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ABSTRACT 

As wireless communication standard continues to evolve accommodating the demand of 

high data rate operation, the design of RF power amplifier (PA) becomes ever challenging. 

PAs are required to operate more efficiently while maintaining stringent linearity 

requirement. In this work, a new circuit to extend the linear operation bandwidth of a LTE 

(Long Term Evolution) power amplifier, while delivering a high efficiency is presented. 

The 950µm x 900µm monolithic microwave integrated circuit (MMIC) power amplifier 

(PA) is fabricated in a 2µm InGaP/GaAs process. The PA consists of three stages, which is 

the pre-driver, driver and main stages. The main stage is designed in class-J configuration 

in order to improve the efficiency of the PA. The optimum conduction angle method is 

employed to enable the PA to operate in bias condition which has the optimum operation 

for linearity and efficiency. A novel on-chip analog pre-distorter (APD) is designed and 

integrated into the driver stage to improve the linearity of the highly efficient PA further to 

meet the adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) 

specifications for LTE signal profile with 20MHz channel bandwidth. Experimental result 

verifies that the designed PA is capable to meet the ACLR specifications of -30dBc from 

1.7GHz to 2.05GHz which encapsulates LTE Band 1,2,3,4,9,10,33,34,35,36,37 and 39 at 

maximum linear output power of 28dBm. The maximum EVM at 28dBm for 16-QAM 

scheme is 3.38% at 2050MHz.The corresponding power added efficiency (PAE) varies 

from 40.5% to 55.8% across band. With a respective input return loss of less than -15dB, 

the PA’s maximum power gain is measured to be 35.8dB while exhibiting an unconditional 

stability characteristic from DC up to 5GHz. The proposed architecture serves to be a good 

solution to improve the linearity and efficiency of a PA for wideband LTE operation 
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without sacrificing other critical performance metrics. This will ultimately reach the goal to 

have single chip solution for handset LTE PA. 
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ABSTRAK 

Sebagai wayarles komunikasi standard terus berkembang menampung permintaan operasi 

kadar data yang tinggi , reka bentuk RF penguat kuasa (PA) menjadi semakin mencabar. 

PA diperlukan untuk beroperasi dengan lebih cekap di samping mengekalkan keperluan 

kelinearan ketat. Dalam karya ini , litar baru untuk melanjutkan jalur lebar operasi linear 

daripada LTE ( Long Term Evolution ) penguat kuasa, manakala menyampaikan kecekapan 

yang tinggi dibentangkan. X 900μm mikro litar bersepadu monolitik 950μm (MMIC ) 

amplifier kuasa ( PA) adalah rekaan dalam 2μm InGaP / GaAs proses. PA ini terdiri 

daripada tiga peringkat , yang merupakan pra- pemandu, pemandu dan peringkat utama. 

Pentas utama direka dalam konfigurasi kelas -J untuk meningkatkan kecekapan PA tanpa 

perdagangan teruk off dalam keupayaan penghantaran linear . Novel A atas cip analog pra- 

distorter (APD ) direka dan bersepadu ke peringkat pemandu untuk meningkatkan 

kelinearan PA yang sangat berkesan untuk memenuhi nisbah bersebelahan saluran 

kebocoran (PPHT) dan vektor magnitud ralat ( EVM ) spesifikasi untuk isyarat LTE profil 

dengan saluran jalur lebar 20MHz . Hasil eksperimen mengesahkan bahawa PA yang 

direka mampu untuk memenuhi spesifikasi PPHT of- 30dBc dari 1.7GHz untuk 2.05GHz 

yang merangkumi LTE Band 1,2,3,4,9,10,33,34,35,36,37 dan 39 pada kuasa output linear 

maksimum 28dBm . The EVM maksimum pada 28dBm untuk skim 16- QAM adalah 3.38 

% pada 2050MHz.The kuasa sama menambah kecekapan ( PAE ) berbeza daripada 40.5% 

kepada 55.8 % di seluruh band. Dengan input kerugian pulangan masing-masing kurang 

daripada- 15dB , keuntungan kuasa maksimum PA adalah diukur untuk menjadi 35.8dB 

manakala mempamerkan satu ciri kestabilan tanpa syarat dari DC sehingga 5GHz . Seni 

bina yang dicadangkan bertujuan untuk menjadi satu penyelesaian yang baik untuk 
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meningkatkan kelinearan dan kecekapan PA untuk operasi LTE Wideband tanpa 

mengorbankan lain metrik prestasi kritikal. Ini akhirnya akan mencapai matlamat untuk 

mempunyai penyelesaian cip tunggal untuk telefon bimbit LTE PA.  
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CHAPTER 1. INTRODUCTION  

1.1 Overview of LTE System 

Long Term Evolution (LTE) evolves from the Universal Mobile Telephone System 

(UMTS) which was initiated by the Third Generation Partnership Project (3GPP) to address 

the continuous demand for high data rates. Among the key specifications of LTE are 

(Rumney, LTE Introduction, 2009): 

a) Increased downlink and uplink peak data rates. 

b) Scalable channel bandwidths of 1.4MHz, 3.0MHz, 5MHz, 10MHz, 15MHz and 

20MHz in both uplink and downlink. 

c) Spectral efficiency improvements over Release 6 HSPA of 3 to 4 times in the 

downlink and 2 to 3 times in the uplink. 

d) Sub- 5ms latency for small Internet Protocol (IP) packets. 

e) Performance optimized for low mobile speeds from 0 to 15km/h supported with 

high performance from 15 to 120km/h; functional support from 120 to 350km/h.  

f) Co-existence with legacy standards while evolving toward an all-IP network. 

The LTE frequency bands as defined by the European Telecommunications Standards 

Institute (ETSI) and 3GPP are shown in Table 1.1 (3GPP TS 36.101 version 9.4.0 Release 

9, 2010). 
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Table 1.1: LTE Frequency Bands 

Low (MHz) High (MHz) Low (MHz)High (MHz)

1 1920 1980 2110 2170 FDD

2 1850 1910 1930 1990 FDD

3 1710 1785 1805 1880 FDD

4 1710 1755 2110 2155 FDD

5 824 849 869 894 FDD

6 830 840 875 885 FDD

7 2500 2570 2620 2690 FDD

8 880 915 925 960 FDD

9 1749.9 1784.9 1844.9 1879.9 FDD

10 1710 1770 2110 2170 FDD

11 1427.9 1447.9 1475.9 1495.9 FDD

12 698 716 728 746 FDD

13 777 787 746 756 FDD

14 788 798 758 768 FDD

15 FDD

16 FDD

17 704 716 734 746 FDD

18 815 830 860 875 FDD

19 830 845 875 890 FDD

20 832 862 791 821 FDD

21 1447.9 1462.9 1495.9 1510.9 FDD

……

33 1900 1920 1900 1920 TDD

34 2010 2025 2010 2025 TDD

35 1850 1910 1850 1910 TDD

36 1930 1990 1930 1990 TDD

37 1910 1930 1910 1930 TDD

38 2570 2620 2570 2620 TDD

39 1880 1920 1880 1920 TDD

40 2300 2400 2300 2400 TDD

Band 

Number

Uplink Downlink Duplex 

Mode

Reserved Reserved

Reserved Reserved
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Allocations of the tabled bands above around the globe is illustrated in Figure 1.1. 

 

Figure 1.1: LTE Bands around the globe (Amon, 2011) 

From Table 1.1, it can be observed that LTE exists in a combinations of FDD and TDD 

mode. Therefore, the RF transmission specifications are the same for both modes, in 

contrary to UMTS standard (Rumney, LTE Introduction, 2009). 

LTE supports three modulation modes, which are Quadrature Phase Shift Keying 

(QPSK), 16-Quadrature Amplitude Modulation (16-QAM) and 64-QAM.  For uplink 

applications, QPSK and QAM are preferred choice, whereas for downlink application, 64-

QAM is preferred. The multicarrier modulation schemes used in LTE are Orthogonal 

Frequency Division Multiple Access (OFDMA) for down link and Single Carrier 

Frequency Division Multiple Access (SC-FDMA) for uplink. The difference between 
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OFDMA and SC-FDMA is explained with the aid of Figure 1.2 (Rumney, Air Interface 

Concepts, 2009). 

 

 

Figure 1.2: OFDMA and SC-FDMA comparison in transmitting QPSK symbols 

In OFDMA transmission scheme, four subcarriers with 15kHz bandwidth each are 

modulated for the OFDMA symbol period of 66.7µs by one QPSK data symbol. For the 

four subcarriers, 4 symbols are taken in parallel. After one OFDMA symbol period has 

elapsed, the carrier prefix (CP) is inserted and the next four symbols are transmitted in 

parallel. To create the transmitted signal, an Inverse Fast Fourier Transform (IFFT) is 

performed on each subcarrier to produce M time-domain signals. These in turn are vector-

summed to create the final time-domain waveform used for transmission. 

In contrast to OFDMA, SC-FDMA signal generation begins with a special pre-

coding process but then continues in a manner similar to OFDMA. The most obvious 

difference between the two schemes is that OFDMA transmits the four QPSK data symbols 
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in parallel, one per subcarrier, while SC-FDMA transmits the four QPSK data symbols in 

series at four times the rate, with each data symbol occupying a wider M x 15kHz 

bandwidth. This is well illustrated in Figure 1.2. The OFDMA signal clearly behaves as a 

multi-carrier with one data symbol per subcarrier, but the SC-FDMA signal appears to be 

more like a single-carrier with each data symbol being represented by one wide signal. It is 

the parallel transmission of multiple symbols that creates the undesirable high PAPR of 

OFDMA. By transmitting the M data symbols in series at M times the rate, the SC-FDMA 

occupied bandwidth is the same as multi-carrier OFDMA but, crucially, the PAPR is the 

same as that used for the original data symbols. In a nutshell, the PAPR of SC-FDMA is 

lower than OFDMA. For example, adding together many narrowband QPSK waveforms in 

OFDMA will always create higher peaks than would be seen in the wider bandwidth single 

carrier QPSK waveform of SC-FDMA. As the number of subcarriers increases, the PAPR 

of OFDMA with random modulating data approaches Gaussian noise statistics but, 

regardless the number of sub-carriers, the SC-FDMA PAPR remains the same as that used 

for the original data symbols. 

1.2 Research Motivation 

The setback of SC-FDMA carrier modulation scheme is the generation of non-

constant amplitude signals. Therefore the transmitter circuits particularly power amplifier 

(PA) faces stiff challenge in meeting the linear transmission specifications, mainly the 

adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM). It’s an uphill 

task to meet these specifications without trading off the PA’s efficiency. This is because the 

PA needs to operate at certain back-off level from the 1dB compression point in order to 

transmit non-constant amplitude signals without clipping them (Raab, et al., 2002). 
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Efficiency is an important figure of merit to protect the battery life of the handset. The first 

motivation for this project is to reduce the tradeoff between linearity and efficiency of the 

PA so that it is suitable for handset application. 

Due to the trade-off between linearity and efficiency, a single band solution is often 

preferred. This is shown in Figure 1.3 which illustrates the tear down of a high end smart 

phone. 

LTE PA band 1

LTE PA band 2

 

Figure 1.3: Tear down of a smart phone. The transmitter circuit contains two LTE 

power amplifiers to cover two different bands 

This is due to the technique in existence till today in reducing the tradeoff prevails only for 

narrow bandwidth operation. The current available techniques have been discussed 

subsequently in Chapter 2. Therefore for global applications, more than one PA has to be 

integrated in the transmitter chain, which increases the cost and consumes larger board 
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space. Therefore, the second motivation is to design a multiband LTE PA, where several 

bands are integrated in single chip solution. 

The third research motivation is to design a high gain PA. This shall serve as an 

advantage to the baseband chip which is not designed to deliver high output power. A high 

gain PA also shall counter the antenna path loss on the phone board. 

The fourth research motivation is to reduce the size of the active chip area of the 

PA, which helps in reducing the die manufacturing cost.  

1.3 Research Objectives 

In this project, the design of a monolithic microwave integrated circuit (MMIC) 

power amplifier (PA) for handset was intended. The first research objective was to reduce 

the trade-off between linearity and efficiency of the PA. In order to meet this requirement, 

the optimum conduction angle technique was used. A conduction angle which has the 

lowest third order inter-modulation product (IMD3) and optimum efficiency is chosen to 

bias the PA.  

The second objective of this research is to improve the efficiency of the PA while 

meeting its linearity specifications. The class-J concept was explored to achieve this 

objective. The reactive harmonic termination concept is proposed to improve the efficiency 

of the PA instead of conventional practice of terminating the second harmonic. 

The third objective of this research is to improve the linear operation bandwidth of 

the PA. A novel analog pre-distorter (APD) was integrated at the input of the main 

amplifier of the PA. The designed APD introduces IMD3 cancellation to improve the 
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adjacent channel leakage ratio (ACLR) which is crucial for linearity. The APD is integrated 

on the same chip as the PA. 

The fourth objective is to increase the power gain of the PA. A pre-driver and driver 

amplifier is integrated in the chip to achieve this objective. This eliminates the need of 

external driver amplifier to counter the antenna path loss. 

Finally, the fifth objective is to characterize the proposed topology with LTE signal. 

This test is essential to ensure PA meets the ACLR and Error Vector Magnitude (EVM) 

specifications, thus complying with the 3GPP specifications. Essential optimization was 

conducted to meet the stringent linearity requirement for several operating band to fulfill 

the multi-band operation objective. 

1.4 Thesis Organization 

The outline of this thesis is organized as follows. Chapter 2 summarizes the 

literature review on various published linearization and efficiency enhancement techniques. 

