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ABSTRACT

Due to the concern of limited fossil fuel reserve and stringent emission regulations,

there is a tremendous increase in the demand for renewable energy in Malaysia. The

introduction of biodiesel is by far considered as the most promising solution. Neverthe-

less, particular composition of biodiesel leads to material compatibility issue especially

in industrial applications involving elastomeric materials. Indeed, it is established that

the exposure of elastomers to biodiesel yields to a material degradation which reduces

their performance. When elastomeric components are subjected to fluctuating mechani-

cal loading and simultaneously are exposed to aggressive solvent such as biodiesel, two

important aspects may contribute to the material degradations: diffusion of solvents re-

sulting to swelling and fluctuating mechanical loading leading to fatigue failure. Since the

interactions between the above aspects are not fully understood, it is crucial to investigate

and to model the corresponding coupled diffusion-mechanical deformation phenomenon

for durability analysis of the components. The first part of this thesis focuses on the ex-

perimental investigation on the swelling of elastomers in biodiesel in the absence and in

the presence of static mechanical deformations. The former and the latter are referred

to as free swelling and constrained swelling respectively. To this end, original devices

and specimens are developed so that swelling tests can be conducted on the elastomers

while they are simultaneously subjected to various deformation modes: simple extension,

simple torsion and simultaneous extension/torsion. It is observed that the presence of

static mechanical loading affects significantly the swelling characteristics of elastomers

in biodiesel. Moreover, it is found that when a swollen elastomer is subjected to cyclic

loading conditions, inelastic responses such stress-softening due to Mullins effect, hys-

teresis and permanent set decrease as the degree of swelling increases. The second part

of this thesis deals with the continuum mechanical modeling of swelling. First, the the-
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oretical framework of the model consistent with the second law of thermodynamics is

established. More precisely, the proposed model is based on the multiplicative decom-

position of the deformation gradient tensor along with the concept of strain amplification

factor to account for the effect of carbon black filler. Using this theoretical framework,

two particular cases are considered: (1) modeling the Mullins effect in swollen elastomers

and (2) prediction of the equilibrium swelling of elastomers in biodiesel in the absence

and in the presence of static mechanical deformation. It is observed that the model gives

a qualitatively good agreement with experimental observations. Finally, the model for

predicting the equilibrium swelling is implemented as a user-supplied subroutine in the

finite element package ABAQUS to analyze the complex phenomena which occur during

coupled biodiesel diffusion-mechanical deformations in elastomers.
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ABSTRAK

Kebimbangan terhadap persimpanan bahan api fosil yang terhad dan peraturan pelepas-

an yang ketat, terdapat peningkatan tinggi dalam permintaan untuk tenaga boleh diper-

baharui di Malaysia. Pengenalan biodiesel dianggap sebagai penyelesaian yang paling

menjanjikan setakat ini. Walau bagaimanapun, komposisi tertentu dalam biodiesel me-

nimbulkan isu keserasian untuk bahan tertentu terutamanya dalam aplikasi industri yang

menglibatkan bahan-bahan elastomer. Malah, pendedahan elastomer kepada biodiesel

membawa kepada degradasi bahan yang mengurangkan prestasi elastomer. Apabila kom-

ponen elastomer mengalami bebanan mekanik berulang dan didedahkan kepada cecair

yang agresif seperti biodiesel, due aspek penting boleh menyumbang kepada degradasi

bahan: peresapan pelarut yang menyebabkan bengkak and beban mekanik berulang yang

menyebabkan kegagalan lesuan. Oleh disebabkan interaksi antara aspek-aspek yang di-

bincang di atas adalah tidak difahami sepenuhnya, maka amatlah penting untuk menyia-

sat and membina model untuk mengkaji resapan pelarut dalam kehadiran beban mekanik

untuk analisis ketahanan komponen. Bahagian pertama penyelidikan ini memberi tumpu-

an kepada siasatan eksperimen pada bengkak elastomer dalam biodiesel dalam keadaan

ketiadaan and kehadiran bebanan mekanik statik. Untuk tujuan ini, alat-alat asal and

spesimen yang tertentu dicipta supaya ujian rendaman boleh dilakukan ke atas elastomer

semasa mereka tertakluk kepada pelbagai mod beban mekanik: lanjutan mudah, putar-

an mudah and lanjutan/putaran serentak. Permerhatian menunjukkan kehadiran beban

mekanik statik memberi kesan ketara ke atas pembengkakan spesimen. Selain itu, di-

dapati bahawa apabila elastomer yang bengkak tertakluk kepada beban mekanik beru-

lang, tindak balas tidak kenyal seperti kesan Mullins, histerisis dan pengenduran tegasan

mengurang apabila tahap bengkak meningkat.Bahagian kedua penyelidikan ini berkaitan

dengan model mekanikal kontinum bengkak. Pertama, rangka kerja teori model yang
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selaras dengan undang-undang kedua termodinamik ditubuhkan. Model yang dicadangk-

an adalah berdasarkan kepada penguraian pendaraban daripada tensor kecerunan ubah

bentuk bersama-sama dengan konsep ketegangan faktor amplifikasi untuk mengambil ki-

ra kesan pengisian karbon hitam. Dengan menggunakan rangka kerja teori ini, dua kes

diambil-kira: (1)model kesan Mullins dalam elastomer bengkak dan (2) ramalan bengkak

keseimbangan elastomer dalam biodiesel dalam ketiadaan and kehadiran beban mekanik

statik. Pemerhatian menunjukkan bahawa model memberi persetujuan yang baik secara

kualitatif dengan keputusan eksperimen. Akhir sekali, model untuk meramalkan bengkak

keseimbangan dilaksanakan sebagai subrutin pengguna yang dibekalkan dalm pakej un-

sur terhingga ABAQUS untuk menganalisis fenomena kompleks yang berlaku di bawah

peresapan-ubah bentuk serentak dalam elastomer.
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CHAPTER 1

INTRODUCTION

1.1 General research background

The worldwide rapid evolution of technology has improved the quality of life and

has motivated the development of various industries. However, this intense growth of in-

dustries leads to pollution issue and to depletion of natural resources. For instance, fossil

fuels which are the main source of energy become scarce. Recently, public awareness on

fossil fuels depletion and concern on environmental pollution issue have highlighted the

need for alternative renewable energy sources (Abdul Kader & Bhowmick, 2003). Among

the available alternatives, biodiesel is gaining popularity owing to its attractive features

pertaining to economical, environment and energy considerations. Biodiesel consists of

long chain fatty acid methyl esters derived from renewable biological sources such as veg-

etable oil or animal fat by transesterification process (Leung et al., 2010). The production

of biodiesel has increased tremendously since it exhibits comparable fuel properties and

offers advantages over conventional diesel (Agarwal, 2007).

Palm oil biodiesel is one of the potential types of biodiesel that being foreseen as a

promising alternative for conventional diesel. This is highly beneficial for Malaysia as the

world’s second largest palm oil producers (Jayed et al., 2011). Overall, the future devel-

opment on palm biodiesel looks promising, keeping in view that the increasing demand of

biodiesel as alternative fuel. However, the main obstacle that limits the usage of biodiesel

is its low oxidation stability issue. Oxidation of biodiesel leads to formation of corrosive

acids and deposits which results to additional requirement on the material compatibility

in the diesel engine (Díaz-Ballote et al., 2009). Indeed, in the case of elastomeric compo-

1



nents such as seals, pipes, gaskets and o-rings, change in fuel composition often creates

a number of problems. Compatibility studies of several types of elastomers in diesel and

palm biodiesel have been conducted (Trakarnpruk & Porntangjitlikit, 2008; Haseeb et al.,

2010, 2011). However, it is to note that these works only focused on physical degrada-

tions related to swelling, hardness and tensile strength of materials. The corresponding

degradation may reduce the compatibility and capability of elastomers to perform over

required service conditions.

In addition to the environmental factor which causes swelling, many factors are

known to influence the durability of elastomeric materials during the service includ-

ing mechanical loading history, elastomer formulation and constitutive response (Mars,

2001). Studies on the above factors are crucial in order to develop durable elastomeric

compounds and to provide a reliable durability analysis of elastomers. For engineering

applications involving exposure to aggressive solvent and fluctuating mechanical load-

ing, there are two major degradations to consider: swelling due to diffusion of solvents

into elastomer and fatigue damage due to long term cyclic loading. However, majority

of existing studies involving fatigue of elastomers only consider the fatigue behaviour in

ambient (non-aggressive) environment (Mars and Fatemi (2002) and the works of Verron

and Andriyana (2008); Le Cam et al. (2008); Andriyana, Saintier, and Verron (2010);

Brieu et al. (2010); Le Cam and Toussaint (2010); Le Cam et al. (2013) among others).

Considerably fewer studies which explicitly deal with the fatigue failure analysis of elas-

tomers in aggressive environments are available (Zuyev et al., 1964; Magryta et al., 2006;

Hanley, 2008; Abu-Abdeen & Elamer, 2010; Chai, Andriyana, et al., 2013).

Swelling of elastomers under static immersion in solvents have been extensively

studied (see Treloar (1975) and references herein). However, investigations on coupled

diffusion-deformation problems, i.e. swelling in the presence of multiaxial stress state,

are less common. The earliest work dealing with the problem can be found in the work of
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Flory and Rehner (1943). Recent works on coupled diffusion-deformation are reported in

Rajagopal et al. (1986); Fukumori et al. (1990); Durning and Morman (1993); Baek and

Srinivasa (2004); Hong et al. (2008); Soares (2009); Chester and Anand (2010); Duda et

al. (2010); Chai et al. (2011). Based on their observations, it is generally reported that

swelling is affected by the presence of mechanical loading. The amount of swelling in-

creases under tensile loading while the opposite phenomenon is observed for compressive

loading. Nevertheless, the effect of a multiaxial stress state on swelling remains ambigu-

ous as there are not many references found in the literature. Thus, there is a need to

investigate and to model the swelling of elastomers due to exposure to biodiesel in the

presence of mechanical loading.

The present work investigates the swelling behaviour of elastomers exposed to biodiesel

in the absence and in the presence of static mechanical deformations. For this purpose,

original specimens and devices are developed so that immersion tests of elastomers in

biodiesel can be conducted while the specimens are simultaneously subjected to static

mechanical loading. Based on experimental findings, a simple phenomenological model

is proposed to capture the degradation of elastomers upon exposure to biodiesel. Being

a first attempt, the proposed model is restricted to the prediction of degradation in the

equilibrium state without considering the time transient effects. In addition, the proposed

model is able to capture the stress-strain response of dry and swollen elastomers partic-

ularly Mullins effect under cyclic loading. Other inelastic responses such as hysteresis

and permanent set are not considered. Finally, the proposed model is implemented into

the commercial finite element code ABAQUS in order to simulate the degradation of

elastomers under coupled diffusion-deformation conditions.

1.2 Research objectives

The objectives of this research work can be summarized as follow:
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1. To develop original devices for investigating swelling of elastomers in biodiesel in

the presence of static mechanical deformations.

2. To investigate the interaction between diffusion of biodiesel and large deformation

in elastomers.

3. To develop a simple continuum mechanical model to describe the above interaction.

4. To implement the proposed model in the commercial finite element code ABAQUS

in order to simulate the coupling between diffusion of biodiesel and large deforma-

tion in elastomeric materials.

1.3 Dissertation organization

This thesis is organized as follows. Chapter 1 provides general background and ob-

jectives of the research. Four main objectives are highlighted. Chapter 2 gives a brief

literature review relevant to this research. The review provides an introduction on the

elastomers and the corresponding mechanical responses under monotonic and cyclic me-

chanical loading. In addition, factors affecting the durability of elastomers are reviewed.

Subsequently, the swelling phenomena of elastomers with emphasis to biodiesel are re-

viewed. Existing models on coupled diffusion-deformation are also included in the re-

view. Chapter 3 describes the experimental procedures for this research. Experimental

works which include the design of specimens and devices, immersion test and mechani-

cal test are provided. In the modeling part, the development of a model consistent with

the second law of thermodynamics to capture the coupled diffusion-large deformation is

derived. Chapter 4 presents the experimental findings and discussion of the experimental

data. Swelling characteristics of elastomers in the absence and in the presence of static

mechanical deformation are discussed and the mechanical responses of dry and swollen

elastomers are presented. In Chapter 5, the efficiency of the proposed model is assessed
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by comparing the theoretical predictions with experimental observations. Finally, Chap-

ter 6 summarizes the current research work and provides suggestions for improvements

and directions for future works.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a brief literature review on works relevant to this thesis is presented. The

subjects discussed include the general characteristics of elastomer, mechanical responses

of elastomers under monotonic and cyclic loading, factors affecting durability of elas-

tomer, swelling phenomena of elastomers in a solvent with emphasis on biodiesel, filler

effect in elastomers and discussion on the existing models for coupling of diffusion with

large deformations.

2.1 Generality on elastomer

Elastomer, derived from elastic polymer, is a class of polymeric materials having

the ability to be deformed to a large deformation when a force is applied to it and it can

essentially return to its original shape when the force is released. Being a polymer, it

is composed of repeating structural units called monomers. The monomers, which are

usually made of carbon, hydrogen, oxygen and silicon, are connected by covalent bonds

created during the polymerization process.

Similarly to all polymers, elastomer is highly sensitive to temperature. They exist in

two states with respect to the temperature level as shown in Figure 2.1: the glassy state at

which the thermal energy level is too low to allow significant molecular mobility, which

results in high stiffness and consequently less elasticity, and the rubbery state where the

material is much more flexible due to the larger molecular mobility. The temperature at

which the transition occurs is referred to as the glass transition temperature, Tg.
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Figure 2.1: Evolution of polymer elastic modulus as a function of temperature (Harper,

1996).

In an unstressed state, elastomers are amorphous polymers existing above their glass

transition temperature. Considerable segmental motion is possible and thus they are rela-

tively soft, extremely ductile and having low density at room temperature. Crystallization

of elastomers can occur due to deformation as a result from the application of mechan-

ical loading. Figure 2.2 illustrates the molecular chain of an elastomer in a unstressed

(amorphous) state (a) and in a stressed state (b).
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Figure 2.2: Schematic representation of molecular structure in an (a) unstressed state and

in a (b) stressed state.

In nature, elastomer can be obtained by harvesting the sap from certain trees in the

form of latex. The collected latex is a sticky and milky colloid and is not practically usable

unless it is processed with vulcanization and compounded with additives. Major additives

used in elastomer compounds include fillers, antioxidants, antiozonants, curing agents

and processing aids (Franta, 2012). There are basically two major types of elastomer:

natural rubber and synthetic rubber. A brief introduction on natural rubber and some

types of synthetic rubber is provided in the following subsection.

2.1.1 Structure of elastomer

The structure of an elastomer can be viewed as a three-dimensional network consist-

ing of randomly coiled chains. Each primary chain is linked to other chains at intersection

point known as cross-links. The chains can be linked by either physical or chemical cross-

links. Elastomers formed through chemical cross-links are referred as thermosets where

the chains are linked through co-polymerization or cross-linking methods (vulcanization)

by using suitable vulcanizing agents (sulphur or peroxide) as shown in Figure 2.3. Hence,

generally a thermoset may swell when it is in contact with the solvent, but does not dis-
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solve (Koleske, 1995).

Figure 2.3: Structure of elastomer (a) before vulcanization and (b) after vulcanization

(Jha, 2008).

On the other hand, elastomers formed through physical cross-links are referred as

thermoplastics where the chains are joined by physical entanglements. The linkage can

be obtained through chain adsorption onto the surface of the filler, formation of small

crystallites, coalescence of ionic groups or glassy sequences in block copolymers. These

linkages are temporary and can be easily breakdown by the presence of a solvent or an

increase of temperature. Thus, thermoplastics may dissolve in some suitable solvents

especially in the presence of heat (Connell, 2005).

2.1.2 Basic ingredients of elastomer

As mentioned earlier, a number of ingredients are added and compounded to both

natural and synthetic rubber in order to obtain the desirable properties. Different com-

binations can be used based on the application purpose. Typically, the amount of each

ingredient is measured based on parts per hundred (phr).

9



Polymer resin

Being the main ingredient in an elastomer compound, the polymer resin gives the

bases for chemical, physical and molding properties. Typical polymers are distinguished

by their chemical performance and viscosity rating. An example for a Nitrile (Buna-N)

compound is the amount of Acrylonitrile (ACN). The higher the ACN, the better is the

oil resistance. The amount of additives added depend on the weight of the polymer resin

used. The ratio of additives is normally expressed by weight added per 100 parts by

weight of the polymer resin (phr) (Rodgers et al., 2004).

Curing agent (5-10 phr)

The most important ingredient in an elastomer compound is the curing agent which

causes the linking of polymeric chains as discussed in the previous subsection. In order

to avoid premature cure, they are usually added at the end of the mixing process. Sulphur

is the most common curing agent used in elastomer compounds to form carbon-sulphur-

carbon bonds and is normally used with accelerators (thiazoles) to facilitate the reaction

(Franta, 2012).

Another less common curing agent, e.g. peroxide, forms carbon–carbon bonds. Per-

oxides decompose on heating to form radicals, which in turns create carbon radicals on

the polymer molecules. The carbon radicals then combine to form carbon-carbon bonds.

These bonds are more resistant to heat and oxidative attack, thus possess higher service

temperatures.

Filler (30-60 phr)

Fillers are originally introduced into the compounding to reduce the cost and to in-

crease stiffness and hardness. Common fillers include carbon blacks, silica and silicates.

They are often used as reinforcement in the elastomer to improve the service life of an

elastomeric component (Voet, 1980). The simple action of adding fillers enhances the
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mechanical properties of cross-linked elastomers such as increased stiffness, modulus,

rupture energy, tear strength, tensile strength, cracking resistance, fatigue resistance, and

abrasion resistance (Dannenberg, 1975) in many cases. The colour of the elastomeric

products is affected by the type of filler used in the compounding where carbon black will

produce black color while white clays and some mineral fillers are used to produce the

desired colour.

Antioxidant (1-3 phr)

Antioxidants help to protect the compound from thermo-oxidative ageing at high

temperature while in use and while the compound is being mixed. They are normally

added in small amounts to disrupt the free-radical oxidation reactions that can break the

polymers bonds and reduce service life of the compound (Flora, 2009). Examples of

antioxidants include amines and phenols.

Antiozonants (1-3 phr)

Antiozonants are used in small amounts to bloom out on the surface and react there,

after molding to protect the rubber from ozone attack. Atmospheric ozone often re-

acts with elastomers containing carbon-carbon double bonds, resulting in breakage of

molecules at the surface (Rodgers et al., 2004). An example of an antiozonant is diamine.

An alternative protection method is to include paraffin wax in the formulation. The wax

forms a protective skin on the surface and a common example can be seen on new tires.

The surface of a new tire will have a wax feel or show a slight haze.

Processing aids (5-30 phr)

Various oils are used as processing aids to incorporate all the dry ingredients used in

the compounding. They are added to make mixing and extrusion easier. Adding more oil

can also lower the hardness of the rubber. Thus, depending on the properties required, the
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amount of oils added into the compounding varies from 5-30 phr (Franta, 2012).

2.1.3 Some industrial elastomers

Depending on the composition of the rubber compound, different elastomers with

different properties can be produced. Although natural rubber holds an important place in

the market, different commercial elastomers known as synthetic rubbers were produced

widely especially after World War II. Synthetic rubbers are produced to overcome the

limits of natural rubber and are modified by reinforcement with other materials (Franta,

2012). Among the most important synthetic rubbers include Nitrile Butadiene Rubber,

Polychloroprene and Styrene Butadiene Rubber. In the following, brief information on

the properties of natural rubber and some synthetic rubbers are discussed.

2.1.3 (a) Natural Rubber (NR)

Natural Rubber (NR) can be obtained directly from harvesting the latex of certain

trees, predominantly Hevea brasiliensis tree. NR is a coagulated form of the latex by

adding appropriate additives. The molecular structure of NR consists of polymer chains

all having an almost perfect cis-1,4-structure as shown in Figure 2.4 and hence it is also

known as cis-1,4-polyisoprene.

Figure 2.4: Molecular structure of NR.

NR crystallizes upon stretching, resulting in a higher tensile strength and thus ex-

hibits high resistance to crack growth at severe deformation. It serves as an ideal choice

for many applications that require good resistance to abrasion. However, it has poor resis-

tance towards heat, ozone, oil and hydrocarbon solvents. Thus, in order to overcome the
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limits of NR, various synthetic rubbers were produced to apply at different applications

that require certain properties (Rodgers et al., 2004).

2.1.3 (b) Nitrile Butadiene Rubber (NBR)

Nitrile Butadiene Rubber (NBR) is a synthetic rubber copolymer of acrylonitrile

(ACN) and butadiene. It is composed of unsaturated copolymers of 2-propenenitrile and

various butadiene monomers (1,2-butadiene and 1,3-butadiene). The molecular structure

of NBR is shown in Figure 2.5. NBR is prepared by emulsion polymerization using free-

radical polymerization. The most important property and advantage of NBR is the high

resistance to oil, fuel and other chemicals. The degree of resistance varies considerably

with the ratio of acrylonitrile to butadiene. In general, the resistance to oil increases with

the increasing acrylonitrile content within the elastomer. However, it is unlikely to have a

high composition of acrylonitrile in the elastomer as this will lower the flexibility of the

material (Franta, 2012).

Figure 2.5: Molecular structure of NBR.

In addition to its resistance to oils, it also has good elongation properties as well as

adequate resilience, tensile and compression set. As compared to natural rubber, NBR is

more resistant to oils and acids, but with poorer strength and flexibility properties. NBR

is a general purpose elastomer used as seal energizer or for low pressure applications such

as hydraulics and pneumatics. Generally, NBR is used to make hoses, O-rings, pneumatic

seals, low pressure hydraulic seals, gaskets, washer, and grommets to handle fuel and oil

in automotive and aeronautical industry. Due to its cost of production, NBR is usually
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not in consideration for material selections when oil resistance is not a major problem.

NBR is generally attacked by ozone, ketones, esters, aldehydes, chlorinated and nitro

hydrocarbons. Thus, it does not perform well in applications involving consideration

such as weather, ozone, sunlight and flame (Patil & Coolbaugh, 2005).

2.1.3 (c) Polychloroprene (CR)

Similarly to NBR, Polychloroprene (CR) is a synthetic rubber produced by emulsion

polymerization of chloroprene using free-radical polymerization. Unlike other elastomers

that are vulcanized with sulphur or peroxides, CR is prepared by reacting the chlorine

atoms on the chain with active metal oxides. The molecular structure of CR is given in

Figure 2.6. Common metal oxides which are used in producing CR include zinc oxide

and magnesium oxide.

Figure 2.6: Molecular structure of CR.

In general, CR provides good chemical stability and maintains flexibility over a wide

temperature range. It is moderately resistant to oil and ozone. CR has a variety of prop-

erties that make it popular, including being abrasion-resistant, chemical-resistant, water-

proof, stretchable, and buoyant. As compared to other elastomers, CR offers outstand-

ing physical toughness, a wider operating temperature range and excellent resistance to

ozone, sun and weather (Dick & Annicelli, 2001).

CR is one of the best all-purpose elastomers and thus making it as the most popular

used industrial rubber. It is generally used for bumpers, pads, seating and gaskets in

industry applications. CR is generally attacked by strong oxidizing acids, esters, ketones,
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chlorinated, aromatic and nitro hydrocarbons (Patil & Coolbaugh, 2005).

2.1.3 (d) Styrene Butadiene Rubber (SBR)

Styrene Butadiene Rubber (SBR) is the most widely used synthetic rubber since it is

similar to NR in most of its properties and is the lowest cost and highest volume elastomer

available. SBR is synthesized mainly via free radical emulsion polymerization in water

with a fatty acid, or anionically in solution with butyl lithium. It consists of a copolymer

of butadiene and styrene and the molecular structure is shown in Figure 2.7.

