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ABSTRACT 

Conjugate heat transfer in porous medium is a complex phenomenon that depends on 

coupled partial differential equations which are difficult to solve directly. The governing 

equations of conjugate heat transfer are coupled to each other thus any change in one 

equation affects the other equations and vice-versa. The governing equations are non-

dimensionalised with the help of suitable non-dimensional parameters. These equations can 

be solved with the help of few numerical methods but that involves generation of huge 

number of simpler equations. The large number of equation evolved takes enormous 

amount of computational resources to solve and study the phenomenon. The current 

research is undertaken to develop an optimized algorithm that takes lesser amount of time 

to solve the resulting equations from application of a popular numerical techniques known 

as finite element method. The governing partial differential equations are converted into a 

set of algebraic equations that further assembled into a matrix form of equations. The 

porous solid domain subjected to conjugate heat transfer is divided into smaller segments 

with the help of triangular elements. The stiffness matrix of each element is assembled into 

a global stiffness matrix. A tight convergence criterion is maintained for all the governing 

equations. The optimized algorithm is compared with its conventional method of solution 

for conjugate heat transfer as well as conjugate heat and mass transfer.  

It is found that the developed algorithm works perfectly to predict the single diffusion as 

well as double diffusion in a square porous cavity having a small solid placed at various 

locations. The developed algorithm is found to take considerable lesser amount of iterations 

and time to arrive at the solution as compared to its counterpart i.e. conventional method of 

solution for conjugate heat transfer. The study revealed that the placement of solid has 

significant effect on the heat and mass transfer behavior in the cavity. 
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ABSTRAK 

Pemindahan haba konjugat dalam medium berliang adalah satu fenomena kompleks 

yang bergantung kepada persamaan pembezaan separa yang sukar untuk diselesaikan 

secara langsung. Persamaan pengelola konjugat pemindahan haba adalah berkaitan antara 

satu sama lain. Maka apa-apa perubahan dalam satu persamaan akan memberi kesan 

kepada persamaan lain dan sebaliknya. Persamaan-persamaan yang mengawal adalah tidak 

didimensikan dengan bantuan parameter tanpa dimensi yang sesuai. Persamaan ini boleh 

diselesaikan dengan bantuan beberapa kaedah berangka tetapi ia melibatkan persamaan 

mudah yang sangat banyak. Bilangan persamaan yang berkembang secara pesat mengambil 

sejumlah besar sumber pengiraan untuk menyelesaikan dan mengkaji fenomena 

ini.Penyelidikan semasa dijalankan untuk membina dan mengoptimumkan algoritma 

supaya mengambil masa yang lebih sigkat dalam menyelesaikan persamaan menggunakan 

teknik berangka popular dikenali sebagai kaedah unsur terhingga. Persamaan pembezaan 

separa ditukar kepada satu set persamaan algebra yang disusun dalam persamaan bentuk 

matriks. Domain pepejal berliang mengkonjugat pemindahan haba dibahagikan kepada 

beberapa bahagian dengan bantuan unsur segi tiga.Matriks kekukuhan setiap elemen 

disusun kepada bentuk matriks kekukuhan global.Satu kriteria penumpuan dikekalkan 

secara ketat untuk semua persamaan yang mengawal.Algoritma dioptimumkan 

dibandingkan dengan kaedah penyelesaian pemindahan konjugat haba konvensional begitu 

juga dengan pemindahan konjugat haba dan jisim. 

Didapati bahawa algoritma yang dibangunkan berfungsi dengan sempurna untuk 

meramalkan penyebaran tunggal serta penyebaran berganda dalam rongga berliang segi 

empat yang mempunyai pepejal kecil yang diletakkan dipelbagai lokasi. Algoritma yang 

dibangunkan didapati mempunyai kurang lelaran dan masa untuk tiba pada penyelesaian 
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berbanding dengan kaedah lain iaitu kaedah konvensional penyelesaian untuk pemindahan 

konjugat haba. Kajian ini menunjukkan bahawa penempatan pepejal mempunyai kesan 

yang besar ke atas tingkah laku pemindahan haba dan jisim dalam rongga. 
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CHAPTER 1: INTRODUCTION 

1.1. Research Background 

The development of fast and efficient optimization algorithms have become inevitable in 

almost every single department of life, which has led to the incredible emphasis on 

increased awareness and creative ideas in developing the optimization techniques. This 

trend has profound effects, in particular, on research and innovation as well as solution 

techniques adopted for solving various scientific and industrial problems in the area of 

computer science as evident from the open literature.  Furthermore, in engineering the 

optimization techniques have become customary and often indispensable especially in 

actively pursued research area. However with the rapid advancement in computer science 

and information technology, it has become comparatively, easily achievable task. Therefore 

it comes as no surprise, as the emergence of interdisciplinary research collaborations are 

considered as the most effective tools in research and innovation fields, such as; bio 

instrumentation engineering, mechatronics engineering, bio medical engineering and so on. 

In a similar trend there is a need to develop optimized yet efficient and faster algorithms to 

investigate the various issues in heat transfer study. To accomplish this need of efficient 

and optimized algorithmic tools in view, which could be more helpful in obtaining the 

solutions to the non-linear partial differential equations with acceptable accuracy in 

minimum time. In particular the conjugate heat transfer phenomenon, which has more 

complicated equations to handle, require the best possible solution technique that can 

execute with high efficiency and minimal computation time to achieve a desirable 

accuracy. 

 The heat transfer in porous medium is one of the center points of research by several 

eminent researchers, during the last few decades, due to its vast applications in science and 

Univ
ers

ity
 of

 M
ala

ya



2 
 

technology, research and innovation, industry and even in our everyday applications. Many 

engineering applications involve the complex conjugate heat transfer phenomenon such as 

heat exchangers, automotive and aerospace industries and chemical processing, as well as 

applications in recently emerging technologies in materials and life sciences including 

environmental protection, bio- and nanotechnology, pharmacology, and medicine. Unlike 

the other phenomena, the conjugate heat transfer analysis, do not require the external and 

internal heat transfer coefficients on the walls of the conduction surfaces, instead it only 

requires the boundary conditions at the inlet and exit of the gas and coolant passages.  

Recent studies have shown promising results in analyzing this complex conjugate heat 

transfer analysis with the help of the advanced computing technologies and optimized 

computational methods. However the importance of the efficient and reliable numerical 

methods cannot be undermined. The solution to the governing partial differential equations 

involved in the conjugate heat transfer analysis could only be achieved employing suitable 

methodology and mathematical techniques.  

1.2 Conjugate heat transfer analysis 

The conjugate heat transfer refers to a situation where heat transfer occurs 

simultaneously between fluid and solid emanating a complex boundary condition between 

fluid and solid. Generally, the conjugate heat transfer is reported for the cases where the 

solid wall is attached to whole of the surface at one end of geometry under investigation. 

There are applications such as heat exchangers, solar cell technology, nuclear reactors and 

many more, where the porous medium is fixed adjacent to a solid section. This kind of 

situations produces different heat transfer behavior than having no solid region adjacent to 

the porous medium. This happens because of the fact that the boundary conditions are 

generally known at the one side of solid wall and the porous medium, but no information is 
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available at the meeting point of solid and the porous region which can be termed as solid-

porous interface. Thus the heat transfer in the porous medium is dictated by the solid wall 

characteristics. This phenomenon is generally termed as conjugate heat transfer. Literatures 

pertaining to the conjugate heat transfer in different geometries such as vertical wall, 

vertical (I Pop, Sunada, Cheng, & Minkowycz, 1985)  cylindrical fin (Liu, Minkowycz, & 

Cheng, 1986), sphere (Kimura & Pop, 1994), vertical circular pin and vertical flat plate 

(Cha, Chen, & Chen, 1990), embedded in porous medium explicating various aspects have 

been reported. Thus there is increased interest by the eminent researchers to understand the 

heat transfer characteristics and fluid flow behavior inside the porous domain as evident 

from open literature. 

1.3 MathematicalFormulation 

Mathematics is the base of scientific and engineering developments which have led to 

the advancements in many fields of human life. Mathematics can be used to imitate any 

physical phenomenon without having to build the physical structure accomplishing the 

phenomenon. Mathematical modeling requires the basic laws of science to be written, 

arranged and operated with the help of mathematical rules to finally come up with a single 

or multiple equations which can predict the behavior of the physical system understudy. 

There are two distinct advantages of using mathematical modeling over experimental 

studies. Firstly, it avoids the heavy cost involved in building the prototype of physical 

system. Secondly, it compresses the time required to study a system by many folds as 

compared to that of experimental studies. The beauty of mathematical modeling lies in the 

fact that it can answer many questions about the behavior of system in very short period of 

time. Analytical and numerical studies in recent times have become very popular due           
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to accuracy with in required range, fast, inexpensive due to the advanced computer 

technology. 

1.4 Optimization in numerical study 

The investigation of heat transfer through porous medium has received incredible 

attention from the various eminent researchers due to its, prevalence in the various 

engineering and industrial applications and its complexity. The difficulty in dealing with 

the governing equations for the heat transfer and fluid flow through porous medium has 

given rise to the implementation of the various numerical techniques to solve these 

nonlinear partial differential equations. The need for the solutions to the governing 

nonlinear partial differential equations has motivated to develop various verities of 

optimized numerical techniques. The researchers have suggested various optimization 

techniques to deal with these complex analyses as in the case of the study carried out by 

(Das & Prasad, 2015)  and (Kamali, Kumaresan, & Ratnavelu, 2015).   

 The present study deals with the solution of the governing non linear partial differential 

equations to investigate the heat transfer characteristics and fluid flow pattern in a square 

porous domain fixed with solid at arbitrary position. The study is accomplished by using 

the most popular numerical technique Finite element Method FEM in which the partial 

differenitail equations are converted in to the simple algebariac equations by means of 

Galerkin’s method. Furthermore these algebraic equations are solved for various physical 

and geometrical parameters by using the Matlab codes, generated to understand the effects 

of various physical and geometrical parametrs on the heat transfer and fluid flow 

behaviour. Many computer codes, for instance, physical phenomnon as mentioned in above 

study, consumes too much time and needs advanced technology to handle the robust 

analysis(de Rocquigny, Devictor, & Tarantola, 2008). Thus it needs an efficient, in fact a 
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specialized, optimized algorithm to circumvent the unnecessary huge time and resources to 

carry out the analyses. 

1.5 ProblemStatement and Objectives 

The magnificent work carried out by the researchers in the last few decades has 

addressed various unsolved problems related to the heat transfer and fluid flow analysis 

using mathematical models that can effectively be simulated to run on computer systems. 

Furthermore the plenty of new areas have been explored to take the research in to the 

further advanced stages. Eventually the new aspects pertaining to the heat transfer and 

the porous media approach have been opened as a new challenge to correlate the 

previous fundamental research to the newly emerged problems pertaining to the research 

in the heat transfer in various geometries. The important phenomena such as the 

conjugate heat transfer; double diffusion conjugate heat transfer has not received 

sufficient attention from the researchers as evident from the literature which has been 

discussed in the next chapter. Moreover, the simulation results for the solution of 

conjugate heat transfer consumes huge amount of computing resources to arrive at the 

solution. These results highlight a possible  constraint with respect to real life 

applications for many industries that cannot afford high performance servers Thus 

addressing these important and untouched problems has motivated to carry out the in-

depth research in this specific area of engineering science to understand the macro level 

as well as to some  extent micro level details predominantly related to the heat transfer 

and fluid flow analysis and also in heat and mass transfer in some special case as well.  
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1.6 Objectives  

Thus the objectives of the forgoing study can be listed as below. 

1. To optimize the computational resources of conjugate heat and mass transfer 

phenomenon that reduces the required computational time. 

2. To simulate and study the effect of size and location of solid placed inside the 

porous cavity, on heat transfer based on the optimized method. 

3. To simulate and study the effect of size and location of solid on double diffusion 

inside the porous medium based on the optimized method. 

1.7 Scopeof the study 

The research emphasizes on convective heat transfer mechanism in a porous square 

cavity using mathematical models to develop efficient and faster algorithms based on 

computer simulation. The complexity of the convective heat transfer has been studied 

thoroughly. The scope is a confined simulation of a mathematical model that is to optimize 

the conjugate single diffusion as well as double diffusion in porous medium. The 

optimized model is applied to study the size and location of solid wall placed at arbitrary 

positions inside the porous cavity. Conjugate single as well as double diffusion with 

respect to various locations of solid and its size are subjected to in-depth analysis.  
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1.8 Thesis Organization 

The thesis is organized into seven chapters that systematically explain the objectives of 

this research. The description of each chapter is as follows: 

Chapter1 gives the introduction to the basic concept of heat transfer and relevant 

applications of heat transfer in porous medium. Thereafter the different aspects of the 

convection are explained. The methodology and the scope of the study of the research 

is described briefly. 

Chapter 2 deals with the extensive literature survey of t h e past research work carried 

out by various researchers and ends with review of the work. 

Chapter3 presents the mathematical formulation of governing equations of the fluid 

flow and the solution methodology obtained in detail. 

Chapter 4, 5 and 6 are the important chapters   that explains the micro level details of 

the optimized algorithm for heat transfer and heat mass transfer phenomenon in porous 

medium with respect to the different cases of the convective heat transfer and heat mass 

transfer analysis. 

Chapter 7 provides the conclusion and recommendations for the future works. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

It is evident from number of published research articles in last few decades that the 

porous medium plays an important role in many scientific and engineering fields. Heat 

transfer in porous medium which is also referred to as single diffusion and, Heat and Mass 

transfer in porous medium which is alternately referred as double diffusion turns into more 

complex phenomenon when any solid obstruction is encountered in the porous medium 

that substantially changes the flow behavior leading to change in heat transfer and mass 

transfer characteristics. Researchers identified the significance of evaluating the mutual 

thermal effects of solid bodies and the fluid surrounding them.  Later on this problem was 

referred to conjugate and the phenomenon that was employed to study the transfer of heat 

and mass through porous media was known as conjugate heat and mass transfer in porous 

media. The current chapter is devoted to look into the research work being carried out by 

various researchers in the field of conjugate heat or conjugate heat and mass transfer in 

porous medium. Many Industrial applications such as heat exchanger design and 

continuous processes of convective drying are in fact some of the conjugate problems.  

2.2 Conjugate Heat Transfer Geometries 

2.2.1 Square/ Rectangular geometry: 

Badruddin et al (Badruddin, Zainal, Narayana, & Seetharamu, 2007)investigated heat 

transfer by convection, conduction and radiation in a saturated porous medium enclosed in 

a square cavity using a thermal non-equilibrium model. The flow is assumed to follow 

Darcy law. The governing partial differential equations are non-dimensionalised and solved 

numerically using finite element method. The left vertical surface of the square cavity is 
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maintained at an isothermal temperature Th and the right vertical surface at Tc such that Tc 

<Th. The top and bottom surfaces of the cavity are assumed to be adiabatic. Effect of 

various parameters on Nusselt number such as the inter-phase heat transfer coefficient, 

modified conductivity ratio, radiation parameter and Rayleigh number are analyzed. They 

concluded that the local Nusselt number for fluid and solid decreases with increase of 

cavity height at hot wall and vice-versa at cold wall. 

Chamkha & Ismael(Chamkha & Ismael, 2013a) studied conjugate natural convection-

conduction heat transfer in a square domain composed of Nano fluids filled porous cavity 

heated by a triangular solid wall under steady-state conditions. The triangular solid is kept 

at the left corner of the cavity.  The vertical and horizontal walls of the triangular solid wall 

are kept isothermal and at the same hot temperature Th. The other boundaries surrounding 

the porous cavity are kept adiabatic except the right vertical wall where it is kept 

isothermally at the lower temperature Tc. Governing equations are based on Darcy model 

and were solved using the over-successive relaxation finite-difference method. Their results 

concluded that the heat transfer within Nano fluids-saturated porous media may be 

enhanced or deteriorated with increasing the Nano particles volume fraction and the Nusselt 

number is an increasing function of the Rayleigh number. 

Later they extended their investigation with the same geometry to Rayleigh number Ra 

(100-1000), solid to fluid saturated porous medium thermal conductivity ratio Kr (0.1–10), 

and the triangular wall thickness D (0.05-1). They observed an uncommon effect of the 

solid wall thickness D, when D was increasing it had two contrary effects. These are: 

increasing the thermal resistance (reduction of heat transfer), and increasing the contact 

interface (enhancement of heat transfer). It was evident that the effect of Ra and D became 

noticeable when Kr>0.1. (Chamkha & Ismael, 2013b) 
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Alhashash, Saleh, & Hashim(Alhashash, Saleh, & Hashim, 2013) carried numerical 

study on conjugate natural convection in a square porous enclosure sandwiched by finite 

walls under the influence of non-uniform heat generation and radiation. They considered 

left vertical wall heated isothermally to hot temperature Th  and the right vertical wall is 

kept isothermally at the lower temperature Tc and top and bottom horizontal walls are kept 

adiabatic. Darcy model is employed in mathematical formulation and the governing 

equations are solved using finite difference method. The governing parameters considered 

are the ratio of wall thickness to its width, the wall to porous thermal conductivity ratio, the 

internal heating and the local heating exponent parameters. They concluded that the flow 

strength circulation increases with increasing the radiation intensity and the average Nusselt 

number on the hot and cold interfaces also increases with an increase in radiation intensity. 

Badruddin et al (Badruddin, Al-Rashed, Ahmed, & Kamangar, 2012) analyzed the heat 

transfer characteristics in a porous duct. They solved the mathematical model of heat 

transfer in a porous duct by converting the governing partial differential equations into a set 

of algebraic equations with the help of finite element method. A simple three noded 

triangular element is used to mesh the duct domain. The current problem consists of a 

square duct with outer walls being exposed to hot temperature Th, and inner walls subjected 

to cool temperature Tc. The Emphasis is given to investigate the effect of width ratio of 

cavity on heat and fluid flow characteristics inside the porous medium. They reported the 

results for various duct width ratios, Rayleigh number etc. They found that the Nusselt 

number increases with increase in height of cavity along the vertical walls of duct; however 

the Nusselt number for certain values of duct ratio oscillates along the width of the porous 

medium at bottom wall of the cavity. 
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Baytas, Liaqat, Grosan, & Pop (A. C. Baytas, Liaqat, Grosan, & Pop, 2001) studied a 

two-dimensional square cavity under the influence of a gravitational field filled with a 

fluid-saturated porous medium. The left and right vertical walls of the cavity are maintained 

at constant and different levels of temperatures Th  and Tc  respectively where Th > Tc.The 

upper and lower horizontal walls of equal thickness b are assumed to be of the same 

material with a non-zero thermal conductivity, while the outside of horizontal solid walls 

are kept adiabatic. They concluded that the flow characteristics are significantly influenced 

by the coupling effect between solid walls and the fluid-saturated porous medium, for large 

values of the conductivity ratio parameter k., and small changes were observed when the 

conductivity of the solid walls is small when compared to fluid-saturated porous medium. 

Saeid (Nawaf H. Saeid, 2007) studied numerically steady conjugate natural convection 

in a two-dimensional vertical porous layer sandwiched between two equal-thickness walls. 

The horizontal heating is considered, where the outer surfaces of the vertical walls are 

isothermal at different temperatures with adiabatic horizontal boundaries. The Darcy model 

is used in mathematical formulation for the porous layer and finite volume method is used 

to solve the dimensionless governing equations. The governing parameters considered are 

the ratio of the wall thickness to its height, the wall to porous thermal conductivity ratio and 

the Rayleigh number. The author concluded that as Rayleigh number increases the average 

Nusselt number is increasing with higher slope for the thin walls than that for thick walls. 

Saleh & Hashim (Saleh & Hashim, 2012) carried numerical study on effects of a 

conductive wall on natural convection in a square porous enclosure having internal heating 

at a rate proportional to a power of temperature difference. The horizontal heating is 

considered and the left and right vertical walls are heated isothermally at Th and Tc where 

Th> Tc. while the horizontal walls are kept adiabatic. The equations are solved using Darcy 
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model and finite difference method. They concluded that the heat transfer remains stable 

for any values of the thermal conductivity ratio at very low Rayleigh number and increasing 

thermal conductivity ratio value and/or decreasing the thickness of solid wall can increase 

the maximum fluid temperature. 

2.2.2 Annular/ Cylindrical geometry: 

Mikhail A. Sheremet & Trifonova(Mikhail A. Sheremet & Trifonova, 2013b)studied 

numerical simulation of transient conjugate natural convection in a vertical cylinder 

partially filled with a porous medium in conditions of convective cooling from an 

environment. They found that an increase in the porous layer height ratio leads to a 

decrease in several parameters like the average Nusselt number, the cooling rate of the 

analyzed domain, and an intensity of the toroidal vortex. 

