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ABSTRACT

The present study involves application of Monte Carlo technique for
analysing complex problems of attrition process and crystal size distribution (CSD)
analysis. For the former problem, it focuses on the effects of attrition on the
theoretical CSD, modelling of experimental CSD results in a mechanically agitated
crystallizer under attrition conditions and finally the effects of volume shape factor
dispersion on the CSD resulting from attrition. While for the latter, it includes the
simulation of transient CSD under size-dependent growth rate and stochastic
dispersion effects for an imperfectly mixed crystallizer. The basic idea behind
employing stochastic methods to handle aforesaid problems is that it obviates the
need to solve the system equations, which often comprise coupled differential
equations. Moreover, these equations often contain variables that render the analysis

extremely complex.

In transient CSD analysis, the simulation scheme is attractive due to its
simple algorithm, i.e. free from iterative calculations and related convergence
problems. The simulated transient CSD can account for size-dependent growth. It
could also incorporate improper mixing conditions under all possible dispersion
effects. The agreement among the predicted results and available experimental data

confirm the validity of the proposed scheme.



In the attrition process, MC offers an alternative to the conventional

deterministic approach in solving the Random Breakage model, described by a

under attrition conditions with the

second order ODE. In addition, a comparison between experimental CSD results

d CSD indi good ag! The
MC method was also successfully used together with a physical model for obtaining

the fragment size distribution. The distribution provides an account of the volume

shape factor dispersion, which previous authors often, assumed to be a constant.
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INTRODUCTION

Deterministic analysis of attrition process and transient crystal size
distribution (CSD) is a difficult task owing to the complexity of the basic population
balance equation (PBE). Often, the solution is very difficult except for simple cases.
Alternatively, one could employ the stochastic analysis in solving the PBE that
could easily account for growth rate dispersion, size-dependent growth, shape factor
dispersion, birth size dispersion and change in nucleation rate simultaneously. These
considerations introduce non-linearity in the PBE in the conventional deterministic
approach and a lack of mathematical tool has been a major impediment in solving

these equations.

Two different stochastic methods are commonly employed to predict the
behavior of the CSD, namely the Markov process and the Monte Carlo (MC)
technique. The basic advantages of the Markov process over the MC simulation are

as under:

(i) CSD’s are available on a continuous time scale.

(ii) It is more efficient with respect to computation time for the simple cases that

it can handle.

Unlike the Markov process, the simulation results obtained from the MC

simulation are discrete on a time scale. However, due to the following remarkable



features, MC technique has been recognized as a more versatile tool than the

Markov process:

(i)

(iif)

(iv)

(\2)

One can account for the influence of shape factor dispersion on CSD.
The CSD can be expressed as both number and mass fractions for steady and
non-steady state conditions.

One can use any statistical density function to rep the disp

effects.

The simultaneous dispersion in growth, shape factor, nucleation rate and

birth size can be d for in the lation of steady state and transient
CSD’s.

It is a direct simulation technique and is free from any iterative calculations.

The present contribution involves application of MC technique to handle

complex problems of transient CSD analysis (Chapter 2, 3, and 4 of Part 2). In

addition, the MC is also employed to simulate the CSD of crystals as the result of

attrition processes (Chapter 5, 6, and 7 of Part 3). For the former problem, it includes

the simulation of transient CSD under size-dependent growth rate and stochastic

dispersion effects for an imperfectly mixed crystallizer. While for the latter, it

focuses on the effects of attrition on the theoretical CSD, modelling of exﬁerimental

CSD results in a mechanically agitated crystallizer and finally the effects of volume

shape factor dispersion on the CSD of f g d from a

hanicall

stirred crystallizer.

xiii



In Chapter 2, the transient CSD is simulated using the MC method under
size-dependent growth rate conditions. The classical approach in simulating the CSD
in a continuous mixed suspension mixed product removal (MSMPR) crystallizer is
based on several hypotheses. A very important assumption is the constant growth
rate of the crystals known as McCabe’s delta L law. However, there is ample
evidence that growth rate is a function of size in some systems. Under the present
work, a MC simulation scheme is proposed for transient CSD in a continuous
crystallizer to account for size-dependent growth rate. Crystal growth rates are
described by ABEGG, STEVENS and LARSON (ASL) model. The proposed model is
used to predict the transient CSD from potassium carbonate crystallizer. The

agreement between theory and available data confirms the validity of the model.

In Chapter 3, the transient analyses of CSD for an imperfectly mixed draft
tube baffled (DTB) and forced circulation (FC) crystallizers are predicted using the
MC technique. To account for the non-ideal mixing conditions, the DTB and FC
crystallizers are described by the compartmental and mixed models respectively.
The simulation results have been compared and agreed with the available
experimental data of BENNETT and VAN BUREN (1969) for continuous urea
crystallizer. This work has been further extended in Chapter 4 to forecast the
transient CSD in a crystallizer for simultaneous dispersion effects in growth rate,
shape factor and birth size. It also takes into account the possible variation in
nucleation rate in a crystallizer. The earlier work of SEN GUPTA and DUTTA (1991)

has been used to validate the results.
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In Chapter 5, the effect of attrition on the CSD in a continuous mixed

suspension crystallizer was predicted by a Random Breakage model as proposed by

RANDOLPH (1969). The CSD was puted by MC technique and compared with
the deterministic solution of the PBE proposed by RANDOLPH (1969). The

agreement between the two approaches confirms the validity of the MC technique.

Chapter 6 reports the experimental work carried out to determine the CSD
resulting from breakage and abrasion occurring in agitated crystal suspensions. The
effect of two operating variables, i.e. duration of run (<1 hour) and low stirring rates
(< 400 rpm) are shown with reference to sodium chloride crystals. The experimental
results were used to validate the model proposed by MAZZAROTTA (1992) and

BISCANS et al. (1996).

The effect of volume shape factor on CSD is usually ignored to simplify the

analysis of PBE. In Chapter 7, the CSD of frag g d from a y

stirred crystallizer as the result of attrition mechanism has been reported. The
physical model of GAHN and MERSMANN (1997) which relates the attrition
resistance of crystalline substances to its mechanical properties has been employed
with suitable modification. The simulation of fragment size distribution was

performed by MC technique.
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