STUDIES ON THE PREVALENCE AND BIOLOGY OF Blastocystis spp. ISOLATED FROM ZOONOTIC RESERVOIRS IN MALAYSIA

FARAH HAZIQAH BINTI MEOR TERMIZI

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2017
STUDIES ON THE PREVALENCE AND BIOLOGY OF
Blastocystis spp. ISOLATED FROM ZOONOTIC
RESERVOIRS IN MALAYSIA

FARAH HAZIQAH BINTI MEOR TERMIZI

THESIS SUBMITTED IN FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2017
UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Farah Haziqah Binti Meor Termizi
(I.C/Passport No: SHC120004
Matric No: SHC120004
Name of Degree: Ph.D (Doctor of Philosophy)

Studies on the prevalence and biology Blastocystis spp. isolated from zoonotic reservoirs in Malaysia
Field of Study: Parasitology

I do solemnly and sincerely declare that:
(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature

Date:

Subscribed and solemnly declared before,

Witness’s Signature

Date:

Name: Assoc. Prof. Dr. Siti Nursheena Binti Mohd Zain
Designation: Associate Professor
ABSTRACT

Blastocystis is a highly prevalent protozoan parasite of the intestinal tract of a wide range of animal hosts, including humans. To date, very little information is available of parasite in zoonotic potential reservoirs namely, companion animals, household pests and poultry population. The suggestion that the intimate association between humans and animals could facilitate transmission led us to investigate *Blastocystis* in several animal hosts in the domestic environment such as cats, dogs, rodents, cockroaches, house geckos and chickens as no data is available to date. From October 2012 until April 2015, a total of 938 intestinal contents and/or faecal samples from different hosts were collected from three states of Peninsular Malaysia namely; Kuala Lumpur, Selangor and Perak. The prevalence of *Blastocystis* infection was investigated by screening and *in vitro* cultivation method using Jones medium supplemented with 10% horse serum. A total of 26.3% (47/179) chicken faecal samples screened were positive for *Blastocystis* infection with high prevalence in free-range species compared to barn-reared chicken. Results from this first epidemiological study showed positive infection in broiler chicken despite reared in farming method least prone to contamination. Intestinal infections were equally high 45.4% (133/293) in wild rats and cockroaches 40.4% (61/151) particularly the nymph stage. All infections were observed asymptomatic. Surprisingly, house geckos were free from infection. Light microscopy examination between the animal isolates was almost similar in morphology to *B. hominis* with the exception for their considerable size variations (chicken isolates: 10 to 100 µm; wild rat isolate: 4 to 45 µm; cockroach isolate 9 to 15 µm in diameter). Furthermore, ultrastructure examination demonstrated surface coat thickness and electron density also varied between different isolates. Close to half of the chicken isolates were completely electron-lucent when examined under the transmission electron micrographs whereas electron dense areas were observed in the central vacuole.
of the wild rat and cockroach isolate which indicated lipid accumulation. Surface coat were present on all isolates with the cockroach isolates the thickest between 276.17 to 336.67 nm followed by chicken isolates (239.39 to 169.27 nm) and the least in wild rat isolates (135.51 to 196.82 nm). Using the sequenced-tagged site (STS) primers and DNA barcoding method, four subtypes were detected from chicken isolates namely, ST1, ST6, ST7 and ST8. Meanwhile, four subtypes were detected from wild rats with ST1, ST4, ST5 and ST7. In cockroach population, two cockroach isolates were identified as ST3 and one isolate was closely related to allele 114 which is most likely to be the new subtype. Although cultivation was unsuccessful from all cat and dog samples, 12 cat samples were found positive for Blastocystis sp. ST1. The finding of this study adds to our understanding of the biology, transmission as well as distribution of this organism in animals living in close association to humans and highlights their zoonotic potential.
ABSTRAK

Blastocystis adalah sejenis parasit protozoa saluran usus yang prevalen secara meluas dalam pelbagai haiwan perumah, termasuk manusia. Pada masa kini, teramat sedikit maklumat mengenai parasit ini dalam reservoir berpotensi zoonotik seperti haiwan peliharaan, makhluk perosak rumah dan populasi ayam. Cadangan bahawa terdapat hubungkait rapat antara manusia dan haiwan bagi memudahkan lagi penyebaran telah mendorong kami untuk menyiasat *Blastocystis* haiwan dalam persekitaran domestik seperti kucing, anjing, tikus, lipas, cicak dan ayam disebabkan pada masa kini tiada terdapat maklumat mengenainya. Dari bulan Oktober 2012 hingga April 2015, sejumlah 938 kandungan usus dan/atau sampel tinja dari perumah yang berbeza telah dikumpulkan dari tiga negeri di Semenanjung Malaysia iaitu; Kuala Lumpur, Selangor dan Perak. Prevalen *Blastocystis* telah dikaji melalui pemeriksaan dan kaedah pengkulturan *in vitro* menggunakan medium Jones ditambah dengan 10% serum kuda. Sebanyak 26.3% (47/179) sampel tinja ayam diperiksa adalah positif bagi *Blastocystis* dengan penyebaran meluas dalam spesies ayam yang hidup melata berbanding ayam yang dipelihara dalam sangkar. Hasil dari kajian epidemiologi pertama protozoa menunjukkan jangkitan positif dalam ayam pedaging walaupun dipelihara melalui kaedah yang kurang menjurus kepada pencemaran. Jangkitan usus adalah lebih kurang sama dengan 45.4% (133/293) sampel usus tikus liar dan 40.4% (61/151) lipas khususnya peringkat nimfa. Didapati semua jangkitan adalah asimptomatik. Keputusan tidak dijangka apabila didapati populasi cicak bebas dari sebarang jangkitan. Pemeriksaan mikroskop cahaya keatas kesemua pencilan menunjukkan morfologi adalah sama dengan *B. hominis* kecuali wujudnya variasi saiz yang ketara (diameter pencilan ayam: 10 hingga 100 µm; pencilan tikus liar; 4 hingga 45 µm; pencilan lipas 9 hingga 15 µm). Tambah pula, pemeriksaan ultrastructural menunjukkan ketebalan kot permukaan dan kepadatan elektron juga berbeza-beza antara pencilan yang berbeza.
Hampir separuh pencilan ayam adalah bebas elektron apabila diperhatikan dibawah mikrograf elektron transmisi manakala kawasan padat elektron diperhatikan pada vakuol pusat pencilan tikus liar dan lipas menunjukkan berlakunya pengumpulan lipid. Didapati bahawa kot permukaan hadir pada semua pencilan dengan ketebalan pencilan lipas antara 276.17 hingga 336.67 nm diikuti oleh pencilan ayam (239.39 hingga 169.27 nm) dan kot permukaan yang nipis pula adalah pencilan tikus liar (135.51 hingga 196.82 nm). Dengan menggunakan primer tapak tag jujukan (STS) dan kaedah kod bar DNA, empat subjenis telah dikenalpasti daripada pencilan ayam iaitu ST1, ST6, ST7 dan ST8. Manakala, empat subjenis telah dikenalpasti daripada pencilan tikus liar iaitu ST1, ST4, ST5 dan ST7. Dalam populasi lipas, dua pencilan lipas telah dikenalpasti sebagai ST3 dan satu pencilan lipas adalah berkait rapat dengan alel 114 yang berkemungkinan merupakan subjenis baru. Walaupun kaedah pengkulturan tidak berjaya bagi sampel kucing dan anjing, 12 sampel kucing telah didapati positif bagi Blastocystis sp. dengan ST1. Hasil kajian ini telah menambahbaik kefahaman kita tentang biologi, penyebaran disamping taburan organisma ini dalam haiwan yang hidup saling berhubung rapat dengan manusia dan menumpu imej tentang potensi zoonotik penyebaran Blastocystis spp.
ACKNOWLEDGEMENTS

All praises are due to ALLAH s.w.t. First of all, I would like to express my humble gratefulness to Almighty ALLAH s.w.t, Lord of the Universe! Peace and blessings be upon Prophet Muhammad s.a.w; for enabling me to complete this study. First and foremost, I would like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Siti Nursheena Binti Mohd Zain and Prof. Dr. Suresh Kumar Govind for their continuous supervision, support, guidance and invaluable advices in completing my research and thesis. I also wish to thank University of Malaya for funding the study under Research University Grant (ER011-2012A) and Postgraduate Research Fund (PG003-2013) also Universiti Sains Malaysia for the postgraduate scholarship. The provision of funding is highly appreciated. Furthermore, I am greatly indebted to Dr. Ramlan Mohamed and Dr. Chandrawathani Panchadcharam for their kindness and willingness to allow me to carry out my work at Parasitology Laboratory. I also wish to extend my gratitude to the staffs of Parasitology and Hematology Unit (VRI) and Specialised Diagnostics Centre, Molecular Diagnostics and Protein Unit, Institute for Medical Research (IMR) for their assistance in sampling activities as well as molecular phylogenetic studies. I would like to express my profound gratitude to my parents, Meor Termizi and Roseziyah and siblings; Farah Fatinah and Muhammad Luqman Hakim for their unwavering love, care, patience, support and prayers as I worked on this study. My thankfulness also goes to my husband, Muhamad Izzwandy and son, Muhammad Afiq Izzhar who have accompanied and showed their full encouragement towards the completion of this research work. I hope I have made you all proud. Last but not least, I would like to convey a special thanks to my labmates; Hemalatha, Pei yee, Norhidayu, Arun, Nanthiney, Benacer, Nora Diana, Nur Asyiqin and Blastocystis team for showing their true friendship, care and support when I needed them the most.
TABLE OF CONTENTS

ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENT viii
TABLE OF CONTENTS ix
LIST OF FIGURES xiii
LIST OF TABLES xvii
LIST OF SYMBOLS AND ABBREVIATION xviii
LIST OF APPENDICES xx

CHAPTER 1: INTRODUCTION 1
1.1 Research background 1
1.2 Justification of the study 4

CHAPTER 2: LITERATURE REVIEW 8
2.1 Classification of Blastocystis 8
 2.1.1 Taxonomic status 8
 2.1.2 Speciation 9
2.2 Terminology of Blastocystis 10
 2.2.1 Standardization of terminology 10
 2.2.2 Current subtypes 12
2.3 Biology of Blastocystis 14
 2.3.1 Morphology 14
 2.3.1.1 Vacuolar form 14
 2.3.1.2 Granular form 14
 2.3.1.3 Amoeboid form 15
 2.3.1.4 Cyst form 15
 2.3.2 Life cycle and transmission of Blastocystis 17
 2.3.3 Reproductive mode of Blastocystis 20
 2.3.3.1 Binary fission 20
 2.3.3.2 Budding 20
 2.3.3.3 Schizogony 20
 2.4 Detection of Blastocystis 22
2.4.1 Microscopy techniques
 2.4.1.1 Direct faecal smear
 2.4.1.2 Staining
2.4.2 Concentration techniques
2.4.3 In Vitro culture techniques.
2.4.4 Molecular techniques
 2.4.4.1 Sequence-tagged site (STS)
 2.4.4.2 DNA barcoding
2.4.5 Serological techniques

2.5 Blastocystis in animals
 2.5.1 Birds
 2.5.2 Swine
 2.5.3 Companion animals
 2.5.4 Rodent
 2.5.5 Artiodactyls
 2.5.6 Wildlife

2.6 Blastocystis of animals in Malaysia

CHAPTER 3: STUDY ON Blastocystis spp. IN POULTRY POPULATIONS

3.1 Introduction
3.2 Materials and methods
 3.2.1 Ethical approval
 3.2.2 Sampling sites
 3.2.3 Study population
 3.2.3.1 Free-range or backyard chicken sample
 3.2.3.2 Barn-reared chicken sample
 3.2.4 In vitro cultivation
 3.2.5 Microscopy examination
 3.2.5.1 Giemsa staining
 3.2.5.2 Sudan Black B staining
 3.2.6 Cytochemical staining
 3.2.6.1 Fluorescein isothiocyanate (FITC)-labeled Con A
 (Canavalia ensiformis)
3.2.6.2 Acridine orange staining

3.2.7 Ficoll-Paque concentration method

3.2.8 Electron microscopy

3.2.8.1 Scanning electron microscopy (SEM)

3.2.8.2 Transmission electron microscopy (TEM)

3.2.9 Subtyping

3.2.9.1 Genomic DNA preparation

3.2.9.2 Polymerase chain reaction (PCR) using subtype subtype-specific sequence-tagged-site (STS) primers

3.2.9.3 DNA barcoding

3.2.10 Statistical analysis

3.3 Results

3.3.1 Prevalence of Blastocystis in chickens

3.3.2 Morphological form

3.3.3 Mode of reproduction

3.3.4 Surface structure

3.3.5 Ultrastructure

3.3.5.1 Village chicken cultured isolates

3.3.5.2 Village chicken faecal sample

3.3.5.3 Village chicken caecum sample

3.3.5.4 Broiler chicken cultured isolates

3.3.6 Cytochemical studies

3.3.7 Subtype identification

3.4 Discussion

3.5 Conclusion

CHAPTER 4: STUDY ON Blastocystis spp. IN WILD RATS

4.1 Introduction

4.2 Materials and methods

4.2.1 Ethical approval

4.2.2 Sampling

4.2.3 Dissection

4.2.4 In vitro cultivation

4.2.5 Microscopy examination
4.2.6 Cytochemical staining 86
4.2.7 Ficoll-Paque concentration method 86
4.2.8 Electron microscopy 86
4.2.9 In vitro growth profile 86
4.2.10 Subtyping 87
4.2.11 Statistical analysis 87

4.3 Results 88
4.3.1 Prevalence of Blastocystis in wild rats 88
4.3.2 Morphological forms 89
4.3.3 Mode of reproduction 89
4.3.4 Surface structure 94
4.3.5 Ultrastructure 94
4.3.6 Cytochemical studies 98
4.3.7 Growth characteristics 102
4.3.8 Subtype identification 105

4.4 Discussion 107
4.5 Conclusion 111

CHAPTER 5: STUDY ON Blastocystis spp. IN COCKROACHES AND HOUSE GEEKOS 115

5.1 Introduction 115
5.2 Materials and methods 117
5.2.1 Study population 117
5.2.2 Dissection 117
5.2.3 In vitro cultivation 118
5.2.4 Microscopy examination 118
5.2.5 Cytochemical staining 118
5.2.6 Electron microscopy 118
5.2.7 Subtyping 118
5.2.8 Statistical analysis 118

5.3 Results 119
5.3.1 Prevalence of Blastocystis in cockroaches and house geckos 119
5.3.2 Morphological forms 121
5.3.3 Surface structure 121
LIST OF FIGURES

Figure 2.1 *Blastocystis* subtypes (STs 1-17) with host specificities (Wawrzyniak et al., 2013).

Figure 2.2 Morphological form of *Blastocystis* (a) Vacuolar (arrowheads) and cyst forms (arrows) from in vitro culture (b) Granular form with distinct granular inclusions (arrowheads). (c) Amoeboid form showing pseudo-like cytoplasmic extensions (arrow). Scale bar, 10µm (Tan, 2008).

Figure 2.3 A current view of *Blastocystis* life cycle (Robert et al., 2014).

Figure 2.4 Various reproductive modes of *Blastocystis* (a) Binary fission (b) Budding form (c) Schizogony-like organism (arrows). Scale bar, 10µm (Mehlhorn et al., 2012).

Figure 3.1 The prevalence of *Blastocystis* infection in the two different chicken groups.

Figure 3.2 *Blastocystis* isolated from (a) village chicken and (b) broiler chicken. V; vacuolar form, G; granular form.

Figure 3.3 Gigantic form of *Blastocystis* from chicken.

Figure 3.4 Cyst form of *Blastocystis* from chicken (circle).

Figure 3.5 Mode of reproduction of *Blastocystis* stained with Giemsa (a) Binary fission (b) Budding (circle) (c) Schizogony. P; progeny.

Figure 3.6 Surface structure of village chicken *Blastocystis* from (a) culture and (b) fresh caecum. Bacteria (circle) were often seen adherent to the surface of *Blastocystis*.

Figure 3.7 Surface structure of broiler chicken *Blastocystis* from culture.

Figure 3.8 Electron micrographs of *Blastocystis* isolated from in village chicken (a) Central vacuole filled with electron-lucent materials (b) Central vacuole with electron-dense materials. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.

Figure 3.9 Electron micrographs of village chicken *Blastocystis* from faecal sample. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.
Figure 3.10 Electron micrographs of village chicken *Blastocystis* from ceacum samples. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.