In Chapter 3, the design approach on the power cell, which is the main amplifier is 

described and analyzed. Mathematical analysis and lab experiments on choosing the 

optimum bias point for linearity and efficiency has also been presented. Chapter 4 presents 

the design methodology of the high efficiency wideband class-J PA. The design and 

implementation of the Analog Pre-distorter technique is described in Chapter 5. 

Subsequently, in Chapter 6 the mode of implementation and measurement results are 

presented. Finally, conclusion and suggestion for future works are given in Chapter 7. 
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CHAPTER 2. LITERATURE REVIEW OF POWER AMPLIFIER EFFICIENCY 

AND LINEARIZATION TECHNIQUES 

2.1 Introduction 

LTE employs single carrier frequency division multiple access (SC-FDMA) for 

uplink and orthogonal frequency division multiple access (OFDMA) for downlink, a 

multicarrier modulation scheme ensuring spectral efficiency (Rana, Islam, & Kouzani, 

2010). This modulation scheme is subjected to high peak to average ratio (PAPR). SC-

FDMA has a similar performance and complexity respective to OFDMA, in favor of lower 

PAPR (Akter, Islam, & Song, 2010). Typically, the PAPR of SC-FDMA signal is 7dB 

whereas OFDMA is 10dB, heavily depending on the modulation scheme adapted (QPSK, 

16QAM or 64QAM) (Rumney, Air Interface Concepts, 2009). To amplify signals with high 

PAPR, the power amplifier (PA) needs to operate at a backed off output power satisfying 

the stringent linearity requirement, specified in terms of adjacent channel leakage ratio 

(ACLR) and error vector magnitude (EVM). The drawback of this conventional technique 

is in the degradation in PA’s power added efficiency (PAE). The relationship between 

backed off output power and efficiency for a multicarrier signal can be appreciated in the 

following equations (Cripps, Amplifier Classes, A to S, 2012): 

max

1

2

bo
pbo classA

P

P
                                                                         (2.1) 

 
max4

bo
pbo classB

P

P


                                                                  (2.2) 
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where Pbo and Pmax represent backed off output power and maximum output power 

respectively. For example, if a PA which has Pmax of 35dBm is transmitting LTE signal 

with PAPR of 7dB, the resultant efficiency at Pbo of 28dBm is only 9.9% and 30% in a 

respective operation of class A and class B mode.  

The solution to improve the PAE of LTE PA lies in two techniques, which are the 

efficiency enhancement technique and linearization technique. The efficiency enhancement 

technique mandates in improving the efficiency of a linear PA, while linearization 

techniques improves the linearity of an efficient non-linear PA (Cripps, RF Power 

Amplifiers for Wireless Communications, 2006). 

2.2 Efficiency Enhancement Techniques 

2.2.1 Device Switching (DS) 

Efficiency enhancement technique mandates in improving the efficiency of a linear 

PA, which is typically biased at class-AB mode of operation. The device switching 

approach is a simple methodology to improve the efficiency of WCDMA PA at Pbo. In this 

technique, the size of the power cells is varied respective to the output power. In other 

words, the power cells are smaller at Pbo as compared to Pmax, resulting in a higher 

efficiency at backed off output power operation region. The switching of the power cells is 

executed at the base of the power cells (Deng, Gudem, Larson, Kimball, & Asbeck, A SiGe 

PA with Dual Dynamic Bias Control and Memoryless Digital Predistortion for WCDMA 

Handset Applications, 2006; Deng, Gudem, Larson, & Asbeck, A High Average Efficiency 

SiGe HBT Power Amplifier for WCDMA Handset Applications, 2005). A novel switching 

method is reported which utilizes the base-collector diode to improve the switching 
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efficiency (Han & Kim, 2008).  Recent work also employs the switching technique 

integrating PHEMT process on a GaAs HBT power cell (Kim, Kwak, & Lee, 2011). 

Alternatively a dual output matching network is proposed instead of switching between two 

power cells. In this method, once the main amplifier is switched OFF, the secondary output 

matching network transforms the 50 ohm load to the driver’s optimum output impedance to 

improve the Pbo transmission efficiency without degrading PA’s overall linearity 

performance (Huang, Liao, & Chen, 2010). The conceptual operation principle of the 

switching PA is illustrated in Figure 2.1. 

SwitchSwitch

Input

Power

Output

Power

 

Figure 2.1: Switching PA topology 

2.2.2 Doherty Power Amplifier (DPA)  

Invented by W.H. Doherty in 1936 (Doherty, 1936), DPA consist of a carrier 

amplifier and a peaking amplifier where the combination of both delivers the total 

maximum output power of the PA. Below a certain input power level, the peaking amplifier 

is in off mode and the total output power of the PA is contributed by the carrier amplifier 

only. In this way, the efficiency at backed off output power can be improved. This is 
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usually achieved by varying the load impedance of the single carrier amplifier by applying 

another current source at its output terminal. In other words an active load pull is done at 

the output of the PA. This principle can be understood with the aid of Figure 2.2 and its 

following equations. 

Imain Iaux

 

Figure 2.2: DPA concept 

In Figure 2.2, Aux represents the peaking amplifier whereas Main represents the carrier 

amplifier. If Aux is inactive, Main will observe a load resistance of RLoad. Instead if Aux is 

active and supplies current Iaux, then the load impedance observed by Main is given by: 

1 aux
main Load

main

I
Z R

I

 
  

 

                                                              (2.3) 

It can be observed from equation (2.3) that the source current from the Aux amplifier (Iaux) 

can be manipulated to change the load impedance of the Main amplifier to improve the 

efficiency at backed off output power. The practical implementation of DPA is shown in 

Figure 2.3. 
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Figure 2.3: DPA topology 

The output of the carrier amplifier is connected to the output of the peaking 

amplifier through an impedance transformer (quarter wave transmission line) prior 

terminating to the load. At Pbo, when the peaking amplifier is OFF, the carrier amplifier 

tends to observe an output impedance of 2RLoad. As a result to this the efficiency of the PA 

is relatively high at Pbo. As the input power increases, the peaking amplifier begins to turn 

ON and generates its output power as depicted in Figure 2.4. 
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Figure 2.4: DPA profile 
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Accordingly, the load impedance of the carrier amplifier reduces. At Pmax, the load 

impedance seen by both amplifiers is RLoad, which generates an equal output power of 

Pmax/2 between the carrier and peaking amplifier. 

Initial work on DPA in mobile wireless communications highlights a discrete 

solution, where the output network responsible for load modulation is integrated on printed 

circuit board (Iwamoto, et al., 2001), eventually evolving into a fully integrated approach 

(Kato, Yamaguchi, & Kuriyama, 2006). The concept of fully integrated chip using the HBT 

technology is extended up to 5 GHz operation (Yu, Kim, Han, Shin, & Kim, 2006).  

An on-chip bias control circuit has also been introduced to reduce the tradeoff 

between linearity and efficiency at Pbo (Nam & Kim, 2007). Through the introduction of a 

third order harmonic control circuitry at the conventional DPA, further improvement in 

efficiency is achieved at Pbo (Kang, et al., 2008). Another proposed method is through 

optimizing the load modulation by designing an integrated optimum input power divider 

(Kang, et al., 2009). Recent work has also proposed wideband architecture for LTE 

application (Kang, et al., 2011), where the bandwidth is achieved through the aid of a phase 

compensation circuit, which ensures the load modulation is performed successfully across a 

wide range of frequency. In another work, switch load power mode technique has been 

designed to improve the DPA’s backed off efficiency with the aid of an HEMT amplifier 

((Cho, et al., 2014).  

2.2.3 Average Bias Tracking (ABT) 

The average bias tracking is another popular technique to improve the efficiency of 

the PA at Pbo. In this method, the biasing of the PA is adjusted respective to the output 
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power level. Instead of switching between two power devices, both supply voltage and bias 

current are dynamically adjusted for a single power cell. At Pbo, the supply voltage and bias 

current is low, thus improving the efficiency in this region of operation. The bias controller 

circuit is usually implemented on a CMOS platform. The penalty paid is in the inherit 

complexity as dual process is needed for the PA realization (Sahu & Rincon-Mora, 2007; 

Tombak, Baeten, Jorgenson, & Dening, 2006). There has been a continuous attempt to use 

an all CMOS process to reduce the design cost (Shameli, Safarian, Rofougaran, 

Rofougaran, & DeFlaviis, 2008). However the PAE and output power is still low as 

compared to GaAs based PAs. 

2.2.4 Envelope Tracking (ET) 

The envelope tracking method was given an immediate attention in the quest to 

design an efficient LTE PA. The construction is an evolution from the envelope elimination 

and restoration (EER) technique proposed by Kahn (Kahn, 1952). In EER, the phase 

modulation of the input signal is preserved, thus eliminating AM-PM distortion. Instead, 

the amplitude modulation of the input signal is used to modulate the supply voltage of the 

PA to improve the efficiency at Pbo. The improvement is obtained due to the reduction of 

the supply voltage in the PA accordingly. For EDGE application, this method is used to 

improve the power efficiency of a class-E PA at Pbo (Reynaert & Steyaert, 2005). On the 

other hand, the improvement in the bandwidth of the modulator without significantly 

degrading its efficiency is also proposed (Chu, Bakkaloglu, & Kiaei, 2008). In EER, the 

detection of the amplitude modulated supply voltage at the output of the PA needs to be 

accurate to ensure the linearity of the PA (in term of AM-PM distortion) is not jeopardized. 

This issue can be resolved by replacing the non-linear PA (class-E, Class-D) with an 
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equivalent linear PA (Class-AB). This method is known as the Envelope tracking (ET) 

which is illustrated in Figure 2.5. 

Envelope

Input

power

Output

power

 

Figure 2.5: ET topology 

At the initial stage of ET, the load resistance of the PA is matched to deliver a 

maximum linear output power. Then, as the output power is reduced, the supply voltage is 

decreased proportionally respective to the decreasing drive voltage. Hence, the efficiency at 

Pbo improves significantly. The reduction in supply voltage will not affect the linearity 

performance of the PA due to full rail to rail voltage swing contributed by the output 

matching network. The supply voltage is varied with the aid of a supply modulator. In 

WCDMA handset application, the supply modulator consist of a class-D switching 

amplifier, developed on a CMOS platform to improve the efficiency of a linear class-AB 

PA (Takahashi, Yamanouchi, Hirayama, & Kunihiro, 2008), where the Class AB PA is 

realized utilizing GaAs HFET process. Other reported work utilizes GaAs HBT process to 

develop the PA and CMOS process to realize the supply modulator (Choi, Kim, Kang, & 

Kim, 2009; Kang, et al., 2010). This dual chip integration is proven to work efficiently and 

linearly for high PAPR signals such as for the application of LTE, covering wideband 
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operation (Moon, Son, Lee, & Kim, 2011; Hassan, Larson, Leung, Kimball, & Asbeck, 

2012). In the continuous effort to reduce the complexity and cost, RFPA and supply 

modulator is integrated as a single chip solution. For high power application, LDMOS is 

used to deliver an efficiency of up to 60% at backed off output power of 31dBm (Pinon, 

Hasbani, Giry, Pache, & Garnier, 2008). SiGe BiCMOS process is also well explored in the 

PA implementation (Li, Lopez, Wu, Wu, & Lie, 2011; Wang, Kimball, Lie, & Asbeck, 

2007). The advantage of low voltage headroom operation in this technology adapts well 

into handset transmitter integration frame. However, the GaAs HBT based PA out shines 

the SiGe BiCMOS based PA in the linear output power performance. On the other hand, in 

the effort to reduce the sensitivity of the supply modulator to battery headroom variation, 

new integrated power management architecture is proposed (Choi, Kim, Kang, & Kim, A 

New Power Management IC Architecture for Envelope Tracking Power Amplifier, 2011).  

 An alternative method, known as the interlock operation is also proposed to 

enhance the efficiency of the ET PA. Through this method the output current waveform and 

the RF input signal is optimized to increase the efficiency of the PA. Optimization of the 

RF input signal is executed by increasing the amplitude of the modulated signal at low 

output power prior injecting it into the input of the PA, resulting the PA to operate in its 

saturated region at low output power, which in turn improves its efficiency (Kim, Son, Jee, 

Kim, & Kim, 2013). Recent research work reports on the utilization of the switching 

technique to further boost the efficiency of ET PA at Pbo. As an alternative for conventional 

series switching techniques, which places series switch at the input and output of the main 

amplifier, in current approach a shunt switched capacitor is used to toggle between the low 
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power and high power mode. This technique does not limit the bandwidth of operation in 

the PA, thus enables the PA to operate for multiband operation (Cho, et al., 2013). 

2.2.5 Class-S 

The class-S amplifier is gaining its popularity as a complementing efficient 

enhancement technique. Originally meant for audio applications, an improved efficiency 

can be achieved for modern RF applications with the aid of GaN process, which promises 

high breakdown voltage and fast switching (Rui, Zhancang, Yang, & Lanfranco, 2012; 

Maier, et al., 2011; Heinrich, Wentzel, & Melaini, 2010; Wentzel, Meliani, & Heinrich, 

2010). Therefore it is a suitable application for high voltage transmitter circuits at current 

use. 