Figure 2.7: Molecular structure of SBR.

Although the physical properties are slightly poorer than those of NR, it is exten-

sively used because it is tougher and has better resistance to heat and flex cracking with

significant cost saving. Some applications of SBR include tires, shoes, mechanical goods,

sponge and foamed products, hose, and adhesive.

2.2 Mechanical responses of elastomer

In this section, the general mechanical responses of dry elastomer under static mono-

tonic and cyclic loading are discussed. Under cyclic loading, inelastic responses such as

hysteresis, stress-softening and permanent set are observed. In addition, a brief discussion

on each phenomenon is given.
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2.2.1 Mechanical responses under monotonic loading

A typical stress-strain curve for an elastomer under monotonic tensile loading is

shown in Figure 2.8. It is observed that the stress-strain response is highly non-linear

where there is no constant value of the elastic modulus which can be attributed to the

material. Indeed, the elastic modulus varies with increasing extension. In the region of

relative small strain, the stress needed to overcome secondary bonding and to stretch the

elastomer is low. The high increment in the stress needed at higher strain is due to the

primary covalent bonds along the molecular backbone (Gent, 1992).

Figure 2.8: Stress-strain response of an elastomer.

The non-linear elastic stress-strain behaviour of elastomer is described using hypere-

lastic constitutive models. Various models have been proposed with the aim to reproduce

the stress-strain responses under different loading conditions (uniaxial, equibiaxial, biax-

ial, simple or pure shear). Further discussion on hyperelastic constitutive models is given

in Section 2.3
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2.2.2 Mechanical responses under cyclic loading

Under cyclic loading, an elastomer exhibits strong inelastic responses such as hys-

teresis, stress-softening (Mullins effect) and permanent set as shown in Figure 2.9. In

this figure, the stress-strain responses under simple uniaxial tension and cyclic uniaxial

tension with increasing maximum stretch every five cycles are presented. The hysteresis,

stress-softening and permanent set are briefly discussed in the following sections.

Figure 2.9: Stress-strain responses of a 50 phr carbon black filled SBR under simple

uniaxial tension and cyclic uniaxial tension with increasing maximum stretch every 5

cycles (Diani et al., 2009).

2.2.2 (a) Stress-softening (Mullins effect)

Stress softening or more commonly known as Mullins effect is the most notice-

able loading history-dependent effect observed in the cyclic stress-strain response of an

elastomer. This phenomenon was firstly observed by Bouasse and Carrière (1903) and

was intensively studied by Mullins (1948) resulting in a phenomenon bearing the name.

The stress-strain response resulting from a cyclic, quasi-static deformation conducted by
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Mullins is shown in Figure 2.10.

Figure 2.10: Softening of elastomers due to the Mullins effect (Bauman, 2008).

Based on the figure, it is observed that the elastomer exhibits a relatively stiff re-

sponse during the first loading. On the subsequent unloading and reloading, the material

shows significant decrease in the stress level which leads to a softer path as shown by the

dashed lines in Figure 2.10. The Mullins effect is characterized by the decrease of the

stress level in both the uploading and unloading during the first couples of loading cy-

cles. After several loading cycles, the stress-strain response stabilizes and the following

loading cycles merely retrace the path of the stabilized stress-strain curve. Thus, in any

design involving elastomeric components under cyclic loading, it is important to consider

the Mullins effect in order to prevent undesirable failure. While stress-softening is com-

monly observed in filled and unfilled crystallized elastomers, no study has reported its

occurrence in an unfilled uncrystallized elastomer (Diani et al., 2009).

Several observations were concluded by Diani et al. (2009) from the materials ex-

hibiting softening effect:
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1. Most of the softening, which is characterized by a lower resulting stress for the

same applied strain, appears after the first load.

2. After a few cycles (values up to 10 are reported in the literature depending on the

material nature), the material responses coincide during the following cycles, aside

from a fatigue effect.

3. The softening appears for stretches lower or equal to the maximum stretch ever

applied.

4. When the extension exceeds the maximum extension previously applied, the ma-

terials’ stress-strain response returns on the same path than the monotonous uni-

axial tension test stress-strain response after a transition, which increases with the

amount of strain.

5. The softening increases progressively with the increasing maximum stretch.

2.2.2 (b) Hysteresis

Hysteresis is a phenomenon characterized by the difference in stress between the

uploading and unloading stress-strain curve experienced by the elastomer in the same

loading cycle. This phenomenon is depicted in Figure 2.11. The difference in stress

determines the amount of energy dissipated during cyclic deformation. It can be related

to either viscoelasticity (Bergström & Boyce, 1998), viscoplasticity (Lion, 1996, 1997)

and strain-induced crystallization (Trabelsi et al., 2003) depending on the material. For a

filled elastomer, hysteresis loss may be attributed to:

1. Molecular friction accompanying deformation of the elastomer phase (Dannenberg,

1966).

2. Polymer-filler detachment.
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3. Breakdown of filler structure and weak polymeric chains (Kar & Bhowmick, 1997).

Figure 2.11: Cyclic loading of tensile specimen exhibiting hysteresis (Bauman, 2008).

Hysteresis loss increases with strain rate, strain level and the amount of filler content.

Conversely, it decreases with increasing temperature and increasing mean strain (Mills &

Walker, 1980). In addition, larger hysteresis loss is reported in the crack tip region and

it is likely the main contributor to tearing energy at high crack growth rates (Tsunoda

et al., 2000). Under cyclic mechanical loadings, the hysteresis is significantly larger for

the first loading cycle and subsequently the amount of hysteresis reduces and stabilizes

(Yamaguchi et al., 2003). Recently, a number of works focusing on the relation between

hysteresis and fatigue life of elastomers have been conducted (See works of Ayoub et al.

(2010); Zaïri et al. (2008, 2005)).

2.2.2 (c) Permanent set

Permanent set is a phenomenon which refers to the residual strain after the elastomer

is being loaded and unloaded. The graphical representation is shown in Figure 2.12.

Permanent set occurs during unloading and it is a phenomena caused by the resistance
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by the new bonds formed by the rupture chain segments from the deformation when

the material deforms back to the original shape (Marin, 1962). However, the effect of

permanent set decreases slowly with time and essentially disappears after a sufficiently

large period of annealing (Dorfmann & Ogden, 2004). The amount of permanent set

depends on the time in the deformed state, the amount of carbon black in the material and

also on the maximum elongation attained by the elastomer prior to unloading.

Figure 2.12: Permanent set in elastomer observed after loading and unloading (Bauman,

2008).

Under cyclic loadings, the major part of permanent set is generated during the first

unloading cycle. The magnitude of permanent set continues to increase through the sub-

sequent unloading cycles but eventually it reaches a constant value (Dorfmann & Ogden,

2004). The magnitude of permanent set for unfilled elastomers is relatively small and of-

ten negligible. However, for filled elastomers the effect is significant and increases with

the amount of filler in the elastomer (Lion, 1996).
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2.3 Constitutive equations for hyperelastic materials

While the stress-strain behaviour can be observed through experimental work, math-

ematical models can be developed through constitutive theories to represent the real be-

haviour of the material. There is a large number of constitutive theories available in

the literature. For instance, the readers can consult contributions from Truesdell and Noll

(1992) and Barenblatt and Rivlin (1997). Obviously, interests are laid on the development

of a model that (Mars, 2001):

1. reproduces a good fit to the observed stress-strain responses under different strain

states.

2. minimizes the number of material parameters determined through experimental

data.

3. is physically meaningful.

Depending on the approach used to develop the strain energy density function, hypere-

lastic constitutive models can be classified into three major types (Marckmann & Verron,

2006):

1. Phenomenological models. The models are developed based on mathematical de-

velopments of the strain energy function W without the considerations of the mi-

crostructure and the molecular nature of the material. Generally, the material pa-

rameters used in the models do not have any physical meaning. Moreover, there is

a limitation with such models when they are used out of the deformation range in

which the parameters were identified. Examples of models developed based on this

approach are Fung, Mooney-Rivlin, Odgen, Generalized-polynomial and Yeoh.

2. Physically-based models. The models are developed from physical motivation

based on both physics of polymer chain network and statistical thermodynamics
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considerations. Different strain energy functions depending on the assumptions

made are developed to describe the mechanical responses. The mathematical for-

mulation is relatively complex in most of the models. However, the parameters

used in the models generally contain physical meaning. Typical models based on

this approach are Neo-Hookean, 3-chain and 8-chain(Arruda-Boyce) models.

3. Hybrids of phenomenological and physically-based models. Examples of models

under this category include Gent and Van der Waals models.

Phenomenological models

Using the phenomenological approach, the mechanical responses of the elastomer

are usually described by postulating the existence of a strain energy density function (W )

which depends on the deformation gradient tensor F:

W =W (F) (2.1)

The deformation gradient tensor is defined by:

F = Gradx =
∂x
∂X

(2.2)

In the above expression, X is the material point in the reference configuration and x rep-

resents the position of the same material point in the current configuration. Considering

the objectivity principle, W can be written as a function of the right or left Cauchy-Green

tensors, given by C = FTF and B = FFT respectively, i.e.:

W =W (B) or W = Ŵ (C) (2.3)
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By assuming the isotropy of the material, the invariants of B and C are equal and W can

be further expressed as a function of them:

W =W (I1, I2, I3) (2.4)

where,

I1 = trB I2 =
1
2
(I2

1 − tr(B2)) I3 = det(B) (2.5)

Elastomers are often considered as incompressible and thus there is no significant volume

change during the deformations, i.e. I3 = 1. Therefore, the strain energy depends only on

the first and second invariants: W =W (I1, I2). Finally, by considering the second law of

thermodynamics, it can be shown that the Cauchy stress tensor σ is given by (Holzapfel,

2000),

σ = qI+2
[

∂W (I1, I2)

∂ I1
+ I1

∂W (I1, I2)

∂ I2

]
B−2

∂W (I1, I2)

∂ I2
B2 (2.6)

where q is an arbitrary scalar (Lagrange multiplier) due to the incompressibility assump-

tion. It can be determined from the equilibrium equations taking into account appropriate

boundary conditions. As shown in Equation (2.6), the stress response can be entirely

determined once the form of hyperelastic strain energy density W is postulated. Table

2.1 summarizes some of the well-known strain energy density function for hyperelastic

models.

Physically-based models

Physically-based models are founded on the microscopic response of polymer chains

in the network. The expression for each model differs from each other depending on

the assumptions made to reproduce the response (Marckmann & Verron, 2006). The

fundamental relations can be obtained from the laws of thermodynamics. The first law of
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Table 2.1: Strain energy density functions for hyperelasticity.

Model Year Equation
Mooney-Rivlin 1940 W =C10(I1−3)+C01(I2−3)
Neo-Hookean 1943 W = G

2 (I1−3), G = nkT

3-chain 1943 W = nkT
[

λ√
N

β + ln β

sinhβ

]
, β = L −1

(
λ√
N

)
Gent and Thomas 1958 W =C(I1−3)+C2ln

(
I2
3

)
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thermodynamics provides the definition of internal energy:

dU = δQ+δW (2.7)

where δQ is the heat absorbed by the system and δW is the work done by external forces.

For any reversible process, the second law defines the entropy change dS as:

T dS = δQ (2.8)

Hence, the combination of these two equations leads to:

dU = T dS+δW (2.9)

In discussing the equilibrium of reversible system, it is convenient to introduce the Helmholtz

free energy A, which is defined by the relation:

A =U−T S (2.10)
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For a change taking place at constant temperature:

dA = dU−T dS (2.11)

By replacing Equation (2.11) into (2.9), we obtain:

dA = dW (constant temperature) (2.12)

which implies that in a reversible isothermal process the change in Helmholtz free energy

is equal to the work done on the system by external forces.

Next, in order to obtain the constitutive model, the simplest case is considered where

a unit cube is subjected to homogeneous deformation with three principal extension ratios

λ1,λ2 and λ3. For Gaussian network, the change in entropy ∆S due to deformation is

given by:

∆S =−1
2

Nk(λ 2
1 +λ

2
2 +λ

2
3 −3) (2.13)

where N is the chain density per unit volume and k is the Boltzmann constant. The

Helmholtz free energy can be obtained by assuming that there is no change of internal

energy during deformation, i.e. A =−T ∆S and hence:

A =
1
2

NkT (λ 2
1 +λ

2
2 +λ

2
3 −3) =

1
2

G(λ 2
1 +λ

2
2 +λ

2
3 −3) (2.14)

where G = NkT and is commonly known as the shear modulus of the material. The above

expression of A is known as neo-Hookean model.

2.4 Factors affecting durability of elastomer

There are many factors which influence the durability of elastomeric components

including the mechanical loading history, the environment and the elastomer compound-
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ing (Mars, 2001). An in depth understanding of these factors is necessary to predict the

fatigue life of the elastomer accurately and to design an efficient and reliable elastomeric

component. In this section, the influence of these factors on the durability of elastomeric

components is briefly discussed.

2.4.1 Mechanical loading history

The mechanical loading history is usually characterized by several parameters such

as maximum, minimum, alternating and mean loading. The stress-strain response of an

elastomeric component is highly dependent on the mechanical loading history. One of

the most significant characteristics of an elastomer which depends on the maximum load

attained previously is the Mullins effect (see Section 3.2.3). On the other hand, the ef-

fect of minimum or mean loading depends on the type of elastomer and filler used. For

elastomers which exhibit strain crystallization such as natural rubber, the increase in the

minimum strain at constant maximum strain improves the durability of the elastomer

(Fielding, 1943). However, this phenomenon is not observed for non-crystallizing elas-

tomers. In addition, the frequency of loading is also an important factor which affects

the lifetime of an elastomeric components. High loading frequency shortens the lifetime

by creating additional thermal energy in the material which causes severe degradation

(Becker et al., 1998). It is to note that while there are many attempts to obtain under-

standing on the effects of mechanical loading history on the durability of elastomer, there

is still lack of understanding on the effects of multiaxial loading mostly due to the difficul-

ties in conducting experimental works (Mars, 2001). In real life application, elastomeric

components rarely operate under simple mechanical loading and thus there is a great need

for the ability to determine the effects of multiaxial loading on the failure of elastomers.
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2.4.2 Environment

The environment during service plays an important role in determining the durabil-

ity of elastomers. Indeed, in reality elastomeric components are often in contact with

various chemical reactants and operate under high temperature conditions. High temper-

ature possess a deleterious effect on elastomers, in particularly to non strain-crystallizing

elastomers (Lake & Lindley, 1964). Elevated temperature stimulates chemical reactions

such as oxidation that can cause additional degradation in elastomers. Oxidation causes

aging which leads to embrittlement and reduced the resistance to failure and thus, shorter

fatigue life (Blackman & McCall, 1970). Another major consideration from the service

environment is the chemical reactants such as acidic gaseous or aggressive solvents.

2.4.3 Elastomer compounding

The compounding of a synthetic elastomer includes the polymer resin and additives

such as filler, antioxidants, antiozonants, vulcanizing agent, curing agent and processing

oil. The mechanical properties of elastomers can be varied by modifying the compound-

ing formulation and the manufacturing process. Primary consideration on the selection

of elastomeric component is the type of elastomer. The service life of an elastomeric

component is highly affected by the strain crystallization as mentioned in Sections 2.4.1

and 2.4.2. Elastomers that exhibit strain crystallization include natural rubber (NR), poly-

chloroprene (CR) and isoprene rubber (IR) while nitrile butadiene rubber (NBR), styrene

butadiene rubber (SBR), butyl rubber (IIR) and ethylene propylene elastomer (EPDM)

show little or no strain crystallization (Gent, 1992). In addition, the incorporation of filler

in the elastomer compounding has a pronounced effect to the elastomer properties de-

pending on two factors: the type of the filler used and the volume fraction of filler in the

elastomer. The effect of filler will be discussed in detail in the following section.
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2.5 Fillers in elastomer and strain amplification factor

Generally, filler is initially introduced into the elastomer to reduce the production

cost and to increase the stiffness and other properties such as tensile strength and resis-

tance to abrasion, tear, fatigue and cracking (Voet, 1980). The addition of a small amount

of filler into the elastomer can have a strong influence on its mechanical response partic-

ularly the inelastic responses such as the Mullins effect, hysteresis and stress relaxation.

However, the mechanism by which the macroscopic stress-strain behaviour is affected by

the filler is often a subject of debate. Two main discussions are available in the literature

about the effect of filler on the overall mechanical response: molecular level explanation

and continuum level explanation. From the molecular level standpoint, filler increases

the crosslink density since additional crosslinking takes place at the filler-matrix interface

(Bueche, 1960) and the segmental mobility is reduced around the filler particles (Kraus,

1978). Other considerations from the molecular level include the size, shape and structure

of the filler (Mullins, 1950). Meanwhile for the continuum level, the presence of filler is

postulated as strain amplifier for the elastomeric matrix around the filler.

Mullins and Tobin (1957) considered filled elastomer as if it is a composite system

with the concept of amplified strain. Based on this concept, fillers are considered as rigid

particles which do not participate in the deformation when a macroscopic strain/stretch

is applied to the elastomer. As a result, the average strain in the elastomer matrix is

amplified over the macroscopic applied strain since the rigid fillers contribute little or

none to the deformation.

For uniaxial tensile stress-strain behavior, the amplified axial stretch is given by:

λ̂ = 1+X(λ −1) (2.15)

where X is the strain amplification factor which depends on the filler volume fraction,
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shape and distribution while λ is the macroscopic axial stretch. The amplification factor

is based on the original work of Einstein (1906) who investigates the enhancement of the

viscosity of a particle-filled liquid. Following these works, Smallwood (1944) estimated

that the amplification factor of fillers in the elastic modulus of the elastomer is similar to

the enhancement of the viscosity of liquids. Thus, the effective elastic modulus is given

by:

Ê = Eo(1+2.5v f ) (2.16)

where Ê and Eo are the elastic moduli of the filled and unfilled elastomer respectively and

v f is the filler volume fraction.

While Equation (2.16) is shown to be fitted well with the observed elastic behaviour

of elastomers containing a low volume fraction of filler (v f < 0.1), serious departures are

observed for higher volume fraction of filler. Guth (1945) suggested that this deviation

can be improved by considering the interactions between the neighbouring filler parti-

cles and proposed the well-known Guth-Gold model for an elastomer incorporated with

spherical rigid filler particles (Guth & Simha, 1936; Guth & Gold, 1938):

Ê = Eo(1+2.5v f +14.1v2
f ) (2.17)

Various attempts are available in the literature for the modification of the strain amplifi-

cation factor. Other than the amplification factor proposed by Einstein (1906) and Guth

and Gold (1938), Nielsen (1966) derived an equation to describe the relation between the

actual microscopic elongation of the elastomer relative to the observed elongation of a

filled elastomer based on a calculation similar to that used by Bueche (1960) to explain

the Mullins effect, given by,

ε̂ = ε

 1

1− v1/3
f

 (2.18)
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where ε̂ is the actual microscopic elongation and ε is the observed elongation. Note

that Equation (2.18) is equal to Equation (2.15) with X = 1
1−v1/3

f

. Although in Mullins

and Tobin (1957), the amplification factor is only applied to the uniaxial stretch, this

theory was further extended and generalized to three dimensional deformation states by

Bergström and Boyce (1999) by applying the amplification factor to the first invariant of

the right Cauchy-Green strain tensor, I1 = tr(C):

Î1 = 3+X(I1−3) (2.19)

where Î1 is the amplified first invariant and the amplification factor X chosen from any of

the available models as discussed above.

2.6 Swelling of elastomer

Both natural and synthetic elastomers possess the ability to swell in suitable solvents.

During swelling, the diffusion of small molecules from the solvent into the elastomer

leads to the expansion of the three dimensional polymer network and this phenomenon

is known as swelling (Treloar, 1975). The swelling phenomenon is viewed as one form

of degradation experienced by elastomers since the increase in the distance between two

chains leads to the reduction of secondary bonding (Callister, 1997), which in turns re-

duces the strength of the elastomers. Swelling in elastomers can be measured in terms of

mass or volume change (Flory, 1942; Treloar, 1975). Based on their nature of interaction,

elastomers can be broadly divided into two classes, namely water-swelling and organic-

liquid-swelling classes. The first group includes cellulose, proteins, etc while the second

group includes elastomers and organic high polymers (Treloar, 1975). In this section, the

physical description of swelling is given. The thermodynamics of swelling and the elastic

properties of swollen elastomers are recalled and discussion on the effect of deformation
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on swelling is provided with the examples of some existing works from the literature.

2.6.1 Physical descriptions

From the physical point of view, swelling in elastomers takes place through diffusion

which involves two processes (George & Thomas, 2001):

1. The solvent molecules first occupy the polymer surface until reaching a concentra-

tion through adsorption.

2. The solvent molecules penetrate further into the depth of the polymer network until

reaching equilibrium swelling by adsorption.

Since swelling is a diffusion-controlled process, increasing the thickness of the elas-

tomer and viscosity of the solvent will increase the resistance to swelling of an elastomeric

component (Gent, 1992).

2.6.2 Thermodynamics of swelling

The main concern about swelling of elastomers in solvent is the equilibrium swelling

at constant temperature and pressure. For this purpose, the equilibrium between two

phases has to be considered where the solvent is the pure phase while the mixed phase

is the elastomer. The free energy resulting from swelling can be described by the Gibbs

free energy of dilution, ∆G1 which can be expressed in a separable form consisting of the

heat of dilution, ∆H1 and the entropy of dilution, ∆S1.

∆G1 = ∆H1−T ∆S1 (2.20)
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Equation (2.20) is expressed in terms of the energy per unit mole of solvent transferred.

In this expression, the heat of dilution is defined as,

∆H = ∆U + p∆V (2.21)

where U is the internal energy, p is the pressure and V is the volume. When p is the

atmospheric pressure, the value of p∆V becomes rather small and thus negligible. In

this case, ∆H and ∆U are practically equivalent based on Equation (2.21). Equilibrium

is achieved when the free energy with respect to the changes in the composition of the

phases is minimum. In other words, the free energy due to the transfer of a small quantity

of solvent molecules from the pure phase to the mixed phase shall be zero (Treloar, 1975).

Thus,

∆G1 = 0 ⇔ ∆U = T ∆S1 (2.22)

The significance of thermodynamics quantities on swelling was verified through ex-

perimental data of Gee and Treloar (1942) for unvulzanized natural elastomer in benzene

where the entropy of dilution, the free energy and the heat of dilution are plotted as a

function of the solvent volume fraction. It was shown from the experimental data that the

term T ∆S1 is always positive and relatively large while the heat term ∆H1 is rather small

(Treloar, 1975). Thus, the conclusion was drawn that the driving force for a swelling

process is the associated entropy while the heat of dilution being relatively unimportant.

The entropy is related directly to the configurational arrangements of the molecules and is

greatly affected by the length of the molecules. The increase in entropy may be calculated

by the number of configurations available to the system at any given composition. A sim-

ple calculation was proposed by Flory (1942) and Huggins (1942b) where the solvent and

elastomer molecules are considered to be arranged on a three-dimensional lattice of sites.
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The vacant site may be occupied either by a solvent molecule or by a single segment of

the elastomer chain. Under this theory, the entropy associated with the mixing process is

given as

∆Sm =−k(nlnυ1 +Nlnυ2) (2.23)

where k is the Boltzmann’s constant, υ1 and υ2 are the respective volume fractions of

solvent and elastomer in the mixture while n and N are the number of solvent molecules

and elastomer molecules respectively. Following this, the entropy per mole of dilution

with respect to the solvent component can be written as

∆S1 =−R[ln(1−υ2)+(1−1/x)υ2] (2.24)

where x is the number of segments of a polymeric chain and R is the gas constant . To

obtain the free energy of dilution ∆G1, Flory (1942) introduced an expression for the heat

of dilution ∆H1,

∆H1 = αυ
2
2 (2.25)

and the total free energy of dilution in Equation (2.20) becomes

∆G1 = RT [ln(1−υ2)+(1−1/x)υ2 +(α/RT )υ2
2 ] (2.26)

On the other hand, an alternative theory proposed by Huggins (1942b) suggests

a more precise analysis of the number of sites available to segments of the elastomer

molecule subsequent to the third segment. The expression of the entropy of dilution con-

tains an additional term in υ2
2 and therefore the resultant free energy of dilution becomes

∆G1 = RT [ln(1−υ2)+(1−1/x)υ2 +χυ
2
2 ] (2.27)
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where χ may be written as:

χ = χo +α/RT (2.28)

in which χo and α are constants. In the case where the number of segments in the elas-

tomeric chain is sufficiently large, 1/x becomes very small and Equations (2.26) and

(2.27) reduce to:

∆G1 = RT [ln(1−υ2)+υ2 +χυ
2
2 ] (2.29)

This expression is generally known as the Flory-Huggins mixing equation (Treloar, 1975).

