CONTENTS

AC	KNOW	LEDGEMENTS	ü
AB	STRAC	T	iii
со	NTENT	ſS	vi
LIS	T OF T	ABLES	xi
LIS	T OF F	IGURES	xiii
LIS	T OF A	BBREVIATIONS	xvi
СН	артеі	R 1 OXIDATION OF TOCOTRIENOLS AND TOCOPHEROLS	1
1.1	INTR	ODUCTION	2
	1.1.1	Vitamin E Components	2
	1.1.2	Oxidation of Vitamin E	4
	1.1.3	Oxidation of α -Tocopherol	4
	1.1.4	Oxidation of γ -Tocopherol	11
	1.1.5	Inhibition of Lipid Peroxidation by Vitamin E	16
	1.1.6	Antioxidant Reactivity of Vitamin E Components	17
	1.1.7	Regeneration of Vitamin E	19
	1.1.8	Objectives of the Present Research	19
1.2	EXPE	RIMENTAL	21
	1.2.1	Materials	21
	1.2.2	General Procedures for the Oxidation of Vitamin E	21
	1.2.3	Characterization of Vitamin E Oxidation Products	22
	1.2.4	ESR Studies on Vitamin E Compounds	23
1.3	RESU	LTS AND DISCUSSION	25
	1.3.1	Oxidation Products of γ -Tocotrienol and γ -Tocopherol	25
	1.3.2	Oxidation Products of α -Tocotrienol and α -Tocopherol	45

	1.3.3	ESR Study on Radicals Generated from Vitamin E Compounds	60
~			
		R 2 ELECTRON TRANSFER REACTIONS OF VITAMIN E	66
2.1	INTR	ODUCTION	67
	2.1.1	Free Radical and Electron Transfer Reactions in Organic Chemistry	67
	2.1.2	Consequences of Free Radical Attack in Biological Systems	68
	2.1.3	Mechanisms for the Reactions of Some 4-Nitro-Compounds with Base	70
	2.1.4	Electron Transfer Reaction of Triphenylmethyl Halides	76
	2.1.5	Antioxidant Activity of Vitamin E in Free Radical Processes	78
	2.1.6	Objectives of the Present Research	79
2.2	EXPE	RIMENTAL	80
	2.2.1	Chemicals and Materials	80
	2.2.2	Reactions of α -T ₃ and α -T with 4-Nitrobenzyl Chloride	80
	2.2.3	Reaction of α -T with Triphenylmethyl Chloride	81
	2.2.4	Qualitative Analyses of Reaction Products	81
	2.2.5	Kinetic Experiments	82
2.3	RESU	LTS AND DISCUSSION	83
	2.3.1	Reactions of α -T ₃ and α -T with 4-Nitrobenzyl Chloride	83
	2.3.2	Reaction of α -T with Triphenylmethyl Chloride	108
	2.3.3	Reactivity of Various Vitamin E Components	115
СН	APTER	3 EFFECTS OF DIETARY FATS AND VITAMIN E ON	
		EXPERIMENTAL ATHEROSCLEROSIS	120
3.1	INTRO	DDUCTION	121
	3.1.1	Malaysian Palm Oil	121
	3.1.2	Nutritional Value of Palm Oil	121

3.1.3 Atherosclerosis

-

vii

121

125

	3.1.4	Effect of Dietary Factors on Atherosclerosis	128
	3.1.5	Lipoproteins and Atherosclerosis	130
	3.1.6	Studies on Palm Oil and Atherosclerosis	134
	3.1.7	Objectives of the Present Research	134
3.2	EXPE	ERIMENTAL	135
	3.2.1	Diets and Animals	135
	3.2.2	Experimental Atherosclerosis in Rabbits	135
	3.2.3	Analyses of Lipids and Atherosclerosis	138
	3.2.4	Experiments on the Oxidative Susceptibility of Low Density	
		Lipoproteins	139
3.3	RESU	JLTS AND DISCUSSION	140
	3.3.1	Lipidemic Effects of Various Dietary Fats	140
	3.3.2	Lipidemic Effects of Various Antioxidants	151
	3.3.3	Effects of Dietary Fats and Antioxidants on Atherosclerosis	155
СН	APTER	4 DISTRIBUTION AND BIOAVAILABILITY OF	
		TOCOTRIENOLS IN ANIMALS	161
4.1	INTR	ODUCTION	162
	4.1.1	Tocotrienols in Palm Oil	162
	4.1.2	Bioavailability of Vitamin E	162
	4.1.3	Fate of Ingested Vitamin E Components in Humans and Animals	165
	4.1.4	Biokinetics and Biodiscrimination among Vitamin E Stereoisomers	167
	4.1.5	Biosynthesis of Vitamin E in Plants	168
	4.1.6	Objectives of the Present Research	170
4.2	EXPE	RIMENTAL	172
	4.2.1	Vitamin E Feeding Experiments on Guinea Pigs	172
	4.2.2	Vitamin E Feeding Experiments on Rabbits	172

