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ABSTRACT 

To date, higher power ships are extensively used in order to fulfil the maritime trading 

demand. The resulting high velocity thrust produced by ship’s propellers or side 

thrusters has seriously eroded the seabed. Ship-Twin-Propeller (STP) is a ship equipped 

with two propellers. It has improved powering system, handling system, ship stability, 

and ability to propel the ship faster as compared to single ships. These advantages have 

increased the demand for STP among the marine traders for higher profitability and 

efficiency. This study involves experimental and virtual simulation works. Laboratory 

experiments were designed to investigate the axial velocity profile of selected rotating 

STP and the resulting scouring actions; whereas, the Computational Fluid Dynamic 

(CFD) model simulation was used to observe and estimate scouring pattern. The 

existing theory and experimental results were mostly derived from plain jet and single 

rotating propeller. This study has enhanced the understanding on the scour mechanisms 

and relationships of STP’s velocities impingement on the seabed. The asymptotic scour 

induced by STP profile was defined in four stages, which are (i) initial stage, (ii) 

developing stage, (iii) merging stage and (iv) asymptotic stage. An equation is proposed 

to relate between the parameter, namely the densimetric Froude number, the clearance 

ratio and the reference time scale for the prediction of maximum scour depth and also 

the maximum scour location. The proposed equations were found to be highly 

correlated with the observed parameters. Moreover, the proposed CFD and experiment 

model have given representative data in graphical method to simulate the scouring 

pattern at different sections for better scour estimation and visualisation. Therefore, it is 

able to assist design engineers and port authorities in designing the protection structure 

against scour erosion. Moreover, this will also help in designing the bathymetry level, 

so that the designed level would be maintained to minimise the dredging or filling 

sediments costs.  
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ABSTRAK 

Setakat ini, kapal-kapal yang berkuasa tinggi telah digunakan secara menyeluruh bagi 

memenuhi permintaan perdagangan maritim. Halaju tinggi yang terhasil daripada kipas 

kapal telah menghasilkan suatu kuasa yang kuat sehingga dapat menghakiskan dasar 

laut secara serius.  Ship-Twin-Propeller (STP) yang merupakan sesebuah kapal yang 

dilengkapi dengan dua buah kipas kapal. Ia menpunyai system penjana yang kuat, 

pengendalian dan stabiliti yang baik, dan dapat menggerakkan kapal dengan halaju yang 

lebih cepat berbanding dengan kapal yang dilengkapi dengan satu kipas sahaja. 

Kelebihan STP ini telah menggalakkan penggunaan STP oleh peniaga-peniaga marin 

untuk mendapatkan lebih untungan. Kajian ini melibatkan experimentasi dan kerja-kerja 

simulasi. Experimentasi telah direka bentuk untuk mengajikan profile halaju paksi and 

corak kerokan yang dikeluarkan oleh STP. Manakala, modal Computer Fluid Dynamic  

(CFD) hanya menumpukan kajian terhadap corak dan penganggaran kerokan yang 

dijanakan oleh STP. Teori-teori dan keputusan terkini hanya diperolehi daripada kapal 

yang dilengkapi oleh satu unit kipas sahaja. Oleh itu, kajian ini dapat meningkatkan 

pemahaman mekanisme dan perkaitan antara halaju yang diperolehi oleh STP atas 

kerokan yang dibuat atas dasar laut. Profile asymptotic yang telah disebabkan oleh STP 

menpunyai empat peringkat, iaitu, (i) peringkat awal, (ii) peringkat pembangunan, (iii) 

peringkat penggabungan dan (iv)peringkat asymptotic. Suatu persamaan telah 

dicadangkan atas hubungan antara nombor Froude, nisbah perlepasan dan skala masa 

yang dirujukan untuk menjangkakan maksima kedalaman korekan dan lokasinya.  

Korelasi antara persamaan yang dicadangi dengan data-data yang diperhatikan daripada 

experimentasi adalah tinggi. Cadangan model daripada CFD dan experimentasi dapat 

memberi corak kerokan yang tepat untuk menganggarkan dan menggambarkan kerokan 

yang diperolehi oleh STP. Dengan ini, jurutera dan pihak berkuasa perlabuhan dapat 

merekabentuk struktur perlindungan terhadap kerokan secara efektif dan masalah yang 
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sedia ada tidak akan merunsing. Selain itu, tahap batimetri pun dapat direkabentukan 

supaya kos pengorekan dan pengisian sedimen dapat diminimasikan.  
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CHAPTER 1:INTRODUCTION 

 

Overview 

The background of study of ship’s propeller wash induced seabed scour pattern since 

it is first study in 1950s, were discussed briefly. Gaps and the need for further studies of 

ship-twin-propeller are also highlighted in this chapter. The section of problem 

statement gives an insight on the impact of ship’s propeller wash induced seabed scour 

pattern and the need for remedial actions. The objectives of this study are stated to 

ensure readers have a clear understanding on what the author wished to achieve. Scope, 

limitation and significance of study are discussed to give an overview on the details of 

this study, including its boundary conditions. The importance and needs in investigating 

on ship-twin-propeller’s wash for the design of coastal structures and bathymetry are 

also highlighted. Nevertheless, brief outline of all chapters in this study are also 

specified in this chapter.   

1.1 Background of Study 

To date, ships with higher power are extensively used in order to fulfil the maritime 

trading demand. The resulting high velocity thrust driven by ship’s propellers or side 

thrusters had produced high erosive power which had significant impact on the seabed. 

Ship-Twin-Propeller, in general, refers to a ship equipped with two propellers. It has 

improved powering system, handling system, ship stability, and ability to propel the 

ship faster compared to single ship’s propeller (Kim et al., 2007). These advantages 

have increased the demand for ship-twin-propeller among the marine traders for higher 

profitability and efficiency. By general terminology as stated in Hamill (1987), “wash” 

is the forces exerted by propellers jet which impinged the seabed and caused scour. 

Scouring creates negative consequences such as soil erosion in the coastal regions, 

especially close to the port structures. Therefore, the necessity to identify the 
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relationship between the jets and the scour formation led to the importance in 

conducting an experimental research.  

The understanding of the fluid flows within the ship’s propeller wash and its 

resulting seabed scouring are key factors in the marine structure and bathymetry designs. 

Whitehouse (1998) and Gaythwaite (2004) highlighted the potential damages made by 

ship’s propeller wash induced scour in their book. Previous researches such as Hamill 

(1987), Hamill et al. (1999) and Hong et al. (2013) had discussed on single propeller 

induced scour. They gave insights into theories and methodologies in predicting 

maximum scour depth and single ship’s propeller jet characteristics by investigating a 

single rotating propeller. However, there are limited published literature in regards to 

scour induced by ship-twin-propeller’s jets.  

This study involves experimental and numerical simulation works. Laboratory 

experiments were designed to investigate the axial velocity profile of selected rotating 

ship-twin-propeller and its resulting scouring actions; whereas the CFD model 

simulation was focused only on the model setup for the observation and estimation of 

the scour pattern induced by ship-twin-propeller’s wash. Both methods were conducted 

in bollard pull conditions, whereby there was no significant velocity and consequent 

hull effects. The existing theory and experimental results were mostly derived from 

plain jet and single rotating propeller. Therefore, in order to acquire accurate results of 

ship-twin-propeller wash induced scour, large amount of tests are required to examine 

on various propeller rotating speed and the clearances between the propeller tip and the 

sediment layer.  

1.2 Problem Statement 

The size and speed of marine transport have increased tremendously to improve its 

manoeuvrability in order to transport larger amount of goods around the world. The 
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usage of ship-twin-propeller becomes common to achieve the design speed for ships, 

leading to an improvement in ship manoeuvring frequencies. As a result, the risk of 

scour attacked by ships’ propellers wash at ports has inevitably increased. Moreover, 

the damage due to ships’ propeller wash could be maximised when the under keel 

clearances between the ship and seabed are low. The small keel clearances may cause 

damages and failures along the coastal structures attributed to the significant impact 

from ship’s propeller wash.  Therefore, the seabed scouring theory and the jet velocity 

distribution from the ship’s propeller jet is vital for the estimation of the scouring 

impacts induced by ship’s propellers jet.  

Since the past decades, studies on single rotational propeller were initiated after 

several problems of ship’s propellers wash induced seabed scouring had been 

encountered in the 19th century. A list of affected ports in Europe and United Kingdom, 

have been summarised by Hamill et al. (1999) as the following,  

i. Larne Harbour, Northern Ireland 

ii. Stockholm port, Sweden 

iii. Elizabeth port, South Africa 

iv. French ports, French 

v. British ports, United Kingdom 

Beforehand, the potential damages of ship’s propeller wash were also highlighted in 

Hamill and Johnston (1993), Whitehouse (1998), and subsequently in Sumer and 

Fredsøe (2002). Since then, single propeller ships have caused problematic 

consequences along the coastal line, and more problems are expected as technology 

advances. The development from single propeller to twin propellers will certainly 

increase the occurrence of scour if it is not studied and designed  for the coastal 

protection.  
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To date, data on the scour profile and pattern induced from ship-twin-propeller’s jet 

have yet to be discussed. Only the manoeuvring ability and advantages of ship-twin-

propeller were highlighted in literature (Kim et al, 2007; Abramowicz-Gerigk, 2008; 

Dubbioso and Viviani, 2012).  Therefore, due to the advancement of technology, it is 

essential to study the ship-twin-propeller’s wash induced scouring, particularly on its 

scour pattern, depth and maximum scour location. This study is important in designing 

the protection system to counter the problems due to the scour erosion induced from 

ship-twin-propeller’s jet.  

1.3 Objectives 

This study aims to improve the understanding of ship-twin-propeller wash induced 

scour. We hypothesise that the above problem can be solved by conducting a series of 

experiment and numerical simulation in order to reveal the insights of scour formation. 

Therefore, the objectives of current study are stated as below, 

i) To identify the source and pattern of axial velocity impinging the seabed which 

was induced by ship-twin-propeller’s wash. 

ii) To determine the temporal development of scour induced by ship-twin-propeller’s 

wash by investigating the seabed scouring pattern. 

iii) Simulation of seabed scour pattern induced by ship-twin-propeller’s wash 

1.4 Scope and Limitation of Study 

All research works and simulations were done in University of Malaya (UM), Kuala 

Lumpur. The numerical works were done using CFD software known as Gambit and 

Fluent. The numerical works were used to study the seabed scour pattern induced by 

ship-twin-propeller’s wash through the Volume of Fluid (VOF) method. The CFD 

works were then compared with the validated experimental data. The experimental 
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works were carried out to study the axial velocity profile induced by ship-twin-

propeller’s wash and the resulting scouring pattern. The axial velocity profiles including 

the decay profiles and the profile of axial velocity thrust were extracted at efflux plane. 

Axial velocity was chosen to be studied as it is the most significant force induced by 

ship’s propeller wash (Hamill et al., 1999; Lam et al., 2010). From the literature done 

by Hamill (1987), Yüsel et al., (2005) and Cihan et al., (2011), the non-cohesive soil 

type seabed was more vulnerable in reacting with the forces impinging on the seabed. 

Therefore, only non-cohesive soil was used for both experimental works and numerical 

simulations. On the other hand, several preliminary tests were completed before the 

actual experiments in order to ensure the accuracy of the experiment methodologies. A 

single unit of 2D and 3D ship’s propeller induced scour were done using VOF method 

and compared with experimental works. This was performed to validate the VOF 

method in the estimation and visualisation of the scour pattern before the accurate 

simulation was run. The VOF simulation will only give insights on the formed scour 

pattern and simulate the velocity thrusts washing the sediment layer. Detailed 

constraints and descriptions of simulation can be referred to Section 3.8.4. 

The experiment was carried out in the Hydraulic laboratory in UM. This laboratory is 

located on the ground floor of UM, which has high pressure water supply required for 

the water tank filling. However, available space for the allocation of tank in the 

laboratory was limited to 3.2 m in terms of length and 1.3 m in terms of width. 

Therefore, the maximum tank size was restricted to length of 3.0 m and width of 1.2 m, 

where the leftover space was used for the walkway and equipment placing. 

Consequently, the range of propeller speed, size and the space between two propellers 

were restricted due to the limitation of the tank size. The range of speed and other 

parameters used in this study are further discussed in Chapter 3.  
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1.5 Significance of Study 

Results of this study has enhanced the understanding on the mechanisms of the scour 

formation on the seabed surface, which is important for design engineers and port 

authorities to design the protection structure against scour erosion. Moreover, the 

proposed coefficient and equation from the current study will improve the design of 

protection unit by considering the ship-twin-propeller’s wash as one of the key factors 

in protection design. This also helps in the designation of the bathymetry level, so that 

the designed level would be maintained in order to minimise the dredging or filling 

sediments costs. The proposed CFD model and experimental methods will give 

representative data in graphical method to simulate the different sections of scouring 

pattern for better scour estimation and visualisation. Therefore, engineers and port 

authorities will be able to predict the scour impacts induced by ship-twin-propellers in 

cost and time effective manner.  

1.6 Thesis Outline 

In this chapter, background of study was presented to provide an overview of the 

research. The problem statement was discussed thoroughly to further understand the 

need of the current study. Three objectives were proposed for the current study as 

outlined in section 1.3. The scope and limitations of this research have also been 

discussed based on the physical, environmental and technical limitations.  

Chapter 2 contains a summary of the previous works that had been carried out by 

other researchers on the analysis of the characteristics of ship’s propeller wash and the 

resulting scour process which led to severe scour impacts. Findings to date have given 

insights into theories and methodologies on the estimation of maximum scour depth and 

the single ship’s propeller jet characteristics for situation with and without the present of 

berth structures.  
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In Chapter 3, the design of experiment and CFD model were proposed based on 

previous literature and constrained limitations. Experimental setup has taken into 

consideration several factors such as the experimental tank design, the ship-twin-

propellers design and its locations, the rotational speed as well as clearances between 

propellers and seabed. For CFD model, the selection of software and the theory of VOF 

method were discussed. The data acquisition steps were discussed in this chapter to 

ensure the repeatability of the experiment and CFD model.  

Chapter 4 records all the data acquisition results from both experiment and 

simulation works and all the obtained results were discussed thoroughly. Conc lusions 

and recommendations for future studies were discussed in Chapter 5.  
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CHAPTER 2: LITERATURE REVIEW 

 

Overview 

A rotating ship’s propeller draws water, accelerates and then discharges the water 

downstream to propel a ship. The water discharged with a high velocity flow, which is 

capable to scour the bed if it is uncheck (Lam et al., 2011b). The scouring action of 

ship’s propeller wash will result in the erosion of seabed sediments. As the 

manoeuvring activities increases and the under-keel clearances remain small, the 

erosion of seabed sediments will increase (Hamill, 1987). For example, when the ship 

moors at the same port or bathymetry with its stern predominantly facing the coastal 

line, it leads to possible coastal structure failure and even costly remedial works. To 

date, it is common in practice for ship-twin-propellers to improve the maritime trading 

efficiency. Therefore it is necessary to improve the understanding of erosive power 

induced by ship-twin-propeller’s wash and the resulting scouring actions, particularly to 

assist engineers in designing any structures with adequate scour protection towards 

possible scour areas. In this chapter, works carried out by other researchers on wash 

produced by plain jets and single propeller’s jets are summarised. Literatures revealed 

that limited amount of published works were done in relation to ship-twin-propeller’s 

wash induced scour.  

2.1 Theory of Seabed Scouring: Sediment Transport 

Occurrence of seabed scouring is resulted from the transport of seabed sediments by 

moving water column in combination of two general load modes including: bed load 

and suspended load. Bed load is known as the soil particles that are moving in contact 

with the bed in the form of jumping (saltation), rolling and sliding. Therefore, bed load 

is only able to be transported by the forces exerted on the seabed layer. Suspended load 

is moved by the water column and is suspended by the turbulence of water. This load 
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will settle down when the turbulence intensity in the water column decreases.  The total 

load is the sum of bed load and suspended load. Theoretically, there are two main 

approaches to determine the total load. As stated in Chang et al. (1965), one of it is by 

computing the bed load and suspended load separately, whereas the other approach is to 

calculate the sum of total load without computing the bed load and suspended load 

separately.  

Since the ship’s propeller wash induced seabed scouring only happens when the 

under-keel clearance is low, it is expected that sedimentation will be largely transported 

in the form of bed load. Therefore, bed load theory should be used as the fundamental 

theory in the determination of sediment transport induced by ship-twin-propeller’s jet.  

2.1.1 Bed Loads Theories 

When the moving water flow exceeds the resisting forces of the sediment particles, 

the water column will affect the positioning of these sediment particles. Hamill (1987) 

has described the detachment of a single sediment grain as shown in figure 2.1. The 

relationship between the moving water and sediment detachment can be obtained 

through, 

𝐹𝑔

𝐺
>

sin( 𝜑+𝛹)

cos[ 𝜃−(𝜑+𝛹)]
    (2.1) 

Where, Fg is the resulting hydrodynamic lift forces, G is the weight of single particle, θ 

is the hydrodynamic lift angle, φ is the angle between the direction flow and up flow 

tangent of downstream of the sediment support and Ψ is the angle of friction of the 

particle.  
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Figure 2.1: Forces acting on cohesion-less grain (Hamill, 1987) 

Bed load theories are classified according to its calculation methods which are shear 

stress method and probabilistic method. Shear stress method has been stated in DuBoys 

(1879), which proposed the equation below to predict the movement of sediment 

particles along the bed: 

𝑞𝑏 =
0.173

𝑑
3
4

𝜏(𝜏 − 𝜏𝑐)    (2.2) 

Where, qb is total bed- load discharge in (ft3/s)/ft., d is particle size in millimetres, τ is 

tractive force acting along the bed and τc is critical tractive force along the bed. The 

range of τc is highly dependent with the type of bed particles, for example, typical fine 

silt would have a τc value of 0.05 N/m2. DuBoys (1879) equation was obtained through 

small laboratory flumes with a small range of particle variation, thus the application on 

field condition remains limited. In later works, equation [2.2] has been further improved 

by Shields (1936), Kalinske (1947) and Chang et al. (1967). Shield (1936) equation is 

dimensionally homogeneous and is applicable to any unit systems. Moreover, it is 

advantageous due to its ability to measure flow conditions with sediment transport 

greater than zero. The equation proposed by Shield (1936) is written in the form, 

𝑞𝑏𝛾𝑠

𝑞𝛾𝑆
= 10

𝜏−𝜏𝑐

(𝛾𝑠−𝛾)𝑑
    (2.3) 

Where, γs is the unit weight of sediment, γ is the unit weight of water. For probabilistic 

method, Einstein (1942, 1950) has stated two main criteria which are: (i) the critical 
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criterion for incipient motion is avoided and (ii) the bed- load transport is related to the 

fluctuation in turbulent flow rather than the average values exerted by the flow on 

sediment particles. Therefore the beginning and end of sediment motion are expressed 

in terms of probability. 

2.2 The Concept of Scour 

Sumer and Fredsøe (2002) has provided an insight on the concept of scour in their 

works. It was stated that the formation of the scour hole was due to sediment transport. 

This sediment transport has been modifying the boundary between the land and sea, 

altering and reshaping the seabed morphology. There are two main categories for 

seabed scour, which are local scour and global scour. Local scour occurs at a specific 

area due to sudden change in parameters that are associated to moving water, while the 

occurrence of global scour is attributed to the combined actions of all parameters 

formed by all nearby local scours. From previous literature (Blaauw et al., 1978; Hamill, 

1987), it has been found that the study of scour development caused by ship propellers 

is similar to the formation of local scour. Therefore, the concept of local scour should be 

understood in the determination of sediment transport caused by ship-twin-propeller’s 

jet.   

Local scour is classified into two categories: 

(i) Clear water scour, and  

(ii) Live-bed scour 

Clear water scour arises when no sediment motion occurs at the upstream region, which 

is when the undisturbed Shield parameter, θs is less than the critical tractive value of the 

Shield parameter, θcr. Shield parameter is defined as 𝜃 =
𝑈𝑓

2

𝑔(𝑠−1)𝑑
, where Uf is the 

undisturbed bed shear velocity, g is the gravity force, s is the specific gravity of 

sediment and d is the sediment grain size. When the undisturbed Shield parameter is 
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larger than the critical tractive value, the live-bed scour occurs. The examples of scour 

patterns with functional of time for clear water scour and live-bed scour are shown in 

Figure 2.2. 

 
Figure 2.2: Examples of scour patterns with the functional of time 

 

Hamill (1987) highlighted that the clear water scouring action can be further 

categorised into two periods which are: (i) the concentration of local flow in vertical 

development of scour hole, and (ii) the concentration of scour size decreased and 

distributed horizontally. Then, the concentration of local flow remains constant and 

stabilises the scour profile, until an equilibrium scour profile is reached. Equilibrium 

scour profile is also known as asymptotic state scour profile, where there is minimal or 

no changes on the maximum scour depth as compared to the selected previous accurate 

value (Hamill, 1987). Therefore, the time scale of scour process is important as the 

scour depth develops with time until it reaches the equilibrium state.   

The literature review shown that various studies on the scour analysis by the plain jet 

and single ship’s propeller wash had been carried out. However, there is no study on 

scouring actions induced by ship-twin-propeller’s jets. 
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2.2.1 Scour from Plain Jet 

Scour from plain jet consider the flows under barriers or gates, these flows have high 

potentials to cause scour due to its high velocity thrust and turbulent intensity flow.  

Plain jets exert a two-dimensional flow, which are generally being classified into wall 

jets and surface jets. Hoffmans and Verheij (2011) defined wall jets as jets with the 

characteristics of high near-bed velocities and high turbulence intensities, whereas 

surface jets have the characteristics of low near-bed velocities. The summary of the 

different jet forms is shown in Figure 2.3.  

The process of the jet scour cycle is also described in detail by Balachandar et al. 

(2000) as shown in Figure 2.4. This cycle indicates the beginning of the scour, followed 

by the digging process induced by the jet velocity flow. As it achieves the maximum 

digging level, the filling phase begins and continues up to the maximum filling level. 

The whole process is repeated until the scour formation reaches the equilibrium state. 

Mohamed and McCorquodale (1992) identified the two stages of local scour caused 

by wall jets, which are: (i) short term scour that occurs rapidly at the initial stage and (ii)  

long term scour that occurs progressively after a long duration. They found that the 

short term scour is associated with regimes of attached jet, moving jump, wave jump 

and inverted jump, whereas the long term scour is associated with surface jet and 

plunging jump.  

The scour parameters that govern the scour process from the wall jet had been clearly 

described by Sui et al. (2008), as shown in Figure 2.5. The given description on the 

scour parameters are: bo is the nozzle hydraulic radius divided by 4, ɛm is the maximum 

scour depth, xm is location of maximum scour depth, Ls is the scour hole length, H is the 

depth of water, h is the height of ridge, w is the width of scour hole and wr is the width 

of ridge. 
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(a) 

 

 

(b) 

 

 

(c) 

 

(d) 

 

 

(e) 

 

 

(f) 

Figure 2.3: Different jet forms (a)attached jet; (b)wave jump; (c)surface jet; (d)moving 
jump; (e)plunging jump and (f)inverted jump (Hoffmans and Verheij, 2011) 
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Figure 2.4: Process of the jet scour cycle: (a) scour begins; (b) digging phase 

commences; (c) digging continues; (d) maximum digging; (e) filling phase begins; (g) 
maximum fill; (h) reoccurrence of digging phase. (Balachandar et al., 2000) 

 

 
Figure 2.5: Geometry for scour induced by wall jet (Sui et al., 2008)  
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2.2.2 Scour Induced by Single Propeller 

The scour from single propeller is relatively similar to plain jet, but the consideration 

on the direction of forces has been increased from two-dimensional to three-

dimensional. The additional dimensional force input for single rotating propeller jet 

increased the complexity of scour analysis as compared to wall jets. Researchers have 

done their work in analysing the single ship’s propeller wash induced scour which 

require methodologies with higher complexity as compared to plain jet. Early works by 

Blaauw et al. (1978), Verhey et al. (1987) and Hamill (1988) initiated the investigations 

of scouring action on fine sand induced by single ship’s propeller wash for the port 

location without the present of berth structures. Hamill et al. (1999) also extended his 

studies and presented the scouring patterns on propeller wash scour near quay wall.  

 
Figure 2.6: Scour pattern induced by single ship’s propeller wash (Hong et al., 2013) 
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To date, Hong et al. (2013) investigated the development of scour hole using a 

rotating ship’s propeller jet through the experimental works and proposed the scour 

patterns as shown in Figure 2.6. Hong et al. (2013) divided the development of scouring 

profile into four stages, known as: (i) initial stage, (ii) developing stage, (iii) 

stabilisation stage and (iv) asymptotic stage. The asymptotic scour profile, which is the 

final scour profile, comprises a small scour hole beneath the propeller, a primary scour 

hole and the deposition mound. Andrew (2013) also investigated the single ship 

propeller geometry measured by the point gauge manually using a coordinate system. 

This geometry is useful for the repetition of experiment. The 14 survey characteristic 

scour points have been labelled from P1 to P14, as stated in Figure 2.7.   

 

P1:Start of tributary scour 

P2: Port side of tributary scour 

P3: Deepest point of tributary scour 

P4: Starboard side of tributary scour 

P5: Port side of transition to main scour 

P6: Starboard side of transition to main scour 

P7: Scour depth 

P8: Beginning of scour ridge (port side) 

P9: Beginning of scour ridge (starboard side) 

P10: Port side of scour ridge 

P11: Starboard side of scour ridge 

P12: Beginning of scour ridge 

P13: Scour ridge height 

P14: End of scour ridge 

Figure 2.7: Scour geometry from a single ship’s propeller jet (Andrew, 2013) 

On the other hand, Johnston et al. (2013) proposed that there are different scouring 

zone, which are: (i) the zone prior to jet impact, (ii) the zone of bo undary layer 

development and (iii) the zone of developed boundary layer flow. The zone prior to jet 
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impact is more vulnerable to ship’s propeller wash due to the higher expansion rate of 

the bottom stream of a propeller jet as compared to the upper stream. Therefore, an 

increase in the clearance height will result in an increase in expansion angle, α. The 

expansion angle was derived and proposed by Johnston et al. (2013) based on the 

clearance, C, as shown below, 

𝛼 = 66 × 10−3𝐶 + 8.3   (2.4) 

The figure of three zones indicated by Johnston et al. (2013) is shown in Figure 2.8. 

Although there are many works in regards to the investigation on scouring actions of 

single ship’s propeller wash, there is limited works related to scouring actions of ship-

twin-propeller’s wash. As such, further research is required.   

 

Figure 2.8: Boundary zone of propeller jet expansion (Johnston et al., 2013) 

2.2.3 Hyper-concentrated Flow 

When the ship docks at the port, it is usually near bollard pull condition, which 

resulted in low clearance depth between the ship’s propeller and the seabed. Thus, this 

condition prepared a shallow water aspect in analysis which will be eventually causes 
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the occurrence of hyper-concentrated flow, as firstly mentioned and defined by Pierson 

(2005). According to Pierson (2005), hyper-concentrated flow is the mixture of water 

and sediments flow where water flow remains as the main driving forces for the push of 

sediment transport. Hyper-concentrated flow does not process characteristics of non-

Newtonian flow e.g. high viscosity fluid. As such, the sediment transportation process 

induced by ship propeller’s wash is considered as a hyper-concentrated flow. 

