APPENDIX A1

LEGENDS Burlington, MA USA			Case Name: Hydrodeoxygenation of oleic acid and stearic acid.hsc						
			Unit Set: SI						
			Date/Time: Fri Mar 06 14:57:35 2015						
					Pure Co	mponent:	Oleic	Acid	
		ld	lentifi	cati	on				
Family / Class		Chemical Formula	a		ID Number	Group N	lame	CAS Number	
Carboxilic_Acid		С	18H34O2		3097				
			UNIFAC	Structure					
		U	ser I		gs				
Tag N	umber				•	Tag Tex	t		
		Critical	l/Base	Pro	onerties				
Base Pr	operties		, Buot			Critical Prop	arties		
Molecular Weight	operiles		282.5	Temp	erature		(C)	496.9	
Normal Boiling Pt		(C)	358.9	Press	ure		(kPa)	1390	
Std Liq Density	(k	g/m3)	893.4	Volum	10	(m3/kgmole)	1.000	
				Acent	ricity			1.178	
	Te	emperature	Depe	ende	ent Prope	erties			
		Vapour En	thalpy		Vapour Pressure		Gibbs Free Energy		
Minimum Temperature	(C)		-27	0.0		13.38		25.00	
Coefficient Name	(C)	IdealH Coe	fficient	000	Antoine C	496.9 Coefficient	Gibbs	426.9 Free Coefficient	
a			3.520e-(007		175.2		-6.716e+005	
b			-0.20	042	-2.002e+004			1577	
С		3.5		003	0.0000		0.1282		
d			-1.856e-0	006		-21.91 5.918e-006		0.0000	
f			-8.948e-014			2.000			
g			1.0	000		0.0000			
h			0.0	000		0.0000			
i			0.0	000	0.0000				
]			0.00	000		0.0000			
Aspen Technology Inc.		Aspen HYS	YS Versi	on 7.2	(24.0.0.7263)			Page 1 of 1	

APPENDIX A2

	Case Name: Hydrodeoxygenation of oleic acid and stearic acid.hsc							
LEGENDS Burlington, MA			Unit Set: SI					
			Date/Time: Fri Mar 06 14:58:42 2015					
			Pure Co	mponent:	Steari	cAcid		
	lc	dentific	ation					
Family / Class	Chemical Formul	a	Group N	lame	CAS Number			
Carboxilic_Acid	С	18H36O2	3046					
		UNIFAC St	ructure)16 CH3					
	U	lser ID	Tags					
Tag Number				Tag Text	t			
	Critica	I/Base	Properties					
Base Propertie	s		•	Critical Prope	erties			
Molecular Weight		284.5	Temperature		(C)	525.9		
Normal Boiling Pt	(C)	375.2	Pressure		(kPa)	1350		
Std Liq Density	(kg/m3)	881.7	Volume Acentricity	(r	n3/kgmole)	1.020		
•	Femperature	Depe	ndent Prop	erties				
	- Vapour Er	- nthalpy	Vapour	Pressure	Gibbs Free Energy			
Minimum Temperature (C		-270.	0	69.60	25.00			
Maximum Temperature (C		500	0	525.9		426.9		
Coefficient Name	IdealH Coe	efficient	Antoine (Coefficient	GIDDS Free Coefficient			
a		3.128e-00	12	-1.898e+004		-7.8060+003		
C		2.974e-00	13	0.0000	0.1343			
d		-1.070e-00	16	-21.74		0.0000		
e		1.434e-01	0	7.231e-006	7.231e-006			
f		5.141e-01	5	2.000				
9h		0.000	0	0.0000				
i		0.000	0	0.0000				
j		0.000	0.0000					
Aspen Technoloav Inc.	Aspen HYS	SYS Versio	n 7.2 (24.0.0.7263)			Page 1 of 1		