This equation contains only one single parameter χ which is dependent on the particular

solvent-solid combination. This suggests that there is no restriction introduced by the

lattice model, and the resulting equation has a degree of generality exceeding that which

would be strictly justified on the basis of the model (Treloar, 1975).

2.6.3 The elastic properties of a swollen elastomer

To define the effect of swelling on the mechanical properties of a cross-linked elas-

tomer, Treloar (1975) proposed that the dry elastomer is in the form of a cube of unit

edge length which contains N chains per unit volume. The degree of swelling is defined

in terms of the volume fraction of the elastomer, v2 in the mixture phase of elastomer and

solvent where the volume swelling ratio is 1/vs with respect to the dry state. Using this

definition, the corresponding linear stretch of the swollen elastomer can be written as:

λo = 1/v1/3
2 (2.30)

by assuming the material undergoes isotropic swelling. Note that the parameter v2 is

introduced to define the state of swelling, regardless of whether or not this state is the

equilibrium state. In addition, the nature of the solvent is not considered in the develop-

ment of the theory.
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Swelling is an isotropic expansion of the polymeric network which is accompanied

by a reduction in the network entropy. Any additional stress to the swollen elastomer will

result in a further reduction of entropy due to the deformation of the swollen network.

Thus, the total reduction of entropy for the transformation from the initial unswollen-

unstressed state to the final swollen-stressed state is the sum of two contributions: purely

swelling and the subsequent mechanical loading.

Consider that the original unit cube swells in the ratio 1/v2 and is subsequently

deformed to dimensions l1, l2 and l3. For the Gaussian network, the total entropy, ∆S′o

with respect to the unswollen-unstressed state can be written in the form:

∆S′o =−
1
2

Nk(l2
1 + l2

2 + l2
3−3) (2.31)

The change in the entropy, ∆So associated with the isotropic swelling in the ratio λo in

the absence of stress is:

∆So =−
1
2

Nk(3λ
2
o −3) =−1

2
Nk(3v−2/3

2 −3) (2.32)

The difference between these two quantities gives the entropy of deformation, ∆S′ of the

swollen network:

∆S′ = ∆S′o−∆So =−
1
2

Nk(l2
1 + l2

2 + l2
3−3v−2/3

2 ) (2.33)

This expression is often more convenient to be expressed in terms of the extension ratios

λ1,λ2 and λ3 referred to the swollen-unstressed state. By writing l1 = λ1λo = λ1v−1/3
2 ,

the expression defined per unit volume of the unswollen-unstressed state becomes:

∆S′ =−1
2

Nkv−2/3
2 (λ 2

1 +λ
2
2 +λ

2
3 −3) (2.34)
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Therefore, the entropy of deformation, ∆S defined per unit volume of the swollen-unstressed

state is given by:

∆S = v2∆S′ =−1
2

Nkv1/3
2 (λ 2

1 +λ
2
2 +λ

2
3 −3) (2.35)

The corresponding free energy function thus becomes:

A =−T ∆S =
1
2

NkT v1/3
2 (λ 2

1 +λ
2
2 +λ

2
3 −3) (2.36)

Comparison with strain energy function for dry elastomers in Equation (2.14) shows that

both equations have the same form, except for the factor v1/3
2 in the modulus. Thus,

if G and G′ are denoted as the shear modulus for the dry and the swollen elastomer

respectively, we can write:

G′ = Gv1/3
2 =

ρRT
Mc

v1/3
2 (2.37)

where ρ is the density in the unswollen state. This result implies that the effect of swelling

leads to a reduction of the modulus in inverse proportion to the cube root of the swelling

ratio, without changing the form of the stress-strain relation. Recent works by Chai et al.

(2011) showed a deviation from the above relation for elastomers swollen in biodiesel.

2.6.4 Effect of deformation on swelling

Swelling of elastomers under more complex conditions where there is a presence of

stress or mechanical restraint was first discussed by Flory and Rehner (1944) and also

by Gee (1946) for the case of simple tensile stress. It was found that the elastomer ab-

sorbs more solvent in the presence of tensile stress, compared with that for the stress-free

elastomer. Following this, Treloar (1950, 1975) discussed the theory for the general case

of homogeneous strain. Equations for uniaxial extension, bi-axial extension and uniaxial
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compression were developed. In the development of the theory, the total free energy is

considered to be the sum of two terms: one corresponds to the mixing of the polymer

network and the solvent molecules and the other corresponds to the free energy of defor-

mation. A number of works have been conducted to study the effect of deformation on

swelling since then and few examples will be discussed here.

Fukumori et al. (1990) studied the effects of tensile strain on the swelling behaviour

of acrylonitrile-butadiene copolymer rubber vulcanizates by real-time pulsed nuclear mag-

netic resonance (n.m.r.) measurements and volume swelling measurements at equilib-

rium. From the n.m.r. measurements, the initial swelling rate and the swelling ratio at

equilibrium were shown to increase with tensile strain. The presence of reinforcing fillers

in the rubber matrix was observed to restrict the increase of the swelling rate through

some oriented structure induced by stretching. On the other hand, the reinforcing fillers

were proposed to cause a strain amplification effect. This causes the increase of the aver-

age local strain in the rubber matrix, thereby enhances the swelling ratio more remarkably

proportional to the filler concentration as compared with that of the unfilled system.

Busfield et al. (2000) measured the dynamic storage and loss moduli of carbon black

filled natural rubber by conducting testing with small oscillations that were superimposed

on a range of tensile pre-strains. In their observations, they dynamic storage and loss

moduli were independent of the pre-strain at small pre-strains but there was a remarkably

increase in both the storage and the loss moduli at higher pre-strains. The authors sug-

gested that the dynamic behaviour of swollen filled rubber was the combined effects of a

reduction in the modulus of the rubber matrix which was caused by the swelling action

and a reduction in the effective volume fraction of filler.

Recently, Chai et al. (2011) investigated the diffusion of biodiesel into rubber speci-

mens in the presence of large strain. Original device comprised of four rectangular stain-

less steel plates with spacer bars in between was developed to introduced pre-compression
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on the rubber specimens while they were immersed into biodiesel. Different pre-compressive

strains and biodiesel blends were considered. They found that the swelling in rubbers in-

creases with the increase of the palm biodiesel content and decreases with the increase

of pre-compressive strain. It was also observed that the presence of biodiesel and the

increase in its content reduce significantly the mechanical strength of the rubber and the

evolution of shear modulus ratio of swollen and dry rubbers as a function of applied com-

pressive stress was investigated.

In sum, swelling in elastomer is greatly affected by the presence of mechanical de-

formation in the elastomer. Thus, there is a necessity to consider the effect of mechanical

deformation during the development of a model to capture the diffusion of a solvent into

the elastomer. A detailed discussion on modeling the coupled diffusion-deformation will

be presented in Section 2.8.

2.7 Models for Mullins effect

2.7.1 Existing models in dry elastomer

As reviewed by Diani et al. (2009), there are many efforts in proposing different

theories to explain the Mullins effect in dry elastomer. Nevertheless, no unanimous mi-

croscopic explanation for this softening is available up to this date (Marckmann et al.,

2002; Diani et al., 2009). The first attempt to describe the Mullins effect is through a

phenomenological approach. Mullins and Tobin (1957) proposed that the elastomer ini-

tially contains both hard and soft phases. During the deformation process, the hard phase

transforms into the soft one. Their theory was successfully adopted into a number of

works (Wineman & Huntley, 1994; Huntley et al., 1997; Beatty & Krishnaswamy, 2000;

Qi & Boyce, 2004). Simo (1987) adopted the concept of Continuum Damage Mechanics

(CDM) where Mullins effect was considered as a damage phenomenon and was described

by a scalar damage parameter. Thus the material response is characterized by multiplying
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the classical hyperelastic strain energy with a reducing parameter representing the dam-

age level. Different forms of damage parameter were proposed in the literature (Miehe,

1995; Ogden & Roxburgh, 1999; Chagnon et al., 2004). In contrast to Miehe (1995)

and Chagnon et al. (2004) who assumed that damage evolves when the applied level of

deformation is undergone by the material for the first time, Ogden and Roxburgh (1999)

proposed that damage stays zero when the material is subjected to a level of deformation

never applied, and evolves in the range of submaximal deformation. The latter is known

as the Pseudo-Elastic (PE) model.

The second approach is based on a physical interpretation (Govindjee & Simo, 1991;

Kilian et al., 1994; Klüppel & Schramm, 2000; Marckmann et al., 2002; Freund et al.,

2011). Marckmann et al. (2002) reported the development of a new network alteration

theory to describe the Mullins effect where they considered the Mullins effect as con-

sequence of breakage of links inside the material, involving both filler-matrix and chain

interaction links. This new alteration theory was implemented by modifying the eight-

chain constitutive equation of Arruda and Boyce (1993). The accuracy of the resulting

constitutive equation was demonstrated on cyclic uniaxial experiments for both natural

rubbers and synthetic elastomers. Chagnon et al. (2006) later modified this network al-

teration theory to include the dangling chains effect in the network and proposed that

the number of monomers involved in the elastic response of the material is a decreasing

function of the maximum deformation. Further refinements to account for deformation-

induced anisotropy in Mullins effect were proposed in the literature. Indeed, as pointed

out early by Mullins (1948) and more recently in Laraba-Abbes et al. (2003); Diani et

al. (2006); Itskov et al. (2006); Machado et al. (2012), the material undergoes significant

anisotropy softening due to the application of mechanical loading.
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2.7.2 Existing extension models for swollen elastomer

In contrast to dry elastomers, only few studies on the observation and modeling of the

Mullins effect in swollen elastomers are available in the literature (Webber et al., 2007;

Lin et al., 2010; Andriyana et al., 2012; Chai, Andriyana, et al., 2013; Chai, Verron,

et al., 2013; Ch’ng et al., 2014). Indeed, it was reported that the Mullins effect is also

observed for swollen elastomers (Andriyana et al., 2012) and it is necessary to model

the Mullins effect taking into consideration the swelling effect. The Mullins effect is

observed to decrease as the degree of swelling increases. To model the observation, the

existing models for dry elastomer can be modified in order to account for the degree of

swelling. For example, Chai, Verron, et al. (2013) proposed an extension of pseudo elastic

model of Ogden and Roxburgh (1999).

2.8 Models for coupled diffusion-deformation

Modeling the mechanical response of swollen elastomers has become a necessity

since in a number of applications, it is inevitable that elastomers will be in contact with

solvent during the service. Number of studies were devoted to the diffusion of liquids

or gases in elastomers. However, most of the studies do not consider the influence of

deformation on the diffusion process (Rajagopal, 2003). As clearly mentioned in the

previous discussion, the effect of deformation on swelling cannot be omitted and must be

taken into account in developing efficient constitutive models.

From a thermodynamic point of view, swollen elastomer is a complex system in

which diffusion of solvents into a large strain elastic solid leads to swelling. Two main

approaches have been adopted to propose constitutive models (Rajagopal, 2003):

1. The first approach is based on the seminal work of Biot (1941) and on the studies

of Truesdell and Toupin (1960), and Bowen (1976) who proposed a mathematical

framework to describe the thermodynamics of mixtures. In this theory, the kine-
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matics of each component of the mixture is considered and the total stress is the

sum of the stress in each component. It leads to several difficulties: the application

of the second law of thermodynamics is arguable and the determination of relevant

boundary conditions is not an easy task (Rajagopal, 1995). Nevertheless, this ap-

proach has been successfully adopted to develop a number of constitutive equations

(Rajagopal, 2003). A recent example of this theory can be found in Ehlers et al.

(2010) and the references herein.

2. In recent literature, a more tractable theory, that considers the swollen elastomers

as a single continuum body has been considered. This theory was suggested by

Rajagopal et al. (1986) and firstly introduced by Durning and Morman (1993). Sev-

eral authors have recently improved it in different ways (Baek & Srinivasa, 2004;

Hong et al., 2008; Chester & Anand, 2010; Duda et al., 2010). In fact, all these

models are inspired by the simple models proposed by Flory (1953) and Treloar

(1975) for elastomer swelling. They are based on the definition of a free energy

function that includes three contributions: the one of the "unmixed" pure solvent,

the one of solvent-polymer mixing (classically given by the Flory (1942)-Huggins

(1942a) expression), and the elastic free energy due to the deformation of the poly-

mer network. In most of the papers, the elastic free energy is based on the Gaussian

statistical mechanical models for the change in the configurational entropy with

respect to the dry configuration. This approach being limited to moderate strain,

both Boyce et al. (2001) for equilibrium problems and Chester and Anand (2010)

for transient problems have proposed to use the eight-chain model of Arruda and

Boyce (1993), which accounts for limited chain extensibility.

Baek and Srinivasa (2004) proposed a model of slow diffusion of a fluid into a

swelling solid undergoing large deformation. The model predicts the stress in the solid
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as well as the diffusion rates. Their approach is based on the balance laws of a single

continuum with mass diffusion, which overcomes the difficulties inherent in the theory of

mixtures in specifying boundary conditions. Based upon the continuity of the chemical

potential, a "natural" boundary condition is derived by the use of a variational approach,

based on maximizing the rate of dissipation. They showed the differential equations re-

sulting from the use of mixture theory in the absence of inertial effects can be recast into

an identical equation obtained using their approach. Finally, it is shown that their results

show excellent agreement with the experimental data of Paul and Ebra-Lima (1970) for a

variety of solvents.

Following the work of Baek and Srinivasa (2004), Soares (2009) modeled the diffu-

sion of a fluid through a spherical elastic solid undergoing large deformation. The model

is based on a variational method and on the assumption of continuity of the chemical

potential across the solid-fluid interface. The balance laws for a single continuum with

mass diffusion are cast in spherical coordinates, and suitable boundary conditions are

posed to describe the radial diffusion of fluid through an elastic spherical shell with finite

thickness. The inner surface is adjacent to a rigid wall, either impermeable or permeable,

while the outside surface is in contact with the fluid that swells the solid, diffuses through

it, and exerts a hydrostatic pressure on its surface.

Hong et al. (2008) formulated a theory of the coupled mass transport and large de-

formation. The free energy of the polymer was considered as a result from two molecu-

lar processes: stretching the network and mixing the network with the small molecules.

Both solvents and solids were taken to be incompressible, a constraint enforced by using

a Lagrange multiplier, which coincides with the osmosis pressure or the swelling stress.

The polymer can undergo large deformation of two modes: fast processes of local rear-

rangement of molecules, allowing the polymer to change shape but not volume and slow

process of long-range migration of the small molecules, allowing the polymer to change
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both shape and volume. The authors assumed that the local rearrangement is instanta-

neous, and model the long-range migration by assuming that the small molecules diffuse

inside the polymer. The theory was illustrated with a layer of gel constrained in its plane

and subject to a weight in the normal direction. The scaling behaviour of a gel under a

conical indenter was also predicted.

Duda et al. (2010) presented the theory for the behaviour of a solid undergoing two

independent processes: a macroscopic or mechanical process due to the deformation of

the solid and a microscopic or chemical process due to the migration of a chemical species

through the solid. Their theory was based on the theory of balances, namely the mechan-

ical force balance and the transport balance for the chemical species. The basic equations

of the theory were obtained from the combination with thermodynamically consistent

constitutive relations. They showed that the possibility of a mechanically induced phase

transition was governed by two parameters: the Flory interaction parameter and a pa-

rameter given by the product between the number of cross-linked units per unit reference

volume and the molecular volume of the liquid molecule. As for diffusion, their theory

was able to describe the pressure-induced diffusion in swollen membranes.

Chester and Anand (2010) formulated a continuum-mechanical theory to describe

the various coupled aspects of fluid permeation and large deformations of elastomeric

gels. The constitutive theory developed was consistent with modern treatments of con-

tinuum thermodynamics, and material frame-indifference. The expression for the free

energy was considered based on a Flory-Huggins model for the free energy due to mixing

of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechenical

model for the change in configurational entropy. As representative examples of applica-

tion of the theory, they studied (a) three-dimensional swelling-equilibrium of an elas-

tomeric gel in an unconstrained, stress-free state and (b) the following one-dimensional

transient problems: (i) free-swelling of a gel, (ii) consolidation of an already swollen
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gel and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric

membranes.

2.9 Biofuels

There is a tremendous increase in the demand for renewable energy, natural gas and

nuclear energy due to the concern of stringent emission regulations and limited fossil fuel

reservations. The total renewable energy demand will increase significantly, whereby fuel

from biomass, also known as biofuel, will be the major resources followed by solar and

hydro energy (Kalam & Masjuki, 2008). The introduction of biofuel as an alternative

fuel is also considered by far as the most promising solution to the issue of fossil fuels

depletion and environmental pollution (Herzog et al., 2001).

Biodiesel is the most common type of biofuel. Chemically, biodiesel is referred as

mono-alkyl-esters of long-chain fatty acids derived from transesterification of vegetable

oils or animal fats (Trakarnpruk & Porntangjitlikit, 2008). These chemicals are better

known as fatty acid methyl esters (FAME). Since its properties are very much akin to

diesel, biodiesel can be used in compression ignition engines with little or no modifica-

tions (Ramadhas et al., 2004). Biodiesel can be used in its pure form (referred to as B100)

in modern diesel engines or to be blended with different composition of petroleum diesel

to create a biodiesel blend. Pure biodiesel serves as the lowest emission diesel fuel but

the utilization of pure biodiesel in diesel engines is not mature yet as there are still many

problems need to be solved (Haseeb et al., 2010). Indeed, while biodiesel is a mixture

of esters, conventional petroleum diesel consists of a mixture of hydrocarbon. This dif-

ference in the compositions leads to material compatibility issues especially in industrial

applications involving elastomeric materials (Chai et al., 2011).

There are many available feedstocks in the market for use in biodiesel production

including various types of vegetable oils as well as animal fats. Common sources of
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biodiesel under research include palm oil, soy, sunflower, jatropha, rapeseed, corn, olive,

castor, milkweed, linseed, mahua, mustard, algae etc (Haseeb et al., 2011). Since there are

many palm tree plantations available in Malaysia, a significant number of research studies

on palm biodiesel are conducted in Malaysia (Jayed et al., 2011). Further discussion on

palm biodiesel is provided in the following subsections.

2.9.1 Palm biodiesel

Palm oil serves as the world’s third most produced edible oil, following closely be-

hind soya and rapeseed oil. Other than the usage for food industry, palm oil is also uti-

lized in a wide array of cosmetics and pharmaceuticals and lately the increased demand

for biodiesel production. The instability of the market fuel price increases the demand for

alternative fuel sources for over the next decades. Thus, future development of palm oil

is promising with the world market for palm oil growing steadily at about 8% per annum

(Phosri et al., 2010).

Recently, many researches are on-going to explore the potential of palm oil as the

alternative substitute for diesel. Malaysia is emerging as one of the leading biofuel pro-

ducers with 91 plants approved and a handful now in operation. All are based on palm oil

(Kalam & Masjuki, 2008). Since 1980s, Malaysia Palm oil Board (MPOB) collaborates

with the local oil company, Petronas, to carry on the methanol transesterification of crude

palm oil into palm biodiesel. The intensified production and increased potential usage

of palm biodiesel makes Malaysia find itself as a potent country among the developing

countries.

The differences in the chemical compositions result in differences between the prop-

erties of palm biodiesel and conventional petroleum diesel. Generally, palm biodiesel has

higher density, heating value kinematic viscosity, boiling points and cetane index as com-

pared to conventional petroleum diesel (Abdullah et al., 2009). However, palm biodiesel
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has a gross heating value lower than diesel due to the presence of oxygen in the methyl

ester molecules. It is to note that the flash point of palm biodiesel is higher than that of

conventional diesel which can increase its storage ability as the temperature at which it

can form an ignitable mixture in air is higher. The comparison between the basic proper-

ties of conventional petroleum diesel and palm biodiesel is tabulated in Table 2.2.

Table 2.2: Basic properties of diesel and palm biodiesel (Benjumea et al., 2008).

Properties Units ASTM standard Diesel Palm Biodiesel
Density at 25◦C kg/m3 D1298 853.97 864.42
Mass high heating value MJ/kg D240 45.273 39.837
Volume high heating value (25◦C) MJ/m3 D240 38662 34436
Cloud point ◦C D2500 -5.0 16.0
Cold filter plugging point ◦C D6371 -6.0 12.0
Kinematic viscosity at 40◦C mm2/s D445 4.33 4.71
Initial boiling point ◦C D86 181.5 302.2
Temperature at 50% recovered ◦C D86 284.9 326.5
Final boiling point ◦C D86 384.3 348.9
Calculated cetane index - D4737 46.3 57.3

D976 47.5 50.0

2.9.2 Advantages and disadvantages of biodiesel

There are a few advantages of biodiesel over conventional petrol diesel. Firstly,

biodiesel is known as an environmentally friendly biofuel since the emission contains

less pollutant than diesel. The emission of conventional diesel serves as one of the major

contributor to global warming. Generally, biodiesel is biodegradable, non-toxic, and has

relatively high flash point. Apart from that, biodiesel produces more lubricity and this

prolongs the engine life and reduces the frequency of engine part replacement (Kaul et

al., 2007).

However, there are also few disadvantages of biodiesel which need to be overcome in

order to use it as an alternative source for fuel. Due to its difference in chemical structure,

it is relatively more sensitive to oxidative and thermal degradation. Oxidation of biodiesel

leads to the formation of corrosive acids and deposits which cause corrosion to the parts

used in biodiesel. Thus, the oxidative stability becomes the major concern in biodiesel. In
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addition, the high viscosity of vegetable oils and animal fats caused operational problems

such as poor atomization upon injection into the combustion chamber. Lastly, the produc-

tion of biodiesel can be varied based on the feedstock used and it is often produced out-of

specification, leading to contamination with corrosive agents such as water and sulphur.

Although the addition of inhibitors extends the time before corrosion occurs in the engine

parts (Maru et al., 2009), there are still many improvements needed before biodiesel can

be used as a complete substitution to the conventional petroleum diesel.

2.9.3 Compatibility of elastomer with biodiesel

Although the compatibility of commonly used elastomeric components such as seals,

gaskets and hose with conventional diesel has long been established, there is less informa-

tion available on the compatibility of elastomers with biodiesel. Indeed, the degradation

of elastomers is the major concern related to the compatibility issue in biodiesel. The

impact of biodiesel on the degradation behaviour of elastomers was being investigated by

a few studies. However, note that most of the studies only focus on physical degradations

such as the measurement of swelling, hardness and tensile strength of the elastomers after

immersion.

