List of Figures

Figure 2.1	Scanning electron micrograph of Coal Fly Ash and Zeolilte A (courtesy: Hui et al., 2009)	20
Figure 2.2	Zeolite A lattice structure	22
Figure 2.3	Ball-and-stick model of part of the crystal structure of α -Al ₂ O ₃	22
Figure 2.4	Thermo-Raman spectra (200–1400cm ⁻¹) of Al(OH) ₃ during	
	condensation process (25-800 °C) forming Al ₂ O ₃ , in oxygen	
	atmosphere with heating rate of 5 °Cmin ⁻¹ . Courtesy:	
	(Ghule et al., 2010)	23
Figure 2.5	XRD patterns of zeolite, composited support, fresh and used	
	catalysts, (a: measured after the reaction)	28
Figure 2.6	Nitrogen adsorption/desorption isotherms of support	
	(OMA) and catalysts (Ni/OMA and OMNA) calcined at 700 $^{\circ}\mathrm{C}$	29
Figure 2.7	XRD patterns of support (OMA) and catalysts (Ni/OMA and OMNA) calcined at 700 °C	29
Figure 2.8	The ratio of C_{18}/C_{17} paraffin as a function of the process	
C	parameters (LHSV: 1.0 h^{-1} ; H ₂ /sunflower oil volume ratio:	
	$500 \text{ Nm}^3/\text{m}^3$)	33
Figure 2.9	(a) Conversion (X in mol%) (b) Selectivity (S in mol%) plotted	
	over reaction temperature (T in \circ C) and catalyst mass (m in g),	
	$V_{H2} = 50 \text{ ml/min}, m_{OA} = 6.2 \text{ ml/h} (Arend et al., 2011)$	36
Figure 2.10	Effects of catalyst amount on liquid product distribution, H_2	
	consumption, and CH ₄ formation, deoxidizing 2-g methyl laurate	
	(ML) with $46.52 - 47.90$ bar initial cold H ₂ pressure for 30 min at 350 °C	37
Figure 2.11	Melting points of normal and isoparaffins as a function of	
	carbon number	39

Page

Figure 2.12	The change of the yield of the target fraction and isoparaffins	
	during the long-term experiment on NiMo/Al2O3/F catalyst	
	(T: 350 °C; P: 40 bar; LHSV: 1.0 h–1, H ₂ /sunflower oil volume	
	ratio: 500 Nm ³ /m ³	41
Figure 3.1	Structure of oleic acid (ring showing presence of double bond)	43
Figure 3.2	Structure of stearic acid (no double bond)	44
Figure 3.3	Simplified process flow diagram for the hydrodeoxygenation	
	of model compounds	47
Figure 3.4	Research activity diagram	68
Figure RDO-1	Product distribution of the HDO of oleic acid at 360 °C, 20 mg	
-	catalyst loading, 20 bar, 100 ml/min H_2 gas flow and 60 min	70
Figure RDO-2	Product distribution of the HDO of oleic acid at 360 C, 20 mg	
	catalyst loading, 20 bar, 10% H_2 gas flow and 60 min	71
Figure 4.1	Simplified process flow diagram for the hydrodeoxygenation of	
	oleic acid and stearic acid using Aspen Hysys process simulator	73
Figure 4.2	Effect of temperature on hydrodeoxygenation of SB, Pressure =	
	100 kPa, MCs = 10 gmole/h, $H_2 = 4$ kgmole/h	74
Figure 4.3	Effect of hydrogen flow rate on the HDO of model compound;	
	T = 320 °C, P = 200 kPa, MCs flow rate = 10 kgmole/h	75
Figure 4.4	Effect of Pressure on hydrodeoxygenation of model compounds; T	=
	320 °C, MCs flow rate 10 kgmole/h, H_2 flow rate = 9.2kgmole/h	77
Figure 4.5	XRF spectra of Al ₂ O ₃ , Ni/Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	80
Figure 4.6	EDX spectra of (a) Al_2O_3 , (b) Ni/Al_2O_3 and (c) $NiOx/Al_2O_3$	
	samples	81
Figure 4.7	SEM morphology of (a) Al_2O_3 , (b) Ni/Al_2O_3 and (c) $NiOx/Al_2O_3$	
	samples	83
	our pres	05