APPENDIX A3

				Case Name:		Hydrodeoxy	Hydrodeoxygenation of oleic acid and stearic acid.hsc			
			Unit S	et:	SI	SI				
			Date/T	ïme:	Sat Mar 07 0	Sat Mar 07 09:34:14 2015				
	Co	rsion React	or:	Hydroo	deoxyge	enatio	n reactor			
				CONN	ECTIONS					
			Inlet	Stream	Connecti	ons				
_	Stream	Nam	e	From Unit Operation						
Oleic acid										
H2										
			Outle	et Stream	n Connect	tions				
	Stream	Nam	e				To Unit C	peration		
Steam										
BIOTUEI			Energ	ıv Strea	m Connec	tions				
	Stream	Nam					From Unit	Operation		
Q Reactor	Otream	lam								
				PARA	METERS					
	Physical P	aramete	ers				Optional	Heat Transfer	-	
Delta	P		Vessel Volume			Duty	h	Energ	Energy Stream	
	. u			User V	/ariables	2.111101000110,				
			R	EACTIO	N DETAIL	s				
			Rea	ction:	Oleic +H2	2				
С	omponent			Mole	Weight			Stoichiometric	Coeff.	
OleicAcid						282.5			-1.000 *	
Hydrogen						2.016			-3.989 *	
H2O						18.02	2.000			
			Rea	ction:	Stearic +	H2				
C	omponent			Mole	Weight			Stoichiometric	Coeff.	
StearicAcid						284.5			-1.000 *	
n-C18						254.5			-2.969	
H2O						18.02			2.000 *	
		REA		FOR :	HDO					
				Ev	tonts					
Nama	Popk		Specified	Line	Default	Actual		Base	Reaction Extent	
Name	r ank		% Conversion	Conversion		% Convers	ion	Component		
Oleic +H2 Stearic + H2		0 *	90.00 90.00 *	90.00 Yes		81.56 90.00		OleicAcid	2.492e-003 2.250e-003	
					ance					
Compone	ents		Total Inflow			Total Reaction	1	Tot	al Outflow	
							5 000			
StearicAcid			3.0	00e-003		-	2.4928-003		5.636e-004	
LinoleicAcid			2.3	0.0000	<u>-2.2500-003</u> 2.			0.0000		
Aspen Technology Inc. Aspen HYSYS Version 7.2 (24.0.0.7263)						1.0.0.7263)			Page 1 of 3	

Licensed to: LEGENDS

* Specified by user.