	4.2.3	Analysis of Vitamin E	177
	4.2.4	In Vitro Experiments with Rabbit Liver Microsomal Fraction	177
4.3	RESU	JLTS AND DISCUSSION	179
	4.3.1	Distribution of Vitamin E Components in Guinea Pigs	179
	4.3.2	Distribution of Vitamin E Components in Rabbits	182
	4.3.3	In Vitro Experiments	196
	4.3.4	Does Bioconversion of Tocotrienols to Tocopherols Occur in Animals?	196
СН	АРТЕН	S ANTI-TUMOUR PROMOTING ACTIVITY OF PALM OIL TOCOTRIENOLS	
			200
5.1	INTR	ODUCTION	201
	5.1.1	Biological Activity of Vitamin E	201
	5.1.2	Chemical Carcinogenesis	201
	5.1.3	The Role of Free Radicals in Carcinogenesis	202
	5.1.4	Epstein-Barr Virus and Nasopharyngeal Carcinoma	204
	5.1.5	Tumour Promoters	205
	5.1.6	Naturally Occurring Anti-tumour Promoters	208
	5.1.7	Anti-cancer and Anti-tumour Properties of Vitamin E and Other	
		Antioxidants	210
	5.1.8	Anti-Cancer Constituents in Palm Oil	211
	5.1.9	Objectives of the Present Research	212
5.2	EXPE	RIMENTAL	213
	5.2.1	Chemicals	213
	5.2.2	Cells and Culture Medium	213
	5.2.3	Assay for EBV-activation Activity	213
	5.2.4	Two-stage Skin Carcinogenesis Experiment on Mouse	214
5.3	RESU	LTS AND DISCUSSION	216
	5.3.1	In Vitro Anti-tumour Promoting Activity of Tocotrienols	216

ix

5.3.2 Two-stage Skin Carcinogenesis Experiments	220
REFERENCES	222
APPENDIX	248

LIST OF TABLES

Table 1.1	Structures of naturally occurring vitamin E components	3
Table 1.2	Characteristics of the oxidation products of $\gamma\text{-}T_3$ and $\gamma\text{-}T$	27
Table 1.3	$^1\mathrm{H}\mathrm{NMR}$ spectral data of γ -tocotrienol, γ -tocopherol and their dimers	28
Table 1.4	^{13}C NMR spectral data of $\gamma\text{-tocotrienol},$ $\gamma\text{-tocopherol}$ and their dimers	29
Table 1.5	Characteristics and ¹³ C NMR spectral data of bichromanyl dimers	34
Table 1.6	Oxidation products of α -T ₃ and α -T	46
Table 1.7	¹ H NMR spectral data of α -T ₃ , α -T, their dimers and trimers	48
Table 1.8	¹³ C NMR spectral data of α -T ₃ , α -T, their dimers and trimers	49
Table 2.1	Characteristics of products from the reactions of $\alpha\text{-}T_3$ and $\alpha\text{-}T$ with 4-	
	nitrobenzyl chloride	84
Table 2.2	$^{13}\mathrm{C}$ NMR data and assignments for the reaction products of vitamin E	
	and 4-nitrobenzyl chloride	86
Table 2.3	$^1\mathrm{H}$ NMR data and assignments for the reaction products of vitamin E	
	and 4-nitrobenzyl chloride	87
Table 2.4	NMR and molecular simulation data for the diastereomeric carbon-	
	carbon cross products from α -T and 4-nitrobenzyl chloride	91
Table 2.5	Characteristics of products from the reaction of α -T with	
	triphenylmethyl chloride	109
Table 3.1	Fatty acid compositions of palm and other vegetable oils	122
Table 3.2	Formulation of semi-synthetic feed	136
Table 3.3	Antioxidant contents in the palm oil diets	137
Table 3.4	Fatty acid compositions of dietary fats	141
Table 3.5	Fatty acid composition of plasma lipids	142
Table 3.6	Fatty acid composition of LDL lipids	144
Table 3.7	Plasma lipids and the susceptibility parameters for LDL oxidation	146