2.3 Linearization Techniques 

2.3.1 Hybrid Class PA 

In conventional practice the class-AB PA is the preferred choice in obtaining a good 

efficiency performance abstaining the tradeoff on linearity. However for signal with high 

PAPR, class-AB is not an optimal solution. Hence, the solution matures into a hybrid 

integration of class AB and class-F PA in single chip realization (Kang, et al., A Highly 

Efficient and Linear Class-AB/F Power Amplifier for Multimode Operation, 2008). This 

solution is achieved by ensuring the fundamental load of the amplifier is sandwiched in 

between class F and class-AB loads highlighting an optimum load resistance for linearity 

and efficiency. However, the optimum load resistance is obtained only for a narrowband 

operation. 
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2.3.2 Feedforward Linearization Technique (FFL) 

FFL is one of the early linearization techniques implemented since the era of 

vacuum tube days to minimize the higher order unwanted non-linear energy spurs which 

creates severe distortion to the adjacent channel bands. The generation of these spurs is due 

to high power operation. Figure 2.6 depicts the typical FFL transmitter block diagram. 
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Figure 2.6: Feedforward transmitter block diagram 

Basically, it consists of a main amplifier which transmits the RF energy and an auxiliary 

amplifier which is the part of the linearizer block. The linearizer block is responsible to 

eradicate the non-linear spurs. The output energy of the main amplifier is given by: 

out main in main HOE G E G E                                                  (2.4) 

 _ 1out coupled main in main HOE K G E G E                               (2.5) 

_ _1 0in coupled inE K E                                                            (2.6)                                                                            

where Gmain is the gain of the main amplifier, EHO is the higher order non-linear energy 
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spurs while K0 and K1 is the coupling coefficient of the input and output coupler, 

respectively. The amplitude and phase of the coupled undistorted input signal (no higher 

order energy) will be attenuated and reversed such that: 

_ _ 2 _ 1in coupled out coupled in inE E A K E                                (2.7)    

where Ain is the input attenuation to cancel Gmain.   

 

Therefore, the resultant energy at the output of SUM_in is: 

HOmaincoupledincoupledoutRout EGKEEE 12____      (2.8) 

The auxiliary amplifier will amplify Eout_R to generate Eout_Aux. With an aid of a phase 

shifter, the correction signal is produced, given as:  

HOauxcorrout EKGE 1_                                                    (2.9) 

where Gaux is the auxiliary amplifier’s gain.  With the aid of Attenuator_out and 

phase_shifter_out, the Eout_corr can be adjusted to generate an equal EHO amplitude but with 

opposite phase response to achieve a perfect cancellation.  Finally, the higher order energy 

free output signal is given as: 

corroutoutfinalout EEE __                                             (2.10) 

The main design challenge in realizing FFL is the generation of the correction 

signal Eout_corr. In order to ensure perfect distortion cancellation, a good accuracy in 

coupling at the output of the PA and subsequently generate the correction signal is required 

in any transmission condition. A possible solution for the above mentioned constraint is to 
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use an adaptive control system to control the amplitude and phase response of the 

correction signal. This adaptive control system is realized with the aid of a digital controller 

(Suzuki, Ohkawara, & Narahashi, 2011; Legarda, et al., 2005; Kang, Park, Lee, & Hong, 

2003). The controller is responsible to generate the amplitude and phase algorithm at 

various operating frequencies, to ensure broadband distortion cancellation is achieved.  

The usage of coupler in this technique also causes some losses in the fundamental 

energy transmission. In order to minimize this losses, the feedforward technique is used as 

a pre-distorter where it is connected to the input of the main amplifier, rather than creating 

the conventional loop of operation (Kim, et al., 2006).  

Due to the complexity of implementation and large board space consumption, the 

FFL approach is deemed more suitable for base station applications. Eventually, to improve 

on these drawbacks, pre-distortion technique is ventured upon. 

2.3.3 Analog Pre-distortion Linearization (APD) 

APD integration is the limelight of PA design due to its simplicity and capability to 

be integrated in single chip solution. The principle of operation in APD is through the 

generation of inverse phase and magnitude response of the third and fifth order nonlinearity 

respective to the corresponding output of the amplifier. In PA design, this reversal in phase 

and magnitude can be translated to its AM-AM and AM-PM characteristics as depicted in 

Figure 2.7. In other words, the coefficients of the generated non linearity from the APD 

cancel the intrinsic non linearity of the PA at the same order. Initial approach shows that a 

variable attenuator and phase shifter is used to manually compensate the IMD3 product 

generates by the non linear PA. 
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Figure 2.7: Analog Predistortion Technique 

The variable attenuator generates an opposite AM-AM response whereas the phase 

shifter generates an opposite phase response (AM-PM) (Park, Baek, & Hong, 2000). 

Thereafter the APD is realized using the heterojunction FET (Hau, Nishimura, & Iwata, 

2001). The opposite phase response is obtained by varying the biasing port of the FET. 

Other reported work outlays the usage of parallel Schottky diodes to generate IMD3 

component to cancel out the IMD3 generated by a 4W PA for WCDMA base station 

application (Cha, Yi, Kim, & Kim, 2004). The generated IMD3 component is amplified 

through an amplifier prior being injected into the PA. The generated amplitude and phase 

response can be flexibly controlled using a vector modulator. A fully integrated APD 

implemented in GaAs HBT process is proposed to improve the adjacent channel leakage 

ratio (ACLR) confirming the WCDMA specifications. The APD consists of a single HBT 

transistor with an independent biasing circuit to generate an opposite third order response 

(Yamanouchi, et al., 2007).  
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2.3.4 Digital Pre-distortion Linearization (DPD)  

The major disadvantage of APD techniques mentioned above is in its limited 

operation range in which the IMD3 and IMD5 cancellation is quite sensitive to the PA’s 

output power and works only for narrow bandwidth. To improve on the bandwidth and to 

reduce the sensitivity, DPD is proposed. The DPD adaptation enables an accurate synthesis 

of the AM-AM and AM-PM coefficients to generate the 3rd order, 5th order and higher 

order cancellation. This improves the linearization dynamic range. Therefore, it can be used 

to linearize a highly non-linear PA such as the class-D (Landin, Fritzin, Moer, Isaksson, & 

Alvanpour, 2012) and Class-E configuration (Chen, Li, Horng, Jau, & Li, 2009). For 

extended application of wideband and high power, the DPD is also integrated together with 

envelope tracking technique (Jeong, et al., 2009). Another DPD method which uses the 

memory less predistorter techniques to reduce the sampling speed is proposed (Hammi, 

Kwan, Bensmida, & Morris, 2014). However, at this point of time the complexity of 

implementation and the consumption of larger board space serves are among the 

disadvantages DPD technique. 

2.3.5 Other Linearization Techniques  

As an alternative to the pre-distortion technique, other reported works also 

contributed in the effort to improve the linearity of the PA. As such is the bias linearizer 

circuit for WCDMA PA (Wen & Sun, 2006). The reverse biased diode maintains a constant 

base-emitter voltage (Vbe) across input power, thus effectively improves the gain 

compression. The added advantage of this solution is in the reduced DC power 

consumption. 
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Another linearization method is the linear amplifications with nonlinear components 

(LINC). A novel technique is proposed to reduce the power dissipation at output combiner, 

which is achieved through a multi-level out-phasing transmitter scheme (Aref, Askar, Nafe, 

Tarar, & Negra, 2012). 

The techniques mentioned in section 2.2 and 2.3 are compared in term of linear out 

power and corresponding efficiency in Table 2.1.  

Table 2.1: Performance Comparison of Various Topologies 

Ref Concept Process 
Freq 

(GHz) 

Linear 

Pout 

(dBm) 

PAE 

(%) 

(Huang, Liao, 

& Chen, 2010) 
DS GaAs HBT 1.95 28 34 

(Kang, et al., 

2011) 
DPA GaAs HBT 1.6-2.1 27.5 30 

(Shameli, 

Safarian, 

Rofougaran, 

Rofougaran, & 

DeFlaviis, 

2008) 

ABT 
0.18um 

CMOS 
0.9 27.8 34 

(Hassan, 

Larson, Leung, 

Kimball, & 

Asbeck, 2012) 

ET 

GaAs HBT 

+ 0.15um 

CMOS 

2.5 29 43 

(Eswaran, 

Ramiah, 

Kanesan, & 

Reza, 2013) 

APD GaAs HBT 1.95 29 55 

(Chen, Li, 

Horng, Jau, & 

Li, 2009) 

DPD 
GaAs 

PHEMT 
1.95 22.7 48 
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2.4 Process Evolution in RFPA Design 

An extensive amount of work has been published addressing PA design in CMOS 

process, leading to a positive transition from GaAs HBT to CMOS. The major mile stone is 

set upon when envelope tracking begins to gain its popularity. As highlighted, the current 

practice in ET realization is in the adaptation of dual process technology, CMOS and GaAs 

HBT platform, in constructing the PA encapsulating the RFPA and supply modulator. 

Favorably if the RFPA is realized in CMOS platform, a single chip solution is feasible 

resorting into a cost effective integration. The output power is improved through distributed 

active transformer in delivering an output power of more than 25dBm (Francois & 

Reyneart, 2012; Tuffery, et al., 2011). Alternately the output power could also be improved 

through the introduction of closed loop technique consisting of an amplitude and phase 

feedback (Kousai, Onikuza, Yamaguchi, Kuriyama, & Nagaoka, 2012), in which the 

operating bandwidth is also subjected to improve. On the other hand, a 90nm fully 

integrated CMOS power amplifier which improves the linear output power up to 27.3dBm 

is achieved through the couple L-Shape transformer design (Yang, Chen, & Chen, 2014).  

Referring to the reviewed published works above, it can be concluded that the 

proposed solutions for LTE transmission are scattered around, in terms of linearization and 

efficiency improvements. Having said that, efforts on merging this two section as a single 

solutions has been lauded despite the higher cost, dual chip fabrications and board space 

consumption. Therefore, in this work a significant mileage has been taken to design a PA 

with both efficiency and linearization enhancement techniques integrated in one chip 

encapsulated to a single fabrication process.   



26 

 

CHAPTER 3. POWER CELL DESIGN 

3.1 Introduction 

In order to obtain the maximum output power for a particular device size, the 

optimum load line of the device plays an important role. The load-line determines the 

details of the transistor’s collector matching network (Sweet, 1990). For LTE, the 

maximum linear output power allowed for reliable transmission by the transmitter system is 

23dBm (3GPP TS 36.101 version 9.4.0 Release 9, 2010). Hence, the power amplifier (PA) 

needs to transmit at least 28dBm of linear output power to compensate the antenna path 

loss (Walsh & Johnson, 2009).  

3.2 Power Cell Optimum Size 

The optimum load resistance for a single HBT unit cell can be calculated with the 

following equation (Sweet, Designing Bipolar Transistor Radio Frequency Integrated 

Circuits, 2008): 

maxI

VV
R kcc

opt


                                                                   (3.1)  

where Vcc is the desired operating voltage, Vk is the IV curve knee voltage and Imax is the 

maximum current obtained if the device is biased at class-A biasing point. The IV curve of 

a single HBT cell with an area of 80um2 is illustrated in Figure 3.1. 
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Figure 3.1: IV curves plot of a HBT with an area size of 80um2 

In Figure 3.1, it can be observed that the unit cell’s DC IV curves show a negative slope 

due to its self-heating effect. Self-heating effect is caused by the increment of the bias point 

of a HBT unit cell in the saturation region (Ganesan, 1993). Therefore in order to protect 

the unit cell from this effect, in this work the power cells are designed in such a way that it 

comply the current density per unit HBT cell parameter. This is done by determining the 

unity gain frequency (fT) of the device. Figure 3.2 illustrates the simulation setup to 

determine the unity gain frequency (fT) across collector current for the 80um2 unit cell. In 

this simulation, the collector current is increased gradually and the corresponding fT of the 

device is determined. The resultant plot is depicted in Figure 3.3. 
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Figure 3.2: Simulation setup to determine the unity gain frequency, fT 
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Figure 3.3: Unity gain frequency (fT) across collector current Ic of a HBT with an area size 

of 80um2 
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It can be observed from Figure 3.3 that the fT degrades when Ic is more than 30.5mA. With 

this the safe operating area (SOA) is defined as: 

Area

Max
SOA cT I f 

                                                                (3.2) 

        
280

5.30

um

mA
  

                                                        = 0.38mA/um2 

Therefore in this work the maximum current density per unit cell has been set to 

0.38mA/um2. 

Since the targeted maximum linear output power is 28dBm, therefore the initial 

value for the maximum saturated output power of the amplifier is set to 32dBm. In other 

words, the back-off level is set to at least 4dB. This is an effort to optimize the efficiency of 

the PA with optimal device size. This can be viewed through equation (3.1) where smaller 

device will have larger Ropt and smaller Imax for the exact supply voltage headroom. The 

methodology to determine the power cell size is as follows: 

1) Targeted maximum output power: 32dBm 

2) Convert to Watt: 

( )

10( ) 10 1

outP dBm

outP W mW

 
 
 

 
  
 
 

                                        (3.3) 
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32

310( ) 10 1 10outP W

 
   

 
   
 
 

 

              = 1.58W 

3) If the power cell is biased in class-A mode to obtain maximum output power where 

the efficiency, η is 50%, the DC supply power is then: 

100 ( )out
DC

P W
P




                                                           (3.4) 

    
100 1.58

50
DCP


  

                                               = 3.16W 

4) For collector voltage Vcc of 3.5V, the maximum collector current, Iccmax is:  

 max
DC

cc

cc

P
I

V
                                                                      (3.5) 

max

3.16

3.5
cc

W
I

V
  

                                              = 900mA 
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5) Referring to Figure 3.1, Icc of 15mA is selected as in this saturation region device is 

not severely affected by self-heating. Therefore the number of unit cells required: 

 maxcc

ccunitcell

I
N

I
                                                                      (3.6) 

900

15
N   

                                    N= 60 

The number of unit cells required is 60. 