2.3 Maximum Scour Depth and Scour with Functional Time Model 

Modelling time scale of maximum scour depth has been established and proposed by 

previous researchers. Research works in the past decades were summarised by Sumer 

and Fredsøe (2002). The model time scales for maximum scour depth focused on the 

scour around the piles, pier structures, and pipeline. However, works related to the 

model time scale of ship-twin-propeller’s wash induced scour are limited.  

Early works on establishing the functional time model in finding the maximum depth 

of plain jet scour has been stated in Rajaratnam and Berry (1977). Rajaratnam and Berry 

(1977) proposed the dimensional equation of maximum scour depth in any time through,  

 
𝜀𝑚

𝑑
= 𝑓1 [𝐹𝑜,

𝑈𝑜 𝑑

𝑣
,

𝐷𝑝

𝑑50
]    (2.5) 

Where, 𝐹𝑜 =
𝑈𝑜

√𝑔𝐷
∆𝜌

𝜌𝑠

 is a densimetric Froude Number. The densimetric Froude number, 

Fo, is considered as the most significant factor in affecting the maximum scour depth 

(Hamill, 1987; Hamill et al., 1999; Hong et al., 2013). Further details on the evaluation 

of Fo are discussed in Chapter 3 and 4. Moreover, they concluded that the effect of fluid 

viscosity on the growth of jet can be neglected, if the Reynolds number of jet, [ 
𝑈𝑜 𝑑

𝑣
 ] is 

larger than 1x104.  Thus, equation [2.5] can be reduced to, 

𝜀𝑚

𝑑
= 𝑓2 [𝐹𝑜,

𝐷𝑝

𝑑50
]    (2.6) 
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The asymptotic state of scour profile was plotted with ( 
𝜀

𝜀𝑚
 ) versus ( 

𝑋

𝑋𝑚
 ) and a sine 

curve was obtained in good agreement to the actual scour geometry.  

Verhey (1983) then studied the scour depth, scour area and scour volume based on 

the approach adopted by Rajaratnam (1981) in his studies on circular water jets. Three 

corresponding equations on scour depth, area and volume, have been proposed with 

limited range of 0.1m<d50<0.3m, 

𝜀𝑚

𝑍𝑏
= 4𝑥10−3 [ 

𝐹𝑜
𝑍𝑏

𝐷𝑝
⁄

]

2.9

    (2.7) 

𝐴𝑚

𝑍𝑏
2 = 9𝑥10−3 [ 

𝐹𝑜
𝑍𝑏

𝐷𝑝
⁄

]

3.9

    (2.8) 

𝑄𝑚

𝑍𝑏
2 = 8𝑥10−6 [ 

𝐹𝑜
𝑍𝑏

𝐷𝑝
⁄

]

6.8

    (2.9) 

Where, Zb is the distance of propeller axis to the fairway bottom and Do is the initial 

diameter of the slip stream. Moreover, Verhey (1983) also suggested that the scaling 

effect due to viscosity were negligible if Reynolds number for both propellers and flow 

were larger than 7×104 and 3×103, respectively. The Reynolds number for both 

propellers and flow can be calculated in the form of: 

𝑅𝑒𝑝𝑟𝑜𝑝 =
𝑛𝐷𝑝 𝐿𝑚

𝑣
    (2.10) 

𝑅𝑒𝑓𝑙𝑜𝑤 =
𝑉𝑜 𝐷𝑝

𝑣
    (2.11) 

Later works including Hamill (1988), Hamill et al., (1999) and Hong et al., (2013) 

proposed the maximum scour equation based on single rotating propeller. Hamill (1988) 
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first proposed the dimensional analysis for maximum scour depth by considering the 

efflux velocity, 𝑈𝑜 = 𝑛𝐷𝑝√𝐶𝑡 (Blaauw et al., 1978), which can be written as follows: 

𝜀𝑚

𝐷𝑝
= 𝑓2 [𝐹𝑜,

𝐷𝑝

𝑑50
,

𝐶

𝑑50
]  (2.12) 

Hamill (1988) indicated that the maximum scour depth profile is dependent on the three 

main characteristics: (i) the densimetric Froude number; (ii) the ratio of propeller 

diameter to mean sediment size; and (iii) the ratio of clearance to the mean sediment 

grain size. Hamill (1988) also proposed the logarithmic function of time for the 

maximum scour depth profile where the time, t is in seconds, the resulting scour depth 

in millimetres, mm, Uo in millimetres per second and d50, Dp and C in metres. It is 

shown in the form of, 

 𝜀𝑚 = Ω[ln(𝑡)]Γ  (2.13) 

where, 

Γ = 4.113(
𝐶

𝑑50
)0.742(

𝐷𝑝

𝑑50
)-0.522 F0

-0.682 

Ω = 6.9x10-4(
𝐶

𝑑50
)-4.63(

𝐷𝑝

𝑑50
) 3.58 F0

4.535 

Hamill et al., (1999) then improved his proposed equation [2.13], by considering a 

constant value of k=38.97 and two new correlations for the parameters of Ω and Γ. 

However, the improved equation is limited to the range of 0.5Dp<C<2.5Dp of 

unconfined condition, which is written as follow: 

𝜀𝑚 = k𝛺[ln(𝑡)]Γ  (2.14) 

where,  
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Γ = (
𝐶

𝑑50
) 0.94(

𝐷𝑝

𝑑50
)-0.48 F0

-0.53 

Ω = Γ-6.38 

Hamill et al. (1999) also proposed an equation to determine the distance from propeller 

to maximum scour depth for unconfined wash, 𝑋𝑚𝑢, which has regression, R2 of 0.99. 

 𝑋𝑚 = 𝐹𝑜
0.94𝐶   (2.15) 

On the other hand, Hamill et al. (1999) studied on the scouring action by propeller wash 

in the confined condition. It was found that the confined condition has developed the 

same profile with the unconfined condition, but with the consideration of additional 

erosion near the wall. Therefore the confined scour profile calculation is the sum of 

unconfined scour profile and erosion near wall. This indicates that the confined scour 

profile has larger scour impacts compared to unconfined scour profile. Hence the 

proposed confined scour equation after taking into consideration the distance between 

propeller and quay wall in unit meter(s) can be obtained through: 

𝜀𝑚𝑐−𝜀𝑚

𝜀𝑚𝑎
+ 1 = 1.18(

𝑋𝑤

𝑋𝑚
)−0.2   (2.16) 

However, unconfined scour profile remains as the key factor to observe and identify 

the erosive power of ship’s propeller wash. In order to identify the ship-twin-propeller’s 

wash, studies on unconfined scour profile should be conducted. Hong et al. (2013) 

estimated the time dependent maximum scour depth by considering the offset height 

ratio,  
𝑦𝑜

𝐷𝑝
 . The proposed equation is limited to the offset height ratio of 0.5<

𝑦𝑜

𝐷𝑝
 <2.87 

and densimetric Froude number of 5.55<Fo<11.1, written in the form of, 

𝜀𝑚

𝐷𝑝
= 𝑘1[log10 (

𝑈𝑜 𝑡

𝐷𝑝
) − 𝑘2]𝑘3  (2.17) 
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where,  

𝑘1 = 0.014𝐹𝑜
1.120 (

𝑦𝑜

𝐷𝑝

)−1.740 (
𝑦𝑜

𝑑50

)−0.170  

𝑘2 = 1.882𝐹𝑜
−0.009 (

𝑦𝑜

𝐷𝑝

)2.302 (
𝑦𝑜

𝑑50

)−0.441  

𝑘3 = 2.477𝐹𝑜
−0.073 (

𝑦𝑜

𝐷𝑝

)0.53 (
𝑦𝑜

𝑑50

)−0.045  

Where, k is the empirical constants proposed by Hong et al., (2013). Findings to date 

exhibited the works on jet scour and single ship’s propeller wash induced scour, but no 

conclusion has been drawn on the rate of development of ship-twin-propeller wash 

induced scour. Hence, this study will focus on the ship-twin-propeller wash induced 

scour. Moreover, since seabed scouring actions are highly dominated by the velocity 

from the propeller wash, the theory of the ship propeller velocity distribution will be 

investigated in order to provide a sound basis for the development of scouring actions 

from ship-twin-propeller wash. 

2.4 Theory of Ship’s Propeller Velocity Distribution 

Whitehouse (1998), Sumer and Fredsøe (2002) and Gaythwaite (2004) emphasised 

the need of investigation on velocity distribution of ship’s propeller jet as the initial step 

to predict the scouring impacts by the ship’s propeller jet.  The investigation on velocity 

distribution of plain jet was initiated by Albertson et al. (1950). The investigation was 

based on the fundamental of Axial Momentum Theory, which was proposed by Froude 

with reference to Rankine’s investigation in 19th century. As a result, the Axial 

Momentum Theory became the fundamental of all subsequent works related to the 

investigation on velocity distributions of plain jets and later for ship’s propeller jets. 
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Several researchers have used the actual rotating ship’s propeller to compensate the 

limitation on the investigation of plain jet. However, limited works were reported on 

ship-twin-propeller’s manoeuvring ability and velocity distribution profile of ship-twin-

propeller jets at the cross section of ship (Kim et al, 2007; Abramowicz-Gerigk, 2008; 

Dubbioso and Viviani, 2012; BAW, 2010; PIANC, 2015). Since the principle of 

rotating ship-twin-propeller jets is similar to rotating single propeller jet, the 

fundamental of plain jets and single ship’s propeller jet will be reported.  

2.4.1 Plain Jet 

The velocity distribution of a plain jet was investigated by Albertson et al. (1950) 

using a plain water tube with assumptions of axial momentum theory. As consequence, 

the characteristic of ship’s propeller using a plain jet is proposed based on the following 

assumptions: 

(i) The propeller is represented by an ideal actuator disc of equivalent diameter as 

shown in figure 2.9. 

(ii) The disc consists of an infinite number of rotating blades, rotating at an infinite 

speed.  

(iii) There is negligible thickness of the disc in the axial direction. 

(iv) The disc is submerged in an ideal fluid. 

(v) All elements of fluid passing through the disc undergo pressure that increases at 

an equivalent rate. 

(vi) The energy supplied to the disc is, in turn, supplied to the fluid without any 

rotational effects being induced.  

Figure 2.9 shows the propeller represented as an actuator disc. The upstream of the 

velocity and pressure are represented by VA and PA respectively. A minimum distance 

between section A and D is required to allow the occurrence of uniform and axial flow. 

As the flow approaches the propeller disc at section B, acceleration occurs at the 
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upstream side of the disc due to the reduction of pressure at B (PB). The negligible 

thickness of the disc causes the velocity at section B (VB) and C (VC) to be equal. This 

leads to the energy supplied to the system when the fluid passes through the disc and 

enter into Section D. As a result, the Bernoulli’s equation cannot be app lied between 

Section B and C. However, Bernoulli’s equation can be applied between section A and 

B, as well as between section C and D. The changes of momentum due to the disc have 

resulted in a net thrust of the fluid. Based on the expression of this thrust, equations for 

the velocities predictions have been developed by several authors, and are further 

discussed in section 2.4.4.1. In Figure 2.9, P represents pressure and V represents 

velocity. 

 
Figure 2.9: Ideal actuator disc representing propeller (Hamill et al., 2004) 

2.4.2 Limitation of Axial Momentum Theory  

The axial momentum theory, which is also known as Froude’s number theory, has its 

limitations on the applicability for analysing a ship’s propeller jet. Hamill et al. (2004) 

highlighted the inadequacies of the application of the axial momentum theory as follows: 
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(i) The propeller is idealised as a disc with an infinite number of blades rotating at an 

infinite speed, which does not agree with the propeller design. The propeller is 

normally designed with three to six blades, and the speed of rotation is carefully 

chosen to provide the maximum efficiency when in service. 

(ii) It is not practical to have the disc which has negligible thickness in axial direction. 

The propeller must have a pitch in its plane in order to meet the operational 

efficiency.  

(iii) The disc is approximately same on either side is incorrect, with sizable differences 

(in order of a factor of 20) being measured by Hamill et al., (2004). 

(iv) The assumption of “pressure increases at an equivalent rate” is invalid. The blades 

on a ship’s propeller have significant pressure changes in both pitch and area 

within a three-dimensional space.  

(v) The assumption on “without any rotational effects being induced” is also flawed. 

The three-dimensional profile of the blade produces three directional velocity 

components, namely axial, radial and tangential velocity components.   

These shortfalls in the theory have led to several modifications to the theoretical 

efflux equation in an attempt to consider the propeller characteristic (Hamill et al., 

2004). Thus, further investigation on the calculation of efflux velocity forces induced by 

single ship’s propeller jet has been carried out by several researchers, and the propeller 

characteristics were taken into consideration. The semi-empirical equations were 

proposed to compensate the flaws of existing theories, which is discussed in section 

2.4.4.2.   
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2.4.3 Differences between the Phrases: Zone of Flow Establishment and Zone of 

Established Flow 

Albertson et al. (1950) suggested categorising the flow of a ship’s propeller jet into 

two distinct zones: (i) a zone of flow establishment and (ii) a zone of established flow, 

as shown in Figure 2.10. The schematic view of zone of flow establishment from an 

orifice jet is shown in Figure 2.11. It is assumed that a potential wash exists within the 

zone, while the efflux velocity of jet maintained (Vmax=Vo). The lateral section of 

potential central core diminishes due to the velocity discontinuity of the jets and  

surrounding fluid. Thus, the lateral mixing progress is continuously decelerating the 

fluid flow of the jet, while the overall breath of the jet increases. The overall breath 

continuously increases until the mixing process penetrates the centreline of the jet. The 

flow of jet becomes stable when it reaches the zone of established flow. 

The schematic view of zone of established flow from an orifice jet is shown in Figure 

2.12. From the previous zone, zone of flow establishment, the contract ion which was 

due to turbulent mixing between the potential core and the surrounding fluid, caused the 

decay in velocity. In this zone, the maximum velocity began to decay along the rotation 

axis (Vmax<Vo). This diffusion process continues without any essential changes in 

character (Steward et al., 1991). Subsequently, the surrounding fluid balances along 

with the reduction of jet velocity. Moreover, the plain water jet is asymmetrical with the 

entire jet, which resulted in the plain water jet being mirrored along the central axis 

(Hamill, 1987).  Albertson et al. (1950) also reported that the angle of diffusion in the 

zone of established flow is larger than the angle in the zone of flow establishment. 

Further investigation carried out by Brewster (1997) reported that the differences of the 

angle may be due to the varied diffusion process within these two zones.  
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Figure 2.10: Schematic view of two zone flows from an orifice jet (Albertson et al., 

1950) 

 

 
Figure 2.11: Schematic view of zone of flow establishment from an orifice jet 

(Albertson et al., 1950) 

 
Figure 2.12: Schematic view of zone of established flow from an orifice jet (Albertson 

et al., 1950) 
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The fundamental theory of the characteristic of these two zones has improved the 

understanding on velocity distributions of the ship’s propeller jet ind uced scour. This 

theory is important especially in predicting the occurrence of maximum velocity (efflux 

velocity), which leads to the prediction on maximum scour depth. It is therefore 

believed that the maximum scour depth will occur at the zone of flow establishment, 

based on Figure 2.11. Thus, the zone of flow establishment will be given high attention 

in the prediction of efflux velocity of ship-twin-propeller wash in current study. 

2.4.4 Single Ship’s Propeller Jet 

Ship’s propeller jet has a complex flow fie ld which induced high velocity jet while 

its hull induced turbulent wakes (Hamill, 1987). Moreover, Prosser (1986) highlighted 

that the effect of ship’s propeller geometry on the propeller jet is insignificant when the 

ship is stationary or manoeuvring at low speeds. The investigation of ship’s propeller 

wash has been developed thoroughly from the investigation of plain jet to a three-

dimensional propeller. A few researchers have highlighted on the prediction of axial, 

radial and tangential velocity of components, which is discussed in the following 

sections.  

2.4.4.1 Efflux Velocity Based On Axial Momentum Theory 

Efflux velocity is the maximum velocity induced by ship’s propeller jet in the axial 

direction. Lam et al., (2010) indicated that the efflux velocity is the main contributor to 

velocity magnitude. Therefore, due to the large contribution made by axial velocity 

towards the seabed scouring, other earlier researchers were solely interested in research 

on axial velocity. Fuehrer and Römisch (1977) mentioned that efflux velocity (Uo) is the 

maximum velocity at the face of propeller. In the event of ships being manoeuvred, the 

speed of the ship is very low and the influence of the propeller at slipstream is assumed 

to have zero speed in advance (Uo=VD), where VD is the velocity of net thrust produced 

by the jets based on axial momentum theory. 
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Steward (1992) proposed an equation to predict the net thrust from a propeller based 

on axial momentum theory. The proposed equation is shown as below, 

𝑇 =
1

2
𝜌𝑤𝐴(𝑣𝐷

2 − 𝑣𝐴
2)  (2.18) 

Where, T is the propeller thrust, ρ is the density of fluid, A is the area of the cross 

section of 
𝜋𝐷2

4
, VD represents the velocity of fluid, VA is the advance speed of ship, Ct is 

the thrust coefficient measured from the propeller and n is the speed of rotation of 

propeller in revolutions per second. Hamill (1987) reported that the propeller thrust, T is 

dependent on Dp, n, ρ, µ, K, VA, as written below, 

T=f {Ct, Dp, n, ρ, µ, K, VA} 

Where, D is the propeller diameter, µ is the water viscosity and K is the modulus of 

bulk viscosity. By using dimensional analysis, it is reported in the form of, 

𝑇 = 𝐶𝑡𝜌𝑛2 𝐷𝑝
4𝑓[

𝑈

𝐷𝑝
2𝑛

,
𝐾

𝜌𝐷𝑝
2 𝑛2 ,

𝑉𝐴

𝑛𝐷𝑝
]  (2.19) 

Where, 
𝑈

𝐷𝑝
2𝑛

 is the reciprocal of Reynolds number, 
𝐾

𝜌𝐷𝑝
2𝑛2 is the combination of speed of 

sound and speed of the blade tip, and 
𝑉𝐴

𝑛𝐷𝑝
 is the distributed acceleration per revolution. 

In short, the dimensional analysis of the propeller thrust is written in the form of, 

𝑇 = 𝐶𝑡𝜌𝑛2 𝐷𝑝
4  (2.20) 

Hence, by associating equations [2.18] and [2.20] for the prediction of propeller thrust, 

it is showed as,   

1

2
𝜌𝑤𝐴(𝑣𝐷

2 − 𝑣𝐴
2) = 𝐶𝑡𝜌𝑛2 𝐷𝑝

4  (2.21) 

By substituting, the A=
𝜋𝐷2

4
, VA=0 (for zero or low advance speed), it results in, 
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𝜋

8
(𝑣𝐷

2) = 𝐶𝑡𝑛2𝐷𝑝
2  (2.22) 

By rearranging the equation, it is shown in the form of,  

𝑉𝐷 = 1.59𝑛𝐷𝑝√𝐶𝑡  (2.23) 

Since, VD=Uo, thus the equation is written as follows,  

𝑈𝑜 = 1.59𝑛𝐷𝑝√𝐶𝑡  (2.24) 

However, Fuehrer et al., (1987) has highlighted that the equation [2.24] has an 

approximate error of ±20%. Hamill et al., (2004) also proposed the limitations of the 

assumptions of axial momentum theory (refer to section 2.4.2). Consequently, the need 

of understanding and validating the flaws of axial momentum theory through semi-

empirical methods was therefore highlighted in Hamill (1987), Steward (1992) and 

Hashmi (1993). A comprehensive description of the semi-empirical method for the 

prediction of efflux velocity is discussed in the next section.  

2.4.4.2 Efflux Velocity Based On Semi-Empirical Equations 

The efflux velocity is the maximum velocity taken from a time average velocity 

distribution along the initial propeller plane and is denoted by Uo (Ryan, 2002). The 

accuracy of the entire jet relies on the accurate prediction of efflux velocity (Steward, 

1992). The summary of the efflux equations proposed by several researchers is shown 

in Table 2.1.  

Table 2.1: Summary of semi-empirical equations 

Source Equations 

Hamill (1987) 𝑈𝑜 = 1.33𝑛𝐷𝑝√𝐶𝑡 

Steward (1992) 
𝑈𝑜 = 𝜍𝑛𝐷𝑝√𝐶𝑡 

where, 𝜍 = 𝐷𝑝
−0.0686 𝑃′1.51 𝛽−0.323 ; 𝑃′ = 1.0; 𝛽 = 0.47 

Hashmi (1993) 
𝑈𝑜 = 𝐸𝑜 𝑛𝐷𝑝√𝐶𝑡 

where, 𝐸𝑜 = (
𝐷𝑝

𝐷ℎ
)

−0.403

𝐶𝑡
−1.79𝛽0.744 , 𝐷ℎ = 14.92𝑚𝑚 
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Hamill (1987) initiated the prediction of the efflux velocity using experimental 

method by replacing the plain jet with a single ship’s propeller jet. A lower coefficient 

was proposed compared to axial momentum theory for the prediction of efflux velocity 

and is shown in Table 2.1. 

Steward (1992) then furthered the investigation on efflux velocity by using two types 

of rotating propellers to conduct similar series of experiments. A new coefficient, ς was 

proposed based on the geometry characteristic of the propeller. The proposed equation 

of efflux velocity calculation is shown in Table 2.1. Dp must be a dimensional term, 

while the remaining is non-dimensional. The P ′  is the ratio of propeller pitch to 

propeller diameter, and β is the blade area ratio of the propeller used.   

Hashmi (1993) then refined the efflux equation by using the non-dimensioning 

propeller diameter with the division of propeller hub diameter. The proposed equations 

and coefficients are written as follows, 

𝑈𝑜 = 𝐸𝑜 𝑛𝐷𝑝√𝐶𝑡  (2.25) 

where, 

𝐸𝑜 = (
𝐷𝑝

𝐷ℎ
)

−0.403

𝐶𝑡
−1.79𝛽0.744 ; 

𝐷ℎ = 14.92𝑚𝑚 

2.4.4.3 Position of Efflux Velocity 

Albertson et al. (1950) believed that the position of the maximum efflux velocity of a 

plain jet is at the rotation axis. However, this statement is not applicable for rotating 

ship’s propeller, which had been proven by Berger et al. (1981), Steward (1992) and 

McGarvey (1996). Therefore a new proposed equation is as below, 
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𝑅𝑚𝑜 = 0.67(𝑅𝑝 − 𝑅ℎ)  (2.26) 

This equation proposed by Berger et al. (1981) is well accepted and validated by 

Steward (1992) and McGarvey (1996). Several researchers such as Prosser (1986), 

Hamill (1987) and Lam et al. (2010) have modified and refined equation [2.28] with 

experimental approach. The summary of the equations used for the prediction of 

position of efflux velocity is shown in Table 2.2. 

Table 2.2 Summary of equations for the prediction of position of efflux velocity 

Source Equations 

Berger et al. (1981) 𝑅𝑚𝑜 = 0.67(𝑅𝑝 − 𝑅ℎ) 

Prosser (1986) 𝑅𝑚𝑜 = 0.6(𝑅𝑝 − 𝑅ℎ) 

Hamill (1987) 𝑅𝑚𝑜 = 0.7(𝑅𝑝 − 𝑅ℎ) 

Steward (1992) Agree with Berger et al. (1981) 

McGarvey (1996) Agree with Berger et al. (1981) 

Lam et al. (2010) 𝑅𝑚𝑜 = 0.74(𝑅𝑝 − 𝑅ℎ) 

 

2.4.4.4 Radial and Tangential Velocity 

Lam et al. (2010) mentioned that the tangential and radial velocity had contributed to 

the rotation and diffusion of the propeller, respectively. The tangential velocity is the 

second largest contributor to the total velocity flow of the maximum velocity, accounted 

for 82% of the maximum axial velocity at the initial plane. This is followed by the 

radial velocity, which is the third largest velocity contributor accounted for 14% of the 

maximum axial velocity at the initial plane. For example, when the maximum velocity 

equals to 3.0 m/s, the tangential velocity would be 2.46 m/s and the radial velocity 

would be 0.14m/s, giving the velocity thrust in their respective dimension.  

The tangential velocity has two peaks with two axisymmetric sides (Lam et al., 2010). 

Petersson et al. (1996) and Brewster (1997) reported that the tangential velocity profile 

has two peaks between the rotation axis and jet boundary. The first peak corresponds to 

the joint of the hub and propeller blades, while the second peak is near to the propeller 
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tip.  Petersson et al. (1996) suggested that the first peak is located at the radial distance 

of r/Rp=0.15, and the second peak located at r/Rp=0.65. Subsequently, Brewster (1997) 

proposed that these two peaks are located at r/Rp= 0.3 and r/Rp= 0.8 at the initial efflux 

plane. Lam et al. (2010) believed the two velocity peaks occurs at r/Rp= 0.13 and r/Rp= 

0.66. The difference in positions of peaks is approximately 2~22%, thus further 

investigation on its characteristics is required.  

According to Lam et al. (2010), radial velocity has similar number of peaks with 

tangential velocity. McGrarvey (1996) and Lam et al. (2010) reported that the radial 

velocity of ship’s propeller jet increased from the hub to a peak velocity and thereafter 

decreased towards the blade tip. Brewster (1997) found that a portion of flow was 

directed towards the rotation axis to penetrate the low velocity core, which has been 

validated by Lam et al. (2010). 

2.5 Concept of Turbulent Jet Model 

The turbulent fluid motion is an irregular condition of flow in which various 

quantities of turbulent fluid showed a random variation in time and space coordination. 

The statistically distinct average values can be discerned as revealed by Hinze (1975). 

Hamill (1987) said that the movement of any fluid is governed by two key factors, 

namely gravity and viscosity, which are associated with the inertial forces of the flow. 

Since the velocities induced by ship’s propeller jet are largely horizontal flows, the 

viscosity character is clinched as the major dependent factor of the speed of flow. This 

viscosity can be sub-categorised into laminar, transient and turbulent flows. Turbulent 

flow occurs when the viscosity relative to inertial forces is weak. Therefore, the 

turbulent flow from a ship’s propeller jet is water particles moved in irregular paths 

neither smooth nor fixed, and the combination remains as a representation of forward 

motion of jet (Hamill, 1987). 
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The effect of viscosity relative to inertial forces of the flow can be represented by 

Reynolds number. Since the turbulent flow increases with the Reynolds number, it is 

dependent to the Reynolds number. However, the impact on velocity thrust by 

characteristic of turbulent jet is minimum, compared to axial velocity (Hamill, 1987). 

Abramovich (1963) concluded that transverse components of turbulent jet are minor and 

can be disregarded in engineering problems involving jet theory.  

2.6 Decay of Axial Velocity within the Zone of Flow Establishment of A Single 

Propeller 

As discussed in section 2.4.3, the zone of flow establishment of single rotating ship’s 

propeller is different from plain jet. Hamill (1987) stated that the zone of flow 

establishment has two peak values at the lateral distribution of axial velocity. Hamill 

(1987) initiated the research on the decay of maximum axial velocity in the zone of flow 

establishment. He indicated that there is no maximum axial velocity decay up to the 

distance of 0.35x/Dp, as the decay of axial velocity only initiated after this point.  

