CHAPTER 7

THE EFFECT OF VOLUME SHAPE FACTOR ON THE
CRYSTAL SIZE DISTRIBUTION OF FRAGMENTS DUE

TO ATTRITION

7.1 Introduction

In a crystallizer, particles are kept in suspension by means of a pump or a stirrer.
This results in attrition of crystals owing to contact with either the high-speed
impeller of the pump or the stirrer. Attrition occurs also as the result of collisions of
crystals with each other and with the wall. When the impact energy exceeds the
crystal strength, the consequence is the fracture of the crystals. Thus the crystal
geometry changes substantially and it seldom grows to its geometric shape. ANG and
MULLIN (1979) measured the volume shape factor of nickel ammonium sulphate
crystals and found a value of 0.58 + 0.02. In an industrial crystallizer a wide

variation in shape factor may be expected.

In the present work, the steady state CSD of fragments with volume shape

factor dispersion generated by the attrition mechanism is predicted by incorporating
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the MC technique into the physical model developed by GAHN and MERSMANN

(1997). In their work the rate of ion of attrition fra is d to be

contributed by the high energies impact of crystals with the impeller. This impact
may occur with crystal faces, edges and corners. Because of the fluctuating
turbulence in the liquid phase, the particles are almost randomly oriented in the
vicinity of the impeller. The contacts with corners are therefore most likely to result
in high local stress due to the small area of contact. Hence repeated contacts would
result in rounded-off crystals of reduced size, provided that there is no competing

mechanism of crystal growth.

The shape factor of the crystals may vary widely depending on the attrition
process and the nature of the substance. GAHN and MERSMANN (1997) have assumed
cubic configuration for all crystals before and after the fracture. The present
simulation scheme is free from such restriction and can accommodate practically all
types of shape factor distribution. In this work, a normal distribution has been
assumed with @ =1 and a = 05236 as the two limits, which conform to cubic and

spherical configurations respectively.

MC technique (SEN GUPTA and DUTTA, 1990a/91) has been used to generate
random samples of volume shape factor and to simulate the corresponding CSD

under the shape factor dispersion effect.
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Physical attrition model

The physical model (GAHN and MERSMANN, 1997) employed here is based on the

following assumptions:

(O]

(ii)

(iii)

(iv)

)

Only the contact of a crystal corner with another flat and much harder object

(steel impeller) is considered.

The crystal faces forming that corner are replaced by a cone having an

included angle of 120° (Figure 7.1).
gl

The impact energy causes a force acting normally on the comner (no sliding

contact and no rotation of the crystal).

Fracture is assumed to initiate after complete loading. The formation and
propagation of cracks occur instantaneously and are determined by this
quasi-static stress field (the effect of elastic waves is assumed to be

negligible).
The mechanical properties of the crystalline substance can be replaced by

average isotropic values (Poisson's ratio, v = 0.25), which are assumed to be

independent of the strain rate.
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(vi)

(vii)

(viii)

(ix)

(x)

(xi)

The newly created surface caused by the formation of a fragment is
proportional to the elastic strain energy stored in the volume of this fragment

(Rittinger's law).

Since the required pressure for plastic deformation is high, it is assumed here
that ductility is restricted to a region limited by the area of contact, and that

the material is elastic elsewhere.

Because of plastic flow in the contact region, it is assumed that fracture only

takes place in the elastic stress field.

The volume where plastic deformation occurs is generally small compared to
the volume, which is removed from a crystal by impact. At a distance 'r'
from the original corner of the cone, the elastic field can be considered to be

created by a point force acting at the corner of the cone (Figure 7.1b).

Average strain energy density is constant at a given distance r and is not a

function of the polar coordinates 6 and ¢ (Figure 7.1b).

After complete loading, the impact energy is equivalent to the energy

necessary for the plastic deformation of the corner and the total elastic strain

energy stored in the cone.
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(xii) The characteristic size 'a’ is only determined by the hardness of the crystal

and not by the ratio of hardness to shear modulus.

With the above assumptions, the equation relating the fragment size (L) with

the mechanical properties and the distance from the peak of the cone (r) is given by:

3 4 (7.1)
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where the characteristic size of a fragment produced at a distance 7 is proportional to

r*. By combining Eq. (7.1) with

dv, N
= _ 2
L aNLq,(L) (7.2)
and

Y _

7 -7 (7.3)

the following equation is obtained:
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aNg, (L) = ;—;71.);715”’ (7.4)
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The number density function is defined as

L
Ja,(paL =1 @)
Lo
where
225
9,(L) = me (7.6)

and for the total number of fragments
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Eq. (7.1) indicates that the small fragments will be produced in the vicinity of
the contact zone 'a' or in the region of the plastic-elastic boundary (a‘/r‘ =1)
where the strain energy density is the highest. Therefore, the minimum size of the

fragment is given by

32
L2t 8
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A combination of Egs. (7.7) and (7.8) gives the approximate solution for the number

of fragments produced.