6) The total device size is: 

  size (Q)  single unit sizeTotal N                                 (3.7) 

Q 60  80   

    = 4800um2 

Therefore the calculated power cell size is 4800um2. 

The load resistance of the power cell is calculated as following: 

1) Rload of a single unit cell using equation (3.1): 

max

cc k
opt

V V
R

I


  

3.5 0.5

0.015
optR


  

                                            = 200Ω 
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2) The Rload of the power cell with size of 4800um2 : 

 
opt

load

R
R

N
                                                                        (3.8) 

200

60
loadR   

                                             = 3.33Ω 

The calculated load resistance of 3.33Ω delivers a maximum output power of 32dBm.       

The above calculated power cell size and its corresponding load resistance are verified in 

simulation. Figure 3.4 shows the schematic of the power cell. 
…
…
.

Device 20

Icc1

Icc2

Vc

Vbb

C2

Device 2

Rss2

Rss1
C1

RFin

Device 1

 

Figure 3.4: Power cell of the LTE PA. There are total 20 numbers of cells. Rss is the 

ballasting resistor and C1 and C2 are the coupling capacitor 
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The size of each cell in Figure 3.4 is: 

Cell size= Emitter width (µm) x Emitter Length (µm) x Number of emitter                    (3.9) 

  = 3 x 20 x 4 

  = 240um2       

The cells size is multiplied by 20 to achieve the overall size of 4800um2. The simulation 

setup is illustrated in Figure 3.5.  

 

Figure 3.5: Simulation setup to verify the maximum output power and efficiency of the 

power cell 

Based on the simulation setup in Figure 3.5, the maximum output power and its 

corresponding efficiency for load resistance of 3.33Ω are depicted in Figure 3.6. It can be 

seen that the maximum output power obtained is 33dBm with a power added efficiency 

(PAE) of 56.5%.  
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PAE is defined as: 

dc

inout

P

PP
PAE


                                                               (3.10) 

where Pout is the output power, Pin represents the input power and Pdc is the DC power 

supplied to the PA. 

 

 

Figure 3.6: Simulation result for the 4800um2 power cell with load resistance of 3.33Ω 

In simulation, the maximum output power obtained is 33dBm, close to the calculated value. 

This shows a positive indication that the calculated power cell size is able to deliver the 

desired maximum output power when measured. Figure 3.7 depicts the load line swing of 

the power cell up to maximum output power. 
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Figure 3.7: Load line swing across collector voltage of the power cell up to maximum 

output power of 33dBm 

In Figure 3.7, the highest collector current simulated is 1.83A. Therefore the current density 

per area is 1.83A/4800um2 which is 0.38mA/um2.   

Since the simulated maximum output power delivered by the power cell is 33dBm 

with load resistance of 3.33Ω, a simple load pull is conducted then to observe the trade-off 

between the maximum output power and PAE when the load resistance is swept. This 

simulation is conducted with the PA being biased in class-AB mode. The result of the 

simulation is illustrated in Figure 3.8. With Rload of 5Ω, the maximum output power 

dropped to 32.5dBm with 1.6% improvement in maximum PAE. However, the PAE at 

backed off output power of 28dBm improves 8.6%. This result shows that if the power cell 

with the size of 4800um2 is biased in class-AB mode only, Rload of 5Ω shall be able to 
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deliver PAE of 41% at backed off output power of 28dBm whereas Rload of 3Ω delivers a 

maximum output power of 34dBm. This shows there is enough room for maximum output 

power for the 4800um2 device size, to be realized through fabrication. 

 

Figure 3.8: The load resistance Rload is swept from 3Ω to 5Ω, in 0.5Ω step 
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3.3 Thermal Runaway Phenomenon  

3.3.1 Thermal runaway in HBT 

The ability to deliver high output power at high frequency favors Hybrid Bipolar 

Transistor (HBT) technology as a solution for high frequency PA design (Sweet, Designing 

Bipolar Transistor Radio Frequency Integrated Circuits, 2008). However, due to its positive 

temperature coefficient characteristic, HBT is susceptible to an undesired phenomenon, 

known as thermal runaway. Liu et.al reported that, this is due to the collapse of current gain 

as the temperature of HBT increases (Liu, Nelson, Hill, & Khatibzadeh, 1993). An 

analytical model has been accordingly presented in predicting this phenomenon to certain 

accuracy (Liou, Liou, & Huang, 1994). The collapse of current gain is initiated, in the event 

the current of the parallel multiple HBT unit cells tumble. The parallel configuration is 

essential in delivering high transmission output power. Current collapse commences if any 

of the unit cell operates at higher temperature due to self-heating effect. The aftermath of 

this effect observes a higher collector current being injected by the designated unit cell. 

Higher collector current would eventually lead to a dependent chain of increase in the unit 

cell temperature. Subsequently the base-emitter voltage of the cell will drop due to the self-

heating effect, resulting in the collector current hogs the remaining active unit cell. Current 

hogging increases the temperature and subsequently shuts down the remaining unit cells. 

Eventually, it leads to the collapse of the total collector current in the transistors. Figure 3.9 

illustrates two unit cells which are connected in parallel.  When Device 1 is operating at a 

higher temperature, a drop in the base-emitter voltage increases its collector current, Icc1 to 

compensate the drop. On the other hand, Device 2, which runs at a slightly cooler 

temperature, compensates to maintain the total collector current, Icc by regulating its base-
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emitter voltage resulting in a lower Icc2. As Icc1 increases, Icc2 moves downhill, which 

eventually shuts down Device 2, as depicted in Figure 3.10. 

Device 1

Isource
Device 2

VCC

Icc1

Icc2

Icc

 

Figure 3.9: HBT unit cells in parallel 
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Figure 3.10: Current collapse phenomenon observed in Device 2, represented by Icc2 
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Figure 3.11 illustrates the progressive decrease in the base-emitter voltage, Vbe of Device 1 

as the base current increases proportionally respective to the device operating temperature. 

Figure 3.10 and Figure 3.11 verify that the HBT unit cells are subjected to thermal runaway 

effect. 

1.29

1.3

1.31

1.32

1.33

0 1 2 3 4 5

V
b

e(
V

)

Isource(mA)  

Figure 3.11: Device 1 is experiencing Vbe degradation, which is indication of thermal 

runaway phenomenon 

In designing a PA compatible to multi-carrier modulation scheme such as LTE and 

WCDMA, the HBT PA needs to be thermally efficient as the modulation scheme observe a 

high peak to average ratio, which encourages the increment in the junction temperature of 

the PA, leading towards non-linear operation (Thein, Law, & Fu, 2011). Liou et al reported 

on the advantages of emitter ballasting based on the junction temperature rise threshold 

(Liou, Jenkins, & Huang, 1996). On the other hand, Liu et al proposed base ballast 

integration as an appropriate solution respective to the emitter ballast for HBT due to its 
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decreasing current gain to temperature dependency (Liu, Khatibzadeh, Sweder, & Chau, 

1996). However, base ballast tends to degrade the power gain of the PA and contributes to 

the degradation of linear output power (Maas, 2006). Jang et al alternatively integrated a 

depletion FET to the base of HBT to act as non-linear base ballast outlining thermal 

stability (Jang, Kan, Arnborg, Johansson, & Dutton, 1998), with a penalty paid in the 

complexity of the physical layout and fabrication cost. On the other hand, Jin-Dong et al 

proposed an optimized value of base ballast resistor based on thermal feedback network 

analysis to reduce the trade-off in power gain. Based on computer aided simulation result, 

HBT architecture conceptually requires a smaller base ballast resistor as compared to BJT 

(Dong, Zhang, Jun, Pan, & Ying, 2006). Bayraktaroglu et al alternatively proposed for a 

thermal isolation circuit to be integrated between the current source and the power stage as 

a substitute of the base ballasting concept (Bayraktaroglu & Salib, 1997).  

3.3.2 Thermal Compensation Circuit  

Figure 3.12 describes the circuit diagram of integrating the strap resistors, Rss1 and Rss2. 

Expressing the temperature delta of both devices in Figure 3.12 as: 

jc dT P 
                                                                      

(3.11) 

where θjc is the thermal resistance and Pd is the power dissipated, defined to be: 

d cc cP I V                                                                                        (3.12) 

where Icc = Icc1 + Icc2. 
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Figure 3.12: Strap resistor, Rss1 and Rss2 are implemented to mitigate thermal runaway 

phenomenon 

Substituting Pd into (3.11): 

jc cc c
T I V  

                                                                                 
(3.13) 

Since Device 1 and Device 2 are equivalent in size, therefore 

1 2cc ccI I                                                                          (3.14) 

Consequently, 

1 1cc bI I                                                                         (3.15) 
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and  

  2 2cc bI I                                                                      (3.16) 

The relationship between the base currents and strap resistors is given as: 

  1

1

bb
b

ss

V
I

R
                                                                        (3.17) 

and  

 2

2

bb
b

ss

V
I

R
                                                                         (3.18) 

Substituting Ib1 and Ib2 in equation (3.15) and (3.16) respectively: 

  1

1

bb
cc

ss

V
I

R
                                                                    (3.19) 

and  

2

2

bb
cc

ss

V
I

R
                                                                     (3.20)  

The total collector current Icc can be equated as: 

  1 2

1 2

1 1

     =

cc bb

ss ss

bb

ss ss

I V
R R

V

R R





 
  

                                                   (3.21) 
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substituting (3.21) into (3.13): 

bb

jc c

ss1 ss2

V
T V

R || R
   

                                                 

(3.22) 

Equation (3.22) concludes that an increase in the temperature delta relates to an inverse 

dependency to the total strap resistance, Rss = Rss1||Rss2. Hence an equivalent temperature is 

preserved at the unit cells inheriting the highlighted relation in (3.22), which results in 

uniform current flow among the unit cells where Icc1=Icc2. This evidently illustrated as in 

Figure 3.13.   
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Figure 3.13: (a) The schematic in Figure 3.9 is redrawn with strap resistors integrated at the 

base of the transistors. (b) Collector current in Device 1, Icc1 and Device 2, Icc2 do not 

collapse after integration of strap resistors 

As these strap resistors are not placed in series at the base of the HBT unit cell, the gain is 

not adversely affected.  

3.3.3 Measurement Evaluation 

Figure 3.14 illustrates the micrograph of the fabricated PA integrated with strap 

resistor and implemented in GaAs HBT technology. The corresponding schematic is 

depicted in Figure 3.15.  
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Strap Resistors

 

Figure 3.14: Micrograph of PA fabricated with strap resistors 
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Figure 3.15: Schematic of the fabricated PA with strap resistors integration. For 

base ballast configuration, Rssn is connected in series to Cn and Devicen 
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Figure 3.16 illustrates the AM-AM plot, which compares the implementation of base 

ballasting and strap resistor, achieving a maximum output power of 30dBm and 32.3dBm, 

respectively at supply voltage of 3.3V. The base ballasting approach observes a respective 

gain compression of 2.5dB. The void presence of gain expansion or compression in the 

strap resistor based integration evidently indicates a linear transmission. 
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Figure 3.16: AM-AM comparison plot of the PA with base ballast and strap ballast 

for the same device size of 4800um2 

The improvement observed in the aforementioned maximum output power in Figure 3.16 is 

due to continuous increment in the collector current with the aid of strap ballast resistor, 

which is depicted in Figure 3.17. In the conventional practice of base ballast integration, the 

collector current became constant from output power of 28dBm to 29.5dBm and eventually 

collapses at an output power of 30dBm as shown in Figure 3.17. In a nutshell this shows 

base ballast limits the current swing at higher output power. 
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Figure 3.17: Collector current (Icc) against output power comparison in base ballast 

and strap resistor integration 

The definition of a highly linear power amplifier encapsulates thermally stable 

operation as much as in the implementation of linearization techniques. The conventional 

practice of integrating base ballasting for HBT transistors has an inherited penalty in the 

degradation of the linearity, power gain and efficiency. Figure 3.18 shows the ACLR plot 

portraying the advantage of the strap resistor ballasting as compared to base ballast, where 

in this measurement, a LTE input signal is adapted. In Figure 3.19, the benefit in obtaining 

a higher PAE is displayed by the strap resistor concept. Hence, it can be concluded that the 

proposed strap ballasting concept indeed suits well the PA for LTE operation. 
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Figure 3.18: LTE ACLR plots comparing the two different combinations 

 

Figure 3.19: The PAE comparison plot across output power for both techniques. At higher 

output power, it can be observed that the PAE of base ballast configuration PA collapses. 
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Therefore it can be concluded strap resistors not only prevent the collapse of current at high 

input power, but also guarantees a higher linear output power and PAE delivery as 

compared to the conventional practice base ballast integration. Therefore, in this work, this 

concept is applied in the PA design as an effort to preserve its linear output power and 

PAE.  

3.4 Power Cell Optimum Conduction Angle  

3.4.1 Fourier Analysis 

The trade-off between linear operation and efficiency is fundamentally determined 

by the PA’s biasing point, alternately known as the conduction angle of the PA. Selecting 

an optimum conduction angle is essential in designing a linear and efficient PA. As the 

conduction angle reduces, the rise of even and odd orders components are more significant. 

Third order component adversely affects the linearity performance of the PA. Cripps has 

conducted a mathematical analysis to determine the even and odd order responses for a 

FET transistor (Cripps, RF Power Amplifiers for Wireless Communications, 2006). 