Bessee and Fey (1997) studied the effect of exposure to methyl soyester and diesel

blends to elastomers based on several physical properties measurements which include

swelling, tensile strength, elongation and hardness. They observed that nitrile rubber

(NBR), nylon 6/6 and high-density polypropylene show significant changes in physical

properties whereas Teflon, viton 401-C and viton GFLT were unaffected. Based on this

observation, they concluded that fluorinated elastomers have higher resistance towards

biodiesel. In addition, the compatibility appears to depend highly on the feedstock of

biodiesel. Frame and McCormick (2005) evaluated the degradation of elastomers in

diesel, diesel blend with 15% ethanol and 20% soy-derived biodiesel (B20). Various
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elastomers such as peroxide-cured nitrile rubber (N1059), nitrile rubber (N674), high

aceto-nitrile content rubber (N0497), unfilled fluorocarbon (V884) and filled fluorocar-

bon (V747) were investigated. The observation suggested that all these elastomers were

fully compatible with B20 and diesel while severe degradation was observed in diesel

blend with 15% ethanol.

On the other hand, Trakarnpruk and Porntangjitlikit (2008) were more interested in

the production of biodiesel. They investigated the preparation of biodiesel by transester-

ification and the biodiesel was subsequently characterized. In addition, they also eval-

uated the impact of biodiesel on elastomer properties by investigating the compatibility

of a diesel blend with 10% biodiesel (B10) with six types of commonly used elastomers

which include NBR, HNBR, NBR/PVC, acrylic rubber, co-polymer FKM and terpoly-

mer FKM. Immersion of elastomers for different durations (22, 670 and 1008h) at 100◦C

were conducted and the properties of elastomers were measured according to American

Society of Testing and Materials (ASTM) standard. Swelling of elastomers was measured

in terms of mass and volume change. Based on the results, the impact of biodiesel is more

vigorous to the properties of NBR, NBR/PVC and acrylic rubber while co-polymer FKM

and terpolymer FKM being less affected by the biodiesel.

Haseeb et al. (2010) conducted static immersion of various elastomers such as nitrile

rubber (NBR), polychloroprene (CR) and fluoro-viton A in diesel (B0), blend of 10%

biodiesel in diesel (B10) and biodiesel (B100). Immersion tests were carried out at 2

temperatures: 25◦C and 50◦C for a duration of 500h. The degradation of the elastomers

was expressed in terms of mass and volume change after the immersion. In addition, the

hardness, tensile strength and elongation of elastomers were also studied. The surface

morphology was studied using scanning electron microscopy (SEM) while the structural

changes was studied using Fourier Transform Infrared (FTIR). In this study, it was found

that contrary to the degradation experienced by NBR and CR, fluoro-viton show good
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resistance to degradation. Moreover, they concluded that biodiesel contains more car-

boxylic groups and elastomers degraded more in biodiesel than in conventional diesel.

More variation of immersion were conducted by Haseeb et al. (2011) where elas-

tomers such as ethylene propylene diene monomer (EPDM), silicone rubber (SR), poly-

chloroprene (CR), polytetrafluroethylene (PTFE) and nitrile rubber (NBR) were immersed

in diesel (B0), various diesel blends (B10, B20, B50) and pure biodiesel (B100). Immer-

sion tests were conducted at room temperature for a total immersion duration of 1000

h. The degradation was characterized by measuring the change in weight and volume,

hardness and tensile strength in a time interval of 250 h. They observed that CR and

NBR swelled to a greater extent upon exposure to biodiesel while EPDM and SR ex-

perienced greater swelling in diesel. Meanwhile, PTFE showed relatively insignificant

physical changes with the immersion. As a conclusion, the compatibility of elastomers

was reported to be PTFE > SR > NBR > EPDM > CR.

In summary, all these observations suggest that fluorinated elastomers are more com-

patible for usage in biodiesel. Meanwhile, some common types of elastomers such as

NBR, SBR, CR, NR etc show significant degradation upon exposure to biodiesel and thus

are not suitable to use in biodiesel. However, the mechanisms of degradation of elas-

tomers in biodiesel are not fully understood. The chemical structure of biodiesel which

contains highly unstable fatty acids as well as unreacted mono-, di-, and trigycerides,

glycerol and methanol may exhibit an unknown impact on the elastomers which require

more in depth investigation (Haseeb et al., 2011). These unknown aspects remain an

interesting research topic and more efforts are needed to establish the compatibility of

elastomers with biodiesel.
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CHAPTER 3

METHODOLOGY

Generally, the present work is divided into two parts. In the first part of work, the em-

phasis will be laid on the establishment of an experimental database. More precisely,

the coupling between diffusion of biodiesel and multiaxial large deformations in elas-

tomers containing different carbon black content will be investigated. For this purpose,

original devices and specimens are developed so that swelling tests can be conducted on

elastomers in the absence (free swelling) and in the presence of mechanical deformations

(constrained swelling). Due to its wide use in sealing systems, nitrile butadiene rubber

(NBR) is considered in the present work.

The second part of the work focuses on the development of a continuum mechan-

ical model to capture the experimental observations. The development of the model is

restricted to mechanical problems where only isothermal processes are considered. The

corresponding constitutive equations will be derived under the framework of thermody-

namics of irreversible processes. Finally, the proposed model will be implemented into

the finite element code ABAQUS in order to simulate the responses of industrial elas-

tomeric components. The overall works is described by a flow chart shown in Figure

3.1.
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Figure 3.1: Flow chart describing the methodology of the present work.
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3.1 Experimental program

To collect the experimental database for the purpose of the model validation, three

different specimens and devices were designed throughout the whole work. Details of

each specimen and device design will be given in the following sections.

3.1.1 Design of specimen and device

3.1.1 (a) Constrained swelling 1: static uniaxial strain

Dumbbell specimens following ASTM standard D412-C with a thickness of 2 mm

are purchased from Malaysia Rubber Board. The materials include unfilled NBR and

filled NBR with 25 and 40 wt% of carbon black, respectively. The detailed dimension of

the dumbbell specimen used is provided in Figure 3.2.

Figure 3.2: Dimension of dumbbell specimen following ASTM standard D412-C.

In order to apply static uniaxial strains to the specimens during the immersion tests,

a special device is developed and the description of the device can be summarized as

follow:

1. The device consists of four identical metallic plates (handles) and two long bolts.

Each plate has four holes as shown in Figure 3.3. The device can accommodate

three dumbbell specimens.
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2. Two plates are attached on the upper and on the lower parts of the specimens. Bolts

are inserted into the three holes located on the plates. The plates are then tightened

using nuts. While doing this procedure, the long bolts are fitted into each side of

the plates.

3. Uniaxial tensile strain can be applied by adjusting the nuts located at the long bolts

between metallic plates until the desired strain level is achieved.

Figure 3.3: Metallic plate for uniaxial tensile loading.

The complete assembly of the device is shown in Figure 3.4 and the exploded view

of all components in the device is given in Figure 3.5.
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Figure 3.4: Complete device and specimen for constrained swelling 1.

Figure 3.5: Exploded view of the experimental device and specimen used for constrained

swelling 1.

As mentioned in the description, uniaxial tensile strain can be applied by adjusting
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the nuts located at the long bolts between the metallic plates. A graphical illustration of

the application of tensile strain is given in Figure 3.6. In this study, the distance between

the metallic plates is fixed at three different constant stretches: λ = 1.00, 1.25 and 1.50

respectively. The stretch is defined as the ratio between the current length to the original

length of the specimen between the two metallic plates. Note that the corresponding

engineering strain is simply given by ε = λ −1. For all imposed strain levels, immersion

tests are conducted until equilibrium swelling is reached.
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Figure 3.6: Experimental device for constrained swelling 1: (a) with no tensile strain

(initially stress-free) and (b) under tensile strain.

Using this specimen and device, five different immersion tests are investigated where

two of them are stress-free immersions while the rest are uniaxially-constrained immer-

sions. For stress-free immersion, the experimental works are conducted with and without

device. To ensure that the specimen undergoes stress-free immersion, the distance be-
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tween the metallic plates is adjusted from time to time for immersion with device. As

for stress-free immersion without device, the specimen is simply fully immersed in the

solvent until equilibrium swelling is achieved.

3.1.1 (b) Constrained swelling 2: static multiaxial strain (Design 1)

To investigate the diffusion of palm biodiesel into elastomers undergoing multiaxial

deformation, a hollow specimen is designed as shown in Figure 3.7. Since the focus of

the present section is on the effect of the presence of static multiaxial strains, only NBR

filled with 25 wt% of carbon black is considered.

The specimen used is a diabolo-like shape elastomer with a hollow cylinder inside

to allow the diffusion of biodiesel from the inner and outer wall surfaces. Note that no

standard is followed during the design of the specimen. The height of the specimen is 55

cm and it was designed to have a sufficiently thin wall in the middle part so that the equi-

librium swelling can be achieved within a reasonably short period of time (Ch’ng et al.,

2013). Both ends of the specimen have a hexagonal shape which permits the application

of a static multiaxial mechanical loading during immersion. The detailed geometry of the

specimen is shown in Figure 3.7.
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Figure 3.7: Specimen geometry of the diabolo-shape specimen.

A specially-designed device, referred to as Design 1 in the following, is developed

for the diabolo-shape specimen. It consists of four circular metallic grips and two plates

as shown in Figure 3.8. The main features of Design 1 are summarized as follow:

1. The device consists of four identical metallic grips which are screwed together

at both ends of the elastomeric specimen. The inner part of the metallic grips is

designed to fit in the hexagonal shape of the specimen. In this way, twist and axial

extension/contraction can be imposed simultaneously to the specimen while the

immersion test is carried out.

2. Each metallic grip consists of six identical holes which are symmetrically arranged
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along circumferential direction. Different twists can be applied to the specimen by

twisting the upper part of the metallic grip while fixing the lower part of the grip.

Once the desired angle is obtained, bolts are inserted through the holes located at

the lower and upper parts of the grip in order to maintain constant twist. Axial

extension or contraction can be imposed by adjusting vertically the position of the

nuts in the bolts as illustrated in Figure 3.9.

3. The rubber specimen has a diabolo-like shape with a hollow inside to allow the

biodiesel to diffuse into the specimen from its inner and outer wall surfaces. Thus,

it is expected that equilibrium swelling can be achieved within a reasonable period

of time.

4. After the metallic grips are tightly screwed to the specimen, thin metallic plates are

attached at both ends in order to prevent the diffusion of liquids from both specimen

ends. Two o-rings with different diameters are inserted between plates and grips to

provide a tight seal.

Figure 3.8: Exploded view of the experimental device and specimen of Design 1.
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Figure 3.9: Experimental device for constrained swelling 2: (a) with no mechanical load-

ing (initially stress-free) and (b) under twist angle θ and axial extension ∆L. For practical

purposes during the experiment, the initial distance between two metallic plates is chosen

as the initial length Lo

Using this design, sixteen different mechanical loading conditions are investigated.

The details of these condition are given in Table 3.1.

Although Design 1 enables multiaxial mechanical loading to be imposed without

any difficulty, some limitations are observed from this design (See Section 4.3 for further

discussion). In order to overcome these limitations, an alternative specimen and device

are proposed in the next Section and referred to as Design 2.

3.1.1 (c) Constrained swelling 3: static multiaxial strain (Design 2)

Following the problems encountered in Design 1, further improvements have been

made to the existing design and improved specimen and device are developed. Similarly

to Design 1, the improved Design 2 enables the investigation of diffusion of solvents

into elastomers undergoing simultaneously multiaxial large deformations. A hollow, ring

shaped specimen with 60 shore hardness and 25 wt% of carbon black is used and is shown

in Figure 3.10. The height of the specimen is 30 cm with outer and inner radii of 43 and
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Table 3.1: Mechanical loading conditions for Design 1

Specimen

Applied Load
Tensile Load Torsional Load

Axial extension Resulting stretch ratio Twist angle Resulting twist
per unit length

∆L (mm) λ = L/Lo (◦) γ (rad/mm)
S0T0 0 1 0 0

S0T30 0 1 30 0.02094
S0T60 0 1 60 0.04189
S0T90 0 1 90 0.06283
S20T0 5 1.2 0 0

S20T30 5 1.2 30 0.01745
S20T60 5 1.2 60 0.03491
S20T90 5 1.2 90 0.05236
S40T0 10 1.4 0 0

S40T30 10 1.4 30 0.01496
S40T60 10 1.4 60 0.02992
S40T90 10 1.4 90 0.04489
S60T0 15 1.6 0 0

S60T30 15 1.6 30 0.01309
S60T60 15 1.6 60 0.02618
S60T90 15 1.6 90 0.03928

38 cm, respectively at the middle part. The detailed dimension of the cylindrical hollow

specimen is given as Figure 3.11. As compared with Design 1 which has outer and inner

radii of 12.5 and 6.5 cm, Design 2 has a larger diameter in order to facilitate the diffusion

of solvents and to create a more uniform stress field under torsional loading.

Figure 3.10: Ring-shape specimen for Design 2.
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Figure 3.11: Detailed dimension of the ring-shape specimen.

Similarly to the previous specimen, a specially-designed device is developed for the

ring-shaped specimen. The complete breakdown of Design 2 is shown in Figure 3.12.

The main features of Design 2 can be summarized as follow:

1. The device consists of two identical circular metallic plates and four identical semi-

circular metallic grips. Each plate and grip has sixteen and eight holes, respectively

located at the angle of 10◦ apart from each other. Moreover, each side of the grip

contains one additional hole. The device can accommodate one cylindrical hollow

specimen.

2. The plates and grips are attached to the specimen. Bolts and nuts are used in each

side of the grips in order to tighten the device.

3. The specimen in the device is twisted. The twist angle is held constant by inserting

bolts into holes located on the grips and plates. A tensile strain can be applied

by adjusting the nuts. Thus, the specimen is subjected to simultaneous tensile and

torsion loadings as illustrated in Figure 3.13.
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Figure 3.12: Exploded view of the experimental device and specimen of Design 2.
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Figure 3.13: Experimental device for constrained swelling 3: (a) with no mechanical

loading (initially stress-free) and (b) under twist angle θ and axial extension ∆L.

Since the diameter for Design 2 has been enlarged and the specimen length has been

reduced, higher shear strain is expected for the lower twist angle as compared to Design

1. For this reason, three different mechanical loading conditions were carried out using

Design 2. The load data are given in Table 3.2.

Table 3.2: Mechanical loading conditions for Design 2

Specimen
Torsional Load

Twist angle (◦) Resulting twist per unit length, γ (rad/mm)
S0T0 0 0

S0T10 10 0.01746
S0T20 20 0.03491

As shown in Table 3.2, the resulting twist per unit length for twist angle of 20◦ is

higher than 30◦ for Design 1. Thus, it is obvious that a higher shear/stress field can be
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generated using Design 2. The advantages and limitations of Design 2 will be discussed

in detail in Section 4.4.3.

3.1.2 Experimental setup

3.1.2 (a) Immersion test and swelling measurement

As mentioned previously, specially-designed specimen and devices were developed

to investigate the effect of mechanical loadings on the diffusion of solvents. After the

desired mechanical loading has been applied, the specimen and device are completely

immersed in the solvent for the desired immersion period. In order to determine the

swelling level, the mass of the specimen before and after the immersion test is measured.

The detailed procedures of the immersion test can be summarized as follow:

1. Before the immersion test, the mass of the dry specimen is measured in air and in

distilled water using digital weighting machine.

2. The specimen is subsequently attached into the experimental device to impose the

mechanical loading.

3. The experimental devices are then immersed into the solvent at room temperature.

4. After the desire immersion period is achieved, the devices are removed from the

biodiesel and the specimens are dismantled from the device. The specimens are

then quickly dipped into acetone and cleaned with filter paper to remove excessive

oil.

5. The mass of the specimens after immersion is measured as in Step 1. The percent-

age of mass change and volume change are calculated using the following simple

relation (Trakarnpruk & Porntangjitlikit, 2008):

% Mass Change =
M2−M1

M1
×100 (3.1)
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% Volume Change =
(M2−M4)− (M1−M3)

(M1−M3)
×100 (3.2)

where M1 and M2 are the masses in air (gram) before and after immersion while M3 and

M4 are the masses in water (gram) before and after immersion. To ensure repeatability

of the results, three specimens were used to perform each test and the result presented in

this study is the average value of three specimens.

3.1.2 (b) Mechanical testing

In order to investigate the effect of swelling, due to solvent diffusion, on the me-

chanical response of elastomer, mechanical tests were conducted on dry and swollen

elastomers at room temperature using an Instron uniaxial test machine equipped with

a 10 kN load cell as shown in Figure 3.14. The experimental setup is connected to a

computer to record the experimental data. Since thermal effects are not considered in this

study, all tests are conducted at a constant strain rate of 0.02 s−1 to avoid any excessive

increase of temperature in the specimens.
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Figure 3.14: Instron uniaxial test machine.

Two types of mechanical tests are conducted and the descriptions of the testing are

elaborated as follow:

1. Monotonic uniaxial tensile test. The specimens are subjected to an increasing

monotonic tensile load until fracture.

2. Cyclic tensile test at constant maximum strain. The specimens are subjected to five

cycles of tensile loading at constant maximum strain. The test is conducted using

the displacement-controlled mode and the test profile is illustrated by Figure 3.15.

3. Cyclic tensile test with increasing maximum strain. The specimens are subjected

to cyclic loadings with increasing maximum strain at an increment of 50 % per

cycle. Note that the stretch is defined by the ratio between the current length to the

initial length of the elastomer. In the case of swollen elastomer, the initial length
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corresponds to the swollen-unstrained length. The test profile of the cyclic test is

illustrated in Figure 3.16.

Figure 3.15: Cyclic test at constant maximum strain.

Figure 3.16: Cyclic test with increasing maximum strain.
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3.2 Continuum mechanical modeling

In this discussion, a model based on an original definition of the elastic strain energy

is proposed. The model adopts the multiplicative split of the deformation gradient into a

swelling and a purely mechanical part. In the following, the split of deformation gradient

is introduced to derive the constitutive equations for the coupled diffusion-deformation

problem. The model for the stress response is then derived by considering the second

law of thermodynamics. Finally, two particular cases are considered using the proposed

model: prediction of the stress-strain response of swollen elastomers at a given degree of

swelling and prediction of the equilibrium swelling of elastomers in the absence and in

the presence of a static mechanical deformation.

3.2.1 Kinematics

We consider the diffusion of a solvent into an elastomer undergoing simultaneously a

mechanical deformation. The general framework of large strain hyperelasticity is adopted

and the material is considered to be homogeneous and isotropic at the Continuum Me-

chanics scale. Moreover, initially the material is in the dry state and the polymer network

of the dry material is assumed as incompressible.

Similarly to the classical approaches adopted in plasticity (Lee, 1969), viscoelasticity

(Sidoroff, 1974), compressibility (Ogden, 1984), and later extended to most of the large

strain problems (Lubarda, 2004), we consider that the deformation gradient can be split

into: a stress-free reversible change in volume due to swelling and an isochoric elastic

deformation. The corresponding procedures and the splitting of the deformation gradient

are illustrated in Figure 3.17.
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Figure 3.17: Illustration of the deformation.

When an elastomer deforms from its original unswollen-unstressed dry state (Co)

to the final swollen-stressed state (C), the total deformation gradient can be split into

two parts as illustrated in Figure 3.17. Initially, the dry specimen is at the unswollen-

unstressed configuration, Co, with a volume of Vo. Then, the specimen undergoes a stress-

free reversible volume change due to solvent diffusion which can be characterized by the

swelling part of the total deformation gradient F, denoted by Fs. The resulting volume

change at Cs (swollen-unstressed configuration) is described by the degree of swelling Js

which is given by:

Js =
Vs

Vo
(3.3)

where Vs is the volume of the swollen elastomer. Since the elastomer is assumed to

be incompressible under mechanical loads, any changes in volume are assumed to be

contributed by the addition of solvent molecules. If the volume occupied by a solvent

molecule is denoted by v and the number of solvent molecules absorbed by the elastomer
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per unit dry volume is given by c, the degree of swelling can be recast into:

Js = 1+ vc (3.4)

Since vc represents the volume fraction of solvent molecules with respect to the dry rub-

ber, the value for Js will always be greater than 1.

For isotropic swelling, the swelling part of the total deformation gradient, Fs can be

written as a function of Js as follows:

Fs = J1/3
s I (3.5)

where I is the identity tensor. For the next stage of deformation where the mechanical

loading is imposed to the swollen elastomer, the corresponding deformation is character-

ized by the mechanical part of the deformation gradient tensor, Fm. The volume of the

swollen rubber is assumed to be constant during the transformation from Cs to the final

swollen-stressed configuration C. Thus, the kinematic constraint during this deformation

is detFm = 1. In summary, the total deformation gradient for the transformation from

the unswollen-unstressed configuration (Co) to swollen-stressed configuration (C) can be

described by:

F = FsFm = J1/3
s Fm (3.6)

3.2.2 Stress response

In order to describe the stress response, we postulate the existence of a strain en-

ergy function W , defined per unit of volume of the material in the unswollen-unstressed

state. For the deformation between Co and Cs due to the diffusion of the solvent into the

material, the specific free energy which includes the chemical potential of the unmixed

pure solvent µoc and the change due to mixing of the solvent with the polymer network
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Ws is introduced. Since the deformation between Cs and C is considered as hyperelastic,

a strain energy function Wm(Fm) per unit volume with respect to the swollen-unstressed

state is introduced. Thus, the total free energy of the deformation is the sum of these two

contributions:

W = W̃ (F) = Ŵ (Js,Fm) = µoc+Ws(Js)+ JsWm(Js,Fm) (3.7)

Note that Ws only depends on the fluid content c and consequently on Js through Equation

(3.4).

For isothermal mechanical processes in combination with diffusion, the second law

of thermodynamics takes the form (Chester & Anand, 2010):

Dint = P : Ḟ+µ ċ−Ẇ − j ·Gradµ ≥ 0 (3.8)

where Dint is the internal dissipation, P is the 1st Piola-Kirchhoff stress tensor with re-

spect to the unswollen-unstressed configuration, µ is the chemical potential in the elas-

tomer and j is the fluid flux. By recalling Equation (3.7), the strain energy W can be

written as a function of both Fm and Js. Thus, the rate of change in the strain energy Ẇ is

given by:

Ẇ =
∂Ŵ
∂Js

∣∣∣∣
Fm

J̇s +
∂Ŵ
∂Fm

∣∣∣∣
Js

: Ḟm (3.9)

Similarly with reference to Equation (3.6), the rate of change in the deformation gradient

is written as:

Ḟ =
1
3

J−2/3
s J̇sFm + J1/3

s Ḟm (3.10)

By substituting Equations (3.4), (3.9) and (3.10) into Equation (3.8), the second law of
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thermodynamics becomes:

Dint =

(
J1/3

s P− ∂Ŵ
∂Fm

∣∣∣∣
Js

)
: Ḟm +

(
1
3

J−2/3
s P : Fm +

µ

v
− ∂Ŵ

∂Js

∣∣∣∣
Fm

)
J̇s− j ·Gradµ ≥ 0

(3.11)

In the following, two particular cases are considered:

1. Case 1: Prediction of the stress-strain response of swollen elastomers at a given

(constant) degree of swelling. More precisely, attention is given on the modeling of

the Mullins effect in swollen elastomers.

2. Case 2: Prediction of the equilibrium swelling of elastomers in the absence and in

the presence of static mechanical deformation.

3.2.2 (a) Case 1: Stress-strain response of swollen elastomers

In this case, the proposed model does not consider the general coupling between

the diffusion of the solvent and the mechanical deformation. Indeed, it focuses on the

mechanical responses of the swollen elastomer at a given (constant) degree of swelling,

i.e. J̇s = 0. The parameter Js is introduced merely as a means of defining the state of

swelling of the network regardless of whether or not this state is the equilibrium state

with respect to the absorption of solvent (Treloar, 1975). Being a first attempt to account

for the effect of swelling on stress-softening, it is assumed that the solvent distribution

across the cross sections is homogeneous and the swelling is uniform, thus Gradµ = 0.