Tao, Wu, Chen, & Deng(Z. Tao, Wu, Chen, & Deng, 2005) presented numerical model 

for the process of microwave freeze-drying within a cylindrical porous media with 

cylindrical dielectric cores.  The set of transient governing equations developed were 

solved numerically with variable time-step finite volume method. Their study was mainly 

concentrated on the influences of control parameters, such as loss factor, initial saturation 

and electric field strength, on microwave freeze-drying.  They concluded that: proper usage 

of cylindrical dielectric cores could dramatically reduce the drying time, The loss factor of 

the cylindrical dielectric core is an important parameter influencing the drying behavior, 

two sublimation fronts can exist within the porous media due to the existence of inner 

dielectric cores and the impact of cylindrical dielectric cores on drying could not be ignored 

even though the initial saturation is low. 

Badruddin et al(Badruddin et al., 2015) studied heat transfer in a porous medium 

sandwiched between two solid walls of an annular vertical cylinder applying finite element 
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method on governing equations with a focus on the effect of solid wall thickness, variable 

wall thickness, variable wall thickness at inner and the outer radius, the conductivity ratio 

and the solid wall conductivity ratio. Their results concluded that there is no much 

temperature variation inside the inner solid when the wall thickness is small, the increase in 

the conductivity ratio Kr increases the heat transfer rate and that the average Nusselt 

number decreases with increase in the wall. 

Salman et al(Salman et al., 2014) investigated heat transfer behavior in a porous annular 

vertical cylinder having a solid wall at the inner surface. The inner and outer surfaces of the 

annulus are maintained isothermally. It was noticed that the increase in conductivity ratio 

lead to an increase in temperature at the solid-porous interface. Lastly they concluded that 

temperature along the interface layer increases with the decrease in solid wall thickness due 

to decrease in thermal resistance of the wall. 

Pop & Na(I. Pop & Na, 2000) investigated the steady conjugate free convection over a 

vertical slender, hollow circular cylinder with the inner surface at a constant temperature 

embedded in a porous medium. The governing equations are solved using the Keller box 

method. The results are presented in terms of temperature profiles, the interface 

temperature profiles and the local Nusselt numbers. 
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Kaya(Kaya, 2011) studied mixed convection heat transfer about a vertical slender 

hollow cylinder due to buoyancy and conjugate heat transfer effects in the porous medium 

with high porosity. They considered the wall conduction parameter, the porous medium 

parameter, the Forchheimer parameter and the Richardson number as main parameters for 

their investigation and the author found that local skin friction and the local heat transfer 

coefficients increase with an increase in buoyancy, porous medium, Forchheimer 

parameters and decrease with conjugate heat transfer parameter. 

Abd Kadir, Rees, & Pop(Abd Kadir, Rees, & Pop, 2008) aimed to determine the effect 

of different conductivity ratios on forced convection past a circular cylinder embedded in a 

porous medium, where the solid cylinder forms a uniform heat source. They employed 

finite difference method to obtain the resulting steady-state solutions.  They found that the 

thermal field within the cylinder and in the external porous region depends strongly on the 

ratio of the respective conductivities. 

Berletta & Storesletten(Berletta & Storesletten, 2011) investigated the onset of 

convective rolls in a circular porous duct for various values of Biot number. The 

determination of the neutral stability along with the critical values of the wave number and 

the Rayleigh number were studied for different Biot numbers. The Galerkin finite-element 

method was used to solve the elliptic governing equations. 

A numerical investigation of heat transfer in porous medium in cylindrical geometries/ 

cavity was carried out by Badruddin et.al.((I.  A Badruddin, N. J. S Ahmed, et al., 2012; 

Badruddin, Zainal, Aswatha Narayana, & Seetharamu, 2006; Badruddin, Zainal, Aswatha 

Narayana, Seetharamu, & Siew, 2006; Badruddin, Zainal, Khan, & Mallick, 2007; 

Badruddin, Zainal, Narayana, & Seetharamu, 2006a, 2006b, 2006c) They employed the 

finite element method to convert non-linear partial differential equations into algebraic 
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equations. They studied the effects of Rayleigh number, radiation parameter, aspect ratio, 

radius ratio etc. on the heat transfer and fluid flow behavior. Similar kind of study was 

carried out by Ahmed et.al. (N. J. S. Ahmed, I. A. Badruddin, Z. A. Zainal, H. M. T. 

Khaleed, & J. Kanesan, 2009; N. J. Salman Ahmed, Badruddin, Kanesan, Zainal, & Nazim 

Ahamed, 2011) 

Chen & Sutton(Chen & Sutton, 2005) studied a circular geometry with inner layer 

occupied by the porous medium and outer layer by the fluid. They concluded that the 

increase of the Darcy number of porous medium will increase the heat transfer. 

Shivakumara et al (Shivakumara, Prasanna, Rudraiah, & Venkatachalappa, 2002) carried 

a  numerical investigation of transient free convection in a vertical cylindrical annulus filled 

with a fluid saturated porous medium with the inner wall heated to a uniform temperature, 

the outer wall cooled to a uniform temperature while the top and bottom surfaces were 

maintained adiabatically. A finite difference implicit method which incorporates upwind 

differencing for nonlinear convective terms and the successive line over relaxation (SLOR) 

method for convergence was used to solve the coupled nonlinear governing equations. The 

effects of Darcy number, radii ratio, viscosity ratio and Rayleigh number on the 

temperature and velocity fields were studied. 

Rashad  et al (Rashad & EL-Hakiem, 2007) studied the effects of both free convection 

and radiation with nonlinear Forchheimer terms from a vertical cylinder embedded in a 

fluid-saturated porous medium on fluid. They considered fluid viscosity to vary as an 

inverse linear function of temperature. The boundary-layer equations governing flow were 

solved numerically by using the second-level local non-similarity method, which was used 

to convert the non-similar equations into a system of ordinary differential equations. 
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Numerical results for dimensionless velocity, temperature profiles and the local Nusselt 

number were presented. 

Minkowycz & Ping(Minkowycz & Ping, 1976) studied the natural convection in a 

vertical cylinder embedded in a saturated porous medium. They considered temperature of 

the wall varying along the height of the cylinder in a power law fashion. 

Prasad & Kulacki(Prasad & Kulacki, 1984) studied the steady free convection in a 

vertical annulus filled with saturated porous medium.  The vertical walls were maintained 

at varying temperature, whereas the horizontal surfaces were insulated. They concluded 

that the velocity of the fluid in the upper half of the annulus is higher than that of the 

velocity in the lower half of the annulus. 

Rajamani et al(Rajamani, Srinivas, Nithiarasu, & Seetharamu, 1995)applied  finite 

element method by employing Galerkin’s approach to analyze free convection heat transfer 

in axisymmetric fluid saturated porous bodies. They studied the effect of aspect ratio and 

radius ratio on Nusselt number in the case of a porous cylindrical annulus. Two cases of 

isothermal and convective boundary conditions are considered. They concluded that the 

Nusselt number is always found to increase with radius ratio and Rayleigh number. 

Hossain & Alim(Hossain & Alim, 1997) studied the interaction of natural convection 

and radiation on boundary layer flow along a thin vertical cylinder to predict the heat 

transfer rate by means of temperature profile, velocity profile and Nusselt Number for 

various parameters. The effects of the parameters such as the radiation parameter, Rd, the 

surface temperature parameter, θw, taking Prandtl number, Pr, equals 0.7, on temperature 

and velocity profile have been evaluated in the study and eventually graphically presented.  
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They concluded that the increment in the radiation parameter, Rd, or temperature parameter, 

θw  resulted in the increase of the local heat transfer rate. 

Reda(Reda, 1986) conducted an experiment on finite vertical cylinder. The study was 

based on the nuclear waste isolation in which the inner heat source along the length of the 

cylinder was maintained whereas the outer cylinder was maintained at constant 

temperature. He found that the radial temperature drops across the annulus systematically 

from the finite length cylinder conduction solution as heater power was increased. 

2.2.3 Vertical Plate/ Miscellaneous geometry: 

Kuznetsov & Nield(Kuznetsov & Nield, 2001) made an analytical investigation on the 

effects of variation of permeability and thermal conductivity on a fully developed forced 

convection in a parallel plate channel or circular duct filled with a saturated porous medium 

based on Darcy model for the cases of isoflux and isothermal boundaries. They found that 

the results for the circular duct are generally similar to those for the parallel plate channel 

and the most prominent difference being that the Nusselt numbers for the circular duct are 

generally higher than those for the parallel plate channel. 

Mahmud & Fraser(Mahmud & Fraser, 2005) performed analytical and numerical 

analysis for fully developed forced convection in a fluid-saturated porous medium channel 

bounded by two parallel plates. The channel walls were assumed to be of finite thickness. 

The flow of heat transfer in porous material is described by the Darcy-Brinkman 

momentum equation.  Analytical expressions for velocity, temperature, and Nusselt number 

were obtained after simplifying and solving the governing differential equations with 

reasonable approximations.  They concluded that the velocity profiles are high near wall 

and flat near the center of the channel. Temperature profile inside the fluid region showed 

Univ
ers

ity
 of

 M
ala

ya



18 
 

parabolic distribution while inside the solid wall linear. Lastly they observed that higher 

heat transfer rate occurs at lower clearance ratio and lower Darcy number. 

Vaszi  et al (Vaszi, Elliott, Ingham, & Pop, 2004) investigated two-dimensional 

conjugate free convection in a porous medium from a vertical plate fin.  The governing 

equations of the convective flow in the porous medium were coupled to the governing 

equation for the heat flow in the fin by the conditions of continuity of the temperature and 

the heat flux at the solid/porous media interface.  The governing non-dimensional 

parameters were the convection-conduction parameter and the aspect ratio of the fin. They 

solved the equations by using finite differences and iterative solution method.  They 

concluded that for most values of the conduction-convection parameter, the total heat 

transfer from the fin increases with increasing values of the aspect ratio. 

Char & Lin(Char & Lin, 2001) studied theoretically the conjugate film condensation and 

natural convection along the vertical plate between a saturated vapor porous medium and a 

fluid-saturated porous medium. The governing equations are solved using cubic spline 

collocation method and they concluded that as the Jakob number increases, the film 

thickness increases, while the plate temperature variation and the local heat transfer rate 

decreases. 

Al-Amiri et al (Al-Amiri, Khanafer, & Pop, 2008) made a numerical investigation using 

finite element method for steady conjugate natural convection in a fluid-saturated porous 

cavity boarded to a conducting vertical wall.  They predicted the fluid motion using the 

general formulation of the porous medium, which accounts for the inertial and solid viscous 

effect. The momentum and energy transport processes are explored and results of 

streamlines, isotherms, wall inter-face temperature and average Nusselt numbers are 

presented for a wide range of dimensionless parameters.  Their results showed that as the 
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wall thick-ness increases, the temperature difference between the inter-face temperature 

and the cold boundary reduces, which accordingly brings about a reduction in the overall 

Nusselt number. 

Vaszi et al (Vaszi, Elliott, Ingham, & Pop, 2002) investigated the phenomenon of 

conjugate free convection in a semi-infinite porous medium above a heated finite plate 

using numerical solution and concluded that representation of fluid region in elliptical 

coordinates provides a very effective survey method which naturally magnifies the region 

close to the plate.  In addition the use of inflow and outflow boundary conditions employed 

at the outer boundary allows a considerable reduction in the fluid region investigated for 

high Rayleigh numbers, which is extremely important because in this case a very refined 

mesh is required close to the plate. 

Higuera & Pop(Higuera & Pop, 1997) studied the  problem of coupled heat transfer by 

natural convection between two fluid-saturated porous media at different temperatures 

separated by a vertical conductive wall by investigating them analytically and numerically 

taking account of two-dimensional thermal conduction in the separating wall by 

considering the main parameters of the problem as the ratio of thickness to height of the 

wall and the ratio of the thermal resistance of one of the boundary layers to the thermal 

resistance of the wall.  They observed asymptotic solutions for large and small values of 

heat conduction and aspect ratio. 

Vaszi et al (Vaszi, Elliott, Ingham, & Pop, 2003) studied the  problem of conjugate free 

convection in a porous medium from a vertical plate and a vertical cylindrical fin . The 

governing equations are coupled for the heat flow in the fin by the conditions of continuity 

for the temperature and the heat flux at the interface.  They concluded that the thin fin 

approximation provides decreasing conjugate boundary temperature profiles with 

Univ
ers

ity
 of

 M
ala

ya



20 
 

increasing values of the fin aspect ratio, when the model for a non-insulated fin tip is 

employed. For the larger aspect ratios more heat is conducted to the fluid by the tip of the 

fin, and  also it was noticed apparently  for the cylindrical fin as well  but only for relatively 

small values of the conduction convection parameter. 

Varol et al (Varol, Oztop, & Pop, 2009) studied the conjugate heat transfer via natural 

convection and conduction in a triangular enclosure filled with porous mediums; Darcy 

flow model is used to write governing equations with Boussinesq approximation. The 

transformed governing equations are solved numerically using finite difference technique.  

Numerical study is performed to examine the steady laminar natural convection conduction 

in triangular enclosure filled with fluid-saturated porous media with a conducting bottom 

solid wall for different Rayleigh number, thickness of the bottom wall and thermal 

conductivity ratio. They concluded that flow strength becomes lower for thin wall or low 

values of thermal conductivity ratio. It is also found that increasing of the thick wall, 

reduces the mean Nusselt number due to decreasing of temperature difference. For the 

constant wall thickness and thermal conductivity ratio, Nusselt number increases with 

increasing of Rayleigh number. 

Shu & Pop(Shu & Pop, 1998) presented a theoretical study using Karman-Pohlhausen 

method for describing the transient heat exchange between the boundary-layer free 

convection and a vertical plate embedded in a porous medium. They observed the 

development of unsteady behavior after generation of an impulsive heat flux step at the 

right hand side of the plate while the left hand side of the plate is thermally insulated. They 

considered two cases of the plate with finite and no thickness. They addressed the problem 

by considering analytical and numerical solutions for all possible values of time and space 

evolution of the interface temperature. 
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Paik(Paik, Nguyen, & Pop, 1998) carried out numerical investigation of the transient 

conjugate mixed convection flow about a sphere embedded in a porous medium saturated 

with pure or saline water and they found that the heat capacity ratio between the sphere and 

the surrounding media has more significant effect on the calculated heat transfer rate than 

the thermal conductivity ratio. 

DeGroot & Straatman(DeGroot & Straatman, 2011) proposed a numerical model for 

computing fluid flow and heat transfer in conjugate fluid-porous domains using 

unstructured, nonorthogonal grids. It is noticed that the major contribution of this model is 

its ability to use nonorthogonal grids to discretize complex geometries without affecting the 

robustness of the model. 

Char, Lin, & Chen(Char, Lin, & Chen, 2001) investigated numerically the coupling of 

the wall conduction with laminar mixed-convection film condensation along a vertical plate 

within a saturated vapor porous medium. They employed Darcy-Brinkman-Forchheimer 

model to treat the flow field and the effect of heat conduction across the wall. The 

governing system of equations is solved using cubic spline collocation method. Their 

results has shown  that the effect of wall conduction has great influences on the film wise 

condensation heat transfer, and reduces the local heat transfer rate and dimensionless 

interfacial temperature in comparison with the isothermal plate case.  They also found that 

the local heat transfer rate increases with a decrease in the Jakob number, the Peclet 

number, and the inertial parameter or an increase in the conjugate heat transfer parameter. 

Belleghem et al (Belleghem, Backer, Janssens, & Paepe, 2012) considered dried medium 

as a porous material and drying medium as moist air. The emphasis is laid on the modelling 

of convective drying of porous building materials by implementing a boundary condition. 

They developed a model to simulate the convective drying of a sample of a ceramic brick.  
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These simulations were then compared with measurements from literature and a good 

agreement was found.  They employed validated finite volume HAM (Heat, Air and 

Moisture transport) model and their results were in agreement with the experiments found 

in literature. 

Nield & Kuznetsov(D. A. Nield & Kuznetsov, 2004) investigated analytically forced 

convection in a plane channel filled with a saturated bi-disperse porous medium, coupled 

with conduction in plane slabs bounding the channel on the basis of two-velocity and two-

temperature model.  They concluded that decrease in Nusselt number (Nu) also decreases 

Biots number (Bi). 

Mendez  et al (Mendez, Trevino, Pop, & Linan, 2002) studied the steady state heat 

transfer characteristics of a thin vertical strip with internal heat generation placed in a 

porous medium. They considered non-dimensional temperature distribution in the strip. 

They concluded that the mass flow rate of fluid induced by heating the strip decreases as 

the longitudinal heat conduction effects along the strip decreases. 

Al-Farhany & Turan(Al-Farhany & Turan, 2011b) carried the numerical investigation on 

unsteady conjugate natural convective heat transfer in a two-dimensional porous cavity 

sandwiched between two finite thickness walls comprising an isotropic porous medium. 

The outer surfaces of the vertical walls are maintained at fixed different temperatures, while 

the horizontal boundaries of the cavity are adiabatic. Boussinesq approximation model is 

used to solve the governing equations in the saturated porous region.  A finite volume 

approach is used to solve the non-dimensional governing equations. Their results has 

shown that as the Darcy number increases, the average Nusselt number decreases and the 

time required to reach steady state is longer, while the time required to reach steady state is 

shorter for high Rayleigh number and longer for the low Rayleigh number. 
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Betchen et al (Betchen, Straatman, & Thompson, 2006) proposed a mathematical and 

numerical model for the treatment of conjugate fluid flow and heat transfer problems in 

domains containing pure fluid, porous, and pure solid regions. The model is developed for 

implementation on a simple collocated finite-volume grid and allows for local thermal non-

equilibrium in the porous region. Rigorous validations have demonstrated the ability of the 

model to provide accurate solutions to a variety of problems. 

C. S. Lee et al (C. S. Lee, Haghighat, & Ghaly, 2006)  developed an analytical and 

numerical method using conventional convection approach. The simulation results 

indicated that the effect on the volatile organic compounds source/sink behavior is 

quantified by the total transfer time, this model results in less than 5% error in the predicted 

value. 

Nield & Kuznetsov(D. A. Nield & Kuznetsov, 1999) carried analytical investigation on 

forced convection in a plane channel filled with a saturated porous medium, coupled with 

conduction in plane slabs bounding the channel on the basis of a two-temperature model 

allowing for local thermal nonequilibrium and it is found that the effect of the finite thermal 

resistance due to the slabs is to reduce both the heat transfer to the porous medium and the 

degree of local thermal nonequilibrium. 

El‐Shaarawi et al (El‐Shaarawi, Al‐Nimr, & Al Yah, 1999) conducted a parametric study 

to explore the effects of the Darcy number, the inertia term, the Peclet number and the 

porous medium heat capacity ratio on the transient thermal behavior in a given annulus. 

They concluded that the axial conduction can be neglected for Peclet number greater than 

120 and increasing the porous medium thermal capacity ratio increases the heat transfer by 

reducing the thermal entrance length. 
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Wong & Saeid(Wong & Saeid, 2009) carried numerical investigation on the mixed 

convection-conduction problem of impingement cooling of a finite thickness solid wall 

conjugated with a porous medium. The heat transfer is examined over wide ranges of 

governing parameters such as Rayleigh number, Peclet number, solid wall thickness, heat 

transfer coefficient parameter and solid wall thermal conductivity . They found that the 

average Nusselt number increases with the increase in solid wall thermal conductivity and 

the increase in thickness of the solid wall decreases the average Nusselt numbers. 

Zhang et al (Zhang, Zou, Li, & Ye, 2011) employed Darcy-Brinkman-Forchheimer 

model  and finite volume method to simulate coupled fluid flow and heat transfer problems 

in hybrid porous/fluid/solid domains. They found that when the flow direction is parallel to 

the porous/fluid interface, the interfacial stress-continuity and stress-jump conditions have 

obvious effects on velocity profiles but when the flow direction is almost normal to the 

interface, the effects of the interfacial stress-continuity and stress-jump conditions are 

weak. 

2.3 Conjugate heat and mass transfer on MHD: 

Pathak et al (Pathak, Mulcahey, & Ghiaasiaan, 2013) studied numerically 

hydrodynamics and conjugate heat transfer in porous media subjected to unidirectional-

steady state as well as steady-periodic flow. They simulated two-dimensional flows in 

porous media composed of periodically configured arrays of square cylinders using 

computational fluid dynamics tool. Simulations were conducted for flow oscillation 

frequencies of 0-60 Hz, and low and high velocity amplitudes for a 75% porous domain. 

They concluded that the proposed method can be used as a computational aid to study the 

effects of pore-scale energy transport on its macroscopic behavior for cases where 

geometrically complex flow domains and interphase thermal coupling are important. 

Univ
ers

ity
 of

 M
ala

ya



25 
 

Ali et al (Ali, Khan, Samiulhaq, & Shafie, 2013) studied the combined effects of 

radiation and chemical reaction on magneto hydrodynamic (MHD) free convection flow of 

an electrically conducting incompressible viscous fluid over an inclined plate embedded in 

a porous medium. The dimensionless momentum equation coupled with the energy and 

mass diffusion equations are analytically solved using the Laplace transform method. They 

concluded that: the effects of the permeability and magnetic parameters on velocity are 

opposite, velocity increases with increasing permeability, Grashof number, radiation 

parameter and time. 