Adapting the analysis as a reference, a similar mathematical analysis has been done for the 

HBT transistor in this work and extended up to 5th order components. Figure 3.20 illustrates 

the RF collector current waveform plot of a class B HBT amplifier.  
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Figure 3.20: The collector current waveform plot. Iccq is the quiescent biasing point whereas 

α/2 is the corresponding conduction angle 

Mathematically, the illustrated waveform can be represented as: 

max( )cos    / 2 / 2cc ccq ccqI I I I                     (3.23) 

where 

max

cos( / 2)
ccq

ccq

I

I I


 
    

                                                  (3.24)  

Hence resulting,  

max (cos cos( / 2))
1 cos( / 2)

cc

I
I  


 


                               (3.25) 
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The Trigonometric Fourier Series (TFS) is applied to analyze equation (3.25).  TFS is given 

as: 

1 1

cos( ) sin( )cctotal dc ccn ccn

n n

I I I n I n 
 

 

                     (3.26) 

Since the collector current waveform in Figure 3.19 is an even waveform, therefore:  

1

cos( )cctotal dc ccn

n

I I I n




                                             (3.27) 

The DC current, Idc is given by 

/2

max

/2

1
(cos cos( / 2))

2 1 cos( / 2)
dc

I
I d





  
 



  
            (3.28) 

whereas the magnitude of the nth order collector current components is given by: 

/2

max

/2

1
(cos cos( / 2)).cos

1 cos( / 2)
n

I
I n d





   
 



  
   (3.29)                                                                                          

Solving Equation (3.28) for DC term and Equation (3.29) for the fundamental component, 

I1 (n=1) to fifth order I5 (n=5) results in: 

max 2sin( / 2) cos( / 2)

2 1 cos( / 2)
dc

I
I

  

 


 


                              (3.30) 

max
1

sin

2 1 cos( / 2)

I
I

 

 


 


                                                   (3.31) 
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 
max

2

1 3
sin sin

2 1 cos( / 2) 2 3 2

I
I

 

 

    
           

              (3.32) 

 
max

3

1 1
sin sin 2

2 1 cos( / 2) 3 6

I
I  

 

 
     

                    (3.33) 

 
max

4

1 3 1 5
sin sin

2 1 cos( / 2) 6 2 10 2

I
I

 

 

 
     

               (3.34) 

 
max

5

1 1
sin 2 sin3

2 1 cos( / 2) 10 15

I
I  

 

 
     

              (3.35) 

The current equation (3.30) to (3.35) is plotted across the conduction angle as depicted in 

Figure 3.21. 
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Figure 3.21: Current waveform normalized amplitude across conduction angle 

It can be observed from Figure 3.21 that as the conduction angle increases, the fundamental 

current component increases due to the increment of the DC component. The second order 
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component which translates to second harmonic has an amplitude more than 0 from 0.5π to 

1.5π. The peak is at 0.8π, which is close to class-B biasing. On the other hand, the third 

order current component also reduces as the conduction angle increases. An interesting 

observation is at the conduction angle within the range of π<α<1.8π. In this region, the 

fundamental component is the highest and the third order component is at the lowest. This 

shows that it is theoretically possible to obtain higher fundamental output power, although 

the PA is not biased at class-A (conduction angle 2π) mode. The lowest third order 

component on the other hand promises a linear operation to a certain extent without 

sacrificing the efficiency at much.  

3.4.2 Relationship between Conduction Angle and Efficiency   

In order to determine the efficiency corresponding to α=2π which represents the 

conduction angle of a class-A amplifier, Equation (3.30) and (3.31) is appreciated, resulting 

in Idc= Imax/2π and I1= Imax/2π hence reflecting the efficiency of class A, which is I1/Idc to be 

1. Using this result, the relationship between the conduction angle and efficiency in 

reference to class-A mode is given by: 

   1 .1
dc

I

I
                                                                                 (3.36) 

   1 . class A

dc

I

I
                                                               (3.37) 

Subsequently from equation (3.30) and (3.31): 
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sin

*

2sin cos
2 2

class A

 
 

 







   
   

   

                                (3.38)  

 

From equation (3.38), it can be concluded that the efficiency of the PA increases as the 

conduction angle reduces. Table 3.1 tabulates the theoretical efficiency for various 

conduction angle of the PA. 

Table 3.1: Conduction angle and corresponding quiescent current for a typical class-A, AB 

and B amplifier. 

Class Conduction 

angle, α 

Efficiency, η 

(%) 
A 2π 50 

AB 1.3π 67.3 

AB 1.2π 71 

AB 1.1π 74.8 

B π 78.5 

The resultant collector current waveform is depicted in Figure 3.22. 
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Figure 3.22: Collector current waveform for various conduction angle of the PA 

3.4.3 Optimum Bias Point Determination  

Section 3.4.1 and 3.4.2 shows the possibility to obtain optimum biasing point for the 

optimum ACLR and PAE. The impact of third order can be appreciated in the definition of 

ACLR (Carvalho & Pedro, 1999). In order to verify this, an experiment has been set up. In 

this experiment, a single stage amplifier has been tested by sweeping its biasing current to 

determine the optimum value for the best ACLR at the region close to class-B biasing 

point. Figure 3.23 illustrates the schematic of the designed amplifier whereas Figure 3.24 

depicts the measurement setup. 
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Figure 3.23: Single stage power amplifier for the optimum bias point determination 
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Figure 3.24: Measurement setup 
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Based on the measurement setup above, various bias point has been tested out to determine 

the best operating point for ACLR without significant trade-off in the PAE. The resultant 

plot is shown in Figure 3.25. 
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Figure 3.25: ACLR and PAE plot for various biasing current for the single stage 

amplifier 

From Figure 3.25, it is evident that the PA delivers the best ACLR at a quiescent current of 

40mA. The resultant PAE at the output power of 28dBm is 28%. Measurement has been 

done at operating frequency of 1.98GHz.  Therefore, this quiescent current is desirably 

chosen to bias up the final stage amplifier.  

3.5 Biasing Circuit Design  

In order to provide a stable biasing platform for the main amplifiers, a base voltage 

stabilizer architecture is proposed to bias the amplifier as shown in Figure 3.26. In this bias 

configuration, an increase in the Vbe of transistor QB1, due to the changes in supply voltage 
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VCC is compensated by the voltage drop across the resistor, R3. Also, the sensitivity of Vbe 

due to QB1 collector current is reduced by integrating the voltage degeneration resistor, R5. 

Hence, the voltage delivered to the base-emitter junction of QB2 becomes less sensitive to 

the changes in the input current of QB1.This circuit therefore provides a stable biasing 

condition for the RF transistors. The cascaded connections of QB1 and QB2 boost up the 

current gain of the biasing circuit, therefore provides more room for the main amplifier’s 

base current swing which consist of 20 unit of power cells. 
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Figure 3.26: Proposed biasing circuit 

QB1 is biased through a voltage division network of resistor R2 and R3. QB3 and QB4 serve to 

be diode connected transistors outlining a consistent biasing profile across different 

temperature condition. R4, C1 and C2 act as a low pass filter to protect the biasing circuit 

from the influential of higher frequency components. 
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CHAPTER 4. DESIGN OF WIDEBAND EFFICIENCY POWER AMPLIFIER 

4.1. Introduction 

Efficiency is a critical parameter in power amplifier design. Primarily, the 

conduction angle of the power amplifier marks the optimum operating point for a highly 

efficient with reasonable trade-off in linearity. However, this is just not enough to fulfill the 

specification requirement for handset operation as it operates at backed-off output power 

where the efficiency is much lower.  

In order to improve the efficiency of the PA, the voltage and current waveform is 

manipulated. Figure 4.1 shows the voltage and current waveform for various classes of PA. 
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Figure 4.1: The voltage and current waveform of various classes of PA. 

From Figure 4.1, it can be observed that as the voltage and current waveforms move away 

from its ideal sinusoidal shape (Class-A waveform), the efficiency of the PA improves       

(Class-B to Class-F). Typically, the class A PA’s efficiency is 50% whereas class-F’s 

efficiency is 100% (Colantonio, Giannini, & Limiti, 2009). The improvement in efficiency 

through waveform manipulations usually obtained by reducing the biasing level of the PA 

and at the same time employing additional matching networks to terminate the second and 

third harmonics. If all the harmonics are shorted, the voltage waveform represents a 

sinusoidal shape as shown in Figure 4.1 from Class-A to Class –C operation. As for Class-
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F, the efficiency is boosted by imparting the odd harmonics to the voltage waveform which 

approximates a square wave (Raab, et al., 2002). Designing wideband harmonic resonators 

to have wideband efficiency usually ends with trade off in the fundamental output power 

(Tuffy, Zhu, & Brazil, 2011). As a result of this trade-off degradation in linear output 

power is observed as well.  

4.2. Class-J Power Amplifier – Theoretical Analysis  

4.2.1. Fundamental of Class-J Design 

The class-J PA was invented by S.C. Cripps (Cripps, RF Power Amplifiers for 

Wireless Communications, 2006). It is capable of delivering the same efficiency and 

linearity as with the class-AB power amplifier without the need of band limiting 

transmission line harmonic short (Wright, Lees, Benedikt, Tasker, & Cripps, 2009). 

Instead, it employs a reactance harmonic termination technique to achieve the efficiency 

goal. 

The conduction angle method to improve the efficiency of the power amplifier 

focuses in modifying the current waveform. Modifying the current waveform from 

sinusoidal (Class-A) to rectified sine wave (Class-B) increases the efficiency of the PA by 

the factor of π/2 which can be proven with equation (3.38) in Chapter 3. However, in class-

J mode, the modification includes the voltage waveform as well which is explained through 

the following analysis. 

If the fundamental RF output power is given as: 
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1 1
1

22 2

dc dcV I V I
P                                                                    (4.1) 

And the DC power consumption of the PA is given as: 

dc dc dcP V I                                                                                 (4.2) 

Referring to Equation (3.30) in Chapter 3, Idc for class-A amplifier and class-B amplifier is 

Imax/2 and Imax/π respectively. For both classes of amplifier, the fundamental current I1 is 

found to be the same with the utilization of equation (3.31), which is Imax/2. Therefore the 

efficiency of a class-A PA can be determined as: 

1 100%class A

dc

P

P
                                                               (4.3) 

              11
100%

2 dc

I

I
   

            

max

max

1 2 100%
2

2

I

I

 
 

  
 
 

 

             =  
1

100%
2
  

            = 50% 
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On the other hand the efficiency of class-B is determined as: 

max

max

1 2 100%
2

class B

I

I






 
 

  
 
 

                                                  (4.4) 

             = 100%
4


  

                                                            =78.5% 

It is evident from the calculation shown that modifying the current waveform from a 

sine wave to a rectified sine wave increases PA’s efficiency by a factor of π/2.   

If the voltage waveform is also modified from sine wave to rectified sine wave as 

represented by the blue curve in Figure 4.2 (a), then the PA’s efficiency expected to be 

increased further by another factor of π/2. However, this is impractical due to the 

requirement of the second harmonic load to be a negative resistance (Cripps, Advanced RF 

Power Amplifier Techniques for Modern Wireless and Microwave Systems, 2006). 

Nevertheless if the voltage waveform is displaced by 45º as represented by the red curve 

shown in Figure 4.2 (a), the second harmonic is now purely reactive (Cripps, Advanced RF 

Power Amplifier Techniques for Modern Wireless and Microwave Systems, 2006). This 

process defines class –J PA. Therefore, the effective efficiency in a class-J PA is given by:  

cos 100%
4 2 4

class J

  
 

 
    
 

                                        (4.5) 

              = 87.2%    
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Figure 4.2: The modification of the voltage waveform which is shown in (a) and the half 

wave rectified current waveform is shown in (b) 

In practice, the efficiency of the class-J PA is lower as compared to the theoretical value 

due to the higher order even harmonics effect (Cripps, Advanced RF Power Amplifier 

Techniques for Modern Wireless and Microwave Systems, 2006). 

Based on the Fourier analysis conducted on the half sinusoidal current waveform in 

Chapter 3 (Equation (3.30) to (3.35)), the current waveform in Figure 4.2(b) can be 

represented as: 
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max

1 1 2
( ) cos cos2 ......

2 3
I I  

 

 
    

 
                     (4.6) 

whereas the shifted voltage waveform in Figure 4.2(a) is represented as: 

    
1 1 2

( ) cos cos 2 .....
2 3

dcV kV   
 

 
       

 
                                                                                                                                                                     

                                                                                                                             ………. (4.7) 

where k is a constant with a value  ≥ 2 which illustrates the class-J voltage waveform and δ 

represents the shifted phase of the voltage waveform (Moon, Kim, & Kim, 2010). The load 

impedance for each harmonic frequency can be calculated by:  

n
n

n

V
Z

I
                                                                             (4.8) 

Referring to Eq (4.6) and (4.7), if Imax =1 and k = π and the DC voltage is normalized to 1 

by selecting k = π and Vdc= 1/π, the fundamental and second harmonic load impedances are 

given as: 

1 1Z                                                                               (4.9) 

 2 1 2Z                                                                   (4.10) 
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 For class-J application, δ= π/4 rad.  Therefore in rectangular form, equations (4.9) and 

(4.10) can be represented as: 

 1

1
1

2
Z j                                                                  (4.11) 

2Z j                                                                              (4.12) 

which shows presence of positive reactive component for the fundamental load impedance 

and negative reactive component for the second harmonic, assuming the rest of the 

harmonics are shorted. 

The maximum value of the fundamental voltage of the class-J amplifier is increased 

by factor of 2  above the class B amplifier. Therefore the fundamental load impedance is 

set to optR2 where Ropt is the load impedance of the amplifier (Moon, Kim, & Kim, 2010).  

