Abstract

Small, highly efficient and low cost photovoltaic (PV) system can be achieved when the transformer is removed from the PV inverter. Nevertheless, transformerless PV inverters generates dangerous leakage currents. Therefore, various transformerless PV inverters topologies are proposed recently to reduce the leakage current to meet the requirement of the standard.

In this project, two types of recently proposed transformerless PV inverters are investigated, i.e., single-phase and three-phase inverters. A common-mode model circuit for each type is developed to study the common-mode behavior of the transformerless PV inverters. It is shown that the leakage current is directly depending on the common-mode voltage (CMV). Based on the analysis of the studies, a novel transformerless PV inverter topology is proposed for both single-phase and three-phase PV systems respectively.

For single-phase PV systems, a simple modified H-bridge zero-voltage state rectifier (HBZVR-D) is proposed to eliminate the leakage current. A fast-recovery diode is added to the existing HBZVR topology to improve the clamping branch performance. It is shown that the improved clamping branch of the proposed topology completely clamps the CMV to constant to eliminate the leakage current.

On the other hand, a three-phase transformerless inverter (H7), adapted from the single-phase H5 topology, is investigated. An additional switch is added to the conventional full-bridge structure to provide galvanic isolation. Here, a novel modulation technique based on conventional discontinuous pulsedwidth modulation is proposed. It is shown that the proposed topology is able to reduce the CMV in order to reduce the leakage current.

The validity of the proposed inverters are verified via simulations and laboratory prototypes. DSP TMS320F28335 is used to program the modulation techniques. The
performances of the proposed topologies, in terms of CMV, leakage current, total harmonic distortion (THD) and efficiency, are compared with various recently proposed transformerless PV inverters. It is experimentally proven that the proposed transformerless single- and three-phase inverters are able to reduce the leakage current with superior overall performance among the recently proposed topologies.
Abstrak

Sistem photovoltaic (PV) yang ringan, berkecekapan tinggi dan berkos rendah boleh dicapai apabila transformer dikeluarkan dari penyongsang PV. Walau bagaimanapun, penyongsang PV tanpa transformer menjana arus bocor yang berbahaya. Oleh itu, pelbagai topologi penyongsang PV tanpa transformer dicadangkan baru-baru ini untuk mengurangkan arus bocor untuk memenuhi piawaian.

Dalam projek ini, dua jenis penyongsang PV tanpa transformer yang baru-baru ini diusulkan akan disiasat, iaitu, penyongsang PV fasa tunggal dan tiga fasa. Satu model mod sama digunakan untuk mengkaji tingkah laku mod sama sistem PV tanpa transformer. Ia menunjukkan bahawa arus bocor bergantung secara langsung kepada voltan mod sama (CMV). Berdasarkan analisis kajian, suatu topologi penyongsang PV tanpa transformer yang novel telah diusulkan untuk sistem PV fasa tunggal dan juga tiga fasa.

Bagi sistem PV fasa tunggal, “H-bridge zero-voltage state rectifier” (HBZVR-D) telah dicadangkan untuk menghapuskkan arus bocor. Diod cepat-pulih ditambah kepada topologi HBZVR yang sedia ada untuk meningkatkan prestasi cabang pengapitan. Ia menunjukkan bahawa cabang pengapitan HBZVR-D yang dicadangkan dapat mengapit CMV untuk menjadikannya malar supaya dapat menghapuskkan arus bocor.

Selain itu, penyongsang tiga fasa (H7), yang diubahsuaikan daripada topologi fasa tunggal H5, turut disiasat. Suis tambahan diintegrasikan kepada struktur tetimbang penuh konvensional untuk mewujudkan pengasingan galvanik. Di sini, teknik novel pemodulatan berdasarkan pemodulatan lebar denyut tidak berterusan konvensional telah dicadangkan. Ia menunjukkan bahawa topologi yang dicadangkan mampu mengurangkan CMV untuk mengurangkan arus bocor.

Kesahan penyongsang yang dicadangkan disahkan melalui simulasi dan prototaip makmal. DSP TMS320F28335 digunakan untuk memprogram teknik
pemodulatan. Prestasi topologi yang dicadangkan itu, dari CMV, arus bocor, herotan harmonic seluruh (THD) dan kecekapan, dibandingkan dengan pelbagai penyongsang pengubah PV yang dicadangkan baru-baru ini. Uji kaji telah membuktikan bahawa penyongsang PV fasa tunggal dan tiga fasa yang dicadangkan dapat mengurangkan arus bocor dengan prestasi keseluruhan yang unggul antara topologi baru-baru ini dicadangkan.
Acknowledgement

I would like to praise and thank the Almighty God by giving me the opportunity to successfully complete this thesis in fulfillment of the requirement for the Doctor of Philosophy in Electrical Engineering.