The length of zone of flow establishment is defined by the position where two peaks 

of flow are combined into a single peak positioned at the rotation axis (Steward, 1992). 

Therefore, the decay continues up to a point where the two peaks velocity profile join 

into a single peak after several propeller diameters downstream. The length of zone of 

flow establishment proposed by several researchers have been summarised in Table 2.3. 

Table 2.3: Summary of suggested length of Zone of Flow Establishment by previous 

researchers 

Source Length of Zone  Acquisition method 

Albertson et al. (1950) x/Dp= 6.20 Prediction 

Blaauw & van de Kaa (1978) x/Dp= 2.18 Measurement 

Fuehrer et al. (1987) x/Dp= 2.60 Measurement 

Verhey (1983) x/Dp= 2.77 Measurement 

Hamill (1987) x/Dp= 2.00 Measurement 

Steward (1992) x/Dp= 3.25 Measurement 

Lam et al. (2012a) x/Dp= 3.68 Measurement 
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Figure 2.13: Schematic view of propeller jet in the zone of flow establishment (Hamill, 
1987) 

Albertson et al. (1950) proposed the ratio of maximum velocity to efflux velocity as, 

𝑈𝑚𝑎𝑥

𝑈𝑜
= 1  (2.27) 

Hamill (1987) found that equation [2.27] is only valid up to the distance of x/Dp=0.35 

from the propeller plane as shown in Figure 2.13. From then onwards, the maximum 

velocity begins to decay steadily along the propeller jet.  The maximum velocity at the 

downstream can be calculated using the equation below, 

𝑈𝑚𝑎𝑥

𝑈𝑜
= 0.87(

𝑥

𝐷𝑝
)−(

𝛽
4⁄ )  (2.28) 

Steward (1992) then continued the work and proposed the longitudinal length for the 

zone of flow establishment to be x/Dp=3.25, and suggested an equation to determine the 

maximum velocity decaying from the propeller plane within the zone of flow 

establishment, as written in the form of, 

𝑈𝑚𝑎𝑥

𝑈𝑜
= 1.0172 − 0.1835(

𝑥

𝐷𝑝
)  (2.29) 

Univ
ers

ity
 of

 M
ala

ya



37 

Several researchers such as Fuehrer and Römisch (1977), Blaauw and van de Kaa 

(1978), Berger et al. (1981), Verhey (1983), Steward (1992) and Hashmi (1993) carried 

out researches on the formulas to predict the flow velocity decay. The summary of the 

equations and evolution of velocity decay are shown in Table 2.4. 

On the other hand, Johnston et al. (2013) suggested that the development of a 

propeller wash is influenced by the boundary and the axial velocity only increases 

rapidly before reaching the boundary or seabed. Subsequently, the axial velocity 

reduces due to the influence of the boundary. It is proposed that the high turbulence still 

exists at the boundary of the jet, but with slow return supply flow due to the suppression 

by the boundary. Moreover, Johnston et al. (2013) proposed that the maximum axial 

velocity close to the boundary level at lower clearance height was lower compared to 

higher clearance heights.  

2.7 Influence of Ship Design 

The design of ship geometry will influence the flow pattern when the stern of ship 

approaches the inlet of a propeller during ship manoeuvring. However, when the ship is 

stationary or manoeuvred at a low speed, these effects are insignificant as the flow of 

propeller will be relatively undisturbed by the hull (Hamill, 1987). 
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Table 2.4: Summary of equations based on flow velocity decay 

Source 

Length of zone 

of flow 

establishment 

Equations Descriptions 

Albertson 

et al. 

(1950) 

0≤ x/Dj<6.2 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 1 

Maximum velocity 

is constant within 

entire zone up to 

x/Dp = 6.2 

x/Dj≥6.2 

𝑈𝑚𝑎𝑥

𝑈𝑜

=
1

2𝐶
(

𝑥

𝐷𝑝

) 

where, C = 0.018 and Dj = Dp 

Maximum velocity 

is constant within 

entire zone up to 

x/Dp = 2.6 

Fuehrer 

and 

Römisch 

(1977) 

x/Dp≥2.6 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 2.6(
𝑥

𝐷𝑝

)−1.0 

Maximum velocity 

is constant within 

entire zone up to 

x/Dp = 2.8 

Blaauw and 

van de Kaa 

(1978) 

x/Dp≥2.8 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 2.8(
𝑥

𝐷𝑝

)−1.0 

Maximum axial 

velocity is constant 

close to propeller 

up to x/Dp = 1.0, 

but not entire zone 

Berger et 

al. (1981) 
x/Dp≥1.0 

𝑈𝑚𝑎𝑥

𝑈𝑜

= 1.025(
𝑥

𝐷𝑝

)−0.6  

Maximum axial 

velocity is constant 

close to propeller 

up to x/Dp = 1.5, 

but not entire zone 

Verhey 

(1983) 
x/Dp≥1.5 

𝑈𝑚𝑎𝑥

𝑈𝑜

= 1.275(
𝑥

𝐷𝑝

)−0.7  

Maximum axial 

velocity is constant 

close to propeller 

up to x/Dp = 0.35, 

but not entire zone 

Hamill 

(1987) 

0≤ x/Dp<0.35 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 1 

No constant 

maximum axial 

velocity close to 

propeller 

0.35≤x/Dp<2 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 0.87(
𝑥

𝐷𝑝

)−
𝛽
4  

x/Dp≥2 

𝑈𝑚𝑎𝑥

𝑈𝑜

= 𝐴′(
𝑥

𝐷𝑝

)𝐵′ 

where, A’= -11/4Ct + 

6.65β++2.16P’; B’= - (1.0Ct)-

0.216β1.024P’-1.0 

Steward 

(1992) 

0≤ x/Dp<3.25 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 1.0172 − 0.1835(
𝑥

𝐷𝑝

) 

x/Dp≥3.25 
𝑈𝑚𝑎𝑥

𝑈𝑜

= 0.543 − 0.0281(
𝑥

𝐷𝑝

) 

Hashmi 

(1993) 

x/Dp≥3.25 up 

to x/Dp=16 

𝑈𝑚𝑎𝑥

𝑈𝑜

= 0.638𝑒
(−0.097

𝑥
𝐷𝑝

)
 

Use exponential 

equation 
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2.7.1 Influence of Propeller Geometry 

The propeller geometry can be differentiated in terms of propeller diameter, number 

of blades, blade area ratio, mean pitch ratio, and thrust coefficient. The influence of 

ship’s propeller geometry remained unknown (Lam et al., 2012b). Thus, Lam et al. 

(2012b) proposed a series of equations to predict the efflux velocity with different 

propeller geometry, as shown in Table 2.5. However, the variations between different 

geometries are less than 5%. 

Table 2.5: Proposed equation with different propeller geometry (Lam et al., 2012b) 

Propeller Source Proposed Equation 

Propeller-76 Experimental 𝑈𝑜 = 1.71𝑛𝐷𝑝√𝐶𝑡 

Propeller-76 Numerical 𝑈𝑜 = 1.46𝑛𝐷𝑝√𝐶𝑡 

Propeller-131 Experimental 𝑈𝑜 = 1.61𝑛𝐷𝑝√𝐶𝑡 

Propeller-131 Numerical 𝑈𝑜 = 1.41𝑛𝐷𝑝√𝐶𝑡 

Both propeller Experimental 𝑈𝑜 = 1.65𝑛𝐷𝑝√𝐶𝑡 

Both propeller Numerical 𝑈𝑜 = 1.41𝑛𝐷𝑝√𝐶𝑡 

Modified four-bladed propeller-76 Numerical 𝑈𝑜 = 1.48𝑛𝐷𝑝√𝐶𝑡 

Modified five-bladed propeller-76 Numerical 𝑈𝑜 = 0.89𝑛𝐷𝑝√𝐶𝑡 

 

2.8 Ship-Twin-Propeller’s Jets 

The application of ship-twin-propeller has been given attention as it is essential to 

promote efficiency of the ship manoeuvring ability, particularly for large container ships. 

Limited studies on investigation aspects and behaviours of ship-twin-propeller were 

carried out, especially on its hydrodynamic properties. Abramowicz-Gerigk (2008) 

studied the ship-twin-propeller ferry fluid flow during self-berthing based on 

experimental works. Kim et al. (2007) also studied the manoeuvrability of large 

container ship equipped with ship-twin-propeller and twin rudders using mathematical 

model. Both Abramowicz-Gerigk (2008) and Kim et al. (2007) used horizontal planar 

motion mechanism (HPMM) test and computer simulation with four degree of freedom 
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mathematical model. It was found that the vertical centre of hydrodynamic forces acting 

on the hull for ship-twin-propeller is smaller than single propeller ship. Moreover, ship-

twin-propeller has better linear directional stability compared to single propeller ship. 

Dubbioso and Viviani (2012) investigated the stern appendages effect of 

manoeuvring models of twin screw ships using semi-empirical method. Coraddu et al. 

(2013) then further improved their research on ship-twin-propeller ship manoeuvrability 

by investigating the asymmetric propeller behaviour by means of free running models. 

The design of twin-propeller is relatively similar with single propeller when fixed pitch 

propeller is used. The difference between right-handed and left-handed propeller are 

both used for propeller propulsion in different ship system design as stated in Techet 

(2004). Moreover, the typical range between twin-propeller ships are also 

approximately 1.0 to 1.5Dp as stated in aforementioned literatures. Therefore, in 

viewing the geometry of twin fixed pitch propeller are relatively similar (Stoye, 2011), 

therefore the further design explanation will not be described in detailed. Further 

reading can be referred to aforementioned literatures. However, understanding of ship-

twin-propeller’s hydrodynamic properties in bollard pull condition and induced scour 

pattern remained unknown. The usage of ship-twin-propeller has been applied to all 

large ships for maritime activities. Therefore, it is important to observe the trend of 

ship-twin-propeller jets velocity distribution and the scouring impacts.  

2.9 Computer Fluid Dynamic (CFD) Simulation 

CFD simulation is a type of numerical simulation based on computational method, 

which uses software instead of laboratory work. Therefore, reliability of results is 

mainly dependent on the interpretation of experts. However, its advantages include cost 

effectiveness, less time consuming, lower risk and space efficiency, as compared to the 

scaled experimental setup. The reliability of computational study is proven by a few 

successful simulation cases. For example, Lam et al., (2012b; 2012c; 2012d) 
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investigated the efflux velocity and turbulence intensity of ship’s propeller wash by 

using Fluent CFD. Other relevant research on CFD can be found in Hamill et al. (1998) 

on influence of rudder on bed velocity produced by ship’s propeller wash; Johnston et al. 

(1985), Lee et al. (1988), Lee et al. (2003), Kang et al. (2008) and Kang et al. (2011) on 

the simulation of single or twin-propeller ship incorporated with single or twin rudder 

system using mathematical model. 

2.9.1 Turbulence Model Considered In Simulation 

The turbulence forces in the water are resulted from high velocity of water current. In 

CFD software, turbulence model is used to predict the turbulent flow of water in steady 

state by using time-average equations, which commonly known as Navier-Strokes 

equations (RANS). To date, there are turbulence models used to predict the turbulent 

flow according to the characteristic of fluid flow and problem cases. Thus, the selection 

of turbulence model for numerical simulations requires detailed literature reviews on the 

type of problems. According to Lam et al. (2012c), the turbulence models used in 

numerical simulations including standard k-ε, RNG k-ε, realizable k-ε, standard k-ω, 

SST k-ω and the Spalart-Allmaras turbulence models, are from Boussinesq family. 

Hinze (1975) stated that the Boussinesq hypothesis is the Reynolds stresses in 

proportion to the mean strain rate with a scalar property of eddy viscosity. Thus, the 

Reynolds stress can be solved by predicting the eddy viscosity and through Reynolds 

Stress Models (RSM). 

2.9.1.1 Standard k-ε Turbulence Model 

Standard k-ε turbulence model is a well-established turbulence model, which uses 

two equations to solve the model (Launder and Spalding, 1972). The two equations are 

used to determine the length scales and turbulent velocity in the model. The solving 

steps are based on the assumption that the rate of production and dissipation of 

Univ
ers

ity
 of

 M
ala

ya



42 

turbulence flows are in near-balance energy transfer (Lam et al. 2012c).  The dissipation 

rate of energy, 𝛜 can be predicted using the following equation,  

ϵ =
𝑘3/2

𝑙
  (2.30) 

Where, k is the kinetic energy of the flow, l is the length scale, whereas the turbulence 

viscosity, µt is estimated based on Prandtl mixing length model,  

𝜇𝑡0 = 𝜌𝐶𝜇
𝑘2

𝜀
  (2.31) 

Where, Cµ represents an empirical constant and ρ is the density of the flow. Therefore, 

the standard k-ε model is deemed as a well validated model in the ship’s propeller jet 

prediction. Lam et al. (2012c) also recommended that standard k-ε turbulence model is 

a robust, economic and suitable model to predict the turbulence intensity within the 

flow field induced by a ship’s propeller in a reasonably accurate range.  

2.9.1.2 RNG k-ε Turbulence Model 

The RNG k-ε turbulence model is a model to improve the standard k-ε model using 

statistical mechanics approach known as renormalisation group theory (Choudhury, 

1993). Thus, the model is able to enhance the accuracy in prediction of flows with high 

strain and swirling flows. The prediction is done by adding a swirl constant into the 

standard k-ε model, which forms the following equation,  

𝜇𝑡 = 𝜇𝑡0𝑓(𝛼𝑠, Ω,
𝑘

𝜀
)  (2.32) 

Where 𝜇𝑡0  represents the turbulence viscosity value without the swirl modification 

calculated by using equation [2.31]; 𝛼𝑠  is a swirl constant that has different value 

according to the level; and Ω is the swirl characteristic evaluated within the Fluent 

software.  
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2.9.1.3 Realizable k-ε Turbulence Model 

Instead of using statistical mechanics approach, another turbulence model ba sed on 

mathematical approach, the Realizable k-ε turbulence model was also proposed.  As it is 

a mathematical approach, the ability to predict the spreading rate of the plane or round 

jet is better than standard k-ε turbulence model. This indicates that it is likely to have a 

better estimation on rotating flows, strong adverse pressure gradient imposed boundary 

layers, separation flows and recirculation flows (Shih and Liou, 1995). However, it will 

produce non-physical turbulent viscosities in the situation where the computational 

domain contains rotor and stators, as the rotating of rotor of computational domain 

might unduly affect the term (Lam et al., 2012c). Hence, caution should be taken when 

this model is associated with the rotating model (Fluent User Manual, 2003). 

2.9.1.4 Standard k-ω Turbulence Model 

Wilcox (1998) introduced the standard k-ω turbulence model to overcome the 

deficiencies of the standard k-ε model at walls, which has low Reynolds number. Thus, 

the standard k-ε model which is a high Reynolds number model, is not able to estimate 

the value near a wall accurately. Moreover, this model is likely to predict well the 

spreading rate of the shear flow for wake, mixing layers and jets, and overcome the 

limitation of k-ε turbulence model in the estimation of shear flow (Wilcox, 1998). The 

standard k-ω turbulence model is based on the transport equation which considers the 

turbulence kinetic energy, k and the dissipation rate, ω. Thus, the turbulent viscosity, µt  

can be predicted using the following, 

𝜇𝑡 = 𝛼∗ 𝜌𝑘

𝜔
  (2.33) 

Where, α* is a coefficient used to damp the turbulent viscosity causing a correction of 

low Reynolds number. Further description on the use of α* shall be referred to the 

Fluent User Manual (2003).  
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2.9.1.5 Spalart-Allmaras Model 

The Spalart-Allmaras model is a simple model for the simulation with a coarse mesh, 

developed by Spalart and Allmaras (1992). This turbulence model contains only one 

equation, unlike previous mentioned models that have two equations. It is suitable when 

the accuracy of turbulent flow computation is not critical. It is also able to give relative 

estimation on the initial stage of simulation as the requirement of computational power 

is lower compared to previous mentioned models. According to Lam et al. (2012c), this 

model gives a good prediction on wall-bounded flows and boundary layers subjected to 

adverse flow gradients.  

2.9.1.6 Reynolds Stress Model (RSM) 

This model abandons the eddy viscosity model and resolves the Reynolds stress by 

using RANS equations (Launder and Reece, 1975). This indicates that a two-

dimensional simulation requires five equations, while a three-dimensional simulation 

requires seven equations. According to Launder and Reece (1975), this model is able to 

solve complex flows due to its ability to reflect the effects of rotational, swirling and 

rapid changes in strain rate. However, the accuracy of the prediction using RSM is 

restricted by the closure of assumption employed (Lam et al., 2012c). Thus, it does not 

always predict better results compared to other turbulence models. 

2.9.2 Turbulent Intensity  

Pantan (1984) defined turbulent intensity in terms of root mean square (RMS) for 

each velocity components. The equations for each velocity components are shown 

below, 

𝐼𝑥 =
√(𝑢′𝑢′

𝑉𝑟𝑒𝑓
 ; 𝐼𝑦 =

√(𝑣′ 𝑣′

𝑉𝑟𝑒𝑓
 ; 𝐼𝑧 =

√(𝑤′ 𝑤′

𝑉𝑟𝑒𝑓
  (2.34) 
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Where, Ix, Iy and Iz are representing the x-component, y-component and z-component of 

turbulent intensity respectively, Vref is the mean flow velocity, and√(𝑢′𝑢′, √(𝑣 ′𝑣 ′ and 

√(𝑤 ′𝑤 ′ are the x-component, y-component and z-component of turbulent fluctuations.  

2.10 Summary 

Based on literature review, it has been found that there is no experimental works 

carried out for ship-twin-propeller’s wash and its resulting scour. It is therefore decided 

that investigation on the ship-twin-propeller’s wash induced scour should be carried out. 

In order to improve the understanding of ship-twin-propeller wash and its resulting 

scour, it was decided that the flow field produced by a ship-twin-propeller has to be 

investigated, particularly on the axial velocity profile. Moreover, the efflux velocity 

from the propeller for all later works was calculated based on equation [2.24].  

Therefore the experiment of ship-twin-propeller induced scour was initially conducted 

to compare with single propeller prior to proposing any coefficient or correlation based 

on equation [2.24]. As a result, a series of experiments was planned based on various 

keel clearances and rotational speeds.  
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CHAPTER 3:METHODOLOGY 

  

Overview 

The current study is designed to investigate the velocity profiles of selected rotating 

ship-twin-propellers and resulting scouring actions. An experiment model and a 

Computational Fluid Dynamic (CFD) model were set up to assist the data observation 

for the formation of scour pattern. Software and hardware were also required to measure, 

store and analyse the data. A thorough literature review revealed that there are minimal 

works consist of ship-twin-propeller’s velocity profiles, particularly on the rotating axial 

velocities and the resulting scouring profile. Literature revealed that the existing 

theories and experimental results were mostly derived from plain jet and single rotating 

propeller. Therefore, the erosive power induced by ship-twin-propeller’s wash was 

studied in order to establish the relationships for their distribution of velocities and the 

scour development with time. Large amount of experiments were required for various 

rotating speeds and clearances between the propeller tip and the sediment layer.  

3.1 Work procedure 

A flowchart indicating the overall procedures is shown in Figure 3.1. 

Methodologies used in this study are based on three objectives as stated in Chapter 1. 

First objective, “To identify the source and pattern of axial velocity impinging the 

seabed which was induced by ship-twin-propeller’s wash”. Experiment equipment such 

as a tank, a ship-twin-propeller, a shaft, an electrical system and other necessary 

equipment are required to set up and run the experiment smoothly. A Laser Doppler 

Anemometry (LDA) system was used to acquire the axial velocity profile of the ship-

twin-propeller jet.  
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To achieve second objective, which is “To determine the temporal development of 

scour induced by ship-twin-propeller’s wash by investigating the seabed scouring 

pattern”, the same experiment setup as the first objective was used. An additional layer 

of sediment was added, and the seabed scouring pattern was observed and tabulated 

with adequate equipment.  

In order to achieve the third objective, which is “Simulation of seabed scour pattern 

induced by ship-twin-propeller’s wash”, a CFD model has been established. The CFD 

model uses similar initial and boundary conditions with the experiment of scour 

investigation. The correlation of both experiments and simulation setups will be inter-

correlated and compared.  

 

Figure 3.1: Flowchart of current study 

 

 
Background of 

Study 

Parameter Determination 

Experiment Setup: 

hydrodynamic and scour 

Numerical Setup: 2D and 

3D VOF 

Preliminary 

Test 

Data Acquisition 

Yes 

No No 

Experiment Result Collection: 

hydrodynamic and scour 

Numerical Result Collection: 

2D and 3D scour pattern 

Analysis & Comparison 

Conclusion 

Univ
ers

ity
 of

 M
ala

ya



48 

3.2 Configuration and validation 

Configuration is a set of values of all parameters used in an experiment. It is useful 

when it is required to run experiments in multiple modes. 

Experiment 

In current study, a ship-twin-propeller was rotated in the same direction (clockwise) 

for the investigation. Distance between both propellers was set to 1.0Dp (one propeller 

diameter). A series of experiment was run under three sets of velocity which were 

400rpm, 500rpm and 600rpm. Validation on the current investigation has been made 

using two approaches: (i) to measure one side of the propeller with the other side turned 

off (SP) and (ii) to measure one side of the propeller with the other side turned on (TP). 

Both results were compared with previous literature for validation purposes. 

For scouring observation, three different clearances, specifically 0.31Dp, 0.5Dp and 

0.64Dp, were used in this study. These clearances were run in three different modes of 

speeds, which are 400rpm, 500rpm and 600rpm. Each set of experiment was scheduled 

to run for a total of 64 hours or until it achieved the asymptotic state of scour. 

Asymptotic stage is the stage that has minimal or no further changes on the scour 

geometry profile as compared to previous chosen accuracy scour value (Hamill, 1987).  

Since, it is using trial and error method for some of the validation experiments, it is hard 

to specify an exact number of experiments to be conducted. Therefore, excluding the 

trial and error experiments, there would be a total of thirty nine sets of final experiments 

for hydrodynamic acquisition and twenty seven sets of final exp eriments for scour 

observation. 

Simulation  

VOF method is being used in current study. The capability of current VOF to predict 

scour profile was validated by experiment data of scour profile induced by single ship’s 
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propeller jet, both two-dimensionally (2D) and three-dimensionally (3D). The scour 

pattern that was produced by single ship’s propeller jet, was then validated using the 

results from previous literature.  Then, the simulation for ship-twin-propeller’s induced 

scour was run using the same setting as the experiment set up to observe and validate 

the scour pattern. Therefore, the series of simulation is similar to the experiment 

configuration in estimating the scour pattern. 

3.3 Experimental tank 

A tank was required to study the velocity profile and its resulting scouring actions of 

ship-twin-propeller’s wash. The efflux velocity of ship-twin-propeller’s wash, which is 

the maximum velocity speed that falls in the length of zone of flow establishment, was 

also investigated.  

Since there was no existing tank in the hydraulic laboratory of University Malaya. A 

new tank with dimension of 3000mm×1200mm was proposed due to limited laboratory 

space as stated in Chapter 1. It was made of acrylic material that gave the transparent 

property, which was needed for the scanning equipment. The tank was designed with a 

depth of 1000mm for the water level to be maintained at 700mm depth, while leaving 

300mm freeboard. Table 3.1 shows the specifications of the proposed tank. Due to the 

limited available space in the laboratory, it is not possible for an extension in the 

dimension of tank. Thus, the range of diameters for ship-twin-propeller was restricted.  

The study on efflux velocity by Hamill (1987) was carried out using two propellers 

with diameters of 154mm and 61mm, respectively. He found that the length of zone of 

flow establishment of both propellers in two-dimensional falls within the range, less 

than 2.0
𝑋

𝐷𝑝
, which is diameter range of two propellers (where X is the distance from the 

propeller and Dp is the propeller diameter). Lam et al. (2012a) then further investigated 

the efflux velocity profile with a small propeller in three-dimensional space. It was 
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found that the length of zone of flow establishment was approximately 3.68
𝑋

𝐷𝑝
. 

Therefore, a tank with 3000mm in length, with propeller shaft and rig is set to a 

calculative distance from the edge of tank. The choices of size of propeller geometry 

were limited and are discussed further in the later sections. However, the range of 

adequate propeller diameters remained for further investigation, particularly on larger 

propeller sizes.  

Table 3.1: Proposed tank specification 

Tank Specifications 

Material used Acrylic 

Shape Rectangular 

Dimension 3000mm × 1200mm × 1000mm 

Thickness 25mm 

Equipment allocation Hydraulic Lab 

 

 

Figure 3.2: Custom made tank 

The water tank was specially made by our research team in Malaysia. Two acrylic 

boards of 2400mm×1000mm×25mm and three acrylic boards of 1200mm×1000mm× 

25mm were purchased.  There were no acrylic boards of 3000mm×1000mm×25mm in 

the market. Thus, one of 1200mm×1000mm×25mm board was cut into two equally 

sized boards, which were then joined with the two 2400mm×1000mm×25mm boards to 
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form a total length of 3000mm. The tank was reinforced with stainless steel screws of 

7mm diameter and 20mm diameter. All joints were sealed with acetic silicon sealer 

(VT-201) before and after the reinforcement to prevent water leakage. The successive 

made tank is shown in Figure 3.2. 

3.4 Ship-twin-propeller design 

Since the past few decades, maritime ships with single propeller has been slowly 

replaced with ship-twin-propeller due to the demand for trading efficiency as stated in 

Kim et al. (2007). Moreover, ships equipped with ship-twin-propeller have better 

acceleration and manoeuvring abilities, handling power and stability effects as 

compared to ships with single propeller as mentioned in Dubbioso and Viviani (2012). 

Furthermore, Kim et al. (2007) mentioned ship-twin-propeller has better linear 

directional stability, coarse keeping and changing ability. With these advantages, ship-

twin-propeller had become popular in the maritime transport these days. 

The main differences between single and ship-twin-propeller are the forces and the 

force coverage areas induced by propellers. The jet produced by ship-twin-propeller has 

created new coverage areas, which will have a vast difference as compared to previous 

literature. As a result, the scour area, depth and volume induced by ship-twin-

propeller’s wash were remained unknown and it is vital for them to be investigated. 

Therefore, in the following sections, methodologies for the investigation on ship-twin-

propeller’s wash and its resulting scouring actions were reported.  