Kaya(Kaya, 2012) investigated the flow and heat transfer characteristic for the non-

Darcy Magneto hydro dynamics(MHD) mixed convection flow over a thin vertical plate 

with wall conduction effect in the porous medium of  high porosity.  The fluid is assumed 

to be incompressible and dense.  The nonlinear coupled parabolic partial differential 

equations governing the flow are transformed into the non-similar boundary layer 

equations, which are then solved numerically using the Keller box method.  The author 

concluded firstly that an increase in the conjugate heat transfer parameter decreases the 

velocity and the temperature gradient and therefore decreases the dimensionless interfacial 

temperature distribution, the local skin friction, and the local heat transfer parameters and   

secondly an increase in the porous medium parameter and Forchheimer parameter increases 

the local skin friction and local heat transfer parameters and decreases the dimensionless 

interfacial temperature distributions. 
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2.4 Conjugate heat and mass transfer: 

Belleghem (Belleghem et al., 2012) gave a short overview of the state of the art in 

conjugate heat and mass transport modelling for convective drying. The review highlighted 

shortcomings of currently applied modelling approaches and they developed a new model 

to simulate the convective drying of a sample of ceramic brick. They concluded that the 

discrepancies between the experiments and the model were because of three causes: 

uncertainty of the material properties, deviations between measurements and simulations 

and the correct implementation of the boundary conditions. 

Lopez Penha et al(Lopez Penha et al., 2012) developed a computational method using 

numerical method for performing pore-scale (microscopic) simulations of fluid flow and 

conjugate heat transfer. It is noticed that the proposed method can be used as a 

computational aid to study the effects of pore-scale energy transport on its macroscopic 

behavior for cases where geometrically complex flow domains and interphase thermal 

coupling are significant. They observed that the computed Nusselt number predictions were 

accurate for very modest grid resolutions, with a maximum relative error of approximately 

3% for flow in a square tube with 16 x 16 grid points in cross section.  Accurate results 

were obtained for flow domains that were aligned with the grid showing second-order 

convergence of the field variables. 

Khan et al (Khan, Fischer, & Straatman, 2015) presented a numerical formulation 

capable of simulating fluid flow and non-equilibrium heat and mass transfer in three-

dimensional conjugate fluid/solid/porous domains.  The governing transport equations are 

presented for the fluid, solid and porous regions, with special consideration given towards 

the manner in which moisture is accounted for in the air-water vapour mixture. The results 
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show that model predictions follow the expected trends with respect to flow Reynolds 

number and inlet relative humidity. 

Wu et al(Wu et al., 2004) developed a model for the conjugate heat and mass transfer for 

microwave freeze drying within porous media with dielectric cores.  The set of governing 

equations were developed using finite volume method with variable time-steps and 

concluded that the size and loss factor of the dielectric core are the two important 

parameters influencing the drying process and careful choosing of loss factor and size of 

the dielectric cores could dramatically reduce the drying time. 

Aleshkova & Sheremet(Aleshkova & Sheremet, 2010) carried out mathematical 

simulation of unsteady natural convection modes in a square cavity filled with a porous 

medium having finite thickness heat-conducting walls with local heat source in conditions 

of heterogeneous heat exchange with an environment at one of the external boundaries.  

Numerical analysis was based on Darcy-Forchheimer model in dimensionless variables 

such as a stream function, a vorticity vector and a temperature. It is noticed that the increase 

in the dimension less time leads to warming up of the gas cavity and the prevention of 

cooling of the object of research owing to the influence of an environment. Lastly they 

concluded that the conduction starts to dominate at the reduction of the permeability of 

medium that leads to decrease in the average Nusselt number at an internal surface of the 

left solid wall. 
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Oliveira & Haghighi(Oliveira & Haghighi, 1998) proposed a methodology for the 

analysis of conjugate problems in the convective drying of porous media. In this study the 

interface between porous medium and external convective flow is treated as an internal 

boundary within a two-phase system rather than a geometric limit. The performance of the 

proposed methodology is evaluated by applying it to wood-drying problems.  A finite-

element code was developed to solve the set of equations for the heat and mass transport in 

both the porous medium and the boundary layer. Their results agreed with the expected 

physical behavior and were indicative for the good performance of the proposed solution 

methodology. 

Mikhail A. Sheremet & Trifonova(Mikhail A. Sheremet & Trifonova, 2013a) studied 

numerically the transient natural convection in a vertical cylinder partially filled with a 

porous media with heat-conducting solid walls of finite thickness in conditions of 

convective heat exchange with an environment and they employed Darcy and Brinkman 

extended Darcy models with Boussinesq approximation to solve the flow and heat transfer 

in the porous region.  The Oberbeck-Boussinesq equations have been used to describe the 

flow and heat transfer in the pure fluid region.  The Beavers-Joseph empirical boundary 

condition is considered at the fluid-porous layer interface with the Darcy model.  The 

governing equations were formulated in terms of the dimensionless stream function, 

vorticity, and temperature has been solved using the finite difference method. They 

considered the influence of Darcy number, porous layer height ratio, thermal conductivity 

ratio and dimensionless time on the fluid flow and heat transfer on the basis of the Darcy 

and non-Darcy models. They have done comprehensive analysis of an effect of these key 

parameters on the Nusselt number at the bottom wall, average temperature in the cylindrical 

cavity, and maximum absolute value of the stream function.  They concluded that an 
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increase in conductivity ratio leads to more essential quantitative differences between the 

results obtained on the basis of the Darcy model and the Brinkman-extended Darcy model. 

M. A. Sheremet & Pop(M. A. Sheremet & Pop, 2014) investigated steady-state natural 

convection heat transfer in a square porous  enclosure having solid walls of finite thickness 

and a conductivity filled by a nanofluid model proposed by Buongiorno.  The nanofluid 

model took into account the Brownian diffusion and thermophoresis effects.  The 

governing equations were solved by finite difference method. They concluded that high 

thermophoresis parameter, low Brownian motion parameter, low Lewis and Rayleigh 

numbers and high thermal conductivity ratio reflected essential non-homogeneous 

distribution of the nanoparticles inside the porous cavity. 

Al-Farhany & Turan(Al-Farhany & Turan, 2011a) carried a numerical study on steady 

conjugate double-diffusive natural convective heat and mass transfer in a two-dimensional 

variable porosity layer sandwiched between two walls.  They employed Forchheimer-

Brinkman-extended Darcy model to solve the governing equations in the saturated porous 

region. The governing equations are solved using finite volume method. They concluded 

that the Nusselt number increases when the Rayleigh number increases, while it decreases 

when the thermal conductivity ratio, Lewis number and the wall thickness increase. 

Lamnatou  et al (Lamnatou, Papanicolaou, Belessiotis, & Kyriakis, 2010) employed the 

numerical procedure for modelling the heat/mass transfer based on Luikov’s model and 

finite-volume method.  The results exhibited a realistic physical behavior for a range of 

materials compared to results available in literature. They concluded that the aspect ratio of 

the drying plate and flow separation phenomena can influence the flow field as well as 

heat/mass transfer coefficients and they found that reduction of plate thickness combined 
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with the blockage effect as well as with the increase of the contact surfaces between solid 

and fluid can lead to higher heat/mass transfer coefficients and thus better drying behavior. 

Defraeye et al (Defraeye, Blocken, & Carmeliet, 2011) analyzed convective drying of an 

unsaturated porous flat plate at low Reynolds numbers by means of conjugate modelling of 

heat and mass transport in the air flow and porous material. Comparisons are made with 

porous-material modelling using spatially and/or temporally constant convective transfer 

coefficients.  Both spatial and temporal variations of the convective boundary conditions 

are found to have a distinct impact on the drying behavior. 

Juncu(Juncu, 2014) carried out numerical investigation to study the influence of the 

porous media permeability on the unsteady conjugate heat transfer from a permeable sphere 

embedded in another porous medium.  The flow inside and outside of the sphere is 

considered to be two dimensional. It is found that their results show the local Nusselt 

number profiles are similar to those of the surface radial velocity, regardless of the values 

of the conductivity ratio. 
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Table: 2.1:Conjugate heat transfer in various porous geometries 

Phenomenon Geometry Solid wall position Author 

Conjugateheat 
transfer 
 

Porous Annular 
vertical cylinder 

Inner surface (Salman et al., 2014) 

Triangular Bottom left (Chamkha & Ismael, 
2013b) 

Porous channel Bounded by parallel 
plates 

(Mahmud & Fraser, 
2005) 

Porous 
channel(LTNE) 

Slabs bounding the 
channel 

(D. A. Nield & 
Kuznetsov, 1999) 

Porous 
channel(BDPM) 

Slabs bounding the 
channel 

(D. A. Nield & 
Kuznetsov, 2004) 

Rectangular 
 

Top and bottom (A. C. Baytas et al., 
2001) 

Left  and right side (Nawaf H. Saeid, 
2007) 

Left side (Al-Amiri et al., 
2008) 

Left and right side (Alhashash et al., 
2013) 

Left side (Saleh & Hashim, 
2012) 

Centre (Kaya, 2012) 
Arbitrary 
 

Vertical slender, 
hollow circular 
cylinder 

(Kaya, 2011) 

Vertical plate fin (Vaszi et al., 2002) 
Vertical wall (Higuera & Pop, 

1997) 
Vertical rounded fin 
Rounded tip 

(Vaszi et al., 2004) 

bottom (Varol et al., 2009) 
Vertical plate (Shu & Pop, 1998) 
Circular cylinder (Abd Kadir et al., 

2008) 
 

Sphere (Paik et al., 1998) 
Unstructured grids (DeGroot & 

Straatman, 2011) 
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Phenomenon Geometry Solid wall position Author 

Conjugate heat and 
mass transfer on 
MHD 

Inclined plate  (Ali et al., 2013) 

Conjugate heat and 
mass transfer 

Square 
 

Bottom center (Aleshkova & 
Sheremet, 2010) 

Bottom (Oliveira & 
Haghighi, 1998) 

Top, Bottom (Mikhail A. 
Sheremet & 
Trifonova, 2013a) 

Left  side and right 
side corner 

(M. A. Sheremet & 
Pop, 2014) 

Conjugate heat and 
mass transfer 

Rectangular Left and Right (Al-Farhany & 
Turan, 2011a) 

Drying-chamber 
scale 

Centre (Lamnatou et al., 
2010) 

Arbitrary 

 

Flat plate (Defraeye et al., 
2011) 

Spherical (Juncu, 2014) 

 
Table: 2.1: continued… 

2.5 Numerical Methodology 

Partial differential equations (PDE) are fundamental to the modeling of natural 

phenomena. The typical problem in partial differential equations consists of finding the 

solution of a PDE or a system of PDEs subjected to certain boundary conditions. The 

nature of boundary and initial conditions which lead to well-posed problems depends in a 

very essential way on the specific PDE under consideration. 

The methods such as FEM, FDM, and FVM are so important in engineering practice 

they consume an enormous number of CPU cycles. Finite element solvers are not easy to 

write; most people use dedicated packages. In addition to the core routines for solving large 

sparse matrix problems and systems of ordinary differential equations, it is necessary to 

specify the input geometry and then visualize the output results. 
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In mathematics, computer science and operations research, mathematical optimization 

alternatively, optimization or mathematical programming is the selection of a best element 

with regard to some criteria from some set of available alternatives. 

The principle of all methods for the numerical solution of PDEs is to obtain discrete 

numerical values that is, a finite number which ‘approximate’ (in a suitable sense, to be 

made precise) the exact solution. In this process two fundamental points are to be noted: 

first, we do not calculate exact solutions but approximate ones; second, we discretize the 

problem by representing functions by a finite number of values, that is, we move from the 

‘continuous’ to the ‘discrete’. There are numerous methods for the numerical 

approximation of PDEs. The oldest and simplest, called the finite difference method and 

another method, called the finite element method. 

The advent of computers and the development of advanced numerical techniques and 

powerful computers in the late 1970s, the solution of complex heat transfer problems in 

porous medium became humanly possible and economically viable. Since then heat transfer 

problems have been investigated extensively, The Numerical Techniques such as Finite 

Element Method, Finite difference method and Finite volume methods etc. were employed 

to solve the system of coupled equations for heat and mass transfer inside the porous 

medium. The heat and mass transfer coefficients were evaluated iteratively. The finite 

volume method was used to discretize and solve the highly nonlinear system of coupled 

differential equations.(Oliveira & Haghighi, 1998). Table 2.2 shows some of the literature 

work in porous medium with various kinds of numerical methods being adopted. 
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Table 2.2: Porous medium with various numerical methods 

Method Author 

Finite Element Method 

 

(Oliveira & Haghighi, 1998) 
(Salman et al., 2014) 
(Badruddin et al., 2015) 
(Badruddin, Al-Rashed, Salman Ahmed, & Kamangar, 
2012) 
( N. J Salman Ahmed, Badruddin, Zainal, Khaleed, & 
Kanesan, 2009) 
(I. A Badruddin, Z. A. Zainal, A. P. A. Narayana, & K. N. 
Seetharamu, 2006b) 
(I.  A Badruddin, Abdullah A. A. A. Al-Rashed, et al., 
2012) 
(Badruddin, Zainal, Narayana, et al., 2007) 
(I. A Badruddin, Z. A. Zainal, A. P. A. Narayana, & K. N. 
Seetharamu, 2006a) 
(I. A. Badruddin, Z. A. Zainal, A. P. A. Narayana, K. N. 
Seetharamu, & L. W. Siew, 2006) 
(I. A Badruddin, Z. A. Zainal, A. P. A. Narayana, & K. N. 
Seetharamu, 2006c) 

Finite Volume Method (Belleghem et al., 2012) 
(Lamnatou et al., 2010) 
(Z. Tao et al., 2005) 

Finite Difference Method (Mikhail A. Sheremet & Trifonova, 2013a) 
(M. A. Sheremet & Pop, 2014) 
(Chamkha & Ismael, 2013b) 
(Vaszi et al., 2004) 
(Varol et al., 2009) 
(Abd Kadir et al., 2008) 
(El‐Shaarawi et al., 1999) 
(Mikhail A. Sheremet & Trifonova, 2013b), (Juncu, 2014) 

Laplace Transform Method (Ali et al., 2013) 
(Kaya, 2012) 
(I. Pop & Na, 2000) 

Keller Box Method 
 
Cubic Spline Collocation 
Method 

(Char & Lin, 2001) 

Finite Volume Method 
 

(Zhang et al., 2011) 
(Wong & Saeid, 2009) 
(Nawaf H. Saeid, 2007) 
(Wu et al., 2004) 

Finite Volume HAM(Heat Air 
and Moisture Transport) 
Model 

(Belleghem et al., 2012) 
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2.6 Introduction to Optimization 

Optimization is a very old subject which has shown resurgence since the appearance of 

computers and whose methods are applied in numerous domains: economics, management, 

planning, logistics, robotics, optimal design, engineering, signal processing, etc. 

Optimization is also a vast subject which touches on calculus of variations, operations 

research (optimization of management or decision processes), and optimal control. 

Henderson et al (Henderson, Brêttas, & Sacco, 2015) discussed the applicability of the 

three-parameter Kozeny–Carman generalized equation to trigger immiscible viscous fingers 

and described it in a fractal heterogeneous porous media, with numerical simulations of 

water flooded operations in oil reservoirs. Numerical results were generated from intensive 

simulations and viscous fingers were visualized graphically for three different well 

patterns: Line-Drive, Five-Spot and Inverted Five-Spot.  Their results concluded that the 

TPKCG (three-parameter Kozeny–Carman generalized) equation is a theoretical tool to be 

used in numerical simulations of oil recovery processes, including those susceptible to 

hydrodynamic instability phenomena. 

Das & Prasad(Das & Prasad, 2015) considered the inverse problem through a porous fin, 

aiming to retrieve the fluid's diffusivity and the fin's porosity using temperature at three 

points using DE(Differential Evolution) optimization technique.  Their results have 

concluded that DE can retrieve the value of porosity quite well, but the diffusivity of the 

fluid is rather difficult to retrieve. 

Feng(Feng, 1997) studied porous medium equation on a d-dimensional torus  obtained 

as a hydrodynamic scaling  limit, with the usual diffusion scaling, of the empirical 

measures of a sequence of reversible Markov jump processes on approximating periodic 

lattices. Each process is viewed as a randomly interacting configuration of sticks (or 
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energies, etc.) The configuration evolves through exchanges of stick portions that occur 

between nearest neighbours through a zero-range pressure mechanism, with conservation of 

total sticklength. 

Horgue et al (Horgue, Soulaine, Franc, Guibert, & Debenest, 2015) developed a toolbox 

OpenFOAM(Open source Field Operation And Manipulation) which  includes libraries for 

porous models (relative permeability, capillary pressure and phase model) and a specific 

porous boundary condition. A classical IMPES (IMplicit Pressure Explicit Saturation) 

solver has been developed to validate the provided models by comparison with analytical 

solutions. A study on the parallel efficiency (up to 1024 cores) has also been performed on 

a complex multiphase flow.  The underlying idea of this approach is to provide an easily 

adaptable tool that can be used in further studies to test new mathematical models or 

numerical methods.Lastly they concluded that the easily modifiable nature of the 

OpenFOAM platform can be useful to test new numerical schemes or solution methods. 

Di Pietro et al (Di Pietro, Flauraud, Vohralík, & Yousef, 2014) derived a posteriori error 

estimates for the compositional model of multiphase darcy flow in porous media, consisting 

of a system of strongly coupled nonlinear unsteady partial differential and algebraic 

equations. They demonstrated how to control the dual norm of the residual augmented by a 

nonconformity evaluation term by fully computable estimators. Later they decomposed the 

estimators into the space, time, linearization, and algebraic error components;this allowed 

them to formulate criteria for stopping the iterative algebraic solver and the iterative 

linearization solver when the corresponding error components do not affect significantly 

the overall error. However, the spatial and temporal error components were balanced by 

time step and space mesh adaptation. Their analysis is applied to a broad class of standard 

numerical methods, and is independent of the linearization and of the iterative algebraic 

solvers employed.  Numerical results on two real-life reservoir engineering examples 
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confirm that significant computational gains can be achieved on fixed meshes, without any 

noticeable loss of precision. 

Rohan & Lukeš(Rohan & Lukeš, 2015) proposed a nonlinear extension of the standard 

Biot continuum which was derived by upscaling the fluid–structure interaction problem at 

the microscopic level. This model allows for respecting a kind of the physical nonlinearity, 

in particular, the influence of deformation on the effective permeability and other 

poroelastic material coefficients; for each of these coefficients linear expansions were 

obtained using the material derivative approach applied to differentiate the associated 

Integral formulae involving the characteristic microstructure responses. To solve 

numerically the nonlinear problem arising after the time discretization, they proposed an 

algorithm based on the Newton–Raphson iterations. They concluded that the numerical 

examples reported only 3 to 4 iterations to resolve the problem of one time increment step 

with a given tolerance, whereby the rate of convergence was better than 102. 

Cimolin & Discacciati(Cimolin & Discacciati, 2013) considered the modeling and 

numerical simulation of incompressible fluid flows in regions partially occupied by porous 

media. The motivation for this work came from a specific industrial problem of internal 

ventilation for motorcycle helmets. They concluded that the NSF (Navier–

Stokes/Forchheimer) model allows representing carefully the physics of the problem since 

it permits to precisely locate the interface and it features ad-hoc models for each sub region. 

Moreover, its implementation was rather complex and its solution required ad-hoc 

algorithms whose convergence properties were varying depending on the considered 

problem. 

Sadegh Zadeh & Montas(Sadegh Zadeh & Montas, 2014) developed multi-objective 

optimization algorithm and applied to parameterize bio-fluid flow processes in partially 

saturated porous media.  They formulated the forward problem as a nonlinear partial 
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differential equation and solved it by an efficient Galerkin finite element method.  They 

validated numerical simulator with reference and analytical solutions.  The inverse problem 

was formulated in a nonlinear optimization framework in which model parameters were 

estimated by minimizing a complex penalty function, representing the discrepancies 

between the observed and predicted attributes of the physical system. They investigated 

several optimization scenarios and concluded that the proposed multi-objective 

optimization shows excellent agreements with the experimental datasets for all state 

variables. 

Gunzburger et al (Gunzburger, Peterson, & Kwon, 1999) presented optimization-based 

domain decomposition method for the solution of partial differential equations.  The 

existence of optimal solutions for the optimization problem is shown as the convergence to 

the exact solution of the given problem. They derived an optimality system of partial 

differential equations from which solutions of the domain decomposition problem was 

determined. Finite element approximations to solutions of the optimality system were 

defined and analyzed as well as an eminently parallelizable gradient method is developed 

for solving the optimality system. Lastly they concluded the results of some numerical 

experiments and extended the method to nonlinear problems such as the Navier-Stokes 

equations. 