Figure 3.11 Electron micrographs of broiler chicken *Blastocystis* from culture (a) Central vacuole with flocculent content (b) Central vacuole with electron-dense material. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.

Figure 3.12 *Blastocystis* from chicken stained with Sudan Black B showing dark stain in the central vacuole indicating the presence of neutral lipid under 1000× magnification. Note: dark droplets (arrow).

Figure 3.13 Binding affinities of *Blastocystis* stained with FITC-labelled Con A (a) Light microscopic images of chicken Blastocystis (b) A same organism stained with FITC-labeled Concanavalin A (ConA) assay, AFU (1+): weak intensity. V; vacuolar form, G; granular form.

Figure 3.14 Epifluorescence image of *Blastocystis* stained with acridine orange. (a) Light microscopic images of chicken *Blastocystis* (b) The same organism stained with acridine orange. N; nucleus.

Figure 3.15 PCR amplification reaction of *Blastocystis* from chicken isolates using the sequenced-tagged site (STS) primers SB332 (lane 1, 2, 3 and 4; 338bp) indicating ST6.

Figure 4.1 Day 1 *Blastocystis* isolated from wild rats recovered from (a) caecum and (b) *in vitro* culture under light microscopy. CV; central vacuole.

Figure 4.2 *Blastocystis* isolated from wild rats after prolonged cultures.

Figure 4.3 Multivacuolar forms occasionally seen in the *in vitro* culture.

Figure 4.4 Mode of reproduction of *Blastocystis* from wild rat isolates (a) binary fission (arrow) (b) budding (arrow) (c) schizogony-like organisms. BF; binary fission, B; budding, P; progeny.

Figure 4.5 Surface structure of *Blastocystis* isolated from wild rats isolated from (a) fresh caecum form (b) cultured form (c) cyst form.
Figure 4.6 Electron micrograph of Blastocystis isolated from wild rats. (a) Vacuolar form. (b) Cyst form. N; nucleus, m; mitochondria-like organelle, CV; central vacuole, SC, surface coat, CM; cell surface membrane, CVM; central vacuole membrane, nu; nucleolus, G; glycogen.

Figure 4.7 Blastocystis isolated from wild rats stained with Sudan Black B showing dark stain in the central vacuole indicating the presence of neutral lipid under 1000× magnification. Note: dark droplets (arrow).

Figure 4.8 Binding affinities of Blastocystis stained with FITC-labelled Con A (a) Light microscopic images Blastocystis of wild rat isolate (b) A same organism stained with FITC-labeled Concanavalin A (ConA) assay, AFU (1+): weak intensity. V; vacuolar form, G; granular form.

Figure 4.9 Epifluorescence image of Blastocystis stained with acridine orange (a) Light microscopic images Blastocystis of wild rat isolate (b) A same organism stained with acridine orange.

Figure 4.10 Growth profiles of total number of parasites.

Figure 4.11 Percentages of the presence of vacuolar forms.

Figure 4.12 Percentages of the presence of granular forms.

Figure 4.13 PCR amplification reaction of Blastocystis from wild rat isolates using the sequenced-tagged site (STS) primers SB337 (lane 1 and 2; 487bp) indicating ST4.

Figure 5.1 The prevalence of infected cockroaches with Blastocystis relative to host-stage.

Figure 5.2 Light micrograph of Blastocystis in cockroach under 400× magnification. (a) Vacuolar form (b) Granular form.

Figure 5.3 Blastocystis in cockroach incubated at different temperature under 400× magnification. (a) 25°C (b) 37°C.

Figure 5.4 Surface structure of vacuolar form of Blastocystis from cockroach (a) smooth surface (b) coarse and folded surface.

Figure 5.5 Electron micrograph of Blastocystis from cockroach (a) Vacuolar form (b) Granular form. N; nucleus, V; vacuole, CV;
central vacuole, SC; surface coat, CM; cell surface membrane, CVM; central vacuole membrane.

Figure 5.6 Measurement of the surface coat from cockroach isolates (a) Vacuolar form (b) Granular form.

Figure 5.7 Binding affinities of Blastocystis stained with FITC-labelled Con A. (a) Light microscopic images Blastocystis of cockroach isolate. (b) A same organism stained with FITC-labeled Concanavalin A (ConA) assay. V; vacuolar form, G; granular form.

Figure 5.8 Epifluorescence image of Blastocystis stained with acridine orange (a) Light microscopic images Blastocystis of cockroach isolate (b) A same organism stained with acridine orange.

Figure 6.1 Total number of viable cells from (a) avian and (b) human isolates after 24 hours incubation.

Figure 6.2 Blastocystis cells of (a) avian and (b) human isolates cultured in a pH range of 1 - 4 showing the rounded structures of non-viable cells (arrow) whereas cells of (c) avian and (d) human isolates in pH4 showing non-viable vacuolar forms with a wrinkled or shrunk appearance (arrow) compared to the human isolates showing smaller viable vacuolar forms with low parasite count. Meanwhile, Blastocystis cells of (e) avian and (f) human isolates in a pH range of 5 - 7 showing the typical rounded vacuolar form (arrow).

Figure 7.1 Subtypes classification characterised from animal Blastocystis isolates.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Correlation of Blastocystis subtype designations and suggestion for consensus terminology (Stensvold et al., 2007b).</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>The STS primer sets used in this study.</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Blastocystis infection in two types of chicken population.</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>Blastocystis infection in two study areas.</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>Subtype of Blastocystis from chicken isolates obtained Blastocystis Sequence Typing Databases.</td>
<td>69</td>
</tr>
<tr>
<td>3.5</td>
<td>List of previous publication on Blastocystis in birds.</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Prevalence of Blastocystis in wild rats.</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>Subtype of Blastocystis from wild rat isolates obtained Blastocystis Sequence Typing Databases.</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>List of previous publication on Blastocystis in rodents.</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>Prevalence of Blastocystis in cockroaches relative to sampling sites.</td>
<td>120</td>
</tr>
<tr>
<td>5.2</td>
<td>List of previous publication on Blastocystis in cockroaches and house geckos.</td>
<td>135</td>
</tr>
<tr>
<td>6.1</td>
<td>List of previous publication on Blastocystis in cats and dogs.</td>
<td>150</td>
</tr>
<tr>
<td>7.1</td>
<td>Summary on comparison Blastocystis isolates from human and study animals in terms of morphological, morphometry and genotype characteristics.</td>
<td>162</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
<td></td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
<td></td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
<td></td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
<td></td>
</tr>
<tr>
<td>AFU</td>
<td>Affinity fluorescence unit</td>
<td></td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
<td></td>
</tr>
<tr>
<td>CBA</td>
<td>Cytometric bead array</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td></td>
</tr>
<tr>
<td>ICR</td>
<td>Ihara's cataract rat</td>
<td></td>
</tr>
<tr>
<td>IBS</td>
<td>Irritable bowel syndrome</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Power of hydrogen</td>
<td></td>
</tr>
<tr>
<td>PVG</td>
<td>Piebald Virol Glaxo</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
<td></td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
<td></td>
</tr>
<tr>
<td>SHR</td>
<td>Spontaneously hypertensive rat</td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>Species</td>
<td></td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical package for the social science</td>
<td></td>
</tr>
<tr>
<td>SSU-rRNA</td>
<td>Small sub-unit ribosomal ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>ST</td>
<td>Subtype</td>
<td></td>
</tr>
</tbody>
</table>
STS : Sequence-tagged-site
Taq : Thernus aquaticus
TEM : Transmission electron microscopy
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Modified Jones’ Medium</td>
<td>187</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Posterior abdominal segments of cockroaches</td>
<td>188</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Summary of morphological characteristics of Blastocystis isolated from village chicken (A3) and peacock (M2) grown in Jones’ medium with different pH</td>
<td>189</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Summary of morphological characteristics of Blastocystis isolated from human (H1, H2 and H3) grown in Jones’ medium with different pH</td>
<td>190</td>
</tr>
</tbody>
</table>
CHAPTER 1:

INTRODUCTION

1.1 Research background

Blastocystis is a stramenopile (Silberman *et al.*, 1996) inhabits the gastrointestinal tracts of humans and many animals (Stenzel and Boreham, 1996 and Abe *et al.*, 2002). There are four described forms namely; vacuolar, granular, amoeboid and cyst form (Tan, 2008). Faecal-oral transmission is the most common pathway with the cystic form as the infective form transmitted through food and waterborne usually via untreated water or poor sanitary conditions (Waikagul *et al.*, 2002; Ithoi *et al.*, 2011). The mode of transmission is believed to occur by animal-to-animal, human-to-human, animal-to-human and possibly, human-to-animal routes (Noël *et al.*, 2005).

Recent molecular studies indicate that this parasite is not a single species, but composed of genetically distinct but morphologically identical genotypes (Clark, 1997; Yoshikawa *et al.*, 1998, 2000). Due to its low species specificity, previous species-naming conventions have become less favored. Identifying nomenclature of the parasite has resulted into a consolidated system of consensus terminology (Stensvold *et al.*, 2007b), which classifies all known *Blastocystis* spp. isolates into subtypes based on sequence similarities in small-subunit ribosomal RNA. The protozoan is currently classified into 17 distinct subtypes (ST1-ST17) isolated from a wide range of hosts i.e., human, mammalian and avian hosts (Noel *et al.*, 2005; Parkar *et al.*, 2010; Alfellani *et al.*, 2013a, b, c). Commonly, ST1-ST9 are found in humans (Wawrzyniak *et al.*, 2013), ST10, ST13 and ST15 in primates (Stensvold *et al.*, 2009; Alfellani *et al.*, 2013a) whereas, ST11 and ST12 in elephants and giraffes, respectively (Parkar *et al.*, 2010). Meanwhile, Alfellani *et al.* (2013c) found ST16 in kangaroo and ST17 in gundii.
The presence of this organism has been found in a wide range of animals from domestic birds; chickens (Yamada et al., 1987; Belova and Kostenko, 1990; Bergamo do Bomfim and Machado do Couto, 2013), ostriches (Ponce et al., 2002; Hemalatha et al., 2014 and Chandrasekaran et al., 2014), geese (Belova, 1992a), turkeys (Belova, 1992b), ducks (Belova, 1991; Stenzel et al., 1994), Japanese quails (Bergamo do Bomfim and Machado do Couto, 2013), pheasants (Abe et al., 2003a), partridge (Abe et al., 2003a), primates (McClure et al., 1980; Pakandl, 1991; Abe et al., 2002; Rivera, 2008; Stensvold et al., 2009), swine (Burden, 1976; Pakandl, 1991; Quilez et al., 1995a; Arisue et al., 2003; Navarro et al., 2008), reptiles; snakes, crocodiles, lizards, tortoise (Teow et al., 1991; Noël et al., 2005), insects; cockroaches (Zaman et al., 1993), companion animals; cats and dogs (Knowles and Gupta, 1924; Duda et al., 1998; Abe et al., 2002; Parkar et al., 2007; Jon Shaw, 2012), cattle (Stenzel et al., 1993; Fayer et al., 2012), horse (Thathaisong et al., 2003), amphibians (Yoshikawa et al., 2004b), rodents (Alexeieff, 1911; Knowles and Das Gupta, 1924; Lavier, 1952; Chen et al., 1997a, b), circus animals; ungulates and lion (Stenzel et al., 1993) and zoo animals; elephants, giraffes and quokkas (Parkar et al., 2010). So far, no correlation has been established between high numbers of Blastocystis spp. seen in the faeces with clinical signs in infected hosts (Duda et al., 1998). However, previous studies have shown that infection in pigs and monkeys with diarrhea (Burden et al., 1978; McClure et al., 1980; Pakandl, 1991).

This organism has been extensively studied in Malaysia (Suresh et al., 1997; Rajah et al., 1999; Tan and Suresh, 2006a, b; Chandramathi et al., 2010; Ithoi et al., 2011; Tan et al., 2013) particularly infections in humans. Although, Suresh et al. (1996) reported this parasite in a range of host including; laboratory animals, sheep, rabbits, monkeys, dogs
and cats however, the study was limited to a small number of samples. More recently, Tan et al. (2013) reported that 30.9% (73/236) goats examined positive for Blastocystis.

The close proximity between animals and human could be a potential source for zoonotic infection (Abe et al., 2002). Rajah et al. (1999) illustrated that people working intimately with animals were at higher risk of getting Blastocystis infection highlighting occupation such as animal handlers were most likely to gained this infection from the animals through the faecal-oral route. Understanding the presence of this organism in the environment is therefore crucial which prompted this study to determine the prevalence of this organism in companion animals, household pests and poultry population as information in Malaysia is scarce. There is also a need to investigate the genetic diversity of Blastocystis which would enable to increase the understanding of the zoonotic potential of this organism.
1.2 Justification of the study

Blastocystis infections is common in birds and have been extensively reported in chickens (Belova and Kostenko, 1990), ostriches (Yamada *et al.*, 1987), ducks (Pakandl and Pecka, 1992), geese (Belova, 1992a) and turkeys (Lee, 1970; Belova 1992b). Presently, there are no known studies from the poultry population in Malaysia. This is the first attempt to study the occurrence of *Blastocystis* spp. in poultry and to compare infection between free-range and commercially barn-reared chicken as well as to observe unique chicken isolate features.

Previous prevalence studies of *Blastocystis* sp. in rodents highlighted the presence of human subtype (ST4) in one guinea pig isolate (Yoshikawa *et al.*, 1998) as well as three isolates (two Wistar rats and one Sprague Dawley rat) from Singapore (Noël *et al.*, 2005). Apart from that, Yoshikawa *et al.* (1998) also showed that isolates from guinea pigs exhibited restriction fragment length polymorphism (RFLP) profiles or random amplified polymorphic DNA (RAPD) patterns similar to those observed in some *B. hominis*. ST4 was the predominant human subtype with 63% in France, 84% in Nepal and 94.1% in Spain (Roberts *et al.*, 2014). Therefore, it remains to be established whether close contact with rodents poses risk of transmission to humans. The availability information such as prevalence and the subtypes found in rodents would be of interest in understanding the significance of *Blastocystis* infection in human. In the present study, there is a need to study the epidemiology, phenotypic, subtyping, growth characteristic and the ultrastructural features of *Blastocystis* sp. in wild rats especially the common wild rats i.e brown rats and house shrew as this has not yet been established before in Malaysia. The information will lead to a better understanding of the present status and the characteristic of this enigmatic intestinal parasite in wild rats in Malaysia.
Cockroaches are among the notorious insects inhabiting dwelling, food handling establishment and septic tanks. The suggestion that close association between humans and household pests could also facilitate the transmission sparked to include cockroaches in the present study. Despite reported prevalence and the morphological features of *Blastocystis* in cockroaches previously, however, there have been no further attempts to subtype characterization of *Blastocystis* sp. isolated from cockroaches. Therefore, this study aims to re-assess the current prevalence and to include the phenotype and subtype of this parasite from cockroach population caught from several Malaysian cockroach populations.

Only one study carried out by Suresh *et al.* (1997) elucidated the occurrence as well as the ultrastructural features of the parasite in common household geckos. It is clear that there is still much information needed regarding to *Blastocystis* infection in this reptilian. Hence, the present study aimed to provide a better understanding on *Blastocystis* in the house geckos (*Hemidactylus frenatus*).

Companion animals especially cats and dogs are prone to several protozoan gastrointestinal infections such as *Giardia* (Traub *et al.*, 2004). Recently, increasing interest in *Blastocystis* spp. as a potential cause of gastrointestinal disease in human is increasing. Duda *et al.* (1998) reported high prevalence in dogs and cats in Australia, with infections as high as 70% in both animals using light microscopy on faecal wet mounts while Nagel *et al.* (2012) showed pet dogs/cats of eleven symptomatic *Blastocystis* infected patients harboured at least one *Blastocystis* subtype in common with the patient. This raised the possibility that animals as natural hosts for *Blastocystis* and potential sources of zoonotic transmission to humans. Hence, the present study
aimed to elucidate the nature of *Blastocystis* spp. in cats and dogs from two different environments namely stray and the sheltered.

Hence, the study examines the prevalence and biology of *Blastocystis* spp. in animal hosts closely associated with human dwellings as possible vectors to human transmission. The specific aims for this study are;

1. To assess the prevalence of *Blastocystis* spp. in free-range chickens and commercially barn-reared chickens, household pest i.e wild rats, cockroaches and house gecko as well as companion animals namely cats and dogs obtained from stray and shelter-housed animals.