Consequently, the second law of thermodynamics in Equation (3.11) reduces to:

Dint =

(
J1/3

s P− ∂Ŵ
∂Fm

∣∣∣∣
Js

)
: Ḟm = 0 (3.12)

which must be satisfied for all possible values of Ḟm. Considering that the mechanical

deformation is isochoric, the incompressibility constraint can be written as (Holzapfel,

74



2000):

detFm = 1 ⇔ ˙detFm = 0 ⇔ F−T
m : Ḟm = 0 (3.13)

The combination of Equations (3.12) and (3.13) leads to:

(
J1/3

s P− ∂Ŵ
∂Fm

∣∣∣∣
Js

)
=−qF−T

m (3.14)

where q is an arbitrary scalar (Lagrange multiplier) which is classically referred as "hy-

drostatic pressure". The expression for q can be determined by applying appropriate

boundaries conditions and solving the equilibrium equations. Hence, the stress-strain

relationship can be obtained by rearranging Equation (3.14):

P =−qJ−1/3
s F−T

m + J−1/3
s

∂Ŵ
∂Fm

∣∣∣∣
Js

(3.15)

Recalling Equation (3.7), the first Piola-Kirchhoff tensor given in Equation (3.15) can be

recast to:

P =−qJ−1/3
s F−T

m + J2/3
s

∂Wm

∂Fm
(3.16)

The Cauchy stress tensor σ is related to the first Piola-Kirchhoff stress tensor through the

transformation:

σ = (detF)−1PFT =−qJ−1
s I+

∂Wm

∂Fm
FT

m (3.17)

Noting that (Holzapfel, 2000):

∂Wm

∂Fm
FT

m = Fm

(
∂Wm

∂Fm

)T

= 2Fm
∂Wm

∂Cm
FT

m (3.18)
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where Cm = FT
mFm, the Cauchy stress tensor becomes:

σ =−qJ−1
s I+2Fm

∂Wm

∂Cm
FT

m (3.19)

Assuming that the swollen elastomer is isotropic, Wm(Js,Cm) may be expressed in terms

of Ŵm(Js, I1m, I2m), where:

I1m = trCm I2m =
1
2
(I2

1m− tr(C2
m)) (3.20)

Using chain rules, the Cauchy stress can be recast to:

σ =−qJ−1
s I+2

[(
∂Ŵm

∂ I1m
+ I1m

∂Ŵm

∂ I2m

)
Bm−

∂Ŵm

∂ I2m
B2

m

]
(3.21)

where Bm = FmFT
m is the mechanical left Cauchy Green tensor. When dealing with

swollen elastomers, it is often more convenient to express the engineering stress with

respect to the swollen-unstressed state of the material, denoted as P̂. It’s expression can

be obtained from P̂ = (detFm)σF-T
m , which yields to:

P̂ =−qJ−1
s F-T

m +2
[(

∂Ŵm

∂ I1m
+ I1m

∂Ŵm

∂ I2m

)
Fm−

∂Ŵm

∂ I2m
FmCm

]
(3.22)

Finally, the tensors P̂ and P are simply related through:

P = J2/3
s P̂ (3.23)

In the case when Ŵm is chosen to depend on the principal mechanical stretches λim, the

principal Cauchy stresses σi can be related to the principal mechanical stretches as fol-
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lows:

σi =−qJ−1
s +λim

∂Ŵm

∂λim
no sum on i (3.24)

and the corresponding engineering stress with respect to the swollen-unstressed configu-

ration is given by:

P̂i =
σi

λim
no sum on i (3.25)

Remark 1 In order to use Equations (3.24) and (3.25) for the modeling of the Mullins

effect in swollen elastomers, a modification of the form of Wm in Equation (3.7) is needed

and is given in detail in Section 3.2.3.

3.2.2 (b) Case 2: Prediction of equilibrium swelling

Consider a process of diffusion of biodiesel into an elastomer undergoing simultane-

ously a static mechanical loading. After a certain period of time, equilibrium swelling is

achieved. In this case, we have:

µ = µo = constant ⇐⇒ Gradµ = 0 (3.26)

Thus, the second law of thermodynamics in Equation (3.11) reduces to:

(
J1/3

s P− ∂Ŵ
∂Fm

∣∣∣∣
Js

)
: Ḟm +

(
1
3

J−2/3
s P : Fm +

µ

v
− ∂Ŵ

∂Js

∣∣∣∣
Fm

)
J̇s ≥ 0 (3.27)

Using the argumentation of Coleman and Gurtin (1967), we obtain the following consti-

tutive relation:

P =−qJ−1/3
s F−T

m + J−1/3
s

∂Ŵ
∂Fm

∣∣∣∣
Js

=−qJ−1/3
s F−T

m + J2/3
s

∂Wm

∂Fm
(3.28)

which is similar to Equations (3.15) and (3.16) respectively.
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The second constitutive relation obtained from Equation (3.27) is:

(
1
3

J−2/3
s P : Fm +

µ

v
− ∂Ŵ

∂Js

∣∣∣∣
Fm

)
J̇s = 0 (3.29)

where Ŵ can be represented on the basis of Equation (3.7):

∂Ŵ
∂Js

∣∣∣∣
Fm

=
µo

v
+

1
v

dWs(c)
dc

+Wm + Js
∂Wm

∂Js

∣∣∣∣
Fm

(3.30)

By replacing Equation (3.30) into (3.29) and rearranging the equation we have:

µ

v
=

µo

v
+

1
v

dWs(c)
dc

+Wm + Js
∂Wm

∂Js

∣∣∣∣
Fm

− 1
3

J−2/3
s P : Fm (3.31)

By recalling the expression of P from Equation (3.28), the following equation can be

established:

P : Fm =

(
−qJ−1/3

s F−T
m + J2/3

s
dWm

dFm

)
: Fm

=−3qJ−1/3
s + J2/3

s tr
(

dWm

dFm
FT
) (3.32)

The combination of Equation (3.17) and Equation (3.32) leads to:

1
3

J−2/3
s P : Fm =−qJ−1

s +
1
3

tr(σ +qJ−1
s I) =

1
3

trσ (3.33)

where 1
3 trσ is also known as the hydrostatic part of the Cauchy stress tensor. Finally, we

obtain the equation for the chemical potential as:

µ

v
=

µo

v
+

1
v

dWs(c)
dc

+Wm + Js
∂Wm

∂Js

∣∣∣∣
Fm

− 1
3

trσ (3.34)

As mentioned earlier, µ = µo holds under equilibrium conditions. Then, we obtain the
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final form of the chemical potential as:

1
v

dWs(c)
dc

+Wm + Js
∂Wm

∂Js

∣∣∣∣
Fm

− 1
3

trσ = 0 (3.35)

By introducing proper strain energy function and free energy due to mixing, the

degree of swelling in the equilibrium state can be obtained by solving Equation (3.35) for

given static mechanical loading conditions.

3.2.3 Mullins effect

As a first step to model the mechanical response of elastomers under cyclic loadings

for a given degree of swelling (Case 1 of Section 3.2.2), only the softening phenomenon

(Mullins effect) is addressed. Here, softening in elastomers is considered as irreversible

isotropic damage which can be represented by a scalar internal variable κ . Under such

circumstances, the general multiplicative decomposition of the deformation gradient ten-

sor illustrated in Figure 3.17 remains applicable. Nevertheless, the following points are

worth noting:

1. During the transformation of the body from Co to C, the elastomer undergoes two

different kinds of softening:

a) Softening due to isotropic expansion (swelling) of polymeric network corre-

sponding to the transformation from Co to Cs. The network expansion in-

creases the chain separation which results in a reduction of the secondary

intermolecular bonding forces (Callister, 1997). Consequently, the material

becomes softer.

b) Softening associated with the Mullins effect observed under cyclic mechanical

loading. This softening which occurs during the transition from Cs to C is

79



often regarded as essentially being caused by the fillers in the elastomer matrix

(Holzapfel, 2000).

2. Experiments showed that increasing the degree of swelling (i.e. increasing soften-

ing due to swelling) reduces the Mullins softening (Andriyana et al., 2012). While

the precise link between the above two kinds of softening remains unclear, it ap-

pears that swelling softening affects the material capacity to accommodate further

softening under mechanical loading.

3.2.3 (a) Constitutive equations

To describe the Mullins softening in an elastomer with a given degree of swelling,

the strain energy in Equation (3.7) is extended as below:

W = W̃ (F,κ) = Ŵ (Js,κ,Fm) = µoc+Ws(Js)+ JsWm(Js,κ,Fm) (3.36)

As a consequence, the internal dissipation for a given degree of swelling from Equation

(3.12) then becomes:

Dint =

(
J1/3

s P− ∂Ŵ
∂Fm

∣∣∣∣
Js,κ

)
: Ḟm−

∂Ŵ
∂κ

∣∣∣∣
Js,Fm

κ̇ ≥ 0 (3.37)

The above inequality must be satisfied for all values of Ḟm and κ̇ with a kinematic con-

straint of detFm = 1 (swollen elastomer is assumed to be incompressible). Following the

arguments of Coleman and Gurtin (1967), the following constitutive equation is obtained

for the first Piola-Kirchhoff stress:

P =−qJ−1/3
s F-T

m + J−1/3
s

∂Ŵ
∂Fm

∣∣∣∣
Js,κ

(3.38)
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Using Equation (3.36), the respective expressions for the Cauchy stress tensor and the

second Piola-Kirchhoff tensors are:

σ =−qJ−1
s I+2

[(
∂Ŵm

∂ I1m
+ I1m

∂Ŵm

∂ I2m

)
Bm−

∂Ŵm

∂ I2m
B2

m

]
P̂ =−qJ−1

s F-T
m +2

[(
∂Ŵm

∂ I1m
+ I1m

∂Ŵm

∂ I2m

)
Fm−

∂Ŵm

∂ I2m
FmCm

] (3.39)

These expressions are identical with Equations (3.21) and (3.22) obtained earlier. How-

ever, the final expressions are different since Ŵ has an additional dependence on the

damage variable κ . The constitutive equations in Equation (3.39) must be complemented

by a kinetic relation which describes the evolution of the involved internal variable κ .

The corresponding evolution equation has to be consistent with the non-negativity of the

internal dissipation. To this end, we consider the remaining term in inequality (3.37) as

follows:

Dint = Aκ κ̇ ≥ 0 where Aκ =− ∂Ŵ
∂κ

∣∣∣∣
Js,Fm

=−Js
∂Ŵm

∂κ

∣∣∣∣
Js,Fm

(3.40)

In the above expression, Aκ is the thermodynamic force associated with the damage

variable κ . Depending on the nature of the variable κ , different evolution equations κ̇

can be adopted provided that they satisfy inequality (3.40). For instance, the simplest

sufficient condition to fulfil the above inequality is:

κ̇ =
1

τ(Js)
Aκ (3.41)

where τ = τ(Js)> 0 is a material function. This inequality must be fulfilled for thermo-

dynamical reasons. In the following section, the form of the strain energy function Ŵm

and the evolution rule κ̇ describing the Mullins effect in swollen elastomers are discussed

based on the theory of the two-phase model of Mullins and Tobin (1957) and Qi and
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Boyce (2004).

3.2.3 (b) Two-phase model for Mullins effect in swollen elastomer

The two-phase model used to describe the Mullins effect in dry elastomers was de-

veloped by Qi and Boyce (2004) and is based on a strain amplification factor as originally

proposed by Mullins and Tobin (1957) (see Section 2.5). Mullins and Tobin (1957) de-

scribed filled-elastomers as a two-phase system containing a hard phase and a soft phase.

The strain is sustained only by the soft phase whose percentage increases with the max-

imum strain applied to the material. As strain is applied to the elastomer, a conversion

from the hard phase to the soft phase takes place which is an irreversible process. The

authors suggested that the irreversible conversion is the origin of the softening observed

in the elastomer under cyclic loading. Since the strain is sustained solely by the soft

phase, the local strain in the soft phase is necessarily amplified over that of the macro-

scopic applied strain. The combination of the hard-to-soft phase conversion along with

the amplified strain serve as the basis of the two-phase model proposed by Qi and Boyce

(2004) and will be reproduced in this research to describe the Mullins effect in swollen

elastomers under cyclic loading.

Let vs be the effective volume fraction of the soft phase and Js be the degree of

swelling. For an incompressible isotropic swollen elastomer undergoing stress-softening

due to the Mullins effect, the strain energy function (per unit of material volume in

unswollen-unstressed state) corresponding to the soft phase has a form:

Ŵ ≡ Ŵsp (Fm,X(vs),vs,Js)

= W̄sp (λ1m,λ2m,X(vs),vs,Js)

=Wsp (λ1m,λ2m,vs,Js)

(3.42)

where X is the amplification factor which depends on the volume fraction vsof the soft
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phase. Following Qi and Boyce (2004), the dependence of X on vs is given in a general

polynomial form of:

X = 1+3.5(1− vs)+18(1− vs)
2 (3.43)

Consequently, the internal dissipation for a given degree of swelling from Equation (3.37)

becomes:

Dint =

(
J1/3

s P−
∂Wsp

∂Fm

∣∣∣∣
Js,vs

)
: Ḟm−

∂Wsp

∂vs

∣∣∣∣
Js,Fm

v̇s ≥ 0 (3.44)

Using the argumentation of Coleman and Gurtin (1967), we obtain the following consti-

tutive relations having similar forms to those given in Equations (3.24) and (3.25):

σi =−qJ−1
s + J−1

s λim
∂Wsp

∂λim
no sum on i

P̂i =
σi

λim

(3.45)

The residual inequality then reduces to:

−
∂Wsp

∂vs

∣∣∣∣
Js,Fm

v̇s ≥ 0. (3.46)

The above inequality must be satisfied during arbitrary deformation histories. The form

of Wsp and the flow rule v̇s describing the increase of the soft phase with deformation are

specified in Section 5.1.2.

3.3 Finite element analysis

Finite element analysis (FEA) is the numerical simulation of the behaviour of a fi-

nite number of small subdomains, known as elements, to approximate the behaviour of a

larger domain. FEA uses the numerical technique to find approximate solutions to bound-

ary value problems for differential equations. FEA is extremely useful in the context of

designing, prototyping, failure identification and to estimate the fatigue life of a compo-
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nent. While applications in real life normally involve big and complicated design parts,

problems solving by FEA results in a reduction of time and cost with a promising solu-

tion (Jha, 2008). In order to solve FEA problems, we need a FEA solver. In this study,

ABAQUS is used. In this section, the analysis using ABAQUS is provided as well as

some notes on implementing the developed constitutive model into the FEA code using

the user-subroutine for a hyperelastic material (UHYPER).

3.3.1 Finite Element Analysis using ABAQUS

A complete ABAQUS analysis usually consists of three distinct stages: preprocess-

ing, simulation and postprocessing. The analysis flow is shown in Figure 3.18.

Figure 3.18: Flow of a complete ABAQUS analysis.
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In the preprocessing stage, the model representing the physical problem must be

defined in order to create an ABAQUS input file. The model can be created either by

using the software ABAQUS/CAE or import from another CAE software. However, the

input file for ABAQUS for simple analyses can be created directly using a text editor.

After the input file has been created, the simulation can be run by submitting a job in

ABAQUS once the material parameters describing the mechanical behaviour of the ma-

terial are provided. The material parameters can be entered as coefficients or determined

by inserting experimental data. The FEA solver then determines the stiffness matrix, Kel

based upon the spatial distribution, the material behaviour and the corresponding nodal

loads at each element.

The results from the simulation can be evaluated in the postprocessing stage once the

simulation is completed. Depending on the requirement of the analysis, various results

such as displacements, stresses and other fundamental variables can be extracted from the

simulation. The results can be evaluated using visualization module of ABAQUS/CAE or

other postprocessor. A complete flow of data and actions from the start of an ABAQUS/Standard

analysis to the end of a step is given in Figure 3.19.
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Figure 3.19: Global flow in ABAQUS/Standard.

3.3.2 User subroutine and notes on its implementation

There is a wide range of ABAQUS built-in models which are available for vari-

ous analyses. However, if a particular analysis cannot be modeled with the available

ABAQUS material models, a special code known as user subroutine is needed. In our

case, a new constitutive model for a hyperelastic material has been developed. Thus, a

user subroutine is needed to define the strain energy potential for the hyperelastic mate-

rial. The user subroutine UHYPER:
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1. is called at all material calculation points of elements for which the material defini-

tion contains user-defined hyperelastic behaviour.

2. can consider material behaviour dependent on field variables or state variables.

3. requires that the values of the derivatives of the strain energy density function of

the hyperelastic material be defined with respect to the strain invariants.

In order to simulate using FEA, the mechanical behaviour of the elastomer has to

be modeled using a strain energy function, W , which can be expressed as function of

the strain invariants. However, the strain energy function is written with regard to the

dry state as the reference. This can cause problems due to singularities in a numerical

calculation. To avoid this problem, the reference state has to be modified such that the

network, under vanishing mechanical load is in equilibrium with a solvent of chemical

potential, µo (Hong et al., 2009). The modified network experiences isotropic swelling

with principal stretches λ1 = λ2 = λ3. If the free swelling stretch is denoted by λo, the

modified deformation gradient with relative to the dry state can be written as:

Fo =


λo 0 0

0 λo 0

0 0 λo

 (3.47)

In numerical calculations, the modified free swelling state is used as the reference state,

thus

F = F′Fo (3.48)

where F is the deformation gradient of the current state relative to the dry state and F′ is

the deformation gradient of the current state relative to the modified free swelling state.
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Thus, the strain energy function from Equation (3.7) can be rewritten as:

Ŵ ′(F′,Js) = λ
−3
o Ŵ (F,Js) (3.49)

The theory is implemented in ABAQUS by using the user-defined subroutine for hy-

perelastic material, UHYPER. The diffusion of the solvent is mimicked by a temperature-

like variable.
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents the results obtained from experimental works described in the pre-

vious chapter. First, the general characteristics of swelling in biodiesel are explored. Two

cases are considered: stress-free swelling and swelling in the presence of a static mechan-

ical deformation (constrained swelling). The roles of mechanical deformation and carbon

black content will be discussed.

In the second part, the mechanical responses of swollen elastomers are investigated.

The effect of swelling on the inelastic responses of the elastomer under cyclic loading are

discussed.

4.1 Swelling results

4.1.1 Stress-free swelling

As mentioned in Section 3.1.1 (a), stress-free swelling is conducted under two dif-

ferent conditions: with and without device. For stress-free swelling without device, the

dumbbell specimens are immersed completely in the solvent without the device until

equilibrium swelling is achieved. As for stress-free swelling with device, the distance

between the metallic plates is adjusted from time to time to ensure that the swollen spec-

imen is under stress-free condition. In this subsection, the swelling results and rates of

swelling for both conditions are presented.

4.1.1 (a) Stress-free swelling without device

The variation of the volume change of unfilled and filled dumbbell specimen as a

function of the immersion duration is shown in Figure 4.1. It can be seen that, regardless

the amount of carbon black content, equilibrium swelling is achieved after around 600
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hours of immersion. The percentage of volume change at equilibrium swelling is about

24 %, 17 % and 14 % for unfilled elastomer, and two filled elastomers with 25 and 40

% of carbon black content, respectively. The presence of carbon black appears to restrict

the diffusion of the solvent into the elastomers since the elastomeric network becomes

stiffer with the addition of filler (Ramesan, 2005). Thus, it provides more resistance

and a barrier for solvent penetration (Abdul Kader & Bhowmick, 2003). Physically, the

filled elastomer with 40 % of carbon black is the stiffest. For the unfilled specimen, the

diffusion of solvent molecules into the elastomeric matrix is favorable as there is no filler

preventing the diffusion of solvent into the free volume between the molecules (Kraus,

1963).

Figure 4.1: Volume change of stress-free elastomer specimens (without device) with dif-

ferent carbon black content.

The rates of swelling are depicted in Figure 4.2. In this figure, the swelling rate is

obtained by calculating the slope of the swelling curve in Figure 4.1. From this figure, it

is observed that the rate of swelling decreases with the immersion duration. The rate of
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volume change is high at the initial stage and slowly descends until equilibrium swelling

is achieved. Initially there is a high concentration gradient between the dry elastomer and

the biodiesel, which leads to a high rate of solvent absorption. Subsequently, the rate of

swelling decreases with the increase in immersion duration and approaches zero as the

material reaches equilibrium swelling. As indicated in Figure 4.2, the introduction of

filler appears to restrict the rate of swelling (Egwaikhide et al., 2007).

Figure 4.2: Rates of swelling of stress-free specimens (without device).

4.1.1 (b) Stress-free swelling with device

Figure 4.3 shows the resulting volume change from dry until equilibrium swelling.

The resulting rates of swelling are depicted in Figure 4.4. It can be seen that the results

for free swelling with and without device show exactly the same trend except for slightly

higher volume change for the one without device. The reason for this observation could

be caused by the boundary conditions at both ends of the specimen which are clamped

with the device. At equilibrium swelling, the volume change recorded for unfilled and

filled elastomers with 25 % and 40 % of carbon black content are 23 %, 17 % and 13.5 %

91



respectively.

Figure 4.3: Volume change of stress-free specimens (with device) with different carbon

black content.

Figure 4.4: Rates of swelling of stress-free specimens (with device).
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Remark 2 Note that in order to be able to compare the results between free swelling and

constrained swelling, in the following parts, the results for free swelling with device are

referred to whenever the case for free swelling is mentioned.

4.1.2 Constrained swelling 1: static uniaxial strain

In this section, the effect of the presence of a constant uniaxial mechanical strain

on swelling is addressed. For this purpose, the distance between the metallic handles

are fixed at 3 different constant stretches: λ = 1.00, 1.25 and 1.50, respectively. The

stretch is defined as the ratio between the current length to the original length of the

specimen between the two metallic handles. Note that the corresponding engineering

strain is simply given by ε = λ − 1. The resulting volume change ratios are given in

Figures 4.5, 4.6 and 4.7.

Figure 4.5: Volume change of elastomer specimens with different carbon black content at

λ = 1.
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Figure 4.6: Volume change of elastomer specimens with different carbon black content at

λ = 1.25.

Figure 4.7: Volume change of elastomer specimens with different carbon black content at

λ = 1.5.
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Generally, for all imposed strain levels, the trend of swelling is similar to that for

free swelling. The unfilled rubber specimens exhibit the highest swelling levels followed

by the elastomer specimens with 25 and 40 wt% of carbon black. Moreover, as shown

in Figures 4.8 to 4.10, the introduction of the static uniaxial strain appears to alter the

swelling characteristics of elastomers (Bhattacharya & Bhowmick, 2008). For a given

immersion duration, the uniaxial tensile strain acts as accelerator for the penetration of

solvent molecules, i.e. the rate of swelling and thus the total swelling increase with

increasing λ . While the additional tensile strain appears to increase the solvent uptake

for filled elastomers, it is to note that for unfilled elastomer the equilibrium swelling for

λ = 1 is greater than λ = 1.25. Although initially the volume change for λ = 1.25 is

greater than λ = 1, the volume change of λ = 1.25 overtakes that for λ = 1 as indicated

by point P in Figure 4.8. While the precise reason for this phenomenon is not known, it

could be attributed to the buckling of the specimen for λ = 1. Indeed, after 300 hours of

immersion, this specimen undergoes buckling. This buckling appears to modify the stress

state in the specimen resulting in more solvent uptake.
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Figure 4.8: Volume change of specimens at different tensile strains for unfilled elastomer.

Figure 4.9: Volume change of specimens at different tensile strains for filled elastomer

(25 wt% carbon black).
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Figure 4.10: Volume change of specimens at different tensile strains for filled elastomer

(40 wt% carbon black).

The increasing swelling level with strain could be explained by the hydrostatic part

of the Cauchy stress in the elastomer. According to Treloar (1975), negative hydrostatic

stress facilitates swelling and the application of tensile strain generates more negative

hydrostatic stress. Thus, the resulting swelling increases as more tensile strain is applied

to the specimen. The detailed discussion of this theory is provided in Section 4.3.