Khader et al (Khader, Sweilam, & Mahdy, 2015) considered two efficient numerical 

methods for solving system of fractional differential equations (SFDEs) . They described 

fractional derivative in the Caputo sense. The first method is based upon Chebyshev 

approximations, where the properties of Chebyshev polynomials are utilized to reduce 

SFDEs to system of algebraic equations; the second method is the fractional finite 

difference method (FDM), where they implemented the Grunwald–Letnikov’s approach. 

They studied the stability of the obtained numerical scheme.  They laid special attention to 
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study the convergence and estimate the error of the presented methods. They presented 

Numerical examples to illustrate the validity and the great potential of both proposed 

techniques.  Lastly they concluded that these solutions are in excellent agreement with the 

exact solution. 

Kamali et al (Kamali et al., 2015) presented an implementation of a nontraditional modified 

ant colony programming (ACP). The modified ACP algorithm was unique as it does not 

use the criteria of distance. It utilized the probability function which related to the quantity 

of the pheromone level in the ACP.  The Comparison between the ACP and the Genetic 

Programming (GP) method showed that the present ACP gives faster solutions within 

reasonable range of average number of generations. Lastly they concluded that ACP can be 

used to solve complicated differential equations with reasonable computational time and 

the average number of generations for finding the solutions increases as the differential 

equations becomes more difficult. 

D. Lee et al(D. Lee et al., 2012) presented optimization strategies for compute- and 

memory-bound algorithms for the Compute Unified Device Architecture (CUDA). For 

compute-bound algorithms, the registers are reduced through variable reuse via shared 

memory and the data throughput is increased through heavier thread workloads and 

maximizing the thread configuration for a single thread block per multiprocessor. For 

memory-bound algorithms, fitting the data into the fast but limited GPU resources is 

achieved through reorganizing the data into self-contained structures and employing a 

multi-pass approach. Lastly they concluded by considering their two applications, by 

demonstrating the optimized GPU implementations performing 1.2× to 6× faster than 

unoptimized ones. Overall, a peak speedup of 129× over CPU implementations for the 3D 

unbiased image registration and 93× for the level set based non-local means surface shape 
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denoising are achieved by reducing the registration computational time from 7.2 h to 2.5 

min and the denoising time from 7.3 h to 4.6 min. 

Schittkowski (Schittkowski, 2004) presented a couple of practical applications from 

industry and academia, to give an impression on the complexity of real-life systems of 

partial differential equations. The domains of application are pharmaceutics, geology, 

mechanical engineering, chemical engineering, food engineering, and electrical 

engineering. 

McCall(McCall, 2005) presented  an introduction to Genetic Algorithms(GAs) aimed at 

immunologists and mathematicians interested in immunology. They described how to 

construct a GA and the main strands of GA theory before speculatively identifying possible 

applications of GAs to the study of immunology. Lastly an illustrative example of using a 

GA for a medical optimal control problem is provided. They concluded by including a brief 

account of the related area of artificial immune systems. 

Elsheikh (Elsheikh, 2015) presented  Algorithmic Differentiation (AD) approach for 

sensitivity analysis of Differential Algebraic Equation systems (DAEs). The Algorithmic 

specification of a computationally memory-efficient equation-based AD technique is 

elaborated. This approach is mainly targeted towards equation-based modeling and 

simulation tools capable of constructing high-level models using state of the art object-

oriented modeling principles. The author's approach is based on fundamental tree 

algorithms that are applicable on implicit equation systems of long formulas, the main 

building blocks of model components. The author concluded that the runtime performance 

using modern variable-step integration methods tends to achieve the expected theoretical 

complexity of the forward differentiation scheme under few realistic assumptions. 
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Katsikadelis(Katsikadelis, 2011) presented a  numerical method for the solution of 

partial fractional differential equations (FDEs) arising in engineering applications and in 

general in mathematical physics. The author provided a solution procedure that can be 

applied to both linear and nonlinear problems described by evolution type equations 

involving fractional time derivatives in bounded domains of arbitrary shape. Their method 

is based on the concept of the analog equation, which in conjunction with the boundary 

element method (BEM) enables the spatial discretization and converts a partial FDE into a 

system of coupled ordinary multi-term FDEs. Lastly the method is illustrated by solving 

second order partial FDEs and its efficiency and accuracy are validated. 

Chaquet & Carmona(Chaquet & Carmona, 2012) presented a mesh-free approach for 

solving differential equations based on Evolution Strategies (ESs) . Any structure is 

assumed in the equations making the process general and suitable for linear and nonlinear 

ordinary and partial differential equations (ODEs and PDEs), as well as systems of ordinary 

differential equations (SODEs). Candidate solutions are expressed as partial sums of 

Fourier series. Harmonic coefficients are taken into account one by one starting with the 

lower order ones. Experimental results are reported on several problems extracted from the 

literature to illustrate the potential of the proposed approach. Two cases (an initial value 

problem and a boundary condition problem) have been solved using numerical methods and 

a quantitative comparative is performed. Lastly they concluded that in terms of accuracy 

and storing requirements the proposed approach outperforms the numerical algorithm. 

A general algorithm is presented to approximately solve a great variety of linear and 

nonlinear ordinary differential equations (ODEs) independent of their form, order, and 

given conditions. The ODEs are formulated as optimization problem. Some basic 

fundamentals from different areas of mathematics are coupled with each other to effectively 

cope with the propounded problem. The Fourier series expansion, calculus of variation, and 
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particle swarm optimization (PSO) are employed in the formulation of the problem. Both 

boundary value problems (BVPs) and initial value problems (IVPs) are treated in the same 

way. Boundary and initial conditions are both modeled as constraints of the optimization 

problem. The robust metaheuristic optimization technique of the PSO is employed to find 

the solution of the extended variation problem. Finally, illustrative examples demonstrate 

practicality and efficiency of the presented algorithm as well as its wide operational 

domain. (Babaei, 2013) 

Riesinger et al (Riesinger, Neckel, Rupp, Hinojosa, & Bungartz, 2014) presented an 

optimized Graphical Processing Unit ( GPU) implementation for a random ordinary 

differential equation (RODE) approach to simulations of multi-storey wireframe buildings 

under earthquake excitations using the Kanai-Tajimi model. As pseudo random number 

generation is the most time-consuming part of the application, a representative set of 

different Pseudo Random Number Generators (PRNGs) has been benchmarked. The 

resulting optimized variants outperform standard library implementations. The techniques 

and improvements shown in this contribution can be generalized to other RODE or 

stochastic models. Current work is on higher-order RODE schemes to complement the 

Averaged Euler method and allow time integration with arbitrary order. 
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Zelinka(Zelinka, 2015) presented history of swarm and evolutionary algorithms and  

discussed in general their dynamics, structure and behavior. The core of this paper is an 

overview of an alternative way on how dynamics of arbitrary swarm and evolutionary 

algorithms can be visualized, analyzed and controlled. Swarm and evolutionary based 

algorithms representing a class of search methods that can be used for solving optimization 

problems mimic natural principles of evolution and swarm based societies like ants, bees, 

by employing a population-based approach in mutual communication and information 

sharing and processing, including randomness. Lastly selected representative applications 

are discussed at the end. 

Save et al (Save, Narayanan, & Patkar, 2011)presented a general scheme for converting 

the linear equations arising from FEM to the constraints of an electrical network. The 

conversion is element by element and therefore linear in time on the size of the problem. 

For convenience, they have used the linear shape function. However, the approach is also 

valid for Higher order shape functions as, even in that case, the resultant matrix arising 

from FEM is linear. They have validated their approach by solving some typical Partial 

Differential Equations with known solution: Poisson equation, another elliptical PDE, a 

time dependent parabolic PDE, and a nonlinear PDE. All of these were over a rectangular 

domain. Lastly they concluded Limitations of the approach are identical to those of 

standard FEM. 

Based on the idea of equidistributing meshes Deng et al (Deng, Zhao, & Wu, 2015) 

designed efficient numerical schemes, which have linearly increasing computation cost 

with time t but not losing the accuracy at the same time. Error estimates for the proposed 

schemes are performed; and the numerical examples demonstrated the efficacy of 

algorithms. 
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2.7 Summary 

From the above literature survey it is evident that there is not much of effort 

dedicated to study the effectiveness of currently available technique to solve the conjugate 

heat or conjugate heat and mass transfer in porous medium. Since the solution is dependent 

on numerical techniques that in turn generate huge number of equations leading to 

consumption of large amount of computational time to solve them. Thus, there seems to be 

a need to develop an alternate way to reduce the time required to solve those equations. 

Apart from this, it is very clear that the conjugate heat transfer or conjugate heat and mass 

transfer has been studied by considering the large size of solid either embedded to left, right 

top and bottom of cavity. There is no study that has investigated the effect of small solid 

being placed at various locations inside the porous region. This scenario arises in drying 

processes or electronic devices where a small solid could be placed in the porous domain. 

Thus, it necessitates the investigation of effect of size and location of solid being placed in 

the porous domain. The current study is undertaken to address this particular problem. 
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CHAPTER 3 : MATHEMATICAL MODELING 

3.1 Introduction 

Mathematics is the fundamental tool for any simulation. The present chapter is dedicated 

to describe the mathematical modeling of the problem under investigation. It is worth 

mentioning that the present work is based on Darcy flow model. As pointed out previously, 

the present work revolves around porous media enclosed in a square cavity. The following 

section deals with mathematical modeling of heat as well as heat and mass transfer in a 

porous cavity.  

3.2 Governing equations for heat transfer in cavity 

Consider a porous cavity having the dimension LxL saturated with fluid. The x and y 

coordinates are taken along the horizontal and vertical directions respectively. The 

following assumptions are applied.  

 The convective fluid and the porous medium are in local thermodynamic 

equilibrium in the domain. 

 There is no phase change of the fluid in the medium. 

 The properties of the fluid and those of the porous medium are homogeneous and 

isotropic. 

 Fluid properties are constant except the variation of density with temperature.  

 The radiative heat flux in the y-direction is negligible in comparison to that in the x-

direction. 
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With above mentioned assumptions the governing equations in Cartesian coordinates can 

be written as   

The continuity equation: 

0vu









yx
                         (3.2.1) 

The fluid velocity in x and y directions can be described by Darcy law as: 

Velocity in horizontal direction 

x
pK






u             (3.2.2) 

Velocity in vertical direction 














 g
y
pK




v                            (3.2.3) 

The permeability K of porous medium can be expressed as  (Donald A Nield & Bejan, 

2006)
 2

32

1180 




 pD

K                      (3.2.4) 

The variation of density with respect to temperature can be described by Boussinesq 

approximation as: 

    TTT 1                      (3.2.5) 

The equations (3.2.2) and (3.2.3) have pressure terms in respective direction. In order to 

facilitate the solution, these terms can be eliminated by mathematical operations. 

Differentiating equation (3.2.2) with respect to y yields: 

yx
pK

y
u






 2


                        (3.2.6) 
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Similarly differentiating equation (3.2.3) with respect to x after incorporating Boussinesq 

approximation results: 





















 x
Tg

xy
pK

x T


2v                  (3.2.7) 

Eliminating pressure term from equation (3.2.6) and (3.2.7) gives: 

x
TgK

yx 











uv

                    (3.2.8) 

The energy equation is given as: 

x
q

Cy
T

x
T

y
T

x
T r

p 




























1vu 2

2

2

2

             (3.2.9) 

The last term on right hand side of equation (3.2.9) describes the radiation and can be 

approximated by Rosseland hypothesis (Modest, 1993) as: 

x
Tnq

R
r 




42

3
4

                       (3.2.10) 

Thus equation (3.2.9) takes the form: 

2

422

2

2

2

2

3
41vu

x
Tn

Cy
T

x
T

y
T

x
T

Rp 





























           (3.2.11) 

The continuity equation (3.2.1) can be satisfied automatically by introducing the stream 

function ψ as: 

y



u                                        (3.2.12a)         

x



v                                 (3.2.12b)  
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The domain is subjected to following boundary conditions: 

at 0x    0,0  vu   hTT        

at Lx  ,   0,0  vu   cTT        

at Lyandy  0 ,   0,0  vu   0



y
T

                                       (3.2.12c)  

Since there is no heat storage in the medium, the following condition at solid-porous 

interface has to be satisfied. 

at spxx   0,0  vu   ps TT   x
T

k
x

Tk p
p

s
s 







  

at spyy   0,0  vu   ps TT   y
T

k
y
Tk p

p
s

s 







      
  (3.2.12d)

 

Equation (3.2.8) and (3.2.11) are the two governing partial differential equations in 

dimensional form with many variables. These equations can be converted to dimensionless 

form to reduce the number of variables and thus facilitate the solution. The following non-

dimensional parameters are used to convert above said equations into dimensionless form: 

Dimensionless Width   
L
xx                      (3.2.13a) 

Dimensionless Height   
L
yy                (3.2.13b) 

Dimensionless Stream function 

               (3.2.13c) 

Dimensionless Temperature  
 
 







TT
TTT

w

               (3.2.13d) 

Radiation parameter   
sR

d k
Tn

R

 324               (3.2.13e) 
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Rayleigh Number   


 TKLg
Ra T             (3.2.13f) 

The non-linear term 4T in the equation (3.2.10) can be expanded in Taylor series. 

Expanding 4T about cT  and neglecting higher order terms (Raptis, 1998) results: 

434 34 cTTTT                       (3.2.14) 

Substitution of equations (3.2.12 –3.2.14) into equations (3.2.8) and (3.2.11) gives rise to 

following non-dimensional equations: 

Momentum equation 

x
TRa

yx 











2

2

2

2                     (3.2.15) 

Energy equation for porous region 



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
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 
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


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








2

2

2

2

3
41

y

T
x
TR

y
T

xx
T

y
d             (3.2.16) 

Energy equation for solid region 

01
2

2

2

2













x
q

Cy
T

x
T r

p

ss


                (3.2.17) 

By substituting the non-dimensional parameters, into 3.2.17 becomes 

0
3

4
1 2

2

2

2















 

y

T
x
TRd                   (3.2.18) 

The non-dimensionalisation of boundary conditions leads to 

The corresponding boundary conditions are 

at 0x   0   1T       

at 1x   0   0T       

at 10  yandy ,   0   0



y
T
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at spxx   0 , 
 x

T
x
T

Kr ps









    
 

at spyy   0   y
T

y
TKr ps






            (3.2.19)  

The Nusselt number is given by: 

0
3
41






















 

x

d x
T

RNu            (3.2.20)  

3.3 Governing equations for heat and mass transfer in cavity 

Equations (3.2.1) to (3.2.3) are applicable here as well but in order to accommodate 

the mass transfer inside the porous medium, equation (3.2.5) gets transformed in more 

complex form  

The variation of density is given by: 

      CCTT CT  1                      (3.3.1) 

The equation for species concentration can be written as: 
























2

2

2

2

vu
y
C

x
CD

y
C

x
C             (3.3.2) 

Due to mass transfer, equation (3.1.7) changes the form to: 





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


















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




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xy
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x cT 


2v           (3.3.3) 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



51 
 

Subjected to boundary conditions: 

at 0x    0,0  vu   hTT    hCC     

at Lx  ,   0,0  vu   cTT    cCC     

at Lyandy  0 ,   0,0  vu   0



y
T

  (3.3.4)  

Following additional dimensionless parameters are used 

Dimensionless Concentration   
 cw

c

CC
CCC



                    (3.3.4a) 

Lewis number     
D

Le 
               (3.3.4b) 

Buoyancy ratio    











T
CN

T

c




            (3.3.4c) 

Thus the momentum equation for coupled heat and mass transfer in dimensionless form is: 
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2                    (3.3.5) 

Energy equation in porous region is: 
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       (3.3.6) 

Energy equation in solid region 
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Equation for species concentration is: 






































2

2

2

21

y

C

x

C
Ley

C
xx

C
y


        (3.3.8) 

 

Univ
ers

ity
 of

 M
ala

ya



52 
 

The corresponding boundary conditions are 

at 0x   0   1T  1C     

at 1x   0   0T  0C     

at 10  yandy ,   0   0



y
T

    

at spxx   0 , 
 x

T
x
T

Kr ps









    
 

at spyy   0   y
T

y
TKr ps






      (3.3.8a) 

The heat and mass transfer rate at the hot surface can be calculated using following 

relations: 

Nusselt number: 

0
3
41
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


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
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x
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RNu         (3.3.8b)    

The Sherwood number is expressed as: 

0










 xx
CSh           (3.3.8c) 
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3.4 Solution of governing equations 

Thus far we have derived the partial differential equations, which describe the heat and 

fluid flow behavior in the vicinity of porous medium. The development of governing 

equations is one part but the second and important part is to solve these equations in order 

to predict the various parameters of interest in the porous medium. There are various 

numerical methods available to achieve the solution of these equations, but the most 

popular numerical methods are: finite difference method, finite volume method and the 

finite element method. The selection of these numerical methods is an important decision, 

which is influenced by variety of factors amongst which the geometry of domain plays a 

vital role. Other factors include the ease with which these partial differential equations can 

be transformed into simpler forms, the computational time required and the flexibility in 

development of computer code. In the present study, we have used finite element method 

(FEM) due to its ability to handle the complex geometry and ease of coding.  The following 

sections enlighten the finite element method and present its application to solve the above 

mentioned equations.  

The finite element method is a deservingly popular method amongst scientific 

community. This method was originally developed to study the mechanical stresses in a 

complex air frame structure (Clough, 1960) and lately popularized by Zienkiewicz and 

Cheung (Zienkiewicz & Cheung, 1965) by applying it to continuum mechanics. Since then 

the application of finite element method has been exploited to solve the numerous problems 

in various engineering disciplines.  

 

 

Univ
ers

ity
 of

 M
ala

ya



54 
 

The great thing about finite element method is its ease with which it can be generalized 

to myriad engineering problems comprised of different materials. Another admirable 

feature of the finite element method (FEM) is that it can be applied to a wide range of 

geometries having irregular boundaries, which is highly difficult to achieve with other 

contemporary methods.  

FEM can be said to have comprised of roughly 5 steps to solve any particular problem. 

The steps can be summarized as: 

1. Discretizing the domain: This step involves the division of whole physical 

domain into smaller segments known as elements, and then identifying the 

nodes, coordinates of each node and ensuring proper connectivity between the 

nodes. 

2. Specifying the equation: In this step, the governing equation is specified and 

an equation is written in terms of nodal values 

3. Development of Global matrix: the equations are arranged in a global matrix, 

which takes into account the whole domain 

4. Solution: The equations are solved to get the desired variables at each node in 

the domain 

5. Evaluate the quantities of interest: After solving the equations a set of 

values are obtained for each node, which can be further processed to get the 

quantities of interest.   
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There are varieties of elements available in FEM, which are distinguished by the 

presence of number of nodes. The present study is carried out by using a simple 3-noded 

triangular element as shown in figure 3.1 

 

 

 

 

 

 

 

Figure 3.1: Typical triangular element 

Let us consider that the variable to be determined in the triangular area is Tor  

polynomial function for Tor can be expressed as: 

yx 321                        (3.4.1) 

yxT 321                        (3.4.2) 

Let us consider equation (3.4.1) and try to find out the constants 321,  and . The 

variable T  has the values kji  &,  at the nodal position i, j and k of a triangular 

element. The x and y coordinates at these points are kji xxx ,,   and kji yyy ,,  respectively.   

Substitution of these nodal values in the equation (3.4.1) helps in determining the constants

321 ,,  , which are: 

      kijkijkiikijkkj yxyxyxyxyxyx
A

 
2
1

1        (3.4.3) 

      kjijikikj yyyyyy
A

 
2
1

2            (3.4.4) 

    y                                   k 

 

 

 

 

               i                                                              j 

                                                                                       x 
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      kijjkiijk xxxxxx
A

 
2
1

3           (3.4.5) 

Where A is area of the triangle given as: 

kk

jj

ii

yx
yx
yx

A
1
1
1

2                      (3.4.6) 

Substitution of 321 ,,   in the equation (3.4.1) and mathematical arrangement of the 

terms results into: 

kkjjii NNN                     (3.4.7) 

In equation (3.4.7),  kji NNN &,  are the shape functions given by 

A
ycxba

N mmm
m 2


  ,               kjim ,,             (3.4.8) 

The constants can be expressed in terms of coordinates as:  

jki

kji

jkkji

xxc

yyb

yxyxa







                     (3.4.8a) 

kij

ikj

kiikj

xxc

yyb

yxyxa







                        (3.4.8b) 

ijk

jik

ijjik

xxc

yyb

yxyxa







                    (3.4.8c) 

Good insight into the FEM is given in Segerlind (Segerlind, 1982);  (ElShayeb & Beng, 

2000); (Bullo & Lewis, 2004). Galerkin method is employed to convert the partial 

differential equations into matrix form of equation for an element.  
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The steps involved are as given below. Please note that the nodal terms kji &,  are 

replaced by 1,2& 3 respectively in subsequent discussions for simplicity. 