2. To establish phenotypic characteristics on *Blastocystis* spp. isolated from companion animals, household pests and chickens based on staining characteristics of *Blastocystis* spp. from different isolates using Giemsa stain, Fluorescein isothiocyanate (FITC)-labelled Con A (*Canavalia ensiformis*), Acridine Orange stain, Sudan Black B stain, as well as surface characteristics and ultrastructure of *Blastocystis* spp. using scanning and transmission electron microscopy.

3. To study the life cycle stages of *Blastocystis* spp. isolated from companion animal, household pest and chicken isolates.
4. To assess the subtypes of isolates from companion animals, household pests and chicken through the application of molecular tools by detecting the presence of zoonotic genotypes of *B. hominis* using polymerase chain reaction (PCR) with subtype specific sequence-tagged-site (STS) diagnostic primers as well as investigating the presence of novel subtypes using a vital new tool; DNA barcoding methods.
CHAPTER 2:

LITERATURE REVIEWS

2.1 Classification of *Blastocystis*

2.1.1 Taxonomic status

The classification of *Blastocystis* remains unresolved for a period of time. It was initially identified as a new species and classified as harmless yeast (Alexeieff, 1911; Brumpt, 1912). However, there is not a single characteristic that strongly associates *Blastocystis* as yeast.

This organism was subsequently reclassified as a protist based on a number of protistan features (Zierdt *et al.*, 1967) that include the presence of one or more nuclei, smooth and rough endoplasmic reticulum, Golgi complex, and mitochondrion-like organelles. However, the organism was failed to grow on fungal media and was resistant to antifungal drugs but showed some antiprotozoal drugs activity. Following this, it was then classified as a sporozoan based on morphology, cultural characteristics, mode of division but was later reclassified into the subphylum Sarcodina (Zierdt, 1991).

However, a molecular phylogenetic analysis based on the comparison of small-subunit ribosomal RNA gene (SSU-rRNA) sequences showed that *Blastocystis* was not monophyletic to yeasts (Saccharomyces), fungi (Neurospora), sporozoans (*Sarcocystis* and *Toxoplasma*) or sarcodines (*Naegleria, Acanthamoeba*, and *Dictyostelium*) and only recently classified within the Stramenopiles (Silberman *et al.*, 1996) also called Heterokonta, a diverse group of mostly unicellular or multicellular eukaryotes which includes diatoms, brown algae, slime nets and water moulds.
One important characteristic of Stramenopiles is the presence of at least one flagellum permitting motility. However, \textit{Blastocystis} do not possess any flagella or tubular hairs and is non-motile. The link was made using phylogenetic analysis of small subunit ribosomal RNA gene (SSU-rRNA) sequences and has been confirmed using other gene sequences (Arisue et al., 2002). Within the stramenopiles, \textit{Blastocystis} was resolved as a sister group to the order Slopalinida and most closely related to \textit{Proteromonas lacertae}, a parasite of reptiles (Pérez-Brocal et al., 2010; Kostka et al., 2004). Because no organelles in organisms specifically and closely related to \textit{Blastocystis} have been studied so far, the answer to the question of its uniqueness remained unclear.

\subsection*{2.1.2 Speciation}

Isolates from humans are designated as \textit{Blastocystis hominis}, whereas isolates found in a variety of animals are known as \textit{Blastocystis} sp. However, a small number of specific names have been published for isolates from specific hosts especially rat and reptilian \textit{Blastocystis} species. Rat isolates pose a distinct karyotypic pattern compared to \textit{B. hominis}. Therefore, Chen et al. (1997b) concluded that the rat \textit{Blastocystis} is a distinct species, and \textit{B. ratti} was proposed.

Nevertheless, some of the isolates have shown singular phenotypic characteristics that differentiated them from human and other homeothermic animals, such as; sea-snakes (\textit{B. lapemii}), reticulated python (\textit{B. phythoni}), rhino iguana (\textit{B. cycluri}) and red-footed tortoise (\textit{B. geocheloni}) (Teow et al., 1991; Singh et al., 1996).

In addition, several new \textit{Blastocystis} species of bird origin are reported on the basis of morphological and host differences. These include \textit{B. galli} from chickens (Belova
and Kostenko, 1990), *B. anatis* from ducks (Belova, 1991) and *B. anseri* from geese (Belova, 1992a). Since *Blastocystis* is known to be polymorphic in its morphology, the morphological features are not adequate for species designation. However, Tanizaki et al. (2005) did not accept the criteria of speciation of *Blastocystis* isolates from birds such as quails, geese and chickens.

2.2 Terminology of *Blastocystis*

There is an agreement that at least seven major isolate clades exist in mammals and birds (Yoshikawa et al., 2004a; Noël et al., 2005); however, varying terminologies have been used in the past to designate the subsets of *Blastocystis* isolates which made corroboration, comparison or criticism of published studies difficult.

2.2.1 Standardization of terminology

Human isolates are designated as *Blastocystis hominis*, whereas isolates from other animals are known as *Blastocystis* sp. The extensive genetic diversity of this organism, even among isolates from one host, makes the host-specific naming of species misleading. In bacteria and certain eukaryotic groups such as *Naegleria* (De Jonckheere, 1994), the degree of genetic divergence between the major clades seen in *Blastocystis* would be considered sufficient on its own to justify separate species names for each. However, the more appropriate nomenclature proposed by Stensvold et al. (2007b) described isolates as *Blastocystis* sp. subtype *n* where *n* is a number from 1 to 9 (Table 2.1). The reason for using *Blastocystis* sp., rather than *B. hominis*, is that some reptilian and amphibian species fall within the range of variation covered by the mammalian and avian clades (Yoshikawa et al., 2004a, c; Noël et al., 2005).
Table 2.1: Correlation of *Blastocystis* subtype designations and suggestion for consensus terminology (Stensvold *et al*., 2007b).

<table>
<thead>
<tr>
<th>Clade<sup>a</sup></th>
<th>Subtype<sup>b</sup></th>
<th>Group and subtype<sup>c</sup></th>
<th>Subtype<sup>d</sup></th>
<th>Ribodeme<sup>e,f</sup></th>
<th>Subgroup<sup>g</sup></th>
<th>Cluster<sup>h</sup></th>
<th>Subtype<sup>i</sup></th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>I/1</td>
<td>1</td>
<td>1, 8<sup>j</sup></td>
<td>III</td>
<td>E</td>
<td>1, 1 variant</td>
<td>Blastocystis sp. subtype 1</td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td>II/5</td>
<td>5</td>
<td>6</td>
<td>V</td>
<td>C,D</td>
<td>1<sup>k</sup></td>
<td>Blastocystis sp. subtype 2</td>
</tr>
<tr>
<td>-</td>
<td>X</td>
<td>I+II/1+5 outlier</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Chimaeric sequence</td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td>III/3</td>
<td>3</td>
<td>2, 7, 4<sup>l</sup>, 5?</td>
<td>I, II</td>
<td>A</td>
<td>3</td>
<td>Blastocystis sp. subtype 3</td>
</tr>
<tr>
<td>IV</td>
<td>IV</td>
<td>IV/7</td>
<td>7</td>
<td>3</td>
<td>IV</td>
<td>B</td>
<td>-</td>
<td>Blastocystis sp. subtype 4</td>
</tr>
<tr>
<td>-</td>
<td>IVa</td>
<td>IV/7 outliers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Blastocystis sp. subtype 8</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>V/6</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Blastocystis sp. subtype 5</td>
</tr>
<tr>
<td>VI</td>
<td>VI</td>
<td>VI/4</td>
<td>4</td>
<td>9<sup>j</sup></td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>Blastocystis sp. subtype 6</td>
</tr>
<tr>
<td>-</td>
<td>VIa</td>
<td>VI/4 outliers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Blastocystis sp. subtype 9</td>
</tr>
<tr>
<td>VII</td>
<td>VII</td>
<td>VII/2</td>
<td>2</td>
<td>10</td>
<td>VI<sup>m</sup></td>
<td>-</td>
<td>2</td>
<td>Blastocystis sp. subtype 7</td>
</tr>
<tr>
<td>-</td>
<td>VII</td>
<td>VII/2 outliers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Blastocystis sp. subtype 7</td>
</tr>
</tbody>
</table>

^aClades described by Arisue *et al.* (2003) and Yoshikawa *et al.* (2004d).

^bSubtypes described by Scicluna *et al.* (2006).

^cGroups and subtypes described by Noel *et al.* (2005).

^dSubtypes described by Yoshikawa *et al.* (2000, 1998).

^eRibodemes are groups that share the same SSU-rDNA PCR-RFLP patterns and are described by Clark (1997) and Yoshikawa *et al.* (2000). Ribodemes in bold are those originally described by Clark (1997).

^fRibodemes i^{n bold} are those originally described by Clark (1997).

^gSubgroups described by Bohm-Gloning *et al.* (1997) on the basis of PCR-RFLP analysis and partial SSU-rDNA sequences.

^hClusters described by Stensvold *et al.* (2006) on the basis of PCR and sequencing analysis of partial SSU-rDNA sequences.

ⁱSubtypes described by Yoshikawa *et al.* (2000) using PCR-STS.

^jRibodemes 8 and 9 described by Yoshikawa *et al.* (2000) differ from those described by Kaneda *et al.* (2001).

^kk⁻ symbols indicate no equivalent described.

^lQuestion mark indicates that the subtype equivalence is probable but not proven.

^mSubgroup VI described by Thatiaisong *et al.* (2003) equals ribodeme 10 described by Yoshikawa *et al.*(2000).
2.2.2 Current subtypes

Recent epidemiological studies revealed the extensive diversity of Blastocystis subtypes. At present, the number of subtypes found in humans has remained constant; with nine subtypes (ST1 through ST9) (Parkar et al., 2010) with some primarily found in human (ST3 and ST9). While ST1, 2, 5 and 8 are found both in human and mammalian isolates (primate, pig, human, cattle and pig), while ST4 present among rodents, and ST6, 7 and 8 among avian hosts.

Meanwhile, some subtypes are exclusively found in animals (ST10-17). ST10 and 15 are present among Artiodactyla and non-human primates, ST11 among Proboscidea, ST12 among Artiodactyla and marsupials, ST13 among non-human primates and marsupials, ST14 among Artiodactyla, ST16 among marsupials and ST17 among rodents (Stensvold et al., 2009; Parkar et al., 2010; Alfellani et al., 2013a, c; Roberts et al., 2014) (Figure 2.1). To date, a limited number of mammalian species have been screened, making it likely that undiscovered subtypes may exist.
Figure 2.1: Blastocystis subtypes (STs 1-17) with host specificities (Wawrzyniak et al., 2013).
2.3 Biology of *Blastocystis*

2.3.1 Morphology

Blastocystis exists in various morphotypes such as vacuolar, multivacuolar, avacuolar, granular, amoeboid and cystic forms (Suresh *et al.*, 2009). These forms have been described in *Blastocystis* from different hosts (Stenzel and Boreham, 1996; Tan and Suresh, 2006b). According to Zierdt (1991), cell physiology or the external environment may be involved for this morphological variety.

2.3.1.1 Vacuolar form

The vacuolar form is considered to be the typical *Blastocystis* cell form *in vitro* culture and stool (Zierdt, 1991; Stenzel and Boreham, 1996). It is generally rounded to ovoid in outline with a single central vacuole which occupies most of the cell space, limiting the cytoplasm and other intracellular components to a thin peripheral rim (Figure 2.2a). Occasionally, irregularly shaped were observed with extensive variations in size ranging from 3 to 120 μm in diameter. The vacuole contains unevenly distributed flocculent or fine granular material made up of carbohydrates and lipids (Yoshikawa *et al.*, 1995b, c).

2.3.1.2 Granular form

The granular forms are rarely seen in stools, but are found in the *in vitro* cultures. It is commonly observed in old and non-axenized cultures (Tan, 2004). Granular forms structurally resemble the vacuolar form except for the presence of granules in the central body and the cytoplasm (Figure 2.2b). Studies have identified three types of granules namely; metabolic, reproductory and lipid granules (Tan and Zierdt, 1973; Tan and Stenzel, 2003).
2.3.1.3 Amoeboid form

The amoeboid forms are reported present in higher prevalence in the in vitro cultures of symptomatic isolates compared to asymptomatic isolates (Tan and Suresh, 2006). Previously, amoebic forms were observed in colonoscopic lavage and patients with acute diarrheal syndrome (Stenzel et al., 1991; Lanuza et al., 1997). The morphological descriptions of the amoeboid form are conflicting (Tan et al., 2002). It is less frequently recovered than vacuolar and granular forms. They are irregular in shape and usually measure around 10 μm in size. Although the possession of one or two pseudopodia is a characteristic feature, this form is non-motile with a single large vacuole similar to the central body or has multiple smaller vacuoles (Tan and Suresh, 2006b) (Figure 2.2c).

2.3.1.4 Cyst form

The cyst form is smaller than the typical cultured forms ranging from 2 to 5 μm (Tan, 2008) which maybe confused as faecal debris (Figure 2.2a). The cyst is protected by a thick wall and condensed cytoplasm similar to other protozoan cysts (Mehlhorn, 1988). It is mostly ovoid or spherical in shape, resistant and more commonly found in fresh faeces, long-term cultures (Stenzel and Boreham, 1991) and in stored faecal specimens, suggesting that this form possess a mechanism for survival in the external environment. Zaman et al. (1995) have provided a method for concentrating this form from faecal material by repeated washing in distilled water and centrifugation on Ficoll-paque solution.
Figure 2.2: Morphological form of *Blastocystis* (a) Vacuolar (arrowheads) and cyst forms (arrows) in the *in vitro* culture (b) Granular form with distinct granular inclusions (arrowheads) (c) Amoeboid forms showing pseudo-like cytoplasmic extensions (arrow). Scale bar, 10µm (Tan, 2008).
2.3.2 Life cycle and transmission of *Blastocystis*

Upon ingestion of cysts, encystation occurs during the passage along the large intestines to liberate the vacuolar form. The vacuolar forms can transform into any of the other three forms. However, frequent observations of the amoeboid, vacuolar and multivacuolar forms in diarrheal stool suggest that these forms play a role in the pathogenesis. Encystation may also occur as it moves along the colon before cysts is excreted out through the faeces (Tan, 2008) (Figure 2.3).

It is believed that *Blastocystis* is transmitted via the faecal-oral route, although routes of transmission such as waterborne, foodborne, and person-to-person have been speculated (Li *et al.*, 2007a; Leelayoova *et al.*, 2008; Ithoi *et al.*, 2011).

Yoshikawa *et al.* (2004e) reported that different cyst concentration have resulted in different infectivity ranging from 10 to 100%, suggesting that contaminated water and food with just a few number of cysts can establish infection. Besides, presence of viable cysts in sewage samples and surface water supports the plausible transmission by drinking contaminated water still remains in question (Suresh *et al.*, 2005; Ithoi *et al.*, 2011). Other than that, consumption of unboiled or raw water plants could be a source of this infection (Taamasri *et al.*, 2000; Leelayoova *et al.*, 2004; Li *et al.*, 2007a). It was also observed that the cyst forms can survive for up to 19 days or 1 month in water at room temperature (25°C) and for 2 months at 4°C (Moe *et al.*, 1997) proving only this form transmits infection via direct or indirect faecal-oral route.
According to Rajah et al. (1999), higher risk of infection was found associated to people with close proximity with animals. Noël et al. (2003) provided additional proof by showing similar identity between Blastocystis sp. isolated from humans and pigs. In addition, Thathaithong et al. (2003) showed similar B. hominis isolates band patterns to isolates from the horse and the pig with 92 to 94% identity suggesting that B. hominis evolved from domestic animals isolates (Blastocystis spp.) such as pigs and horses.
Figure 2.3: A current view of *Blastocystis* life cycle (Roberts *et al.*, 2014).
2.3.3 Reproductive mode of *Blastocystis*

Various authors have observed different modes of reproduction such as binary fission, budding and schizogony (Zhang et al., 2007). However, the current only accepted mode of reproduction is binary fission (Mehlhorn et al., 2012).

2.3.3.1 Binary fission

Binary fission is the most common and well established mode of reproduction. It is characterized by the partition of the cytoplasm of the mother cell resulting two equal sized and shaped daughter cells (Figure 2.4a) (Tan, 2008).

2.3.3.2 Budding

Recent studies confirmed budding or plasmotomy is another reproduction mechanism (Zhang et al., 2012) and is characterized by the cutting off one or more progeny from the roughly circular extensions of the cell (Figure 2.4b).