	.		Case Name:		Hydrodeoxy	Hydrodeoxygenation of oleic acid and stearic acid.hsc					
aspentecl	Burlington	on, MA		Unit Set:		SI	SI				
USA				Date/Time:		Sat Mar 07 0	9:34:14 2015				
	on React	tor: H	lydro	odeoxyge	enation	reactor	(continued)				
REACTION RESULTS FOR : HDO											
Balance											
Components			Total Inflow			Total Reaction		т	otal Outflow		
1016oicAcid				0.0000			0.0000	0.0000			
Hydrogen			1.6	67e-002	0.0000 0.0000				0.0000		
n-C18				0.0000			4 742e-003		4 742e-003		
n-C16				0.0000			0.0000		0.0000		
H2O				0.0000			9.484e-003		9.484e-003		
				CONDI	TIONS						
Name			0	Dleic acid		Stearic acid		H2	Biofuel		
Vapour				0.0000		0.0000		1.0000	0.0000		
Temperature		(C)		30.0000 *		30.0000 *		30.0000 *	300.0000 *		
Pressure		(kPa)	2	220.0000 *		220.0000 *		220.0000 *	220.0000		
Molar Flow	(k	gmole/h)		10.0000 *		10.0000 *		60.0000 *	6.6710		
Mass Flow		(kg/h)	28	833.7421		2833.7421		120.9600	1741.1244		
Std Ideal Liq Vol Flow		(m3/h)		3.1909		3.1909		1.7315	2.1518		
Molar Enthalpy	(kJ	l/kgmole)	-8.4	02e+005		-8.402e+005		142.1	-3.959e+005		
Molar Entropy	(kJ/kę	gmole-C)		247.2		247.2		155.4	886.3		
Heat Flow		(kJ/h)	-8.4	017e+06		-8.4017e+06		8.5286e+03	-2.6412e+06		
Name				Steam		Q Reactor					
Vapour		(0)		1.0000							
I emperature		(C)		300.0000							
Pressure Molar Flow	(14	(KPa)	4	47 4712							
Mass Flow	(K	(ka/b)	4	47.4713							
Std Ideal Lig Vol Flow	(m3/h)		4.9368								
Molar Enthalpy	(kJ	(kJ/kgmole) -2.47		73e+005							
Molar Entropy	(kJ/kį	gmole-C)	nole-C)								
Heat Flow		(kJ/h)	-1.1	740e+07		2.4141e+06					
				PROPE	RTIES						
Name		Ole	acid	Stearic a	acid	H2		Biofuel	Steam		
Molecular Weight			283.4		283.4	2.	016	261.0	85.26		
Molar Density ((kgmole/m3)		3.053		3.053	8.728e-	002	2.274	4.617e-002		
Mass Density	(kg/m3)		865.2		865.2	0.1	760	593.6	3.936		
Act. Volume Flow	(m3/h)		3.275		3.275	68	37.4	2.933	1028		
Mass Enthalpy	(kJ/kg)		-2965		-2965	70	0.51	-1517	-2901		
Mass Entropy	(kJ/kg-C)		0.8725		0.8725	7	7.10	3.396	4.545		
Heat Capacity (k.	J/kgmole-C)		542.2		542.2	28	3.43	794.8	221.0		
Mass Heat Capacity	(kJ/kg-C)		1.913		1.913	14	4.10	3.045	2.592		
LHV Vol Basis (Std)	(kJ/kgmole)		1.050e+007	1.05	0e+007	2.419e+	005	1.106e+007	3.145e+006		
LHV Mass Basis (Std)	(kJ/kg)		3.704e+004	3.70	4e+004	1.200e+	005	4.239e+004	3.689e+004		
Phase Fraction [Vol. Basis] 0.0000		0.0000		1.000			1.000				
Partial Pressure of CO2	(kPa)		0.0000	0.0000		0,000		0.0000	0.000		
Cost Based on Flow	(Cost/s)		0,0000		0.0000	0.0000		0.0000	0.000		
Act Gas Flow	(ACT m3/h)		0.0000			687.4		0.0000	1028		
Avg. Lig. Density	(kamole/m3)		3.134		3,134	34	4.65	3 100	9.616		
Specific Heat (k.	J/kgmole-C)		542.2		542.2	28	3.43	794.8	221.0		
Std. Gas Flow	(STD_m3/h)		236.4		236.4	1	419	157.7	1122		
Std. Ideal Liq. Mass Densitv	(kg/m3)		888.1		888.1	69	9.86	809.1	819.8		
Aspen Technology Inc.			Aspen HYS	SYS Versi	on 7.2 (2	24.0.0.7263)			Page 2 of 3		

Licensed to: LEGENDS

* Specified by user.

Case Name:	Hydrodeoxygenation of oleic acid and stearic acid.hsc
Unit Set:	SI
Date/Time:	Sat Mar 07 09:34:14 2015

Conversion Reactor: Hydrodeoxygenation reactor (continued)

