Abstract

Small, highly efficient and low cost photovoltaic (PV) system can be achieved when the transformer is removed from the PV inverter. Nevertheless, transformerless PV inverters generates dangerous leakage currents. Therefore, various transformerless PV inverters topologies are proposed recently to reduce the leakage current to meet the requirement of the standard.

In this project, two types of recently proposed transformerless PV inverters are investigated, i.e., single-phase and three-phase inverters. A common-mode model circuit for each type is developed to study the common-mode behavior of the transformerless PV inverters. It is shown that the leakage current is directly depending on the common-mode voltage (CMV). Based on the analysis of the studies, a novel transformerless PV inverter topology is proposed for both single-phase and three-phase PV systems respectively.

For single-phase PV systems, a simple modified H-bridge zero-voltage state rectifier (HBZVR-D) is proposed to eliminate the leakage current. A fast-recovery diode is added to the existing HBZVR topology to improve the clamping branch performance. It is shown that the improved clamping branch of the proposed topology completely clamps the CMV to constant to eliminate the leakage current.

On the other hand, a three-phase transformerless inverter (H7), adapted from the single-phase H5 topology, is investigated. An additional switch is added to the conventional full-bridge structure to provide galvanic isolation. Here, a novel modulation technique based on conventional discontinuous pulsewidth modulation is proposed. It is shown that the proposed topology is able to reduce the CMV in order to reduce the leakage current.

The validity of the proposed inverters are verified via simulations and laboratory prototypes. DSP TMS320F28335 is used to program the modulation techniques. The

performances of the proposed topologies, in terms of CMV, leakage current, total harmonic distortion (THD) and efficiency, are compared with various recently proposed transformerless PV inverters. It is experimentally proven that the proposed transformerless single- and three-phase inverters are able to reduce the leakage current with superior overall performance among the recently proposed topologies.

Abstrak

Sistem photovoltaic (PV) yang ringan, berkecekapan tinggi dan berkos rendah boleh dicapai apabila transformer dikeluarkan dari penyongsang PV. Walau bagaimanapun, penyongsang PV tanpa transformer menjana arus bocor yang berbahaya. Oleh itu, pelbagai topologi penyongsang PV tanpa transformer dicadangkan baru-baru ini untuk mengurangkan arus bocor untuk memenuhi piawaian.

Dalam projek ini, dua jenis penyongsang PV tanpa transformer yang baru-baru ini diusulkan akan disiasat, iaitu, penyongsang PV fasa tunggal dan tiga fasa. Satu model mod sama digunakan untuk mengkaji tingkah laku mod sama sistem PV tanpa transformer. Ia menunjukkan bahawa arus bocor bergantung secara langsung kepada voltan mod sama (CMV). Berdasarkan analisis kajian, suatu topologi penyongsang PV tanpa transformer yang novel telah diusulkan untuk sistem PV fasa tunggal dan juga tiga fasa.

Bagi sistem PV fasa tunggal, "H-bridge zero-voltage state rectifier" (HBZVR-D) telah dicadangkan untuk menghapuskan arus bocor. Diod cepat-pulih ditambah kepada topologi HBZVR yang sedia ada untuk meningkatkan prestasi cabang pengapitan. Ia menunjukkan bahawa cabang pengapitan HBZVR-D yang dicadangkan dapat mengapit CMV untuk menjadikannya malar supaya dapat menghapuskan arus bocor.

Selain itu, penyongsang tiga fasa (H7), yang diubahsuaikan daripada topologi fasa tunggal H5, turut disiasat. Suis tambahan diintegrasikan kepada struktur tetimbang penuh konvensional untuk mewujudkan pengasingan galvanik. Di sini, teknik novel pemodulatan berdasarkan pemodulatan lebar denyut tidak berterusan konvensional telah dicadangkan. Ia menunjukkan bahawa topologi yang dicadangkan mampu mengurangkan CMV untuk mengurangkan arus bocor.