2.3.3.3 Schizogony

Schizogony occurs within the central body cells that later ruptures, releasing the progeny or daughter vacuolar forms to the environment (Figure 2.4c). Schizogony-like organisms was observed in the *in vitro* culture but rarely in human faecal samples. However, it was only confirmed via light microscopic observations (Zierdt, 1991) but not clearly determined with electron microscopy. Therefore, further research on this reproductive mode needs further clarification whether this mode truly exists.
Figure 2.4: Various reproductive modes of *Blastocystis* (a) Binary fission (b) Budding form (c) Schizogony-like organism (arrows). Scale bar, 10µm (Mehlhorn *et al.*, 2012).
2.4 Detection of **Blastocystis**

Most of the methods to detect the organism in infected faecal samples include direct microscopy, concentration technique, staining, culturing and extraction of DNA followed by polymerase chain reaction (PCR) technique. However, may differ remarkably in terms of diagnostic sensitivity.

2.4.1 Microscopy techniques

2.4.1.1 Direct faecal smear

Direct faecal smear is one of the most common methods used for the detection of **Blastocystis** sp. as it takes less time and resources compared to other methods. However, morphology-based diagnosis has several disadvantages, including the challenge posed by the diversity in cellular forms of **Blastocystis**. The classical spherical vacuolar form may appear smaller while the rare cystic, amoeboïd, multivacuolar and avacuolar forms may predominate (Stenzel *et al.*, 1991). In addition, smears may often be mistaken associated to vegetative stages of the parasite as lipid globules or other contaminants (Suresh and Smith, 2004).

Besides, the sensitivity of direct faecal smear is greatly affected by the cell count in the specimens. A very low cell count may lead to a false negative result (Leelayoova *et al.*, 2002). In a clinical setting, a direct consequence a false negative will be the mismanagement of the infection, especially if only method of detection available is direct faecal microscopy.
2.4.1.2 Staining

Trichome staining for permanent smears is the recommended method for the diagnosis of this parasite, although many other stains such as Giemsa, iron hematoxylin, Gram, Wright’s and Fields stains may also be used. Roberts et al. (2014) reported that permanent stains using a modified iron hematoxylin stain was the least effective in detecting Blastocystis with more than 50% infections usually get missed. The low sensitivity of this method may be the result of low parasite numbers in the faecal sample.

2.4.2 Concentration techniques

Concentration methods used for other protozoan parasites generally appear unsuitable for Blastocystis as this method may cause disruption to the vacuolar, multivacuolar and granular forms. A previous study showed Blastocystis could be detected in stained smears of faecal material but not in the concentrated specimens from the same faecal sample (Miller and Minshew, 1988). However, several authors noted concentration method is also effective for Blastocystis sp. Ishak et al. (2008) reported that formalin ethyl acetate concentration technique was the most sensitive technique with 60.9% prevalence of Blastocystis sp. detection compared to 43.5% with direct saline wet mount and 34.8% with trichrome staining despite being time consuming. It is also used widely for the diagnosis of cysts, ova and larvae and applied in numerous Blastocystis sp. prevalence studies (Truant et al., 1981; Ishak et al., 2008).
2.4.3 *In vitro* culture techniques

The culture technique is the more sensitive method for the detection for this organism. Leelayoova *et al.* (2002) showed that xenic *in vitro* culture (XIVC) was significantly more sensitive for the detection of *Blastocystis* compared to the concentration technique or direct smear. Likewise, Termmathurapoj *et al.* (2004) preferred XIVC to direct smear and staining method for the detection and molecular study of *Blastocystis* in stool specimens.

The success of the culture depends on the media content that is essential to the natural growth of the organisms and must imitate as close as possible to the natural environment. For free-living protozoa, the optimum condition is not difficult to attain, but in the case of parasites, the media preparation is also a criteria when selecting the best culture medium.

A successful culture allows the organisms to reproduce and increase in numbers for a time period until the nutrients in the medium is exhausted or charged with substances preventing continued growth. The transfer of parasites to fresh medium will allow renewed multiplication. Repeated subculture enables maintenance of the organisms indefinitely.

When a culture is commenced, a varying quantity of material containing the organism is introduced into the culture medium and kept at the requisite temperature. As reported previously, *Blastocystis* isolated from homiothermal hosts’ cultures are usually incubated at 37°C. While, poikilothermal isolates are kept in lower temperature for example isolates recovered from a reptile sea-snake (*B. lapemii*) showed optimal growth at 24°C and fails to survive at 37°C (Teow *et al.*, 1991). Meanwhile, Zaman *et
al. (1993) demonstrated that *Blastocystis* sp. isolated from household cockroaches collected from Singapore sewers grew at both 25°C and 37°C.

Interestingly, isolates from poikilothermal hosts may originate from homoiothermal hosts. For example, isolate from a rhino iguana (AY266475) and isolate from a toad (AFJ96-H1) could survive at 37°C and 34°C, respectively, while another isolate from the same host iguana species could not (Yoshikawa *et al.*, 2004b) suggests that some isolates in poikilothermal hosts may have originated from homoiothermal hosts, allowing the isolates to grow at higher temperature rather than room temperature.

Various media are available for cultivating *Blastocystis* namely, Locke-egg medium, Iscove’s modified Dulbecco’s medium, Robinson’s medium, TYSGM-9 and Jones’ medium. However, the preferred media is the modified Jones’ medium (Appendix A) as the medium of choice for xenic culture of *Blastocystis* (Leelayoova *et al*., 2002; Suresh and Smith, 2004; Stensvold *et al*., 2007a; Parkar *et al*., 2007) as the medium is composed of the simplest constituents and can be stored for a longer time in a refrigerator if sterilized. In addition, it is also cost-effective and do not require any specific technique and equipment.
2.4.4 Molecular techniques

Over the years, the advancement of molecular techniques has allowed the detection and classification of this parasite to cope with the expanding number of subtypes of this parasite. The advantage of this technique is the time saving factor (approximately three hours) instead of the 3 to 4 days required for \textit{in vitro} culture. However this technique is costly due the special equipment and expensive consumables in addition to the need for special training required.

Subtype characterization is determined primarily by one of two ways: (1) PCR with subtype specific sequence-tagged-site (STS) diagnostic primers (Yoshikawa \textit{et al.}, 2003) and (2) sequencing of small subunit rRNA gene (SSU-rDNA) PCR products (barcode region) (Scicluna \textit{et al.}, 2006). However, both methods have different advantages and limitations.

2.4.4.1 Sequence-tagged-site (STS) diagnostic primers

The advantages for STS method is it allows straight-forward detection of mixed subtypes carriage and therefore the need for sequencing PCR products can be circumvented. Moreover, STS primers pairs are targeted to Subtypes 1 to 7 (Yoshikawa \textit{et al.}, 2003). The sensitivity is moderate, and therefore postulated that some infections may go undetected (Stensvold, 2013). Besides, some subtypes, for instance, Subtype 3 exhibit substantial intrasubtype genetic diversity (Stensvold \textit{et al.}, 2012).
2.4.4.2 DNA barcoding

DNA barcoding is a new and powerful basic research tool with exceptional potential for the incorporation of new technologies and for future applications. Barcoding appears robust for genetic characterization combining the use of a forward primer of broad, eukaryotic specificity (RD5) (Clark, 1997) and a genus-specific reverse primer (BhRDr) (Scicluna et al., 2006). For sequencing, several regions in the SSU-rDNA have been targeted; however the “barcode region” has been used extensively. This region encompasses the 0.6 5′-most kbp is known to be a valid proxy for complete SSU-rDNAs and is a region for which many sequences are available in both GenBank and the Blastocystis Subtype (18S) and Sequence Typing (MLST) Databases (www.pubmlst.org/blastocystis), identified not only to ST level but to 18S allele level which offers higher resolution than subtyping alone (Stensvold, 2012; 2013). However, it should be noted that barcoding PCR should not be used on faecal DNA template as a strictly diagnostic tool since the RD5/BhRDr primer pair typically amplifies common fungal DNA in the absence of Blastocystis with no obvious difference in PCR product size (Clark et al., 2013).
2.4.5 Serological technique

Blastocystis infections in human can lead to raised immunoglobin G (IgG) and IgA responses, as detected by indirect fluorescent antibody (IFA) and enzyme-linked immunosorbent assay (ELISA). Mahmoud and Saleh (2003) investigated the secretory IgA, serum IgA, and serum IgG levels in *Blastocystis*-positive asymptomatic and symptomatic individuals using ELISA technique. The findings showed higher *Blastocystis*-reactive secretory IgA, serum IgA, and serum IgG levels from symptomatic patients, compared to asymptomatic carriers and healthy controls. Monoclonal antibodies against *Blastocystis* have been described (Yoshikawa et al., 1995a; Tan et al., 1996) with the majority of antibodies were IgM and localized to surface coat antigens. These antibodies exhibited limited cross-reactivity against different genotypes, indicating antigenic diversity among *Blastocystis* isolates. Although currently unavailable, monoclonal antibodies specific for human-infective genotypes would be useful for antigen detection studies, as was previously described for *Entamoeba histolytica*/E. dispar. Considering the limited knowledge of the host immune response to *Blastocystis* and the apparent antigenic diversity of the parasite, it is not practical to include serology in the routine laboratory diagnosis of *Blastocystis*, and it should be limited to epidemiological and serological studies.
2.5 *Blastocystis* in animals

2.5.1 Birds

Three new *Blastocystis* species from chickens, ducks and geese have been proposed. *B. galli* has been described from domestic chickens and turkeys (Belova and Kostenko, 1990; Belova, 1992b); *B. anatis* from ducks (Belova, 1991); and *B. anseri* from geese (Belova, 1992a). The major criterion used to distinguish species was the size, but given the enormous variation seen in cell size within each sample, this is not sufficient to delineate new species.

However, limited genomic analysis on bird isolates has been performed. Based on previous studies, birds are generally infected with multiple genotypes including zoonotic genotypes. Yoshikawa *et al.* (1996) reported the presence of a zoonotic genotype Subtype 1 in chicken. Meanwhile, Abe *et al.* (2003a) genotyped seven *Blastocystis* isolates via polymerase chain reaction (PCR) using diagnostic primers, and the homology among isolates was then confirmed by restriction fragment length polymorphism (RFLP) analysis of the small subunit ribosomal RNA gene. Their study
found three isolates from a Chinese bamboo partridge, a vulturine guineafowl, and a Japanese green pheasant amplified with SB332 (Subtype 4), but the RFLP profiles differed from Subtype 4 reported from a human. However, the other four isolates from a Palawan peacock-paceant, a satyr tragopan, a Himalayan monal pheasant and a great argus pheasant did not amplify to any subtype-specific primer sets.

The transmission of *Blastocystis* infection can occur easily between the same or different bird species. Tanizaki *et al.* (2005) reported positive infection of *Blastocystis* isolates from quails and geese in chickens indicated that host specificity is not acceptable for the criteria of speciation of *Blastocystis* isolates from birds. Therefore, the proposal of new *Blastocystis* species on the basis of different avian host species is problematic.

Evidence to date suggests that although *Blastocystis* is found in diarrhoeic faeces from a range of hosts, there is little evidence to suggest a direct pathogenic effect. Whether *Blastocystis* is a pathogen, commensal or an opportunistic organism in birds is not known. However, experimental infections on red-legged partridges and chicken revealed that no clinical signs were observed (Taylor *et al.*, 1996).

In recent years, molecular studies have produced a growing body of data on STs of *Blastocystis* isolated from various animal hosts. Yoshikawa *et al.* (2004a) reported the STs isolated from birds included ST1 (three chicken isolates, one pheasant isolate), ST2 (one chicken isolate), ST6 (one chicken isolate, five isolates from quails and three from pheasant) and ST7 (one chicken isolate, five isolates from quails and one pheasant). Recently, ST4 was identified in ostriches (Roberts *et al.*, 2013; Chandrasekaran *et al.*, 2014) whereas Guinea fowls were identified as ST7.
2.5.2 Swine

Blastocystis is highly prevalent in pigs (Burden *et al.*, 1978; Pakandl, 1991; Quilez *et al.*, 1995a; Abe *et al.*, 2002), and is capable of surviving in pig manure slurry (Snell-Castro *et al.*, 2004). Burden (1976) first published on *Blastocystis* sp. infection in pigs. Burden *et al.* (1978) found the organism on each of the five pig farms visited and reported a high prevalence (60%), recording usually low numbers of *Blastocystis* sp. cells from the stool samples. Burden *et al.* (1978) also reported high numbers in pigs suffering from diarrhoea, but concluded no evidence to suggest the pathogenic role of *Blastocystis*.

Meanwhile, Pakandl (1991) reported the occurrence of this parasite in suckling pigs from five farms in Southern Bohemia from the age of three days with relatively high prevalence. The ultrastructure study conducted on the pig isolates showed no difference from the human form. This study detected infections with high density, and intensity of infection up to 8 cells per 100 × field failed to show correlation between intensity and the occurrence of diarrhoea.

Quilez *et al.* (1995a) reported the presence of *Blastocystis* sp. in pigs in Spain. The results indicated low overall prevalence (7.5%) but higher in 1-2 month old weaned piglets (18.4%) and 2-6 month old fattening pigs (15.4%) compared with older pigs (2.8%). Diarrhoea was present in two weaned pigs 6 weeks of age, with an intensity of infection of over 5 cells per 40 × field concluding that *Blastocystis* sp. was not a cause of diarrhoea.

Fayer *et al.* (2014) highlighted the presences of *Blastocystis* in a specific locations within the swine gastrointestinal tract i.e., the lumen contents, cecum, jejunum, proximal and distal colon and missing in the duodenum or ileum. In tissue sections,
Blastocystis was found primarily in the lumen usually associated with digested food debris, sometimes in close proximity or appearing to adhere to the epithelium, none were found to penetrate the epithelium or the lamina propria.

Genotypes from pigs are found grouped together with *Blastocystis* genotypes from humans in the same cladogram (Navarro *et al.*, 2008). Parkar *et al.* (2007) has proved that a single *Blastocystis* isolate from a Thai human (Th522H1) belonged to Clade V (*Blastocystis* sp. Subtype 5), which was considered to be specific to pig and cattle isolates (Noël *et al.*, 2005). Meanwhile, a study by Yan *et al.* (2007) indicated that all of the isolates from pigs were identified as *Blastocystis* sp. Subtype 5 (ST2) using the seven kinds of STS primers and the RFLP patterns of all of the isolates from humans except for the mixed one were identical or quite similar to those of the 16 pig isolates with both *Hin*I and *Rsa*I enzymes, showing zoonotic potential of *Blastocystis* sp. Subtype 5 (ST2).

To date, *Blastocystis* subtypes 1, 2, 3, and 5 have been detected in faeces from Japan, Spain, France, Thailand, and Denmark (Stensvold *et al.*, 2009; Fayer *et al.*, 2014). In addition, ST5 was found in six pigs in the USA (Santin *et al.*, 2011).
2.5.3 Companion animals

There are very few studies from cats and dogs worldwide (Knowles and Gupta, 1924; Duda et al., 1998; and Abe et al., 2002). High prevalence was detected in dogs and cats in Australia, with infections as high as 70% (Duda et al., 1998) and similarly, high in dogs from Iran (Daryani et al., 2008) via light microscope in 14 (28%) of 50 faecal samples from two months to four years old dogs with no correlation between infection and host-age and sex.

Wang et al. (2013) on the other hand reported low infection in stray dogs from Brisbane (2.5%), Cambodia (1.3%) and India (24%) using ‘barcoding’ of the small subunit rRNA gene. In the US Pacific Northwest region, 10/103 (9.7%) shelter-resident canines and 12/103 (11.6%) shelter-resident felines were positive whereas, however only two very faint bands observed from two separate client-owned animals (Ruaux and Stang, 2014). In contrast, all dogs and cats were free from infection in Malaysia (Chuong et al., 1996), Japan (Abe et al., 2002) and Germany (König and Müller, 1997). It was unclear why infections varied greatly between the different studies, however one explanation given was the condition in which the animals were housed.
2.5.4 Rodent

There is very little information in the literature on *Blastocystis* in rodents. Knowles and Das Gupta (1924) reported the presence of the parasite in the rat and Lavier (1952) reported from mice. Pakandl (1992) observed no *Blastocystis* infection in 300 laboratory mice. However, Chen *et al.* (1996a) found that 60% of the laboratory rats of different strain were positive for *Blastocystis*. Among the different strains, Wistar and Sprague-Dawley were infected highest. However, mice, rabbits, hamsters, and gerbils were free from infection. Therefore, it was suggested laboratory rats were good models for studies on pathological aspects of the infection due to their susceptibility to *Blastocystis* infections (Tan *et al.*, 2002). Using the pulsed-field gel electrophoresis (PFGE) technique, Chen *et al.* (1997b) noted a distinct karyotypic pattern of the rat *Blastocystis* to *B. hominis* and reptilian *Blastocystis* species. The study concluded that the rat *Blastocystis* is a distinct species, and the name *B. ratti* sp. nov. is proposed:

Parasite: *Blastocystis ratti* sp. nov.