For filled elastomers, closer investigation on Figures 4.5, 4.6 and 4.7 reveals that

the swelling curve of elastomer with 25 wt% carbon black and that with 40 wt% carbon

black become closer as higher strain is applied. This observation is related to two opposite

roles of filler on the ability of elastomers to absorb solvents. In one hand, as discussed

in the previous section, increasing carbon black content yields to a stiffer elastomeric

network which acts as barrier for solvent penetration (Mostafa et al., 2009). In another

hand, carbon black acts as a strain amplifier when a macroscopic strain is applied to

the elastomers (Guth, 1945): the higher the carbon black content, the higher the strain
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amplification. The strain amplifying concept considers carbon black as rigid particles

which do not participate in the deformation when a strain is applied to the elastomer. The

soft rubbery matrix is assumed to behave exactly the same as the pure vulcanizate without

the carbon black (Mullins & Tobin, 1965). As a result, the local strain in the elastomer is

greater than the macroscopic applied strain due to the strain amplification effect. This, in

turn, will generate more negative hydrostatic stress which facilitates solvent penetration.

It could be interesting to see whether the two curves will ever be superimposed for higher

strain, e.g. λ = 2. Unfortunately, we did not manage to verify it since the specimens

rupture during the swelling test when higher stretch than 1.5 is imposed.

4.1.3 Constrained swelling 2: static multiaxial strain (Design 1)

Figure 4.11 shows the percentage of mass change and volume change of specimens

immersed during one week in palm biodiesel under different loading conditions: initially

stress-free S0T0, simple tension S20T0, S40T0, S60T0, simple torsion S0T30, S0T60,

S0T90, and combined tension-torsion S20T30, S20T60, S20T90, S40T30, S40T60, S40T90,

S60T30, S60T60, S60T90. For each condition, three specimens were tested. The effect

of mechanical loading, particularly tensile strain, on the amount of swelling is clearly

shown in this figure. It is observed that the application of tensile strain to the rubber spec-

imen increases the amount of liquid uptake regardless of the amount of applied twist. In

contrast, the effect of the twist to the amount of swelling appears to be not as significant

as the effect of tensile strain. Indeed, the application of twist increases only slightly the

amount of liquid uptake. The effect of torsion on the amount of swelling is discussed in

detail in Section 4.3.

The significant increase of swelling due to the application of tensile strain can be

explained by the fact that the initial available surface of the specimen through which

diffusion occurs increases (Chai et al., 2011). Moreover, tensile strain generates tensile
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stress in the material. In this case, the hydrostatic part of the stress is negative. According

to Treloar (1975), negative hydrostatic stress facilitates the liquid uptake.

Figure 4.11: (a) Mass change and (b) volume change of NBR after 1 week immersion in

palm biodiesel
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4.1.4 Constrained swelling 3: static multiaxial strain (Design 2)

The mass and volume change under the presence of a static multiaxial strain for De-

sign 2 are shown in Figure 4.12. Three different twisting angles were imposed: 0◦, 10◦

and 20◦. As shown in Figure 4.12, the introduction of torsional strain yields to higher

swelling as compared to the initially stress-free specimen. The volume change also in-

creases with increasing duration of immersion. At the end of the immersion period (700

hours), the percentages of volume change are approximately 6.1 %, 6.9 % and 7.9 % for

twist angles of 0◦ (initially stress-free), 10◦ and 20◦, respectively. Similar to our previous

observation, the corresponding trend can be explained by considering the hydrostatic part

of the Cauchy stress in the material (See Section 4.3).
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Figure 4.12: (a) Mass change and (b) volume change for different twisting angle.

It is worthy to note that although two different specimens were designed for the pur-

pose of investigating swelling in the presence of a static multiaxial strain, both specimens

show different trends. While torsion is shown insignificant to the swelling effect for de-

sign 1, swelling is observed to be increasing with the introduction of torsion for design
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2. This observation may be caused by the difference in the specimen dimension. The

detailed discussion is provided in Section 4.3.

4.2 Mechanical responses

4.2.1 Mechanical responses under monotonic tensile loading

The stress strain curves for dry unfilled and filled elastomers with 25 and 40 %

carbon black content under monotonic tensile loading until fracture are depicted in Figure

4.13. The results show an increase of the elastic modulus with an increase of carbon black

content in the elastomer. This phenomenon may be caused by the strain amplification due

to the filler content in the elastomer (Mullins & Tobin, 1957). Since carbon black is an

active filler, also other reinforcement effects take place. When a strain is applied to the

soft elastomer matrix containing discrete rigid inclusions, the average local strain in the

matrix must exceed the macroscopic applied strain since the rigid inclusions do not take

part in the deformation (See Section 2.5).

Figure 4.13: Monotonic stress-strain response of dry specimens with different carbon

black content.
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In addition, it is also observed that elastomers with different carbon black content

failure at different tensile strains. For unfilled and filled elastomer with 40 % of carbon

black, the specimens failure at 700 % of tensile strain. Meanwhile for the elastomer filled

with 25 % carbon black, failure occurs at around 1500 % of tensile strain. Although

the addition of carbon black leads to an increase in various properties which include the

modulus, hardness, tensile strength, abrasion, tear resistance and resistance to fatigue, it

appears that there is an optimum level of filler content which can improve the performance

of the elastomer (Ramesan, 2005). Based on this observation, only filled elastomers with

25 % of carbon black content is considered for the multiaxial design.

4.2.2 Mechanical responses under cyclic loading

In this section, the mechanical responses of dry and swollen elastomers under cyclic

loadings are presented. In order to avoid buckling, specimens from Design 1 are used.

The stress strain response of dry and swollen elastomers for Design 1 under monotonic

tensile loadings are recalled and presented as Figure 4.14.

Figure 4.14: Stress-strain curves under monotonic tensile loading.
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The stress strain response of dry and swollen elastomers subjected to five cycles of

uniaxial tension up to tensile strain of 300 % are presented in Figures 4.15, 4.16 and

4.17. It is clearly seen that both dry and swollen elastomers exhibit inelastic behaviour,

i.e. stress softening due to the Mullins effect, hysteresis and permanent set. The Mullins

effect is mainly observed between the first and second cycles. Indeed, it is observed

that softening which takes place after the second cycle is not significant. Nevertheless,

significant hysteresis is still observed even when the material has been softened. Smaller

stress-softening and hysteresis are observed in swollen elastomers. The observed results

are consistent with the work of Chai, Andriyana, et al. (2013).

Figure 4.15: Stress-strain curve under 5 cycles of loading for dry specimen (Js = 1).
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Figure 4.16: Stress-strain curve under 5 cycles of loading for swollen specimen (Js =

1.05).

Figure 4.17: Stress-strain curve under 5 cycles of loading for swollen specimen (Js =

1.07).
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Before proceeding further, it is important to illustrate the effect of swelling on the

stress-softening of the material. For this purpose, stress-softening in both dry and swollen

elastomers is calculated based on the relation:

Stress softening (dry) =
Pup

d1 −Pup
d2

Pup
d1

Stress softening (swollen) =
Pup

s1 −Pup
s2

Pup
s1

(4.1)

where Pup
d1 is the stress in the dry elastomer during uploading of the first cycle, Pup

d2 is the

stress in the dry elastomer during uploading of the second cycle, Pup
s1 is the stress in the

swollen elastomer during uploading of the first cycle and Pup
s2 is the stress in the swollen

elastomer during uploading of the second cycle.

The stress-softening exhibited by both dry and swollen elastomers is shown in Figure

4.18. It is observed that for both dry and swollen elastomers, stress-softening decreases

as the strain level approaches the maximum strain. Although the discrepancies are not

obvious, the presence of solvent appears to decrease stress-softening of the swollen elas-

tomers.
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Figure 4.18: Stress-softening in dry and swollen elastomers calculated at second upload-

ing.

The stress strain response of dry and swollen elastomers (Js = 1.05,1.07) under

incremental cyclic tensile loadings is presented in Figures 4.19, 4.20 and 4.21. Gen-

erally, the nature of the stress strain curves remains the same for dry and swollen elas-

tomers. However, similarly to the results for monotonic tensile loading, lower stresses are

recorded for swollen elastomers for a given strain. The lower stress level in swollen elas-

tomers can be attributed to the elastomer-solvent interaction which leads to the decrease

in the strength of the elastomer (George et al., 1999). It is observed that both dry and

swollen elastomers exhibit strong inelastic responses: stress-softening (Mullins effect),

mechanical hysteresis (viscoelasticity) and permanent set. As indicated in the figures, it

appears that the inelastic responses decrease when the degree of swelling is higher.
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Figure 4.19: Stress-strain curve under cyclic loading with increasing maximum strain for

dry specimen (Js = 1).

Figure 4.20: Stress-strain curve under cyclic loading with increasing maximum strain for

swollen specimen (Js = 1.05).
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Figure 4.21: Stress-strain curve under cyclic loading with increasing maximum strain for

swollen specimen (Js = 1.07).

Figures 4.22,4.23 and 4.24 show the combination of the stress responses under cyclic

loading and monotonic tensile loading. Generally, stress-softening features are preserved

for all three conditions under different degrees of swelling. Moreover, it is worth to note

that the return of the reloading curve approaches nearly the monotonous curve after be-

ing stretched beyond the maximum stretch previously applied. For both dry and swollen

rubber, the dependence of the Mullins effect on the maximum deformation previously

endured by the materials is clearly shown in these figures. Moreover, they exhibit perma-

nent set which increases as the materials are stretched further. This result is consistent

with the observation of Chai, Andriyana, et al. (2013).
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Figure 4.22: Material responses under cyclic loading with increasing maximum stretch

for dry specimen (Js = 1).

Figure 4.23: Material responses under cyclic loading with increasing maximum stretch

for swollen specimen (Js = 1.05).
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Figure 4.24: Material responses under cyclic loading with increasing maximum stretch

for swollen specimen (Js = 1.07).

4.3 Mechanical quantity affecting swelling

As mentioned in the previous section, the reduction or increase in the swelling is

mainly governed by the hydrostatic part of the Cauchy stress (Treloar, 1975). A tensile

stress (negative hydrostatic stress) favors swelling while a compressive stress (positive

hydrostatic stress) restricts swelling. In the present study, complex mechanical loading

conditions such as combined tension-torsion are addressed. Hence, the calculation of

the hydrostatic part of the Cauchy stress in the specimen requires the analytical solution

of the hyperelastic hollow cylinder under corresponding mechanical loading conditions:

simple tension, simple torsion and combined torsion-tension.

During the immersion tests, the elastomeric specimens are subjected to static me-

chanical loadings. Due to viscoelastic behaviour of the materials, the resulting stress

decreases with time during the immersion, i.e. the materials experience stress relaxation.

The viscoelastic characteristic of our materials is highlighted in Figure 4.19. The de-
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crease of stress due to viscoelasticity yields also to the decrease of the hydrostatic part of

Cauchy stress. Since the precise kinetics of stress-relaxation during the immersion test is

not known, i.e. the stress level in the material at any particular time is not known, we only

focus on the initial hydrostatic stress in the dry elastomers before the immersion test.

In Figure 4.19, the engineering stress-engineering strain responses of dry elastomer

under cyclic loading conditions are presented. It is observed that the material exhibits

strong inelastic responses: stress-softening (Mullins effect), mechanical hysteresis (vis-

coelasticity) and permanent set. For the sake of simplicity, in the present study, the ana-

lytical determination of the hydrostatic stress is only based on the first uploading response

of the materials, i.e. the viscoelastic response and stress-softening are neglected. More-

over, the dry elastomer is assumed to be isotropic and incompressible which obeys the

Neo-Hookean hyperelastic constitutive equation.

Using a cylindrical coordinate system, the spatial position of a point in a cylinder

under combined tensile-torsion is given as (Ogden, 1984):

r =
R√
λ

θ = Θ+λγZ z = λZ (4.2)

λ is the extension ratio and γ is the angle of torsion (in rad) per unit length. The defor-

mation gradient can be written as:

F =
1√
λ
(er⊗eR + eθ⊗eΘ)+R

√
λγeθ⊗eZ +λez⊗eZ (4.3)

where (er,eθ ,ez) represent the three unit vectors along radial, circumferential and axial

directions respectively in the deformed configuration while eR,e ,eZ are the unit vec-

tors in the undeformed configuration. The left B and right C Cauchy-Green tensors are
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therefore:

B =
1
λ

er⊗er +

(
1
λ
+λ

2
γ

2r2
)

eθ⊗eθ +λ
2
γr(eθ⊗ez + ez⊗eθ )+λ

2ez⊗ez (4.4)

C =
1
λ

eR⊗eR + eΘ⊗eΘ + γR(eΘ⊗eZ + eZ⊗eΘ)+(λ 2 +λγ
2R2)ez⊗ez (4.5)

In the case where the hyperelastic strain energy W depends only on I1, the Cauchy

stress tensor is given as:

σ =

(
−q+2

∂W
∂ I1

1
λ

)
er⊗er +

(
−q+2

∂W
∂ I1

(
1
λ
+λ

2
γ

2r2
))

eθ⊗eθ

+2
∂W
∂ I1

λ
2
γr(eθ⊗ez + ez⊗eθ )+

(
−q+2

∂W
∂ I1

λ
2
)

ez⊗ez

(4.6)

For a cylinder, the pressure q can be written as:

q(R) =
2
λ

∂W
∂ I1

(R)+2λγ
2
∫ Ro

R
s
∂W
∂ I1

(s)ds (4.7)

Finally, the expression of each component of σ is:

σrr(R) =−2λγ
2
∫ Ro

R
s
∂W
∂ I1

(s)ds

σθθ (R) = 2λγ
2
(

R2 ∂W
∂ I1

(R)−
∫ Ro

R
s
∂W
∂ I1

(s)ds
)

σθz(R) = σzθ (R) = 2λ
3/2

γR
∂W
∂ I1

(R)

σzz(R) = 2
∂W
∂ I1

(R)
(

λ
2− 1

λ

)
−2λγ

2
∫ Ro

R
s
∂W
∂ I1

(s)ds

(4.8)

with σrθ = σθr = σrz = σzr = 0. For the special case of a Neo-Hookean hyperelastic

material, ∂W
∂ I1

= C and the resulting Cauchy stress tensor at any particular point of the
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undeformed configuration is simplified as:

σ(R) =Cλγ
2(R2−R2

o)er⊗er +Cλγ
2(3R2−R2

o)eθ⊗eθ

+2Cλ
3/2

γR(eθ⊗ez + ez⊗eθ )+

[
2Cλ

2− 1
λ
+Cλγ

2(R2−R2
o)

]
ez⊗ez

(4.9)

where R is the radial position of any particular point in the undeformed configuration

while Ro is the initial outer radius of the cylinder. The material parameter C identified

from the first uploading section of the stress response as mentioned in the previous para-

graph. The hydrostatic stress is obtained by taking the trace of the Cauchy stress tensor

(Holzapfel, 2000):

p =−1
3

tr(σ) (4.10)

which yields to:

p(R) =−1
3
[Cλγ

2(R2−R2
o)+Cλγ

2(3R2−R2
o)+2C(λ 2− 1

λ
)+Cλγ

2(R2−R2
o)] (4.11)

For a static uniaxial state of strain, it is obvious that Equation (4.11) can be simplified

to p(R) =−2C
3 (λ 2− 1

λ
) and the value is always negative for any given amount of tensile

strain, i.e. when λ > 1. Thus, it is straight-forward to see that the imposed tensile strain

leads to negative hydrostatic stress in the elastomer which leads to higher amount of

swelling. The complication of the equation arises for static multiaxial strain since the

strain might be non uniform. Thus, the initial hydrostatic stress in the middle part of

the specimen at various radial positions for simultaneous tension-torsion (Design 1) is

calculated and depicted in Figure 4.25. In this calculation, the values of C for the dry

elastomer is 0.554 MPa. Moreover, the inner and outer radii are Ri = 6.5mm and Ro =

12.5mm, respectively. For a given twist, it is observed that the hydrostatic stress decreases

with the increase of radial position. More precisely, under torsion the elastomeric cylinder
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experiences compressive stress at the inner surface and tensile stress at the outer surface,

i.e. the strain is non-uniform. Thus, the swelling occurs in the presence of non-uniform

strain (stress) field.

Figure 4.25: Initial hydrostatic part of Cauchy stress at different radial position for Design

1.

As shown in Figure 4.25, there exists a particular plane along which the hydrostatic

stress is zero. This particular plane is located at the critical radius Rc =
√

0.6·Ro which
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is independent on the applied twist. Between the inner surface and the particular plane,

i.e. Ri < R < Rc, the hydrostatic stress is positive (in compression state) while between

the particular plane and the outer surface of the cylinder, i.e. R > Rc, the hydrostatic

stress is negative (in the tension state). The resulting stress state under torsion for Design

1 is illustrated in Figure 4.26. When the twist increases, the hydrostatic stress gradient

also increases, i.e. increasing the non-uniformity of strain (stress) field in the materials.

Furthermore, it appears that the only effect of tensile loading is to translate vertically

downward the curve of hydrostatic stress, i.e. to a more negative value. As indicated

in Figure 4.25, the amount of this translation decreases slightly with the radial position.

Finally, as the tensile loading increases, its effect becomes more significant which yields

to the reduction of the non-uniformity of strain (stress).

Figure 4.26: Stress state under torsion in the specimen for Design 1.

Since the strain and stress are non-uniform in the rubber specimen, the average value

of hydrostatic stress has to be calculated. Figure 4.27 presents the average hydrostatic

stress for different loading conditions. In this case, the average hydrostatic stress is cal-

culated from:

p̄ =
1

Ro−Ri

∫ Ro

Ri

pdr (4.12)

As shown in Figure 4.27, the tensile strain affects significantly the average value of hy-
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drostatic stress. In contrast, the average value of hydrostatic stress does not change sig-

nificantly with the increase of twist. Indeed, for the case of simple torsion, the average

hydrostatic stresses are close to zero regardless of the amount of twist. For the sake of

clarity, the corresponding average hydrostatic stress is re-plotted in Figure 4.27 (b). These

results can be helpful in understanding why the swelling levels in our materials are not

greatly affected by the amount of twist.
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Figure 4.27: Average initial hydrostatic part of Cauchy stress at different twisting angle

for (a) NBR and (b) NBR without tensile strain.

To gain an insight view on the effect of simple torsion on the swelling level for

our specimen, the percentage of volume change is plotted against the average hydrostatic

stress for simple torsion cases in Figure 4.28. When twist is applied, it is found that the
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resulting swelling level is systematically higher than the swelling in initially stress-free

specimens. The increase of swelling due to the application of twist is in contrast to the

prediction of Loke et al. (1972) and Treloar (1972). In the opinion of the author, the

corresponding discrepancy could be attributed to the geometry of the specimen. Indeed,

while a hollow cylindrical specimen is considered in the present study, Loke et al. (1972)

and Treloar (1972) used a solid cylindrical specimen. For a given twist, the zone of the

cylinder experiencing compressive hydrostatic stress will be larger in the case of the solid

cylinder than that in the case of the hollow cylinder. As discussed and detailed in the

previous paragraph, the zone with compressive hydrostatic stress is located in the range

Ri < R < Rc. Note that in the case of solid cylinder, Ri=0. Since the zone experiencing

compressive hydrostatic stress is larger in solid cylinder, the resulting average hydrostatic

stress becomes higher, i.e. more positive, higher average compressive hydrostatic stress.

Thus, under a given twist, the resulting swelling in solid cylinder is lower than that in

hollow cylinder.

While the introduction of torsion appears to increase swelling, our results do not

clearly indicate the effect of the amount of torsion on the swelling level. The correspond-

ing observation could be attributed to the particular geometry of our specimen. As illus-

trated in Figure 4.27, the change in the average hydrostatic pressure due to the increase in

torsion is not as significant as due to the application of tensile strain.
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Figure 4.28: Volume change as a function of average hydrostatic component of stress.

Finally, the above observations suggest that the effect of torsion on swelling is dic-

tated by the specimen geometry. In the case of the solid cylinder, the resulting average

hydrostatic stress is positive, i.e. swelling is restricted. Thus, lower swelling is expected

to occur in comparison with that observed in stress-free cylinders. This case corresponds

to the works of Loke et al. (1972) and Treloar (1972). However, when a hollow cylinder

having an inner radius larger than the critical radius is used, i.e. with Ri > Rc, the result-

ing average hydrostatic stress is negative and significantly higher swelling is expected to

occur than that in the stress-free cylinder. It is straightforward to show that the condition

Ri > Rc, is equivalent with the ratio t
Rm

< 0.259, where t = Ro−Ri is the wall thickness

and Rm = 1
2(Ro +Ri) is the mean radius of the cylinder. For our purpose, a thin-walled

cylinder with the above ratio would be preferable than the solid one since a certain level

of swelling can be reached within a shorter period of time. Moreover, the resulting stress

and strain fields will be more uniform. The middle part of the elastomeric specimens for

Design 1 has the thickness-mean radius ratio of t
Rm

= 0.632. Therefore, no clear influence

120



of torsion on the swelling level is observed. Based on this observation, a further develop-

ment of Design 2 for a specimen with the ratio of t
Rm

< 0.259 is carried out to establish

the effect of multiaxial loading on the swelling of elastomers.

Using a similar approach, the initial hydrostatic stress in the middle part of the spec-

imen at various radial positions for multiaxial strain (Design 2) is calculated and depicted

in Figure 4.29. The inner and outer radii of the cylinder are Ri = 38 mm and Ro = 43 mm

respectively. Since Ri > Rc, all parts of the elastomer will undergo negative hydrostatic

stress (in tensile stress) when a torsional load is applied.

Figure 4.29: Initial hydrostatic part of Cauchy stress at different radial positions for De-

sign 2.

As clearly shown, the hydrostatic stress distribution is non-uniform. Thus, in order to

determine the overall swelling in the specimen, the average value of the hydrostatic stress

is used and is calculated using Equation (4.12). The resulting average hydrostatic stress

for different loading conditions is presented in Figure 4.30. As shown in this figure, a

twist angle of 10◦ creates an average hydrostatic stress of about -0.13 MPa. An additional
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10◦ of twist angle decreases the average hydrostatic stress to about -0.55 MPa. This

implies that by doubling the twist angle, we obtain a more than four times lower value for

the average hydrostatic stress.

Figure 4.30: Average initial hydrostatic part of Cauchy stress for different twist angles.

In order to understand the effect of hydrostatic stress on swelling, the percentage

of volume change for different immersion durations is plotted against the average hy-

drostatic stress in Figure 4.31. It is shown in this figure that the volume change of the

elastomer increases with increasing immersion duration and with the decrease in the av-

erage hydrostatic stress. This result is in agreement with the finding of Treloar (1975)

but in contrast with the results obtained by Loke et al. (1972) and Treloar (1972) who

suggested that swelling decreases with increases in the twist angle. As discussed earlier,

the discrepancy between our results and those of Loke et al. (1972) and Treloar (1972)

can be explained by the fact that they used a solid cylindrical rubber specimen instead of

a hollow one.
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Figure 4.31: Volume change as a function of average hydrostatic stress for different im-

mersion durations.

4.4 Discussion on the experimental specimen and device

In this section, a brief discussion on the advantages and limitations of the specimens

and devices used throughout this study is given. This discussion will be helpful especially

in understanding the limitations of the existing design for further improvement.

4.4.1 Constrained swelling 1: static uniaxial strain

The advantages of the specimen and device used for conducting static uniaxial strain

are summarized below:

1. Static uniaxial strain can be introduced by adjusting the bolts and nuts connecting

the metallic plates. This will allow the experimental observation of the coupling

between mechanical loading and the diffusion of solvents.