3.4.1 Terminology 

The typical cross section of a ship’s propeller blade showing some propeller’s 

characteristics is shown in Figure 3.3. It is useful to define some of the specific terms 

associate with propellers that will be used throughout the thesis in reference to Hamill 
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(1987) and EN-ISO-3715-1 (2004). All terms used in this current study are described as 

below: 

i. Blade area ratio: the area of propeller with non-dimensional value which can be 

calculated by dividing the blade area over the disc area. 

ii. Blade back: the suction side of propeller. 

iii. Blade face: the pressure side of propeller. 

iv. Blade number: the number of blades on the propeller. 

v. Blade root: the fillet area, where the blade is attached to the hub. 

vi. Blade tip: the maximum distance from the centre of hub. 

vii. Develop blade area: the sum of face areas of all the blades. 

viii. Disc area: the area of the rotating propeller tips that is normal to the propeller axis.  

ix. Leading edge: the edge when the rotating propeller producing ahead thrust. 

x. Projected area: the area of the plane of projected blade, which normal to the 

propeller axis. 

xi. Pitch ratio: is the distance of the line representing the helicoidally surface that will 

advance during one rotation. It can be calculated by dividing the pitch of the blade 

over the propeller diameter. The pitch of the blade is varies with the radius of 

propeller.  

xii. Trailing edge: the other edge of leading edge. 
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Figure 3.3: Typical cross section of a ship’s propeller blade 

3.4.2 Small scale propeller 

As the experiment tank space was limited, the range of propeller used for current 

investigation was hence limited. The ideal location for the propeller rig was set to a ratio 

between 0.2 and 0.3 from the edge of tank (refer to section 3.4.4). In current study, the 

proposed length from the propeller was 6.5
𝑋

𝐷𝑝
, which was double of the distance 

proposed by Steward (1992). The purposed length was doubled after taking into 

consideration the flow by ship-twin-propeller wash which may have an impact on a 

lengthier area. Hence, only propellers with Dp <300mm are adequate for efflux velocity 

investigation. However for the scouring actions, Hong et al (2013) studied a range of 

propellers with diameters between 60mm and 210mm, and suggested that the propeller 

wash impacts up to a length of 10Dp. By using the same setting as aforementioned, 

range of propellers with Dp≤230mm is adequate for scouring action investigation.  

According to Prosser (1986), the number of blades will affect the propeller efficiency. 

A smaller number of blades will improve the propeller efficiency whereas higher 

number of blades will allow propeller to take larger loads. This experiment will be run 

in bollard pull condition, in other words in zero advance speed. Consequently, the 

effects on the number of blades have been reduced to minimal as investigated by 

Leading edge 
Trailing edge 

Propeller Hub 
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Prosser (1986) in such condition. The propeller selected from a range of propellers 

available was, propeller number HP6.393.001.0, which is hereafter termed as Propeller-

1 (P1). The coefficient of thrust has been worked out using the formula of 𝐶𝑡 =

𝑇
𝜌𝑛2 𝐷𝑝

4⁄  , where T is the maximum thrust of this model, ρ is the fluid density, n is 

speed in the revolutions per seconds, and Dp is the diameter of propeller. The 

characteristics and picture of P1 were shown in Table 3.2 and Figure 3.4 respectively.  

Table 3.2: Characteristics of propeller 

Characteristics Propeller-1 (P1) 

Number of blades, N 3 

Propeller diameter, Dp 220mm 

Pitch ratio, P’ 1 

Thrust coefficient, Ct 0.64 

 

 
Figure 3.4: Propeller-1 

3.4.3 Powering of Propeller 

Based on previous literature as stated in Section 2.4.4, it was found that the propeller 

geometry is negligible when the propeller is in zero advance speed. Therefore, the frame 

to hold the trailing motor does not have to represent the ship hull (Hamill, 1987). A 

simple shaft of 1300mm width × 1050mm height was coupled with a horizontal beam of 

40mm width × 75mm height (see Figure 3.5). 
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Two propeller trailing motors, manufactured by Ningbo Haibo Machinery Co. Ltd. 

were used to power P1. The trailing motor systems have variable speed controls where 

the minimum angular speed is 1700rpm and maximum speed is 2100rpm, when it is 

placed underwater. However, the initial designed speed was too high to power the 

propellers, where stable velocity flow is unobtainable. It is therefore decided to add an 

inverter to lower the range of speed. The inverter had successively reduced the range of 

speed to a minimum of 300rpm and maximum of 1200rpm when it is placed underwater. 

The range of speed was measured by tachometer. These trailing motors were clamped to 

the shaft, and each trailing motors were equipped with one unit of calcium battery as a 

backup in the event of power shortage in the laboratory. The arrangement of motors is 

shown in Figure 3.6. 

 
Figure 3.5: Designed shaft 

 
Figure 3.6: Arrangement of motor for P1 
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3.4.4 Location of propeller shaft and jet 

Propeller shaft location was selected on a trial and error basis in order to balance 

between the distance of the jet and the fluid return. Based on Hamill (1987), the best 

location for the propeller shaft is proportional between 0.2 and 0.3 of the length of the 

experimental tank, when measured from the edge. The location of the propeller shaft for 

this experiment was therefore decided to be benchmarked against Hamill (1987), which 

was set between 600mm and 900mm from the edge of the tank depending on the chosen 

propeller size. Location of ship-twin-propeller jets, P1 was fixed at 350mm from the 

bottom of the tank, close to the centre of water level, leaving 350mm water freeboard. 

Preliminary tests were carried out to observe the physical flow and the return flow of 

the ship-twin-propeller jet.  The circulation effect of water within the tank has been 

shown to be insignificant to the propeller’s jet expansion. However, it was found that 

the return flow has a tendency to cause defects on the jet and frequent instability.  

Therefore, a baffle was introduced to resolve the instability of return flow and it was 

able to separate the flow from the forward moment. The baffle was placed at the other 

edge of the tank, away from the ship-twin-propeller. The location of baffle is shown in 

Figure 3.6. With the baffle in place, a steady jet of preliminary speed was constantly 

produced. Thus, the speed for propeller to run in the actual experiment was then 

determined.  

 

Figure 3.7: Location of baffle 

30° 
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3.4.5 Speed of rotation 

The maximum speed of motor has caused the propeller to be overheated and 

propeller shaft to be dislocated. Thus, for safety precaution, the maximum speed to be 

used was limited to 900rpm.  

Based on previous literature as stated in Qurrain (1994) Hamill (1987), it was found 

that the typical speed for manoeuvring a ship with propeller diameter of 1600mm was 

approximately 6 revolutions per second.  For a ship, the Froude number is represented 

by, 

𝐹𝑟 =
𝑈

√𝑔𝐿
  (3.1) 

Where, U is the ship’s velocity, g is the gravitational forces and L is the length of the 

water line level on the ship. With the similar approach, the length was replaced by the 

propeller diameter. As g equals to 1 for the ratio in prototype and model, the Froudian 

scaling equation is as below, 

𝐹𝑜 =
𝑈

√𝐷𝑝
  (3.2) 

By equating both propeller model and its prototype, the equation is written in the form, 

𝑈1

√𝐷𝑝1
=

𝑈2

√𝐷𝑝2
  (3.3) 

According to a survey on British ports and harbours by Qurrain (1994), the typical 

propeller size which may cause seabed scouring, lies within the range of 1.5m to 3m in 

diameter with approximately 200rpm of operating speed. In this study, a typical ship  

propeller with diameter of 2500 mm and a coefficient of thrust, C t of 0.35 with a speed 

of 200rpm, was used as a prototype for P1. By substituting these parameters into the 
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efflux velocity equation which was proposed by Fuehrer and Römisch (1977), the 

equation below was obtained,  

𝑈𝑜 = 1.59𝑛𝐷√𝐶𝑡  (3.4) 

𝑈𝑜 = 7.84 𝑚/𝑠                  

By taking Froudian scaling equation into consideration, the necessary speed to obtain a 

similar efflux velocity was 2.33 m/s, and both propellers should run under the minimal 

speed of 500 rpm. Therefore, the angular speed to investigate velocity measurement was 

set to 400rpm, 500rpm and 600rpm, in order to observe the variations of different 

velocity profiles. 

3.4.6 Rotation direction of ship-twin-propeller 

The ship-twin-propeller is constrained to rotate in one direction, i.e. clockwise 

(towards the right hand side), and is in the form to allow free expansion. The ship-twin-

propellers rotate in the same right-handed direction when the ship is in the process of 

parking or docking towards the port side. This is attributed to the pulling gear case in 

the same direction and supporting the twin screw ship to roll over to the port side, as 

discussed with the port technicians. For investigation on the forces exerted by twin 

screw ship under bollard pull condition (in zero advance speed), the right-handed ship-

twin-propeller system shall be investigated first, when the ship docks at the port.  

Moreover, the effects of the tank bottom and water boundaries were found not to be 

hindered towards the expansion of the unconfined jet. According to Hamill et al. (1999), 

a distance of 10.00Dp is required for the experiment setup in order to allow free 

expansion for propeller flow. Therefore, the circulation effect of the water within the 

tank for current setup was found to be insignificant towards the jet expansion. 
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3.5 Velocity measurements 

The velocity measurements were designed using grid dimension. The diameter of P1 

was 220mm, the grid dimensions were set to 10mm×10mm for both horizontal and 

vertical grid as shown in Figure 3.8. The horizontal grid was used to obtain the velocity 

decay of the axial velocity flow, while the vertical grid was used to obtain the efflux 

velocity exerted by the propeller jet near to the propeller ’s plane. A proposed 

measurement line has been identified (as shown in Figure 3.9) to measure the axial 

velocity of the plane x-z. The experimental hardware and software used in this study are 

discussed in section 3.5.1. LDA system was suggested to be used as data acquisition 

method, which has been discussed in section 3.5.1.1. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

 

                             (size 10х10 mm) 
 

Figure 3.8: Schematic diagram of proposed experimental grids for measurement 

  

Figure 3.9: Schematic diagram of proposed measurement line for axial velocity flow for 
ship-twin-propeller’s jet 

x 

z 
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3.5.1 Experimental hardware and software 

 
Figure 3.10: Physical image of LDA hardware system 

As mentioned earlier, the experimental hardware used for this study includes 

experimental tank, P1 propellers, inverter, and motors to run the propellers, as well as 

chargers for the motors’ backup batteries during the event of power shortage. LDA 

hardware system was also prepared for scanning purposes. This laser hardware system 

includes a traverse system coded SGSP46-500, which 500 denotes that the travel 

distance of the traverse system for the movement of the laser beam was limited to 

500mm. A dual channel Laser Doppler Velocimetry (LDV) to disperse laser was coded 

as GSL 2D-400. A two-dimensional (2D) LDV processing engine is used to process the 

laser data for both channels. Both channels are able to acquire two dimensional results 

simultaneously, for instance, x and y direction of results. A stage controller known as 

Stepping Motor Drive SHOT-320GS was also used for the progressive data acquisition. 

The physical image of the LDA hardware system is shown in Figure 3.10. 

The experimental software used in this study were basic software such as Microsoft 

Office, and a scanning software named 3D Burst processor Acquisition Manager, which 

were used with the scanning hardware. This software allows user to input settings on the 

Traverse 

System 

LDA Engine 

Processor 

Stepping 

Motor Drive 
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LDA system and obtain data from it. The theories on LDA system have been described 

in detail in section 3.5.1.1. In addition, Hamill et al. (2004) proposed an equation for the 

usage of LDA in relation to the geometric characteristic. Therefore their methodology is 

used as a reference in this current study. The equation proposed by Hamill et al. (2004) 

is as below, 

𝑈𝑜

𝑁𝑛𝑟
= 1.261 − 0.974 (

𝑝

𝑟
) + 0.733 (

𝐶

𝑟
) + 18.53 (

𝑡ℎ

𝑟
) + 5.028 (

ℎ𝑑

𝑟
) + 0.106(

𝑝

𝑟
)2 −

7.277(
ℎ𝑑

𝑟
)2 − 4.093(

ℎ𝑡

𝑐
)2       (3.5) 

3.5.1.1 Scanning software theory: Laser Doppler Anemometry (LDA) 

LDA is also known as Laser Doppler Velocimetry (LDV). As mentioned in Keenan 

and Chapin (2009), LDA is a well-understood and accurate method to detect and 

measure the velocity of small particles suspended in a liquid medium. The principle of 

LDA is splitting a single laser beam into two beams that focus on a same focal point. 

These two beams shared the same intensity and created an elliptical cross sectional area, 

which is also known as a two-beam intersection zone (Figure 3.11). This region has 

interference patterns, which are uniformed light and dark fringes. In reference to Figure 

3.11, dz represents the diameter measured at the z axis, dx is the diameter measured at 

the x axis and df is the fringe separation. The calculation of df and the number of fringe, 

Nf are written in the form (Jensen, 2004), 

 𝑑𝑓 =
𝜆

2sin (
𝜃

2
)
       (3.6) 

 𝑁𝑓 =
8𝐹𝑡𝑎𝑛 (

𝜃

2
)

𝜋𝐸𝐷𝐿
     (3.7) 

Where, DL is the initial beam thickness, E is the beam expansion and F is the lens’ focal 

length. The number of fringes is essential to estimate the LDA results reliability. The 
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higher number of fringes will give higher number of periods in the recorded signal to 

estimate the Doppler frequency.  

 

Figure 3.11: Fringing pattern observed from the two incident beams (Keenan and 
Chapin, 2009) 

Doppler Effect 

The particle with constant velocity will then pass through the fringe and create a 

Doppler shift, which is the difference between the frequency of scattered light and the 

frequency of the laser beam. Measurement of Doppler shift will be able to estimate the 

velocity of the particles passing through the fringe. However, due to the incapability of 

LDA in capturing and measuring the large frequency of Doppler shift, LDA focuses 

merely on the measurement of the beat frequency. Then, the photodiode will predict and 

calculate the velocity particles since the Doppler shift is linearly proportional to the 

velocity particles. 

As the frequency of the Doppler shift is proportional to the velocity, it is important to 

know the beat frequency or the Doppler frequency for the particular component for 

velocity estimation. Keenan and Chapin (2009) suggested that the calculation of peak 

beat frequency and mean velocity can be obtained through, 

𝑈 =
𝑓𝑝𝑒𝑎𝑘 𝜆

2sin (
𝜃𝑎
2

)
     (3.8) 
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Where, U is the mean velocity, fpeak is the peak beat frequency, λ is the fringe length and 

θa is the angle between two laser beams. In simple words, the calculation of velocity is 

done by multiplying the fringe spacing with the frequency intensity.  

Jensen (2004) mentioned the estimation of the Doppler frequency and velocity of 

particular component can be calculated in the form of,  

𝑓𝐷 =
2sin (

𝜃𝑎
2

)

𝜆
𝑢𝑥    (3.9) 

Where, ux is the particle velocity of the x-component, fD is the Doppler frequency.   

Characteristics of LDA 

According to Jensen (2004), LDA has few advantages compared to other similar 

functions tools which are as below: 

 Non-Contact Optical Measurement: It can sense the velocity without disturbing 

the flow in the measuring volume. It only requires a transparent medium and a 

suitable concentration of seeding. 

 No Calibration and Drift: It has absolute linearity in response to fluid velocity. 

The measurement is based on the stability and linearity of optical electromagnetic 

waves and unaffected by temperature and pressure variables. 

 Well-Defined Directional Response: The measuring direction is defined by the 

optical system, so the angular response is thus unambiguously defined.  

 High Spatial and Temporal Resolution: This temporal resolution is usually limited 

by the concentration of seeding rather than the measuring equipment itself. 

 Multi-Component Bi-Directional Measurements: This bi-directional shift allows 

two way measurements. Acoustic-optical frequency shift allows measurement on 

reverse flow velocities. 
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The chosen seeding particles used in the current study was Titanium Dioxide (TiO2). 

This is due to the capability of TiO2 to be well scattered in the liquid medium whilst 

optimising the particle surface properties and relative refractive index. 

3.5.2 Propeller characterisation for validation 

Validation was done for the confirmation of the current experiment with reference to 

particular requirements. Therefore, the single propeller characte risation was done along 

the efflux plane and compared with previous literature in two conditions: (i) measure 

one of the propeller with the other propeller remained off and (ii) measure one of the 

propeller with the other propeller on. The schematic view of propeller jet in the efflux 

plane for single propeller will be plotted and rendered to compare with the schematic 

view as shown in Figure 2.12. The comparison results on the characterisation are further 

discussed in chapter 4 and 5.  

3.5.3 Experiment scaling 

The scaling of experiment model was based on Verhey (1983), where the scaling 

effects due to the viscosity were negligible if the Reynolds number of flow (Reflow) and 

Reynolds number of propeller (Reprop) were greater than 3x103 and 7x104
, respectively. 

The Reynolds numbers can be calculated using the following equations: 

𝑅𝑒𝑓𝑙𝑜𝑤 =
𝑈𝑜 𝐷𝑝

𝑣
    (3.10) 

𝑅𝑒𝑝𝑟𝑜𝑝 =
𝑛𝐿𝑚𝐷𝑝

𝑣
    (3.11) 

Where Lm is the length term depending on β defined by Blaauw and van de Kaa (1978), 

𝐿𝑚 = 𝛽𝐷𝑝𝜋[2𝑁 (1 −
𝐷ℎ

𝐷𝑝
)]

−1

    (3.12) 
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Uo is the efflux velocity; Dp is the diameter of propeller; Dh is the diameter of hub; v is 

the kinematic viscosity of fluid (kinematic viscosity of water at 27oC 8.54x10-7m2/s); n 

is the number of revolution per seconds and N is the number of blades. In addition, 

according to Rajaratnam (1981), the scale effect was neglected when the viscosity is 

higher than 1 x 104. The Reflow ranges between 3.6×105 and 5.3×105 and Reprop ranges 

between 1.8×105 and 2.7×105 for current study. Considering the Reynolds number for 

the current experiment is higher than 3x103 and 7x104
, respectively, the scaling effect 

due to fluid viscosity is negligible in the current study. 

3.5.4 Sampling for axial velocity acquisition from LDA 

The sampling bias is computed by LDA system using the equation of 

Umean=1.96×√
𝑢′2̅̅ ̅̅ ̅

𝑁𝑠
, where, √𝑢′2̅̅ ̅̅ , is the root mean square of the velocity component, and 

Ns is the sample size. The confidence limit was set to 95% for velocity acquisition. The 

LDA user manual advised to use a large sample size to increase the accuracy for the 

acquired results. The number of samples obtained in this study was in the range of 3695 

to 18995, with an average of 5289 samples at each measurement point. Therefore, the 

sampling bias of current investigation is approximately 0.05m/s based on the confidence 

limit calculated by LDA system. 

3.5.5 Experiment procedure for axial velocity investigation 

The experiment began by filling clean water to the tank, which is colourless without 

sediments. This was required for the data acquisition process. Therefore, a filter system 

was setup to filter all the water supply connected to the water tank. The connections 

between pipes and filter system were ensured to be tight and leak-proof. The water was 

filled to the designed height, with a minimum water level of one propeller diameter 

height from the tip of the propeller blade. Moreover, to prevent the breeding of 

Univ
ers

ity
 of

 M
ala

ya



66 

mosquito larva, a pesticide named ABATE 1-SG was poured into water tank according 

to its concentration level without disturbing the data acquisition process. 

After filling in the water, baffle plane was inserted to the tank with the alignment of 

30 degrees from the horizontal plane of the water tank, as shown in Figure 3.7. The 

LDA system was setup with USB connections of (i) LDV processor, (ii) stepping motor 

device and (iii) traverse system connected to computer ports. The system for data 

acquisition was arranged according to F igure 3.10. The ship-twin-propeller with 

inverter was switched on and left to run until the voltage reading stabilised. This was to 

ensure that the constant voltage has been supplied to the rotor of ship-twin-propeller 

before the acquisition starts. Each velocity measurement was repeated to obtain several 

sets of data. Thereafter, all readings were averaged and tabulated in Microsoft Excel for 

graph plotting. 

3.6 Scour development 

Scour development in time relation was observed to monitor the changes in shape 

and pattern of scour induced by ship-twin-propeller’s wash. Apart from the rotational 

speed of the ship-twin-propeller, Hamill (1987) stated the other factors that will 

influence the scour development, as follows: 

(i) Sediment size; and 

(ii) Clearance between surface sediment and propeller tip. 

Therefore, considerations on the choice of sediment and bed clearances used were  

discussed in the following sections.  

3.6.1 Choice of sediment 

‘Single grain size’ sediment was suggested by Hamill (1987) to be used in the 

experiment in order to allow all sediments to travel at similar velocity. The uniform 

sand was supplied by University of Malaya Geotechnical Engineering Laboratory. The 
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average value of bulk density and mean sediment size, d50 were also tested in the 

laboratory. It was estimated that a minimum of 1750 kg of sand, with bulk density of 

1600 kg/m3, will be required for the experiment. Moreover, the average range of d50 

required for sand lies between 0.9mm and 1.0 mm.  

3.6.2 Choice of bed clearances 

The bed clearance is the distance between propeller tips and the surface layer of the 

sediment. The clearance ratio is the value of the bed clearance divided by the propeller 

diameter. It was decided to test the impacts on ship-twin-propellers wash at three 

different bed clearances. For propeller-1 (P1), depth of 70mm, 110mm and 140mm 

were chosen and given the clearance ratio of 0.31, 0.5 and 0.64Dp, respectively. By 

combining the experiment for propellers and sediments, a data series comprising three 

speeds (400rpm, 500rpm and 600rpm) were tested on these three clearance ratios.   

3.6.2.1 Properties of sediment 

The particle size of sediment along the coast is one of the major concerns that 

determine the transportation of sediment. Therefore, the properties of sediment, 

particularly the mean sediment size, d50, were studied prior to the scour experiment. 

Two types of sediments were tested before the final sediment size was chosen.  

A grain-size analysis test was performed using the Sieve Method in accordance to BS 

1377: Part 2: 1990, to determine the mean sediment size, d50 for current experiment.  

Three tests were conducted. Sand 1 (S1) and Sand 2 (S2) were tested individually, 

where sand 3 (S3) was a mixture of S1 and S2 with the ratio of 1:1. The final sediment 

used in current analysis was then decided.  The examples of the sieve analysis test 

performed in current investigation were shown in Table 3.3 and Figure 3.12.  
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Table 3.3: Example of Sieve Analysis Data 

Sieve 

Size 

(mm) 

Sieve 

Weight 

(g) 

Sieve-

Sample 

Weight 

(g) 

Weight 

Retained 

(g) 

Cumulative 

Weight 

Retained (g) 

Percent 

Retained 

(%) 

Cumulative 

Percent 

Retained 

(%) 

Percent 

Passing 

(%) 

2.000 410.0 410.0 0.0 0.0 0.00 0.0 100.0 

1.180 390.0 500.0 110.0 110.0 0.21 21.2 78.8 

1.000 395.0 550.0 155.0 265.0 0.51 51.0 49.0 

0.707 325.0 580.0 255.0 520.0 1.00 100.0 0.0 

0.425 315.0 315.0 0.0 520.0 1.00 100.0 0.0 

0.300 295.0 295.0 0.0 520.0 1.00 100.0 0.0 

0.250 305.0 305.0 0.0 520.0 1.00 100.0 0.0 

0.180 300.0 300.0 0.0 520.0 1.00 100.0 0.0 

0.150 305.0 305.0 0.0 520.0 1.00 100.0 0.0 

0.000 275.0 275.0 0.0 520.0 1.00 100.0 0.0 

 

 

Figure 3.12: Sieve Analysis Graph for current measurement, S1 

After performing the sieve analysis test, the geometric standard deviation was 

calculated based on the equation written in the form of, 𝜎𝑔 =  √𝑑84 𝑑16⁄ . The σg of 

coarse sand, fine sand and coarse fine sand were 1.35, 1.48 and 1.88 respectively. Their 

mean sediment sizes, d50, were 1mm, 0.32mm and 0.45mm respectively. S1 was 

uniform soil, while S2 and S3 soil were not uniform. Therefore only S1 soil was 

appropriate for experiment. 
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It is good to know that current experiment only considered one type of soil sediment 

size. Reason being the sediment trend is believed and agreed with previous literature 

that the finer the particle the scour would be more severe due to the bed load is lighter 

as per literature or vice versa. 

3.6.2.2 Soil relative density 

Apart from sediment grain size, sediment density will also have an impact on the 

sediment transportation based on the dependent factor of densimetric Froude number, Fo, 

as previously mentioned in Chapter 2. Therefore, a standard Proctor test was performed 

on chosen soil, S1, in accordance with BS 1377: Part 4: 1990 to determine bulk (ρb) and 

dry (ρd) density of S1 soil.  The results of bulk and dry density of S1 were 1590 kg/m3  

and 1553 kg/m3, respectively. The properties of chosen soil S1 are shown in Table 3.4. 

Table 3.4: Properties of experimental sediment, S1 

 d50 (mm) ρb (kg/m3) ρd (kg/m3) 

S1 1.0 1600 1553 

 

3.6.3 Scour geometry properties 

The scour geometry profiles are affected by experiment variables. Current 

investigation had limited the experiment variables for precise analysis on these 

parameters. The main factors which determined the maximum scour depth are, 

(i) The efflux velocity from ship-twin-propeller’s wash, and 

(ii) The clearance between the tip of propeller and the surface of sand bed. 

Efflux velocity is the maximum velocity from ship-twin-propeller’s wash. As such, 

only efflux velocity is considered in determining the maximum scour depth. Moreover, 

distances between propeller’s tips and the surface of sand bed will also have a strong 

impact on the maximum scour results as stated by Hamill, (1987) and Hong et al., 
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(2013). Therefore, the clearance is also a major parameter in determining the maximum 

scour depth. 

3.6.4 Experiment procedure for scour investigation 

The sand in the experiment was levelled to obtain a flat-bed for observation purposes, 

prior to the commencement of each experiment. The water filling process had to be 

done slowly and carefully to avoid disturbance on the levelled sand bed. In order to take 

the readings with the presents of water, a depth gauge was used. Paper rulers were 

attached around the top of the tank for position reading. The scour geometry readings 

were taken at intervals twice as long as the previous reading, starting from 15 minutes 

(i.e., 15, 30, 60 etc. minutes), up to the asymptotic state which was approximately 64 

hours. This was suggested by Hamill (1987) and supported by Hong et al. (2013). The 

measurement grid was 5mm × 5mm within the scour area. The elapsed time for data 

acquisition was measured using a stopwatch. The ship-twin-propeller was paused during 

the data acquisition, enabling the data to be taken accurately in still water. Temporarily 

stoppage of the ship-twin-propeller would not affect the overall development of scour 

geometry profiles as this investigation was conducted in a confined tank without 

excessive flow and sediment supply towards the experiment environment. Therefore, as 

suggested by Hamill (1987), it is safe to assume that the scour results would not be 

affected by turning off the propellers during measurement. 

3.6.5 Propeller rotation 

Due to the limitation of current model of propeller shaft and controller, the propeller 

can only rotate in one direction, which is clockwise (towards the right side). The 

opposite rotational direction will result in backward velocity force, which leads to 

reversal in the velocity thrust. Therefore the scour impact on the right side tends to be 

much deeper. Moreover, this rotation also represents the parking movement during ship 

docking. The pulling of gear case in the same direction will cause the ship to roll over to 

Univ
ers

ity
 of

 M
ala

ya



71 

the port. Therefore, the longitudinal section view of scour profile shall be obtained from 

the right side, which has a stronger scour impact especially to the port, and shall be 

observed through the temporal development of scour profile.   

3.7 Regression analysis 

Regression is a statistical method used to estimate the relationship between two or 

more variables, which is commonly represented by the correlation coefficient. In 

addition, it indicates the relative strength of various independent variables e ffect on a 

dependent variable. Regression analysis is commonly used to forecast an effect or future 

trend prediction.  It is used to estimate the best fitted line and equation with minimal 

prediction error through sets of observed data. The basic equation of a linear regression 

is as follows: 

𝑌 = 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ +  𝜃𝑖 𝑥𝑖 + ⋯ +  𝜃𝑛𝑥𝑛 +  𝜀   (3.13) 

Where Y is the dependent variable, 𝜃1, 𝜃2 , … , 𝜃i  ,… , 𝜃n are the regression coefficients, 

𝑥1,𝑥2, … , 𝑥i  ,… , 𝑥n are the independent variables, and 𝜀 is the random error. 