On the other hand, in order to properly shape up the half-sinusoidal voltage waveform, the 

ratio between second harmonic voltage waveform to fundamental voltage waveform is set 

to  
4

2
 .  Therefore: 

0

2

2
fV                                                                           (4.13) 

where Vfo is the fundamental voltage waveform. The ratio between the second harmonic 

waveform (V2f0) to Vf0 is given as: 

2 0

0

2

4

f

f

V

V


                                                                      (4.14) 
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Hence, 

2 0

2 2 1

4 2 4
fV

 
                                                        (4.15) 

With this, the second harmonic impedance Z2f0 is calculated as: 

2 0
2 0

2 0

1

4         
2

1
3

3
         

8

3
           90

8

f
f opt

f

opt

opt

opt

V
Z R

I

R

R

R





 


 



 

  

                                                 (4.16) 

4.2.2. Class-J Output Impedance Analysis with the Integration of Output Matching 

Network 
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Figure 4.3: The schematic of class-J HBT PA 
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Figure 4.3 depicts the schematic of the HBT class-J PA. The transistor is biased in class-B 

mode where the RF output current waveform is half-wave rectified. Therefore: 

max sinTI I              for  0     

      = 0                         for 2                                   (4.6)   

The fundamental current component flowing in the matching network is given as: 

 1 sinFI I                                                                  (4.7) 

where ϕ is the phase deviation contributed by the matching network and I1 is fundamental 

current. 

The current flowing into C2f0 of Figure 4.3 is: 

C CC F TI I I I                                                                 (4.8) 

where the DC output current, max
CC

I
I


 . 

The output voltage V0 is:  

0

2 0 0

1
C

f

V I d
C






                                                               (4.9)  

    
2 0 0

1
C C

f

I d I d
C

 



 


 
  

  
                                                                                               

Therefore from conduction angle 0< θ<π, 
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 max
0 1 max

2 0 0

1
sin sin

f

I
V I I d

C



   
 

 
    

 
          (4.10) 

The solution for equation (4.10) is given in (4.11): 

 0 max 1

2 0

1
2 cos

f

V I I
C




                                          (4.11)  

The negative sign means the voltage and current are out of phase to each other. 

From conduction angle 0< θ<2π, IT of equation (4.8) is zero. Therefore:  

 max
0 1

2 0 0

1
sin

f

I
V I d

C



  
 

 
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 
                            (4.12)  

where the resultant is given as: 

   max
0 1

2 0

1
cos cos

f

I
V I

C
    

 

 
        

 
    (4.13) 

Fourier analysis is conducted on the output voltage to determine its fundamental and 

second order components. The fundamental component is given as: 
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The second order component is: 

   
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                                                                                                                                         (4.15) 

The full derivation of equation (4.10) to (4.15) is given in Appendix B.  In equation (4.14) 

and (4.15) it can be observed that the fundamental (V1) has a positive imaginary component 

whereas the second order voltage (V2) has negative imaginary component. Therefore it can 

be confirmed mathematically that the polarity of the imaginary components will not be 

affected by the output matching network. 

4.3 Simulation Analysis 

As mentioned in Chapter 3, the Ropt is set to 5Ω which set to be optimum value for 

maximum output power and PAE. Therefore, the initial 2nd harmonic reactive termination 

capacitor value is calculated as below: 

2 0

2 0

1

2
f

f

C
fZ

                                                               (4.18) 

Since optf RZ
8

3
02


  and Ropt = 5Ω, at the highest operating frequency of 2GHz, 

C2f0 = 13.5pF. 
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In this work, by setting the C2f0 to 13.5pF, the fundamental load impedance is optimized to 

deliver the highest backed off PAE with saturated output power (Psat) more than 32dBm. 

Figure 4.4 illustrates the schematic setup. 

 

Figure 4.4: Class-J amplifier load pull simulation setup 

In the setup above, with the aid of the harmonic balance simulator, the load impedance 

which is represented by Zload Ohm in Figure 4.4 is varied and the corresponding output 

power and PAE is obtained as the simulation result. The amplifier’s quiescent collector 

current is set to 40mA which is obtained through the analysis result given in Figure 3.24 in 

Chapter 3. The amplifier is simulated up to its 10th harmonic. As a result, the optimum 

fundamental load impedance obtained, Zout is 2+j3. The resultant plot is illustrated in Figure 

4.5. 
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Figure 4.5: Gain and PAE plot across output power for Zout 2+j3 

In Figure 4.5, it can be observed that the maximum output power is indeed more than 

32dBm from 1.7GHz up to 2GHz with PAE more than 50% at 28dBm of output power. 

 

 

 

 

 

 

 

 

 



73 

 

4.4 Output Matching Network Design 

 Figure 4.6 illustrate the proposed output matching network to transform the 50 ohm load 

impedance to the desired Zout = 2 + j3.  

L2
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L3 C4

C2

L1

Cce

RL=50Ω

+

-

Zout

Main 

Amplifier

 

Figure 4.6: Output matching network topology of the class-J amplifier 

The matching network can be divided into two sections which are: 

a) Section 1 which compromises T-network L2, C3 and L3 which transforms the 50 

ohm load to an imaginary impedance of 25 ohm. 

b) Section 2 which compromises an L-network C2 and L1 which transforms the 25 ohm 

to 2+j3 ohm. 

In Section 1, values of L2, C3 and L3 are determined using the following equations (Bahl, 

2003):  

2 1

0

1N
L R




                                                                 (4.19) 

3

0 1

1 1
N

N
MC

NR

  

                                                     (4.20) 

                  Section 1        Section 2 
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3 2

0

1
N

ML R




                                                                (4.21) 

where 2

1

1   and 
R

M N M
R

                                                                                       

In this work, R1= 25Ω and R2 = 50Ω. Therefore M= 2 and N has been set to 2.2.  

For section 2, the value of C2 and L1 are obtained through the following equations: 

1

0

3 46
L




                                                                     (4.22) 

2

0

46

50C


                                                                         (4.23) 

where ω0=2πfo in which f0 is the center frequency at 1.85GHz.  The derivation of equation 

(4.22) and (4.23) has been given in Appendix C. The Impedance transformation plot is 

shown in Figure 4.7. The red oval plot in the smith chart in this figure represents the 

corresponding Q of the network which is 3. 
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Figure 4.7: Impedance Transformation Plot 

 Subsequently, L1, L2 and L3 are transformed to microstrip line using the following 

equations (Bahl, Fundamentals of RF and Microwave Transistor Amplifiers, 2009):  

0( / ) reZ
L H mm

c


                                                        (4.25) 

where c is the speed of light, 3x1011 mms-1.   Ɛre can be determined using Eq. (4.26). 

1 1
( / )

2 2

r r
re F W h

 


 
                                             (4.26) 

where F (W/h) is given as: 
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 

 

                                                                                …… (4.27)                                                                                                                                      

                                                                                  

where h is the substrate thickness whereas W is the microstrip line width. 

Z0 is given as: 

 0

8
ln 0.25            / 1

2 re

h W
Z W h

W h



 

 
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 
         (4.28a) 

 
1

0 1.393 0.667ln 1.444       / 1
re

W W
Z W h

h h






  

      
  

                                                                        ……....... (4.28b) 

where η = 120 π ohms. 

The microstrip transmission lines have been routed in a 3mm x 3mm module chip 

on board (MCOB) package. Then a 3D simulation has been conducted to simulate which 

includes all the parasitic effects. The simulation result is illustrated in Figure 4.8. The 

corresponding output impedance which consist of the fundamental and second harmonics 

of operating frequency 1.7GHz to 2GHz is illustrated in Figure 4.9. 
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Figure 4.8: The simulated output power and PAE of the fully modelled final stage class-J 

amplifier 

 

Figure 4.9: Class-J Output impedance and second harmonic plot across output power from 

1.7GHz to 2GHz.  Second harmonic termination is purely reactive across the frequencies 
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The voltage and current waveform at saturated output power (Psat) and backed off output 

power (Pbo) 28dBm is illustrated in Figure 4.10. 
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(b)Figure 4.10: Class-J voltage and current waveform at Psat and Pbo of 28dBm for (a) 

1.7GHz and (b) 2GHz 
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It can be observed in Figure 4.10 that the current waveform of Psat is bifurcated which 

translates to a drop in PAE at output power more than 31dBm. This is known as bifurcation 

phenomena (Cripps, RF Power Amplifiers for Wireless Communications, 2006). This issue 

can be minimized if the supply voltage of the PA is increased.  
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CHAPTER 5. ANALOG PRE-DISTORTER DESIGN AND THE REALIZATION 

OF HIGH GAIN POWER AMPLIFIER 

5.1. Introduction 

The goal of the linearization technique in this work is to reduce the back-off output 

power level due to PAPR backlash, thus exhibiting higher linear output power with low 

quiescent current. This is accomplished by integrating an analog pre-distorter (APD) block 

at the input of the low voltage main amplifier in the proposed architecture. 

Operating the main amplifier at low quiescent current headroom results into gain 

expansion phenomena. This is due to the rise of the third order intermodulation distortion 

(IMD3) component as the output power increases (Carvalho & Pedro, 1999). The rise of the 

third order nonlinearity significantly degrades the ACLR (Carvalho & Pedro, Compact 

Formulas to Relate ACPR and NPR to Two Tone IMR and IP3, 1999). In order to mitigate 

this adverse effect, the APD architecture is integrated to produce IMD3 components, which 

are equal in amplitude but 180o out-of-phase respective to the IMD3 spurs generated by the 

main amplifier. Thus, the IMD3 cancellation attained extends the overall linear output 

power span of the PA. 

Finally, in order to boost up the power gain to be more than 30dB, a pre-driver 

amplifier is cascaded to the class-J PA with a built in APD. A higher gain cannot be 

achieved with a single stage amplifier due to the technology constraint whereby as the 

output power of the amplifier increases the power gain will be lower (Gilmore & Besser, 

2003). The inter-stage matching network between the pre-driver amplifier and the APD 
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plays an important role to ensure a maximum power transfer from the input to output. 

Hence an appropriate matching elements needs to be designed and integrated in chip to 

achieve this goal. This chapter deliberately explains the adapted method. 

5.2. Theoretical Analysis of APD Technique 

Figure 5.1 conceptually illustrates the non-linear components generated by a PA which 

transmits a dual carrier signal.  

 

Figure 5.1: Nonlinear amplification of PA 

If the input signal to the PA is given as: 

1 2cos cosiV A t B t                                                       (5.1) 

where Acosω1t is the intended signal and Bcosω2t is the interference signal. Then the 

amplified output signal, V0 would be: 

2 3
0 1 2 3 ....n

n i i i iV c V c V c V c V                                      (5.2)    

Substituting (5.1) into (5.2) and computing the third order term, results in: 

 
33

3 3 1 2cos cosic V c A t B t                                           (5.3) 
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Expanding equation (5.3): 

3 2 3 2 2

1 2 2 1
3

3
2 3 3

1 2 1 2

3 3 3 3 3
cos cos cos2 cos

4 2 4 2 2

3
cos2 cos cos3 cos3

2 4 4

i

A AB B BA AB
t t t t

c V

A B A B
t t t t

   

   

    
       

    
 
   
 

           (5.4) 

From the identity: 

    tttt 121212 2cos2cos
2

1
cos2cos                       (5.5) 

    tttt 212121 2cos2cos
2

1
cos2cos                       (5.6) 

Substituting (5.5) and (5.6) into (5.4) results in: 

    

    

3 2 3 2 2

1 2 2 1 2 1
3

3
2 3 3

1 2 1 2 1 2

3 3 3 3 3
cos cos cos 2 cos 2

4 2 4 2 4

3
cos 2 cos 2 cos3 cos3

4 4 4

i

A AB B BA AB
t t t t

c V

A B A B
t t t t

     

     

    
          

    
 
      
 

                                                                                                                                  …… (5.7) 

Figure 5.2 illustrates the generated IMD3 components derived in equation (5.7).  

 

Figure 5.2: The resultant third order frequency components generated due to amplification 

of dual carrier signals ω1 and ω2 
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Respective to (5.7), if the interfering signal component with an amplitude of B and 

fundamental frequency of ω1, is amplitude modulated, the exact applies same with the 

desired signal component. Additionally, if there is a presence of another interfering signal 

at frequency ω3 as shown in Figure 5.3, IMD3 component with frequency of (2ω2-ω3)=ω1 

will cause interference to the desired frequency at ω1. 

 

Figure 5.3: Interference component generated by ω3 to ω1 

The APD operation as described in Figure 5.4 can be explained with the aid of the 

following simplified third order analysis. 

vAPDvin APD 

& 

Driver

Main

RFin RFout
vout

PA

APD

 

Figure 5.4: IMD3 cancellation analysis 

From the expression of the power series, given by: 
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0

( ) n
n

n

f x a x




                                                                                               (5.8) 

2 3
0 1 2 3out APD APD APDv a a v a v a v                                                              (5.9) 

2 3
0 1 2 3APD in in inv b b v b v b v                                                                (5.10) 

Taking into consideration the fundamental and third order components only and 

incorporating (5.10) into (5.9): 

3 3 3
1 1 3 3 1 3[ ] [ ]out in in in inv a b v b v a b v b v                                                 (5.11) 

3 3 2 5 2 7 3 9
1 1 1 3 3 1 3 1 3 3 1 3 3 3[ ] 3 3in in in in ina b v a b a b v a b b v a b b v a b v           (5.12) 

to nullify the third order interaction components which impacts the ACLR (Katz, 2001), 

3
1 3 3 1 0a b a b                                                                                       (5.13) 

  
3

3 1
3

1

a b
b

a


                                                                                         (5.14) 

normalizing (5.14) in the context of the linear fundamental gain, establishes 

3 3b a                                                                                                (5.15) 

It can be concluded from (5.15) that in order to achieve IMD3 cancellation, the third order 

components generated at the output of the APD need to have an opposite response 

respective to the third order components generated by the main amplifier. In practice, this 
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can be achieved if an opposite AM-AM and AM-PM responses are generated between the 

APD and main amplifier (Katz, 2001). 