Table 3.8	Fatty acid compositions and vitamin E contents of plasma lipids		
	of rabbits fed palm oil diets enhanced with various antioxidants	152	
Table 4.1	Vitamin E composition in various vegetable oils	163	
Table 4.2	Vitamin E content in various palm oil products		
Table 4.3	Vitamin E composition in various diets		
Table 4.4	Vitamin E compositions in palm-oil diets enhanced with various		
	vitamin E components	175	
Table 4.5	Compositions of the vitamin E components in various diets	176	
Table 4.6	Vitamin E composition in guinea pig plasma, liver and kidney	180	
Table 4.7	Vitamin E components in rabbit plasma	183	
Table 4.8	Vitamin E composition in organs of rabbits	184	
Table 4.9	Compositions of the vitamin E components in rabbit plasma	187	
Table 4.10	Compositions of the vitamin E components in the liver of rabbits	189	
Table 4.11	Compositions of vitamin E components in the plasma of rabbits	195	
Table 4.12	Incubation of liver microsomal fraction with S-adenosyl-14C-methyl-		
	methionine	197	
Table 5.1	Classes of Various Tumour Promoters	206	
Table 5.2	Anti-tumour Promoting Activity of Vitamin E Components	217	
Table 5.3	Anti-tumour Promoter Activity of γ -T, γ -T ₃ and Their Dimers	219	

LIST OF FIGURES

Fig. 1.1	ESR spectra of α -tocopheroxyl and α -tocotrienoxyl radicals	6
Fig. 1.2	Possible radicals and intermediates formed in the oxidation of $\alpha\text{-}T$	7
Fig. 1.3	Some oxidation products of α -tocopherol	8
Fig. 1.4	Severall possible structures of α -tocopherol dimers	9
Fig. 1.5	Possible structures of α -tocopherol trimers	10
Fig. 1.6	Possible structures of various α -T dihydroxy dimers and spirodienone	
	diastereomers	12
Fig. 1.7	Possible diastereomeric structures of α -T trimers	13
Fig. 1.8	ESR spectra of γ -tocotrienoxyl and γ -tocotrienol dichromanyl ether	
	dimer radicals	15
Fig. 1.9	Structures of the dimers of γ -T ₃ and γ -T	26
Fig. 1.10	Energy-minimized models of (R)- and (S)-5,5'-bi- γ -T ₃	36
Fig. 1.11	Energy-minimized models of (R)- and (S)-5,5'-bi-γ-T	37
Fig. 1.12	Mechanism for the formation of dimers and tetramer of γ -vitamers	40
Fig. 1.13	ESR spectra recorded when (R)-5,5'-bi- γ -tocotrienyl dimer in hexane	
	subjected to oxidation by $K_3Fe(CN)_6$, and in methylcyclohexane mixed	
	with di-t-butyl peroxide and irradiated by UV light at 300 K	43
Fig. 1.14	Mechanisms for the reactions of (R)-5,5'-bi- γ -T and (S)-5,5'-bi- γ -T	44
Fig. 1.15	Structures of various dimers derived from $\alpha\text{-}T_3$ and $\alpha\text{-}T$	47
Fig. 1.16	ESR spectrum for the radicals generated from $\alpha\text{-}T$ spirodienone dimer	53
Fig. 1.17	The ¹ H NMR spectrum of 5 <i>a</i> -O- α -T ether dimer	54
Fig. 1.18	Possible mechanistic pathways for the dimerization of $\alpha\text{-}T_3$ or $\alpha\text{-}T$	56
Fig. 1.19	Formation of the trimers of α -T ₃ and α -T	59
Fig. 1.20	Logarithm of the intensities of the central peak of the decaying ESR spectra	61
Fig. 1.21	Changes of ESR signals when $\gamma\text{-}T_3$ was added into a solution containing	
	δ-tocotrienol dichromanyl ether dimer radicals	63

Fig. 1.22	Changes of ESR signals when $\alpha\text{-}T_3$ was added into a solution	
	containing y-tocotrienol dichromanyl ether dimer radicals	64
Fig. 2.1	Structures of the cross products from 4-nitrobenzyl chloride and α -vitamers	
Fig. 2.2	NOESY spectra of the carbon-carbon cross products 2b (R-configuration)	
	and 3b (S-configuration)	93
Fig. 2.3	¹ H and ¹³ C NMR spectra of 5	95
Fig. 2.4	¹ H NMR spectrum of 6	97
Fig. 2.5	Reactions of 0.1 M 4-nitrobenzyl chloride with 0.1 M $\alpha\text{-}T_3$ and $\alpha\text{-}T$ in	
	basic medium in the presence or absence of $0.1 \text{ M} p$ -dinitrobenzene	98
Fig. 2.6	¹ H and ¹³ C NMR spectra of 7	100
Fig. 2.7	Reactions of 4-nitrobenzyl chloride in basic media in the presence of	
	α -T ₃ and α -T, with and without <i>p</i> -dinitrobenzene	101
Fig. 2.8	Postulated radical mechanism for the reaction of $\alpha\text{-}T$ and 4-nitrobenzyl	
	chloride with base	104
Fig. 2.9	¹ H and ¹³ C NMR spectra of 8	110
Fig. 2.10) Relative reactivity of α -T with various electron-accepting agents in	
	basic medium	112
Fig. 2.11	Structures of γ -T ₃ , γ -T, their dimers and cross-products with	
	4-nitrobenzyl chloride	116
Fig. 2.12	Relative reactivities of to copherols (a-T & $\gamma\text{-}T)$, to cotrienols (a-T $_3$ &	
	$\gamma\text{-}T_3)$ and $\gamma\text{-}T$ dichromanyl ether dimer ($\gamma\text{-}TDED)$ in the reactions with	
	4-nitrobenzyl chloride	117
Fig. 3.1	The multistage events of atherosclerosis in the arterial wall	126
Fig. 3.2	Time course of absorption at 234 nm for the Cu ²⁺ -catalyzed oxidation	
	of LDL isolated from the rabbits fed atherogenic diets containing	
	coconut oil and corn oil (CNO), refined-bleached-deodorized palm	
	olein (RBDPO) and soyabean oil (SO)	149