Host: *Rattus norvegicus* (Wistar strain)

Habitat: Large intestine

Locality: Singapore
2.5.5 Artiodactyls

There are few reports on *Blastocystis* infection involved artiodactyls. In USA, Fayer *et al.* (2012) found 19.15% purebred Holstein dairy cattle positive for *Blastocystis* sp. while prevalence of 71% was reported in cattle in Japan (Abe *et al.*, 2002) and 1.8% in Aragon, Northeastern Spain (Quilez *et al.*, 1995b). In Malaysia, Lim *et al.* (2008) reported that none of the hoofed animals from Zoo Negara, Kuala Lumpur were infected whereas Tan *et al.* (2013) reported 30.9% goats examined in five different farms in Serdang, Selangor were infected with *Blastocystis* sp. Meanwhile, Hemalatha *et al.* (2014) reported moderate infection in the livestock group with 34.5% in cattle; 28.6% in deers; 30% in gaurs; 65% in goats and 57.9% in sheeps from various government and private establishments in Perak.
2.5.6 Wildlife

Limited number of studies screened wild animals for Blastocystis with high prevalences was in primate species. Stenzel et al. (1993) reported for the first time the presence of Blastocystis sp. from 1 of 2 camels (Camelus dromedarius), 1 of 3 llamas (Llama gluma), the only highland bull (Bos taurus) and a lion (Panthera leo) in a travelling circus, although only low numbers were detected by light microscopy. Meanwhile, Lim et al. (2008) reported the occurrence of Blastocystis among the wild animals in captivity particularly the feline, hoofed mammals and primates at Zoo Negara, Kuala Lumpur, Malaysia with low infections in primates (2.1%). Blastocystis isolates were also reported from zoo animals at the National Veterinary Institute, Technical University of Denmark (Stenzvold et al., 2009). A novel subtype from ring-tailed lemur (Lemur catta) was identified and designated as Blastocystis sp. ST10. Besides, it was also found that Blastocystis from primates belong mainly to ST4, ST5 and ST8. Parkar et al. (2010) reported on the occurrence of the protozoan amongst wild animals from the Perth Zoo, Australia with 50% in primate; 33% in nonprimates; first to report Blastocystis isolated in elephants (57%) and giraffes (82%), quokka and western grey kangaroo. Recently, Roberts et al. (2013) screened different animal species from seven locations within New South Wales, Australia. Blastocystis sp. was identified in gorilla, chimpanzee, orang-utan, Francois languar and Macaca sp. This was the first report on the presence of Blastocystis in the eastern grey kangaroo, red kangaroo and eastern wallaroo and ostrich and in addition to the Asian elephant and guinea fowl.
2.6 *Blastocystis* of animals in Malaysia

A number of studies on *Blastocystis* have been carried out in Malaysia with focus on humans infections (Tan and Suresh, 2006a; Chandramathi et al., 2010; Ragavan et al., 2014; Kumarasamy et al., 2014) while a handful studies involving animals. Suresh *et al.* (1996) worked on small numbers of different laboratory bred animals using *in vitro* cultivation in Jones’ medium. They noted all Wistar, SHR and Sprague Dawly rat strains positive with *Blastocystis* sp., while, two of five PVG rats and Dark Agoti rats were positive. In contrast, all laboratory mice (ICR, CBA rat, Balb/c and C3HCJ) were free from infection. In addition, only 1 sheep positive of five, while a guinea pig and a hamster examined were negative. All ten *Macaca fasicularis*, 2 of 10 rabbits, and none of the two dogs and two cats were positive.

Lim *et al.* (2008) investigated the prevalence of intestinal parasites from different groups of mammals housed in a zoological garden in Malaysia. A total of 197 faecal samples were collected randomly from various primates (99), hoofed mammals (70) and feline (28). The animals were found infected with a diversity of intestinal parasitic infection. However, only the pig-tailed macaque and Sumatra Orang Utan were infected with *Blastocystis* (2.1%).

Tan *et al.* (2013) successfully for the first time attempted to determine the occurrence as well as the genetic diversity of *Blastocystis* spp. in goats obtained from five different farms in Peninsular Malaysia. *Blastocystis* spp. infected 30.9% of goats primarily with subtype was ST1, followed by ST7, ST6 and ST3.

Meanwhile, Hemalatha *et al.* (2014) screened a large number of animals including poultry, ruminants, mammals, swine, primates, companion animals, wild animals, and
laboratory animals for the presence of *Blastocystis*. A total of 104 out of 302 animals (34.4%) were infected with this anaerobic parasite. Moderate infection were observed in the ruminant livestock group (34.5% in cattle; 28.6% in deers, 30% in gours; 65% in goats and 57.9% in sheeps) whereas in mammals, the prevalence rate varied around 50% of orang utan and 100% of pigs while in horses and chimpanzee, the organism was undetectable. All the ostriches were positive however, companion animals (i.e cats and dogs), laboratory animals (i.e mice, rats, guinea pigs and rabbits) and all wildlife specimens (i.e black panther, lion, tiger, elephants, tapir, camel, terrapins and wild birds) were completely free from the infection.

More recently, Chandrasekaran *et al.* (2014) for the first time demonstrated *Blastocystis* sp. subtypes 6 or ST5 based on the terminology consensus by Stensvold *et al.* (2007b) do infect ostriches (*Struthio camelus*). However, all ostriches were asymptomatic. It was also reported that most of the cells show high lipid storage in the vacuoles of the parasites. The study further provided evidence for potential zoonotic transmission in ostrich farms as *Blastocystis* subtype 6 or ST5 can infect rats and the same subtype have been previously reported in humans.

To date, there are gaps of information on the status, morphology as well as genetic diversity of *Blastocystis* sp. from livestock, domestic animals and wildlife in this country. The hypothesis that intimate association between human and animals could facilitate transmission, led us to investigate the occurrence of *Blastocystis* especially in animals in the domestic environment.
CHAPTER 3:

STUDY ON Blastocystis spp. IN POULTRY POPULATIONS

3.1 Introduction

Blastocystis infections is common in avian hosts and have been reported in chickens (Yamada *et al.*, 1987; Belova and Kostenko, 1990; Stenzel *et al.*, 1994), ostriches (Yamada *et al.*, 1987; Stenzel *et al.*, 1994; Chandrasekaran *et al.*, 2014), domestic ducks (Belova, 1991; Pakandl and Pecka, 1992; Stenzel *et al.*, 1994), domestic geese (Belova, 1992a) and turkeys (Lee, 1970; Belova, 1992b).

Three new species of *Blastocystis* from chickens, ducks and geese have been proposed. *B. galli* was described from domestic chickens and turkeys (Belova and Kostenko, 1990; Belova, 1992b); *B. anatis* from ducks (Belova, 1991); and *B. anseri* from geese (Belova, 1992a). The major criterion used to distinguish species was the organism’s size, but given the enormous variation in cell size within each sample, this was not sufficient to delineate new species.

Several studies showed phenotypic characteristics in *Blastocystis* isolated from chickens, duck, geese and ostriches. It was concluded that these isolates could not be distinguished morphologically from the human isolates, except for variation in size as well as the contents seen in the central body of the parasite (Yamada *et al.*, 1987; Stenzel *et al.*, 1994; Chandrasekaran *et al.*, 2014).

To date, six subtypes were identified in birds include ST1, ST2, ST4, ST6, ST7 and ST8. Among the six subtypes, ST6 and ST7 was predominantly in the avian hosts
(Stensvold et al. 2009), demonstrating a much stronger association between these subtypes and the avian hosts.

A large number of studies in Malaysia which focused mainly on human infections (Tan, 2008, Tan et al., 2008 and Ragavan et al., 2014) with no known studies in the poultry population bearing in mind that consumption of chicken meat has increased over the years. Just over the last one decade as per capita consumption has gone up from 36 kgs to 39 kgs (Jayaraman et al., 2013). Therefore, the aim of this study is to determine the prevalence, elucidate biological information and determine the subtypes on Blastocystis spp. isolated from the poultry population.
3.2 Materials and methods

3.2.1 Ethical approval

All animals used in this study were handled according to Institutional Animal Care and Use Committee (IACUC), University Malaya (No.: ISB/31/01/2013/SNMZ (R)). Permission was sought from the Ipoh City Council and Kuala Lumpur City Hall after obtaining approval from the Ethics Committee from the Faculty of Science, University Malaya. The sampling sites were not privately-owned or protected. Written permission was obtained to carry out the study from the relevant authorities.

3.2.2 Sampling sites

This study involved two states namely Perak and Selangor in the Peninsular Malaysia. Both states are located in the west coast of Peninsular Malaysia with Perak situated on the northen border of Selangor state. Sites were chosen based on types of poultry rearing. Kinta District, Perak is a district in central Perak, Malaysia that covers both rural and urban areas whereas semi-rural areas in Semenyih and Kuala Selangor are districts in Selangor known for communal crop-livestock farming.

3.2.3 Study population

A total of 179 chickens consisted of free-range and commercially barn-reared chicken were screened for Blastocystis sp.

3.2.3.1 Free-range or backyard chicken

The free-range or backyard chickens were commonly seen in rural settings where traditional poultry production was practiced (or backyard chicken). The chickens were released daily, allowed to scavenge for food freely and return periodically to the homestead for water and kitchen refuse. In this study, faecal samples were collected
from three breed of chicken namely; village chicken, jungle fowl and white silkie chicken commonly reared by the villages.

3.2.3.2 Barn-reared chicken

The barn-reared chickens consisted of commercial broilers were reared specifically for meat. The birds were kept indoors, isolated and were maintained with regulated temperature as well as with right ventilation either on deep litter (e.g. wood shavings) or floor systems with slatted floor. The farms were located in palm oil estates and used tap water while others used pond water pumped directly into the water tanks. The chickens were conventionally reared by integrated poultry companies or small-scale non-integrated poultry companies and sold to the public in wet markets around the cities. In Peninsular Malaysia, most of the companies used the locally bred Cobbs and Ross.

3.2.4 In vitro cultivation

A pea size amount of each faecal sample was inoculated into a sterile screw-top containing 3 ml of Jones’ medium supplemented with 10% heat-activated horse serum (Jones, 1946; Suresh and Smith, 2004). Each sample was incubated vertically at 37°C for 48 to 72 hours before examination. A drop of the sediment was examined at 400× magnification for the detection of Blastocystis. The parasites were maintained subsequently after isolation, by sub-culturing once every 3 to 4 days. The parasites were then subjected for phenotypic and genotypic analysis. However, when no growth was detected the sediment would be further re-suspended in fresh culture medium and maintained for another additional 48 hours at 37°C incubation. The samples were considered negative if Blastocystis sp. forms were absent.
3.2.5 Microscopy examination

3.2.5.1 Giemsa staining

The positive faecal smears were fixed in methanol and stained with 10% Giemsa for the observation of detailed morphology at 400× and 1000× magnification using light microscopy.

3.2.5.2 Sudan Black B staining

Isolates obtained from day 3 cultures were smeared on a clean glass slide and immediately dried with a hair dryer at room temperature. This was followed by fixation in glutaraldehyde solution for 1 minute at 2-8°C with gentle agitation followed by thorough rinsing in deionized water. Cells were immersed in Sudan Black B reagent for 5 minutes with intermittent agitation followed by rinsing in 70% ethanol (3 to 5 times) and distilled water. The slides were counterstained in haematoxylin solution for 5 minutes and given a final rinse under tap water. Slides were then examined under 1000× magnification for black droplets in the central vacuole as indication for positive reaction.

3.2.6 Cytochemical staining

3.2.6.1 Fluorescein isothiocyanate (FITC)-labeled Con A (Canavalia ensiformis)

Approximately 10 µl of culture sediment containing parasites were mixed with 10 µl of 0.1% FITC in an eppendorf tube and incubated at 37°C for 20 minutes. 10 µl of the prepared sample was placed on a clean glass slide and excess liquid was removed from the slide by placing an absorbent tissue at the edge of the coverslip. The sample was viewed using a fluorescence microscope (Leitz Wetzler, Germany) with appropriate filters at 400× magnification. The results were determined by using affinity fluorescence unit (AFU) (scale of brightness of 1+, 2+, 3+ and 4+).
3.2.6.2 Acridine orange staining

Acridine orange is used to stain the DNA of the nucleus, mucus and RNA as bright green, dull green and flaming red-orange, respectively (Humason, 1972). 5 ml of 0.1% acridine orange stock solution was diluted with 45 ml of phosphate buffered saline (PBS) pH 7.4 before use. Approximately, 5 µl of culture sediment containing parasites were mixed thoroughly on a clean glass slide with 5 µl of diluted acridine orange. The sample was viewed using a fluorescence microscope (Leitz Wetzler, Germany) with appropriate filters at 400× magnification.

3.2.7 Ficoll-Paque concentration method

Ficoll-Paque density gradient centrifugation method was carried out in order to isolate Blastocystis cyst from the fresh faecal sample. Briefly, the faecal concentrate re-suspended in PBS was layered on 5 ml of Ficoll-Paque and centrifuged at 3,500 rpm for 20 minutes. Blastocystis cyst layer which was formed after centrifugation was removed into another tube and re-suspended in 1 ml PBS and observed under microscope for the detection of Blastocystis cyst (Suresh and Smith, 2004; Kumarasamy et al., 2014).

3.2.8 Electron microscopy

Day-3 positive culture samples and Blastocystis cyst from the fresh faecal sample were fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.3) and sent to the Electron Microscopy Unit in Institute for Medical Research, Kuala Lumpur for processing.
3.2.8.1 Scanning electron microscopy (SEM)

The contents were washed three times with phosphate buffered saline (PBS) pH 7.4. The samples were centrifuged at 3000 rpm for 5 minutes. The pelleted cells were fixed with 2.5% glutaraldehyde and post-fixed with 1% osmium tetroxide. The specimens were mounted on polycarbonate membrane (Nuclipore, Agar Scientific, USA) and dehydrated in increasing concentration of ethanol (30%, 50%, 70%, 80%, 90% and 100%). The specimens were critical–point dried with carbon dioxide coated with gold, and examined with a scanning electron microscope (FEI-Quanta 200 FESEM, USA) (Ragavan et al., 2014).

3.2.8.2 Transmission electron microscopy (TEM)

The contents were washed three times using phosphate buffered saline (PBS) pH 7.4. The samples were centrifuged at 3000 rpm for 5 minutes. The pelleted cells were resuspended overnight in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.3 at 4°C, washed thoroughly with cacodylate buffer and post fixed for 30 min in 1% osmium tetroxide in cacodylate buffer. The fixed cells were dehydrated for 5 minutes in ascending series of ethanols (30%, 50%, 70%, 80%, 90% and 100%) and embedded in epoxy resin. Semithin sections were stained with toluidine blue. Ultra thin sections were cut using and ultramicrotome, contrasted with uranyl acetate and lead citrate and viewed using a transmission electron microscope (LEO Libra120) (Tan & Suresh, 2006a).
3.2.9 Subtyping

3.2.9.1 Genomic DNA preparation

Positive samples were subsequently maintained by sub-culturing in Jones’ medium every 3 to 4 days and stored at -20°C for molecular characterization. Genomic DNA was extracted using Qiagen Stool extraction kit according to the manufacturer’s protocol. The elution step was carried out using 100 µl instead of 200 µl in order to increase the concentration of total DNA.

3.2.9.2 Polymerase chain reaction (PCR) with sequenced-tagged site (STS) primers

All positives Blastocystis sp. isolates were subjected to PCR with STS primer using ten primer sets as previously described by Yoshikawa et al. (2003) to successfully to classify B. hominis populations into seven subtypes (1–7) based on genotypic homology (Table 3.1).