Application of Galerkin method to equation (3.2.15) yields: 

  dA
x
TRa

yx
NR

A

Te



















  2

2

2

2                  (3.4.9) 

Where eR is the residue. Consider the individual terms of equation (3.4.9)  

The differentiation of following term results into: 

     
xx

N
x

N
x

N
x

T
TT























 

2

2

               (3.4.10) 

Thus  

   
 

























A

T

A

T

A

T

xx
NdA

x
N

x
dA

x
N 

2

2

2

2
            (3.4.11) 

The first term on right hand side of equation (3.4.11) can be transformed into surface 

integral by the application of Greens theorem and leads to inter-element requirement at 

boundaries of an element. The boundary conditions are incorporated in the force vector. 

Making use of (3.4.7) produces: 

dA
x

N
A

T
2

2





   = dA

x
N

x
N

A

T























 
3

2

1





               (3.4.12) 

Substitution of (3.4.8) into (3.4.12) gives: 

                      = 
 

  dAbbb
b
b
b

A A 






























 

3

2

1

321

3

2

1

22
1





 

                      = 




































3

2

1

2
33221

32
2

221

3121
2

1

4
1





bbbbb

bbbbb

bbbbb

A
                    (3.4.13) 
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Similarly  








































3

2

1

2
33221

32
2

221

3121
2

1

2

2

4
1







ccccc

ccccc

ccccc

A
dA

y
N

A

T              (3.4.14) 

The third term of equation (3.4.9) is: 

dA
x
TNRadA

x
TRaN

A

T

A

T








                  (3.4.15) 

In order to get the matrix equation of (3.4.15), the following method can be applied: 

The triangular element can be subdivided into three triangles with a point in the center of 

original triangle as shown in figure 3.2 

                                              k 
 

 

 

 

                           i                               j  
Figure 3.2: Sub triangular areas 

Defining the new area ratios as: 

ijkarea
pijareaL 1                         (3.4.16a) 

ijkarea
pjkareaL 2                         (3.4.16b) 

ijkarea
pkiareaL 3                         (3.4.16c) 

 

 

 

p 
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It can be shown (ElShayeb & Beng, 2000) that  

11 NL                            (3.4.17a) 

22 NL                            (3.4.17b) 

32 NL                            (3.4.17c) 

Replacing shape functions in equation (3.4.15) by (3.4.17) yields: 

  dA

T

T
T

x
N

L
L
L

RadA
x
TRaN

k

j

i

AA

T









































3

2

1

                    (3.4.18) 

The area integration can be evaluated by a simple relation (Segerlind, 1982) 

  


A

fed A
fed
fedLLL 2

!2
!!!

321                  (3.4.19) 

Application of equation (3.4.19) into equation (3.4.18) gives rise to: 

             =  
































3

2

1

3212
1

1
1
1

3
T
T
T

bbb
A

ARa                 (3.4.20) 

             = 






















332211

332211

332211

6
TbTbTb
TbTbTb
TbTbTb

Ra                  (3.4.21) 

Now equation (3.3.15) can be written in the matrix form as: 
































































































332211

332211

3322111

2
33221

32
2

221

3121
2

1

2
33221

32
2

221

3121
2

1

6
3
2

4
1

TbTbTb
TbTbTb
TbTbTb

Ra

ccccc

ccccc

ccccc

bbbbb

bbbbb

bbbbb

A




  (3.4.22) 
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In simple form equation (3.4.22) can be represented as: 

    fKs                          (3.4.23) 

Where, sK is stiffness matrix and f is the force vector. For equation (3.3.15) they are: 

 

























































2

33221

32
2

221

3121
2

1

2
33221

32
2

221

3121
2

1

4
1

ccccc

ccccc

ccccc

bbbbb

bbbbb

bbbbb

A
K s               (3.4.23a) 

 

















3
2
1





                                              (3.4.23b) 

and 
























332211

332211

332211

6
TbTbTb
TbTbTb
TbTbTb

Raf                            (3.4.23c) 

FEM formulation of energy equation (3.3.16) 

    dA
y

T
x
TR

y
T

xx
T

y
NR

A

dTe  










































 





















 2

2

2

2

3
4

1
          (3.4.24) 

Considering the terms individually 

       dAT
x
N

y
N

L
L
L

dA
x
T

y
N

AA

T






























 

3

2

1

               (3.4.25) 

  
































 

3

2

1

3213322112

3

2

1

4
1

T
T
T

bbbccc
A

dA
L
L
L

A
               (3.4.26) 

 







































3

2

1

321

332211

332211

332211

12
1

T
T
T

bbb
ccc
ccc
ccc

A




                  (3.4.27) 

Following the steps as discussed earlier results: 
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 













































3

2

1

321

332211

332211

332211

12
1

T
T
T

ccc
bbb
bbb
bbb

A
dA

y
T

x
N

A

T





         (3.4.28) 

The remaining two terms of energy equation are evaluated in similar manner as that of 

equation (3.4.12) 









































 










 

3

2

1

2
33231

32
2

221

2121
2

1

2

2

3
41

4
1

3
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T
T
T

bbbbb

bbbbb

bbbbb

R
A

dA
x
TRN dA d

T      (3.4.29) 


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













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
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2

2

4
1

T
T
T

ccccc

ccccc

ccccc

A
dA

y
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A

T              (3.4.30) 

Thus the element equation is: 

   321

332211

332211

332211
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
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R
A d       (3.4.31) 

FEM formulation of energy equation of solid  

Application of Galerkin method to energy equation of solid results: 

   
























 

A

de

y
T

x
TRR 2

2

2

2

3
41                   (3.4.32) 

The above equation is similar to the energy equation of porous region except that it has

0 .  

 

 

Univ
ers

ity
 of

 M
ala

ya



62 
 

Thus element equation is  

0
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A d  

FEM formulation of the heat and mass transfer equations i.e. (3.4.5), (3.4.6) and (3.4.8)  
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          (3.4.33) 

The matrix form of equation (3.4.5) can be shown to be: 
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Similarly the application of Galerkin method to (3.4.8) yields: 
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Application of Galerkin method to energy equation of solid results: 
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The above equation is similar to the energy equation of porous region except that it has

0 . Thus element equation is  
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3.5 Solution procedure 

Any simulation work related with the mathematical modeling is basically comprised of 2 

distinct stages. The first step involves the development of the mathematical equations, 

which describes the phenomenon under investigation, and the second important step is to 

solve those mathematical equations.   

In the present case, the governing mathematical equations describing various 

phenomenon have either two or three equations, which are coupled with each other. The 

coupling of equations arises due to the reason that the change of variables in one equation 

affects the other equation and vice versa. One of the fundamental requirements of the FEM 

is that it demands the physical domain to be modeled geometrically and then meshed with 

chosen elements. The meshing process involves defining of the nodes at each corner of an 

element and also defining the connectivity of all elements in the domain. Meshing also 

requires the coordinates of each node to be identified. These nodal coordinates and 

connectivity are building blocks of the FEM matrix equations.  
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In the present study, the geometry is modeled and meshed with triangular elements as 

shown in figure 3.3. The number of elements, size of elements and the pattern of meshing 

the domain influences the solution strategy. The general principle followed is that, more 

number of elements are placed in a region where large variations in the temperature, fluid 

and concentration parameters are expected thus allowing to capture these variables 

accurately. Figure 3.3 shows the mesh patterns being used in current study for porous 

medium embedded or enclosed in square geometry.  

 

Figure 3.3:  Mesh pattern for porous medium enclosed in a cavity 
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The elemental matrix forms of the equations are assembled in a global matrix with 

respect to the nodal position of the elements in the domain. A code is developed to solve 

this matrix form of equations. Since the equations are coupled with each other, an iterative 

process is adopted to solve them. The iterative process continues until a satisfactorily lower 

level of error is reached. The tolerance or error level for solution of the variables such as 

stream function, temperature and concentration are kept at 10-7, 10-5 and 10-5 respectively. 

This implies that when the difference between two successive iterations produces the above 

said tolerance level at all nodes then the iterative process is terminated. It may be noted that 

sufficiently dense mesh of 2592 well-organized elements is chosen in current study. It is 

evident from table 3.1 that the chosen numbers of elements have mesh independency since 

the variation in Nusselt and Sherwood numbers are marginal but time consumed is 

substantial for higher number of elements.  

 

Table 3.1: uN  variation with mesh size 

No of Elements uN  hS  Time (s) 
1800 4.5043 6.2911 23.0156 
2592 4.4992 6.2677 58.6666 
4232 4.4909 6.2430 228.8154 

 

 

Wherever possible, the current solution is compared with open available literature so as 

to validate our methodology. The comparative results are discussed while presenting the 

results and discussion.  
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CHAPTER 4 : DEVELOPMENT OF A SIMPLE AND OPTIMIZED SOLUTION 

ALGORITHM FOR CONJUGATE HEAT AND MASS TRANSFER 

The conjugate heat and mass transfer or just conjugate heat transfer is quite involved 

phenomenon due to interconnectivity of porous and solid region where heat can cross both 

the region because of temperature difference. The phenomenon is governed by complex set 

of partial differential equations. The aim of current chapter is to develop a simple and 

optimized algorithm/method to solve the governing equations of conjugate heat and mass or 

conjugate heat transfer in porous medium.  

4.1 Optimized Solution of Conjugate Heat and Mass Transfer in Porous Medium 

The present chapter is dedicated to describe the simple and optimized algorithm being 

developed to solve the governing equations of a conjugate heat and mass transfer in porous 

medium. It has been discussed in chapter 3 that the conjugate heat transfer in porous 

medium is governed by 3 partial differential equations namely, momentum equation, 

energy equation of porous medium and energy equation of solid. There will be an 

additional equation namely concentration equation when mass transfer is considered along 

with heat transfer, thus effectively turning into 4 equation model. The current discussion is 

based on heat and mass transfer due to its higher complexity than just heat transfer 

problem. 

The coupling of equations makes them inter dependent and any change in one equation 

affects all other equations. Thus it is a very complex and tricky set of equations which need 

to be solved simultaneously. The 4 governing equations of problem under investigation that 

dictates the heat and fluid flow behavior are: 
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 These equations are difficult to solve directly, thus they are converted into matrix form 

of equations by employing Galerkin method. The resulting matrix forms of equations are 

given as: 

2 2
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The equations (4.5 to 4.8) can be represented in condensed form as: 

     mm fk                         (4.9) 

    0Tk ep                         (4.10) 

    0ses Tk                         (4.11) 

     cc fCk                          (4.12) 

Where, k  indicates the element stiffness matrix with subscripts m, ep, es and c denoting 

the momentum, energy porous, energy solid and concentration respectively. Similarly  ,

 T , sT , C  and  f  indicates the solution variables and element force vector. The size of 

element stiffness matrix is 3x3 representing 3 nodes of triangular element whereas the 

solution and force vector have dimension of 3x1. The individual element matrix is 

transferred to a global stiffness matrix to bring connectivity among elements. The size of 

global stiffness matrix is equal to nxn, where n is total number of nodes in the domain. The 

solution and force vector get the dimension of nx1. The connectivity plays very important 

role in transferring the element stiffness into global stiffness matrix. 
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The contribution of individual element is transferred according to its nodal position in 

the physical domain. Let us assume that the domain is divided into 8 elements as shown in 

fig 4.1 which results into 8 elements and 9 nodes. 

 

 
  

  

 

Figure 4.1: 8-element mesh 

The connectivity matrix of 8 elements is shown in table 4.1 

Table 4.1: Element connectivity 

Element No Node i Node j Node k 
1 1 2 4 
2 2 5 4 
3 2 3 5 
4 3 6 5 
5 4 5 7 
6 5 8 7 
7 5 6 8 
8 6 9 8 
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The global connectivity matrix for momentum equation can be built as 

Node 1    2 3  4 5 6 7 8 9 
 

1 1k11 1k12  1k13      
 

2 1k21 1k22+
2k11 

+
3k11 

3k12 1k23+
2 k13 2k12+

3 k13     
 
 

3 1k31 1k32+
3 k21 3k22 1k33 3k23     

 
4  2k31  2k33+

4k11 

+
5k11 

2k32+
4k12+

5k12  4k13+
5k13   

 
 

5  2k21+
3 k31 3k32 2k13+

4k21 

+
5k21 

2 k12+  
3k33+ 

4k22  + 
5k22+

6k11+
7k11 

7k12 4k33+
5k13 

+
6k23 

 

6k12+
7k13  

 

 

6     7k21 7k22+
8k11  7k23+

8k13 8k12 
 

7    4k31+
5k31 4k32+

5k31+
6k31  4k33+

5k33+
6k33 

6k32  
 
 

8     6k21+
7k33 7k32+

8k31 5k23+
6k33 5k22+

6k32

+
7k33+

8k3

3 

8k32 

 
 

9      8k21  8k23
 8k22

 

 

The above matrix is global stiffness matrix for 8 elements where subscript indicates the 

row and column from element stiffness matrix and superscripts shows the element number. 

Similarly, the solution and force vector for elements arranged as per figure 4.1 are: 

Node Solution variable 
1 

1  
2 

2  
3 

3  
4 

4  
5 

5  
6 

6  
7 

7  
8 

8  
9 

9  
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Node Force Vector 
1 1f11 

 
2 1f21+2f21+3f11 

 
3 3f21 + 4f11 

 
4 1f31+2f31+5f11 

 
5 2f21+3f31+4f31+5f21+6f11+7f11 

 
6 4f21+7f21+8f11 

 
7 +5f31+6f31 

 
8 +6f21+7f31+8f31 

 
9 +8f21 

 

The global stiffness matrix along with force vector is solved for solution variable as 

     mm fk 1                         (4.13) 

There are 9 nodes which results into 9 algebraic equations when equation 4.13 

expanded. They are simultaneous equations which need to be solved simultaneously. The 

above mentioned solution is simple if there are few elements involved, but unfortunately 

most of the physical problems require huge number of elements thus large number of 

equations are generated which necessitates the problem to be solved with the help of 

suitable computer program. For instance, a mesh size of 36X36 dimensions (instead of 2x2 

of figure 4.1) results into 2592 elements and 1369 nodes which essentially make the global 

stiffness matrix of dimension 1369x1369. On top of that, there are 4 set of partial 

differential equations each requiring same number of nodes. It means the system has to 

handle 4 set of Global stiffness matrix in one particular iteration. Since the equations are 

coupled, they are solved in an iterative manner by setting suitable convergence criteria.  
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For instance, a guess value of  and T  (most of the time these guess values are taken as 

zero) at all the nodes is fed into program which results into a new value of . This new 

value is fed into second equation i.e. energy equation of porous medium which generates 

new values ofT .  

These new values are fed into energy equation of solid and concentration equation to get 

their respective new values.  Once all the new values for  , T  , sT  and C are available, 

they are compared with their corresponding values in the previous iteration. If the 

difference between new and previous values meets the preset criteria of convergence 

tolerance, then the program stops else it continues to next iteration feeding the new values 

into equations to get another set of fresh values and so on. The convergence criteria for all 

the variables are generally set as 

  710 p
i

n
i    for node i =1….N             (4.14) 

  510 p
i

n
i TT   for node  i =1….N                  (4.15) 

     510  p
i

sn
i

s TT  for node  i =1….N             (4.16) 

  510 p
i

n
i CC   for node  i =1….N             (4.17) 

The subscripts n and p indicates new and previous whereas i and N shows the specific 

node number and total number of nodes in the domain.  

The usual procedure to solve the problem of conjugate heat and mass transfer in porous 

medium requires that the computer solves 4 set of finite element equations corresponding to 

4 partials differential equations 4.1 to 4.4 as demonstrated in figure 4.2. Thus the number of 

equations involved is very large that consumes huge amount of computer resources.  
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An attempt is made to simplify and optimize the solution algorithm by reducing the 

number of partial differential equations from 4 to 3 for the case of heat and mass transfer in 

porous medium. This is possible since equation 4.2 is similar to the right hand side of 

equation 4.3. The similar terms of equations 4.2 and 4.3 made it possible to combine them 

together by controlling the boundary conditions of other variable involved i.e.  in 

equations 4.1-4.2 and 4.4.  It is noticed that the   represents the velocity field in the 

porous medium thus by forcing its value to be zero in the region occupied by solid wall 

(since there cannot be any fluid movement inside the solid), it is possible to reduce equation 

4.2 to that of 4.3. By doing such alterations while solving equation 4.2, the energy equation 

4.3 for solid can be eliminated completely.  It became viable to reduce the total number of 

finite element equations corresponding to equation 4.3. Thus the heat and mass transfer 

problem effectively reduced from 4 to 3 partial differential equations.   

Apart from reducing the number of equations, the algorithm becomes simpler to code 

since it nullified the whole of separate subroutine required to solve the finite element 

equations corresponding to equation 4.3. Thus the implementation of the code was much 

simpler with developed algorithm. The solution procedure for developed algorithm is 

shown in figure 4.3. 
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Figure 4.2: Flow chart of conventional solution procedure 
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Figure 4.3: Flow chart of developed solution procedure 
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In order to establish the feasibility and thus demonstrate the advantages of developed 

algorithm, a simple case of conjugate heat and mass transfer in a square cavity with solid 

wall placed at bottom surface is solved with both i.e. conventional and developed 

algorithms. The whole physical domain is divided into 36x36 rows and columns that 

resulted into 2592 triangular elements having 1369 nodes. The mesh is generated in such a 

way that the smaller sized elements are placed near the surfaces where large variations in 

the solution variable are expected. Figure 4.4 shows the mesh of physical domain. 

 
Figure 4.4: Mesh of physical domain 
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The implementation of conventional algorithm ran into 1101 lines when translated into 

matlab code. However, the developed algorithm with reduced number of equation took 925 

lines of matlab code. This reduction of lines was result of eliminating the separate solution 

subroutine of solid temperature. Thus the developed method was simpler and easier to 

implement.  

Apart from simplicity, one needs to check the performance of two algorithms for 

establishing its suitability for problem under investigation. Thus, the two algorithms are run 

for following parameters Rd=0.5, N=0.2, Ra=100, Le=2, Kr=5 and its performance in 

terms of convergence behavior, number of iterations, solution values of ,T  , sT  ,C  and 

the time taken to arrive at the solution are recorded. It is worth mentioning that the 

maximum number of iterations were set at 500 since most of the solutions are arrived at 

iterations<500. According to general observation, the solution does not converge if it goes 

beyond 500 iterations. Thus 500 iterations were selected as upper limit to stop the program. 

The current methodology for both the algorithm/method is verified by comparing the 

results with available literature. The comparison is carried out for two extreme cases i.e. 

when the solid is absent and also when whole domain is occupied with solid without any 

porous medium. The results are shown in table 4.2 vindicating that both algorithm/method 

were able to predict the heat transfer behavior accurately.  
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Table 4.2: Validation of results for case I (No Solid) 

 
Author 10Ra  100Ra  

Present 1.0821 3.2126 

(Walker & Homsy, 1978)  3.097 

(Bejan, 1979)  4.2 

(Gross, Bear, & Hickox, 1986)  3.141 

(Manole & Lage, 1993)  3.118 

(Beckermann, Viskanta, & Ramadhyani, 1986)  3.113 

(Moya, Ramos, & Sen, 1987) 1.065 2.801 

(A. Baytas & Pop, 1999) 1.079 3.16 

(Misirlioglu, Baytas, & Pop, 2005) 1.119 3.05 

(I.  A Badruddin, Abdullah A. A. A Al-Rashed, et al., 2012) 1.0798 3.2005 

 

It should be noted that the limiting case II i.e. zero porous medium reduces the problem to 

simple one dimensional heat conduction phenomenon given as: 

ௗమ ത்

ௗ௫̅మ
= 0                          (4.18) 

The analytical solution of equation (4.18) is  

ܶ = మ்ି భ்
௅

ݔ + ଵܶ                       (4.19) 

In terms of non-dimensional parameters, the equation(4.19) can be expressed as: 

തܶ = 1 −  (4.20)                         ݔ̅

Table 4.3 shows the verification of two algorithms/methods with analytical solution. It is 

clear from this table that the two algorithms/methods have accurately predicted the heat 

transfer of case II.  
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Table 4.3: Validation of results for case II (No Porous) 

 
 -തܠ

Coordinate 
Analytical 
Solution 

Developed 
Algorithm 

Conventional 
Algorithm 

0.1 0.9 0.9 0.9 
0.2 0.8 0.8 0.8 
0.3 0.7 0.7 0.7 
0.4 0.6 0.6 0.6 
0.5 0.5 0.5 0.5 
0.6 0.4 0.4 0.4 
0.7 0.3 0.3 0.3 
0.8 0.2 0.2 0.2 
0.9 0.1 0.1 0.1 
1.0 0 0 0 

 

 
Table 4.4 shows the number of iterations and time taken by two methods corresponding 

to two algorithms. It is very clear from table 4.4 that the developed algorithm outperforms 

the conventional algorithm when number of elements for solid is around 10%. It is 

important to see that the developed algorithm converged within 400 iterations for all the 

tested set of solid elements that in turn determine the size of solid tested. However, the 

conventional method/algorithm failed to converge when the size of solid is small having 

fewer numbers of elements. The algorithms are tested for extreme cases i.e. when no solid 

is present and no porous medium exists. For the case of no solid, the solid elements are zero 

whereas porous elements are zero when only solid exists. It is found that both algorithms 

perform similarly for these two extreme cases of no solid and no porous medium. The 

numbers of iterations are minimum for the case of only solid.  
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Table 4.4: Performance of two algorithms 

Porous  
Region 
Elements 

Solid 
Region 
Elements 

Developed Algorithm Conventional Algorithm 
Iterations Time 

sec 
Remark Iterations Time 

sec 
Remark 

2520 72 396 2081.7 Converged >500 2449 Unconverged 
2448 144 268 1399.1 Converged >500 2127.1 Unconverged 
2376 216 203 1001.9 Converged 274 1194.9 Converged 
2304 288 171 881.7 Converged 170 873.0 Converged 
2592 0 48 169.40 Converged 48 172.16 Converged 
0 2592 3 32.5286 Converged 3 33.3166 Converged 

 
The convergence behavior of various numbers of solid elements corresponding to 

different solid height is shown in figures 4.5 to 4.10 for developed algorithm as well as the 

conventional algorithm. The convergence behavior of figures 4.5 to 4.10 is that of a 

representative monitored node number 1129 which falls near the top surface of meshed 

domain. The convergence criteria for  , T   and C  are set as 10-7, 10-5 and 10-5 

respectively. The solution is said to be converged when all the nodes of domain meet the 

above said criteria. It is found that the developed algorithm/method converged in all the 

cases of solid heights in the porous medium considered. However, the conventional 

algorithm/method found difficulty in convergence for smaller solid height with little 

number of solid elements. The minimum number of solid elements at which the 

conventional algorithm could converge is that of 216 nodes that corresponds to 3 rows of 

elements at bottom section. It is obvious from figure 4.5 to 4.10 that the energy and 

concentration equations faced difficulty in satisfying the convergence limit but the 

momentum equation represented by solution variable  , marched smoothly as compared to 

T   and C .   
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Figure 4.5: Convergence graph of Developed algorithm for 72 solid elements 

 

Figure 4.6: Convergence graph of Conventional algorithm for 72 solid elements 
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Figure 4.7: Convergence graph of Developed algorithm for 216 solid elements 

 

Figure 4.8: Convergence graph of Conventional algorithm for 216 solid elements 

0 50 100 150 200 250
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Iterations.

