins
w weight
μg microgram
μl microlitre
μm micrometre