Amplification of 1 µl genomic DNA was carried out in 20 µl reaction containing 0.5mM of the dNTPs, 0.5mM of each primer, 1 x PCR buffer (75mM Tris-HCL, pH 8.8, 20mM (NH₄)₂SO₄ and 0.01% Tween 20), 2.5mM MgCl₂ and 1 U Taq DNA Polymerase (recombinant) (FERMENTAS, USA). PCR conditions consist of 1 cycle of initial denaturing at 94°C for 3 minutes, followed by 30 cycles including denaturing at 94°C for 30 s, annealing at 57°C for 30s and extending at 72°C for 1 minute, and an additional cycle with a 10 minutes chain elongation at 72°C (Thermo Cycler-Bio-Rad, USA).
The amplification products were then electrophoresed in 1.5% agarose gels (PROMEGA USA) and Tris-Borate-EDTA buffer. Gels were stained with Gelred nucleic acid gel stain and photographed using ultra-violet gel documentation system (Uvitec, United Kingdom). While the primers of Yoshikawa et al. (2003) were used, the results were reported in ST format, the consensus terminology for *Blastocystis* subtypes (Stensvold et al., 2007b).

Table 3.1: The STS primer sets used in this study.

<table>
<thead>
<tr>
<th>Subtype</th>
<th>STS primer</th>
<th>Product size (bp)</th>
<th>Sequence of forward (F) and reverse (R) primer (5’ – 3’)</th>
<th>Genebank accession no.</th>
<th>ST format</th>
</tr>
</thead>
</table>
| 1 | SB83 | 351 | F-GAAGGACTCTCTGACGATGA
R-GTCCAAATGAAAGGCAGC | AF166086 | 1 |
| 2 | SB155 | 650 | F-ATCAGCCTACAATCTCCCT
R-ATCGCCACTTCTCCAAT | AF166087 | 7 |
| 3 | SB227 | 526 | F-TAGGATTTGGTGTTTGGAAGA
R-TTGAAGTGAGGAGATGGAAG | AF166088 | 3 |
| 4 | SB332 | 338 | F-TCATCCAGACTACTATCAACATT
R-CCATTTTTCAGACAACCACCTTA | AF166091 | 6 |
| 5 | SB340 | 704 | F-TGTTTTTGTGTCTTCTCAGCTC
R-TTCTTTACACTCCCCGTAC | AY048752 | 2 |
| 6 | SB336 | 317 | F-GTGGGTAGAGGAGAAACACCA
R-GAACAAAGTCTGAATGAGAT | AY048751 | 5 |
| 7 | SB337 | 487 | F-GTCTTTTCCCTGTCTATTCTGCA
R-AATTCCGTCTGTCTTCTTCTG | AY048750 | 4 |
3.2.9.3 DNA barcoding

A *Blastocystis*-specific primer, BhRDr (GAGCTTTTTAAGCAACAACG; Scicluna *et al.*, 2006) was paired with eukaryote-specific primer, RD5 (ATCTGGTTGATCCTGCCAGT; Clark, 1997) and used, in a single step PCR reaction, to amplify a 600 bp region of 18S rRNA. The PCR was performed in a 25 µl volume containing 1.0 mM of dNTPs, 0.5 mM of each primer, 1 x PCR buffer, 2.5 mM MgCl₂, 1 U Taq DNA Polymerase (recombinant) (FERMENTAS, USA) and 5 µl of genomic DNA. PCR conditions consisted of an initial denaturing step of 94°C for 1 minute, followed by 30 cycles of 94°C for 1 minute, 59°C for 1 minute and 72°C for 1 minute, followed by a final elongation step of 72°C at 2 minutes (Thermo Cycler Bio-Rad, USA). PCR products were visualized on a 1.5% agarose gel prior to purification and cycle sequencing by a local commercial company. Sequencing data were checked using Seq Scanner 2 software (Applied Biosystems) for quality and subsequently were edited to remove low quality bases and primer sequences using BioEdit software (http://www.mbio.ncsu.edu/bioedit/bioedit.html). Next, the edited sequences were queried against the *Blastocystis* 18S rRNA database (http://www.publmst.org/blastocystis) (Roberts *et al.*, 2013).

3.2.10 Statistical analysis

Statistical analyses were carried out using the Statistical Package for the Social Sciences (SPSS) 21.0 software package. Chi-square analysis carried out to determine whether infections were associated to either extrinsic or intrinsic factors. A probability value of less than 0.05 was considered statistically significant.
3.3 Results

3.3.1 Prevalence of *Blastocystis* in chicken population

Out of 179 chickens, a total of 47 (26.3%) chicken faecal samples screened were positive for *Blastocystis* sp. (Table 3.2). None of the birds showed any clinical signs of infection such as diarrhea. The prevalence among barn-reared chicken and free-ranged chicken were 14.9% and 34.3%, respectively (Figure 3.1). There was a statistically significant association between the types of chicken and *Blastocystis* infection ($\chi^2 = 8.455$, [df] = 1, P = 0.004) recorded in this study. The prevalence of *Blastocystis* infections between the two study locations is shown in Table 3.3. The prevalence in both Perak and Selangor did not show marked variation with the prevalence of 29.4% in Perak and 20% in Selangor. There was no statistical significant association between the prevalence of *Blastocystis* sp. between the study locations ($\chi^2 = 1.825$, [df] = 1, P = 0.177).
Table 3.2: *Blastocystis* infection in two types of chicken population.

<table>
<thead>
<tr>
<th>Study animals</th>
<th>No. faecal samples</th>
<th>No. chicken infected (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barn-reared chickens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broiler chicken</td>
<td>74</td>
<td>11 (14.9)</td>
</tr>
<tr>
<td>Free-range chickens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jungle fowl</td>
<td>1</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Village chicken</td>
<td>102</td>
<td>33 (32.4)</td>
</tr>
<tr>
<td>White silkie chicken</td>
<td>2</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>179</td>
<td>47 (26.3)</td>
</tr>
</tbody>
</table>

Table 3.3: *Blastocystis* infection in two study areas.

<table>
<thead>
<tr>
<th>Study animals</th>
<th>Perak</th>
<th>Selangor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. faecal samples</td>
<td>No. chicken infected (%)</td>
</tr>
<tr>
<td>Cage-reared chickens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broiler chicken</td>
<td>44</td>
<td>9 (20.5)</td>
</tr>
<tr>
<td>Free-range chickens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jungle fowl</td>
<td>1</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Village chicken</td>
<td>72</td>
<td>23 (31.9)</td>
</tr>
<tr>
<td>White silkie chicken</td>
<td>2</td>
<td>2 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td>35 (29.4)</td>
</tr>
</tbody>
</table>
Figure 3.1: The prevalence of *Blastocystis* infection in the two different chicken groups.
3.3.2 Morphological forms

Blastocystis obtained from free-ranged (Figure 3.2a) and barn-reared chickens (Figure 3.2b) were similar to *B. hominis*, except for the variation of its size. The organisms most commonly seen as vacuolated forms, were always large, spherically shaped cells measuring approximately 10 μm to 100 μm in diameter with the average diameter of cells between 20 to 30 μm. Vacuolar forms of *B. hominis* also vary greatly in size ranging from 2 μm (Van Saanen-Ciurea and El Achachi, 1985) to more than 200 μm (Zierdt and Tan, 1976) in diameter with the average diameter usually exhibited smaller values between 4 and 15 μm (Zierdt, 1991).

Apart from that, the granular forms were similar to the vacuolar forms except that numerous granules are present within the central vacuole or within the thin band of peripheral cytoplasm of the organism. The size ranges from 10 to 30 μm in diameter. Gigantic granular form (Figure 3.3) with the presence of inclusion bodies or granules in the central vacuole was occasionally seen in chicken isolates ranging from 40 to 90 μm in diameter.

Meanwhile, the cysts (Figure 3.4) from chicken were generally smaller and rounded to ovoid in shape where the size range of cysts form exhibited smaller values of 3 to 5 μm in diameter which was consistent with descriptions of *B. hominis* cysts were reported ranging between 5 to 10 μm (Stenzel and Boreham, 1991) and 3 to 6 μm (Zaman *et al.*, 1995) in diameter.
Figure 3.2: *Blastocystis* isolated from (a) village chicken and (b) broiler chicken. V; vacuolar form, G; granular form.
Figure 3.3: Gigantic form of *Blastocystis* from chicken.

Figure 3.4: Cyst form of *Blastocystis* from chicken (circle).
3.3.3 Mode of reproduction

Three types of reproduction were noted namely; binary fission, budding and schizogony (Figure 3.5). The most common mode of reproduction observed in the *in vitro* culture of chicken isolates was binary fission (Figure 3.5a) and budding (Figure 3.5b). However, schizogony-like organisms were present in a jungle fowl isolate. The vacuoles had a distinct membrane and appeared as sac-like pouches, showing the developing *Blastocystis* progeny within the sacs (Figure 3.5c).

3.3.4 Surface structure

Scanning electron micrograph showed the surface structure of village chicken *Blastocystis* from culture and fresh caecum possessed smooth and undulating cell surface. Besides, bacteria were also seen attached to the surface of the cell obtained from the fresh caecum (Figure 3.6a and b). Meanwhile, the cell surface of broiler chicken *Blastocystis* from culture showed slightly rough surface coat with indentations and deep grooves (Figure 3.7).
Figure 3.5: Mode of reproduction of *Blastocystis* stained with Giemsa (a) Binary fission (b) Budding (circle) (c) Schizogony. P; progeny.
Figure 3.6: Surface structure of village chicken *Blastocystis* from (a) culture and (b) fresh caecum. Bacteria (circle) were often seen adherent to the surface of *Blastocystis*.
Figure 3.7: Surface structure of broiler chicken *Blastocystis* from culture.
3.3.5 Ultrastructure

3.3.5.1 Village chicken *Blastocystis* from culture

Transmission electron microscopic examination revealed two types of vacuoles forms in the culture form of village chicken isolates; one containing a large central vacuole completely electron-lucent (Figure 3.8a), and the other contained an electron-opaque, in fully distended vacuoles (Figure 3.8b). Apart from that, the organisms possessed a thin wispy surface coat that resembles a slight ruffled appearance of the surface observed under the scanning electron microscope.

3.3.5.2 Village chicken *Blastocystis* from faecal sample

A thick, compact surface coat enveloped the organism (Figure 3.9) measuring between 237.74 to 342.63 nm. The central vacuole contained tiny electron-dense particles, which were unevenly distributed when compared to the parasites from the *in vitro* cultures.

3.3.5.3 Village chicken *Blastocystis* from caecum sample

Transmission electron micrographs showed more prominent protrusion of cytoplasmic materials into the central body of *Blastocystis* from village chicken caecum sample and are surrounded by a thin, electron-lucent membrane layer with measurements ranging between 169.27 to 239.39 nm (Figure 3.10).

3.3.5.4 Broiler chicken *Blastocystis* from culture

The surface coat was absent in the cells. Occasionally electron-lucent areas within flocculent content were observed (Figure 3.11a). However, in some instances the contents were extremely electron-dense and granular (Figure 3.11b). Besides, the
number of mitochondria-like organelle (MLO) was unusually high with some as high as nine MLO seen in an individual organism.

3.3.6 Cytochemical studies

The lipid dye Sudan Black B, as generally used to demonstrate lipids in the interior of the cell nucleus was studied with regard to its staining properties for *Blastocystis* isolated from chicken. The binding of Sudan Black B with phospholipids enclosed in the form of liposomes on day 3 isolates showed positive reactions are seen as dark droplets in the central vacuole of granular forms (Figure 3.12).

Blastocystis sp. in day 2 culture showed faint green florescence (AFU =1+) seen on the membrane of both vacuolar and granular forms. This indicates lesser binding affinity with FITC-labeled ConA (Figure 3.13). The fluorescence intensity and the percentage of the reactive forms of chicken isolate in FITC-labelled Con A stain range was (1+; 90-100%),

The occurrence of DNA within the nucleus was confirmed by the use of acridine orange showing two nuclei at the opposite end of the cell and in some organisms the nucleus was seen to be located in the central part of the organism. The respective epifluorescence image showed that the central vacuole was stained dull green while the nucleus was stained bright green (Figure 3.14). However, the colour changes as it become cystic.
Figure 3.8: Electron micrographs of *Blastocystis* isolated from in village chicken (a) Central vacuole filled with electron-lucent materials (b) Central vacuole with electron-dense materials. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.
Figure 3.9: Electron micrographs of village chicken *Blastocystis* from faecal sample. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.

Figure 3.10: Electron micrographs of village chicken *Blastocystis* from ceacum samples. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.
Figure 3.11: Electron micrographs of broiler chicken *Blastocystis* from culture (a) Central vacuole with flocculent content (b) Central vacuole with electron-dense material. Nu; nucleus, m; mitochondria, CV; central vacuole, SC; surface coat.
Figure 3.12: *Blastocystis* from chicken stained with Sudan Black B showing dark stain in the central vacuole indicating the presence of neutral lipid under 1000× magnification. Note: dark droplets (arrow).
Figure 3.13: Binding affinities of *Blastocystis* stained with FITC-labelled Con A (a) Light microscopic images of chicken *Blastocystis* (b) A same organism stained with FITC-labeled Concanavalin A (ConA) assay, AFU (1+): weak intensity. V; vacuolar form, G; granular form.
Figure 3.14: Epifluorescence image of *Blastocystis* stained with acridine orange. (a) Light microscopic images of chicken *Blastocystis* (b) The same organism stained with acridine orange. N; nucleus.
3.3.7 Subtype identification

Subtype analysis using PCR with STS primers showed the occurrence of *Blastocystis* sp. ST6 in four broiler chicken isolates (C15, C16, C19 and C23) obtained from a wet market in Perak (Figure 3.15). Meanwhile, based on the DNA barcoding method, four different subtypes were detected in parasites isolated from village chicken found in a mini zoological garden in Perak. These were identified as ST1 in one village chicken isolate (A16), ST8 in two village chicken isolates (A17 and A38), ST6 in two broiler chicken isolates (A20 and A26) from a wet market in Perak and five isolates were identified as ST7 from four village chickens (A2, A4, A6 and A18) and one broiler chicken (A28). Subtype information using DNA barcoding method was obtained from the *Blastocystis* Sequence Typing Database (http://www.publmst.org/blastocystis) (Table 3.4).
Figure 3.15: PCR amplification reaction of *Blastocystis* from chicken isolates using the sequenced-tagged site (STS) primers SB332 (lane 1, 2, 3 and 4; 338bp) indicating ST6.

Table 3.4: Subtype of *Blastocystis* from chicken isolates obtained *Blastocystis* Sequence Typing Databases.

<table>
<thead>
<tr>
<th>Blastocystis subtype</th>
<th>No. of Sequence-positive isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>1 (A16)</td>
</tr>
<tr>
<td>ST6</td>
<td>2 (A20, A26)</td>
</tr>
<tr>
<td>ST7</td>
<td>5 (A2, A4, A6, A18, A28)</td>
</tr>
<tr>
<td>ST8</td>
<td>2 (A17, A38)</td>
</tr>
</tbody>
</table>
3.4 Discussion

Blastocystis infection was previously shown to be widespread in the poultry population. To date, several reports on avian *Blastocystis* were recorded. The first description was by Lee (1970) isolating the parasite from the caecum of turkeys. It was found that domestic fowls and ostriches showed 100% infection in Japan (Yamada *et al.*, 1987) whereas in Russia, domestic hen showed 80 - 100% infection (Belova and Kostenko, 1990) and domestic ducks 80% infection (Pakandl and Pecka, 1992). In England, Taylor *et al.* (1996) recorded the presence of this parasite in red-legged partridge. Similar studies were also conducted in chickens, ducks and Japanese quails from two municipal markets in Rio de Janeiro, Brazil (Bergamo do Bomfim and Machado do Couto, 2013) with the prevalence of 32.9%, 46.6% and 23.9%, respectively. A recent study by Chandrasekaran *et al.* (2014) showed a high prevalence of *Blastocystis* infection in the ostrich population from a local farm in Malaysia. However, there is no known study to assess the prevalence of *Blastocystis* in chickens in Malaysia. Table 3.5 summaries the previous research studies conducted on *Blastocystis* sp. in poultry worldwide.

The overall prevalence of *Blastocystis* was moderately higher in the free-range than barn-reared chickens. Free-range chickens were likely to be more prone to *Blastocystis*, owing to their scavenging habits. Good hygiene and sanitation are crucial to prevent the chickens from being contaminated from the environment via the faecal-oral transmission (Lee and Stenzel, 1999).

The present study is the first epidemiological survey carried out on broiler chickens. Despite reared in an intensive barn system in addition to treatment with antibiotic to assure minimal contamination, *Blastocystis* was still present. The source of infection in
the birds remains unknown however one plausible explanation is contamination of the water and food provided. Lee and Stenzel (1999) noted no infection in an establishment with high-quality hygiene and sanitary conditions suggesting that good hygiene practices contributed to better health maintenance of the birds.