PROPERTIES										
Name	Oleic acid	Stearic acid	H2	Biofuel	Steam					
Act. Liq. Flow (m3/s)	9.098e-004	9.098e-004		8.148e-004						
Z Factor	2.859e-002	2.859e-002	1.000							
Watson K	11.78	11.78	47.60	12.66	12.85					
User Property										
Partial Pressure of H2S (kPa)	0.0000	0.0000	0.0000	0.0000	0.0000					
Cp/(Cp - R)	1.016	1.016	1.413	1.011	1.039					
Cp/Cv	1.124	1.124	1.413	1.191	1.039					
Heat of Vap. (kJ/kgmole)	1.034e+005	1.034e+005	1246	1.156e+005	8.589e+004					
Kinematic Viscosity (cSt)	36.26	36.26	50.39	0.4610	3.624					
Liq. Mass Density (Std. Cond) (kg/m3)	875.3	875.3		807.6	859.9					
Liq. Vol. Flow (Std. Cond) (m3/h)	3.237	3.237		2.156	4.707					
Liquid Fraction	1.000	1.000	0.0000	1.000	0.0000					
Molar Volume (m3/kgmole)	0.3275	0.3275	11.46	0.4397	21.66					
Mass Heat of Vap. (kJ/kg)	364.9	364.9	618.0	443.0	1007					
Phase Fraction [Molar Basis]	0.0000	0.0000	1.0000	0.0000	1.0000					
Surface Tension (dyne/cm)	22.04	22.04		7.873						
Thermal Conductivity (W/m-K)	0.1210	0.1210	0.1771	8.503e-002	3.373e-002					
Viscosity (cP)	31.37	31.37	8.867e-003	0.2737	1.427e-002					
Cv (Semi-Ideal) (kJ/kgmole-C)	533.8	533.8	20.12	786.5	212.6					
Mass Cv (Semi-Ideal) (kJ/kg-C)	1.884	1.884	9.980	3.014	2.494					
Cv (kJ/kgmole-C)	482.5	482.5	20.12	667.3	212.6					
Mass Cv (kJ/kg-C)	1.703	1.703	9.980	2.557	2.494					
Cv (Ent. Method) (kJ/kgmole-C)				8124						
Mass Cv (Ent. Method) (kJ/kg-C)				31.13						
Cp/Cv (Ent. Method)				9.784e-002						
Reid VP at 37.8 C (kPa)	1.013e-006	1.013e-006		2.299e-004	2.839e-004					
True VP at 37.8 C (kPa)	1.013e-006	1.013e-006		0.2935	5.797					
Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	3.237	3.237	0.0000	2.156	4.707					
Viscosity Index	29.64	29.64	30.89	-10.27	16.74					

Aspen Technology Inc. Licensed to: LEGENDS

LIST OF PUBLICATIONS

- O. B. Ayodele, Hamisu U. Farouk, Jibril Mohammed, Y. Uemura, W.M.A.W. Daud, (2015). Effect of precursor acidity on Zeolite supported Pd catalyst properties and hydrodeoxygenation activity for the production of biofuel, *Journal of Molecular Catalysis A: Chemical*, <u>http://dx.doi.org/10.1016/j.molcata.2015.01.033</u> (Tier 1 ISI/Scopus indexed article, Elsevier Publisher, Impact Factor = 3.679).
- O. B. Ayodele, Hamisu U. Farouk, Jibril Mohammed, Y. Uemura, W.M.A.W. Daud, (2015). Hydrodeoxygenation of oleic acid into n- and iso-paraffin biofuel using zeolite supported fluoro-oxalate modified molybdenum catalyst: Kinetics study, *Journal of the Taiwan Institute of Chemical Engineers,* <u>http://dx.doi.org/10.1016/j.jtice.2014.12.014</u> (Tier 1 ISI/Scopus indexed article, Elsevier Publisher, Impact Factor = 2.637).
- 3. O. B. Ayodele, W. M. A. W Daud (2014). Optimization of catalytic hydrodeoxygenation of oleic acid into biofuel using fluoroplatinum oxalate zeolite supported catalyst, *Journal of the Taiwan Institute of Chemical Engineers*, <u>http://dx.doi.org/10.1016/j.jtice.2014.09.031</u> (Tier 1 ISI/Scopus indexed article, Elsevier Publisher, Impact Factor = 2.637).
- O. B. Ayodele, H. F. Abbas, W. M. A. W Daud (2014). Hydrodeoxygenation of stearic acid into normal and iso-octadecane biofuel with zeolite supported palladium-oxalate catalyst, *Energy and Fuels*, 2014, 28 (9), 5872–5881 (Tier 1 ISI/Scopus indexed article, America Chemical Society Publisher, Impact Factor = 2.733).
- 5. **O. B. Ayodele**, H. F. Abbas, W. M. A. W Daud. Preparation and characterization of alumina supported nickel-oxalate catalyst for the hydrodeoxygenation of oleic acid into normal and iso-octadecane biofuel, *Energy Conversion and Management*, 88

(2014) 1111–1119. <u>http://dx.doi.org/10.1016/j.enconman.2014.05.099</u> (Tier 1 ISI/Scopus indexed article, Elsevier Publisher, Impact Factor = 3.590).