5.3. APD Design Methodologies 

5.3.1 Initial Design Methodologies 

5.3.1.1 Passive Pre-distorter Linearizer 

Figure 5.5 illustrates the topology of the proposed PA, which integrates a Class-E 

PA, passive pre-distorter linearizer and an output matching network ensuring a maximum 

linear output power at the designated PAE. The Class-E PA encapsulates a HBT transistor 

and a shunt capacitor, C1. The passive pre-distorter is connected at the input of the Class-E 

PA, prior to the parallel RC network. 
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Figure 5.5: Proposed class-E LTE PA with passive pre-distorter 
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The passive pre-distorter linearizes the PA by generating an opposite AM-AM response to 

cancel off the gain expansion faced by the class-E PA. The resultant plot is illustrated in 

Figure 5.6 and 5.7 respectively. The limitation of this type of pre-distorter is that it is not 

capable to generate an opposite AM-PM response.  
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Figure 5.6: Measured AM-AM responses of the Class-E PA before and after linearization 

 

Figure 5.7: Simulated spectrum of the PA at 1.95 GHz 
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5.3.1.2 Dual stage linearizer 
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Figure 5.8: The schematic of the proposed PA with integrated dual stage linearizer network 

Figure 5.8 illustrates the schematic of the proposed PA, consists of an integrated 

APD block connected to the input of the main amplifier. The APD block encapsulates of a 

driver amplifier, and a dual stage linearizer. The first stage of the linearizer, which 

comprises a T- network (C3, L2 and C4), eliminates the low frequency components of the 

IMD3 generated by the driver amplifier. This low frequency components are capable of 

generating low frequency non-linear spurs through the coupling with the biasing circuit of 

the main amplifier under modulated transmission. This phenomenon is known as the bias 

modulation effect (Cripps, RF Power Amplifiers for Wireless Communications, 2006).  

Here, the generation of an opposite AM-AM response is accomplished through the 

second stage linearizer consists of C5, L3 and C6. The low pass PI network will feed back 



88 

 

the third order component back to the output of the driver amplifier, which results in a gain 

compression at location Y in Figure 5.8. Evidently from Figure 5.9, and with the aid of the 

dual stage linearizer, the PA is able to meet -30dBc ACLR specifications up to the output 

power of 30dBm, in comparison to the operation of the PA if it is only biased at low 

quiescent current in the absence of  any linearizer circuit. 

 

Figure 5.9: Measured ACLR comparison between PA with and without dual stage 

linearizer at 1980MHz. ACLR improves by 3dB at low output power and more than 3dB 

after surpassing 28dBm 
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5.3.2 Novel Wideband APD 

The attempted methods in Section 5.3.1 are able to cover for a single LTE band. 

This is due the inability of both pre-distortion method to generate an opposite AM-PM 

response. In order to extend the operating LTE bandwidth, the phase pre-distorter and 

amplitude pre-distorter has been split to two sub circuits.  The implementation of this novel 

circuit at the input of the class-J amplifier is illustrated in Figure 5.10. 

 

Figure 5.10: Schematic diagram of the LTE PA with built in APD. X denotes the output 

impedance of the APD, Y is the output impedance of the class-J amplifier. The Pre-Driver 

and main amplifier has the similar bias circuit topology whereas for the Driver, its bias 

circuit does not couples resistor R1 of the bias circuit. M is equivalent to 1 unit cell 

 

Y 
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Figure 5.11 illustrates the IMD3 and PAE load pull contours prior to the linearization. Y is 

the output impedance of the main amplifier. These contours are plotted at an output power 

of 28dBm. 
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(b) 

Figure 5.11: Load pull simulation result which illustrates the IMD3 and PAE contours of 

the main amplifier at output power 28dBm, (a) at 1.7GHz and (b) at 2GHz.The PAE 

contour is plotted in 1% step whereas the IMD3 contour is plotted in 2dB step 
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With the optimum conduction angle of 1.1π, Y is located closed to the optimum IMD3 

point at 2GHz. However, it is still located almost 8dB away from the optimum IMD3 point 

at 1.7GHz, as described in Figure 5.11. 

In HBT, spectral re-growth is mainly contributed by its base-collector parasitic 

capacitance Cbc (Kim, Kang, Lee, Chung, & Kang, 2002). To mitigate this effect, a novel 

phase cancellation method is proposed by integrating a base collector diode at the input of 

the driver amplifier. The reverse bias capacitance Cbc-reversebias and forward bias capacitance 

Cbc-forwardbias are expressed as follows (Gray, Hurst, Lewis, & Meyer, 2005):  

0

0

1

c

bc
bc reversebias n

CB

C
C

V

f

 
 
 

 

                                              (5.16) 

where Cbc0 is the collector-base capacitance when VCB=0 ,φ0  is the collector base junction 

built in voltage and nc is the grading coefficient of the collector base junction. In order to 

generate an opposite output phase response, the collector-base junction is forward biased. 

The aforementioned collector base capacitance is expressed by: 

0

0

1

c

bc
bc forwardbias n

CB

C
C

V

f

 
 
 

 

                                                  (5.17) 

Based on (5.16) and (5.17) the positive and negative phase insight in effect to VCB cancels 

off the Cbc-reversebias with single forward biased base collector diode integration, Cbc-forwardbias. 

However, with the aid of two base collector diodes (Cbc-forwardbias > Cbc-reversebias), an opposite 

phase response (AM-PM) is observed at the output of the APD. The biasing profile of the 

diode to turn ON the driver amplifier in the APD is shown in Figure 5.12. 
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Figure 5.12: Biasing profile of the integrated parallel base collector diodes.  The supply 

voltage to the diodes has to be at least 2.2V to turn ON the driver stage 

The simulated AM-PM response at the output of the APD and class-J main amplifier are 

illustrated in Figure 5.13. 
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Figure 5.13: Simulated AM-PM responses of the APD and main amplifier across operating 

band 

It can be observed from Figure 5.13 that the driver’s phase expansion and main amplifier’s 

phase compression cancels out each other contributing to the improvement of the IMD3 

performance.  

Generation of an opposite AM-AM response is accomplished through the T section 

intermediate matching network, consists of C6, L2, C7 and L3. The Smith plot of Figure 5.14 

illustrates the location of the output impedance of the driver denoted at point A. This 

impedance is potentially matched to X, B or Bcon. Point B describes the input impedance 

of the main amplifier integrated with the ballasting network. Point X is the output 

impedance of the APD where else Bcon is the conjugate of B. Based on the profile of 

Figure 5.15, matching towards point X observes a favorable gain compression which 
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compensates the gain expansion of the main amplifier. Matching towards point B observes 

a gain expansion begins from lower output power which would not result into a desirable 

IMD3 cancellation. Point Bcon observes a flat profile till the 1dB compression point in 

which results into a similar effect as with point B matching. 
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Figure 5.14: Location of the impedance point of the driver (A), main amplifier (B) and 

APD(X) at 1.7GHz 

 

Figure 5.15.  AM-AM profile for various intermediate matching network impedances 

mentioned in Figure 5.14. 
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The effect of AM-AM and AM-PM cancellation between the APD and main amplifier in 

the PA is illustrated in Figure 5.16. The IMD3 optimum impedance moves to location Y for 

1.7GHz and 2GHz while the PAE degrades slightly due to the current consumption of the 

APD. 
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Figure 5.16: IMD3 and PAE contours of the PA after linearization at (a) 1.7GHz and (b) 

2GHz 
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5.4 High Gain Power Amplifier Design 

For an operation of the amplifier with a cumulative gain of 35dB, an additional pre-

driver stage has been cascaded to the amplification chain. The matching network between 

the pre-driver and input of the APD has been designed to have a high operating gain, which 

can be expressed as (Gonzalez, 1997): 

p

Power delivered  to the load
G

Power input to the network
                                  (5.18a) 

2
2

212 2
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G S
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                                    (5.18b) 

where ΓIN and ΓL can be expressed as follows: 
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where S11 is the input return loss, S22 is the output return loss and S21 is the gain of the pre-

driver. On the other hand, ZL represents the load impedance and Z0 represents the 

characteristic impedance, respectively. The characteristics impedance is set to 50 ohm as a 

tradeoff between lowest loss and highest power carrying capability (Pozar, 2005). Besides 

high operating gain, the designed matching network also ensures a maximum power 

transfer occurs from output of the driver to the input of the APD. 
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Another important parameter which has been given priority in this paper is the 

unconditional stability factor, which known the Rollett factor, K (Rollett, 1962). The power 

amplifier has been designed to meet this criterion, which is conditioned as (Ludwig & 

Bretchko, 2000):- 

2 2 2

11 22 11 22 12 21

12 21

1
1

2

S S S S S S
K

S S

   
                        (5.21) 

Besides the above mentioned stability factor, the source and load stability circles of the 

integrated PA has also been plotted to ensure it is located outside the Smith chart to operate 

in unconditional stability mode. The plots are reviewed in Chapter 6. 
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CHAPTER 6. MEASUREMENT RESULTS 

6.1 Measurement Station Setup 

The measurement result has been categorized in to two sections: 

i) Small signal analysis 

ii) Large signal analysis  

The small signal measurement involves the S-Parameter measurement whereas the large 

signal measurement includes the 1dB compression point (P1dB), ACLR and error vector 

magnitude (EVM) measurements. Figure 6.1 shows the setup for small signal measurement 

whereas Figure 6.2 shows the large signal measurement setup. The network analyzer in 

Figure 6.1 is used to measure the input return loss (S11), output return loss (S22) and power 

gain (S21). The DUT needs one 4-channels power supply for Vcc, Vc1, Vc2, and Vc3 .Vc1, Vc2 

and Vc3 will turn on the pre- driver, driver and main amplifier stages respectively. In Figure 

6.2, two power meters are used to measure the input and output power respectively. A 

spectrum analyzer is used to measure ACLR and EVM performance of the PA. A signal 

generator is use to supply the LTE modulated signal at the input of the PA.   
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Figure 6.1: Small signal measurement setup 
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Figure 6.2: Large signal measurement setup 

A 20dB attenuator is placed at the output to protect the power meter and spectrum analyzer 

from any possibility of damages caused by high output power transmission. The clock 

signals of all the signal generator and spectrum analyzer needs to be synchronized to the 

default 10MHz in order for them to run simultaneously. The measurement is automated 

with the aid of Agilent-Vee software to ease data collection.  Before the measurement is 
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executed, the RF signal path is calibrated to take into account the input and output path 

losses.  

Figure 6.3 illustrates the microphotograph of the die, fabricated in 2µm 

InGaP/GaAs HBT process. The size of the die is 950µm x 900µm. The class-J amplifier 

and APD are integrated in a single chip, along with the driver and pre-driver amplifiers.  
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Figure 6.3: Die microphotograph of the fabricated PA with integrated APD .The size of the 

die is less than 1mm x 1mm 
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6.2 Measurement Results  

6.2.1 Small Signal Measurement Results 

The supply voltage headroom of the LTE PA is 3.3V. The simulated and measured 

S-parameter of the proposed PA is shown in Figure 6.4. The S11 and S22 are well matched 

from 1.7GHz to 2.1GHz, with a corresponding gain S21 more than 35dB across 300MHz 

bandwidth.  A low S11 indicates that the APD does not generate a severe input mismatch 

loss at the fundamental frequency. 
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Figure 6.4: Measured and simulated S-parameters of the PA with supply headroom of 3.3V 

With more than 35dB of power gain, the PA maintains to be unconditionally stable. The K-

factor plot is illustrated in Figure 6.5. From DC to 5GHz, K-Factor is more than 1. 
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Figure 6.5: PA has K-Factor >1 from DC up to 5GHz 

In Figure 6.6, the source and load stability circles are plotted together with the Smith chart. 

The source and load stability circles are located outside the Smith chart which translates to 

unconditional stability. 

S22
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Figure 6.6: Source and load stability circles 
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6.2.2 Large Signal Measurement Results 

Figure 6.7 illustrates the power gain plot across output power for the three frequencies 

which covers LTE band 1, 2, 3, 4, 10, 33, 34, 35, 36, 37 and 39. It can be seen that the 

maximum output power of the PA is 32dBm across frequency. 
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 Figure 6.7: Power gain plot across output power  

For LTE operation, the designed PA is tested with a 16-QAM modulation signal which has 

20MHz channel bandwidth. The PAPR of the signal is 7.88dB (at 0.001%), as illustrated in 

Figure 6.8. The resulting ACLR and PAE plot is shown in Figure 6.9. With a supply 

voltage of 3.3V, PA is capable to deliver PAE of more than 40% from 1.7GHz to 2.05GHz 

at output power of 28dBm, with a maximum corresponding ACLR reading out to -30dBc 

which meets the specification for ACLR as per stated in the 3GPP specifications (3GPP TS 

36.101), release 10.5 (2012). The higher ACLR at lower output power can be treated as a 
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mild setback due to injection of a distorted RF input signal to the input of the PA. 

Nevertheless, the ACLR at this power level is still below the specification. 