3.7.1 Non-linear Regression 

Regression can be used to fit non- linear data where the relationship of the model is 

represented by curves rather than straight lines, for example, exponential, trigonometric 

and power functions. Iterative algorithm is used to fit the non-linear regression. The 

model of a non-linear regression is as follows: 

𝒀 = 𝒇(𝐗, 𝛽) +  𝝐     (3.14) 

Where Y is the vector of response variables, X is a vector of p predictors, 𝛽 is a vector 

of k parameters, f(·) is some known regression function, and 𝝐 is an error term. 
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Non-linear regression is capable to accommodate varieties of mean function, which 

is useful for research, scientific and engineering processes as many of the processes are 

inherently non- linear. It produces relatively good estimates of the unknown parameters 

in the model despite having a relatively small number of data sets. However, the 

parameter estimates are highly dependent on the iterative optimisation procedures, 

which require an unknown value to be set as the starting value of the iteration. As such, 

a good starting value of iteration is vital to the regression analysis. Moreover, non- linear 

regression has high sensitivity to outliers, which may affect the results of the overall 

analysis. 

In current study, non- linear regression was used to estimate the relationship where 

the response variable, Y, is maximum scour depth, and key dependent factors, p, are 

time, ship-twin-propeller’s rotational velocity, the under keel clearances between the 

seabed and the propeller tip and Froude number. 

3.8 Numerical simulation 

Numerical simulation is a computational method that uses software instead of 

laboratory work. The advantages of numerical simulation include the ability to predict 

some difficult configurations with smaller space consumption as compared to existing 

experimental methods. Moreover, conventional experiment setup requires large funding 

and long duration to obtain accurate results. However, as numerical simulation uses 

software instead of laboratory work, the reliability of results is strongly dependent on 

the interpretation of experts. Consequently, the accuracy of experimental works is 

higher than numerical simulation, as numerical simulation solely relies on the 

interpretation of engineers based on their knowledge and experiences. 

 

Univ
ers

ity
 of

 M
ala

ya



73 

There are a few successful simulation cases validated with accurate experimental 

results which had proven that computational study is reliable. Successful cases include 

Hamill et al. (2009), which used the artificial neural networks (ANN) as a tool in 

studying the effects of rudder angle on ship propeller’s wash velocities impinged the 

seabed. Ryan et al. (2013) did further research from Hamill et al. (2009) using ANN 

method to analyse the velocity distribution from a ship’s propeller and the 

corresponding scour. Lam et al. (2012c) also investigated the turbulence intensity of 

ship propeller’s wash by using Fluent CFD. However, the application of VOF method 

on the seabed scour induced by propeller wash is still limited.  

3.8.1 Selection of CFD software and hardware 

From a range of Computational Fluid Dynamic (CFD) products in the market, the 

selected CFD software must have the capability to analyse the flow regime induced by 

rotating objects and the capability to model rotational movement of propeller. Therefore, 

the methods used to model the ship-twin-propeller wash similar to methods applied for 

single propeller wash. Lam et al., (2010; 2012a) used the CFD method to investigate the 

velocity distribution field of a single propeller wash. He recommended the appropriate 

solver, turbulence model and type of mesh which are used for single propeller. Hence, 

similar method shall provide accurate numerical prediction of the velocity field for ship-

twin-propeller wash. On the other hand, the selected software must have the capability 

to track the particles moving or the alteration of different phases in the simulation. The 

software is only selected when these two criteria are fulfilled.  

An HP Z820 computer workstation with quad core processors Intel Xeon, 2.40 GHz 

and 32 gigabytes ram was used.  This workstation has powerful processors and large 

memory storage which is able to uphold the simulation process and data storage. The 

software package selected for current investigation was the ANSYS FLUENT package, 

version 15.0 (2013), produced by Fluent Incorporate. ANSYS FLUENT is an 
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engineering computer program for the modelling of fluid in complex geometry with 

complete mesh flexibility in two or three dimensional meshes (Fluent Inc., 2006). 

Fluent also has the capabilities in modelling multiple moving frames, free surface and 

multiphase models for the flow. It has a concise software structure with different 

functions in different stages: 

 In the pre-possessing stage, GAMBIT was used for the geometry modelling and 

meshes generation, incorporated with different types of filters (translators) for the 

import of surface and volume meshes such as: ANSYS, Fluent 5/6 and others.  

 In the solving and post-processing stage, FLUENT was used as the mesh adapter, 

solver and also for the post-processing to readable data. 

3.8.2 Mesh 

Various meshes were built according to the needs of simulation. However, all the 

created meshes are required to undergo a mesh independent study to ensure the mesh 

convergence. The mesh size gradually increases by approximately 10 to 20 per cent 

from the previous mesh. Mesh independent study is completed when the results 

obtained using finer meshes has a variation of less than two per cent. The simulation 

works from the subsequent mesh are then used. The mesh independent study was 

undertaken for two main reasons: 

(i) To run the mesh with optimum time while getting the best converged results as 

other finer mesh. 

(ii) To minimise the error margin. 

Moreover, as the time required for modelling an unsteady solver was unknown, an 

optimum time step was selected for the simulation with the consideration on converging 

trends. 
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3.8.3 Numerical setup 

The propeller simulations were conducted at a bollard pull condition, which is zero 

advance speed of the ship, as in line with Hamill et al. (1999). Water in simulation tank 

was set to be shallow still water without channel flow and sediment supply. The vertical 

gravitational force was also neglected as jet velocity was the only source that caused 

scour during the simulation. 

A test case similar to the experiment work done by Hamill (1987) was set up. 

Therefore the boundary and initial conditions of the simulation were consistent with 

Hamill (1987) experiment setup, such as follows: experiment tank size of 

3.5m×6.0m×0.7m, a 0.154 m diameter propeller running at its efflux velocity and non-

cohesive soil flat bed with density of 1600 kg/m3. 

3.8.4 Multiphase flow: Volume of Fluid (VOF)  

Multiphase flow allows different numbers of flows into the nature and forms a 

mixture of phase. A particular phase can be identified as a particular material or a 

composition of same materials but with different physical characteristics.  

Computational fluid mechanics provide insights into the fluid dynamics of multiphase 

flow in different forms. According to Fluent Inc. (2006), three Euler-Euler available 

multiphase models are the VOF model, Eulerian model and mixture model. 

VOF model is selected in this study due to its capability to resolve difference in 

density and to observe the tracking of different phases of non- interpenetrating fluid. In 

VOF model, when medium consists of two types of fluid, the velocity fie lds for the two 

types of fluid are assumed to be the same. A volume of fraction was introduced to 

indicate the changes of each phases, as the changes are not able to be occupied in other 

phases. The volume of fraction is a continuous function where the sum of all phases 

equals to 1. The graphical changes at different time and location of the scouring line 
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were represented by the changes of the advection equation for volume fraction, α. The 

volume fraction was read in the form of 0 to 1, representing either one of the phases or 

the mixture of the phases (Fluent Inc, 2006). Consequently, VOF is capable to capture 

the sediment motion and perform scour prediction by the observation on alpha field at 

different fraction level. Therefore, accurate settings in each phase are crucial to prevent 

unnecessary problem. VOF requires at least two different types of phases to run the 

simulation. These two phases will be defined as water and sediment. The actual 

sediment particles tracking would not able to be modelled. The moving of different 

phases can be modelled and using various related equations. 

According to Fluent Inc. (2006), equations commonly used in VOF method are 

volume fraction equation, momentum equation and energy equation, listed as below: 

Volume of fraction for qth phase,  

 
1

𝜌𝑞
[

𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞 + ∇ ∙ (𝛼𝑞 𝜌𝑞 �⃗�𝑞) = 𝑆𝛼𝑞

+ ∑ (�̇�𝑝𝑞 − �̇� 𝑞𝑝)]𝑛
𝑝=1      (3.15) 

Momentum, 

𝜕

𝜕𝑡
(𝜌�⃗� + ∇ ∙ (𝜌�⃗��⃗�) = −∇𝜌 + ∇ ∙ [𝜇(∇�⃗� + ∇�⃗�𝑇)] + 𝜌�⃗� + �⃗�   (3.16) 

Energy among the qth phase, 

𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ (�⃗�(𝜌𝐸 + 𝜌)) = ∇ ∙ (𝑘𝑒𝑓𝑓∇𝑇) + 𝑆ℎ   (3.17) 

 

Where, α is the volume of fraction value, E is the energy, T is the temperature, Sh is the 

source term, keff is the effective thermal conductivity, 𝜌  is the density,  
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�⃗�  is the velocity vector, g is the gravitational force. μ is the phase viscosity and  

�⃗� is the body force. 

When medium consists of two types of fluid, the velocity field for the two types of 

fluid is assumed to be the same. VOF solves an advection equation for volume fraction, 

α, which reads in the form of 𝜕α/ 𝜕t = 0. The fraction indicates that the alpha is adverted 

with the fluid velocity itself and this will give a graphical representation of the alpha 

field at different time level to indicate the longitudinal scour profile o f the ship’s 

propeller wash induced scour.  

3.8.4.1 Phase adjustment 

Both two-dimensional (2D) and three-dimensional (3D) model were set up. Phase 

adjustments were made to comply the application of VOF model. Both 2D and 3D 

dimensional VOF model were set up with the same phase settings. In this model, total 

of two phases were defined. The phase with lower density is classified as the primary 

phase whereas the higher density phase is the secondary phase. The water at ambient 

temperature with a density of 998.2 kg/m3and viscosity of 0.001003 kg/m-s is defined 

as primary phase. The sand with density weight 1600 kg/m3 and same water viscosity is 

defined as secondary phase. Both phases of soil and water were assumed to have similar 

viscosity behaviour. The volume of fraction for primary phase was set to be zero (α=0) 

whereas the initial flat erodible bed in secondary phase was set as α=1.  

3.8.4.2 Two-dimensional VOF: single propeller jet 

The simulation tank was initially set to be 6.0m×0.7m.  However, after several runs, 

it was found that the estimation of scour process does not require such a large grid size. 

In order to optimise simulation time, the tank size was reduced to 3.5m×0.7m. Five 

clearances were used in this simulation, including 0Dp, 0.31Dp, 0.64Dp, 0.95Dp and 

1.32Dp. In line with Hamill (1987), these clearances were chosen to increase the limits 
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of clearance range for current study. In addition, the changes in scour pattern were 

visible based on the clearance variation. A two-dimensional model with segregated 

solver, pressure-velocity coupling by the SIMPLE algorithm, VOF model, standard k-ε 

turbulence model and equation discretisation by a first-order upwind scheme was set up. 

Other boundary conditions include: (i) wall boundary for surroundings, (ii) an 

interior boundary between both phases, (iii) volume of fraction of 0.5 for boundary 

layer in secondary phase, (iv) velocity inlet with uniform efflux velocity flow of 2.065 

m/s (800 rpm rotating speed), (v) a pressure outlet boundary with zero pressure, (vi) 

sediment depth of 300 mm, (vii) a zero pressure outlet at the edge of the tank, and (viii) 

a fan with polynomial pressure jump profile boundary between the inlet and outlet. 

Besides, the polynomial pressure range was limited to 2.065m/s to ensure that the flow 

remains constant. Although it was not possible to predict the detailed flow through the 

fan blades, the model has the capability to estimate the amount of flow through the fan. 

The influence of ship’s propeller geometry on the propeller jet is considered to be 

insignificant when the ship was stationary or manoeuvring at low speeds (Prosser, 1986). 

A schematic diagram and the mesh domain are shown in Figure 3.13 and 3.14.  

 

Figure 3.13: Schematic diagram of domain 
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Figure 3.14: Mesh domain (From Fluent Inc, 2006) 

3.8.4.3 Three-dimensional VOF: single propeller jet 

The initial conditions for 3D VOF simulation were set as follows: (i) a 154mm fan 

that run under three rotational speeds; 400 rpm, 600 rpm and 800 rpm in two different 

clearances of 0.31Dp and 0.64Dp; (ii) the sediment density was set to 1600 kg/m3; (iii) 

simulation tank mesh was separated into two phases namely water and sediment layer; 

(iv) a fan-swirling which represents the rotating propeller. A 3D model with segregated 

solver, pressure-velocity coupling by the SIMPLE algorithm, VOF model, standard k-ε 

turbulence model and equation discretisation by a first-order upwind scheme was set up. 

  

Figure 3.15: Schematic representation of 3-D tank 

 
Figure 3.16: Mesh domain of 3-D simulation 
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Other boundary conditions of this simulation include the following: (i) volume of 

fraction of 1 for sediment layer, (ii) a pressure outlet at the edge of tank, (iii) sediment 

depth of 300 mm, and (iv) fan and fan-swirling setting with polynomial pressure jump 

profile boundary between the inlet and outlet, the polynomial pressures were limited to 

1.032 m/s, 1.549 m/s and 2.065 m/s for each run. Moreover, the swirling effects of the 

fan modelled in 3D simulation has the capability to remodel the rotating fan features by 

controlling the pressure difference which leads to the effect of trailing and suction side 

of a rotating propeller. However, the fan model is unable to predict detailed flow 

through the fan blades but it is able to estimate the amount of flow through the fan 

(Fluent Inc., 2006). Prosser (1986) highlighted that the influence of ship’s propeller 

geometry on the propeller jet was insignificant when the ship was stationa ry or 

manoeuvring at low speeds. Therefore, consideration on the geometry of the fan blades 

was neglected in this simulation. The schematic diagram and mesh domain of 3D 

simulation are shown in Figure 3.15 and 3.16. 

3.8.4.4 Three-dimensional VOF: ship-twin-propeller scouring 
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(b) 

 

Figure 3.17: Schematic diagram of 3-D ship-twin-propeller simulation (a) side view (b) 
plan view 

The 3D VOF models the ship-twin-propeller scouring experiment works. Using the 

similar dimension of 3.0 m×1.2 m×1.0 m tank and two propellers P1 with diameter of 

220 mm. The soil density was set to be 1600 kg/m3. Since the water level was merely 

filled up to 0.7 m, the simulation tank will only consider the depth of 0.7 m instead of 

1.0m. Based on the experiment setup, three clearances were used in the simulation.  

 
Figure 3.18: Mesh domain of 3-D ship-twin-propeller simulation  

A 3D model of ship-twin-propeller was set up with features such as segregated solver, 

pressure-velocity coupling by the SIMPLE algorithm, VOF model, and equation 

discretisation by a first-order upwind scheme. Other boundary conditions of the 

simulation were as follow: (i) volume of fraction of 1.0 for sediment layer, (ii) a 

pressure outlet at the edge of tank, (iii) sediment depth of 200 mm, and (iv) fan and fan-

swirling setting, with polynomial pressure jump profile boundary between the inlet and 
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outlet. For each simulation, the polynomial pressure range was limited to 1.866 m/s, 

2.332 m/s and 2.798 m/s. The schematic diagram and the mesh domain of 3D ship-twin-

propeller simulation were relatively similar to single propeller from the side view. 

Therefore both side and plan views are shown in Figure 3.17 and 3.18. 

3.9 Data analysing for experiment and simulation  

A brief description on the methodology of data collection and analysis is given in 

this section. Further explanations are presented in Chapter 4. There are two parts of data 

obtained through the experiment. Firstly, the validation of ship-twin-propeller with 

single propeller and its corresponding axial velocity profile. The data was obtained 

using LDA software and its station files. Then, all the data obtained from the station 

files was transferred to Microsoft Excel for further analysis such as graph plotting and 

comparison with previous literature. For part two, which is scour measurement, scour 

profiles and its dimensions were obtained point by point from the scour hole. 

Dimensions such as scour depth, area and volume were tabulated and calculated 

accordingly. Further data analysis was done by contouring the scour profile laterally, 

longitudinally, as well as in plan view and three-dimensional view. All of these were 

done to improve the visualisation and estimation of scour profile through analysis. On 

the other hand, for the simulation section, scour lines and profiles were tabulated and 

observed from the simulation. The estimation of maximum scour depth was done 

through the longitudinal section and plan view of scour profile.  

3.10 Summary 

Methodologies for experiment and numerical setup have been discussed thoroughly 

in this chapter. Furthermore, all hardware and software used were also justified and 

explained. Two limitations were highlighted in this chapter. Firstly, the data acquisition 

of axial velocity flow was completed in the zone of flow establishment, due to the type 

of velocity produced by propellers which was determined at efflux plane. Secondly, the 
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investigation on scouring action was performed with uniform sand and fixed plane flat 

bed. This was done to eliminate velocity distributions other than velocity produced by 

the ship-twin-propeller. Since the experiment and numerical program were set up, the 

monitoring of velocities induced by ship-twin-propeller and resulting scouring action 

was initiated.  
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CHAPTER 4:RESULTS AND DATA ANALYSIS 

 

Overview 

In this chapter the results of data analysis for ship-twin-propeller’s wash and its 

resulting scour are presented. The data were collected and analysed in response to the 

problems and objectives for this thesis, as stated in chapter 1. The importance and 

methodology of this study on ship-twin-propeller’s wash induced seabed scour have 

been highlighted in chapter 2 and 3. Since literature had indicated that the ship-twin-

propeller’s wash induced seabed scour remains limited in this field, the discussion of 

current chapter will only be focusing on ship-twin-propeller scouring. Outline of this 

chapter considers the axial velocity profiles by ship-twin-propeller’s jet and its resulting 

scouring action. The experimental investigation on axial velocity profiles of ship-twin-

propeller’s jet in the zone of flow establishment was analysed and discussed with 

current literature and existing theories. The axial velocity of ship-twin-propeller’s jets 

and its resulting scour action had been measured throughout this research, 

experimentally and numerically (only for scour observation). Results from both 

methodologies have been analysed, discussed and compared in this chapter. Scour 

dimensions and profiles were also plotted and highlighted in current study for better 

visualisation view. 

4.1 Introduction 

When ship’s propeller rotates, it draws the water from the back of the propeller and 

forms the jet. When the jet impinges with the soil and mitigates sediments, it is known 

as ship’s propeller wash. These wash happened in a range of distances of two propeller 

flow zones as indicated in previous literature. These are zone of established flow and 

zone of flow establishment. There is no specific limit indicating where the zone ends, 

but there is literature that shows a good estimation on the zone size. The estimated zone 
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size is equivalent to two propeller diameters for the zone of established flow as stated in 

Hamill et al. (1999). Scouring impact within this zone is in particular interest where the 

highest velocity magnitudes from ship’s propellers were induced at this zone. 

Scour resulting from ship’s propeller wash is due to the velocity magnitudes in 

contact with seabed layer. The velocity magnitudes depend on the distance of the 

propeller axis from the bed, as well as the traverse distance from the jet centreline to the 

point of interest (Hamill, 1987). Therefore, the development of scour is dependent on 

the velocity magnitudes. The maximum axial velocity is found to be within the zone of 

flow establishment (Albertson et al., 1950; Hamill, 1987). The maximum flow velocity 

begins to decay from the end point of the zone and initiates the next zone which is the 

zone of established flow. Since the efflux velocity has been derived from the zone of 

flow establishment, the detailed velocity measurement focuses on the particular zone of 

flow establishment.  Moreover, the velocity within this zone must be accurately 

estimated to enable adequate design on scour protection.  

On the other hand, the development of scour profile in relation to time was described 

in Hamill et al. (1999) and Hong et al. (2013). Therefore, the experiment on the 

development of scour profiles induced by ship-twin-propeller’s wash was monitored at 

intervals of time, for each experiment, until it achieves the asymptotic condition. 

Experiments were carried out using ship-twin-propeller, rotating at speeds of 400, 500 

and 600 rpm with only non-cohesive sand. Each rotational speed was tested at three 

clearance distances with same time intervals, as outlined in chapter 3.  

The importance of the research on ship's propeller wash induced scour via Computer 

Fluid Dynamic (CFD) method has been increasing, to improve the understanding of the 

scouring process induced by ship’s propeller wash. CFD is a numerical analysis of flow 

system by means of computer-based simulation (Versteeg and Malalasekera, 1995).  For 
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current investigation, the results using Volume of Fluid (VOF) method is tabulated and 

recorded. The functions and procedures of VOF method has been thoroughly stated in 

Chapter 3. 

4.2 Axial velocity of ship’s propeller jets  

Propellers drew the upstream water into slipstream producing high velocity jets 

during the rotation which includes axial, radial and tangential velocities. Axial velocity 

is the main contributor to the total velocity magnitude from the ship’s propeller jet and 

is the key factor in causing scour (Hamill, 1987). The axial velocity profiles from 

previous literature were estimated using single rotating propellers. These were used to 

solve the axial momentum equation in reference to Gaussian normal probability 

function, which was proposed by Albertson et al., (1950). Therefore, these have drawn 

the attention in investigation of the axial profile from ship-twin-propeller jets profile in 

order to provide a sound basis for ship-twin-propeller jets scouring action.  

In current study, the axial velocities of ship-twin-propeller’s jets were investigated 

through Laser Doppler Anemometry (LDA) system. A scaled ship-twin-propeller with 

diameter of 220 mm operating in three corresponding rotational speeds of 400 rpm, 500 

rpm and 600 rpm was investigated in designated series as mentioned in chapter 3. This 

was directed to investigate the velocity change of ship-twin-propeller’s jets within the 

zone of flow establishment.   

4.3 Axial velocity measured at propeller face whilst ship-twin-propeller 

running simultaneously 

Axial velocity distribution of ship-twin-propeller was firstly measured from single 

propeller face whilst both propellers running simultaneously (TP). The measured 

position of current investigation is shown in Figure 4.1. The intersection point of the 

laser was aimed directly at the jet centreline and proceeded downward to obtain the 
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decay profile, whereas the cross section profile across the centreline was obtained along 

the propeller face parallel with the propeller axis.  The propeller face is assumed as the 

horizontal axis of the graph in Figure 4.2 to 4.4 and Figure 4.8. 

 

Figure 4.1: Measured position from single propeller face 

 

Figure 4.2: Dimensionless axial velocity of running ship-twin-propeller jets measured at 
single propeller face 

A dimensionless axial velocity (U/Uo) in proportion to dimensionless propeller 

position (r/Rp) is shown in Figure 4.2. A low velocity core was found at the centreline 

of a single propeller. It has increased in line with the rotational velocity. Two velocity 

peaks were found at 0.3r/Rp on both side of the graph and remained constant despite the 

increase in rotational speeds. These results showed that the propeller velocity thrust 

increases in proportion to the given increasing operating speed. Although it was 
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measured at the single propeller face whilst both propellers were running, the results 

shared the same characteristics with the results measured from single propeller’s face. 

There were two velocity peaks and a low velocity core at the centreline of propeller as 

mentioned in Hamill (1987). However, according to Lam et al., (2010), it is possible to 

have two peaks with different height, and it is acceptable when the difference in height 

of both peaks is less than 10%.  

4.3.1 Experiment validation with previous literature 

 

Figure 4.3: Dimensionless axial velocity compared with single rotating propeller 

The resulting axial velocity measured from TP was compared with Hamill et al., 

(2004) at the propeller face (see Figure 4.3). The axial velocity distribution profile has 

similar curve patterns, which consists of two velocity peaks and a low velocity crest. 

The velocity of hub was lower than across the blades since the hub does not produce 

any axial thrust as discussed in Hamill et al. (2004). This is due to the velocity at hub 

that was lower than other velocity magnitudes across the blades attributed to the hub, 

which does not produce any axial thrust. Therefore, the velocity at hub is solely 

dependent on the velocity induced by the propeller blades.  

-0.2

0.2

0.6

1.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

U
/U

o

r/Rp

Hamill et al., (2004) TP

Univ
ers

ity
 of

 M
ala

ya



89 

Another experiment was carried out with a single propeller (SP) for validation 

purposes. A comparison in low-velocity crest has been made between TP, SP and 

Hamill et al. (2004) as shown in Figure 4.4. TP has the highest crest, which were 58.42% 

and 15.87% higher than Hamill et al., (2004) and SP, respectively. Moreover, SP was 

34.54% higher than Hamill et al. (2004). The difference between SP and Hamill et al., 

(2004) was attributed to the difference in the blade geometry design of properties. The 

impact on the rotation of ship-twin-propeller contributed to the higher velocity 

magnitude at the centre crest, which resulted in higher low-velocity crest magnitude 

compared to single rotating propeller. 

 

Figure 4.4: Comparison of efflux velocity between TP, SP and literature 

Table 4.1: Comparison between single and ship-twin-propeller measured at single 
propeller face 

Properties Prediction 

from 

theoretical 

equations 

[2.24] 

Single 

Propeller 

Single propeller 

measured from 

simultaneous running 

ship-twin-propeller 

Pattern - Processed with peaks and a low velocity 

crest 

No of peaks - 2 2 

Velocity crest - Lower Higher 

Position of peak (r/Rp) 0.37 0.45 0.30 
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Moreover, both velocity magnitude peaks induced from ship-twin-propeller 

measured along the propeller face were located closer to the hub as compared to single 

rotating propeller, which were approximately 0.3r/Rp and 0.45r/Rp, respectively. 

Therefore, the higher concentration was given by the ship-twin-propeller’s jets at the 

centre profile. An overall comparison between single propeller and ship-twin-propeller 

measured at single propeller face was summarised in Table 4.1.  

 

Figure 4.5: Comparison of the dimensionless axial velocity decay at propeller face 

A validation measurement of TP was taken and plotted in Figure 4.5, to be compared 

with the LDA measurement readings by Lam et al. (2011). The x/Dp equals to 0 

indicating the propeller face. The pattern and the decay rate of velocity magnitude for 

TP were similar with the pattern of a single rotating propeller. The maximum axial 

velocity started to decay immediately after the face of propeller. The linear equation 

profile has a high R2 value of 0.9831 and a slope value of 0.131, and the equation is 

written in the form of 
𝑈𝑚𝑎𝑥

𝑈𝑜
= 1 − 0.131(𝑥

𝐷𝑝
⁄ ). The decay velocity profile was further 

compared with the linear regression model axial velocity along the decay profile, 

y = -0.131x + 1
R² = 0.9831
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𝑈𝑚𝑎𝑥

𝑈𝑜
= 1 − 0.1592(𝑥

𝐷𝑝
⁄ ), proposed by Lam et al. (2011). The slope value difference 

is merely 0.0282, which is less than 10%. This difference might be due to the 

contribution factor by another propeller that was rotating simultaneously during the 

measurement. Moreover, the results were supported by Lam et al. (2011) which 

indicated that there was no constant maximum axial velocity close to propeller.  

4.3.2 Efflux velocity from single propeller face  

Efflux velocity is the maximum value of velocity found on the axial distribution 

profile by a single rotating propeller jet (Hamill et al., 2004). Efflux velocity occurs at 

the efflux plane, which is located at the immediate downstream of the propeller (Lam et 

al., 2012). A single peak from the profile was chosen for comparison, as the magnitude 

profile of propeller jet was asymmetrical (Hamill, 1987; Steward, 1992).  