2. The elastomer specimen used is following the ASTM standard. Thus, the specimen

is easy to produce.

123



3. The elastomer specimen used has a thickness of 2 mm which is considerably thin

and equilibrium swelling can occur in a short period of time.

4. The metallic device can accommodate up to 3 specimens which enable multiple

specimens to be immersed at the same time. Should more than three specimens are

required, the device can be easily modified by changing the length of the metallic

plates.

5. No adhesive is used in the connection between the metallic device and the elas-

tomeric specimen. Thus, the immersion tests can be conducted using any type of

aggressive liquids since debonding between the specimen and the metallic parts is

not an issue.

6. The metallic device can be easily attached and dismantled from the specimen and

can be reused for further experimental works.

Although the device enables the experimental set up to be carried out successfully,

there are some limitations which are listed below:

1. Since the specimen used is flat in shape, buckling is observed when the degree

of swelling is sufficiently high which results in complex stress state generated in

the specimen. This leads to complexity in understanding the effect of mechanical

loading on swelling.

2. The device can not be attached to a tensile testing machine to conduct cyclic me-

chanical loadings since the specimen will undergo buckling during compressive

loading. However, this limitation is related to the geometry of the specimen.

4.4.2 Constrained swelling 2: static multiaxial strain (Design 1)

Apart from the advantages such as no adhesive is used and the device can be attached

and dismantled easily, the device and specimen used in Design 1 possess the advantages
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such as:

1. Multiaxial strain can be introduced simultaneously to the specimens during the

immersion test.

2. Diffusion of liquids practically occurs only along the radial direction, i.e. sim-

ple one-dimensional diffusion takes place. Thus, the corresponding experimen-

tal results can be used to validate simple mechanical models for investigating the

swelling of elastomers in solvents undergoing simultaneously a mechanical load-

ing.

3. Hollow diabolo specimens ensure that the equilibrium swelling can be achieved

within a reasonably short period of time while permitting the application of moder-

ate compressive strain without buckling or wrinkling.

4. Different twist angles and axial extensions/contractions can be imposed to the spec-

imen simply by fixing and adjusting bolts and nuts at appropriate positions.

5. The metallic grips are designed so that the device and specimen can be used for

several subsequent mechanical testings which follow the immersion tests such as

uniaxial tensile, simple torsion, combined torsion-tension or fatigue testing.

Based on the discussion in Section 4.3, there are some limitations that need to be

improved in future works:

1. Under simple torsion, the specimen is subjected to a non-uniform strain (or stress)

field. Being preliminary work, this additional difficulty dealing with diffusion of

liquids in the presence of non-uniform strain (or stress) should be avoided. A rel-

ative uniform strain and stress field in the specimen under torsion can be obtained

by increasing the inner diameter of the specimen while fixing its wall thickness.
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2. Different parts in the specimen undergo different swelling levels due to its geome-

try. It is preferable to confine the diffusion, i.e. swelling, in the middle part of the

specimen since this is the focus of our study. This can be obtained by introducing

an appropriate sealing on the specimen such that diffusion takes place only through

the inner and outer surfaces of the middle part of the specimen.

4.4.3 Constrained swelling 3: static multiaxial strain (Design 2)

By referring to the limitations of Design 1, an improved version of device and spec-

imen (Design 2) was manufactured and the new design exhibits the following improve-

ments:

1. Under simple torsion, a more uniform strain field is generated throughout the spec-

imen as compared to Design 1.

2. For a given amount of twist, the stress generated in this specimen is higher than that

in Design 1. Thus, it increases the rate of diffusion of solvents. Under such circum-

stances, equilibrium swelling can be achieved within a shorter period of time.

3. Diffusion of solvents only occurs in the middle part of the specimen through the in-

ner and outer surfaces since other parts are properly sealed with the metallic plates.

Although Design 2 manages to overcome some limitations observed in Design 1,

the metallic device of Design 2 is not able to carry out mechanical testing. Indeed, when

significant stretch is introduced, slip between the elastomeric specimens and the metallic

device occurs. Moreover, equilibrium swelling cannot be observed since the specimen

breaks prematurely during the immersion test. Further improvements on the setup of the

specimen and the device are needed to overcome the above limitations.
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CHAPTER 5

MODELING RESULTS AND DISCUSSION

This chapter can be divided into two main sections: modelling the stress-strain response at

a given degree of swelling and prediction of equilibrium swelling for different mechanical

deformations. The modeling results are then compared with the experimental results

presented in Chapter 4.

5.1 Stress-strain relationship at a given degree of swelling

The mechanical responses of both dry and swollen elastomers under cyclic loadings

as presented in Section 4.2.2 clearly indicated the complexity of the material responses,

i.e. Mullins effect, hysteresis and permanent set take place. To simulate the real engi-

neering components in a swollen state, a complex constitutive model taking into account

all the inelastic responses must be developed to simulate the observed mechanical re-

sponses. The development of such a complex model is beyond the scope of this research.

As a starting attempt, only the Mullins effect is considered in the model. Other inelastic

phenomena are not considered in this work.

5.1.1 Data treatment

Since the Mullins effect is the only inelastic response addressed in the present study,

the experimental results must be treated in order to highlight the characteristics of it.

For this purpose, the data treatment proposed by Chagnon et al. (2004) is adopted and

summarized below:

1. Only unloading paths are considered and the reloading paths are assumed to coin-

cide with them.
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2. The unloading paths are horizontally shifted such that they start from zero strain

(stretch=1).

3. The shifted unloading paths are extended to rejoin the monotonic primary curve.

The resulting treated experimental data are presented in Figures 5.1 to 5.3 and will be

used to assess the efficiency of the proposed model.

Figure 5.1: Treated experimental data for dry elastomer (Js = 1)

128



Figure 5.2: Treated experimental data for swollen elastomer (Js = 1.05)

Figure 5.3: Treated experimental data for swollen elastomer (Js = 1.07)
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5.1.2 Form of material functions

In order to capture the stress-strain response of rubber under large strains, the eight-

chain model of Arruda and Boyce (1993) is retained. The corresponding hyperelastic

strain energy density is given by:

Wsp = vs µd

[√
Nλch,spβ +N ln

(
β

sinhβ

)]
β = L −1

(
λch,sp√

N

) (5.1)

L −1 is the inverse Langevin function, µd is the shear modulus of dry elastomer, N is the

number of chain segments and λch,sp is the amplified mechanical chain stretch. The latter

is related to the macroscopic mechanical chain stretch λch via (Qi & Boyce, 2004):

λch,sp =
√

X
(
λ 2

ch−1
)
+1

λch =

√
I1m

3

(5.2)

According to Treloar (1975), swelling of elastomers is a physical mixing or inter-

diffusion process with no chemical attraction between elastomer and solvent molecules.

Furthermore, the only effect of swelling is to reduce the modulus in inverse proportion to

the cube root of the swelling degree without changing the form of the stress-strain curves.

However, as observed by Chai et al. (2011), deviations from the theory of Treloar were

found for NBR swollen by palm biodiesel. Thus, following Durning and Morman (1993),

the shear modulus of the swollen elastomer µs is assumed to be related to that of dry

elastomer µd through:

µs = J−n
s µd (5.3)

where n > 0 is a material parameter. It follows that the strain energy function of a me-

chanical incompressible elastomer (per unit of material volume in unswollen-unstressed
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state) which is isotropically swollen is given by (Boyce & Arruda, 2001):

Wsp = vsµsN

[
Λch,sp√

N
βch,sp + ln

(
βch,sp

sinhβch,sp

)
− J1/3

s√
N

βs− ln
(

βs

sinhβs

)]
(5.4)

where

Λch,sp = J1/3
s λch,sp

βch,sp = L −1(
Λch,sp√

N
)

βs = L −1(
J1/3

s√
N
)

(5.5)

The principal values of the Cauchy stress are obtained via Equation (3.45):

σi =−qJ−1
s + J−n−2/3

s
vsXµd

3

√
N

λch,sp
L −1

(
Λch,sp√

N

)
λ

2
i (5.6)

The difference between two principal Cauchy stress values is given by:

σ1−σ2 = J−n−2/3
s

vsXµd

3

√
N

λch,sp
L −1

(
Λch,sp√

N

)
(λ 2

1 −λ
2
2 ) (5.7)

For the special case of uniaxial tensile strain, where λ1 = λm and λ2 = λ3 = 1/
√

λ1, the

axial Cauchy stress is given by:

σ = J−r
s

vsXµd

3

√
N

λch,sp
L −1

(
Λch,sp√

N

)(
λ

2
m−

1
λm

)
r = n+2/3

(5.8)

The above constitutive equation must be complemented with an evolution equation

describing the change in the internal variable vs consistent with the second law of thermo-

dynamics (Andriyana, Billon, & Silva, 2010), more precisely the inequality in Equation

(3.46). Since ∂Wsp
∂vs

< 0, vs must be an increasing function of the maximum deformation
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which experienced the elastomer during the past history. Adopting a modified form of

saturation type for the evolution equation as proposed by Qi and Boyce (2004), the evo-

lution of the soft phase domain vs is assumed to follow a non-linear evolution equation:

v̇s = A(vss− vs)

√
N−1(√

N−λ max
ch,sp

)2 λ̇
max
ch,sp (5.9a)

λ̇
max
ch,sp =


0 if λch,sp < λ max

ch,sp

λ̇ max
ch,sp if λch,sp = λ max

ch,sp

(5.9b)

In the above expression, λ max
ch,sp is the maximum value of amplified mechanical chain

stretch λch,sp during the loading history. The quantity A is a material parameter and vss is

the theoretical maximum value of vs. Integrating Equation (5.9), the evolution equation

can be recast to:

vs = vss− (vss− vso)exp

[
A

(
1−

√
N−1√

N−λ max
ch,sp

)]
(5.10)

where vso is the initial volume fraction of the soft phase. To summarize, the material

parameters that have to be identified from experimental data are given in Table 5.1.

Table 5.1: Summary of material parameters required in the proposed model.

Material (soft phase) parameters µd N
Softening parameters vso vss A
Swelling effect parameter n

5.1.3 Identification of material parameters

In the following, the identification of the material parameters of the proposed model

is described. First, it is necessary to determine the parameters corresponding to the dry

elastomer. The properties of the soft domains in dry elastomers can be obtained by con-
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sidering the last unloading curve in Figure 5.1, i.e. at λmax = 4. Since additional softening

is expected to occur if the dry rubber was strained beyond λ = 4, the volume fraction of

the soft domain at this point is estimated to be vs (λmax = 5)≈ 0.90. Using this value, the

parameters µd and N are estimated to be µd = 0.21 MPa and N = 18. Next, by fitting si-

multaneously the primary curve (monotonic tensile) and unloading curves, the following

softening parameters are obtained: vso = 0.37, vss = 0.92 and A = 0.4.

For swollen elastomers, in order to capture the effect of swelling on the softening,

the dependence of the parameters vso, vss and A on the degree of swelling Js must be ex-

amined. For the sake of simplicity, it is assumed here that swelling only affects the initial

available soft phase domain vso. The parameters vss and A are assumed to be independent

on the degree of swelling. More precisely, swelling only reduces the initial hard phase

domain available to be converted into the soft phase domain during the deformation pro-

cess while the maximum soft phase domain and the conversion rate at which the hard

phase evolves due to a mechanical loading are assumed to be independent on the degree

of swelling.

As illustrated in Figures 5.1 to 5.3, stress-softening decreases with the increase in

swelling. Consequently, the initial soft phase volume fraction vso is an increasing func-

tion of the degree of swelling since the available hard to soft phase conversion during

stress softening decreases. For each degree of swelling, by fitting simultaneously the pri-

mary and unloading curves in Figures 5.1, 5.2 and 5.3, we obtain: vso (Js = 1.05) = 0.42,

vso (Js = 1.07) = 0.45 and n= 1.67. In Figure 5.4, the dependence of vso on Js is depicted.
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Figure 5.4: Evolution of the initial volume fraction of the soft domain as a function of

degree of swelling.

It appears that the corresponding dependence can be described by the following

exponential-like function:

vso (Js) = vso,d +C1

[
1− exp

(
−Js−1

C2

)]
(5.11)

where vso,d is the initial volume fraction of the soft phase in dry rubber. C1 = 0.145 and

C2 = 0.090 are additional parameters obtained by fitting the points in Figure 5.4. Finally,

the obtained material parameters are tabulated in Table 5.2.

Remark 3 The choice of the function selected to represent the evolution of the initial

volume fraction of the soft domain as a function of degree of swelling is based on the

observation of Chai (2013) where the level of stress-softening appears to be unaffected

by the corresponding further increase in swelling. Thus, it is assumed that there should
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Table 5.2: Values of material parameters used in the proposed model.

Parameter Value
Material (soft phase) parameters µd 0.21 MPa

N 18
Softening parameters vso,d 0.37

vss 0.92
Ad 0.4
C1 0.145
C2 0.090

Swelling parameter n 1.67

be maximum amount of softening experienced by the material regardless of the increase

in the degree of swelling.

Remark 4 The value of υs(λmax = 4) is set to 0.9 based on the following considerations:

1. λmax = 4 is close to the strain at fracture of λf = 5. Even if υs has no direct link to

fracture, it motivates the consideration that υs(λmax = 4) should be close to unity.

2. If υs(λmax = 4) is set to another value close to unity such as 0.8 or 0.7, the author

found that it does not affect significantly the value of other parameters. However,

the model fits best with experimental data when υs(λmax = 4) is set to be 0.9.

Remark 5 According to Chai, Andriyana, et al. (2013), elastomeric samples swollen up

to 5 % and 7 % are far from thermodynamic equilibrium. Thus, solvent distribution across

cross-sections of these specimens is not homogeneous. Being a first attempt to account

for the effect of swelling on stress-softening, in the model development we assume that

the material is homogeneous. Consequently, the proposed model provides only a rough

estimation of the stress states undergone by the material.

5.1.4 Comparison between model and experiment

The comparisons between the simulations based on the proposed model and the

treated experimental data are presented in Figures 5.5, 5.6 and 5.7. Note that for swollen
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elastomers, the tensile stress is expressed with respect to the swollen-unstressed configu-

ration (initial swollen cross section).

Figure 5.5: Comparison between the proposed model and treated experimental data for

dry elastomer (Js = 1).
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Figure 5.6: Comparison between the proposed model and treated experimental data for

swollen elastomer (Js = 1.05).

Figure 5.7: Comparison between the proposed model and treated experimental data for

swollen elastomer (Js = 1.07).
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Figure 5.8: Evolution of effective volume fraction of soft phase as a function of maximum

tensile strain.

In general, it is observed that the proposed model shows good agreement with experi-

mental data. The primary curves for dry and swollen rubbers are well-captured. Although

there are slight discrepancies during the secondary curves at lower stretch levels for the

dry specimens, they are acceptable and reduce as the stretch increases. As for the swollen

rubbers, both primary and secondary curves are well described by the proposed model.

Moreover, the dependence of the stress-softening on the swelling level is well-described:

smaller softening is observed for higher degree of swelling.

5.1.5 Simulation for other degrees of swelling

The initial volume fraction of the soft phase at other degrees of swelling is deter-

mined by Equation (5.11). Using the same material parameters as obtained above, the

model response for other degrees of swelling under uniaxial extension is simulated and

presented in Figures 5.9 to 5.11 while the evolution of the effective volume fraction of
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the soft phase is plotted in Figure 5.12.

Figure 5.9: Model response under uniaxial extension for swollen elastomer (Js = 1.1).

Figure 5.10: Model response under uniaxial extension for swollen elastomer (Js = 1.15).
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Figure 5.11: Model response under uniaxial extension for swollen elastomer (Js = 1.2).

Figure 5.12: Evolution of effective volume fraction of soft phase as a function of maxi-

mum tensile strain.

From these figures, it is clearly seen that the proposed model captures the depen-
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dence of the stress-softening on the degree of swelling with high quality. Lower stress

responses are predicted at a given strain level when the degree of swelling increases. Fur-

thermore, smaller stress-softening is predicted at higher degrees of swelling as shown by

Figure 5.12.

5.1.6 Simulation for other deformation modes

In order to simulate the response of the model under multiaxial loading conditions,

two deformation modes are considered: equibiaxial extension and planar extension. In

these two cases, the governing equations needed are summarized below:

Pure shear

P̂11 = J−r
s

vsXµd

3

√
N

λch,sp
L −1

(
J1/3

s λch,sp√
N

)(
λm−

1
λ 3

m

)

λch,sp =
√

X
(
λ 2

ch−1
)
+1

λch =

√
I1m

3

I1m = λ
2
m +

1
λ 2

m
+1

(5.12)

Equibiaxial extension

P̂11 = J−r
s

vsXµd

3

√
N

λch,sp
L −1

(
J1/3

s λch,sp√
N

)(
λm−

1
λ 5

m

)

λch,sp =
√

X
(
λ 2

ch−1
)
+1

λch =

√
I1m

3

I1m = 2λ
2
m +

1
λ 4

m

(5.13)

Similarly to uniaxial extension, the material is simulated to undergo cyclic loading
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to six maximum strain levels: ε = 0.5,1.0,1.5,2.0,2.5,3.0. Using the same material pa-

rameters as under uniaxial tension, different degrees of swelling are considered in the

simulation: Js = 1.0,1.05,1.07,1.1,1.15,1.2. The model responses under planar exten-

sion are presented in Figures 5.13 to 5.18 while the evolution of the effective volume

fraction of the soft phase is shown in Figure 5.19.

Figure 5.13: Model response under planar extension for dry elastomer (Js = 1).
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Figure 5.14: Model response under planar extension for swollen elastomer (Js = 1.05).

Figure 5.15: Model response under planar extension for swollen elastomer (Js = 1.07).
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Figure 5.16: Model response under planar extension for swollen elastomer (Js = 1.1).

Figure 5.17: Model response under planar extension for swollen elastomer (Js = 1.15).
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Figure 5.18: Model response under planar extension for swollen elastomer (Js = 1.2).

Figure 5.19: Evolution of effective volume fraction of soft phase under planar extension.

Using the same approach, the simulations of the model responses under equibix-

ial extension are shown as Figures 5.20 to 5.25 while the evolution of effective volume
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fraction of soft phase is shown as Figure 5.26.

Figure 5.20: Model response under equibiaxial extension for dry elastomer (Js = 1).

Figure 5.21: Model response under equibiaxial extension for swollen elastomer (Js =

1.05).
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Figure 5.22: Model response under equibiaxial extension for swollen elastomer (Js =

1.07).

Figure 5.23: Model response under equibiaxial extension for swollen elastomer (Js = 1.1).
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Figure 5.24: Model response under equibiaxial extension for swollen elastomer (Js =

1.15).

Figure 5.25: Model response under equibiaxial extension for swollen elastomer (Js = 1.2).
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Figure 5.26: Evolution of effective volume fraction of soft phase under equibiaxial exten-

sion.

It is observed that for both cases, lower stress levels are recorded for higher degrees

of swelling. Moreover, smaller stress-softening is observed when the degree of swelling

increases. The evolution of the effective volume fraction of the soft phase appears to be

dependent on the deformation mode. Indeed, for a given degree of swelling, the greatest

amount of softening is found in the case of equibiaxial extension in comparison with

those in planar and uniaxial extension. The corresponding observation can be related to

the amount of chain stretch λch: for a given strain level, the resulting chain stretch due to

equibiaxial extension is the greatest.

5.2 Prediction of equilibrium swelling

As observed in Chapter 4, the amount of solvent uptake in the elastomer is highly

dependent on the applied mechanical deformations. It would be beneficial to predict the

degree of swelling in elastomers in the presence of a mechanical deformation. In this
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work, a model to predict the equilibrium swelling under consideration of the coupling

between diffusion and deformation is proposed. Note that the proposed model enables

the prediction under equilibrium states since equilibrium swelling is considered as the

most severe case while the transient response is not considered in this work.

5.2.1 Constitutive equations

The constitutive equations to predict the degree of swelling in equilibrium states can

be derived by choosing the proper strain energy function and free energy due to mixing.

Referring to the last term of Equation (3.7), the simplest form of the strain energy function

due to stretching of an elastomer is adopted in this study (Flory, 1953):

JsWm(Fm,Js) =
G
2
[(I1−3)−2lnJs] (5.14)

The parameter G is the shear modulus of the dry unfilled elastomer given by G = NkT

which can be determined from the stress-strain response. I1 is the first invariant of the

right or left Cauchy Green tensor given as I1 = λ 2
1 +λ 2

2 +λ 2
3 . Note that there are many

other forms of the strain energy function available in the literature (Marckmann & Verron,

2006; Boyce & Arruda, 2000) and may be used instead of that given in Equation (5.14).

Recall from Equation (2.19), for any filled elastomer the amplified strain energy can be

written as:

JsWm(Fm,Js) =
G
2
[
(Î1−3)−2lnJs

]
=

G
2
[X(I1−3)−2lnJs] (5.15)

where X is the strain amplification factor.

Next, the free energy due to mixing is adopted from the well-known (Flory, 1942)-
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(Huggins, 1942a) theory:

Ws(c) = kT c
[

ln
(

vc
1+ vc

)
+χ

(
1

1+ vc

)]
(5.16)

where χ is a dimensionless interaction parameter which is commonly known as chi-

parameter which has a specified value for the combination of solvent and elastomer. The

chemical potential in Equation (3.34) can be obtained by differentiating the free energy

of mixing with respect to c:

dWs(c)
dc

= kT
[

ln
(

vc
1+ vc

)
+

1
1+ vc

+χ
1

(1+ vc)2

]
(5.17)

or express it in terms of Js:

dWs(c)
dc

= kT
[

ln
(

1− 1
Js

)
+

1
Js
+χ

1
J2

s

]
(5.18)

Using Equations (5.15) and (3.28), the first Piola-Kirchhoff and Cauchy stress tensors can

be written as:

P =−qF−T +GXF and σ = J−1
s (−qI+GXB) (5.19)

By inserting the above equations into Equation (3.34), the chemical potential which be-

longs to equilibrium swelling is given as:

kT
v

[
ln
(

1− 1
Js

)
+

1
Js
+

χ

J2
s

]
+(q−G)J−1

s = 0 (5.20)

In summary, the material parameters that need to be determined in the proposed model

are tabulated in Table 5.3. Once all the material parameters are identified, the hydrostatic
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Table 5.3: Material parameters used in model.

Free swelling, unfilled elastomer G
Interaction parameter χ

Carbon black content v f
Fluid molecule volume ν

pressure q can be determined in dependence on the mechanical loading conditions. By

substituting all these values into Equation (5.20), we are able to predict the swelling

degree at equilibrium state.

5.2.2 Analytical solution for simple problems

5.2.2 (a) Free swelling

First, we consider a simple case of three-dimensional equilibrium swelling under

stress-free immersion. By means of stress-free immersion, the dry elastomer is allowed

to swell in all directions without constraints and the swelling process is assumed to be

homogeneous and isotropic. Since there is no mechanical loading, the only deformation

that takes place in the elastomer is contributed from the swelling part of the deformation

gradient:

F = Fs =


λs 0 0

0 λs 0

0 0 λs

 ,Fm = I =


1 0 0

0 1 0

0 0 1

 (5.21)

Since it is free swelling, there is no stress acting on all directions. Thus, the stress tensors

vanish:

σ = 0 P = 0 (5.22)

From the combination of Equations (5.19), (5.21) and (5.22), the hydrostatic pressure for

stress-free immersion can be calculated as:

q = GXJ2/3
s (5.23)
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and, at equilibrium

kT
νG

[
ln
(

1− 1
Js

)
+

1
Js
+

χ

J2
s

]
+XJ−1/3

s − J−1
s = 0 (5.24)

Using Equation (5.24), the equilibrium swelling degree is plotted as a function of the

filler content. In order to compare the effect of different strain amplification factors, the

shear modulus of the dry elastomer is arbitrarily chosen as G = 10000 Pa. In Figure 5.27,

the equilibrium swelling degree is plotted using the strain amplification factor proposed

by Guth and Gold (1938) and Nielsen (1966) (Equation (2.17 and 2.18)). Regarding the

figure, the Guth-Gold model gives a gradual decrease in the equilibrium swelling degree

with the increase in filler content and slowly becomes stable at higher filler content. Con-

trary to that, the Nielsen model predicts a sharp decrease at low filler contents followed

by a more steady decrease from v f = 0.2 to v f = 0.7. At v f > 0.7, the model predicts

another sharp decrease which is in contrast with the prediction from Guth-Gold model.