Kesahan penyongsang yang dicadangkan disahkan melalui simulasi dan prototaip makmal. DSP TMS320F28335 digunakan untuk memprogram teknik

v

pemodulatan. Prestasi topologi yang dicadangkan itu, dari CMV, arus bocor, herotan harmonic seluruh (THD) dan kecekapan, dibandingkan dengan pelbagai penyongsang pengubah PV yang dicadangkan baru-baru ini. Uji kaji telah membuktikan bahawa penyongsang PV fasa tunggal dan tiga fasa yang dicadangkan dapat mengurangkan arus bocor dengan prestasi keseluruhan yang unggul antara topologi baru-baru ini dicadangkan.

Acknowledgement

I would like to praise and thank the Almighty God by giving me the opportunity to successfully complete this thesis in fulfillment of the requirement for the Doctor of Philosophy in Electrical Engineering.

I wish to express my gratitude to my supervisor, **Professor Dr. Nasrudin Abd Rahim** and **Professor Dr. Hew Wooi Ping** for their constructive advice and guidance, which have undoubtedly motivate me throughout my research.

I also would like to thank all staffs in the UM Power Energy Dedicated Advanced Centre (UMPEDAC) particularly Dr. Che Hang Seng and my colleagues Tan Chin Yew, Lee Jhee Fong, Siti Rahimah and Farihah Shariff for their support and encouragement.

Also, not forgetting my church members and friends, who are praying and supporting me all the time. Last but not least, my sincere gratitude goes to my family and my girlfriend, Lee Soo Yee, who never fail to support and motivate until the completion of this thesis.

Table of Contents

Contents

Abstract	iii
Abstrak	v
Acknowledgement	vii
List of Figures	xi
List of Tables	XV
List of Symbol and Abbreviations	xvi
Chapter I: Introduction	
1.1 Background	1
1.2 Universal Inverter Prototype	4
1.3 62150H Programmable DC Power Supply	7
1.4 TMS320F28335 DSP	7
1.5 VDE 0126-1-1 Standard	8
1.6 Research	9
1.7 Research Methodology	9
1.8 Scope of Work	10
1.9 Outline	11
Chapter II: Common-Mode Model: An Overview	
2.1 Introduction	12
2.2 Common-Mode Model for Single-Phase PV Systems	13
2.3 Common-Mode Model for Three-Phase PV Systems	17
2.3 Conclusion	20

Chapter III: Transformerless PV Inverters: An Overview

3.1	Introduction	21	
3.2	3.2 Single-Phase Transformerless PV Inverters		
	3.2.1 Full-Bridge Inverter	22	
	3.2.1.1 Unipolar PWM	23	
	3.2.1.2 Bipolar PWM	24	
	3.2.2 Recently Proposed Transformerless Inverter Topologies	25	
	3.2.2.1 H5 Inverter	26	
	3.2.2.2 HERIC Inverter	28	
	3.2.2.3 H6 Inverter	30	
	3.2.2.4 oH5 Inverter	32	
	3.2.2.5 HBZVR Inverter	34	
	3.2.3 Leakage Current Reduction Method	36	
	3.2.3.1 Galvanic Isolation	37	
	3.2.3.2 CMV Clamping	40	
3.3	Three-Phase Transformerless PV Inverters	41	
	3.3.1 Modulation Techniques	43	
	3.2.3.1 AZPWM	45	
	3.2.3.2 NSPWM	47	
	3.2.3.3 RSPWM	49	
	3.3.2 Converter Structures	51	
3.4	Conclusion	54	
Ch	apter IV: Proposed Single-Phase Transformerless PV Inverter		
4.1	Introduction	55	
4.2	Structure of Proposed Topology	56	
4.3	Operation Modes and Analysis	57	