Many reproductive modes for Blastocystis have been suggested (Tan and Stenzel, 2003; Windsor et al., 2003). However, to date only binary fission is the only accepted mode (Stenzel and Boreham, 1996). In the present study, in addition to binary fission, budding was also a common mode of reproduction observed in the in vitro cultures of chicken isolates. In addition, schizogony-like organism was seen with many progeny or daughter vacuolar form in the central body of jungle fowl isolate.

Blastocystis is polymorphic and exist in many forms. In this study, the vacuolar form was the predominant in vitro cultures, which concurred with Tan (2004). Under light microscopic examination, the isolates from chickens were morphologically similar to human isolates (Matsumoto et al., 1987) with the exception of variation in size as also concurred with Yamada et al. (1987).

Ultrastructural descriptions of Blastocystis isolated from the chickens have been described previously (Stenzel et al. 1994; Cassidy et al. 1994). The transmission electron micrographs showed the organism possessed an electron-lucent material within central body when examined. However, some forms also showed finely granular or flocculent content seen distributed evenly within the central body. The electron dense material reacted to staining with Sudan Black B indicating lipid content. Chandrasekaran et al. (2014) demonstrated that Blastocystis isolated from ostriches showed high lipid storage in the central body of the vacuolar forms. However, Zierdt
and Williams (1974) postulated that the highly electron dense material were granules to form the granular form and suggested that the central body probably acts as a form of energy storage for cell growth. Notably, the granular form was similar ultrastructurally to the vacuolar form, apart from the nature of its central vacuolar contents (Dunn et al., 1989).

Blastocystis isolated from chicken showed smooth undulating cell surface although some organisms showed indentation with deep grooves which may influence the adherence of *Blastocystis*. Besides, chicken isolates showed an outer coat without surface coat projection or fibrillar structure as seen in the human diarrheic faecal sample (Zaman et al., 1999). This finding contradicted with a study by Cassidy et al. (1994) who described small surface projections on some of their chicken isolates. Apart from that, chicken isolates have similar surface characteristic to asymptomatic human isolate (Ragavan et al., 2014) with lesser binding affinity to FITC-Con A whereby less pathogenic isolate owing to compromised adhesion.

There are limited studies conducted on the genomic analysis of *Blastocystis* spp. isolated from chickens. Results from this study showed chickens were infected with multiple genotypes including zoonotic ones. A total of six subtypes were identified in chickens including ST1, ST6, ST7 and ST8 (Abe et al., 2003a; Arisue et al., 2003; Noël et al., 2003). This study also highlighted two subtypes; ST6 and ST7 as prevalent in the chicken population (Stensvold et al., 2009).

In this study, ST6 was recovered from six broiler chickens obtained from a wet market in Perak. Based on the PCR amplification using the DNA barcoding primer, isolates from two broilers (A20 and A26) were identified as ST6 while the other four
isolates (C15, C16, C19 and C23) were analysed using the sequenced-tagged site (STS) primers. The finding of *Blastocystis* infection in broiler chickens was unexpected especially because these birds were reared in an intensive barn system, treated with antibiotic and antihelminthics. The same zoonotic subtype was also recovered from three isolates from Chinese bamboo partridge, vulturine guineafowl and Japanese green pheasant at a zoo in Japan (Abe et al., 2003a). ST6 is uncommon in humans with the prevalence as low as 1% in the Netherlands (Bart et al., 2013) and 3.6% in Thailand (Jantermtor et al., 2013). This subtype was recently observed in the Indian street dogs (Wang et al. 2013).

ST7 was also identified in four village chickens (A2, A4, A6, and A18) and one broiler chicken (A28). ST7 was previously isolated from chickens, quails, geese and birds. However, Tan et al. (2013) also reported the presence of ST7 in goats in Selangor. Since this subtype was previously reported in human particular the Malaysian populations (Tan et al. 2009), domestic animals namely chicken and goat may serve as reservoir hosts for transmission to humans.

Meanwhile, ST1 was detected in village chicken isolates (A16) from a mini zoological garden in Perak. This subtype was similarly reported in chicken (Yoshikawa et al., 1996), dogs (Wang et al., 2013; Ruaux et al., 2014), pigs (Navarro et al., 2008), chimpanzees, and gorillas (Roberts et al., 2013). It is one of the most common pathogenic human subtypes (Moosavi et al., 2012). A study in Thailand showed nearly 80% of the schoolchildren were infected with *Blastocystis* ST1 (Jantermtor et al., 2013).

ST8 was previously isolated from non-human primates, as well as humans and chickens (Stensvold et al., 2009). In the present study, ST8 was detected in two village
chickens (A17 and A38) from a mini zoo in Perak. Due to its low host specificity, transmission between humans and poultry warrant serious attention particularly among animal handlers such as chicken farmers and those working in slaughter houses or wet markets. Additionally, none of the chicken examined showed any symptoms of infection unlike the consequence of human infection (Yan et al., 2006).

3.5 Conclusion

The present study is the first to elucidate the prevalence, phenotypic characteristic, ultrastructural and subtype of *Blastocystis* spp. isolated from chickens in Peninsular Malaysia. Furthermore, this study also justifies that chickens reared locally showed multiple subtypes. This is the first study to show the presence of *Blastocystis* spp. in boiler chickens.
Table 3.5: List of previous publication on *Blastocystis* in birds.

<table>
<thead>
<tr>
<th>Host</th>
<th>Reference/Origin</th>
<th>Prevalence (%)</th>
<th>Morphological characteristics</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Chicken</td>
<td>Yamada et al. (1987)/Japan</td>
<td>- 10/10 (100)</td>
<td>- Although polymorphic forms were rarely found in the lumen of the chicken’s caecum, these forms were frequently found shortly after in vitro cultivation. - The central vacuole usually did not stain with iodine, but was sometimes lightly to heavily stain. - Size: 9-32 µm in the lumen contents of fowl caeca.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Belova and Kostenko (1990) : Hen</td>
<td>- 80-100%</td>
<td>- The parasite form varies from round to ellipsoid. - There were 1 to 4 nuclei - Cytoplasm contains a great number of ribosomes and mitochondria with cristae resembling in their shape oval or round small sacs. - Nucleus contains nucleolus. Chromatin mass is concentrated on one of the poles of the nucleus as individual bodies. - Sizes: 7.5-35.0 x 6.25-30.0 (18.67 x 17.05) µm.</td>
<td>-</td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Chicken</td>
<td>Stenzel et al. (1994)/Australia</td>
<td>14/18 (77.8)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 15-20 µm in diameter. Larger cells (> 30 µm in diameter)</td>
<td>- The cells were surrounded by a thick, fibrillar surface coat.</td>
</tr>
<tr>
<td>Yoshikawa et al. (1996)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yoshikawa et al. (2003)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arisue et al. (2003)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Noël et al. (2003)/France</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Abe et al. (2004)/Japan</td>
<td>3/6 (50)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alfellani et al. (2013c)/Libya</td>
<td>1/3 (33.3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Chicken</td>
<td>Bergamo do Bomfim and Machado do Couto (2013)/Brazil</td>
<td>- 23/70 (32.9)</td>
<td>Vacuolar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The cells were rounded in shape and contain a central body resembling a large vacuole.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 10.9 - 32.1 µm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Granular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The granular form showed a different quantity of granules in their interior.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 9.0 to 28.3 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amoeboid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- It was found in small amounts in the stained fecal smears.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 13.4 to 45.5 µm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cyst</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The cells were characterized as rounded or ovoid, with one or two internal nuclei.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 2.1 to 5.5 µm.</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Chicken</td>
<td>Present study: Free-ranged chicken</td>
<td>36/105 (34.3)</td>
<td>Vacuolar</td>
<td>ST1, ST7 and ST8</td>
</tr>
<tr>
<td></td>
<td>- Barn-reared chicken</td>
<td>11/74 (14.9)</td>
<td>Granular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The cells were generally</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>smaller and rounded to ovoid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in shape.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 3 to 5 µm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cyst</td>
<td></td>
</tr>
<tr>
<td>Duck</td>
<td>Belova (1991)</td>
<td>-</td>
<td>- The cells appeared rounded</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to ellipsoid with one to four</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>nuclei.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pakandl and Pecka (1992)</td>
<td>80% in adults</td>
<td>- The cell surface was</td>
<td>ST6 and ST7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25% in ducks</td>
<td>generally rounded to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>month old</td>
<td>spherical in shape and had a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>smooth surface coat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>whereas some organisms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>showed indentations or deep</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>grooves with infoldings.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Bacteria were seen attached</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>to the surface of the cell.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Two types of vacuoles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>forms in the culture form of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>village chicken isolates;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>one containing a large central</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vacuole completely</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>electron-lucent, and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>other which contains</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>electron-opaque, in fully</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>distended vacuoles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The organisms possess a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>thin wispy surface coat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>which resembles a slight</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ruffled.</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>--</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Duck | Stenzel et al. (1994)/Australia | 3/4 (75) | - The cells were generally ovoid or rounded, being only occasionally slightly irregular in outline.
- Size: 10-15 µm in diameter.
- The surface coat approximately 0.5 µm thick was present on all cells, although this often appeared to be separating from the cell in one of the samples.
- Other samples showed the surface coat to be closely associated with the cell membrane.
- Vacuolar contents contain opaque concentration of flocculent material.
- Nuclei showed a crescent of condensed chromatin. Very rarely was an elliptical band of chromatin seen with commonly a single nucleus was present. | |
| Duck | Noël et al. (2003)/France | - | - | ST7 |
| Duck | Bergamo do Bomfim and Machado do Couto (2013)/Brazil | 34/73 (46.6) | - The general morphology of *Blastocystis* for duck was similar to that of the chicken parasite (above). | |
| Goose | Belova (1992a) | - | - Size: 7.5-46.2 x 7.5-46.2 µm. | |
| Goose | Stenzel et al. (1994)/Australia | 6/7 (85.7) | - The cells were rounded to elongate, occasionally slightly irregular in outline.
- Size: 10-15 µm in diameter.
- The surface coat was thick (0.5 µm), compact and fibrillar.
- Central vacuole contents were consistently dense, flocculent material.
- The nuclei were rounded with a crescent of condensed chromatin being observed. | |
<table>
<thead>
<tr>
<th>Host</th>
<th>Reference/Origin</th>
<th>Prevalence (%)</th>
<th>Morphological characteristics</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
<td>TEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostrich</td>
<td>Yamada et al. (1987)/Japan</td>
<td>2/2 (100)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stenzel et al. (1994)/Australia</td>
<td>9/9 (100)</td>
<td>- The cells were rounded to ovoid.</td>
<td>ST4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- The surface coat was thick (0.5 µm) and fibrillar, and no cell was seen without a surface coat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- Vacular contents were clumped, fibrous materials, frequently exhibiting a dense fibrous inclusion.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- A rounded nucleus showing an elliptical concentration of condensed chromatin.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roberts et al. (2013)</td>
<td>6/10 (60)</td>
<td>-</td>
<td>ST5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chandrasekaran et al. (2014)/Malaysia</td>
<td>37/37 (100)</td>
<td>- The vacoular and granular forms are generally smaller.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- Size: 15 to 30 µm (vacuolar) and 5 to 20 µm (granular).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- Surface strecture revealed spherical and smooth surface with tiny pores.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- High electron dense area was observed in the central vacuole of most of the cells.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- Membrane thickness of 235.48 to 345.22 nm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>Lee (1970)</td>
<td>-</td>
<td>- The cells from the caecal contents appeared as around or oval in shape.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 5 to 10 µm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- The fine structure showed it to have mucilaginous coat, a central vacuole, several mitochondria, and one or more nuclei.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>- The central vacuole contained finely granular material and occasionally a crystalline inclusion.</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Turkey</td>
<td>Belova (1992b)</td>
<td>-</td>
<td>- The shape varies from round and oval to ellipsoid and amoeboid. - Size: 2.5–55.1 x 2.5–51.3 µm.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Noël et al. (2003)/France</td>
<td>-</td>
<td>-</td>
<td>ST6</td>
</tr>
<tr>
<td>Quail</td>
<td>Arisue et al. (2003)</td>
<td>-</td>
<td>-</td>
<td>ST6</td>
</tr>
<tr>
<td></td>
<td>Yoshikawa et al. (2003)/Japan</td>
<td>-</td>
<td>-</td>
<td>ST6 and ST7</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (2004)/Japan</td>
<td>2/9 (22.2)</td>
<td>-</td>
<td>ST6 and ST7</td>
</tr>
<tr>
<td></td>
<td>Bergamo do Bomfim and Machado do Couto (2013)/Brazil</td>
<td>17/71 (23.9)</td>
<td>- The general morphology of Blastocystis for quail was similar to that of the chicken parasite (above).</td>
<td>-</td>
</tr>
<tr>
<td>Pheasant</td>
<td>Abe et al. (2002)/Japan</td>
<td>-</td>
<td>-</td>
<td>ST6</td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Pheasant</td>
<td>Abe et al. (2003a)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (2004)/Japan</td>
<td>3/9 (33.3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Partridge</td>
<td>Taylor et al. (1996)/England: Red-legged patridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (2002)/Japan: Chinese bamboo partridge</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (2003a)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Guinea fowl</td>
<td>Abe et al. (2002)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (2003a)/Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CHAPTER 4: STUDY

STUDY ON Blastocystis spp. IN WILD RATS

4.1 Introduction

Wild rats have increasingly become a nuisance with not only causing the destruction of foodstuff, gnawing of electrical wiring in buildings, contaminate the surroundings with excreta resulting, in significant economic losses but also hosts to transmit a wide range of pathogens, such as Leptospira sp., Toxoplasma gondii, Cryptosporidia and Blastocystis.

The reports of Blastocystis in rodents are limited with the earliest findings in rats (Knowles and Das Gupta, 1924) and mice (Lavier, 1952). Later studies highlighted its presence in laboratory bred rats with high infection (60%) in Wistar and Sprague-Dawley rats (Chen et al., 1997a). While other laboratory bred animals such as rabbits, hamsters, gerbils and laboratory mice were free from infection (Pakandl, 1992).

Isolates from rats are known as B. ratti based on the differences in karyotypic patterns (Chen et al., 1997b). Although ST4 have been reported among rodents, but the total number of samples and host species studied thus far has been small with only five rat samples (Noël et al., 2003, 2005; Yoshikawa et al., 1998) and two guinea pigs (Yoshikawa et al., 1998). Alfellani et al. (2013c) suggested rodent infections of this subtype were species related. Ramírez et al. (2014) recorded ST2 from Rattus rattus in Colombia. Both subtypes are common in Europe in which ST2 prevalent in patients with diarrhea and healthy individuals whereas ST4 linked to diarrhea and/or irritable bowel syndrome (IBS) (Alfellani et al., 2013b; Ramírez et al., 2014).
Despite these reports, many still remains to be understood about *Blastocystis* in rodents and little attention were given to the commensal urban rat populations. The brown rat or Norway rat is one of the principal commensal pests in urban cities in Malaysia commonly found close to human inhabitants (Mohd Zain *et al.*, 2012). Since the landscape of cities and towns in Malaysia will be typically reflective that of any other Asian metropolitan setting, a survey of *Blastocystis* in rodents obtained from the streets and local restaurants in town centers from Malaysia may provide important insights on the potential transmission possibility of *Blastocystis* sp. to humans in this region.
4.2 Materials and methods

4.2.1 Ethical approval

The ethics approval has been obtained as described in greater detail in Chapter 3.2.1.

4.2.2 Sampling

From June 2013 until August 2014, 293 urban wild rats namely; the brown rat (*Rattus norvegicus*) and house shrew (*Suncus murinus*) were captured from the vicinity of public spaces with food surplus and abundant shelter such as human dwellings, restaurants, livestock pens and wet markets in the two urban cities namely Ipoh, in the state of Perak and Kuala Lumpur, the capital city of Malaysia by adopting a convenient sampling method using the wire-box traps with selected baits. On trapping, all rats were examined. These rats appeared normal devoid of any clinical symptoms of disease.

4.2.3 Dissection

All rats were humanly euthanized, dissected and the caecum was removed. The contents were collected and stored in a container prior to their contents being subjected for *in vitro* culture.

4.2.4 *In vitro* cultivation

All samples were subjected to *in vitro* cultivation as described in Chapter 3.2.4.

4.2.5 Microscopy examination

The positive faecal smears were stained with 10% Giemsa and Sudan Black B stain according to procedures highlighted in Chapter 3.2.5.
4.2.6 Cytochemical staining

Cytochemical staining was conducted on selected isolates according to procedures highlighted in Chapter 3.2.6.