I wish to express my gratitude to my supervisor, Professor Dr. Nasrudin Abd Rahim and Professor Dr. Hew Wooi Ping for their constructive advice and guidance, which have undoubtedly motivate me throughout my research.

I also would like to thank all staffs in the UM Power Energy Dedicated Advanced Centre (UMPEDAC) particularly Dr. Che Hang Seng and my colleagues Tan Chin Yew, Lee Jhee Fong, Siti Rahimah and Farihah Shariff for their support and encouragement.

Also, not forgetting my church members and friends, who are praying and supporting me all the time. Last but not least, my sincere gratitude goes to my family and my girlfriend, Lee Soo Yee, who never fail to support and motivate until the completion of this thesis.
Table of Contents

Contents

Abstract iii

Abstrak v

Acknowledgement vii

List of Figures xi

List of Tables xv

List of Symbol and Abbreviations xvi

Chapter I: Introduction

1.1 Background 1

1.2 Universal Inverter Prototype 4

1.3 62150H Programmable DC Power Supply 7

1.4 TMS320F28335 DSP 7

1.5 VDE 0126-1-1 Standard 8

1.6 Research 9

1.7 Research Methodology 9

1.8 Scope of Work 10

1.9 Outline 11

Chapter II: Common-Mode Model: An Overview

2.1 Introduction 12

2.2 Common-Mode Model for Single-Phase PV Systems 13

2.3 Common-Mode Model for Three-Phase PV Systems 17

2.3 Conclusion 20
Chapter III: Transformerless PV Inverters: An Overview

3.1 Introduction 21

3.2 Single-Phase Transformerless PV Inverters 22
 3.2.1 Full-Bridge Inverter 22
 3.2.1.1 Unipolar PWM 23
 3.2.1.2 Bipolar PWM 24
 3.2.2 Recently Proposed Transformerless Inverter Topologies 25
 3.2.2.1 H5 Inverter 26
 3.2.2.2 HERIC Inverter 28
 3.2.2.3 H6 Inverter 30
 3.2.2.4 oH5 Inverter 32
 3.2.2.5 HBZVR Inverter 34
 3.2.3 Leakage Current Reduction Method 36
 3.2.3.1 Galvanic Isolation 37
 3.2.3.2 CMV Clamping 40

3.3 Three-Phase Transformerless PV Inverters 41
 3.3.1 Modulation Techniques 43
 3.2.3.1 AZPWM 45
 3.2.3.2 NSPWM 47
 3.2.3.3 RSPWM 49
 3.3.2 Converter Structures 51

3.4 Conclusion 54

Chapter IV: Proposed Single-Phase Transformerless PV Inverter

4.1 Introduction 55

4.2 Structure of Proposed Topology 56

4.3 Operation Modes and Analysis 57
Chapter V: Proposed Three-Phase Transformerless PV Inverter

5.1 Introduction

5.2 Proposed MDPWM

5.3 Operation of H7 Conversion Structure

5.4 Scalar Implementation of MDPWM

5.5 Performance Analysis of MDPWM

5.5.1 Simplicity of Design and Cost

5.5.2 Line to Line Output Voltage Pattern

5.5.3 Voltage Linearity

5.6 Matlab Simulation

5.6.1 Simulation Results

5.7 Experimental Results

5.8 Conclusion

Chapter VI: Conclusion

6.1 Concluding Remarks

6.2 Future Works

REFERENCES

PUBLICATIONS

APPENDIX: Hardware Set Up
List of Figures

Figure 1.1: Single-phase universal transformerless topologies 5
Figure 1.2: Three-phase universal transformerless topologies 6
Figure 2.1: Resonant circuit for single-phase transformerless PV inverter 13
Figure 2.2: Simplified resonant circuit for single-phase transformerless topology 14
Figure 2.3: Simplest resonant circuit for single-phase transformerless topology 16
Figure 2.4: Resonant circuit for single-phase transformerless PV inverter 17
Figure 2.5: Simplified resonant circuit for three-phase transformerless topology 18
Figure 2.6: Simplest resonant circuit for single-phase transformerless topology 19
Figure 3.1: Full-bridge inverter 22
Figure 3.2: Unipolar modulation 23
Figure 3.3: Bipolar modulation 24
Figure 3.4: H5 inverter 27
Figure 3.5: Switching pattern for H5 inverter 27
Figure 3.6: HERIC inverter 29
Figure 3.7: Switching pattern for HERIC inverter 29
Figure 3.8: H6 inverter 31
Figure 3.9: Switching pattern for H6 inverter 31
Figure 3.10: oH5 inverter 33
Figure 3.11: Switching pattern for oH5 inverter 33
Figure 3.12: HBZVR inverter 35
Figure 3.13: Switching pattern for HBZVR inverter 35
Figure 3.14: Universal transformerless topologies 38
Figure 3.15: Conduction mode for dc-decoupling topology 39
Figure 3.16: Freewheeling mode for dc-decoupling topology 39
Figure 3.17: Three-phase full-bridge inverter 41
Figure 3.18: Voltage vector states for RCMV-PWM methods with different way of portioning the space vectors: (a) Type A and (b) type B