W,H’K}

N=~7x10™* y’I" 7.9)
The maximum size of the fragments can be calculated to be about

Lo=~r./2 (7.10)
and the total volume removed from the attrition process is

= 2HVK, w," (7.11)
3our

By combining Eq. (7.9) and (7.11),

V, ~ k'(aN)"” (7.12)

The set of equations presented here can only be used when the relevant material

properties are known, i.e. elastic constants, hardness and fracture resistance.
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An isotropic material has two independent elastic i.e., the shear
modulus 4, and Poisson's ratio v, from which all the other possible constants can be
determined. Assuming that impacts on a crystal are distributed statistically in all axis
directions, the effective (isotropic) elastic properties can be estimated from these
constants. In the above relations, the shear modulus was used and the quasi-isotropic

shear moduli z4,, of the sub under ideration are given in Table 7.1.

The hardness of a solid is usually idered to be its resi to local

plastic deformation. By assuming that the contact pressure of a plastically deformed
cone and the Vickers hardness H, are the same, we can use the appropriate Vickers

hardness (Table 7.1) of a substance in the above equations.

The fracture resistance is given in the form (I'/K,). This ratio can be

estimated by performing indentation tests using the Vickers indenter. Since at an

applied critical load, cracks will form around the ind ion when the
exhibits brittleness. The critical work can be related to the material properties

according to

K u/CIUHSIS

r -
?’ 2 a (7.13)

where the parameter x accounts for the stress field. It was observed that the stress

d ion and crystals-impeller i were similar

P p

fields created by the Vickers i

195



but not equal. GAHN and MERSMANN (1997) concluded that x = 0.5 would provide
the best fit between the theoretical and experimental results. The critical work values
for the substances under studied are listed in Table 7.1.

The incorporation of the MC technique to study the effect of volume shape

factor in the physical model of GAHN and MERSMANN (1997) is outlined in the

following section.

73 The simulation scheme

It is evident from Eq. (7.6), that the number density function is proportional to the

fragment size as follows:

q, < ¥ (7.14)

Since the fragment size is proportional to »*(Eq. 7.1), therefore

q,r ™ (7:15)

By plotting logg, against logr, a straight line with slope of -13 is obtained.

The total number of crystal produced is essentially determined by the lower limit of
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the size distribution, whereas the upper limit has practically no influence. We could

randomize Eq. (7.15) by considering

log RND = ~13logr +c¢ (7.16)

with the boundary condition of RND = 1with r = a,

c=13loga (7.17)
therefore,
131 -1 'D
,e exp(_hilso_sm_) 7.18)

By combining Eqgs. (7.18), (7.9) and (7.1), the fragment sizes for N' number
of crystals generated from the attrition of one crystal can be determined. The volume

shape factor in Eq. (7.9) is assumed to be normally distributed according to

:
o m ey -2(”“’" 6“”'“] log RND (7.19)
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The detailed procedure of generating random samples of volume shape factor
from the normal density function is given in Appendix L.3. The simulation process is

outlined in Appendix VIL1I.

7.4 Results and discussion

In this work the simulation was carried out for the magnesium sulphate heptahydrate
(MS) and potash alum (PA) crystals to compare results with those reported by GAHN
and MERSMANN (1997). The relevant material properties, as tabulated by by GAHN
and MERSMANN (1997), for MS and PA are listed in Table 7.1. The simulation was
carried out for three different impact energies, e.g. 1E-4, 1E-5 and 1E-6 J. GAHN and
MERSMANN (1997) took 50 sample crystals for each experiment on attrition. In this
work the same sample size was used for simulation purposes. The sample programs
and simulated results for an impact energy of 1E-5J and @ = a, are outlined in

Appendix VII.2 for MS and PA.

For MS, Table 7.2 provides a comparison of the CSD of fragments generated

with an impact energy of 1E-4J for a = a, with two discrete shape factors, naniely,

@ =05236 and @ = 1. The number distribution of fi for these sub:
are tabulated at different intervals between L., and L, . The value of L, is
obtained from Eq. (7.8) while L from combining Eq. (7.1) and (7.10). By

assuming & = a,, the number of fragments generated is higher than the hypothetical
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number of cubic crystals but is lower than the number of spherical crystals. The
number of fragments for three different cases is given in Table 7.2. It is observed
that the differences are more prevalent in the smaller fragment sizes. In short the
CSD of fragments for normally distributed volume shape factor lies between two

extreme cases of cube and spherical geometry.

The total volume removed by attrition for each sample, as obtained from Eq.
(7.12), is indicated in the Table 7.2. The value of ¥, was found to be the same for
the three volume shape factor parameters. Any variation in the volume shape factor
is compensated by the total number of fragments. The value of ¥, is within the range

of the data reported by GAHN and MERSMANN (1997).

Table 7.3 lists the CSD of fragments for PA with an impact energy of 1E-4J
for three different values of a. The simulation results for PA generated a
significantly higher amount of fragments as compared to MS. As the critical work
(W ) required to form crack in PA is lower than that of MS, it implies a lower

fracture resistance and higher hard: (also i in brittl ). Thus the energy

necessary to form attrition also decreases. Therefore, the same amount of energy
would produce a greater number of fragments for PA with a higher number of small
fragments. This also explains the reason for a higher ¥, for PA as compared to MS.
In addition, substance like PA with a low fracture resistance and higher hardness as

compared to MS has also resulted in a wider CSD of fragments.
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The results in Table 7.2 and 7.3 are plotted in log N vs. Log L as shown in
Figure 7.2 and 7.3 respectively. A least-square method was used to find the slopes of
the three lines and the values are indicated in these figures. The slopes are found to
deviate slightly from the expected average value of -3.25 (Eg. 7.6) as in GAHN and
MERSMANN physical model. Furthermore, the slopes are found to be insensitive to

the volume shape factor variation.