- O. B. Ayodele, H. F. Abbas, W. M. A. W Daud (2014). Catalytic upgrading of oleic acid into biofuel using Mo modified zeolite supported Ni oxalate catalyst functionalized with fluoride ion, *Energy Conversion and Management*, DOI:10.1016/j.enconman.2014.02.014 (Tier 1 ISI/Scopus indexed article, Elsevier Publisher, Impact Factor = 3.590).
- 7. O. B. Ayodele, H. F. Abbas, W. M. A. W Daud, (2014). Preparation and Characterization of Zeolite Supported Fluoro-palladium Oxalate Catalyst for Hydrodeoxygenation of Oleic Acid into Paraffinic Fuel, *Industrial Engineering and Chemistry Research*, 53 (2), 650–657. (Tier 1 ISI/Scopus indexed article, America Chemical Society Publisher, Impact Factor = 2.235).
- 8. O. B. Ayodele, H.F. Abbas, Wan Mohd Ashri Wan Daud (2014). Hydrodeoxygenation of Shea butter to produce diesel-like fuel using acidified and basic Al₂O₃ supported molybdenum oxalate catalyst based on Aspen Hysys simulation study- with Aspen Hysys simulation study, *Energy Education Science and Technology Part A: Energy Science and Research*, 32 (1) 447-460. (Tier 1 Scopus cited).
- 9. O. B. Ayodele, H. F. Abbas, W. M. A. W Daud. Effect of oxalic acid functionalization on alumina supported Ni catalyst on the isomerization, kinetics and Arrhenius parameters of oleic acid hydrodeoxygenation into biofuel, Applied Energy, (Manuscript under review), June 2014. (Tier 1 ISI/Scopus cited).

Conference Proceedings

 O. B. Ayodele, Wan Mohd Ashri Wan Daud, "Hydrodeoxygenation of Shea butter to produce diesel-like fuel using acidified and basic Al₂O₃ supported molybdenum oxalate catalyst based on Aspen Hysys simulation study" digital proceedings of the 8th SDEWES Conference on Sustainable Development of Energy, Water and Environment Systems, 22 - 27 September 2013, Dubrovnik, Croatia.

Other Publications during Candidature Year

- N.H.M. Azmi, O.B. Ayodele, V.M. Vadivelu, B. H. Hameed (2014). Fe-modified local clay as effective and reusable heterogeneous photo-Fenton catalyst for the decolorization of Acid Green 25, *Journal of the Taiwan Institute of Chemical Engineers*, <u>http://dx.doi.org/10.1016/j.jtice.2014.03.002</u> (Tier 1 ISI/Scopus cited)
- O. B. Ayodele, O.S. Togunwa (2014). Catalytic activity of synthesized bentonite supported cuprospinel oxalate catalyst on the degradation and mineralization kinetics of Direct Blue 71, Acid Green 25 and Reactive Blue 4 pollutants in photo-Fenton process, *Applied Catalysis A*, 470, 285–293. (Tier 1 ISI/Scopus cited)
- 3. **O. B. Ayodele**, B. H. Hameed (2013). Development of kaolin supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo Fenton process, *Applied Clay Science*, 83–84, 171-181. (Elsevier)
- 4. **O. B. Ayodele**, (2013). Effect of phosphoric acid treatment on kaolin clay supported ferrioxalate catalyst for the degradation of amoxicillin in batch photo-Fenton process, *Applied Clay Science*, 72, 74–83. (**Tier 1 ISI/Scopus cited**)

- O. B. Ayodele, B. H. Hameed (2013). Synthesis of copper pillared bentonite ferrioxalate catalyst for degradation of 4-nitrophenol in visible light assisted Fenton process, *Journal of Industrial and Engineering Chemistry*, 19, (3), 966–974. (Tier 1 ISI/Scopus cited)
- O. B. Ayodele, H. S. Auta, N. Md Nor, (2012). Artificial Neural Networks, optimization and kinetic modeling of amoxicillin degradation in photo-Fenton process using aluminum pillared montmorillonite supported ferrioxalate catalyst, *Industrial and Engineering Chemistry Research Journal*, 51, 16311–16319. (Tier 1 ISI/Scopus cited)