Figure 4.8	Nitrogen adsorption/desorption of Al_2O_3 , Ni/Al_2O_3 and $NiOx/Al_2O_3$	
	samples	85
Figure 4.9	XRD patterns of Al ₂ O ₃ , Ni/Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	86
Figure 4.10	FTIR spectra of Al ₂ O ₃ , Ni/Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	87
Figure 4.12	Raman spectra of Al ₂ O ₃ , Ni/Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	89
Figure 4.13	Product distribution of the HDO of oleic acid at 360 °C, 20 mg catalyst loading, 20 bar, 100 ml/min H_2 gas flow and 60 min	91
Figure 4.14	Oxalate complexes (Cotton and Wilkinson, 1988)	93
Figure 4.15	Experimental data fitting of the HDO of oleic acid at 20 mg catalyst loading, 10% H_2 gas flow and 20 bar	97
Figure 4.16	Arrhenius parameter fitting plot (a) stearic acid formation step, (b) biofuel formation step	99
Figure 4.17	Thermal gravimetric analysis of Zeol, MoOx/Zeol and NiMoFOx/Zeol	103
Figure 4.18	X-ray fluorescence of (a) Zeol and (b) NiMoFOx/Zeol samples	104
Figure 4.19	Energy dispersive X-ray and Scanning electron microscopy of (a) Zeol, (b) MoOx/Zeol and (c) NiMoFOx/Zeol samples	105
Figure 4.20	SEM morphology of (a) Zeol, (b) MoOx/Zeol and (c) NiMoFOx/Zeol samples	106
Figure 4.21	X-ray diffraction of the Zeol and NiMoFOx/Zeol samples	108
Figure 4.22	FTIR spectra of the Zeol, MoOx/Zeol and NiMoFOx/Zeol samples	s 110
Figure 4.23	Raman spectroscopy of Zeol, MoOx/Zeol and NiMoFOx/Zeol samples	112
Figure 4.24	N2 adsorption/desorption of Zeol and all Zeol supported catalysts	114

xxiv

Figure 4.25	Effect of time on the HDO of oleic acid into biofuel at 340 $^{\circ}$ C, 20 bar and 20 mg NiMoFOx/Zeol loading and 100 mL H ₂ /min	115
Figure 4.26	Effect of temperature on the HDO of oleic acid into biofuel at 20 bar, 100 ml/min gas flow and 20 mg NiMoFOx/Zeol loading	117
Figure 4.27	Effect of pressure on the HDO of oleic acid into biofuel at 360 °C, 20 mg NiMoFOx/Zeol loading and 100 mL H_2 /min	118
Figure 4.28	Effect of NiMoFOx/Zeol loading on the HDO of oleic acid into biofuel at 360 °C, 20 bar and and 100 mL H_2 /min	119
Figure 4.29	Thermal Gravimetric Analysis of Zeol and PdOx/Zeol (before and after calcination)	123
Figure 4.30	X-ray fluorescence of Zeol and PdOx/Zeol samples	124
Figure 4.31	Energy dispersive X-ray of Zeol and PdOx/Zeol samples	125
Figure 4.32	Energy dispersive X-ray and Scanning electron microscopy of Zeol and PdOx/Zeol samples	126
Figure 4.33	Nitrogen adsorption/desorption isotherm of the Zeol and PdOx/Zeol samples, inset: pore size distribution of PdOx/Zeol sample	128
Figure 4.34	X-ray diffraction of the Zeol and PdOx/Zeol samples	129
Figure 4.35	FTIR spectroscopy of the Zeol and PdOx/Zeol samples	131
Figure 4.36	Raman spectroscopy of the Zeol and PdOx/Zeol samples	132
Figure 4.37	Effect of temperature on the HDO of SA at different PdOx/Zeol loading, 100 ml/min carrier gas flow rate $(5\% H_2/N_2)$ at 40 bar	134
Figure 4.38	Effect of pressure on the HDO of SA at different carrier gas $(5\% H_2/N_2)$ flow, T = 360 °C, PdOx/Zeol loading = 25 mg	136
Figure 4.39	Three dimension (3D) absorbance of HDO process of stearic acid to produce $C_{18}H_{38}$ with reaction time using 2.0 mg of PdOx/Zeol, and 20 ml/min (5% H ₂ /N ₂) gas flow rate at 360 °C	138