Figure 5.27: Equilibrium swelling degree vs. filler content.
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Based on the observation in Figure 5.27, it is clearly seen that the strain amplification

factor plays an important role in determining the equilibrium degree of swelling. While

the Guth-Gold model gives a gradual decrease in the equilibrium swelling degree, the

Nielsen model shows a deviation from the prediction by the previous model. Generally,

there are no solid arguments available in the literature on the ability of the existing model

on predicting the influence of filler on the mechanical properties of a elastomer. The most

direct evaluation on the strain amplification factor is to consider the small strain Young’s

modulus at different filler content (Bergström & Boyce, 1999). In order to do so, we need

a set of reliable experimental data to plot the graph and do the fitting. However, similarly

to other authors, we adopt the well-known Guth-Gold model which can take a general

polynomial of the form of X = 1+av f +bv2
f depending on the shape and the properties

of the fillers and the interactions among particles (Qi & Boyce, 2004). Using the strain

amplification factor from the classical Guth-Gold model, we calculate the equilibrium

swelling degree for different filler contents as function of the shear modulus. The results

are depicted in Figure 5.28. From the graph, the equilibrium swelling degree is shown to

be decreasing with the increase in the filler content and the shear modulus.
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Figure 5.28: Equilibrium swelling degree for different filler content vs. shear modulus of

the dry elastomer.

5.2.2 (b) Constrained swelling

For an uniaxial constrained swelling, the dumbbell specimen is subjected to uniax-

ial tensile deformation in direction xm
1 . Then, with the length fixed in direction xm

1 , the

specimen is immersed in a solvent to allow a coupled deformation-diffusion processes.

Graphical illustration of the process is sketched in Figure 5.29.
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Figure 5.29: Illustration of experimental setup for uniaxial constrained swelling.

The total deformation gradient from the initial configuration Co to the final configu-

ration C is F and is given by:

F = F̄sF̄m (5.25)

where F̄m is the deformation gradient due to the pure mechanical loading and F̄s corre-

sponds to deformation gradient of the coupled deformation-diffusion process. Since the

material is assumed to be isotropic during the mechanical deformation, we have:

F̄m =


λ 0 0

0 1√
λ

0

0 0 1√
λ

 (5.26)

For the deformation from the intermediate configuration Cm to final configuration C, the

dumbbell is assumed to swell freely in directions x2 and x3. Moreover, since the dumbbell

is constrained in the stretching direction xm
1 , there will be no swelling along the direction

of stretching at xm
1 = max or min but swelling is maximum at xm

1 = 0. The resulting

156



deformation gradient from the intermediate configuration Cm to the final configuration C

is:

F̄s =


λs1(xm

1 ) 0 0

0 λs 0

0 0 λs

 (5.27)

where λs1 depends on the position along the stretching direction, xm
1 as defined in Figure

5.29. Thus, the total deformation gradient according to Equation (5.25) is:

F =


λλs1(xm

1 ) 0 0

0 λs√
λ

0

0 0 λs√
λ

 (5.28)

In order to adopt the multiplicative split of the deformation gradient mentioned in

Section 3.2.1, we can rewrite the imaginary deformation gradient as:

Fm = λ
−1
s


λλs1(xm

1 ) 0 0

0 λs√
λ

0

0 0 λs√
λ

=


λλs1(xm

1 )
λs

0 0

0 1√
λ

0

0 0 1√
λ

 (5.29)

The current degree of swelling is

Js(xm
1 ) = detF = λs1λ

2
s (5.30)

and the stress tensor is

σ(xm
1 ) = J−1

s

(
−qI+2

∂W
∂ I1

B
)

(5.31)
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which yields to:

σ11 = J−1
s (−q+Gλ

2
λ

2
s1)

σ22 = σ33 = J−1
s (−q+G

λ 2
s

λ
)

(5.32)

W is the strain energy function adopted from Neo-Hookean model where ∂w
∂ I1

= 1
2G. For

the static mechanical problem, the balance of momentum reads

divσ = 0 (5.33)

which leads to:

∂σ11

∂xm
1

= 0 (5.34)

Therefore, by substituting Js from Equation (5.30) into Equation (5.32), we get

∂

∂xm
1

(
q

λs1

)
= Gλ

2 ∂λs1

∂xm
1

(5.35)

which gives us the final form of the pressure q as a function of xm
1 upon integration:

q(xm
1 ) = Gλ

2
λ

2
s1 + cλs1 (5.36)

where c is a constant to be determined based on the boundary conditions. By applying

the boundary conditions where σ22 = σ33 = 0, we get

c = G
(

λ 2
s

λλs1
−λ

2
λs1

)
, q = G

λ 2
s

λ
(5.37)

Finally, the equilibrium degree of swelling under mechanical loading can be determined
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from the chemical potential equation:

µ

ν
=

µo

ν
+

kT
ν

[
ln
(

1− 1
Js

)
+

1
Js
+χ

1
J2

s

]
+(q−G)J−1

s (5.38)

Since the information needed to deduce the dependent of λs1 on the position xm
1 is

not available, a form of λs1(xm
1 ) must be assumed. Here, instead of assuming a function

describing the dependence of λs1 on position, the coupled deformation-diffusion problem

will be solved directly by implementing the proposed model into finite element code

ABAQUS where we could obtain more information on the degree of swelling at various

position.

5.2.3 Identification of material parameters

Volume of the solvent molecule

The volume of the solvent molecules, ν can be determined by using the following

relation (Cohen, 2007):

ν =
Mw

ρAv
(5.39)

where,

Mw is the molecular weight of the solvent,

ρ is the density of the solvent,

Av is the Avogadro number, 6.022 x 1023 / mol

Using this equation, the volume of the solvent molecules of biodiesel is calculated

as follows:

Table 5.4: Determination of volume of biodiesel molecule.

Molecular weight (g/mol) 290
Density (g/m3) 880000
Avogadro number 6.022 x 1023

Volume of solvent molecules (m3/molecule) 5.5 x 10−28
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Flory-Huggins interaction parameter

Following Equation (5.24), the Flory-Huggins interaction parameter χ can be deter-

mined by using the information at equilibrium swelling. It is calculated for the unfilled

elastomer:

Table 5.5: Determination of Flory-Huggins interaction parameter.

Boltzmann constant (J K−1) 1.38 x 10−23

Temperature (K) 293.15
Shear modulus of dry elastomer (Pa) 262900
Degree of swelling at equilibrium 1.23
Volume of solvent molecules (m3/molecule) 5.5 x 10−28

Flory-Huggins interaction parameter 1.30

Strain amplification factor

The strain amplification factor due to the effect of carbon black inclusion in the

elastomer is adopted from the general polynomial equation from the Guth-Gold model

where:

X = 1+av f +bv2
f (5.40)

It can be determined based on the stress-strain response up until fracture for the dry elas-

tomer. From our experimental data, the estimation of the strain amplification factor is

such that a = 7 and b = 29.

5.2.4 Comparison between model and experiment

First, the ability of the proposed model to predict the degree of swelling in the equi-

librium state for elastomers with different amounts of carbon black under stress-free im-

mersion is presented in Figure 5.30. In this figure, the model results are obtained by

solving Equation (5.24) analytically. Generally, it is observed that the proposed model is

in good agreement with the experimental data. The degree of swelling in the equilibrium

state decreases as the amount of carbon black in the elastomer increases. Using the pro-
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posed model, we are able to predict the degree of swelling as long as we have information

on the shear modulus of the dry elastomer, the volume of the solvent molecules and the

interaction parameter between the elastomer and the solvent.

Figure 5.30: Comparison between model and experimental data for stress-free immersion.

5.3 Finite element simulation

5.3.1 Free swelling

Figures 5.31 to 5.33 show the FEA results of the degree of swelling in the equilibrium

state for elastomers with different carbon black contents under stress-free immersion. It

appears that the degree of swelling is homogeneously distributed over the whole specimen

as shown by the uniform colour contour. In the equilibrium state, the degrees of swelling

from the FEA results are 1.23, 1.169 and 1.129 for the unfilled, 25 % filled and 40 %

filled elastomers respectively. Based on the FEA results, it is obvious that carbon black

restricts the diffusion of the solvent which results in a lower degree of swelling when the

amount of carbon black is higher in the elastomer.
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Figure 5.31: Finite element analysis of the degree of swelling in the equilibrium state for

stress-free immersion (unfilled elastomer).

Figure 5.32: Finite element analysis of the degree of swelling in the equilibrium state for

stress-free immersion (25 % filled elastomer).
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Figure 5.33: Finite element analysis of the degree of swelling in the equilibrium state for

stress-free immersion (40 % filled elastomer).

The results obtained from FEA are then being compared with the experimental re-

sults and the analytical solution obtained from the proposed model (See Section 5.2.4)

and plotted as Figure 5.34. It appears that the results show very good agreement with

each other. The degree of swelling in the equilibrium state decreases as the amount of

carbon black increases in the elastomer.
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Figure 5.34: Comparison between experimental data, analytical solution and FEA results

for stress-free immersion.

5.3.2 Constrained swelling

FEA results for constrained swelling at λ = 1 are shown in Figures 5.35 to 5.37.

Contrary to the uniform degree of swelling over the specimen as observed for the case

of stress-free swelling, the FEA results suggest that the degree of swelling is not uni-

form throughout the whole specimen for constrained swelling. The minimum degree of

swelling is observed to occur at the end of the specimen as shown by the colour blue in the

figures. However, note that the difference between the maximum and minimum degree of

swelling is merely around 0.5 % which is relatively small. Since the degree of swelling is

not uniform throughout the specimen, the average equilibrium degrees of swelling need

to be obtained and compared with the experimental results.
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Figure 5.35: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1, unfilled elastomer).

Figure 5.36: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1, 25 % filled elastomer).
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Figure 5.37: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1, 40 % filled elastomer).

Using the similar approach, the results obtained from FEA for constrained swelling

(λ = 1.25,1.5) are depicted in Figures 5.38 to 5.43. It is observed that similarly to the

results obtained for λ = 1, the degree of swelling is not uniform throughout the specimen.

For all cases, the differences between the maximum and minimum values are in the range

of 0.5%. However, note that the distribution of the degree of swelling shows not the same

trend in comparison with the ones obtained for λ = 1. Minimum swelling is observed

at both ends of the specimen which are clamped to the metallic device while maximum

swelling is observed in the middle part of the specimen. Following this observation, there

is two points on the distribution of swelling under constrained tensile strain worth noting:

• maximum swelling occurs in the central part of the specimen (xm
1 = 0 according to

Figure 5.29).

• minimum swelling occurs at end parts of the specimen (xm
1 = l/2 according to Fig-

ure 5.29).
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These statements hold true for our observation except for the case of λ = 1. λ = 1 is an

exceptional case which is initially equal to stress-free immersion.

Figure 5.38: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1.25, unfilled elastomer).
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Figure 5.39: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1.25, 25 % filled elastomer).

Figure 5.40: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1.25, 40 % filled elastomer).
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Figure 5.41: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1.50, unfilled elastomer).

Figure 5.42: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1.50, 25 % filled elastomer).
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Figure 5.43: Finite element analysis of the degree of swelling in the equilibrium state for

constrained immersion (λ = 1.50, 40 % filled elastomer).

From the FEA results, the dependence of λs1 on the position x1m can be deduced.

The values of λs1 at different positions of the unfilled elastomer specimens subjected to

different tensile strains are calculated and presented in Figure 5.44. From this figure, it

can be seen that for constrained swelling at λ = 1, the values of λs1 along the material are

nearly identical. The variation of λs1 is small since the material undergoes nearly stress-

free immersion at the initial stage of immersion. However, for constrained swelling at

λ = 1.25,1.5, λs1 is maximum in the centre of the specimen and minimum at the end of

it. This observation is consistent with the discussion in Section 5.2.2 (b). Furthermore,

it is also observed from Figure 5.44 that the maximum value of λs1 increases with the

applied tensile strain. Thus, higher tensile strain results in a higher degree of swelling.
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Figure 5.44: λs1 as a function of position x1m.

Finally, in order to verify the efficiency of the proposed model, the resulting degree

of swelling in the equilibrium state for constrained swelling is obtained by calculating

the average value for the whole specimen. The FEA results are then compared to the

experimental results and plotted in Figure 5.45. Figure 5.45 shows that the FEA results

are in good agreement with experimental results. Under stress-free immersion, the re-

sults obtained from FEA show nearly identical curves as the experimental results. As for

constrained swelling, the FEA results are slightly higher than the experimental results.

This observation could be caused by the precision during conducting the experimental

works. Indeed, it is often difficult to ensure whether the amount of tensile strain applied

to the specimen corresponds precisely to the desired value. Moreover, the immersion

is conducted in biodiesel where the oily solvent provides a good lubricant between the

specimen and the metallic plates. During the immersion, it is difficult to prevent the spec-

imens slip from the metallic plates and thus reduces the accuracy of the experiments. To

summarize, the FEA results show the clear trend that swelling increases with the amount

171



of tensile strain applied and reduces with the amount of carbon black content.

Figure 5.45: Comparison between FEA results and experimental results.

5.3.3 Remark for the case of torsion

The effect of torsion on swelling is an interesting subject to study since there are

not many studies conducted on it (Mars, 2001). We attempt to simulate the equilibrium

swelling of elastomers in the presence of torsion loading in this study but to no avail. The

constraint imposed at the beginning of the load step in order to simulate the torsion effect

in step 2 leads to trouble in the stress-free isotropic swelling in step 1. The constraint

prevents the nodes on the surface to move such that they are highly distorted. We attempt

to simulate the torsion deformation in several ways but to our disappointment, our current

attempts did not work out. Works are currently still on going to find a better solution to

simulate the equilibrium swelling of elastomers in the presence of a torsion deformation.

172



CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Conclusion

In order to conclude, the objectives of this research have been achieved.

1. To develop original devices for investigating swelling of elastomers in biodiesel un-

der the presence of static mechanical deformations.

Three different original experimental devices have been developed to investigate

swelling of elastomers undergoing static mechanical deformation. One of the ex-

perimental devices enables the investigation of swelling in the presence of static

uniaxial mechanical loading while the other two enable the application of static

multiaxial mechanical loading.

2. To investigate the interaction between diffusion of biodiesel and large deformation

in elastomers.

Static immersion tests of elastomer specimens undergoing uniaxial and multiaxial

mechanical loading have been conducted. Generally, it is observed that the de-

gree of swelling increases with the amount of applied tensile strain. On the other

hand, our findings suggest that the effect of multiaxial loading on swelling depends

strongly on the dimension of the specimen used. The corresponding finding can be

related to the hydrostatic part of the Cauchy stress generated in the elastomer.

3. To develop a simple continuum mechanical model to describe the above interaction.

The theoretical framework of the model is consistent with the second law of ther-

modynamics. Two particular cases were considered: (1) modeling the Mullins ef-

fect in swollen elastomers and (2) the prediction of the equilibrium swelling of
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elastomers in biodiesel in the absence and in the presence of static mechanical de-

formations. The results show that the proposed model is in good agreement with

the experimental observations.

4. To implement the proposed model in commercial finite element code ABAQUS in

order to simulate coupling between diffusion of biodiesel and large deformation in

elastomeric materials.

The proposed model has been implemented into ABAQUS using the user-defined

subroutine UHYPER. The FEA results suggest that the degree of swelling in the

equilibrium state decreases with the increase in carbon black content. Under tensile

strain, the FEA results show that the degree of swelling is higher than under stress-

free immersion which is consistent with the experimental observations as well as

with the results from our proposed model.

6.2 Suggestions for future works

Based on our discussion in Section 4.4, it is suggested that although three different

experimental devices have been developed, each of them possesses different pros and

cons and further improvements for future works are needed. Improvements are needed

in order to conduct uniaxial tensile tests at higher strain level and to obtain equilibrium

swelling for multiaxial mechanical deformations.

As for the continuum mechanical modeling, our proposed model for the Mullins ef-

fect in swollen elastomers is based on the existing two phase model of Mullins and Tobin

(1957) and Qi and Boyce (2004). Further development to study other inelastic responses

such as permanent set and viscoelastic hysteresis is needed to fully understand the me-

chanical responses of swollen elastomers. In addition, our proposed model is only limited

to predict the equilibrium swelling under different mechanical deformations. Further ex-

ploration is needed to account for transient effects in achieving the equilibrium state of
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swelling.

Finally, the simulation of swelling in the presence of torsion loading will be a pri-

ority. Moreover, further improvements are needed in order to predict the equilibrium

swelling of elastomers in biodiesel in the presence of general multiaxial mechanical load-

ings using the finite element code ABAQUS.
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APPENDIX A

USER SUBROUTINE FOR UHYPER, UVARM
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dumbbell.f
   SUBROUTINE UHYPER(BI1,BI2,AJ,U,UI1,UI2,UI3,TEMP,NOEL,

 1 CMNAME,INCMPFLAG,NUMSTATEV,STATEV,NUMFIELDV,FIELDV,
 2 FIELDVINC,NUMPROPS,PROPS)
C=============================================================
 C User defined hyperelastic material subroutine 
 C (dumbbell with different carbon black content) free swelling
 C Author: Ch'ng Shiau Ying (9 Dec 2013)
C-------------------------------------------------------------
 C Material properties to be passed to the subroutine:
   C   PROPS(1) - C0, shear modulus
   C   PROPS(2) - chi, interaction parameter
   C   PROPS(3) - lambda_0, initial swelling (~1, but not 1)
   C   PROPS(4) - vf, carbon black content
 C State variable:
   C   TEMP - (mu-mu0)/kT, current chemical potential
 C   The initial chemical potential, mu0 is determined from 
  C initial swelling at t=0, given as:
 C   (mu-mu0)/kT |init = Nv*(1/lambda0-1/detF0) + log(1-1/detF0)
    C + 1/detF0 + chi/detF0**2
 C Output:
 C   Free-energy function U(I,J) and its derivatives
 C   All free-energy density and stress given by the calculation 
  C are normalized by kT/v
C=============================================================
 INCLUDE 'ABA_PARAM.INC'
C
  CHARACTER*80 CMNAME
  DIMENSION U(2),UI1(3),UI2(6),UI3(6),STATEV(*),FIELDV(*),
 1 FIELDVINC(*),PROPS(*)
  REAL(8) C0, chi, lambda0, detF0, mu_kT, nu, kT, gamma, vf, AF
  C0 = PROPS(1)
  chi = PROPS(2)
  lambda0 = PROPS(3)
  vf = PROPS(4)
  detF0 = lambda0**3
  AF = 1 + 2.5*vf + 14.1*(vf**2)
  nu = 3.3d-27
  kT = 4.0d-21
  gamma = kT/nu/C0
  mu_kT = TEMP ! TEMP is used to represent (mu-mu0)/kT
C
  U(1) = -(mu_kT*(AJ - 1/detF0) 
     & - (LOG(1 - 1/(AJ*detF0)) + chi/(AJ*detF0))*(AJ - 1/detF0) 
     & + (2.0*LOG(AJ*detF0) - AF*(AJ**(2.0/3.0)*BI1*lambda0**2 + 3.0))
     & /(2.0 *detF0*gamma))
  U(2) = 0
  UI1(1) = (AF*AJ**(2.0/3.0)*lambda0**2.0)/(2.0*detF0*gamma)
  UI1(2) = 0
  UI1(3) = -(mu_kT - LOG(1 - 1/AJ/detF0) 
     & + (AJ - 1/detF0)*(chi/(AJ**2*detF0) 
     & + 1/(AJ**2*detF0*(1/(AJ*detF0) - 1))) 
     & - chi/(AJ*detF0) 
     & + (2/AJ - (2*AF*BI1*lambda0**2)/(3*AJ**(1.0/3.0)))/(2*detF0*gamma))
  UI2(1) = 0
  UI2(3) = -((2*chi)/(AJ**2*detF0) 
     & - (AJ - 1/detF0)*((2*chi)/(AJ**3*detF0) 
     & + 2/(AJ**3*detF0*(1/(AJ*detF0) - 1)) 
     & - 1/(AJ**4*detF0**2*(1/(AJ*detF0) - 1)**2))
     & + 2/(AJ**2*detF0*(1/(AJ*detF0) - 1)) 
     & - (2/AJ**2 -(2*AF*BI1*lambda0**2)/(9*AJ**(4.0/3.0)))/(2*detF0*gamma))
  UI2(5) = (AF*lambda0**2)/(3*AJ**(1/3)*detF0*gamma)
  UI3(1) = 0
  UI3(4) = -(AF*lambda0**2.0)/(9.0*AJ**(4.0/3.0)*detF0*gamma)
  UI3(6) = -((AJ - 1/detF0)*((6*chi)/(AJ**4*detF0) 
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dumbbell.f
     & + 6/(AJ**4*detF0*(1/(AJ*detF0) - 1)) 
     & - 6/(AJ**5*detF0**2*(1/(AJ*detF0) - 1)**2) 
     & + 2/(AJ**6*detF0**3*(1/(AJ*detF0) - 1)**3))
     & - (6*chi)/(AJ**3*detF0) 
     & - 6/(AJ**3*detF0*(1/(AJ*detF0) - 1)) 
     & + 3/(AJ**4*detF0**2*(1/(AJ*detF0) - 1)**2) 
     & + (4/AJ**3-(8*AF*BI1*lambda0**2)/(27*AJ**(7.0/3.0)))/(2*detF0*gamma))
C
      RETURN
      END
C===============================================================
C

 C===============================================================   
      SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME,
     1 NUVARM,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR,COORD,
     2 JMAC,JMATYP,MATLAYO,LACCFLA)
C===============================================================
C     User defined output subroutine which computes 
  C 1) the swelling degree (Js)
C       2) the polymer volume fraction (phi)
C       3) the volume fraction of liquid (phiL)
C       4) the intradiscal pressure P = 1/3 trace(sigma)
C    
C---------------------------------------------------------------
 C   Requested variable:
  C LEP    - All principal LOGarithmic strains
C               (ln(lambda1), ln(lambda2), ln(lambda3))
C       S      - All stress components
C     Output:
C       UVAR(1) = UVARM1    - Js
C       UVAR(2) = UVARM2    - phi
C       UVAR(3) = UVARM3    - phiL
C       UVAR(4) = UVARM4    - P
C       - Number of output variables: 4
C===============================================================
      INCLUDE 'ABA_PARAM.INC'
C
      CHARACTER*80 CMNAME,ORNAME
      CHARACTER*3 FLGRAY(15)
      DIMENSION UVAR(NUVARM),DIRECT(3,3),T(3,3),TIME(2)
      DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)
C      
      CALL GETVRM('LEP',ARRAY,JARRAY,FLGRAY,JRCD,
     &     JMAC,JMATYP,MATLAYO, LACCFLA)
      UVAR(1) = EXP(ARRAY(1)+ARRAY(2)+ARRAY(3))
      UVAR(2) = 0.05/UVAR(1)       
      UVAR(3) = 1.0-UVAR(2)
C
      CALL GETVRM('S',ARRAY,JARRAY,FLGRAY,JRCD,
     &     JMAC,JMATYP,MATLAYO, LACCFLA)
      UVAR(4) = 1.0/3.0*(ARRAY(1)+ARRAY(2)+ARRAY(3))
C
      RETURN
      END
C
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