The efflux plane has a similar velocity pattern as the axial velocity profile, but with 

the highest velocity magnitude peaks near the propeller’s centreline. The current 

measurement of efflux velocity profile of TP was compared with SP and Hamill et al. 

(2004), as shown in Figure 4.4. It was found that all three curves shared a similar 

pattern, which consists of a low-velocity crest and two velocity peaks. This indicates 

that the rotation of an additional propeller did not affect the velocity pattern measured 

from the single propeller face, as there were still two velocity peaks and a low-velocity 

crest at the centreline of propeller face. However, the increased number of propellers 

had influenced the peak velocities across the propeller face. The peak velocities of TP 

were lower compared to single rotating propeller’s peak velocities. This indicates that 

the highest velocity point did not occur at the propeller face when ship-twin-propeller’s 

jet was powered.  
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4.3.2.1 Location of efflux velocity 

The velocity profile of ship-twin-propeller increased from the propeller hub up to 

0.30r/Rp, then gradually decreased to the blade tips. The position differs considerably as 

compared to Hamill et al. (2004), which were positioned at 0.45r/Rp from the propeller 

hub (see Figure 4.4). For position of SP measurement, it was located at 0.40r/Rp which 

is almost similar with Hamill et al. (2004). The position of current study was also 

compared with theoretical equation proposed by Berger et al. (1981), where the efflux 

velocity was positioned at Rmo=0.67(Rp-Rh). From the theoretical equation, the position 

of efflux velocity should be located at 0.365r/Rp. Current measurement shown a 

variation of 8.75% in efflux position, which is less than 10%, indicating that this 

measurement is acceptable. This might be due to the influence of different blade 

geometry or shape of the propeller blades, indicated by Hamill et al. (2004). The 

understanding on propeller locations has been assisting engineers and researchers to 

understand the point of source that will induce the largest velocity thrust. Therefore, 

engineers were able to predict the future structures in retaining the coastal line.  

4.3.3 Comparison with existing theory 

The comparison between the axial momentum theoretical equation, SP and TP is 

shown in Figure 4.6. The measured efflux velocity of single propeller showed a 

maximum reading of 3.25 m/s for a single propeller-220 rotating at 600 rpm, whereas 

the efflux velocity for TP gave a reading of 3.05 m/s with the same propeller running at 

600rpm. A value of 2.80 m/s was obtained by substituting the related parameters into 

the axial momentum theory, 𝑈𝑜 = 1.59𝑛𝐷𝑝√𝐶𝑡, where Uo is efflux velocity, Dp is 

propeller diameter and Ct coefficient of thrust. The current measurements of SP and TP 

differed by 13.80% and 8.19% respectively, from the axial momentum theory. The axial 

momentum theory which was assumed from an actuator disc has resulted in these under 

predictions. 
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In addition, when measurement data was inserted in the axial momentum theoretical 

equation, the results were inconsistent with the theoretical prediction. The SP and TP 

data showed the linear equations of y=1.91x and y=1.82x, respectively, when all the 

measurement points were intercepted at the zero point. The coefficient of 1.91 and 1.82 

showed that the measurement data were inconsistent in terms of coefficient value when 

compared with theoretical equation as mentioned in equation [2.24]. These indicated 

that the data does not perfectly fit into the axial momentum theory. However, R2 values 

for both SP and TP were relatively high at 0.96 and 0.95 respectively. The high R2 

values indicate a high data consistency and correlation between the current 

measurements and the axial momentum theory. The higher R2 value of SP revealed that 

the results of SP is more reliable and closer to the axial momentum theory as TP results 

had been interfered by rotational forces induced by the second rotating propeller. 

Therefore, the suggested coefficient for measurement at propeller face with both 

propellers running was 1.82, written in the form of 𝑈𝑜 = 1.82𝑛𝐷𝑝√𝐶𝑡 , for the 

prediction of efflux velocity for TP in this experiment.  

 
Figure 4.6: Comparison of theoretical equation and measured SP and TP 

y = 1.59x
R² = 1

y = 1.91x
R² = 0.96

y = 1.82x
R² = 0.95

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5

U
o

 (
m

/s
)

nDp√Ct

Theory SP TP
Linear (Theory) Linear (SP) Linear (TP)

Univ
ers

ity
 of

 M
ala

ya



94 

4.4 Axial velocity measured along the centreline 

From previous literature (Steward, 1992; Hamill et al., 2004; Lam et al., 2012), all 

measured velocity profiles have been plotted across the propeller face. However, the 

centreline between ship-twin-propeller’s jets had drawn attention to the possibly higher 

magnitude thrust due to the interference of velocity magnitude.  Therefore, the profile 

across the centreline of ship-twin-propeller’s jets was investigated and analysed. The 

position taken across the ship-twin-propeller’s profile is shown in Figure 4.7. The 

intersection point of the laser was aimed directly at the centreline of ship-twin-

propeller’s jet and proceeded downward to obtain the decay profile whereas, the cross 

section profile across the centreline was obtained along the ship-twin-propeller face 

which is parallel with the propeller axis.   

 

Figure 4.7: Measurement position across ship-twin-propeller jet 

Readings from the initial plane across the centreline along ship-twin-propeller jets 

faces were plotted in Figure 4.8. The centreline of twin-propeller is located at 0r/Rp. 

Both points at 1.18r/Rp and -1.18r/Rp indicated the ship propeller’s hub for both sides. 

Boundaries of both propellers tips were located at the position of 0.5r/Rp and -0.5r/Rp, 

indicating that the two lowest points were near the propeller tip boundary, as suggested 

by Hamill et al. (2004). As shown in Figure 4.8, the amplitude height of the peak 

increased with the rotational speed while the locations for both peaks remained constant. 
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The peak increased gradually from the propeller’s hub and started to decrease at the 

point of 0.91r/Rp until the boundary of propeller tip. Thereafter, the velocity magnitudes 

increased again up to the point of 0.18r/Rp which was rather close to the centreline 

between both propellers.  

Overall, initial plan of ship-twin-propeller jets across centreline shares the same 

pattern with single rotating propeller measured at the propeller face. It has two high 

velocity magnitudes peaks and a low-velocity crest at the middle point. Both peaks at 

the centreline were slightly higher than the peaks at the propeller face as compared to 

single rotating propeller for velocity 500rpm and 600rpm. However, the 400rpm peaks 

at centreline were similar to the peaks at the propeller face. Therefore, as the propeller 

rotated at optimum speed of 500rpm or higher, the axial velocity at centreline had a 

higher peak than the axial velocity measured at the propeller face. By taking the 

dimension across the efflux plane into consideration, a total of six peaks and three low-

velocity crests were formed.  Moreover, the axial velocity of ship-twin-propeller 

measured at centreline was higher than the axial velocity measured at the face, which is 

important for engineers to identify and reallocate the source of the occurrence of higher 

velocity thrust whilst both propellers were running. The interferences of both velocity 

thrust induced by each of the propellers have led to a higher velocity thrust impact at the 

centreline. As a result, by judging the single propeller’s wash that has been inducing 

severe impact of scour, ship-twin-propeller’s wash which induced higher veloc ity thrust 

will cause the seabed to be more vulnerable than the velocity thrust induced by ship’s 

propeller wash. 
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Figure 4.8: Dimensionless axial velocity profile across the propeller face 

4.4.1 Location of efflux velocity 

The influence of ship-twin-propeller had altered the maximum velocity position and 

created two efflux velocities, namely primary efflux velocity near the centreline and 

secondary efflux velocity along propeller face. For the propeller plane across the 

centreline, the highest velocity magnitudes were revealed at the centreline instead of the 

propeller face. This is relatively different from single rotating propeller as analysed in 

previous literature. Moreover, the velocity profile decreased from the position of 

0.18r/Rp to 0.5r/Rp, and subsequently inclined to the secondary efflux velocity, which 

was located at the propeller face positioned at 0.91r/Rp, as shown in Figure 4.8. The 

relocation of efflux velocity is possibly due to the interference of the velocity thrust 

induced from the ship-twin-propeller’s wash. On the other hand, the location of both 

peaks at the centreline was asymmetrical. It was skewed to the right hand side at 

0.23r/Rp, whereas the left hand side was at -0.18r/Rp. This was due to the features of 

current analysis, whereby both propellers were constrained to rotate clockwise. 

Thorough details on the velocity profiles shall be evaluated in future research. 
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4.4.2 Evaluation the existing method for current investigation 

 

Figure 4.9: Relationship of Uo and nDp√𝐶𝑡 for TPCL 

Linear regression test was performed to check the correlation between axial 

momentum theory and the axial velocity profile of ship-twin-propellers measured across 

centreline (TPCL). Correlation, R2 of TPCL found from the linear regression of Uo 

versus nDp√𝐶𝑡 for rotating ship-twin-propeller was 0.86, as shown in Figure 4.9. The 

relatively high R2 value indicated that the current equation for the measurement is 

reliable. Therefore, the axial momentum theoretical equation can be practiced for ship-

twin-propeller across the centreline but with lower accuracy. Consequently, the current 

investigation requires further research on the axial velocity distribution at the centreline 

to improve the results and the correlation value with the axial momentum theory. By 

using data correlation analysis, a coefficient was suggested to improve the accuracy 

predicted by theoretical equation. The suggested coefficient for the prediction of efflux 

velocity at the centreline was 2.058, written in the form of: 

𝑈𝑜 = 2.058𝑛𝐷𝑝√𝐶𝑡   (4.1) 
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4.5 Velocity decay in Zone of Established Flow 

As the axial velocity exerts from the initial plane of propeller, the velocity will 

gradually reduce and form velocity decay. Previous literature indicated the importance 

of decay zone for the understanding of the impact of area according to the velocity 

magnitudes. Higher velocity magnitude will result in higher scour impacts as compared 

to the lower velocity magnitude. Moreover, the decay profile also indicates the possible 

location of maximum scour depth. Literature (Hamill, 1987; Steward, 1992) believed 

that there is no maximum velocity decay close to the propeller face. Hamill (1987) 

stated that there is no maximum axial velocity decay up to a length of 0.35x/Dp from 

propeller face. However, Lam et al. (2011) furthered this study and found that there is 

no constant maximum axial velocity close to propeller which is contradictory to 

previous literature (Fuehrer and Römisch, 1977; Blaauw and van de Kaa, 1978; Berger 

et al., 1981; Verhey, 1983). The validation of current measurement is shown in Figure 

4.5 and had been discussed in section 4.3.1. 

4.5.1 Ship-twin-propeller jets decay profile 

Steward (1992) and Hashmi (1993) proposed that the axial velocity decays 

longitudinally from propeller face. Therefore, the ship-twin-propeller’s decay profile 

has been plotted longitudinally along the centreline (0r/Rp), which was located between 

both propellers (Figure 4.10). The velocity magnitudes increased from propeller face up 

to the first peak at 0.05x/Dp, measured from the propeller face. Afterward, it decreased 

gradually to 2.0x/Dp and increased again up to the second peak at 2.8x/Dp, which was 

measured from the propeller face. Subsequently, it decreased again until the end of zone 

of flow establishment. 
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Figure 4.10: Longitudinal decay profile of ship-twin-propeller along the centreline 

The longitudinal profile of ship-twin-propeller jets showed the two peaks towards 

downstream, which one peak was located near propeller face and the other located down 

forward at a position of 2.8x/Dp, which falls within the zone of flow establishment 

(x/Dp<3.25). This indicates that the two direct scour impact zones induced by ship-twin-

propeller’s wash may form a larger scour hole as compared to single rotating propeller’s 

wash. Therefore the decay pattern has given an insight of the possible occurrences of 

larger scour hole before 2.8x/Dp, which is approximately 60cm from the propeller face. 

This relationship is further discussed in the later sections on the formation of scour 

induced by ship-twin-propeller’s wash. However, since the main objective of current 

study is to analyse the scour formation induced by ship-twin-propeller’s wash, the 

further analysis of decay profile across centreline shall be conducted in future research.  

4.6 Summary of axial velocity flow of ship-twin-propeller jets 

The overall comparison between ship-twin-propeller jets and single propeller jet in 

terms of efflux velocity and axial velocity decay is tabulated in Table 4.2. Single 

propeller has two peaks when measured at propeller face, whereas ship-twin-propeller’s 

jet has a total six peaks when measured across the centreline. The six peaks comprised 

two peaks from each of the two propeller faces and another two peaks at the centreline 
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between both propellers. There are two peaks which located at the most left and most 

right is not shown in Figure 4.8, as in this figure only focus on the centre line profile.  

The positions of efflux velocity for both single and ship-twin-propeller were also 

different as the efflux velocity position had altered its location from propeller face to the 

centre of ship-twin-propeller. Based on current study, the correlation coefficient to 

predict the ship-twin-propeller’s jet was suggested, as stated in equation [4.1]. Similar 

experiment with different propeller geometries is recommended to refine the 

practicability of current analysis.   

On the other hand, for the decay profile, the number of peaks along the longitudinal 

decay profile of axial velocity for ship-twin-propeller jets was higher compared to 

single propeller which only has one peak. Two peaks occurred after the efflux plane and 

another located at 2.8x/Dp. These two peaks indicated that it is possible to have two 

scour holes at different location. These two locations would subsequently merge into a 

large scour hole as the scour time prolonged. It is believed that STP creates higher 

velocity thrust only at the merging point. However, when the distance between both 

propellers is far enough, it will behave like single propeller. Further research was 

carried out to investigate the scour profile resulted by the ship-twin-propellers’ jets. 

Table 4.2: Comparisons between single and ship-twin-propeller measured along 

propellers’ face 

Properties Theoretical 

 

Measurement 

at single 

propeller 

Twin-propellers measured 

across the centreline (TPCL) 

Efflux plane 

No of peaks 2 2 6 

Position of efflux 
velocity 

At propeller face At centreline 

Position of efflux 
velocity, Rmo 

0.67(Rp-Rh) 0.55(Rp-Rh) 
(TP) 

- 

Coefficient with 
axial momentum 
theory 

1.59 
(Verhey,1983) 

1.91 
(SP) 

2.058 
 

1.33 
(Hamill,1988) 

1.82  
(TP) 
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Properties Theoretical 

 

Measurement 

at single 

propeller 

Twin-propellers measured 

across the centreline (TPCL) 

Decay profile 

No of peaks 1 1 2 

Decay pattern No constant maximum velocity at face 

Decay position After the efflux plane After the efflux plane 

(0.05x/Dp) and at the position 
of 2.8x/Dp 

 

4.7 Scour induced by ship-twin-propeller jets 

The investigation on scour induced by ship’s propeller wash was initiated by Blaauw 

et al. (1978) and Verhey (1983), to study the relationship of the impingement of 

velocity flow induced by a two-dimensional propeller jet on the surface of seabed. No 

relationship was found to describe the temporal development of scour induced by ship’s 

propeller wash. The development of scour profiles were then monitored and studied by 

Hamill (1987) and in the later works of Hong et al. (2013). The temporal development 

of scour gave insights in describing the maximum eroded depth at any instant of time, 

until asymptotic stages were reached.  

As mentioned in Chapter 2, the scour profile from the initial ship-twin-propeller’s 

wash remains unveiled. The development of scour profiles of ship-twin-propeller was 

then monitored at a series of time intervals for each experiment. Experiments were 

carried out using propeller (P1) at rotational speed of 400rpm, 500rpm and 600rpm. 

Only one type of sand was used in the experiments and the sand level was adjusted to 

three different clearance distances, as outlined in Chapter 3. The overall scour geometry 

was plotted in plan and longitudinal view, as shown in the later sections.  

The final time duration for each experiment to achieve its asymptotic state was 

approximately seven days including the set up procedures. Despite only 64 hours were 

required to reach the asymptotic stage as mentioned in Hamill (1987) and Hong et al. 

(2013), the ship-twin-propeller system was not continuously run to prevent overheating 
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on the motor system and causing the irregular rotational speed to occur. Therefore, a 

longer duration was considered to retain the accuracy of results. 

4.7.1 Dimensional consideration 

Dimensional consideration improves the understanding on the influence of all 

determining variables for the formation of maximum scour depth. Therefore, factors 

that affect the maximum scour depth of the ship-twin-propeller are written in the form 

of, 

𝜀𝑚𝑎𝑥 = 𝑓1(𝑈𝑜, 𝐷𝑝 ,𝐶 ,𝑑50 ,𝑔.𝜌, 𝜌𝑠, 𝜐, 𝑁, 𝐷𝑝 , t)   (4.2) 

where,  

Uo = Efflux velocity 

Dp = Diameter of ship’s propeller 
C = Clearance between propeller’s tip and surface of sand bed 

d50 = Mean sediment grain size 
g = Gravitational acceleration, 9.81 m/s2 
ρ = Fluid density  

ρs = Sediment density 
t = Time 

υ = Kinematic viscosity 
N = Number of propellers 

As mentioned in previous literature (Hamill, 1987; Hamill et al., 1999; Hong et al., 

2013), Froude number, Fo, is the inertial force to gravity for flow with a free surface, 

which is extremely important in determining the maximum scour depth. It is written in 

the form of,  

𝐹𝑜 =
𝑈𝑜

√𝑔𝑑50 Δ𝜌 𝜌⁄
       (4.3) 

Previous work by Rajarathnam (1981) on the erosion of plain wall jet, showed that 

when the Reynolds number, Rej is larger than 104, the viscosity effect of flow could be 

neglected. The Reynolds number is written in the form of,  

𝑅𝑒𝑗 =
𝑈𝑜 𝐷𝑝

𝜐
       (4.4) 
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Since the Reynolds numbers of proposed rotational speed range falls between 3.6×105 

and 5.3×105, the viscosity effect flow is neglected. By using the Buckingham Pi 

Theorem, equation [4.2] and [4.3] were inserted into equation [4.1], which is then 

reduced to 

𝜀𝑚𝑎𝑥

𝐷𝑝

= 𝑓2(𝐹𝑜, 𝑅𝑒𝑗 ,
𝐷𝑝

𝑑50

,
𝐶

𝐷𝑝

, 𝑁, 𝑡) 

Showing that the maximum depth of scour is dependent on: 

i. The densimetric Froude number, Fo 

ii. The ratio of the propeller diameter to the mean sediment grain size 

iii. The ratio of clearance to the mean sediment grain size, and 

iv. The number of propellers  

v. Time of scouring  

4.7.1.1 Dependency on Froude number coefficients, velocity thrust and tip 

clearances 

For current experiment, the ship-twin-propellers were continuously run to scour the 

sediment bed until the asymptotic state. The profile of dimensionless maximum erosion 

depth was compared with different clearances at different rotating velocity as shown in 

Figure 4.11. The experimental data of current investigation on the correlation of data 

used is shown in Table 4.3.   Univ
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Figure 4.11: Relationship of Fo with Scour Depth at Different ratio of C/Dp  

Moreover, Hamill, (1987) mentioned that the dependency on εm/Dp is different with 

the existence of Fo, which is supported by current investigation. Therefore there is no 

further validation test on the sediment size, while the sediment size used in current 

investigation remained as constant. Other constant parameters of current investigation 

are as follows: 

Dp = 22 cm 

d50 = 0.1 cm 
g = 9.81 m/s2 

ρ = 998.2 kg/m3 
ρs = 1590 kg/m3 

The densimetric Froude number, Fo, has shown significant increment as the rotating 

velocity speed increases and the clearance value decreases. However, the increasing rate 

was not proportionate to Fo. The increased clearances have led to a distinction between 

the maximum depths of scour. However, there were no obvious changes on Fo value. 

Therefore, for current study, efflux velocity thrust and clearance play an active role  in 

the investigation on ship-twin-propeller’s wash induced seabed scouring profile. 
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Table 4.3: Data of current investigation for correlation investigation 

Rotational velocity (rpm) εm/Dp C/Dp Fo 

400 0.273 1.409 54.943 

500 0.545 52.130 

600 0.545 49.979 

400 0.227 2.273 54.973 

500 0.273 52.130 

600 0.318 49.979 

400 0.045 2.909 54.943 

500 0.227 52.130 

600 0.318 49.979 

  

4.7.2 Development of scour profile induced by ship-twin-propeller wash 

Scour profiles induced by ship-twin-propeller’s wash were plotted in longitudinal 

and plan forms, to observe the temporal variations. The scour profile developed slowly 

with the progress of time. There are four stages throughout the temporal development of 

ship-twin-propeller’s wash induced seabed scour, as described below:  

(i) Initial stage  

The sediment began to be transported from its initial location, along with the 

direction of ship-twin-propeller’s wash. No obvious scour is formed at this stage. Only 

two small scour holes were formed individually in front of both propellers with two 

small ridges located at both head and tail of the scour hole.  

(ii) Developing stage 

Both individual scour holes deepened at this stage. The height and length of ridges  

increased in line with the deepening of scour, resulting in the increase in length of scour 

plane. The width of scour expanded both horizontally and vertically, but the scour holes 

have yet to merge at this stage. 
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(iii) Merging stage 

This is the most significant stage where both individual scour holes and scour ridges 

merged and formed a large scour hole with a continuous circle scour ridge. Both scour 

holes were measured individually to observe the dimension changes. The scour depth 

and width continued to increase during this stage.   

(iv) Asymptotic stage 

The maximum scour depth was achieved and the scour dimension remained 

unchanged at this stage. It is also believed that the changes on scour and scouring rate at 

and beyond this stage are minimal. 

The schematic diagram for stages of scour induced by ship-twin-propeller wash under a 

constant clearance and rotational speed are shown in Figure 4.12 (longitudinal view) 

and Figure 4.13 (plan view).  The rotating ship-twin-propeller was positioned at 0 on y-

axis for longitudinal view. For plan view, the scour profile was plotted right at the point 

of the formation of scour hole. Current measurement showed that the scour formed two 

holes initially, and subsequently combined into a large hole with two ridges located at 

scour head and tail. 
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Scour Longitudinal View Stages 

 

Initial 

 

Developing 

 

Merging 

 

Asymptotic 

Figure 4.12: Schematic diagram of stages of scour (longitudinal view) induced by ship-
twin-propeller wash (C1, 600rpm) 
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Scour Plan View Stages 

 

Initial 

 

Developing 
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Asymptotic 

Figure 4.13: Schematic diagram of stages of scour (plan view) induced by ship-twin-
propeller wash (C1, 600rpm) 
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(a)

 
(b) 

 
Figure 4.14: Typical scour profile at different times: (a) dimensional and (b) non-

dimensional (C1, 600rpm) 

Typical scour profiles induced by ship-twin-propeller wash measured along the 

longitudinal section were plotted dimensionally and non-dimensionally in Figure 4.14. 

The non-dimensional profile utilised εmax and Xmax to normalise variables for the vertical 

and horizontal dimensions of the typical scour holes, respectively. The non-dimensional 

graph was plotted to observe the development of temporal scour holes and ridges at 

different times. As shown in Figure 4.14, the scour ridge developed rapidly at the early 

stage, which was prior to 8h. Then, the scour ridge area spread from point 0.34 to 0.81. 
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The scour ridge area widened until 32h and subsequently changes of ridge was minimal 

until 64h. 

The scour depth also deepened and widen quickly at the early stage. The changes of 

scour width increased tremendously until 16h. Then, the development of scour width 

and depth slowed down up to 32h and remained constant with minimal changes up to 

64h. These temporal variation indicated that the scour profiles were uncertain at the 

early stage, while the scouring rate reduced gradually at the later developing stage until 

minimal changes. When the variations of scour depth and width are minimal, it is 

considerably in asymptotic condition. 

4.7.2.1 Longitudinal view of scour profile 

The final eroded profiles at 64 hours for different clearances and speeds were plotted 

in dimensional form from Figure 4.15 to Figure 4.19. The right hand side longitudinal 

view was considered in the analysis due to the  limitation of propeller and in view that 

the scour impact on the right hand side will be higher. This is due to the constraint of 

current analysis which limits both propellers to rotate towards right hand side for the 

docking effect. Therefore the right side longitudinal view has been plotted for current 

analysis. The propeller face was located at 0 on the x-axis. It is noticeable that different 

clearances and rotational speed will give different sizes of scour hole and height of 

scour ridge. The shape of the scour hole and its resulting ridges are similar to a sinus 

curve from the side view. Ship-twin-propeller’s wash induced scouring has the 

sequence of a smaller ridge deposited at the scour head and scour hole, then a larger 

scour ridge is deposited at the scour tail. It has a deepest point where the maximum 

scour depth, εmax and its location, Xmax were measured. The ridge occurred before the 

scour head is R1 whereas the ridge deposited at the scour tail is R2. The highest point of 

R1 and R2 were considered for the comparison.  
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(a)  

 

(b) 

 

(c) 

 

Figure 4.15: Longitudinal view of scour profile at clearance of 0.31Dp (C1): (a) 400rpm; 
(b) 500rpm and (c) 600rpm 

For clearance of 0.31Dp, which is referred to as C1, it has the closest value of 

clearance between ship’s propeller and the surface of soil bed. Therefore it is expected 

to have the highest value of maximum scour depth when compared to other clearances, 

as the forces induced from ship-twin-propeller wash will require the least travel distance 

to reach the surface of soil bed. Therefore the forces have the least decay value, which 

implied the largest erosive power when it impinged towards the soil bed. On the other 

hand, as discussed in section 4.5.1, the second decay initiated at 2.8x/Dp, which is 
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approximately 60cm from the propeller face. Therefore it is predicted that another 

formation of maximum wash shall occur before 2.8x/Dp. 

 (a) 

  

(b) 

  

(c) 

  
Figure 4.16: Longitudinal view of scour profile at clearance of 0.50Dp (C2): (a) 400rpm; 

(b) 500rpm and (c) 600rpm 

The longitudinal view of scour profile of C1 with different rotational speed is plotted 

in Figure 4.15 with the axis of scour depth, ε, against the distance from the propeller 

face, X. Therefore it can be concluded that the lower clearance, C, induced higher scour. 

Based on Figure 4.15, the highest rotational speed has the deepest maximum scour 

depth, εmax, where εmax is 9.5cm. Therefore, the scour hole is more critical with low 
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under keel clearance or high rotational speed. Scour profiles for the two othe r clearances 

with the respective rotational speed are plotted in Figure 4.16 and Figure 4.17.   

(a)  

 
(b)  

 
(c)  

 
Figure 4.17: Longitudinal view of scour profile at clearance of 0.64Dp (C3): (a) 400rpm; 

(b) 500rpm and (c) 600rpm 

Comparisons have been made between constant clearance and velocity as showed in 

Figure 4.18 and 4.19. Six aspects have been compared between constant clearance and 

velocity, specifically. (i) the maximum scour depth, εmax ; (ii) the location of maximum 

scour depth, Xmax; (iii) scour size, W; (iv) scour head ridge location, XR1; (v) scour tail 

ridge location, XR2 and (vi) Scour ridge height for both ridges, R1 and R2 as shown in 

Table 4.4. 
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Figure 4.18: Comparison of longitudinal scour profiles at constant clearance 

 

Figure 4.19: Comparison of longitudinal scour profiles at constant rotational velocity 

The εmax was low at the lower rotational speed, which increased in line with the 

increase of rotational speed, while the clearance remained constant. Meanwhile, the εmax 

and the height for both ridges increased as the clearance decreases, assuming that the 

rotational velocity is constant. Xmax moved further from the propeller face as the 

rotational speed and clearance ratio increase. Therefore, it is believed that the location 

of maximum depth is dependent on the velocity thrust driven from the ship-twin-

propeller’s jet. The ridge location moved forward and further from the propeller face as 

the rotational velocity speed and clearance increased. Based on the comparison in Table 
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increasing clearances. Xmax remained relatively constant despite the increasing velocity, 

and only increased slightly as the clearance increased. The scour width, W increased 

when the velocity and clearances increased. However, changes in scour size did not 

affect the scour impact, whereas scour depth reduced whilst clearance increased. 