C
on

ve
rg

en
ce

 L
ev

el

T

C



0 50 100 150 200 250 300
10-10

10-8

10-6

10-4

10-2

100

Iterations.

C
on

ve
rg

en
ce

 L
ev

el

T

C



Univ
ers

ity
 of

 M
ala

ya



83 
 

 

Figure 4.9: Convergence graph of Developed algorithm for 720 solid elements 

 

Figure 4.10: Convergence graph of Conventional algorithm for 720 solid elements 
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The results are further investigated in terms of temperature distribution obtained by two 

methods. The temperature distribution gives a better idea about physics of the problem 

considered reflecting the feasibility of method in predicting the thermal behavior in porous 

medium. Figure 4.11 shows the isothermal lines indicating the same temperature region in 

porous-solid domain when number of solid elements are 72. It should be noted that the size 

of solid for these many elements corresponds to first row of elements at bottom of square 

domain being considered. It is found that the developed algorithm predicts the expected 

temperature behavior of porous solid domain. The isotherms at bottom section follows 

different gradient due to presence of solid in that region. The developed algorithm is able to 

predict the variation of temperature in two dimensions in porous as well as solid region 

which is real behavior of thermal energy distribution. However, the conventional method 

could not predict the 2-dimensional temperature variation in the solid region as illustrated 

by figure 4.12. It is noted that the conventional algorithm/method did not satisfy the present 

convergence criteria even after 500 iterations are carried out for the case of 72 solid 

elements.  

Figure 4.13 and 4.14 demonstrates the prediction of temperature distribution in porous 

solid region when number of solid elements are set at 216 corresponding to bottom three 

rows of elements of mesh (figure 4.4). It is found that the developed algorithm is able to 

predict the heat transfer behavior in 2-dimesional pattern for both porous as well as solid 

region. The isothermal behavior is very much in line with physical phenomenon of 

conjugate heat transfer. The conventional algorithm/method was able to predict the 2-

dimensional variation of temperature in porous and solid region but failed to capture the 

adequate temperature variation just above the solid region where the isotherms show 

unrealistic pattern (figure 4.14). The temperature gradient at porous solid interface is 
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expected to change depending upon the thermal conductivity of two mediums but it should 

not have sharply pointed characteristics as shown by figure 4.14. 

Similarly, the developed method predicted realistically expected behavior of isotherms 

for the case of 720 elements, corresponding to 10 bottom rows of elements as shown in 

figure 4.15. However, the conventional method/algorithm shows highly unrealistic pattern 

of isothermal lines for same problem as shown in figure 4.16.   

The reason for unrealistic prediction of conventional method/algorithm could be 

attributed to fewer numbers of elements of mesh domain. Generally it requires the domain 

to be divided into much larger number of elements to predict the heat and mass transfer 

behavior. However, larger the number of elements, larger is the elemental equations 

involved resulting into a requirement of higher amount of computational resources. Thus it 

can be said that the developed method is able to predict the heat and mass transfer behavior 

realistically with simple algorithm that consumes lesser resources as compared to that of 

conventional method.  

Figure 4.17-4.20 shows the performance of developed and conventional algorithms for 

two limiting cases i.e. no solid and no porous medium. It is found that the two algorithms 

are very much compatible in predicting the temperature distribution in the physical domain 

for these limiting cases.   

 

 
 Univ

ers
ity

 of
 M

ala
ya



86 
 

 
Figure 4.11: Isotherms of Developed algorithm for 72 solid elements 

 

Figure 4.12: Isotherms of Conventional algorithm for 72 solid elements 
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Figure 4.13: Isotherms of Developed algorithm for 216 solid elements 

 

Figure 4.14: Isotherms of Conventional algorithm for 216 solid elements 
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Figure 4.15: Isotherms of Developed algorithm for 720 solid elements 

 
Figure 4.16: Isotherms of Conventional algorithm for 720 solid elements 
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Figure 4.17: Isotherms of Developed algorithm for zero solid elements 

 

Figure 4.18: Isotherms of Conventional algorithm for zero solid elements 
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Figure 4.19: Isotherms of Developed algorithm for zero porous medium elements 

 

Figure 4.20: Isotherms of Conventional algorithm for zero porous medium elements 
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4.2 Solution of Conjugate Heat Transfer in Porous Medium 

The previous section described the optimized solution of conjugate heat and mass 

transfer in porous medium. Similarly, the conjugate heat transfer in porous medium is 

optimized too. As described in chapter 3, the equations that govern conjugate heat transfer 

in porous medium can be written as: 

2 2

2 2

TRa
xx y

   
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



























 














2

2

2

2

3
4

1
y

T

x

TR
y
T

xx
T

y
d           (4.22) 

0
3

41 2

2

2

2
















 

y
T

x
TR ssd                     (4.23) 

The application of finite element method to 4.21 -4.23 yields: 
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Following the similar procedure as described in section 4.1, the above equations of 

conjugate heat transfer in porous medium can be solved by following the process flow as 

shown in figure 4.21 and 4.22.  
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Figure 4.21: Flow chart of conventional solution procedure for conjugate heat transfer in 
porous medium 
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Figure 4.22: Flow chart of developed solution procedure for conjugate heat and mass 
transfer in porous medium 
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Comparison of Developed and Conventional Algorithm/method for conjugate heat, mass 

transfer and conjugate heat transfer in porous medium is listed in table 4.5 

Table 4.5: Comparison of two solution algorithms/methods 

 
Contributing Factor Developed Algorithm Conventional Algorithm 
Number of effective 
equations to be solved for 
conjugate heat and mass 
transfer 

3 4 

Number of effective 
equations to be solved for 
conjugate heat transfer 

2 3 

Mesh generation It requires a regular mesh 
such as square domain 
without any discontinuity 

It requires two separate 
mesh i.e. one each for 
porous region as well as 
solid region that should be 
stitched together while 
solution proceeds from one 
region to another region 

Mesh complexity Relatively easy Very complex for small 
solid placed at any arbitrary 
region in cavity 

Solution feasibility Works well for any complex 
solid geometry 

Works well for only simple 
solid geometry 

Computer code generation Relatively easy since it 
eliminates one complete 
subroutine for energy 
equation of solid 

Quite involved 

Length of code Shorter Longer 
Application of boundary 
conditions in code 

Bit difficult Relatively easy 

Computer resources required Generally low Generally high 
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CHAPTER 5 : EFFECT OF SIZE AND LOCATION OF SOLID ON 

CONJUGATE HEAT TRANSFER IN POROUS CAVITY 

The current chapter highlights the heat transfer and fluid flow behavior of square porous 

cavity due to presence of a solid wall. The solid wall is small portion of the whole domain 

whose size is varied at 5 different locations of the cavity such as left (̅ݔ = 0), center 

ݔ̅) = ݔ̅) right ,(ܮ0.5 = ݔ̅) mid of left and center ,(ܮ =  mid of center and right ,(ܮ0.25

ݔ̅) =  wall of cavity. The governing partial differential equations are solved using	(ܮ0.75

finite element method with the whole domain being divided into triangular elements. The 

left wall (̅ݔ = 0) of cavity is heated isothermally to temperature Th whereas the right wall 

ݔ̅) =  .is maintained at Tc such that Th > Tc (ܮ

5.1 Introduction 

The advent of computational technology has played a vital role in solving many of the 

unsolved mathematical problems thus facilitating to understand the complex physical 

phenomenon which otherwise could have been left unanswered. Conjugate heat transfer in 

porous medium is one such phenomenon whose understanding was improved after the 

arrival of computer and advancement of computational methods. The conjugate heat 

transfer refers to a situation where heat transfer occurs simultaneously between fluid and 

solid emanating a complex boundary condition between fluid and solid. The natural 

convection in porous medium has been studied to a great detail addressing various issues 

such as geometries (Ahmed, Badruddin, Kanesan, Zainal, & Ahamed, 2011; N. S. Ahmed, 

I. A. Badruddin, Z. Zainal, H. Khaleed, & J. Kanesan, 2009; I.  A Badruddin, N. J. S 

Ahmed, et al., 2012; I.  A Badruddin, Abdullah A. A. A Al-Rashed, et al., 2012; Badruddin, 

Al-Rashed, Ahmed, Kamangar, & Jeevan, 2012; Kumaran & Pop, 2006; Ogulu & Amos, 

2005; Raptis, 1998) but conjugate heat transfer received relatively lesser attention. 

Univ
ers

ity
 of

 M
ala

ya



97 
 

Generally, the conjugate heat transfer is reported for the cases where the solid wall is 

attached to whole of the surface at one end of geometry under investigation.  

For instance, the solid wall attached to left wall of cavity is investigated by (Al-Amiri et 

al., 2008; Nawaf H Saeid, 2007; Nawaf H. Saeid, 2007). It is reported that the phenomenon 

of attaining maximum Nusselt number at aspect ratio around 1 vanishes when solid wall is 

present at the inside radius of vertical annulus (Salman et al., 2014). The attachment of two 

solid walls at parallel surfaces of a porous geometry affects the heat transfer behavior as 

compared that of single wall. It was noticed that for small values of Rayleigh number, the 

average Nusselt number is approximately constant and heat is transferred by conduction in 

both wall and porous layer in case of a porous medium sandwiched between two vertical 

solid wall (Nawaf H. Saeid, 2007).  

A similar geometry was considered by (Alhashash et al., 2013) to investigate the effect 

of non-uniform heat generation along with radiation and found that there exists a critical 

value of wall thickness below which the thickness and heat transfer rate is directly 

proportional and vice versa. It was further reported that the radiation and internal heat 

generation do not play a crucial role on the critical thickness. Two solid walls at top and 

bottom surface of cavity are analyzed by (A. C. Baytas et al., 2001). The presence of two 

solid walls is studied for other geometries as well. For instance, the effect of varying 

thermal conductivity of two solids attached at internal and external radii of an annular 

porous cylinder was investigated to reveal that the effect of solid conductivity ratio 

diminishes as the solid wall thickness at inner radius increases and heat transfer rate 

decreases with increase in the solid conductivity ratio (Badruddin et al., 2015). The heat 

transfer behavior of triangular porous geometry with solid wall at bottom is reported by 

(Varol et al., 2009) whereas the triangular solid at the lower left corner of square cavity was 
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investigated by (Chamkha & Ismael, 2013b). Some of other work in the area of conjugate 

heat transfer in porous media can be found as inclined vertical plate (Ali et al., 2013), bi-

disperse porous channel (D. A. Nield & Kuznetsov, 2004),porous channel(Mahmud & 

Fraser, 2005), conjugate mixed convection due to a vertical surface in porous medium (I. 

Pop & Merkin, 1995). square cavity embedded with a small solid heat source at the bottom 

surface of the cavity (A. C. Baytas et al., 2001), finite horizontal flat plate in the porous 

medium (Aleshkova & Sheremet, 2010), vertical slender hollow cylinder (Kaya, 2011; I. 

Pop & Na, 2000), vertical thin strip with heat generation (I. Pop & Merkin, 1995), vertical 

surface in separating two porous media (Vaszi et al., 2002) and vertical rounded fin inserted 

in porous medium (Vaszi et al., 2004). The current work is aimed to understand the heat 

and fluid flow behavior due to presence of a solid wall inside the porous medium when its 

location is varied from left to right surface of cavity.  

5.2 Mathematical Model 

Consider a square porous cavity with a small solid wall embedded within the porous 

medium. The schematic of the problem under consideration and coordinate system is 

depicted in figure 5.1. The presence of small solid wall in the porous medium makes it a 

conjugate heat transfer problem. The height of solid wall is varied in two steps along with 

its location in 5 different positions. In first step, the left surface of solid wall coincides with 

the left surface of cavity i.e. ̅ݔ = 0. In the 2nd, 3rd and 4th step, the center of solid wall is 

placed at 0.25L, 0.5L and 0.75L (25%, 50% and 75% of cavity width). In the last step, the 

right surface of solid coincides with right surface of cavity. The left and right surface of 

cavity is isothermally maintained at hot hT  and cool temperature cT respectively, such that

ch TT  . Following assumptions are applied: 
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a) The Darcy law is applicable in the porous medium. 

b) The properties of the fluid and those of the porous medium are homogeneous. 

c) Fluid properties are constant except the variation of density with temperature.  

d) There is no phase change of fluid 

e) The thermal equilibrium exists between fluid and solid phase of porous medium  

 

 

 

Figure 5.1: Porous cavity with solid at center (3rd position i.e. 50% of cavity width) 

The governing equations resulting due to above mentioned problems are 

Continuity equation 

0v









yx
u                          (5.1) 

Momentum equation 

x
TKg

xy
u













v                       (5.2) 

 

 

adiabatic 
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Energy equation for porous medium 

x
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
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             (5.3) 

Energy equation for solid 

01
2

2

2

2













x
q

Cy
T

x
T r

p

ss


                   (5.4) 

Subjected to boundary conditions: 

at 0x   0u   hTT                    (5.5a) 

at Lx  ,  0u   cTT                     (5.5b) 

Since there is no heat storage in the medium, the following condition at solid-porous 

interface has to be satisfied. 

at spxx   0u   ps TT   x
T

k
x

Tk p
p

s
s 







                (5.5c)   

at spyy   0v   ps TT   y
T

k
y
Tk p

p
s

s 







           (5.5d) 

  Equation (1) can be satisfied automatically by introducing the stream function ψ as: 

y
u







x



v             (5.6) 

Following non-dimensional parameters are used. 

L
xx  ,  

L
yy   ,  


  ,  

 
 ch

c

TT
TTT



  ,  
k
TRd

r

c


 34

  , 

 TKLg

Ra


  

 

Invoking  Rosseland approximation for radiation. 

x
Tq

r
r 




4

3
4

                        (5.7) 
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Expanding T 4 in Taylor series about cT  and neglecting higher order terms (I. A. Badruddin, 

Z. Zainal, A. Narayana, K. Seetharamu, & L. W. Siew, 2006; I. A Badruddin, Z. A. Zainal, 

P. A. Aswatha Narayana, & K. N. Seetharamu, 2006; I. A Badruddin, Z. A. Zainal, P. A. 

Aswatha Narayana, K. N. Seetharamu, et al., 2006; Nik-Ghazali, Badruddin, Badarudin, & 

Tabatabaeikia, 2014; Raptis, 1998) 

434 34   TTTT                       (5.8) 

Substituting equations (5.6-5.8) into equation (5.2-5.4) yields:  
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TRd                      (5.11) 

The corresponding boundary conditions are 

at 0x   0   1T                         (5.12a)  

at 1x   0   0T                     (5.12b) 

at spxx   0 , 
 x

T
x
T

Kr ps









                  (5.12c) 

at spyy   0   y
T

y
T

Kr ps









                    (5.12d)  
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5.3 Numerical Scheme 

The above mentioned equations (5.9-5.11) are complex partial differential equations 

subjected to intricate boundary conditions (5.12) that are difficult to solve directly. In the 

present case, they are solved by making use of finite element method. The whole domain is 

divided into smaller segments known as elements of triangular shape. The geometry is 

meshed with sufficient number of elements to make sure that the results are not affected 

due to mesh size Equations (5.9-5.11) are converted into algebraic form of equations with 

the help of finite element method and then solved in a iterative manner for solution 

variables andT by setting the convergence criteria as 10-9 and 10-6 for Tand  

respectively  . The tolerance level indicates the difference in the value of solution variable ( 

Tand  ) from its previous iteration for each of the nodes in the domain. The present 

methodology is validated with the previously published data by setting the solid wall 

thickness to zero that corresponds to square porous cavity. The comparison is shown in 

table 1 to illustrate that the current method is accurate enough to simulate the heat transfer 

behavior of problem under consideration.   
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Table 5.1: Validation of results 

Author 10Ra  100Ra  

Present 1.0845 3.3983 

(Walker & Homsy, 1978)  3.097 

(Bejan, 1979)  4.2 

(Gross et al., 1986)  3.141 

(Manole & Lage, 1993)  3.118 

(Beckermann et al., 1986)  3.113 

(Moya et al., 1987) 1.065 2.801 

(A. Baytas & Pop, 1999) 1.079 3.16 

(Misirlioglu et al., 2005) 1.119 3.05 

(I.  A Badruddin, Abdullah A. A. A Al-Rashed, et al., 2012) 1.0798 3.2005 

 

5.4 Results and Discussion 

The following section describes the results obtained by solving equations (5.9-5.11) for 

various values of thermal conductivity ratio, location and height of solid wall in the porous 

medium. The height of solid wall “Sh” is varied in 2 steps i.e 20% and 50% of total height 

of cavity. Figure 5.2 shows the isotherms and streamlines for the case when solid wall 

coincides with the left surface of cavity for Ra=100, Rd=0.5, Sh=0.20 and different values 

of thermal conductivity ratio i.e. Kr=0.1, 1 and 10. It should be noted that Kr is the ratio of 

thermal conductivity of solid wall and porous medium. Kr>1 indicates that the solid wall 

thermal conductivity is higher than that of porous medium and vice versa for Kr<1.  It is 

seen that the increase in the thermal conductivity ratio increases the heat transfer from solid 

to porous region. The isotherms are clustered near the solid wall for low value of thermal 

conductivity ratio (Kr=0.1) but it spreads out of solid wall owing to increased thermal 

conductivity ratio. The fluid flow direction also tilts to about 35 degree to vertical as 

compared to being nearly horizontal at Kr=0.1. Figure 5.3 shows the effect of increasing 
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the height of the solid wall from 20% to 50% of cavity height. The increased solid wall 

height results into more fluid to be concentrated at upper section of cavity at low Kr. This 

happens because of the reason that the thermal resistance is low at upper section of cavity 

compared to lower section occupied by solid wall, thus the fluid gets more heat in that 

region leading to higher activity.  

Figure 5.4 depicts the isotherms and streamlines when the solid is placed at 25% of 

cavity width with other parameters being same as that of above mentioned case. It is seen 

that the fluid gets obstructed due to presence of solid wall inside the porous medium and 

that region is occupied with crowded streamlines. The strength of streamlines decreases due 

to solid wall as compared to the case when wall is attached with the left surface of cavity.   

Figure 5.5 shows the effect of increased solid height i.e. Sh=0.5 for solid being placed at 

25% cavity width. It is observed that the isotherms have distorted pattern above the solid 

height indicating higher convective heat transfer in that area. The magnitude of streamline 

is considerably reduced when height of solid wall increases. This can be attributed to 

greater flow resistance caused by large solid wall in the path of fluid movement. The flow 

pattern also changed to concentrate on upper side of cavity.  