ix

4.4 Operation Principles of Improved Clamping Branch	
4.5 Matlab Simulation	
4.5.1 Output Performance	70
4.5.2 Common-Mode Behaviour	72
4.5.3 Losses Analysis	79
4.6 Experimental Results	83
4.7 Conclusion	95
Chapter V: Proposed Three-Phase Transformerless PV Inverter	
5.1 Introduction	96
5.2 Proposed MDPWM	97
5.3 Operation of H7 Conversion Structure	
5.4 Scalar Implementation of MDPWM	
5.5 Performance Analysis of MDPWM	
5.5.1 Simplicity of Design and Cost	106
5.5.2 Line to Line Output Voltage Pattern	107
5.5.3 Voltage Linearity	107
5.6 Matlab Simulation 1	
5.6.1 Simulation Results	112
5.7 Experimental Results	
5.8 Conclusion	
Chapter VI: Conclusion	
6.1 Concluding Remarks 13	
6.2 Future Works	132
REFERENCES	133
PUBLICATIONS	138
APPENDIX: Hardware Set Up	
	X

List of Figures

Figure 1.1: Single-phase universal transformerless topologies	5
Figure 1.2: Three-phase universal transformerless topologies	6
Figure 2.1: Resonant circuit for single-phase transformerless PV inverter	13
Figure 2.2: Simplified resonant circuit for single-phase transformerless topology	14
Figure 2.3: Simplest resonant circuit for single-phase transformerless topology	16
Figure 2.4: Resonant circuit for single-phase transformerless PV inverter	17
Figure 2.5: Simplified resonant circuit for three-phase transformerless topology	18
Figure 2.6: Simplest resonant circuit for single-phase transformerless topology	19
Figure 3.1: Full-bridge inverter	22
Figure 3.2: Unipolar modulation	23
Figure 3.3: Bipolar modulation	24
Figure 3.4: H5 inverter	27
Figure 3.5: Switching pattern for H5 inverter	27
Figure 3.6: HERIC inverter	29
Figure 3.7: Switching pattern for HERIC inverter	29
Figure 3.8: H6 inverter	31
Figure 3.9: Switching pattern for H6 inverter	31
Figure 3.10: oH5 inverter	33
Figure 3.11: Switching pattern for oH5 inverter	33
Figure 3.12: HBZVR inverter	35
Figure 3.13: Switching pattern for HBZVR inverter	35
Figure 3.14: Universal transformerless topologies	38
Figure 3.15: Conduction mode for dc-decoupling topology	39
Figure 3.16: Freewheeling mode for dc-decoupling topology	39
Figure 3.17: Three-phase full-bridge inverter	41

xi

Figure 3.18: Voltage vector states for RCMV-PWM methods with different way of portioning the space vectors: (a) Type A and (b) type B	43
Figure 3.19: Switching pattern, line-to-line output voltages and CMV for AZPWM	46
Figure 3.20: Switching pattern, line-to-line output voltages and CMV for NSPWM	48
Figure 3.21: Switching pattern, line-to-line output voltages and CMV for RSPWM	50
Figure 3.22: Three-phase inverter with split capacitor topology	52
Figure 3.23: Three-phase inverter with freewheeling path	53
Figure 4.1: The conversion structure of the proposed HBZVR-D topology	56
Figure 4.2: Switching pattern of the proposed HBZVR-D topology	57
Figure 4.3: Mode 1 – conduction mode during positive half cycle	60
Figure 4.4: Mode 2 – freewheeling mode during positive half cycle	60
Figure 4.5: Mode 3 – conduction mode during negative half cycle	61
Figure 4.6: Mode 4 – freewheeling mode during negative half cycle	61
Figure 4.7: Simulation setup for H5 topology	64
Figure 4.8: Simulation setup for HERIC topology	65
Figure 4.9: Simulation setup for oH5 topology	66
Figure 4.10: Simulation setup for H6 topology	67
Figure 4.11: Simulation setup for HBZVR topology	68
Figure 4.12: Simulation setup for HBZVR-D topology	69
Figure 4.13: Line-to-line output voltage (top) and grid current (bottom) for H5 topology	70
Figure 4.14: Line-to-line output voltage (top) and grid current (bottom) for HERIC topology	70
Figure 4.15: Line-to-line output voltage (top) and grid current (bottom) for oH5 topology	71
Figure 4.16: Line-to-line output voltage (top) and grid current (bottom) for H6 topology	71
Figure 4.17: Line-to-line output voltage (top) and grid current (bottom) for HBZVR topology	71