Figure 4.40a	FTIR spectra of HDO process of stearic acid to produce $C_{18}H_{38}$ with reaction time using 2.0 mg of PdOx/Zeol, and 100 ml/min	
	$(5\% H_2/N_2)$ gas flow rate at 360 °C	139
Figure 4.40b	Products distribution of the HDO process of stearic acid using	
	2.0 mg of PdOx/Zeol, and 100 ml/min (5%H $_2/N_2)$ gas flow rate at	
	360 °C	141
Figure 4.41	XRF spectra of Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	143
Figure 4.42	EDX spectra and SEM morphology of Al_2O_3 and $NiOx/Al_2O_3$	
	samples	144
Figure 4.43	SEM morphology of (a) Al_2O_3 and (b) $NiOx/Al_2O_3$ samples	145
Figure 4.44	N_2 adsorption/desorption of Al_2O_3 and $NiOx/Al_2O_3$ samples	146
Figure 4.45	XRD of Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	148
Figure 4.46	FTIR of Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	149
Figure 4.47	Raman spectra of Al ₂ O ₃ and NiOx/Al ₂ O ₃ samples	150
Figure 4.48	Hydrodeoxygenation of oleic acid at different NiOx/Al ₂ O ₃	
	loading using at 20 bar, 360 °C and 100 mL/min gas flow	153
Figure 4.49	Hydrodeoxygenation of oleic acid at different temperature,	
	experimental condition: 20 mg NiOx/Al ₂ O ₃ , 20 bar, 100 mL/min	
	gas flow and 60 min	154
Figure 4.50	Thermal Gravimetric Analysis of Zeol and FPdOx/Zeol (before	
	and after calcination)	157
Figure 4.51	X-ray Fluorescence of Zeol and FPdOx/Zeol samples	158
Figure 4.52	Energy Dispersive X-ray of (a) Zeol and (b) FPdOx/Zeol samples	159
Figure 4.53	Scanning Electron Microscopy of (a) Zeol and (b) FPdOx/Zeol	
	samples	160