The fragment CSDs of MS and PA for the three volume shape factors with
an impact energy of 1E-5J are plotted in Figure 7.4 and 7.5 while those for 1E-6J are
plotted in Figure 7.6 and 7.7. For both the substances, the fragments are distributed
over a narrower range of sizes for the impact energy of 1E-6J. At such low energy,
the point force acting at the corner of the cone causes the stress to propagate nearer
from the original peak of the cone resulting in a decrease in 7,,, . Since the size of a

fragment is a function of r, smaller size fragments are obtained with lower energies.

The total bers of fr. are also indicated in Figures 7.3 through 7.7.

It was found to be lower for the lower impact energy. For the case of MS with a =

a,, an impact energy of 1E-4 J g d 1,080,871 fr while 1E-5 and 1E-6

generated 109,814 and 11,096 fragments respectively. It is obvious from Eq. (7.7)
that the total number of fragments produced is directly proportional to the impact
energy. An increase in this energy by a factor of ten resulted in an increase in the

number of fragments by the same factor.
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The slopes of the lines are as shown in Figures 7.3 through 7.7. All the slopes
are between -3.25 to -3.58. The deviations from the expected average slope of -3.25

are found to be insignificant.

7.5  Conclusions

Monte Carlo technique is a versatile and powerful tool for simulating the CSD of
fragments as a result of the attrition process. The basic advantage of MC is that one
could obtain the CSD under all possible dispersion effects. In the present
contribution, a normal distribution has been used to represent dispersion in volume
shape factor from a physical standpoint for generating the fragment size distribution
in GAHN and MERSMANN’s model. The number density of the fragments was plotted
as a function of particle size in a logarithmic plot. The CSD of fragments with
normally distributed shape factor are found to lie between two extreme cases of
cubic and spherical geometry. The result obtained is consistent with the physical
model with the slopes of the fragment distribution plots in good agreement with the

expected average values of -3.25.

In addition to the three measurable mechanical properties, e.g. hardness,

fracture resi and a quasi-i pi only one additional parameter is

required to simulate the CSD using the MC technique, i.e. the impact energy. The
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CSD of fragments are distributed with a wide range at higher impact energy and the

total number of fragments is directly proportional to the impact energy.

Table 7.1 Vicker Hard: H,, ge shear modulus /4y, , and the critical work
to form cracks 1, for magnesi Iphate heptahydrate and potash alum

Substance H, (106 Pa) sy (109P2) W, (10-107)

Magnesium sulphate (MS) 649 9.06 48

heptahydrate

Potash alum (PA) 754 7.96 7

Table 7.2 The fragments size distribution for magnesium sulphate heptahydrate
(MS) with @ = 05236, @= @, and @ = lat W, = 1E-4]J

Fragment size (um) No. of fragment [+]
a = 05236 a=a, a=1
1 1148321 793428 600101
3 338718 233018 178025
5 71074 48715 37592
10 6148 4235 3260
15 1349 893 750
20 410 313 221
25 194 128 121
30 137 88 83
40 67 44 28
60 32 9 19
Total 1566450 1080871 820200
L,,=2pum -
Lo =97 pm

¥, =293957x 10" m’
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Table 7.3 The fragments size distribution for potash alum (PA) with a = 05236,
=a,and a =lat Wp =1E-4]

Fragment size (um) No. of fi [+]
a = 05236 a=a, a=1
1 10438645 7413789 5465729
3 245377 173892 128460
5 51606 36514 26961
10 4367 3163 2286
15 994 721 522
20 293 230 191
25 151 109 66
30 100 69 55
40 49 32 24
60 14 9 3
80 4 2 3
Total 10741600 7628530 5624300
Lyp=1pm
L., =115pm

¥, =4.80697 x 10" m’
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ure 7.1 (a) Assumed geometry of the plastically deformed zone
(b) Stress created in the elastic zone
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Figure 7.2 Particle size distribution of fragments for MS at
Wp=1E-4J with «=0.5236, a=an and a=1
=052 1600
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Figure 7.3 Particle size distribution of fragments for PA at
Wp=1E-4J with «=0.5236, a=an and a=1
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Figure 7.4 Particle number distribution of fragments for MS at
Wp=1E-5J with @=0.5236, a=an and a=1
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Figure 7.5 Particle number distribution of fragments for PA at

Wp=1E-5J with =0.5236, a=an and a=1
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Figure 7.6 Particle number distribution of fragments for MS at
Wp=1E-6J with a=0.5236, a=an and a=1
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Figure 7.7 Particle number distribution of fragments for Pa at
Wp=1E-6J with a=0.5236, a=an and a=1
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