xii

Figure 4.18: Line-to-line output voltage (top) and grid current (bottom) for proposed HBZVR-D topology	71
Figure 4.19: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for H5 topology	73
Figure 4.20: Leakage current for H5 topology	73
Figure 4.21: Microscopic waveform - V_{AN} (top), CMV (middle), and V_{BN} (bottom) for H5 topology	73
Figure 4.22: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HERIC topology	74
Figure 4.23: Leakage current for HERIC topology	74
Figure 4.24: Microscopic waveform - V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HERIC topology	74
Figure 4.25: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for oH5 topology	75
Figure 4.26: Leakage current for oH5 topology	75
Figure 4.27: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for H6 topology	76
Figure 4.28: Leakage current for H6 topology	76
Figure 4.29: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HBZVR topology	77
Figure 4.30: Leakage current for HBZVR topology	77
Figure 4.31: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HBZVR-D topology	78
Figure 4.32: Leakage current for HBZVR-D topology	78
Figure 4.33: Simulated losses results at 1 kW prototype	81
Figure 4.34: Experimental setup	83
Figure 4.35: Output voltage (CH1) and output current (CH4) for H5	85
Figure 4.36: Output voltage (CH1) and output current (CH4) for HERIC	85
Figure 4.37: Output voltage (CH1) and output current (CH4) for H6	86
Figure 4.38: Output voltage (CH1) and output current (CH4) for oH5	86
Figure 4.39: Output voltage (CH1) and output current (CH4) for HBZVR	87
Figure 4.40: Output voltage (CH1) and output current (CH4) for HBZVR-D	87
Figure 4.41: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for H5	89
Figure 4.42: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for HERIC	: 89

Figure 4.43	V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for H6	90
Figure 4.44	V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for oH5	90
Figure 4.45	V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for HBZVR	91
Figure 4.46	V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for HBZVR-D	91
Figure 4.47	Measured efficiency for different topologies	92
Figure 5.1:	Switching pattern, corresponding line-to-line output voltages and CMV for MDPWM in A1 \cap B1	100
Figure 5.2:	Switching pattern, corresponding line-to-line output voltages and CMV for MDPWM in A1 \cap B2	101
Figure 5.3:	H7 conversion structure	102
Figure 5.4:	Simplified equivalent circuit of H7 inverter during (a) active vectors and (b) zero vectors in region A1 \cap B1	103
Figure 5.5:	Proposed PWM modulator	105
Figure 5.6:	Simulation setup for RCMV-PWM	109
Figure 5.7:	Simulation setup for H7 inverter with MDPWM	110
Figure 5.8:	Pulse generation for RCMV-PWM	111
Figure 5.9:	Pulse generation for MDPWM	111
Figure 5.10	Line-to-line output voltage (top) and grid current (bottom) for SVPWM	112
Figure 5.11:	Line-to-line output voltage (top) and grid current (bottom) for DPWM	112
Figure 5.12:	Line-to-line output voltage (top) and grid current (bottom) for AZPWM	113
Figure 5.13	Line-to-line output voltage (top) and grid current (bottom) for NSPWM	113
Figure 5.14	Line-to-line output voltage (top) and grid current (bottom) for H7 inverter with proposed MDPWM	114
Figure 5.15	CMV (top) and leakage current (bottom) for SVPWM	115
Figure 5.16	CMV (top) and leakage current (bottom) for DPWM	115
Figure 5.17:	CMV (top) and leakage current (bottom) for AZPWM	116
Figure 5.18	CMV (top) and leakage current (bottom) for NSPWM	116 _{xiv}