 

Figure 6.8: CCDF curve of the 20MHz 16QAM LTE signal, which uses SC-FDMA 

multicarrier modulation scheme. At 0.001% the PAPR is 7.88dB 
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Figure 6.9: ACLR and PAE performances of the linearized PA from 1.7GHz to 2.05GHz 

In Figure 6.10, the ACLR spectrum and spectral mask at the maximum linear output power 

of 28dBm is illustrated.  The measurement result shows that the linearized PA meets the 

ACLR specifications of -30dBc and within the regulated spectral mask. 

 

(a) 
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(h) 

Figure 6.10: (a) – (h) ACLR and spectral mask at output power of 28dBm from 1.71GHz to 

2.05GHz which are within the specifications 

Figure 6.11 depicts the EVM plot.  At the maximum linear output power of 28dBm, the 

EVM achieved is below the specification of 4% across the operating band.  
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Figure 6.11: EVM plot of the linearized PA. The input signal is LTE 20MHz 16QAM  

In relation to Figure 6.11, the plot of Figure 6.12 gives the corresponding constellation 

points at 28dBm of output power confirming the EVM performances. 

 

(a) 1.7GHz 
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                                        (b) 1.88GHz 

 

                                        (c) 1.95GHz 
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                                      (d) 2.05GHz 

Figure 6.12: (a) – (d) EVM constellation diagram at output power of 28dBm from 1.71GHz 

to 2.05GHz which are within the specifications 
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Table 6.1 tabulates the proposed PA’s measured performance summary. 

Table 6.1: Performance summary of the PA 

Properties Results 

Technology 2um InGaP/GaAs HBT 

Die size 950um x 900um 

Package size 3mm x 3mm 

Supply voltage 3.3V 

Frequency 1.71GHz-2.05GHz 

Mode LTE 

LTE Band 1,2,3,4,9,10,33,34,35,36,37,39 

Channel BW 20MHz 

Max Linear output 

Power 

28dBm 

EVM (16-QAM) 1.74% -3.38% at 28dBm 

PAE 40.5%-55.8% 

Gain 34.6dB-35.8dB 

S11 < -15dB  

S22 < -10dB 

Stability Unconditionally Stable 
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Table 6.2: Performance comparison of published LTE power amplifiers 

Work 

Operating 

Freq 

[GHz] 

LTE 

Channel 

Bandwidth 

[MHz] 

Supply 

Voltage 

[V] 

Gain 

[dB] 

Maximum 

Linear 

Output Power 

[dBm] 

PAE 

[%] 

Chip 

Size 

[mm2] 

(Choi, Kim, 

Kang, & Kim, 

2011) 2.5 10 3.3 24.8 25.8 31.6 

 

 

2.6x1.7 

(Hassan, Larson, 

Leung, Kimball, 

& Asbeck, 2012) 2.5 20 6.0 29.0 30.0 45.0 

 

 

1x1.6 

(Li, Lopez, Wu, 

Wu, & Lie, 

2011) 2.4 5 4.2 16.0 24.3 42.0 

 

 

1.1x1.5 

(Kim, Kwak, & 

Lee, 2011) 0.84 10 3.4 27.2 27.0 34.5 

 

1.7x1.7 

(Francois & 

Reyneart, 2012) 0.93 10 2.0 28 25.1 15.0 

 

1.8x1.85 

(Kang, et al., 

2010) 1.7 - 2 10 3.4 26.8 28.0 33.3 - 39 

 

- 

This work 1.7-2.05 20 3.3 35.8 28.0 

40.5-

55.8 

 

0.95x0.9 
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In Table 6.2, recent work on envelope tracking methodology by (Hassan, Larson, 

Leung, Kimball, & Asbeck, 2012) and (Kang, et al., 2010) indeed has improve the PAE of 

the LTE PA. Furthermore, (Kang, et al., 2010) has achieved more than 30% PAE for 

300MHz bandwidth. Both technique needs the additional CMOS chip besides the GaAs 

HBT PA to achieve the reported performance. An attempt by (Francois & Reyneart, 2012) 

is a great start to design LTE PA with CMOS process. However, work still need to be done 

to improve the PAE. 

On the other hand, the proposed architecture in this research able to deliver more 

than 40% PAE for bandwidth of 350MHz. This is achieved with integrating a wideband 

efficiency PA (Class-J) and the linearization scheme (APD) in a single chip. Furthermore, 

the performance is achieved with high gain of more than 34dB for 350MHz bandwidth.   

The comparison data shows that the designed architecture can be well implemented in the 

handset’s transmitter without much constraint in terms of performance and space on the 

phone board. 
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CHAPTER 7. CONCLUSION AND FUTURE WORKS 

7.1 Conclusion  

In this work, the design of a multi-band LTE power amplifier has been presented. 

The design integrates two distinct techniques which are the class-J power amplifier to 

improve backed-off output power efficiency and analog pre-distorter linearization scheme 

which ensure PA meets the linear transmission specifications respectively. 

In order to meet the wideband performance, the design of a power cell is 

highlighted in Chapter 3. The optimum power cell size followed by the integrating 

ballasting concept is proven essential through this chapter. As a result, a novel ballasting 

concept which does not serve a trade-off for linearity and efficiency is successfully 

designed and implemented. In a nutshell, the foundation of the power amplifier building is 

strengthen before moving to the next level. Also, importance is given in choosing an 

optimum conduction angle for the power amplifier. Through Fourier analysis, an optimum 

operating point in the appreciation of the linearity and efficiency is defined. This operating 

point was verified through bias sweep experiment analysis. On the other hand, an 

appropriate biasing circuit to bias up the respective power cells has been reviewed in. The 

biasing circuits is constructed in an effort to make sure it does not impact the linearity of 

the PA. 

Chapter 4 demonstrates the design methodology of class-J power amplifier. The 

mathematical analysis concludes the need of a reactive second harmonic termination to 

amend the voltage component of the PA to boost up its efficiency. Load pull simulation is 
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executed in order to determine the optimum fundamental and second harmonic output 

impedances. This is followed by the design of the desired output matching network which 

delivers more than 40% power added efficiency from 1.7GHz to 2.0GHz at backed off 

output power of 28dBm. The highest efficiency is at 2.05GHz which reads to 55.8%. 

In Chapter 5, a novel analog pre-distorter linearization scheme is designed to meet 

the linearity specification from 1.7GHz to 2.05GHz. The insight of this design is to execute 

the amplitude and phase linearization through two sub-circuits which ensures wideband 

operation. Furthermore, these circuits are implemented as an integrating part of the PA 

itself.  

The designed PA consists of a 950µm x 900µm die mounted on a 3mm x 3mm 

package is capable to operate linearly from 1.7GHz to 2.05GHz which covers LTE band 

1,2,3,4,9,10,33,34,35,36,37 and 39. The PAE ranges from 40.5% to 55.8%. The size and 

performance of the PA places it as the right choice for handset applications.  
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7.2 Future Works 

The successful implementation of the class-J power amplifier with integrated analog pre-

distorter linearizer in this work increases the desire to further improve the linearity and 

efficiency to cater for the increasing data rate requirement. This opens the door for future 

works. The suggestions are as follows: 

a) Improve the efficiency of the APD linearized class-J PA with integrated envelope 

tracking method. 

b) Improving the linearity of the wideband efficiency class-J PA with digital pre-

distortion linearization (DPD). Through this method, the class-J PA can be used for 

base station application which has more stringent linearity specifications. 

c) Integrating the APD linearization technique with other high efficiency topology 

such as Doherty power amplifier. 

d) To explore all the above mentioned techniques with CMOS process which will 

benefit in the context of cost.  
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APPENDIX A – REDUCED CONDUCTION ANGLE ANALYSIS 
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









 


3sin

5

1
3sin

6

1
2sin

5

1
2sin

4

1

2/cos1
    maxI

                                      (40) 
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APPENDIX B – CLASS-J POWER AMPLIFIER FUNDAMENTAL AND SECOND 

ORDER VOLTAGE ANALYSIS 

Fourier analysis on Fundamental Voltage component of Class-J Amplifier 

 

      sincos1 BA VVV                                                                                    (1)               

where  

    


dVVA cos
1

0                                                                                                       (2) 

and 

    


dVVB sin
1

0                                                                                                        (3) 

 

      







 ff


f


coscoscos2

1
1

max
1max

02

0 I
I

II
C

V
f

                           (4) 

 







 ff


coscos2

1
     11

max
max

02

II
I

I
C f

                                                   (5)  

 

Insert (5) into (2): 

 

 max
max 1 1

2 0 0 0 0 0

1
2 cos cos cos cos cos cosA

f

I
V I d d I d I d

C

   


          
  

 
      

  
   

 

                                                                                                                              ……….. (6) 

     

 

max
max 10 0 0

2 0
1 0

0 0

2 sin cos sin cos sin

1

1 1 1
cos sin 2 sin cos2

2 2 2
f

I
I I

C
I

  

 


     


 
    

 
    

        
         

         

                                 (7)                              
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 

  

max

2 0
1

1
2sin cos sin 1

1

1 1
sin cos sin 2 cos sin 1 cos2

2 4

A

f

I

V
C

I

   


 
      

  
     
  

  
      

  

                          (8) 

 

Insert (5) into (3): 

 max
max 1 1

2 0 0 0 0 0

1
2 sin sin sin cos cos sinB

f

I
V I d d I d I d

C

   


          
  

 
      

  
                             

                                                                                                                                 ……… (9) 

 

     

 

max
max 10 0 0

2 0
1 0

0 0

2 cos sin cos cos cos

1

1 1 1 1
cos cos2 sin sin 2

2 2 2 2
f

I
I I

C
I

  

 


     


 
    

 
      
        
         

         

                         (10) 

   

   

max

2 0
1

1
sin cos 2 1 cos

1

1 1 1
cos 1 cos cos 1 cos2 sin sin 2

2 2 2

B

f

I

V
C

I

   


 
      

  
    

  
    
         

     

        (11) 

 

Therefore, the fundamental voltage component of the class-J PA if the output matching 

network is taken account is: 

 

 

 

  

   

   

max

1

1

2 0
max

1

1
2sin cos sin 1

1 1
sin cos sin 2 cos sin 1 cos2

2 41

1
sin cos 2 1 cos

1 1 1
cos 1 cos cos 1 cos2 sin sin 2

2 2 2

f

I

I

V
C

I

j

I

   


      


 

   


      

  
     
   

  
      

  


  
    

 
    
         

    

 
 
 
 
 
 
 
 
 
 
 
  

    

                                                                                                                            …………(12) 

Fourier analysis on 2nd order voltage component of Class-J Amplifier 
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      2sin2cos 222 BA VVV                                                                           (13)               

where  

    


dVV A 2cos
1

02                                                                                                   (14) 

and 

    


dVV B 2sin
1

02                                                                                                   (15) 

 

 

 max
2 max 1 1

2 0 0 0 0 0

1
2 cos2 cos2 cos cos2 cos cos2A

f

I
V I d d I d I d

C

   


          
  

 
      

  
   

 

   

max
max 1

0 0 0

2 0

1 0 0
0 0

1 1 1 1
2 sin 2 sin 2 cos2 cos sin 2

2 2 4 21

1 1 1
cos sin sin cos cos sin3 sin cos3

2 3 3

f

I
I I

C
I

  

 
 

     


 
       

      
         
      

                       

 

 

                                                                                                                                   …… (16) 

   

max

2

2 0

1

1 1 1 1
sin 2 cos2 sin 2

2 4 41

1 1 1
sin sin sin 3 sin 2 cos

3 6 2

A

f

I

V
C

I

   


 
      

   
     

   
  
       

  

                        (17) 

 

 max
2 max 1 1

2 0 0 0 0 0

1
2 sin 2 sin 2 sin 2 cos cos sin 2B

f

I
V I d d I d I d

C

   


          
  

 
      

  
   

  

                                                                                                                                …… (18) 
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   

max
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I
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C
I
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     


 
       

      
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      
                       

           

                                                                                                                                       … (19) 

 

     
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2
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1

1 1
sin 2 cos2 cos2 1
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sin sin sin 3 sin

3

B

f

I

V
C

I

   


     
 

   

   
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   
         
   
       

 

                                                                                                                                      …. (20) 

 

Therefore, the second order voltage component of the class-J PA if the output matching 

network is taken account is represented as: 

 

 

   

   

 
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2
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1
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1
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f

I
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
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 
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 
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                                                                                                                                 …….. (21)  
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APPENDIX C – CLASS-J OUTPUT MATCHING NETWORK ANALYSIS 

 
 

 

 

Figure C1: Impedance transformation from 25Ω to 2+j3Ω 

 

ZL =25Ω, Zin= 2+j3Ω  

1
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 
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 
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
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j XBR jX R

jBR

 



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1
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L

XBR jX R
Z

jBR
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


                                                                                                      (5) 

 1in L in LZ jBR Z R XB jX                                                                                            (6) 

    2 3 25 2 3 25 1j jB j XB jX                                                                              (7) 

   2 75 3 50 25 25B j B XB jX                                                                                (8) 

 

Equating the real part: 

 2 75 25 1B XB                                                                                                              (9) 

Equating the imaginary part: 

jX 

jB Z
L
=R

L
 

Z
in
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3 50B X                                                                                                                         (10) 

 Insert (9) into (10): 

 2 75 25 1 3 50B B B                                                                                                 (11) 

46

50
B                                                                                                                              (12) 

Insert (12) into (10): 

3 46X                                                                                                                          (13) 

 

Therefore the respective components value is calculated as: 

0

3 46
L




                                                                                                                        (14) 

and  

0

46

50C


                                                                                                                             (15)                                

  

 

 

 

 

 

 