Figure 5.6 shows the isotherms and streamlines when solid wall is placed exactly at the 

center of cavity. It is interesting to note that the solid wall attains more uniformity in 

temperature as compared to the earlier cases which is evident from figure 5.6 that shows 

only 5 isotherms (fig 5.6a) inside the solid as compared to 10 isotherms of previously 

discussed cases (fig 5.2-5.5). The strength of streamlines is stronger when solid is placed at 

the center. This could be due to the reason that the fluid does have sufficient space to gain 

momentum before it encounters the obstruction of solid compared to other cases. The solid 

temperature varies considerably when the Sh is increased to 50% at center of cavity, as 

illustrated in figure 5.7. In this case the maximum and minimum non-dimensional 
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temperature is found to be 0.6 and 0.15 respectively whereas this variation was only 0.3 and 

0.1 when solid height was 20% (fig 5.6a). The flow is concentrated more on left side of 

cavity at smaller value of Kr but it tries to attain uniformity across cavity when Kr 

increases. The fluid cell breaks into two separate flow regions when conductivity of solid 

increases.  

The variation of temperature in solid wall further decreases when its location is moved 

towards right wall of cavity as obvious from figure 5.8 that the maximum and minimum 

temperature is just 0.15 and 0.05 respectively. The fluid flow strength further increases 

when solid is moved farther away from left wall. It is notable that the fluid strength is not 

dependent on conductivity ratio Kr for this particular case since the maximum value of   

is 0.44 for all three values of Kr. However, there is slight increase in fluid strength 

(absolute value of   increases from 0.034 to 0.036) when solid height is increased to 50% 

at same location and Kr is increased from 0.1 to 10, as shown in figure 5.9.  

Figure 5.10 illustrates the effect of moving the solid wall to cold wall. It is seen that the 

solid wall attains minimum temperature compared to all other corresponding positions (fig 

5.2, 5.4, 5.6, 5.8) when placed at right wall of cavity for Sh=0.20. The solid wall 

temperature is similar to that of cold wall when conductivity ratio Kr is increased to 10. 

The flow strength is similar to that of previous case (fig 5.9). The increase in solid wall 

height at cold wall of cavity makes the solid to have different temperatures along the x-

direction similar to previously discussed cases (fig 5.11). However, the increased Kr forces 

the solid temperature to be similar to that of cold wall.  
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Figure 5.2: Isotherms (left) and Streamline (right) when solid wall placed at L=0 for 
Sh=0.20 a) Kr=0.1 b) Kr=1 c) Kr=10 
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Figure 5.3: Isotherms (left) and Streamline (right) when solid wall placed at L=0 for 
Sh=0.5 a) Kr=0.1 b) Kr=1 c) Kr=10 
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Figure 5.4: Isotherms (left) and Streamline (right) when solid wall placed at L=0.25 for 
Sh=0.20 a) Kr=0.1 b) Kr=1 c) Kr=10 
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Figure 5.5: Isotherms (left) and Streamline (right) when solid wall placed at L=0.25 for 
Sh=0.5 a) Kr=0.1 b) Kr=1 c) Kr=10 
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Figure 5.6: Isotherms (left) and Streamline (right) when solid wall placed at L=0.5 for 
Sh=0.20 a) Kr=0.1  b) Kr=1 c) Kr=10 
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Figure 5.7: Isotherms (left) and Streamline (right) when solid wall placed at L=0.5 for 
Sh=0. 5 a) Kr=0.1 b) Kr=1 c) Kr=10 
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Figure 5.8: Isotherms (left) and Streamline (right) when solid wall placed at L=0.75for 
Sh=0.20 a) Kr=0.1  b) Kr=1 c) Kr=10 
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Figure 5.9: Isotherms (left) and Streamline (right) when solid wall placed at L=0.75 for 
Sh=0.5 a) Kr=0.1  b) Kr=1 c) Kr=10 
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Figure 5.10: Isotherms (left) and Streamline (right) when solid wall placed at L=1 for 
Sh=0.20  a) Kr=0.1  b) Kr=1 c) Kr=10 
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Figure 5.11: Isotherms (left) and Streamline (right) when solid wall placed at L=1 for 
Sh=0.5   a) Kr=0.1 b) Kr=1 c) Kr=10 
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5.5 Nusselt number variation 

The following section describes the variation of Nusselt number at hot surface of cavity 

with respect to the thermal conductivity ratio and location of solid wall inside the porous 

medium. The results are presented for 4 different values of height (10%, 20%, 30% and 

50% of cavity height) and 2 values of solid width (13% and 25% of cavity width). 10% 

height indicates that the height of solid is 0.1 times the height or width of cavity. Similarly, 

13% width indicates that the width of solid is 0.13 times the height or width of cavity.  

Figure 5.12 shows the Nusselt number when solid wall is placed at 25% of the cavity width 

for Ra=100 and Rd =0.5.  It is worth mentioning that the Nusselt number is a reflection of 

heat transfer rate from hot surface to the porous region. Higher the Nusselt number, higher 

is the heat transfer rate. It is obvious from figure 5.12 that the Nusselt number for Sw=0.13 

(13%) increases with increases in Kr until a point and then the variations are seized. 

However, the Nusselt number keeps increasing with increase in Kr for wider solid 

(Sw=0.25). The increased conductivity ratio moves the isotherm towards the hot surface as 

depicted in figure 5.4-5.5 which in turn increases the temperature gradient at hot surface 

leading to increased heat transfer rate. In general, the Nusselt number for shorter solid 

height is higher than that of longer solid at smaller Kr with exception of Sh=0.1. This is due 

to the reason that the longer solid obstructs the fluid movement to greater extent thus 

rendering the overall heat transfer capacity of fluid.  Univ
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Figure 5.12: Average Nusselt number variation with Kr for solid at 0.25L 

 

Figure 5.13 shows the Average Nusselt number when solid is placed at the center of 

cavity with other parameters being same as that of figure 5.12. It is seen that the shifting of 

solid from 0.25L to 0.5L which is the center of cavity, results into higher Nusselt number 

for shorter solid width as compared to larger width for all values of Kr being investigated. 

This could be attributed to increased fluid velocity due to lesser resistance in the vicinity of 

hot surface which is further corroborated by streamlines of figure 5.6. The attainment of 

maximum ഥܰݑ shifts towards smaller Kr when location of solid is moved from 0.25L to 

0.5L.  Univ
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Figure 5.13: Average Nusselt number variation with Kr for solid at 0.5L 

 

Figure 5.14 shows the effect of solid being placed at 0.75L keeping all other parameters 

same as previous case i.e. figure 5.12. The heat transfer rate increases by pushing the solid 

towards right surface. The average Nusselt number for wider solid is higher at larger value 

of Kr. The heat transfer rate further increases when the solid wall is placed at the right 

surface i.e. cold surface of cavity as shown in figure 5.15.  The effect of Kr on heat transfer 

rate is substantial for Sh=0.5 as compared to other values of Sh.  
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Figure 5.14: Average Nusselt number variation with Kr for solid at 0.75L 

 

Figure 5.15: Average Nusselt number variation with Kr for solid at L (cold surface) 
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CHAPTER 6 : CONJUGATE HEAT AND MASS TRANSFER IN SQUARE 

POROUS CAVITY 

This Chapter deals with the issue of heat and mass transfer which is also known as 

double diffusion, in a square porous cavity having a small solid wall or block inserted at 

various places at bottom surface. The main objective is to investigate the effect of size of 

solid wall and its location inside the porous cavity on double diffusive convention. The heat 

and mass transfer behavior is governed by momentum, energy and concentration equations 

which are converted into a set of finite element equation with the help of Galerkin method. 

The left surface of cavity is maintained at higher temperature and concentration, Th and Ch 

as compared to that of right surface at Tc and Cc. The results are presented in terms of 

thermal, concentration and fluid flow profiles across the porous cavity.  

6.1 Introduction 

The thorough understanding of the convective heat transfer and the fluid flow through 

porous medium have gained considerable attraction by the eminent researchers during the 

last few decades, as evident from the number of articles published in this area. The deep 

insight to the fundamental concept of the heat transfer and fluid flow has been dealt 

meticulously by many authors, such as; (Donald A Nield & Bejan, 2006),(Ingham & Pop, 

1998) Ingham and Pop(1998), (Vafai, 2000), (Bejan & Kraus, 2003; Ioan Pop & Ingham, 

2001).The conjugate heat transfer refers to a situation where heat transfer occurs 

simultaneously between fluid and solid emanating a complex boundary condition between 

fluid and solid, whereby it analyzes simultaneously heat transfer both in solid as well as 

fluid(Joshi & Nakayama 2003) . The different aspects of the convective heat transfer have 

been reported in the available literature (N. J. S. Ahmed et al., 2009; Ahmed et al., 2011; I.  

A Badruddin, N. J. S Ahmed, et al., 2012; I. A Badruddin et al., 2012; I.  A Badruddin, 
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Abdullah A. A. A. Al-Rashed, et al., 2012; Kumaran & Pop, 2006; Ogulu & Amos, 2005; 

Raptis, 1998) but conjugate heat transfer received relatively lesser attention. 

In conjugate heat transfer the solid fluid interface is governed by the conduction and 

convection phenomenon thus making it more peculiar to analyze. Thus it becomes 

inevitable to solve the energy equations both in solid as well as fluid media simultaneously 

(Iqbal, Syed, & Ishaq, 2015). The ratio of the conductivity of the wall and the fluid and the 

wall thickness has profound effect on the heat transfer characteristics(Mori, Sakakibara, & 

Tanimoto, 1974).The effect of the wall heat conduction in an annulus region is also found 

to be significantly high as reported by the (Sakakibara, Mori, & Tanimoto, 1987).  In a 

similar study, (W.-Q. Tao, 1987) analyzed and reported that the ratio of the heat capacities 

of the fluids has significant effect on the finned tube heat transfer in a conjugate heat 

transfer analyses. 

Even though the conjugate heat transfer has received lesser attention in recent studies, 

however it is fairly understood that there has been considerable efforts made by many 

researchers to shed light on various aspects of the conjugate heat transfer as evident from 

the above literature.  Apart from the conjugate heat transfer there has been growing interest 

on the effect of combined heat and mass transfer in in porous medium as it addresses many 

issues in the practical applications sought in the food processing industries. The heat and 

mass transfer which is also referred as double diffusion is a complex diffusion where the 

diffusion of heat affects the mass as well. The mass transfer is countered by additional 

equation (mass diffusion equation) coupled with energy and momentum equation. For 

instance Oliveira and (Oliveira & Haghighi, 1998) have addressed the flow peculiarities to 

generate the temperature and the moisture contours during wood drying process. In another 

study similar attempt was made by (Lamnatou, Papanicolaou, Belessiotis, & Kyriakis, 
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2009) for a square cylinder of a model food substrate where in emphasis was given on the 

flow blockage and its influence over heat and mass transfer.  

Thus  few others also attempted to address the different aspects of the combined 

conjugate heat and mass transfer process in the literature (Kaya (De Bonis & Ruocco, 2008; 

Kaya, Aydın, & Dincer, 2006; Mohan & Talukdar, 2010; Suresh, Narayana, & Seetharamu, 

2001).The current work is aimed to understand the heat and fluid flow behavior due to 

presence of a solid wall/block inside the porous medium when its location is varied from 

left to right surface of cavity.  

6.2 Mathematical Model 

The mathematical model of problem under investigation is based on momentum, energy 

and species concentration equations that are coupled together with suitable parameters. A 

square cavity filled with porous medium is considered with a small solid placed at various 

positions along the bottom surface as depicted in figure 6.1. The x and y coordinates are 

taken along horizontal and vertical directions respectively. The left surface of cavity is 

maintained at temperature Th and concentration Ch  which are higher than its corresponding 

temperature and concentration at cold surface with notation Tc and Cc respectively.   

The following assumptions are applied while investigating the heat and mass transfer 

behavior in porous cavity. 

a) The Darcy law is applicable in the porous medium. 

b) The properties of the fluid and those of the porous medium are homogeneous. 

c) Fluid properties are constant except the variation of density with temperature.  

d) There is no phase change of fluid 

e) The thermal equilibrium exists between fluid and solid phase of porous medium  
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Figure 6.1: Porous cavity with solid 

The governing equations resulting due to above mentioned problems are 

Continuity equation 

0v









yx
u                         (6.1) 

Momentum equation 

x
TKg

xy
u













v                      (6.2) 

Energy equation for porous medium 
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Energy equation for solid 
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Subjected to boundary conditions: 

at  0x   0,0  vu   hTT    hCC            (6.6a)    

at Lx  ,  0,0  vu   cTT    cCC                   (6.6b) 

at Lyandy  0 ,   0,0  vu   0



y
T

         (6.6c) 

The application of principal of no heat storage in the solid, results into following additional 

boundary conditions at solid porous interphase. 

at spxx   0,0  vu   ps TT   x
T

k
x

Tk p
p

s
s 





         (6.6d)

  

at spyy   0,0  vu   ps TT   y
T

k
y

Tk p
p

s
s 





        (6.6e)

  

Equation (6.1) can be satisfied automatically by introducing the stream function ψ as: 

y
u







x



v                      (6.7) 

Following non-dimensional parameters are used. 

L
xx  , 

L
yy     , 


      ,  

 cw

c

TT
TTT



    ,   
 cw

c

CC
CCC



  

k
TR
R

c
d 

 34
    ,


 cT TKLgRa 

    , 
D

Le


    , 











T
C

N
T

c




 

Invoking Rosseland approximation for radiation. 

x
Tq

r
r 




4

3
4

                         (6.8) 
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Expanding T 4in Taylor series about cT  and neglecting higher order terms (Irfan Anjum 

Badruddin et al., 2006; I. A Badruddin, Z. A. Zainal, P. A. Aswatha Narayana, & K. N. 

Seetharamu, 2006; I. A Badruddin, Z. A. Zainal, P. A. Aswatha Narayana, K. N. 

Seetharamu, et al., 2006; Nik-Ghazali et al., 2014; Raptis, 1998) 

434 34 cc TTTT                        (6.9) 

Substituting equations (6.6-6.9) into equation (6.2-6.5) yields:  

Momentum equation 


























x
CN

x
TRa

yx
2

2

2

2 
           (6.10) 

Energy equation of porous region 





























 














2

2

2

2

3
4

1
y

T

x

TR
y
T

xx
T

y
d          (6.11) 

Energy equation in solid region 

0
3

4
1 2

2

2

2















 

y

T
x
TRd             (6.12) 

Concentration equation 






































2

2

2

21

y

C

x

C
Ley

C
xx

C
y

            (6.13) 

The corresponding boundary conditions are 

at 0x   0   1T  1C               (6.14a)  

at 1x   0   0T  0C              (6.14b) 
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at 10  yandy ,   0   0



y
T

           (6.14c) 

at spxx   0 , 
 x

T
x
T

Kr ps









              (6.14d)  

at spyy   0   y
T

y
TKr ps






              (6.14e)

  

The heat and mass transfer rate at the hot surface can be calculated using following 

relations: 

0
3
41






















 

x

d x
T

RNu                   (6.15) 

The Sherwood number is expressed as: 

0










 xx
CSh               (6.16) 

6.3 Numerical Scheme 

It is worth mentioning that the present problem is governed by 4 partial differential 

equations (6.10-6.13) subjected to complex boundary conditions as given in equation 6.14. 

These set of equations are difficult to solve directly. Therefore as an alternate solution 

technique, finite element method is used to arrive at solution. The above mentioned 

equations are converted into matrix form of equations with the help of Galerkin method. 

Total of 2592 triangular elements are used to divide the physical domain into smaller 

segments. An iterative algorithm is adopted to solve the resulting finite element equations. 

The convergence criteria for CandT, are set at10-7, 10-5and 10-5 respectively.  

Univ
ers

ity
 of

 M
ala

ya



127 
 

6.4 Results and Discussion 

6.4.1 Temperature, concentration and fluid flow profile. 

 The following section describes the results obtained for various geometrical as well as 

physical parameters that affect the conjugate heat and mass transfer in a square porous 

cavity.  Figure 6.2 represents the heat and mass transfer behavior in terms of isotherms, iso-

concentration lines and streamlines reflecting the temperature, concentration and velocity 

distribution in the square cavity. This figure is obtained by setting the parameters as 

	ܴܽ = 100,ܴௗ = 0.5,ܰ = ܮ,0.2 = 10,	for solid wall placed at the left surface of cavity 

with Sh=0.2.The geometric parameter Sh is ratio of height of solid wall to the height of 

porous cavity thus Sh=0.2 indicates that the height of solid wall is 20% of total cavity 

height. The left column of figure 2 corresponds to Kr=0.1 whereas the right column 

belongs to Kr=25.Based on the results presented in figure 2, it is obvious that the isotherms 

penetrates deeper into the porous medium due to increased conductivity ratio, Kr. It should 

be noted that the conductivity ratio Kr represents the thermal conductivity ratio of solid 

wall to the porous medium. A value of Kr>1 indicates that the solid wall conductivity is 

higher than that of porous medium and vice versa for Kr<1.It can be conveniently said that 

the larger area of cavity is occupied with high concentration lines for Kr=0.1 than that of 

Kr=25 as reflected by figure 6.2. 

This can be inferred from iso-concentration lines where more than 50% of porous region 

is occupied by ̅ܥ ≥ 0.45 at Kr=0.1 than that of Kr=25. This could be the result of higher 

fluid velocity at smaller value of Kr as illustrated by streamlines of figure 6.2 where 

magnitude of stream-function is higher at Kr=0.1 than that of Kr=25.  The effect of solid 

placed at left wall of cavity is further investigated (figure 6.3) when height of solid wall is 

increased from 20% (Sh=0.2) to 50% (Sh=0.5) keeping all other parameters same as 
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corresponding to that of figure 6.2. The convective heat transfer rate at top of cavity 

increases due to increased thermal gradient in that area for Sh=0.5 as compared to Sh=0.2. 

The high concentration area reduces owing to increase in solid height. The effect of solid 

wall is much more pronounced at Kr=0.1 than that of Kr=25. This is a result of fluid cell 

which changes flow pattern from being oval to near circular. Furthermore, the fluid 

movement shifts the whole of the cell in upward section of cavity at Kr=0.1. This 

combined effect of fluid cell affects the concentration distribution to a greater extent.  

The aim of present work is to study the size as well as location of solid wall in the 

porous medium. In this regard, the location of solid is varied at 5 places such as at ̅ݔ =

ݔ̅,0 = ݔ̅ , 0.25 = ݔ̅ , 0.5 = 0.75 and ̅ݔ = 1 . Figure 6.2-6.3 corresponded to ̅ݔ = 0whereas 

figure 6.4 shows the heat and mass transfer behavior when solid is placed at ̅ݔ = 0.25. 

Other parameters for figure 3 are set at ܽ = 100,ܴ݀ = 0.5,ܰ = ܮ,0.2 = 10. It is observed 

that the heat transfer rate from hot wall to porous medium does not change much at Kr=0.1 

from its counterpart of solid being placed at left wall (̅ݔ = 0, figure	6.2 ).  However, there 

is an important observation that needs to be elaborated that the temperature variation inside 

the solid wall decreases owing change of solid wall location. The temperature variation in 

solid wall further decreases at higher Kr as shown by isotherms of figure 6.2-6.4, 

corresponding to Kr=25. This behavior can be attributed to the fact that the thermal 

conductivity and temperature difference in a solid are inversely related to each other, thus 

the increased Kr is an indication of higher thermal conductivity of solid wall which in turn 

helps in reducing the temperature difference across the solid. The concentration diffusion 

seems to re-arrange itself due to presence of an obstruction in the form of solid wall. The 

increased solid height reduces the heat content of porous medium to the right of solid wall 

as shown in figure 6.5. It is noticeable that the temperature variation across solid wall 
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increases at Kr=0.1 when the height of solid is increased to 50%. The concentration 

distribution shifts towards upward section of cavity due to increased obstruction. However, 

this obstruction is overcome by some extent, due to increased fluid velocity for the case of 

Kr=25, thus filling the lower section of cavity with low concentration lines.  

The placement of solid wall at center of cavity i.e. ̅ݔ = 0.5, further reduces the 

temperature difference across the solid as follows from figure 6.6. This is because of the 

reason that the availability of thermal energy decreases as one moves from hot to cold 

surface of porous cavity which is vindicated by figures 6.2 and 6.4, thus leading to decrease 

in temperature variation inside the solid wall placed far away from hot surface. The 

concentration profiles moves little bit upward direction as compared to figure 6.2 and 6.4 

with similar solid height. 

 The fluid flow has distinct pattern as compared to other cases (figure 6.2-6.6) when solid 

with Sh=0.5 is placed at center of cavity. The flow pattern is very close to splitting the fluid 

into two cells at Kr=25 as outlined in figure 6.7. 