Figure 3.19: Switching pattern, line-to-line output voltages and CMV for AZPWM

Figure 3.20: Switching pattern, line-to-line output voltages and CMV for NSPWM

Figure 3.21: Switching pattern, line-to-line output voltages and CMV for RSPWM

Figure 3.22: Three-phase inverter with split capacitor topology

Figure 3.23: Three-phase inverter with freewheeling path

Figure 4.1: The conversion structure of the proposed HBZVR-D topology

Figure 4.2: Switching pattern of the proposed HBZVR-D topology

Figure 4.3: Mode 1 – conduction mode during positive half cycle

Figure 4.4: Mode 2 – freewheeling mode during positive half cycle

Figure 4.5: Mode 3 – conduction mode during negative half cycle

Figure 4.6: Mode 4 – freewheeling mode during negative half cycle

Figure 4.7: Simulation setup for H5 topology

Figure 4.8: Simulation setup for HERIC topology

Figure 4.9: Simulation setup for oH5 topology

Figure 4.10: Simulation setup for H6 topology

Figure 4.11: Simulation setup for HBZVR topology

Figure 4.12: Simulation setup for HBZVR-D topology

Figure 4.13: Line-to-line output voltage (top) and grid current (bottom) for H5 topology

Figure 4.14: Line-to-line output voltage (top) and grid current (bottom) for HERIC topology

Figure 4.15: Line-to-line output voltage (top) and grid current (bottom) for oH5 topology

Figure 4.16: Line-to-line output voltage (top) and grid current (bottom) for H6 topology

Figure 4.17: Line-to-line output voltage (top) and grid current (bottom) for HBZVR topology
Figure 4.18: Line-to-line output voltage (top) and grid current (bottom) for proposed HBZVR-D topology
Figure 4.19: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for H5 topology
Figure 4.20: Leakage current for H5 topology
Figure 4.21: Microscopic waveform - V_{AN} (top), CMV (middle), and V_{BN} (bottom) for H5 topology
Figure 4.22: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HERIC topology
Figure 4.23: Leakage current for HERIC topology
Figure 4.24: Microscopic waveform - V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HERIC topology
Figure 4.25: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for oH5 topology
Figure 4.26: Leakage current for oH5 topology
Figure 4.27: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for H6 topology
Figure 4.28: Leakage current for H6 topology
Figure 4.29: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HBZVR topology
Figure 4.30: Leakage current for HBZVR topology
Figure 4.31: V_{AN} (top), CMV (middle), and V_{BN} (bottom) for HBZVR-D topology
Figure 4.32: Leakage current for HBZVR-D topology
Figure 4.33: Simulated losses results at 1 kW prototype
Figure 4.34: Experimental setup
Figure 4.35: Output voltage (CH1) and output current (CH4) for H5
Figure 4.36: Output voltage (CH1) and output current (CH4) for HERIC
Figure 4.37: Output voltage (CH1) and output current (CH4) for H6
Figure 4.38: Output voltage (CH1) and output current (CH4) for oH5
Figure 4.39: Output voltage (CH1) and output current (CH4) for HBZVR
Figure 4.40: Output voltage (CH1) and output current (CH4) for HBZVR-D
Figure 4.41: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for H5
Figure 4.42: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for HERIC
Figure 4.43: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for H6

Figure 4.44: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for oH5

Figure 4.45: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for HBZVR

Figure 4.46: V_{AN} (CH1), CMV (M), V_{BN} (CH2) and leakage current (CH4) for HBZVR-D

Figure 4.47: Measured efficiency for different topologies

Figure 5.1: Switching pattern, corresponding line-to-line output voltages and CMV for MDPWM in $A1 \cap B1$

Figure 5.2: Switching pattern, corresponding line-to-line output voltages and CMV for MDPWM in $A1 \cap B2$

Figure 5.3: H7 conversion structure

Figure 5.4: Simplified equivalent circuit of H7 inverter during (a) active vectors and (b) zero vectors in region $A1 \cap B1$

Figure 5.5: Proposed PWM modulator

Figure 5.6: Simulation setup for RCMV-PWM

Figure 5.7: Simulation setup for H7 inverter with MDPWM

Figure 5.8: Pulse generation for RCMV-PWM

Figure 5.9: Pulse generation for MDPWM

Figure 5.10: Line-to-line output voltage (top) and grid current (bottom) for SVPWM