Therefore, W was shown as an indicator on the scour area caused by ship-twin-

propeller’s wash. The ridge height value R1 gradually increased as the rotational speed 

increased, whereas it decreased when clearance increased.  

Table 4.4: Comparison between (i) constant clearance and (ii) constant rpm 

(i) Constant clearance (all units in cm) 

Properties 400rpm 500rpm 600rpm 

εmax  1.5 5 7 

Xmax 35 35 40 

W 32 54 81 

R1 2 2 4 

XR1 15 10 5 

R2 2 2 3 

XR2 70 85 100 

(ii) Constant rpm (all units in cm) 

 C1 C2 C3 

εmax 7 6 5 

Xmax 30 30 40 

W 35 52 54 

R1 3 3 2 

XR1 0 5 10 

R2 5.5 5 2 

XR2 85 80 85 

The trend of height for R2 at scour tail is similar to R1 when rotational speed 

increased. However, R2 decreased when the clearance increased, as an increase in 

clearance will reduce the wash impact forces impinges toward the seabed, and therefore 

result in smaller ridge when the scour hole impact is smaller. The location of R1 was 

closer to the propeller face when the rotational speed increased or clearance decreased. 

However, the location of R2 increased with rotational speed but is not affected by the 

clearance differences. 
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4.7.2.2 Plan view of scour profile 

The plan view profile was plotted at the view of x-y plane. The graphs were plotted 

along the ship-twin-propeller faces (x-axis), and the side with the scour profile (y-axis) 

were observed. The solid line represents the scour hole where the sand bed level was 

below the initial bed level, while the dash line profile represents the scour profile 

including the scour ridge. The scour plan view profile for two typical clearances was 

plotted in Figure 4.20 and 4.21. The comparison of the scour plan view profile at 

constant clearance and constant rotational velocity were plotted in Figure 4.22 and 4.23.  

 

 

Figure 4.20: Plan view of scour profiles at asymptotic state: 0.31Dp clearance running 

at 600rpm 
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From the results, the right side has a larger scour impact as compared to the left side. 

The right side has been expected to have larger scour impact as discussed in Chapter 3 

and aforementioned sections. Therefore the right scour hole dominates the scour profile. 

There were ridges surrounding the scour hole, firstly the two independent scour holes, 

then the merged scour hole. The typical scour plan view extracted from this experiment 

is shown in Figure 4.20 and 4.21. The merged scour hole profile occurred for all 

clearances and rotational speed other than C1 600rpm and C2 600rpm, can be referred 

in Appendix A. 

 

 

Figure 4.21: Plan view of scour profiles at asymptotic state: 0.50Dp clearance running 

at 600rpm 
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The longitudinal scour profile for C1 600rpm has the most severe scour impact. 

Therefore, the scour plan profile has the largest merged scour hole and highest ridge at 

scour tail as shown in Figure 4.20. The development of scour profile showed that the 

entire scour profile will enlarge at constant clearance when the rotational speed 

increases. However, at constant velocity, the scour hole size fluctuated and the scour 

size continuously widen when the clearances increased. This can be assumed that the 

higher clearance will result in an increase of the scour impact area, whereas the higher 

rotational velocity will result in an increase of the forward impact of the ship-twin-

propeller wash. 

 

Figure 4.22: Comparison of plan view scour profiles at constant clearance 

 

Figure 4.23: Comparison of plan view scour profiles at constant rotational velocity 
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4.7.2.3 Estimation of scour profile 

The schematic diagram of scour profile induced by a ship-twin-propeller’s wash 

under asymptotic condition of current analysis is depicted in Figure 4.24. The location 

of scour profile including all the parameters in current study is labelled according to 

their type of view.  

In current study, the location of maximum scour depth induced by ship-twin-

propeller’s wash, Xmax, has gone through a series of trial and error prior to the formation 

of the equation. The equation was proposed as follows: 

𝑋𝑚𝑎𝑥 = 𝐹𝑜
0.909(

𝐶

𝐷𝑝
)0.193   (4.5) 

The above equation was suggested as it has the lowest root mean square error, S equals 

to 2.119% which is less than 2.5%. This indicates that it has a low standard error and 

the confidence level was above 95%. The application of current equation is proposed to 

be in the range of x≥0.31Dp, where 0Dp clearance is expected to occur directly beneath 

the ship-twin-propellers’ tips. 

The correlation data of maximum scour depth induced by ship-twin-propeller’s wash, 

εmax of current study was suggested as follows:  

𝜀𝑚𝑎𝑥 = k( log 𝑡)0.0231  (4.6) 

𝑘 = (
𝐶

𝐷𝑝
)

−0.488

(
𝑈𝑜 𝑡

𝐶
)0.241 . 

Where, 

t = time in seconds 

C = Clearance difference between the seabed and propeller tip 
Dp = Propeller diameter 

Uo = Efflux velocity  
εmax = Maximum scour depth in cm 
Xmax = Location of maximum scour depth in cm 
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The equation was suggested based on the highest correlation agreement between all 

the dependent factors analysed using non-regression method. It has a low root mean 

square error at 1.46, which indicated that the data has a high confidence level of 97%. 

The applicability of the proposed equation was tested based on the correlation between 

the predicted εmax and the observed εmax as shown in Figure 4.25. The comparison also 

showed that the proposed equation has a high correlation with experiment data, where 

R2 value equals to 0.909. The range of application of this equation is only for t ≥ 1s. The 

equation expects that at 0 seconds there is no physical velocity to initiate any scouring 

impact. Moreover, it is not applicable for 0Dp clearance level as it is assumed that the 

scour will happen directly below the propeller tip.  

 

Figure 4.24: The schematic diagram of scour profile under asymptotic condition 
induced by ship-twin-propellers’ wash 
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Figure 4.25: Comparison between observed and predicted εmax using the proposed 

model above 

4.8 Impact of ship-twin-propeller’s wash induced seabed scouring 

The scour pattern induced by STP wash was then compared with single rotating 

propeller to have an overview on the differences. The number of scour holes occurred 

was slightly different. Single rotating propeller will only produce one scour hole at any 

time, but STP will induce two scour holes at the early stage of scour. This condition 

maintained when the STP is under low rotational speed or with a high clearance gap. 

From previous literature by Hamill et al. (1999), Xmax is equivalent to 𝐹𝑜
0.94𝐶 . The 

current experiment showed that the equation of Xmax induced by ship-twin-propeller’s 

wash is  𝑋𝑚𝑎𝑥 = 𝐹𝑜
0.9098 (

𝐶

𝐷𝑝
)0.1932 , as stated in equation [4.5]. On the other hand, 

equation [4.6] which was proposed based on current study, is less complicated as 

compared to scour predicting equation by Hamill et al., (1999) and Hong et al., (2013). 

This is due to the focus of current study, which is emphasised on the relationship 

between ship-twin-propeller’s wash induced scour, rotational speed and under keel 

clearance. Therefore, it can be concluded that the relationship between the estimation of 
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Xmax and εmax are similar, which are highly dependent on the clearance level, rotational 

velocity and Froude number.  

4.9 Simulation works 

Simulation works were initiated to observe the scour pattern through Computer Fluid 

Dynamic (CFD) software. Volume of Fluid (VOF) was chosen for the simulation as 

discussed in Chapter 3. VOF has been used on single propeller two dimensionally (2D) 

and three dimensionally (3D), for validation purpose. Then, it is used to observe the 

scour pattern induced by ship-twin-propeller wash.  

Ever since, numerical simulation is able to provide the necessary data as an input for 

predictive equations of scour depth and pattern. In consistent with Hamill et al., (1999) 

and Hong et al., (2013), two key parameters for scour pattern prediction were collected, 

namely time consumption and scour positions for single propeller, to generate the 

validation. Time consumption is used to predict scour depth, whereas scour position is 

used to estimate the scour pattern. The ship-twin-propeller numerical model follows the 

experiment done by current experimental study. All results and discussion relating to 

simulation are discussed in the following sections.  

4.9.1 Volume of Fluid (VOF) validation 

The simulation was first observed with single propeller using two dimensional (2D) 

and three dimensional (3D) VOF. This is to validate that the results produced by VOF 

were in line with previous literature. Previous work done by Hamill (1987) was used to 

compare with the VOF simulation results. The setup of boundary and initial condition 

of the simulation were consistent with Hamill (1987) experiment setup as discussed in 

Chapter 3. Longitudinal scour profile, scouring depth (ε) and scour location (Xs) for 

both dimensional simulations were considered in current analysis. Results were 

compared and it was found that the predicted results were in line with previous literature. 
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Therefore, VOF was used for subsequent works for estimation and observation of ship-

twin-propeller wash induced seabed scour.  

4.9.1.1 Two-dimensional (2D) VOF observation with single propeller 

A 2D fan setting has suppressed a 3D propeller jet to represent a 2D propeller jet. 

The polynomial pressures were limited to 1.032 m/s, 1.549 m/s and 2.065 m/s for each 

run. Two forces were highlighted from the vector velocity profile; axial (forward) and 

tangential (downward) forces (Figure 4.26). These two forces were used in 2D analysis 

as they represent two of the most important forces from the propeller which had been 

discussed by Lam et al. (2012a). The axial velocity is the main contributor to the 

velocity induced by propeller jet, whereas, the radial velocity is 14% of the axial 

velocity thrust, as suggested by Lam et al. (2011). These two forces are exerted from the 

velocity inlet and flow towards two pressure outlets. One of these pressure outlets is at 

the edge of tank, while the other is at the back of the propeller. The pressure outlet at the 

back of the propeller jet allows reflow from the fan to the velocity inlet, thus forming 

the rotating propeller feature. 

 

Figure 4.26: Velocity vector plot (m/s) from the 2D propeller jet with a magnificent of 
×7 

Mesh independence study 

The mesh condition was simulated by 2D structured mesh using Gambit 2.2.30. 

Qualilateral mesh type is used for mesh construction in current study. Convergence of 
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the constructed mesh was tested by gradually decreasing the interval size between mesh 

nodes. The mesh size for Mesh 1 is 8241. The size of each simulation mesh increased 

by approximately 10% compared to previous mesh. Based on the convergence of mesh 

independence study (see Figure 4.27) it was found that the scour pattern calculated by 

mesh no. 1 does not have distinct difference with mesh no. 2 and 3. Therefore, mesh no. 

1, which requires less time consumption, was used for further simulation. As the time 

required to model an unsteady solver is unknown, an optimum time step was selected 

for the simulation by taking the converging trends into consideration. Another attempt 

was made to run this simulation in steady state, where the final asymptotic scour profile 

was obtained at such state in minimal time step. 

 

Figure 4.27: Convergence of mesh independence study 

The physical time for scour profile to achieve steady-state condition is 200s (2000t, 

where t = 0.1s) for 2D VOF model. The scour parameters that were studied in this 

simulation are shown in Figure 4.28. Scour profile under asymptotic condition did not 

show any changes in scour depth. The interaction of propeller jet flow with sediment 

layer resulted in changes in phase number and development of the scour hole. The 

formation of scour holes developed gradually, and the depth increased until it reached 

the asymptotic state.  
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These phases’ changes are indicated by volume of fraction value. When the fraction 

value is equivalent to zero, it indicates that the water continuum does not have any 

interaction with the sediment layer. On the other hand, fraction value of 1.00 indicates 

that there are no changes in phase interaction between sediment layer and water layer. 

The VOF numbers between 0.00 and 1.00 indicate that there are changes due to velocity 

forces (Figure 4.29). The asymptotic scour profile is plotted based on the scour line 

where VOF equals to l. Figure 4.27 shows the asymptotic state of scour profile for 

current study. 

 

 
 

 

Figure 4.28: Scour parameters studied in a 2D VOF model 

 

Figure 4.29: Example of 2D volume of fraction (VOF) profile 

The depth of scour decreased gradually as the horizontal distance from the propeller 

jet face increased. Clearance of 0Dp represents the most critical scour depth as compared 

to others. Clearance of 1.32Dp had the least impact on scour, indicated that the scour 

decreased when the clearance between the tip of propeller jet and the sediment layer 

Maximum scour depth (εm) 

Scour length size 
End scour position, X 
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increased. The case of 0Dp in this study showed that it is slightly more critical when 

compared with 0.31Dp.  

The overall scour pattern of 0Dp is relatively similar to 0.31Dp clearance. For other 

clearances ranging from 0.64Dp to 1.32Dp, the scour location moved forward from the 

propeller jet face as the clearance increased. The ship’s propeller wash interacted with 

seabed moved forward as the source of flow height increased. Therefore higher source 

of flow is associated with lower scour depth and further scour hole.  The scour widths of 

the simulated scour hole ranged between 3 and 5X/Dp. For clearance of 1.32Dp, wider 

scour widths of approximately 8X/Dp was developed, but with low scour depth. Table 

4.5 shows the scour parameters of each clearance. 

Table 4.5: Examples of scour parameters of all clearances from simulation at 800rpm 

Clearances, 

C (z/Dp) 

Maximum scour 

depth, (εm/Dp) 

Scour position Scour width 

(X/Dp) Initial 

(X1/Dp) 

End (X2/Dp) 

0 0.3895 0.345 4.456 4.111 

0.31 0.3836 0.025 3.900 3.875 

0.64 0.1739 0.944 6.605 5.661 

0.95 0.1688 1.111 5.222 6.111 

1.32 0.1335 1.020 9.859 8.839 

 

4.9.1.2 Further analysis on 2D VOF 

The scour pattern trend between the observed pattern and the predicted pattern by 

Hamill (1987) had similar trends as shown in Figure 4.30 from a qualitative comparison 

between observed pattern and pattern plotted using Hamill (1987) data. However, 2D 

simulation scour pattern was just 50% of the actual experiment data at steady state 

condition or asymptotic stage by using both experiments data equation, as proposed by 

Hamill et al., (1999) and Hong et al., (2013). The average shortfall in predicting the line 

is 60% of the predicted data by Hamill (1987). The under prediction was caused by the 
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mesh construction of 2D modelling, which is less refined. However, the error was 

reduced and appeared more comparable with literature as the clearance height increased.  

Therefore, another attempt was made to compare the simulation results with the 

semi-empirical equations. Semi-empirical equations proposed by Hamill et al. (1999) 

and Hong et al. (2013) were used to estimate maximum scour depth. Besides, 

longitudinal scour cross sections were re-produced using VOF method, coupled with the 

empirical equations. The location of longitudinal scour cross section was predicted in 

correlation with X/Xmax. The semi-empirical equation proposed by Hamill et al. (1999) 

was as below: 

εm=kΩ[ln(t)]Γ       (4.7) 

Where,  

k = 38.97 is a constant proposed by Hamill et al. (1999) 

t = time in seconds 

Γ = (
𝐶

𝑑50
) 0.94(

𝐷𝑃

𝑑50
)-0.48 Fo

-0.53 and, 

Ω = Γ-6.38 

Furthermore, the following equation was proposed by Hong et al., (2013). 

εm= 0.105DpF𝑜
0.852(

d50

Dp
)0.315 (

Uo t

Dp
)0.168    (4.8) 

Other parameters include gravitational force, g, median size of sediment particles, 

𝑑50  which is 0.1 mm in this study, fluid density, ρ, and mass density differences 

between fluid and sediment,  ∆𝜌 . According to their researches, the higher the 

Densimetric Froude number indicates a stronger impact of ship’s propeller scour. Efflux 

velocity 𝑈𝑜  is calculated using  𝑈𝑜 = 1.59𝑛𝐷𝑝√𝐶𝑡 , where n is the rotational speed of 
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the propeller in revolution per second (rps) and Ct is the thrust coefficient of propeller. 

In consistent with Lam et al., (2010), Ct was chosen to be 0.4 for current simulation. 

(a) 

 
 

(b) 

 
Figure 4.30: 2D scour pattern in asymptotic state: (a) clearance 0.31Dp and (b) 

clearance 0.64Dp 

Moreover, it was observed that the CFD data incorporated from the empirical 

equation [4.8] was unable to produce longitudinal scour cross section. Comparison 

between maximum scour depths predicted by equation [4.8] was done, and results 

shown that the most critical scour impact occurred at 0.31Dp. The clearance and scour 

depth were then decreased for the later clearances. However, it was not possible to 

predict maximum scour depth at 0Dp. Equation [4.8] also gave over prediction for 

maximum scour depth at 0.31Dp, Therefore, these two clearances were not considered 

in the comparison. Validity range of scour depth was in line with Hamill et al., (1999) 
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findings. Consequently, equation [4.8] cannot be applied for 0Dp and 0.31Dp clearances. 

Trend of comparison of maximum scour depth predicted by equation [4.7] showed that 

the maximum scour depth increased from 0Dp to 0.31Dp and then decreased from 

0.31Dp onwards. This result showed that the equation is reasonable and applicable for 

all ranges of clearance as suggested by Hong et al (2013). 

Comparison of these two equations showed that both methods require a few main 

parameters for the prediction, including Dp, t, Fr and d50. Figure 4.31 showed that both 

equations and 2D simulation predicted the same scour pattern despite the predicted 

scour depths were different. There were some limitations for both methods. Equation 

[4.8] was only applicable for the range of 0.5Dp≤C≤2.5Dp whereas equation [4.7] was 

applicable for all the tested clearances in a range of 0Dp≤C≤1.32Dp. Maximum scour 

pattern predicted by both equations were compared with 2D simulation results as 

tabulated in Figure 4.31. A detailed dimensional comparison of maximum scour depth 

predicted by both equations was compared with 2D simulation results as tabulated in 

Figure 4.32. 

 

Figure 4.31: Example scours line with proposed coupled method 

After qualitative comparison, 2D simulation using VOF method showed an 

acceptable agreement with scour development when rotational speed is constant. 2D 

simulation only considers two-dimensional impacts from propeller jet flow. Moreover, 

CFD model does not consider the non-Newtonian effect of the sediments, and hence 

there were differences between simulations and semi-empirical predictions. However, 
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the increased clearances exhibited an increase in accuracy of results, which showed that 

2D VOF has better ability in predicting higher clearance of scour. 

 
Figure 4.32: Comparison of 2D simulation results with theoretical equations 

4.9.2 Three-dimensional VOF observation with single rotating propeller 

In 3D simulation, the rotating ship propeller’s wash was modelled with the fan 

swirling setting. All three directional forces (axial, radial and tangential forces) were 

reproduced with the fan swirling method in application of velocity inlet and pressure 

outlet boundary on the next layer of the fan swirling boundaries. The blade effects were 

not considered in fan swirling method. The velocity vector induced from the modelled 

ship’s propeller has been plotted in Figure 4.33. 

 

Figure 4.33: Vector plot with magnification ×7of a 3D simulation ×7 
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Mesh Independence Study 

Different 3D mesh resolutions of the scour profile are shown in Figure 4.34. The 

quality of mesh resolution increased in line with the mesh count, by 10-20% of the 

preceding coarser mesh count. Only 2% variation of the scour depth results was 

accepted for the complement of mesh independent study. The mesh independent study 

details are reported in Table 4.6. 

 
Figure 4.34: Mesh independence study curve for 3D simulation (single propeller) 

The physical time for scour profile to achieve the steady-state condition was 3800s. 

The scour parameters studied in this simulation are shown in Figure 4.36. The scour 

patterns for 3D simulation were plotted in the form of ε/Dp versus X/Dp, where ε is the 

scour depth at asymptotic state and X is the location of the developed scour. Table 4.7 

shows the summary of scour parameters in 3D simulation. The example of 3D VOF 

fraction profile observed from longitudinal view is also shown in Figure 4.36. 

Table 4.6: Scour parameters for 3D simulation 

Parameters 0.31Dp clearance  0.64Dp clearance 

Types of scour hole Initial Main Main 

Maximum scour depth 

(ε/Dp) 
0.23 - 0.25 1.16 - 1.26 1.07 – 1.12 

Location of maximum 

scour depth (x/Dp) 
0.38 – 0.48 3.01 – 3.26 1.88 – 2.23 

Width (mm) 68 844 883 
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Figure 4.35: Scour parameters studied in a 3D VOF model 

 

 

Figure 4.36: Example of 3D volume of fraction (VOF) profile 

Figure 4.37 showed that any increase in clearance will reduce the scour depth. Scour 

has formed further from the propeller jet as clearance increased. Clearance 0.31Dp has 

given deeper scour depth compared to clearance of 0.64Dp. Moreover, the large in 

contact forces from the wash caused the location of main scour hole for 0.31Dp to be 

further from the propeller face compared to 0.64Dp. On the other hand, 0.64Dp has 

given a wider scour than the 0.31Dp in 3D VOF scour plot. 

Both 2D and 3D indicated that an increase in clearance will result in a decrease in 

scour depth. This is attributed to the shorter distance of wash contact which has a larger 

force on the erodible soil bed. Furthermore, Figure 4.38 showed the typical scour 

profiles from VOF for 3D simulation at xy-plane. The scour width simulated from the 
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VOF showed a mere difference of 4% from results by Hamill (1987). The xy-plane 

showed that the maximum scour positions moved further from the propeller face as the 

jet speed increased. It is shown that a bigger clearance result in a shallower scour hole. 

Although the profiles showed a similar form of scour, the maximum scour positions 

moved further from the propeller face when the speed increases. This was attributed to 

an increase in velocity forces impinged to the soil as the rotational speed increases. The 

scour estimation of current study is in line with Hamill (1987), Hamill et al. (1999) and 

Hong et al. (2013). 

(a) 

 
(b) 

 
Figure 4.37: 3D scour pattern in asymptotic state: (a) clearance 0.31Dp and (b) clearance 

0.64Dp 
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Figure 4.38: Typical scour profiles (x-y plane) increased with speed 

Table 4.7: Comparison of 2D, 3D and experiment data 

Differences in term of maximum scour depth 

 0.31Dp_800rpm 0.64Dp_400rpm 

 2D 3D 2D 3D 

3D 69% - 89% - 

Experiment (Hamill,1987) 60% 23% 87% 12% 

Experiment formula 

(Hong et al., 2013) 

67% 6% 81% 45% 

 

Differences in term of location for maximum scour depth 

 0.31Dp_800rpm 0.64Dp_400rpm 

 2D 3D 2D 3D 

3D 47% - 16% - 

Experiment (Hamill,1987) 50% 5% 27% 12% 

In summary, both 2D and 3D simulation results predicted a similar pattern of scour 

profile, i.e. the ‘U’ shaped curve below the horizontal axis as shown in Table 4.7. The 

differences between 2D simulation and experiment results were relatively high with 

approximately 73% difference on the prediction of maximum scour depth. Meanwhile, 

3D simulation was able to predict the maximum scour depth at higher accuracy with an 

average of 17% difference for both clearances. However, it was observed that the 3D 

simulation is capable to predict higher accuracy results when the rotational speed is low. 

This may be due to the fan setting where the detailed blade effect was not taken into 

consideration. Therefore, an increase in rotational speed will result in higher occurrence 
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of error. However, since the bollard pull condition for propeller has a low range of 

speed, which is less than 200rpm, the propeller speed range is practical to be applied. 

Moreover, the 3D simulation has accurately predicted the location of maximum scour 

with a slight variation of 8% from the experimental data. Overall, the scour width 

observed by Hamill (1987) is wider than the scour holes predicted using 3D simulations.  

4.10 Estimation of ship-twin-propeller’s scour with VOF 

Mesh independence study 

From the past validation simulation, it was found that 3D simulation has higher 

accuracy and produces higher correlated data. Therefore, only 3D simulation was used 

to model the ship-twin-propellers. Mesh independence study was repeated for each new 

simulation run. The mesh independence curve for ship-twin-propeller simulation was 

reported in scour depth perpendicular to the distance in X, as shown in Figure 4.39. The 

mesh count gradually increased by 15-25% of the preceding mesh count of coarser 

mesh as shown in Table 4.8. Mesh independence study is completed when the scour 

profile and maximum depth have been obtained using finer meshes with variations less 

than 2%. Therefore, the M2 mesh was chosen to use in the later simulation as it requires 

shorter simulation time and produces quality work which is equivalent to other finer 

meshes. 

 

Figure 4.39: Mesh independence curve for 3D ship-twin-propeller meshes 
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Table 4.8: Mesh independence for 3D mesh (twin-propeller) 

Properties 
Meshes 

M1 M2 M3 M4 M5 

Grid cells 4,070,779 4,254,634 4,541,318 4,871,111 5,314,089 

Increment (%) - 17.17 22.85 21.39 23.67 

Maximum 

scour depth, 

(mm) 

114.78 134.69 134.73 133.90 134.04 

 

4.10.1 Three-dimensional observation with twin rotating propeller 

The ship-twin-propeller was remodelled using Fluent 15.0, as outlined in Chapter 3. 

In section 4.9.2, the rotating ship propeller’s wash was modelled with the fan swirling 

setting. Therefore, the vector profile of ship-twin-propeller is relatively similar to single 

rotating propeller. However, since the modelling of ship-twin-propeller’s hydrodynamic 

properties was not considered in current study, the details of hydrodynamic properties 

of ship-twin-propeller jets were not observed. As a result, only scour profile induced by 

ship-twin-propeller’s wash was plotted and analysed. Scour profiles based on three 

clearances (0.31Dp, C1; 0.5Dp, C2; and 0.64Dp, C3) and three rotational speed (400, 500 

and 600rpm) were studied. Three section views, which are the longitudinal view, x-y 

plan view and the x-z plan view, were plotted to observe the simulated results. X-z plan 

view was used to observe the cross section of scour hole. The example of simulation 

modelling induced from ship-twin-propeller’s wash, before plotting into graph, is 

shown in Figure 4.40. 

 

Figure 4.40: Example of simulation modelling induced from ship-twin-propeller wash 

(from x-z view) 
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4.10.1.1 Longitudinal view 

(a)  

 

(b) 

 

Figure 4.41: Longitudinal section of 3D scours profile induced by ship-twin-propeller’s 
wash: (a) constant clearance and (b) constant rotational speed   

In order to obtain results which are comparable with experiment results, only the 

right side scour longitudinal profile was observed and analysed in current simulation as 

shown in Figure 4.41. It is found that the scour hole of lower clearance gave a deeper 

scour with smaller scour hole at constant clearance. An increase in clearance will result 

in decrease of scour depth but an increase in the size of scour hole. Conversely, the 

increasing clearance at constant rotational speed showed that the higher rotational speed 

will result in deeper and larger scour. 
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4.10.1.2 Plan view (x-y plane) 

(a) 

 

(b) 

 

Figure 4.42: X-Y section of 3D scours profile induced by ship-twin-propeller’s wash: (a) 
constant clearance and (b) constant rotational speed   

The plan view section of x-y plan was plotted in Figure 4.42.  At constant clearance, 

the scour width increases in line with rotational speed and clearance height. However, 

based on current simulation, the scour at C2 was wider than C3. Subsequently, C2 is the 

optimum level of clearance in inducing scour hole for such case. 