•

Fig. 3.3	The effects of vitamin E and vitamin C supplementation in protecting	
	oxidation of LDL	154
Fig. 3.4	Correlation between the atheroma area and the total plasma cholesterol	
	level	156
Fig. 3.5	The effects of various dietary fats on atherosclerosis development	157
Fig. 3.6	The effects of vitamin E and vitamin C dietary supplementation in the	
	inhibition of atherosclerosis development	159
Fig. 4.1	Possible biosynthetic pathways of vitamin E in plants	169
Fig. 4.2	Ratio of the tocopherols to tocotrienols $(T:T_3)$ in the plasma, liver and	
	kidney of guinea pigs orally administered with palm-oil vitamin E	181
Fig. 4.3.	HPLC profiles of vitamin E components in the feed, plasma and liver of	
	rabbits treated with $PO+\gamma-T_3$ diet.	190
Fig. 4.4	HPLC profiles of vitamin E components in the feed, plasma and liver of	
	PO+δ-T group of rabbits.	191
Fig. 5.1	Structures of DMBA (a carcinogen) and TPA (a tumour promoter)	207
Fig. 5.2	Effect of tocotrienols on the percentage of mice with skin tumours	
	chemically-induced by DMBA and croton oil	221

xv

LIST OF ABBREVIATIONS

а	ESR hyperfine coupling constant
°C	degree Celsius
¹³ C	carbon-13
cm	centimetre
CDCl ₃	deuterated chloroform
COSY	correlated spectroscopy
δ_{C}	carbon chemical shift
$\boldsymbol{\delta}_{H}$	proton chemical shift
DMBA	7,12-dimethylbenz[a]anthracene
EBV EA	Epstein Barr virus early antigen
EI	electron impact
ESR	electron spin resonance
Fig.	figure
FT	Fourier transformed
g	gram
G	gauss (for ESR)
G	gravitational force (for centrifugation)
GHz	gigahertz
$^{1}\mathrm{H}$	proton
HDL	high density lipoproteins
HETCOR	heteronuclear correlated spectroscopy
HPLC	high performance liquid chromatography
Hz	hertz
i.d.	internal diameter
IDL	intermediate density lipoproteins
IR	infrared

.

К	Kelvin
K ₃ Fe(CN) ₆	potassium ferricyanide
kcal	kilocalories
КОН	potassium hydroxide
kHz	kilohertz
LDL	low density lipoproteins
М	molarity (mol/dm ³)
mg	milligram
MHz	megahertz
min	minute
mL	millilitre
mm	millimetre
 mm ²	millimeter square
MS	mass spectrum/spectra
mV	millivolt
m.w.	molecular weight
m/z	mass/charge
nm	nanometre
N ₂	nitrogen gas
N.A.	not available
NaOH	sodium hydroxide
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	nuclear Overhauser effect spectroscopy
OFR	off-resonance
p-DNB	para-dinitrobenzene
PFAD	palm fatty acid distillate

Ph ₃ CH	triphenylmethane
Ph ₃ C [•]	triphenylmethyl radical
ppm	parts per million
RBD	refined, bleached and deodorized
rpm	revolutions per minute
r.t.	retention time
s	second
SET	single electron transfer
S_N	nucleophilic substitution
S_N^2	bimolecular nucleophilic substitution
$S_{RN}1$	unimolecular nucleophilic radical substitution
Т	tocopherol
T*	tocopheroxyl radical
γ -T ₃ DED	γ-tocotrienol dichromanyl ether dimer
T ₃	tocotrienol
Т ₃ •	tocotrienoxyl radical
γ-TDED	γ-tocopherol dichromanyl ether dimer
TLC	thin layer chromatography
TMS	tetramethylsilane
TPA	12-O-tetradecanoylphorbol-13-acetate
UV	ultra-violet
v	volume
VLDL	very low density lipoproteins
w	weight
μg	microgram
μl	microlitre
μm	micrometre

xviii

.