Figure 5.11: Line-to-line output voltage (top) and grid current (bottom) for DPWM

Figure 5.12: Line-to-line output voltage (top) and grid current (bottom) for AZPWM

Figure 5.13: Line-to-line output voltage (top) and grid current (bottom) for NSPWM

Figure 5.14: Line-to-line output voltage (top) and grid current (bottom) for H7 inverter with proposed MDPWM

Figure 5.15: CMV (top) and leakage current (bottom) for SVPWM

Figure 5.16: CMV (top) and leakage current (bottom) for DPWM

Figure 5.17: CMV (top) and leakage current (bottom) for AZPWM

Figure 5.18: CMV (top) and leakage current (bottom) for NSPWM
Figure 5.19: CMV (top) and leakage current (bottom) for H7 inverter with proposed MDPWM

Figure 5.20: Zoom-in waveforms of CMV (top) and leakage current (bottom) for H7 with proposed MDPWM, showing CMV oscillation during freewheeling period

Figure 5.21: Experimental setup

Figure 5.22: Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for SVPWM

Figure 5.23: Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for DPWM

Figure 5.24: Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for AZPWM

Figure 5.25: Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for NSPWM

Figure 5.26: Line-to-line voltage (CH1), output current (CH3), and leakage current (CH4) for H7 inverter with proposed MDPWM

Figure 5.27: Experimental result of dc-link voltage ripples for various modulation techniques
List of Tables

Table 1.1: Universal single-phase transformerless prototype and parameters 6
Table 1.2: Universal single-phase transformerless prototype and parameters 7
Table 3.1: Pulse patterns for various PWM methods 44
Table 4.1: Parameters for losses simulation 79
Table 4.2: Parameters of universal inverter 84
Table 4.3: Performance comparisons for various transformerless topologies 94
Table 5.1: Vectors combination and corresponding CMV for MDPWM 97
Table 5.2: Pulse pattern for proposed MDPWM 98
Table 5.3: Parameters of universal inverter 119
Table 5.4: Performance comparisons for various PWM 127
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

V_{DC} Direct current supply voltage

V_{AN}, V_{BN}, V_{CN} Load node voltage with respect to the neutral of the dc bus

V_{FP} Freewheeling path voltage

C_1, C_2 DC bus capacitor

C_{PV} Stray capacitance

L_f Filtering inductance

R_G Ground resistance

f Grid frequency

f_s Switching frequency

L_f Filter inductor

I_g Grid current

V_g Grid voltage

V_{DM} Differential-mode voltage

V_{CM} Common-mode voltage

V_{ECM} Equivalent common-mode voltage

I_L Leakage current

m Modulation Index

η_{CEC} Californian efficiency

V_a, V_b, V_c Original sinusoidal reference signals

V_{a^*}, V_{b^*}, V_{c^*} Resultant modulation signals after injecting of zero-sequence signal

V_0 Zero sequence signal

V_{max} Original sinusoidal reference signals with maximum magnitude

$V_{CE(SAT)}$ Saturation voltage

I_C On-state current
\(V_F \)
Diode forward voltage

\(I_F \)
Freewheeling current

\(E_{ON}, E_{OFF} \)
Turn-on and turn-off energy losses of the IGBT

\(V_{DC_DATASHEET} \)
Dc bus voltage in the \(E_{ON} \) and \(E_{OFF} \) characteristic of the datasheet

\(P_{CON_IGBT} \)
Conduction losses of IGBT

\(P_{SW_D} \)
Conduction losses of freewheeling diode

\(P_{SW_ON} \)
Turn on losses of IGBT

\(P_{SW_OFF} \)
Turn off losses of IGBT

\(P_{SW_IGBT} \)
Total switching losses of IGBT

Abbreviations

PV
Photovoltaic

PWM
Pulse-Width Modulation

EPWM
Enhanced Pulse-Width Modulation

RCMV-PWM
Reduced Common-Mode-Voltage Pulse-Width Modulation

SPWM
Sinusoidal Pulse-Width Modulation

SVPWM
Space-Vector Pulse-Width Modulation

DPWM
Discontinuous Pulse-Width Modulation

AZPWM
Active Zero-State Pulse-Width Modulation

NSPWM
Near-State Pulse-Width Modulation

MDPWM
Modified Discontinuous Pulse-Width Modulation

THD
Total Harmonic Distortion

DC
Direct Current

AC
Alternating Current

EMI
Electromagnetic Interference
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPPT</td>
<td>Maximum Power Point Tracking</td>
</tr>
<tr>
<td>CMV</td>
<td>Common-Mode Voltage</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal-Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>NPC</td>
<td>Neutral-Point Clamped</td>
</tr>
</tbody>
</table>