 

4.10.1.3 Plan view (x-z plane) 

The x-z plan showed the cross section of scour depth induced by ship-twin-

propeller’s wash. Based on Figure 4.43, the scour depth increased in line with rotational 

speed despite a decline in clearance.  
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(a) 

 
(b) 

 

Figure 4.43:  X-Z section of 3D scours profile induced by ship-twin-propeller’s wash: (a) 
constant clearance and (b) constant rotational speed   

4.10.2 Validation with experiment data 

The example of simulation results was compared with experiment data, as shown in 

Figure 4.44 and 4.45. The simulation results do not include the scour ridge. However, 

the simulation scour results induced by ship-twin-propeller showed a similar pattern 

with experiment results. The simulation patterns included the maximum scour depth, 

maximum scour depth location, as well as the scour width. The differences between 

simulation results and experiment data fell within a range of 5-30%. This is possibly 

due to the series which was generated until converged state, where extra time step may 

be taken to consider further development of the scour depth. Series with lower 
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rotational speed has higher differences when compared to experimental data, where the 

propeller modelling is required to be improved. 

 

Figure 4.44:  Comparison of scour pattern of simulation with experiment data of current 
study 

 

Figure 4.45:  Comparison of maximum scour depth simulation with experiment data of 
current study 

4.11 Summary 

 Throughout the literature reviews outlined in Chapter 2, it was found that the ship-

twin-propellers’ jet induced seabed scouring has yet to be revealed from the past 

researches. Current study focuses on the relationship of ship-twin-propellers wash in 

relation to various clearances and rotational speed. This study is preliminary which 

requires future works to improve its practicability. The relationship between ship-twin-

propellers’ jet, clearances and rotational speed was suggested as per equation [4.1], 

which is 𝑈𝑜 = 2.058𝑛𝐷𝑝√𝐶𝑡 . The overall results indicated that there are differences 

between STP’s jets and single propeller jets in terms of axial velocity profile and its 
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resulting decay pattern as summarised in section 4.6. Therefore, it is considerably a new 

outcome from STP investigation. The velocity decay profile has altered its usual pattern 

from single peak to double peak where the second peak is located at 2.8X/Dp. The 

second peak indicates another possible location of maximum scour depth, which should 

happen before 2.8X/Dp. Therefore, based on this analysis, the maximum scour depth of 

current study is located between 0X/Dp and 2.8X/Dp. 

The STP’s wash showed that two small scour hole will be induced at the initial state 

of scour development. When the scour prolonged, both scour holes will emerge and 

form a large scour hole. There are exceptional cases where both scour holes do not 

emerge into a large scour hole, which only happens when the scour clearance is high, 

under the condition of STP running at low velocity speed i.e. less than 400rpm, for 

current study. With the help of non- linear regression, the maximum scour location was 

suggested to be  𝑋𝑚𝑎𝑥 = 𝐹𝑜
0.909 (

𝐶

𝐷𝑝
)0.193 . Further investigation on the prediction of 

maximum scour depth was also carried out. Based on the data obtained from the 

experiment, which focuses on the relationship between rotational velocity and under 

keel clearance, the proposed equation has been stated in equation [4.6].  

Simulation results using VOF method was first validated using single rotating 

propeller, and then compared with previous literature works. It was found that 3D 

modelling has a highly correlated profile, in terms of scour pattern and scour depth 

prediction. Therefore, consideration on running the STP model was only limited to 3D 

modelling. The results showed a slightly higher prediction for scour depth and size. 

CFD works had been given advantages which are more time and cost effective. 

However, future works are still required to improve the simulation prediction, which 

will be discussed in Chapter 5. 
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CHAPTER 5:CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

Based on literature review, it was found that there are limited experimental works 

performed on ship-twin-propeller’s wash and its resulting scour. Therefore it was 

decided that a study on ship-twin-propeller’s wash induced scour should be carried out. 

Laboratory and simulation works were performed to achieve all three objectives of 

current study. The first objective was to identify the source and pattern of axial velocity 

impinging the seabed which was induced by ship-twin-propeller’s wash. The second 

objective was to determine the temporal development of scour induced by ship-twin-

propeller’s wash by investigating the seabed scouring pattern. The third objective was 

simulation of seabed scour pattern induced by ship-twin-propeller’s wash. Overall, this 

research shows the relationship between the axial velocities of STP impinged onto the 

soil bed.  This is found to be necessary before any further application onto the field 

study conducted. 

Experimental methods for the investigation of parameters of ship-twin-propeller’s 

wash and its resulting scour were developed. Axial velocity and scour measurements 

from the series of experiments were tested and analysed. The analyses are revealed as 

follows, 

i. The source of axial velocity of ship-twin-propeller was found at both sides of the 

propeller blade, which is similar to single rotating propeller. The combination 

forces of each side of the blade caused an increase in the axial velocity thrust and 

resulted in higher impact of scour.  
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ii. The experiment on measurement of axial velocity suggested that the axial velocity 

of ship-twin-propeller shall be calculated using the formula of 𝑈𝑜 = 2.058𝐷𝑝√𝐶𝑡, 

which was based on the axial momentum theory. 

iii. There are forces interferences at the centre line of ship-twin-propeller with 

distance of one propeller diameter in between. This has resulted in different decay 

profile which consists of two peaks, specifically decay at initial plan and another 

decay at the location of 2.8X/Dp. The second decay profile indicated that the range 

of maximum scour should be located between 0X/Dp and 2.8X/Dp. 

iv. Ship-twin-propeller has shown that the two scour holes at the initial stage 

subsequently emerged to a large scour hole at the later stage. Ship-twin-propeller 

with high level of under keel clearance, rotating at 400rpm or less, remained with 

two single scour holes until the asymptotic stage. 

v. The temporal development of scour was observed experimentally. All investigated 

scour parameters in current study were plotted as shown in Figure 4.25, where the 

key parameters were Xmax and εmax.  

vi. The maximum scour location has been suggested to be calculated using the 

formula     of  𝑋𝑚𝑎𝑥 = 𝐹𝑜
0.9098 (

𝐶

𝐷𝑝
)0.1932 . This formula was proposed based on the 

lowest root mean square value with confidence level of 95%. 

vii. The estimation of maximum scour depth in relation to the rotational speed, 

clearances and time was suggested based on highest confidence level of data and 

lowest root mean square which is, 

𝜀𝑚𝑎𝑥 = k( log 𝑡)0.0231  

𝑘 = (
𝐶

𝐷𝑝

)

−0.488

(
𝑈𝑜 𝑡

𝐶
)0.241  

This equation also has a high R2 value of 0.909 when both observed value and 

predicted value were compared. 
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viii. The current twin-propeller scour analysis has given an insight on the high impact 

of scour would occurred when the under keel clearance is low and bollard pull 

rotating speed is high. Therefore, to overcome the damage of scouring action, sea 

bathymetry need to be always maintained to ensure the bathymetry level is low. 

ix. VOF model was firstly modelled in single propeller form to validate the 

simulation. It was found that 3D modelling has a highly correlated pro file in both 

scour pattern and scour depth prediction as compared to 2D modelling. As a result, 

only 3D simulation was modelled in scour prediction on ship-twin-propeller’s 

wash induced seabed scouring.  

x. The 3D simulation of ship-twin-propeller was performed and compared with the 

experiment data. It was found that it has higher prediction on the maximum scour 

depth as compared to the experimental data obtained from current study. However, 

current model only limits in the scour formation prediction, actual scour depth 

still required further validation and will be further discussed in the later section. 

Simulation study has advantages on time and cost effectiveness which can be 

practiced by engineers and port authorities in order to improve design in 

minimising scouring effect induced by ship-twin-propeller’s wash.  

5.2 Limitation and suggestion for further research 

Despite the contribution of current study, there are still a number of areas which have 

to be investigated further in order to improve the existing knowledge on the ship-twin-

propeller’s wash induced seabed scour.  

i. The proposed coefficient as mentioned in equation [4.1] requires further 

verification with different types and geometry of propeller as this is the initial step 

in investigating ship-twin-propeller’s jet. Since internal space between both 

propellers was limited to 1.0 propeller diameter in current study, space variation 

should also be considered in improving the existing coefficient. 
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ii. Only axial velocity and its resulting decay profiles were studied in current works

which only provides a preliminary investigation on the ship-twin-propeller’s jet 

velocity components. Therefore, to provide a strong methodology in predicting 

the ship-twin-propeller’s jet, other hydrodynamic properties of ship-twin-propeller 

should also be considered in future works. 

iii. On the other hand, the scour development induced by ship-twin-propeller’s wash

requires further verification with propellers of other geometry and other types of 

soil, to improve the correlation data in equation [4.5] and [4.6] for usage under all 

situations. 

iv. Simulation works using different sets of data with similar test settings are required

for further validation.  In addition, detailed propeller geometry should be 

considered in future analysis. 

v. Field works should be considered in future, in order to validate the laboratory

results, particularly on the investigation of scour development with the existence 

of harbour structures. 

Univ
ers

ity
 of

 M
ala

ya



146 

REFERENCES 

 

Abramovich, G.N. (1963). “Theory of Turbulent Jets”, M.I.T. Press, Cambridge, 
Massachausetts.  

 
Abramowicz-Gerigk, T. (2008). Experimental Study on the Hydrodynamic Forces 

Induced by a ship-twin-propeller Ferry during Berthing. Ocean Engineering, 

35(3/4), pp. 323-332. doi:10.1016/j.oceaneng.2007.10.009 
 

Albertson, M.L., Dai, Y.B., Jensen, R.A., Rouse, H. (1950). Diffusion of Submerged 
Jets. Transcript of the A.S.C.E., Paper No. 2409, 115, 639–697. 

 

Andrew, J. M. (Ed.). (2013) Sediment Transport and Their Modelling Applications. 
 Croatia: InTech. 

 
Balachandar, R., & Kells, J. A. (1997). Local channel scour in uniformly graded 

sediments: the time-scale problem. Canadian Journal of Civil Engineering, 

24(5), 799-807. 
 

Balachandar, R., Kells, J. A., & Thiessen, R. J. (2000). The Effect of Tailwater Depth 
on the Dynamics of Local Scour. Canadian Journal of Civil Engineering, 27(1), 
138-150. 

 
BAW (2010). Principles for the Design of Bank and Bottom Protection for Inland 

Waterway. Bundesanstalt für Wasserbau (BAW). 
 
Berger, W., FelKel K., Hager, M., Oebius, H., Schale, E. (1981). Courant provoque par 

les bateaux protection des berges et solution pour eviter l’erosion du lit du Haut 
Rhin, P.I.A.N.C., 25 Congress, Endinburgh, 1981, Section I-1. 

 
Blaauw, H. G., Kaa, E. J. van de (1978). ‘‘Erosion of Bottom and Sloping Banks 

 Caused by the Screw Race of the Manoeuvering Ships.’’ Publ. No. 202, Delft 

 Hydraulics Laboratory, Delft, The Netherlands. 
 

Brewster, P. M. (1997). “Modelling the Wash from a Ship’s Propeller”. Thesis 
submitted to the Queen’s University of Belfast for the degree of Doctor of 
Philosophy. 

 
Chang, F. M., Simons, D. B. and Richardson, E.V. (1965). “Total Bed-material 

Discharge in Alluvial Channels”, U.S. Geological Survey Water-Supply Paper 
1498-I.  

 

Chang, F.M., Simons, D.B. and Richardson, E.V. (1967). “Total bed material discharge 
in alluvial channels”. In Proceedings of 12th Congress IAHR, Vol. I, Colorado: 

Fort Collins. 
 
Choudhury, D. (1993). Introduction to the Renormalization Group Method and 

Turbulence Modelling, Fluent Inc. Technical Memorandum TM-107. 
 

Univ
ers

ity
 of

 M
ala

ya



147 

Cihan, K., Ozan, A.Y., Yülsel, Y., 2011. The effect of slope angle on propeller jet 
erosion near quays. Proceedings of the ICE – Maritime Engineering, Volume 
165, June 2012, Issue MA2, pages 81-92, 2011. 

 
Coraddu, A., Dubbioso, G., Mauro, S., Viviani, M. (2013). Analysis of twin screw ships’ 

asymmetric propeller behaviour by means of free running model tests. Ocean 
Engineering 68. pp. 47-64. 

 

Dubbioso, G., Viviani, M. (2012). Aspects of twin screw ships semi-empirical 
maneuvering models. Ocean Engineering 48. pp. 69-80. 

 
DuBoys, M.P. (1879). “Le Rhone et les Riveres a Lit affouillable, Annales de Ponts et 

Chausses, Sec. 5, vol. 18, pp. 141-195. 

 
Einstein, H.A. (1942). “Formula for the Transportation of Bed-Load”, Transactions of 

the ASCE, vol. 107. 
 
Einstein, H.A. (1950). “The Bed-Load Functions for Sediment Transportation in Open 

Channel Flows”, U.S. Department of Agriculture, Soil Conservation Service, 
Technical Bulletin no. 1026. 

 
EN-ISO-3715-1. (2004). Ships and Marine Technology, Propulsion Plants for Ships, 

Part 1: Vocabulary for Geometry of Propellers. Technical Report, European 

Committee for Standardisation. 
 

Fluent User Manual. (2003). “Fluent User’s Guide.” Fluent Inc, Lebanon, USA. 
 
Fuehrer, M., Römisch, K. (1977). “Effects of Modern Ship Traffic on Islands and Ocean 

Waterway and their Structures.” In: proceedings of P.I.A.N.C., Leningrad, 1977, 
Sections 1-3.  

 

Fuehrer, M., Pohl, H., Römisch, K. (1987). “Propeller Jet Erosion and Stability Criteria 
for Bottom Protection of Various Constructions”, In Proceedings of P.I.A.N.C., 

Bulletin No. 58, 1987. 
 

Gaythwaite, J. (2004). Design of Marine Facilities for the Berthing, Mooring, and 
Repair of Vessels. ASCE Publications, ISBN: 0784407266 531 pages. 

 

Gerr, D. (2001).Propeller Handbook, The complete Reference for Choosing, Installing 
and Understanding Boat Propellers. International Marine, Camden.   

 
Hamill, G.A. (1987). “Characteristics of the Screw Wash of a Manoeuvring Ship and 

the Resulting Bed Scour. Thesis submitted to the Queen’s University of Belfast  

for the degree of Doctor of Philosophy. 
 

Hamill, G. A. (1988). ‘‘The Scouring Action of the Propeller Jet Produced by a slowly 
 Manoeuvring Ship.’’ Bull. No. 62, Permanent International Association of 
 Navigation Congresses, 85-110. 

 
Hamill, G.A., Johnston, H.T. (1993).  The descay of maximum velocity within the 

initial stages of a propeller wash.  Journal of Hydraulic Research, 31(5), pp. 
605-613 

Univ
ers

ity
 of

 M
ala

ya



148 

 
Hamill, G. A., McGarvey, J. A., and Mackinnon, P. A. (1998). “A method for 

estimating the bed velocities produced by a ship’s propeller wash influenced by 

a rudder.” Proc., 26th Int. Conf. on Coastal Engineering, Copenhagen, Denmark, 
3, 3624–3633. 

 
Hamill, G.A., Johnston, H.T., Stewart D.P. (1999). Propeller Wash Scour near Quay 

Walls. Journal of Waterway, Port, Coastal and Ocean Engineering, July/August, 

1999. 
 

Hamill, G.A., McGarvey, J.A., Hughes, D.A.B. (2004). Determination of the Efflux 
Velocity from a Ship’s Propeller. Proceedings of the Institution of Civil 
Engineers: Maritime Engineering 157 (2), 83–91. 

 
Hashmi, H.N. (1993). “Erosion of a granular Bed at a Quay Wall by a Ship’s Screw 

Wash.” Ph.D. Thesis, Thesis submitted to the Queen’s University of Belfast for 
the degree of Doctor of Philosophy. 

 

Hinze, J. O., (1957). “Turbulence”, Mc Graw Hill Series in Mechanical Engineering. 
 

Hirt, C.W., Nichols, B.D. (1981). Volume of Fluid (VOF) Method for the Dynamics of 
Free Boundaries. Journal of Computational Physics, 39 (1), pp. 201–225.  

 

Hoffmans, G. and Verheij H. (2011). Jet scour. Proceedings of the ICE – Maritime 
 Engineering 164, Issue MA4, December 2011, pages 185-193. 

 
Hong, J.H., Chiew, Y.M., Susanto, I., Cheng N.S. (2013). Evolution of Scour Induced 

by Propeller Wash. Journal of Hydraulic Engineering, 139(9), pp. 1003-1012. 

 
Ishii, M., Hibiki, T. (2006). Thermo-fluid dynamics of two-phase flow, Springer. 

 
Jensen, K. D. (2004). Flow Measurements. Journal of the Brazilian Society of 

Mechanical Sciences and Engineering, 26(4), pp. 1678-5878. 

 
Johnston, H.T., Elsawy, E.M., Hamill, G.A., McKillen, H.G., (1985). A Study of Scour 

and Deposition near a Berth Structure Caused by the Propulsion Action of 
Manoeuvring Ships. International Association for Hydraulic Research, 21st 
Congress, Melbourne, Australia. 

 
Johnston, H.T., Hamill, G.A., Wilson, P.R., Ryan, D. (2013). Influence of a boundary 

on the development of a propeller wash. Ocean Eng. 61, 50-55  
 
Kalinske, A. A. (1947). “Movement of Sediment as Bed-Load in Rivers, Transactions 

of the American Geophysical Union, vol. 28, no. 4. 
 

Kang, D.H., Nagarajan, V., Hasegawa, K. (2008). Mathematical Model of Single-
Propeller Twin-Rudder Ship. Journal Marine Science Technology 13:207-222. 

 

Kang, D.H., Nagarajan, V., Gonno, Y. (2011). Installing Single Propeller Twin-Rudder 
System with Less Asymmetric Manoeuvring Motions. Ocean Engineering 

38:1184-1196. 
 

Univ
ers

ity
 of

 M
ala

ya



149 

Keenan, L. and Chapin O. (2009). “Laser Doppler Velocimetry.” Final Report, Physic 
173: Biophysic Laboratory. Retrieved from: 
https://physics.ucsd.edu/neurophysics/courses/physics_173_273/173_paper_fina

l.pdf 
  

Kim, Y.G., Kim, S.Y., Kim, H.T., Lee, S.K., Yu, B.S. (2007). Prediction of the 
maneuverability of a large container ship with twin propeller and twin rudders.  
Journal of Marine Science and Technology 12. pp. 130-138. 

 
Lam, W. H., Hamill, G.A., Robinson, D.J., Raghunathan, S. (2010). Observations of the 

Initial 3D Flow from a Ships Propeller. Ocean Eng. 37, 1380–1388.  
 
Lam, W. H., Hamill, G.A., Song, Y.C., Robinson, D.J., Raghunathan, S. (2011a). A 

Review of the Equations Used to Predict the Velocity Distribution within a 
Ship’s Propeller Jet. Ocean Eng. 38 (1), 1–10. 

 
Lam, W., Hamill, G.A., Song, Y.C., Robinson, D.J., Raghunathan, S. (2011b). 

Experimental Investigation of the Decay from a Ship’s Propeller. China Ocean 

Eng., 252 (2). 
 

Lam, W.H., Song, Y., Raghunathan, S., Hamill, G., Robinson, D. (2011c). Investigation 
of a Ship’s Propeller Jet using Momentum Decay and Energy Decay. Canadian 
Journal of Civil Engineering, 38 (1-11), 6, 1-6. 

 
Lam, W.H., Hamill, G.A., Robinson, D., Raghunathan, S., Song, Y.C. (2012a). Analys is 

of the 3D Zone of Flow Establishment from a Ship’s Propeller. KSCE Journal of  
Civil Engineering, 16(4), 465-477. 

 

Lam, W.H., Hamill, G.A., Robinson, D.J., Raghunathan, S. (2012b). Semi-empirical 
Methods for Determining the Efflux Velocity from a Ship’s Propeller. Appl. 

Ocean Res. 35, 14–24. 
 
Lam, W.H., Robinson, D.J., Hamill, G.A., Zhao, J.F., Jia, M. (2012c). Time-averaged 

velocity and turbulence intensity at the initial downstream flow from a six-
bladed ship propeller. Ocean Eng. 51, 85–93. 

 
Lam, W.H., Robinson, D.J., Hamill, G.A., Johnston, H.T. (2012d). An Effective 

Method for Comparing the Turbulence Intensity from LDA Measurements and 

CFD Predictions within a Ship Propeller Jet. Ocean Engineering, 52, 105-124. 
 

Lee, S.K., Fujino M., Fukasawa T. (1988). A Study on the Manoeuvring Mathematical 
Model for a Twin-Propeller Twin-Rudder Ship. Journal Soc. Nav. Archit. Japan 
163:109-118  

 
Lee S.K., Fujino M. (2003). Assessment of Mathematical Model for the manoeuvring 

Motion of a Twin-Propeller Twin-Rudder Ship. ISP50:109-123. 
 
Launder, B.E., Reece, G.J. (1975). Progress in The Development of a Reynolds-stress 

Turbulence Closure. Journal of Fluid Mechanics, 68(3), pp. 537-566. 
 

Launder, B.E., Spalding, D.B. (1972). Lectures in Mathematical Models of Turbulence. 
Academic Press, London, England. 

Univ
ers

ity
 of

 M
ala

ya



150 

 
McGarvey, J.A., (1996). “The Influence of The Rudder on The Hydrodynamics and The 

Resulting Bed Scour, of a Ship’s Screw Wash,” Ph.D. Thesis, Thesis submitted 

to the Queen’s University of Belfast for the degree of Doctor of Philosophy. 
 

Mohamed, M.S., and McCorquodale, J.A. (1992). Short-term Local Scour. J. Hydr. Res., 
30(5), 685-699. 

 

Pantan, R. L., (1984). “Incompressible Flow.” John Wiley & sons. p. 712. 
 

Petersson, P., Larson, M., Johnsson, L. (1996). “Measurements of The Velocity Field 
Downstream of an Impeller”, Journal of Fluids Engineering Centre, Cranfield. 

 

PIANC. (2015). Report n° 180 - 2015 Guidelines for protecting berthing structures from 
scour caused by ships. 

 
Pierson, Thomas C. (2005). “Hyperconcentrated flow—transitional process between 

water flow and debris flow.” Debris-flow hazards and related phenomena, pp. 

159-202.  
 

Prosser, M. (1986). Propeller Induced Scour. Technical Report, BHRA Project RP 
A01415, The Fluid Engineering Centre, Cranfield. 

 

Qurrain, R. (1994). Influence of the sea bed geometry and berth geometry on the 
hydrodynamics of the wash from a ships propeller,’’ PhD thesis, Queens 

University of Belfast. 
 
Rajaratnam, N. and Berry, B. (1977). Erosion By Circular Turbulent Wall Jets. Journal 

 of Hydraulic Research, 15(3), 277-289. 
 

Rajaratnam, N. (1981). Erosion by Plane Turbulent Jets. Journal of Hydraulic Research, 
19(4), 339-358. 

 

Ryan, D. (2002). “Methods for Determining Propeller Wash Induced Scour in Harbours.” 
Ph.D. Thesis. Thesis submitted to the Queen’s University of Belfast for the 

degree of Doctor of Philosophy. 
 
Shields, A. (1936). “Anwendung der Ahnlichkeitsmechanik und Turbulenz forschung 

auf die Geschiebebewegung”, Mitteil, Preuss, Versuchsanst. Wasser, Erd, 
Schiffsbau, Berlin, Nr. 26. 

 
Shih, T. H., and Liou, W. W. (1995). A New k-ε Eddy-Viscosity Model for High 

Reynolds Number Turbulent Flows-Model Development and Validation. 

Computer Fluids, 24(3), 227-238. 
 

Spalart, P., and Allmaras, S. (1992). “ An One-equation Turbulence Model for 
Aerodynamic Flows.” Technical Report AIAA-92-0439, American Institute of 
Aeronautics and Astronautics. 

 
Steward, D. P. J., Hamill, G.A., Johnston, H.T. (1991). “Velocities in a Ship’s Wash”. 

In Proceedings of International Symposium on Environmental Hydraulics, 
Rotterdam.  

Univ
ers

ity
 of

 M
ala

ya



151 

 
Steward, D. P. J. (1992). “Characteristics of a Ship’s Screw Wash and the Influence of 

Quay Wall proximity”. Thesis submitted to the Queen’s University of Belfast for 

the degree of doctor of philosophy. 
 

Stoye, T. (2011) Propeller Design and Propulsion concepts for Ship Operation in Off-
Design Condition. Second International Symposium on marine Propulsors 
smp’11, Hamburg, Germany, June 2011. 

 
Sui, J., Faruque, M.A.A., Balachandar. R. (2008). Influence of channel width and 

tailwater depth on local scour caused by square jets. J. Hydro-Environment Res. 
2(1), 39–45. 

 

Sumer, B.M., Fredsøe, J. (2002). The Mechanics of Scour in the Marine Environment. 
 World Scientific Publisher, ISBN: 9810249306, 552p. 

 
Techet, A.H. (2004). Hydrodynamic for Ocean Engineers : Reading: Propelelrs. 

Retrieved from: 

http://web.mit.edu/13.012/www/handouts/propellers_reading.pdf 
 

Verhey, H.J. (1983). “The Stability of Bottom and Bank Subjected to the Velocities in 
the Propeller Jet Behind Ships.” Delft Publication No 303, April 1983, Delft 
Hydraulics Laboratory, Netherlands. 

 
Verhey, H. J., et al. (1987). ‘‘Experiences in The Netherlands with quay structures 

subjected to velocities created by bow thrusters and main propellers of mooring 
and unmooring ships.’’ PIANC, Bull. No. 58, 69–88. 

 

Whitehouse, R. (1998). “Scour at Marine Structures: A Manual for Practical 
Applications.” Thomas Telford Publisher, ISBN: 0727726552. 

 
Wilcox, D.C. (1998). “Turbulence Modelling for CFD.” DCW Industries, Inc, La 

Canada, California.  

 
 

 

  Univ
ers

ity
 of

 M
ala

ya



152 

LIST OF PUBLICATIONS AND PAPERS PRESENTED 

Manuscript List 

No Penerbitan/ Journal Tajuk Penerbitan/ Title of Journal Status 

1. 
Journal of Engineering 

Research 

Estimation of Ship’s Propeller Wash 

Induced Scour using VOF Method 

Under 

Review 

2. 
Journal of Chinese 

Institute of Engineers 

Experimental Investigation on Axial 

Velocity Distribution for Ship-Twin-

Propeller Jets 

Revision 

submitted 

3. 

Journal of waterway, 

port, coastal and ocean 

engineering 

Experimental Investigation of Ship-

Twin-Propeller Wash Induced Scour 

Revision 

submitted 

 

Attended Conferences 

No Conference Title Status 

1. ICCOEE 2014 

Seabed Condition from Single beam 

Echo Sounder from Penang Port, 

Malaysia 

Published 

2. IJAS 2016 
Estimation of Ship-Propeller Wash 

Induced Seabed Scour with VOF 
Published 

  

Univ
ers

ity
 of

 M
ala

ya