The temperature in the solid further declines as shown in figure 6.8 when the solid is 

moved to ̅ݔ = 0.75,  as compared to the cases discussed earlier in this chapter. This is clear 

indication of inability of heat to reach far away region of porous cavity towards the cold 

surface. However, it is noted that the effect of thermal conductivity ratio on concentration 

profile as well as fluid profile diminishes for solid (Sh=0.2) placed at ̅ݔ = 0.75.  
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However, the increased solid height (Sh=0.5) at this location brings in little bit variation 

of concentration and fluid profile with respect to variation in Kr as demonstrated by figure 

6.9.  It is noted that the heat content of solid wall is minimum when it is placed at right 

surface of cavity as shown in figure 6.10 as compared to all other cases. Only two 

isotherms are affected by presence of solid wall at Kr=0.1. However, the increase in solid 

height to 50% improves the heat content of solid as depicted in figure 6.11. The 

concentration and streamlines are not much affected with respect to Kr when solid wall is 

placed at right surface. The magnitude of stream function is found to be maximum when 

the solid wall is placed at right surface (figure 6.10-6.11).  
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Figure 6.2: Effect of Kr and solid (Sh=0.2) at ̅ݔ = 0, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.3: Effect of Kr and solid (Sh=0.5) at  ̅ݔ = 0, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.4: Effect of Kr and solid (Sh=0.2) at ̅ݔ = 0.25	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.5: Effect of Kr and solid (Sh=0.5) at  ̅ݔ = 0.25	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.6: Effect of Kr and solid (Sh=0.2) at  ̅ݔ = 0.5	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.7: Effect of Kr and solid (Sh=0.5) at ̅ݔ = 0.5	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.8: Effect of Kr and solid (Sh=0.2) at ̅ݔ = 0.75	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.9: Effect of Kr and solid (Sh=0.5) at ̅ݔ = 0.75	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.10: Effect of Kr and solid (Sh=0.2) at ̅ݔ = 1	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.11: Effect of Kr and solid (Sh=0.5) at  ̅ݔ = 1	, I) Kr = 0.1 II) Kr=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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The previous figures highlighted the effect of conductivity ratio along with size and 

location of solid inside the porous region. The study is further explored to investigate the 

two important mass flow parameters i.e. buoyancy ratio and Lewis number. These 

parameters are investigated for location of solid at ̅ݔ = 0.25, ݔ̅ = ݔ̅	݀݊ܽ	0.5 = 0.75.  

figure 6.12 shows the isothermal lines, iso-concentration lines and streamlines for the case 

N=-0.5 and N=0.5. The buoyancy ratio indicates the relative strength of the two buoyant 

forces i.e. thermal and concentration buoyancy. The buoyancy ratio can vary from negative 

to positive value also including zero. The sign of buoyancy ratio indicates the relative 

direction in which thermal and concentration buoyant forces act in the medium. The 

concentration buoyant force may act vertically upward or downward based on the weight of 

the concentration molecules. However, the thermal buoyancy force always acts in vertically 

upward direction due to temperature gradient. Thus the direction of concentration buoyancy 

decides the sign of buoyancy ratio. The negative sign indicates that the two buoyant forces 

are opposing each other and positive sign shows that they are acting in the same direction 

leading to each other’s assistance. When buoyancy ratio is zero then the flow becomes 

purely thermal driven.  

Figure 6.12 is obtained at ܴܽ = 100,ܴ݀ = ݁ܮ,0.5 = ݎܭ	݀݊ܽ	10 = 10, Sh=0.2 and 

ݔ̅ = 0.25.  It is seen from isotherms of figure 6.12 that opposing flow which corresponds to 

negative value of N, has higher conduction effect as compared to that of assisting flow 

arising due to positive value of buoyancy ratio, which is reflected by the fact that the 

isotherms are more straightened in case of N=-0.5 as opposed to that of N=0.5. This should 

lead to increased heat transfer rate in case of assisting flow as compared to opposing flow. 

Similarly the concentration lines gets more crowded near hot surface when N is increased 

from -0.5 to 0.5 thus increasing the concentration gradient near hot surface that in turn 

leads to increased mass transfer rate from hot surface to porous medium. This behavior is 
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consistent with all other studies reported for heat and mass transfer in porous medium. 

(Angirasa, Peterson, & Pop, 1997; I.  A Badruddin, N. J. S Ahmed, et al., 2012) 

The increase in the solid size to 0.5 (Sh=0.5) from 0.2 further pushes the isotherms away 

from the hot surface as evident from figure 6.13 which illustrates the effect of increased 

solid height. It is seen that the heat transfer rate along the hot surface is almost constant as a 

result of nearly constant thermal gradient for N=-0.5. However, the thermal gradient varies 

along the hot surface with higher gradient at lower part and lower gradient at upper section 

when N is increased to 0.5. This happens because of the reason that the assisting flow helps 

the transfer of heat, as well as mass transfer by acting in same direction. Mass transfer is 

substantially affected due to increased solid height. It is noted that most of the porous 

medium is occupied by very low concentration at opposing flow but the concentration level 

significantly improves for the case of assisting flow. The fluid flows in three different cells 

at opposing flow and concentrates in the region after the solid block. However, the fluid 

flow turns into one continuous cell covering almost all area of porous medium illustrated 

by the streamlines of figure 6.13. 
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Figure 6.12: Effect of N and solid (Sh=0.2) at  ̅ݔ = 0.25	, I) N = -0.5 II) N=-0.5 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.13: Effect of N and solid (Sh=0.5) at  ̅ݔ = 0.25	, I) N = -0.5 II) N=0.5 
a) Isotherms b) Iso-concentration c) Streamlines 
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The position of solid block is further moved to center of cavity to investigate the effect 

of aiding and opposing flow. Figure 6.14 and figure 6.15 show the isotherms, iso-

concentration and streamlines when solid is placed at center of cavity for the height Sh=0.2 

and Sh=0.5 respectively. It is seen that the thermal gradient increases due to moving of 

solid from ̅ݔ = 0.25 to ̅ݔ = 0.5. Thus the heat transfer rate increases for the case of solid at 

center of cavity than being on left side of cavity. Similarly, the distribution of concentration 

is better in case of solid at center of cavity than being at left side (figure 6.12). The fluid 

flow direction shifts from being horizontal to oblique towards the lower left and upper right 

corners of cavity. However, the flow direction is substantially differs for opposing and 

assisting flow when the height of solid is increased to 0.5. The fluid is more concentrated in 

the right section of cavity for opposing flow, but it shifts towards left section of cavity for 

assisting flow as shown by the streamlines of figure 6.15.  

Similarly the position of solid block is moved to ̅ݔ = 0.75 for the solid height Sh=0.2 

(figure 6.16) and Sh=0.5(figure 6.17). It is deduced that the heat transfer and mass transfer 

rate is still higher in case of assisting flow when solid is moved to ̅ݔ = 0.75. The fluid flow 

becomes oval shape in the diagonal direction as shown by figure 6.16. However, the 

similarity between the opposing flow and assisting fluid flow improves when solid height is 

increased to 0.5 as compared to the case of solid at the center of cavity(figure 6.15) 
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Figure 6.14: Effect of N and solid (Sh=0.2) at  ̅ݔ = 0.5	, I) N = -0.5 II) N=0.5 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.15: Effect of N and solid (Sh=0.5) at  ̅ݔ = 0.5	, I) N = -0.5 II) N=0.5 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.16: Effect of N and solid (Sh=0.2) at  ̅ݔ = 0.75	, I) N = -0.5 II) N=0.5 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.17: Effect of N and solid (Sh=0.5) at  ̅ݔ = 0.75	, I) N = -0.5 II) N=0.5 
a) Isotherms b) Iso-concentration c) Streamlines 
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The effect of Lewis number on the isothermal lines, iso-concentration lines and 

streamlines is discussed in the following section. Lewis number is the ratio of thermal 

diffusivity to the mass diffusivity, thus it indicates the relative diffusion of two quantities.  

Figure 6.18 to figure 6.23 are obtained for ܴܽ = 100,ܴ݀ = 0.5,ܰ = ݎܭ	݀݊ܽ	0.2 = 10 . 

Figure 6.18 shows the effect of Lewis number when solid block is placed at ̅ݔ = 0.25 and 

two values of Lewis number i.e Le = 5 and Le = 25. It is seen that the isotherms are not 

much affected due to change in Lewis number, however the iso-concentration lines get 

crowded at hot surface due to increase in Le. This indicates that the concentration gradient 

increases with increase in Le which in turn should increase the Sherwood number. It should 

be noted that the sherwood number indicates the total mass transfer rate with respect to the 

diffusion rate. Thus, it can be deduced that the decrease in molecular diffusivity is reflected 

in terms of increase in Lewis number that in turn increases the Sherwood number.  

The increase in the height of the solid blocks the concentration distribution to some 

extent in the right side of cavity as shown by isoconectration lines of figure 6.19. However, 

the increased Lewis number improves the concentration distribution in the porous medium 

along with increasing the concentration gradient at the hot surface. Close observation of 

isothrms reveals that the thermal gradient decreases marginally with increase in Lewis 

number. 

The shifting of solid block to center of cavity reduces the mass concentration towards 

the lower right section of cavity as shown in figure 6.20. This is because of the reason that 

the presence of solid wall at center blocks lower right area of cavity.  The increase in solid 

height at center of cavity to Sh=0.5 further weakens the presence of mass concentration in 

the lower right area of cavity (figure 6.21).  
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Figure 6.18: Effect of N and solid (Sh=0.2) at  ̅ݔ = 0.25	, I) Le=5 II) Le=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.19: Effect of N and solid (Sh=0.5) at  ̅ݔ = 0.25	, I) Le=5 II) Le=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.20: Effect of N and solid (Sh=0.20) at  ̅ݔ = 0.5	, I) Le=5 II) Le=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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I                                                             II 

 

Figure 6.21: Effect of N and solid (Sh=0.5) at  ̅ݔ = 0.5	, I) Le=5 II) Le=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.22 and figure 6.23 shows the variation in temperature, concentration and 

streamlines when solid is placed at ̅ݔ = 0.75  for height of solid Sh=0.2 and Sh=0.5 

respectively.  It is seen that the isothermal lines tend to move towards the hot surface when 

solid wall is moved away towards the right side of cavity indicating that the heat transfer 

rate increases. The clustered isotherms near the hot surface increases the thermal gradient at 

hot wall that in turn increases the heat transfer rate from hot surface to porous medium. 

More area towards the bottom right corner of cavity is deprived of mass concentration due 

to position of solid block at ̅ݔ = 0.75.  This is further aggrieved when height of solid is 

increased to Sh=0.5. As in previous cases, the increase in Lewis number improves the 

concentration profile to some extent for both the heights of the solid.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



156 
 

                                       I                                                              II 

 

Figure 6.22: Effect of N and solid (Sh=0.20) at  ̅ݔ = 0.75	, I) Le=5 II) Le=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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Figure 6.23: Effect of N and solid (Sh=0.5) at  ̅ݔ = 0.75	, I) Le=5 II) Le=25 
a) Isotherms b) Iso-concentration c) Streamlines 
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6.5 Heat and Mass Transfer 

The following section presents the details of heat and mass transfer in terms of Nusselt 

and Sherwood number at hot surface of the cavity. The variation of Nusselt and Sherwood 

number along the hot wall as well as with height and location of solid are illustrated in 

figures 6.24-6.33. The other parameters for these figures are kept as ܴܽ = 100,ܴ݀ = 0.5. 

It should be noted that the Nusselt and Sherwood number are represented by temperature 

and concentration gradients at hot surface as given by equations 6.15 and 6.16 respectively. 

Figure 6.24 and 6.25 shows the Nusslet and Sherwood number respectively when the solid 

is placed at ̅ݔ = 0. For the case of solid wall placed at ̅ݔ = 0,	it should be noted that the 

values are calculated excluding the portion of hot surface occupied by solid wall. Thus 

figures 6.24 and 6.25 have varying values of starting point i.e. ݕത. It is found that the Nusselt 

number for the smaller value of conductivity ratio (Kr=0.1) decreases in a non-linear 

pattern along the height of cavity. This is very much compatible with the previous studies 

being carried out for the case of heat transfer in porous cavity. However, for Kr=5, the 

Nusselt number initially increases for a short height of cavity and then decreases at further 

height of hot surface. On the basis of evidence currently seen in figure 6.24, it can be said 

that the higher thermal conductivity ratio creates low thermal gradient just above the solid 

due higher thermal diffusion assisted by increased thermal conductivity of solid. This is 

further vindicated by a curved isotherm near the hot wall when Kr is higher as compared to 

almost straight isotherm when Kr =0.1 of figures 6.2-6.3. Similar trend of Nusselt number 

is seen when height of solid is increased from 20% to 50%.  The Sherwood number also 

decreases with increase in height of cavity as depicted in figure 6.25. For a given height of 

cavity, the Sherwood number is higher for the case of longer solid (Sh=0.5) as compared to 

shorter solid (Sh=0.5).  
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Figure 6.24: Nusselt number for solid at left surface ̅ݔ = 0 

 

Figure 6.25: Sherwood number for solid at left surface ̅ݔ = 0 
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transfer as reflected by Nusselt number of figure 6.26 is completely different from that of 

solid placed at left surface. The Nusselt number decreases slightly at bottom of cavity and 

the increases until a point thereafter it starts declining again when porous conductivity is 

much higher than that of solid wall conductivity (Kr=0.1). This could be best argued in a 

way that the presence of a low thermal conductivity solid increases the thermal resistance 

for heat to flow into porous medium through solid wall thus forcing the heat to find an 

alternate path of flow. This alternate path exists above the solid wall thus the heat transfer 

rate increases until the solid height and thereafter it declines due to fluid movement towards 

the cold surface. However, this behavior of increasing Nusselt number until solid height is 

suppressed when the conductivity of solid increases (Kr=5). In this case, the thermal 

energy is easily transferred across the solid wall thus not forcing it to find an alternate path. 

The Nusselt number decreases continuously along the height of cavity though in a bilinear 

pattern. The mass transfer decreases continuously except for the case of Kr=0.1and  

Sh=0.5, where it increases slightly at middle of the hot surface. This could be attributed to 

increased fluid activity just around the top corner of solid wall which helps in higher mass 

diffusion as depicted by streamlines of figure 6.5.    
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Figure 6.26: Nusselt number for solid ̅ݔ = 0.25 

 

Figure 6.27: Sherwood number for solid at ̅ݔ = 0.25 
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It is found that the further away placement of solid from hot surface (figure 6.28-6.29) 

reduces the uneven variation of Nusselt and Sherwood number caused by nearby placement 

of solid as seen in previous case (figure 6.26-6.27). The heat and mass transfer rate 

decreases continuously along the hot surface. This shows that the effect of presence of solid 

decreases as it moves away from the hot wall. The Nusselt number is higher for shorter 

solid as compared to that of longer solid.  Nusselt number follows bilinear pattern along hot 

wall for 50% solid height (Sh=0.5). However, there is no such bilinear variation for 

Sherwood number as illustrated by figure 29. Thus the evidence of figures 6.24-6.29 

reveals that the presence of solid has predominant effect on heat transfer rate as compared 

to that of mass transfer, though mass transfer is also affected. 

Figures 6.30-6.33 show the Nusselt and Sherwood numbers when the solid is moved to 

ݔ̅ = 0.75 and ̅ݔ = 1. It is found that the farthest the solid placement from hot surface, 

highest is the Nusselt number at bottom region of hot surface. The influence of thermal 

conductivity ratio is stronger for higher solid height. It is also noted that the effect of 

increasing Kr diminishes when solid is placed towards the right surface of cavity for 

Sh=0.2. However, the effect of Kr is clearly visible even for solid placed at ̅ݔ = 1 for 

Sh=0.5. The mass transfer rate slightly increases when the solid is moved towards the cold 

surface but more importantly the influence of thermal conductivity ratio and the solid 

height decreases as seen by almost overlapping lines in figure 6.33.  Univ
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Figure 6.28: Nusselt number for solid at ̅ݔ = 0.5 

 

Figure 6.29: Sherwood number for solid at ̅ݔ = 0.5 
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Figure 6.30: Nusselt number for solid at ̅ݔ = 0.75 

 

Figure 6.31: Sherwood number for solid at ̅ݔ = 0.75 
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Figure 6.32: Nusselt number for solid at ̅ݔ = 1 

 

Figure 6.33: Sherwood number for solid at ̅ݔ = 1 
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CHAPTER 7 : CONCLUSION 

The present study deals with the research pertaining to optimization and investigation of 

conjugate heat and mass transfer in porous cavity. The various important aspects of 

conjugate heat transfer, conjugate heat and mass transfer analysis were mathematically 

modelled and simulated using Matlab. The result obtained from the simulations have been 

enumerated in the subsequent sections. 

7.1 Optimized Solution of Conjugate Heat and Mass Transfer in Porous Medium 

An optimized and simple algorithm/method for the solution of conjugate heat and mass 

transfer or just conjugate heat transfer in porous medium is developed.  The two 

algorithms/methods are tested for their viability to solve the physical problem.  It can be 

concluded from this study that the 

 Developed algorithm/method has many advantages over conventional 

computational methods for solving the problem under investigation in terms of 

efficiency, computational time and computer resource utilization.  

 The performance parameters Rd=0.5, N=0.2, Ra=100, Le=2, Kr=5 for both the 

algorithm/methods were simulated and tested for a range of solid size in the porous 

medium.  The results obtained from the simulations showed that the developed 

algorithm/method can tackle any solid size to solve the physical problem whereas 

the conventional method failed to either converge at smaller solid size or provide 

less realistic solution for heat transfer. It is found that the developed algorithm could 

converge in just 268 iterations taking 1366.1 seconds of time for a set of 144 solid 

elements in the porous region; however the solution could not be converged for 

conventional method even after 2127 seconds. 
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 The developed algorithm/method was able to capture realistically the change of 

gradient across porous solid interface.  

 In general, the developed method took less number of iterations for smaller solid 

size whereas conventional method is able to solve in slightly lesser iterations for 

higher solid size. 

 The solution of developed algorithm/method is much more realistic than the 

conventional algorithm/method for all the solid sizes considered under current mesh 

scheme of 36x36. 

 The developed algorithm/method is highly suitable for any size and location of solid 

in porous domain. 

 The developed algorithm/method is much easier to implement in computer coding 

due to its characteristics of single mesh domain as compared to 2 mesh domains of 

conventional method. 

7.2 Effect of Size and Location of Solid on Conjugate Heat Transfer in Porous Cavity 

The above objective investigated the conjugate heat transfer inside a square porous 

cavity. Emphasis has been given to understand the heat and fluid flow behavior when the 

conductivity ratio and location of solid wall is varied. The following conclusion can be 

drawn from this work based on the simulations conducted. 

 The increased conductivity ratio increases the heat transfer rate in the cavity 

 The fluid flow direction shifts towards the lower left and upper right corner due to 

an increase in thermal conductivity ratio 

 Two circulation regions are found when the solid wall height is 0.5L and it is placed 

at the center of cavity  
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 Fluid flow strength decreases with increase in the solid wall height but increase with 

increased conductivity ratio. 

 Solid wall placed at the center of cavity induces better symmetry in flow pattern as 

compared to other location being studied.  

 Temperature variations inside the solid wall keep decreasing as its position is 

moved towards the cold surface of cavity.  

 Average Nusselt number increase with increase in thermal conductivity ratio 

 Generally, the variation in Nusselt number is substantial at smaller values of Kr 

7.3 Conjugate Heat and Mass Transfer in Square Porous Cavity 

The aim of the above objective was to investigate the effect of thermal conductivity ratio 

and placement of a solid in the square porous cavity.  An experimental simulation was 

carried out with respect to heat and mass transfer. Finite element method was used to solve 

the governing equations. The result obtained from the conducted simulation revealed that 

the placement of solid has significant effect on the heat and mass transfer behavior in the 

cavity.  

 It is found that the larger area of cavity is occupied by high concentration lines at 

low value of thermal concavity ratio.  

 It is further noted that the temperature variation inside the solid wall decreases 

owing shifting of solid wall towards the right surface. 

 The increased solid height moves the concentration distribution towards upward 

section of cavity.  

 The stream function value is maximum for the case of solid wall placed at right 

surface of cavity.  
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 The Nusselt number is much affected due to solid location as compared to 

Sherwood number.  

 The variation in Nusselt and Sherwood number follows multilinear pattern when 

solid is placed near the hot surface but this effect diminished when the placement of 

solid is moved towards the cold surface.  

 The influence of thermal conductivity is stronger for longer solid as compared to its 

shorter version. It found that the Sherwood number increased by almost 85% when 

thermal conductivity ratio is increased from 0.1 to 10 for the case of solid width and 

height as 25% and 50% respectively  

7.4 Recommendations for future work 

Current study can be extended to: 

 Some other geometry such as non-square cavity etc. can be considered to 

investigate the impact of aspect ratio.   

 Magneto hydrodynamic effect is an important phenomenon that can be studied 

with respect to the size and location of solid in porous medium 

 Nano fluid is one of the emerging areas of study in porous medium. The effect 

of having nano particles in the porous medium can be studied with respect to the 

size and location of the solid in porous region. 

 Viscous Dissipation can be considered along with other effects such as 

radiation, MHD etc. to investigate the heat and mass transfer behavior.  
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