xxvi

Figure 4.54	Nitrogen adsorption/desorption isotherm of the Zeol and	
	FPdOx/Zeol samples	161
Figure 4.55	X-ray diffraction of the Zeol and FPdOx/Zeol samples	162
Figure 4.56	FTIR spectroscopy of the Zeol and FPdOx/Zeol samples	164
Figure 4.57	Raman spectroscopy of the Zeol and FPdOx/Zeol samples	165
Figure 4.58	3D absorbance of the evolved products of HDO process of 3.5 g of oleic acid into paraffinic fuel using 20 mg FPdOx/Zeol catalyst	167
Figure 4.59	Progress of the HDO process of OA using 20 mg of FPdOx/Zeol catalyst at 370 $^{\circ}\mathrm{C}$	168
Figure 4.60	FTIR spectra of evolved products between 0-14 min on the HDO of 3.5 g OA using 20 mg of FPdOx/Zeol catalyst at 370 °C	168
Figure 4.61	FTIR spectra of evolved products between 15-19 min on the HDO of 3.5 g OA using 20 mg of FPdOx/Zeol catalyst at 370 $^{\circ}$ C	169
Figure 4.62	FTIR spectra of evolved products between 20-25 min on the HDO of 3.5 g OA using 20 mg of FPdOx/Zeol catalyst at 370 $^{\circ}$ C	170
Figure 4.63	FTIR spectra of evolved products between 26-34 min on the HDO of 3.5 g OA using 20 mg of FPdOx/Zeol catalyst at 370 °C	171
Figure 4.64	FTIR spectra of biofuel formed from the HDO of 3.5 g OA between 36-44 min using 20 mg of FPdOx/Zeol catalyst at 370 °C	172
Figure 4.65	TGA profiles of Zeol, FMoOX/Zeol (uncalcined) and FMoOX/Zeol	175
Figure 4.66	X-ray flourescence spectra of Zeol and FMoOx/Zeol samples	176
Figure 4.67	Energy dispersive X-ray of Zeol and FMoOx/Zeol samples	177
Figure 4.68	Scanning Electron Micrograph of Zeol and FMoOx/Zeol samples	178
Figure 4.69	Nitrogen adsorption isotherms of Zeol and FMoOx/Zeol samples	179

Figure 4.70	X-ray diffraction patterns of Zeol and FMoOx/Zeol samples	181
Figure 4.71	FTIR spectra of Zeol and FMoOx/Zeol samples	182
Figure 4.72	Raman spectra of Zeol and FMoOx/Zeol samples	184
Figure 4.73	Effect of time on the HDO of oleic acid into biofuel at 340 °C, 20 bar and 20 mg FMoOx/Zeol loading and 100 mL H_2 /min	186
Figure 4.74	Effect of temperature and FMoOx/Zeol loading on the HDO of oleic acid into biofuel at 20 bar and 100 mL H_2 /min	188
Figure 4.75	Effect of temperature and FMoOx/Zeol loading on the ratio of i-C18/n-C18 biofuel compositions at 20 bar and 100 mL H ₂ /min (also showing the effect of temperature on viscosity of oleic acid according to Aspen Hysys simulaltion)	188
Figure 4.76	Experimental data fitting of the HDO of oleic acid at 20 mg catalyst loading, 10% H_2 gas flow and 20 bar	193
Figure 4.77	Arrhenius parameter fitting plot	195
Figure 4.78	TGA profiles of Zeol, FPtOx/Zeol (uncalcined) and FPtOx/Zeol	198
Figure 4.79	Energy Dispersive X-ray of Zeol and FPtOx/Zeol samples	200
Figure 4.80	Scanning electron microscopy of Zeol and FPtOx/Zeol samples	201
Figure 4.81	Nitrogen adsorption isotherms of Zeol and FPtOx/Zeol samples	202
Figure 4.82	X-ray diffraction patterns of Zeol and FPtOx/Zeol samples	204
Figure 4.83	FTIR spectra of Zeol and FPtOx/Zeol samples	205
Figure 4.84	Raman spectra of Zeol and FPtOx/Zeol samples	207
Figure 4.85	Diagnostics of (a) model Y and (b) model Z based on Internally Outliers T Points	213

Figure 4.86	Normal probability of residuals diagnostics of models	
	(a) Y and (b) Z	214
Figure 4.87	Effect of time and FPtOx/Zeol loading on the HDO and ISO of oleic acid into paraffinic biofuel at 20 bar, 360 °C and 100 mL H_2 /min	215
Figure 4.88	Effect of pressure and temperature on the HDO and ISO of oleic acid into paraffinic biofuel at 20 mg FPtOx/Zeol loading and 90 min	218
Figure 4.89	Desirability plot	221
Figure 4.90	Products distribution at 364 °C, 18 bar and 27.8 mg FPtOx/Zeol loading in 58 min reaction time	222
Figure 4.91	Summary of hydrodeoxygenation process of oleic acid using synthesized catalysts at the best experimental conditions	226