Figure 5.19:	CMV (top) and leakage current (bottom) for H7 inverter with proposed MDPWM	117
Figure 5.20:	Zoom-in waveforms of CMV (top) and leakage current (bottom) for H7 with proposed MDPWM, showing CMV oscillation during freewheeling period	g 118
Figure 5.21:	Experimental setup	119
Figure 5.22:	Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for SVPWM	121
Figure 5.23:	Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for DPWM	121
Figure 5.24:	Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for AZPWM	122
Figure 5.25:	Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for NSPWM	123
Figure 5.26:	Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for H7 inverter with proposed MDPWM	124
Figure 5.27:	Experimental result of dc-link voltage ripples for various modulation techniques	125

List of Tables

Table 1.1: Universal single-phase transformerless prototype and parameters	6
Table 1.2: Universal single-phase transformerless prototype and parameters	7
Table 3.1: Pulse patterns for various PWM methods	44
Table 4.1: Parameters for losses simulation	79
Table 4.2: Parameters of universal inverter	84
Table 4.3: Performance comparisons for various transformerless topologies	94
Table 5.1: Vectors combination and corresponding CMV for MDPWM	97
Table 5.2: Pulse pattern for proposed MDPWM	98
Table 5.3: Parameters of universal inverter	119
Table 5.4: Performance comparisons for various PWM	127

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

V_{DC}	Direct current supply voltage
V _{AN} , V _{BN} , V _{CN}	Load node voltage with respect to the neutral of the dc bus
V_{FP}	Freewheeling path voltage
C_{1}, C_{2}	DC bus capacitor
C_{PV}	Stray capacitance
L_{f}	Filtering inductance
R_G	Ground resistance
f	Grid frequency
f_s	Switching frequency
L_{f}	Filter inductor
I_g	Grid current
V_g	Grid voltage
V_{DM}	Differential-mode voltage
V _{CM}	Common-mode voltage
V_{ECM}	Equivalent common-mode voltage
I_L	Leakage current
т	Modulation Index
$\eta_{\scriptscriptstyle CEC}$	Californian efficiency
V_a, V_b, V_c	Original sinusoidal reference signals
V_a^*, V_b^*, V_c^*	Resultant modulation signals after injecting of zero-sequence signal
V_0	Zero sequence signal
V _{max}	Original sinusoidal reference signals with maximum magnitude
$V_{CE(SAT)}$	Saturation voltage
I_C	On-state current

V_F	Diode forward voltage
I_F	Freewheeling current
E_{ON}, E_{OFF}	Turn-on and turn-off energy losses of the IGBT
V _{DC_DATASHEET}	Dc bus voltage in the E_{ON} and E_{OFF} characteristic of the datasheet
P _{CON_IGBT}	Conduction losses of IGBT
P_{SW_D}	Conduction losses of freewheeling diode
P_{SW_ON}	Turn on losses of IGBT
P _{SW_OFF}	Turn off losses of IGBT
P _{SW IGBT}	Total switching losses of IGBT

Abbreviations

PV	Photovoltaic
PWM	Pulse-Width Modulation
EPWM	Enhanced Pulse-Width Modulation
RCMV-PWM	Reduced Common-Mode-Voltage Pulse-Width Modulation
SPWM	Sinusoidal Pulse-Width Modulation
SVPWM	Space-Vector Pulse-Width Modulation
DPWM	Discontinuous Pulse-Width Modulation
AZPWM	Active Zero-State Pulse-Width Modulation
NSPWM	Near-State Pulse-Width Modulation
MDPWM	Modified Discontinuous Pulse-Width Modulation
THD	Total Harmonic Distortion
DC	Direct Current
AC	Alternating Current
EMI	Electromagnetic Interference

- MPPT Maximum Power Point Tracking
- CMV Common-Mode Voltage
- IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal-Oxide Semiconductor Field Effect Transistor
- DSP Digital Signal Processor
- NPC Neutral-Point Clamped