4.2.7 Ficoll-Paque concentration method

In order to collect the cyst form of *Blastocystis*, Ficoll-Paque concentration method was subjected to selected faecal samples as in the procedure highlighted in Chapter 3.2.7.

4.2.8 Electron microscopy

Selected day-3 positive culture samples and *Blastocystis* cyst were subjected to ultrastructural studies using scanning and transmission electron microscopy as described in the procedures highlighted in Chapter 3.2.8.

4.2.9 In vitro growth profile

The parasites of each isolates were pooled together from day 2 cultures to make a final concentration of 1×10^5 cells per ml in 3 ml of Jones’ medium containing 10% horse serum. All cultures were kept in airtight tubes and incubated at 37°C for up 10 days. All experiments were done triplicate. The parasite count was done using haemacytometer chamber (Improved Neubauer, Hausser Scientific) with 0.5% Tryphan blue solution as viability indicator. The parasite count was determined daily for up to 10 days. Only viable cells that did not take up Tryphan blue stain were counted. 50 parasites were randomly selected for size measurement using eyepiece graticule pre-calibrated with stage micrometer on light microscope (Olympus). The number of the vacuolar form, granular form and amoeboid form was calculated daily. On day 10 of the
growth profile, the sediment containing the parasites of each isolates was sub-cultured to determine the viability of the parasites.

4.2.10 Subtyping

All positives isolates were then subjected to sequence tagged site (STS) primer-polymerase chain reaction (PCR) and DNA barcoding according to Chapter 3.2.9.

4.2.11 Statistical analysis

Statistical analyses were described in Chapter 3.2.10.
4.3 Results

4.3.1 Prevalence of Blastocystis in wild rats

A total of 133 (45.4%) (95% confidence interval [CI] = 39.3-51.2%) brown rats were positive for Blastocystis while not one of the house shrews caught were infected. Male infections (38.5%) were lower than females (43.6%) respectively. There was no association observed between infection with host-sex ($\chi^2 = 0.424$, [df] = 1, $P = 0.515$) as well as the geographical location ($\chi^2 = 0.042$, [df] = 1, $P = 0.839$). Meanwhile, prevalence in Perak (46.3%) was slightly higher than in Kuala Lumpur (45%) (Table 4.1).

<table>
<thead>
<tr>
<th>Infection</th>
<th>Sampling sites (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perak</td>
<td>Kuala Lumpur</td>
</tr>
<tr>
<td>Positive</td>
<td>38 (46.3)</td>
<td>95 (45.0)</td>
</tr>
<tr>
<td>Negative</td>
<td>44 (53.7)</td>
<td>116 (55.0)</td>
</tr>
<tr>
<td>Total no. of wild rat</td>
<td>82 (28.0)</td>
<td>211 (72.0)</td>
</tr>
</tbody>
</table>

Table 4.1: Prevalence of Blastocystis in wild rats.
4.3.2 Morphological forms

The morphological forms of parasites isolated from wild rats were examined in the fresh caecum specimens as well as in cultured form. The fresh caecum specimens contained elliptical vacuolar forms (Figure 4.1a) similar to those seen in day 1 cultured forms (Figure 4.1b). However, after prolonged cultures, rounded vacuolar forms were predominantly seen with measurements ranging from 4 μm to 45 μm in diameter (Figure 4.2). The cells often possess one or two nuclei, and occasionally, quadrinucleate cell. Multivacuolar forms (Figure 4.3) were also seen in the isolates. The cyst of wild rat isolate is smaller than vacuolar form and ovoid in shape which ranged from 2 to 10 μm in diameter.

4.3.3 Modes of reproduction

Binary fission and plasmotomy (budding) (Figure 4.4a) of the vacuolar forms is the most commonly observed mode of reproduction. However, schizogony-like organisms, which possess many progeny or daughter cell structures in the central body were less frequently observed in in vitro cultures of wild rat isolates (Figure 4.4b).
Figure 4.1: Day 1 *Blastocystis* isolated from wild rats recovered from (a) caecum and (b) *in vitro* culture under light microscopy. CV; central vacuole.
Figure 4.2: *Blastocystis* isolated from wild rats after prolonged cultures.

Figure 4.3: Multivacuolar forms occasionally seen in the *in vitro* culture.
Figure 4.4: Mode of reproduction of Blastocystis from wild rat isolates (a) binary fission (arrow) (b) budding (arrow) (c) schizogony-like organisms. BF; binary fission, B; budding, P; progeny.
4.3.4 Surface structure

Scanning electron micrograph showed the fresh caecum form with slightly rough surface (Figure 4.5a). Meanwhile, the surface coat of the cultured form and cyst form appeared spherical in shape with smooth surface (Figure 4.5b and c).

4.3.5 Ultrastructure

Transmission electron micrographs examination of Blastocystis from wild rat isolates revealed an irregular form of vacuolar form in which the organelles were present in a thin rim of cytoplasm surrounding a large central vacuole (Figure 4.6a). The cell had a thin membrane layer with the measurement ranging from 135.51 to 196.82 nm. The mitochondria-like organelle varied in shape from round to oblong, but the Golgi complex was not seen. The nucleus was slightly elongated which was bound by double membrane in addition to a crescentic band of electron opaque material which is also known as nucleolus. Meanwhile, a low electron dense area was observed in the central vacuole. The cyst form is relatively smaller in size with a thicker layer of membrane surrounding the parasites compared to a relatively thin layer of membrane surrounding the vacuolar form (Figure 4.6b).
Figure 4.5: Surface structure of *Blastocystis* isolated from wild rats isolated from (a) fresh caecum form (b) cultured form (c) cyst form.
Figure 4.6: Electron micrograph of *Blastocystis* isolated from wild rats. (a) Vacuolar form. (b) Cyst form. N; nucleus, m; mitochondria-like organelle, CV; central vacuole, SC, surface coat, CM; cell surface membrane, CVM; central vacuole membrane, nu; nucleolus, G; glycogen.
4.3.6 Cytochemical studies

Light microscopic images *Blastocystis* isolated from day 3 culture of wild rat stained with Sudan Black B showed positive reactions are seen as dark droplets in the central vacuole of the cells (Figure 4.7a).

There was a faded light green fluorescence with Fluorescein isothiocyanate (FITC)-labeled Con A (*Canavalia ensiformis*) binding on the membrane of both vacuolar and granular forms (Figure 4.8) of *Blastocystis* sp. from day 2 culture. The fluorescence intensity and the percentage of the reactive forms of wild rat isolate in FITC-labelled Con A stain range was (1+; 88-100%).

Acridine orange is a cell-permeant nucleic acid binding dye that emits green fluorescence when bound to double stranded DNA and red fluorescence when bound to single stranded DNA or RNA. The respective epifluorescence image showed that the vacuolar form was stained dull green while the granular form was stained bright green (Figure 4.9).
Figure 4.7: *Blastocystis* isolated from wild rats stained with Sudan Black B showing dark stain in the central vacuole indicating the presence of neutral lipid under 1000× magnification. Note: dark droplets (arrow).
Figure 4.8: Binding affinities of *Blastocystis* stained with FITC-labelled Con A (a) Light microscopic images *Blastocystis* of wild rat isolate (b) A same organism stained with FITC-labeled Concanavalin A (ConA) assay, AFU (1+): weak intensity. V; vacuolar form, G; granular form.
Figure 4.9: Epifluorescence image of *Blastocystis* stained with acridine orange (a) Light microscopic images *Blastocystis* of wild rat isolate (b) A same organism stained with acridine orange.
4.3.7 Growth characteristics

Over a 10-day growth period of *Blasocystis* cultured in Jones’ medium supplemented with 10% horse serum, two randomly chosen isolates (T9 and T21) showed different parasite growth rates. The parasite counts peak on day 7 for isolate T9 whereas on day 5 for isolate T21. The isolates started initially with a parasite count of 1 x 10^6 cells/ml and peaked at 14.3 x 10^6 cells/ml (Isolate T9) and 25.4 x 10^6 cells/ml (Isolate T21). Meanwhile, the numbers dropped dramatically on day 8 for both isolates to 13.1 x 10^6 cells/ml (Isolate T9) and 8.1 x 10^6 cells/ml (Isolate T21) (Figure 4.10).

The vacuolar forms were predominant in cultures on day 1 until day 4 showed a mean diameter values of 2 to 14 µm, 3 to 10 µm, 2 to 15 µm and 3 to 16 µm respectively. Vacuolar forms counts peaked on day 3 for both isolates with a percentage ranged from 92.4% (Isolate T21) to 63.9% (Isolate T9) however, dropped drastically by day 7 for both isolates (Figure 4.11).

The granular forms appeared on day 1 but dropped by day 4 for both isolates. The average size range of granular forms on day 1 until day 4 was 3 to 8 µm, 3 to 7 µm, 3 to 11 µm and 3 to 6 µm respectively in diameter. The percentage of granular forms in both isolates increased gradually from day 5 to day 7 with a percentage ranging from 44.2% (Isolate T9) to 78.7% (Isolate T21) (Figure 4.12). However, both isolates dropped drastically as it approaches day 8. In addition, the growth profile was similar for both isolates where the numbers of granular forms was able to multiply and increase once again on day 9 onwards.
Figure 4.10: Growth profiles of total number of parasites.

Figure 4.11: Percentages of the presence of vacuolar forms.
Figure 4.12: Percentages of the presence of granular forms.
4.3.8 Subtype identification

Using the sequenced-tagged site (STS) primers, two of the wild rat isolates (WR11 and WR12) were confirmed to be ST4 (Figure 4.13). Meanwhile, using the DNA barcoding method on additional 45 isolates revealed four distinct subtypes. They comprised two isolates of ST1, 41 isolates of ST4, and each one isolate of ST5 and ST7 (Table 4.2).
Figure 4.13: PCR amplification reaction of *Blastocystis* sp. from wild rat isolates using the sequenced-tagged site (STS) primers SB337 (lane 1 and 2; 487bp) indicating ST4.

Table 4.2: Subtype of *Blastocystis* from wild rat isolates obtained *Blastocystis* Sequence Typing Databases.

<table>
<thead>
<tr>
<th>Blastocystis sp. subtype</th>
<th>Sequence-positive isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>2</td>
</tr>
<tr>
<td>ST4</td>
<td>41</td>
</tr>
<tr>
<td>ST5</td>
<td>1</td>
</tr>
<tr>
<td>ST7</td>
<td>1</td>
</tr>
</tbody>
</table>
4.4 Discussion

Information on Blastocystis isolated from wild rodents is scarce whilst most previous descriptions and prevalence data were primarily from laboratory rats. This parasite was first described in rats (Knowles and Das Gupta, 1924), mice (Lavier, 1952) and the Wistar and Sprague-Dawley rats (Chen et al., 1997a). This study records for the first time infections in urban wild rat population particularly the brown rats (Rattus norvegicus). Table 4.3 summarizes the previous studies on Blastocystis spp. in rodents. Results from this study provide clearer evidence that high prevalence of Blastocystis sp. in brown rats. Unfortunately, its presence in the house shrew was not detected possibly due to the small sample capture. The finding is the first to demonstrate the parasite in a large scale survey and the health implications since these animals live in close association with humans and its role in transmitting to other hosts including humans through contaminating the environment, food and water sources with Blastocystis spp.

Amidst the towering buildings that make up Ipoh and Kuala Lumpur iconic skylines, these cities are plagued by an ever-increasing population of rats. Rats are drawn to places with surplus food, abundant shelter and poor sanitation. Market places mainly the illegal dumping sites, the cooking areas of roadside stalls and unhygienic restaurants are ideals places for rats to thrive.

Chen et al. (1997b) described the morphology of Blastocystis from Wistar rats and concluded that the morphology of rat Blastocystis isolates was rather similar with the various forms of B. hominis. This study also reports the first description of Blastocystis from the caecum of wild rats and in vitro culture. The findings showed a distinct morphological form observed in fresh caecum isolate and when cultured on day 1. The vacoular forms were elongated but reverted to become rounded after prolonged cultures
which concurred with Stenzel et al. (1994) findings that culture conditions may alter the actual morphological. Furthermore, the surface structure of vacuolar forms isolated from fresh caecum samples had a smoother cell surface compared with the cultured forms. The cell membrane in the present study was thinner compared to human isolates as showned by Ragavan et al. (2014). To date, no ultrastructural description is available on Blastocystis sp. ST4 from wild rats.

Growth profile was used previously to demonstrate phenotypic differences (Tan et al., 2008). In the present study, the growth profile of Blastocystis sp. ST4 from wild rat isolates (T9 and T21) concurred with the growth profile of Blastocystis isolated from asymptomatic individual (Tan et al., 2008). Besides, the results also revealed that the viable granular forms from day 5 to 10 was able to multiply and remained viable up to 3 days when sub-cultured on day 10 which suggests the ability of viable granular forms to produce new progeny of Blastocystis after sub-culturing.

This study represents the first successful attempt to determine the genetic diversity of Blastocystis spp. from wild rat population in Malaysia. The results revealed that 37 brown rats were identified as ST4. The genotypic characterization in this study was consistent with those described by Noël et al. (2003; 2005) and Yoshikawa et al. (1998) to which this same subtype was recovered from rat isolates from Singapore and Japan. Although ST4 appears to be restricted to rodents, a greater host range was present in kangaroo, ostriches, Snow Leopard and non-human primates (Roberts et al., 2013; Alfellani et al., 2013c). In most studies, ST4 was the fourth most common subtype found in humans. This subtype is commonly found across Europe, UK and Sweden but rare in other countries (Alfellani et al., 2013b; Forsell et al., 2012). Recent studies indicated that this subtype appears to be linked to diarrhea and/or IBS (Alfellani et al.,
It was recently argued that methodology used may influence the results. Based on Stensvold (2013), it appears that ST4 accounts for approximately 1% and 17% of Blastocystis carriage detected by the sequence-tagged site (STS) primers method and non-STS methods, respectively. Although potentially coincidental, it should be noted that ST4 is rare or absent mainly in those countries where surveys have been conducted using the STS primers method, typically Asian and Middle Eastern countries. Therefore, the use of DNA barcoding in these countries is especially needed to validate the absence of ST4 in these particular regions.

ST1 could be identified in both humans and a wide range of animals. In human, it is the most dominant subtype in Thailand (Tan, 2008) with the prevalence of 77.9% in schoolchildren (Leelayoova et al., 2008) and 21.4% in patients from Srinagarind Hospital (Jantermtor et al., 2013). Apart from that, previous study reported that it is the second most common variant in China (24.5%) (Li et al., 2007b), Germany (21%) (Böhm-Gloning et al., 1997), Greece (20%) (Menounos et al., 2008) and Singapore (22%) (Wong et al., 2008). Recently, Alfellani et al. (2013b) reported that this subtype was detected in the IBS group. In addition, Kumarasamy et al. (2014) reported the occurrence of ST1 in patients with colorectal cancer from University of Malaya Medical Centre (UMMC), Malaysia. It is suggested that this subtype may be related to pathogenicity with a higher subtype-symptom relationship being noted (Yan et al., 2006). As mentioned above, a wide range of animals could be a reservoir of Blastocystis particularly monkeys, chimpanzees, cattles, pigs, horse, ostriches, dogs, goats and
chickens (pheasant) (Alfellani et al., 2013c; Yoshikawa et al., 2003; Navarro et al., 2008; Tan et al., 2013; Wang et al., 2013; Ruaux et al., 2014). Others suggested that this subtype appears to be linked to zoonotic transmission from farm animals (Noël et al., 2003; Tan, 2008). In Malaysia, Tan et al. (2013) reported that this subtype is the most predominant Blastocystis subtype harboured by locally reared goats from different farms in Selangor. Remarkably, this study revealed new sights on Blastocystis reservoirs. The subtypes analyses demonstrate that two brown rat obtained from wet market in Kuala Lumpur, Malaysia were identified as ST1. Therefore, the study raises the possibility of zoonotic transmission of Blastocystis from household pests living in a community based environment is feasible via the faecal-oral route.

A recent study by Wang et al. (2014) reported a high prevalence of Blastocystis carriage in pigs (76.7%) with all pigs harbouring ST5. Based on these results, pigs are likely to be a natural host of Blastocystis with ST5 being the host adapted subtype. This subtype was also commonly found in Libyan domestic animals i.e cattle yet was not found in humans which means either that those hosts do not contribute to human infections or that humans are not susceptible to infection with this subtype (Alfellani et al., 2013b). Interestingly, this study is the first time that wild rat isolate has been assigned to this subtype. It is therefore very likely that continued sampling will uncover additional new hosts for existing subtypes.

ST7 was also been identified in a wild rat obtained from a market in Kuala Lumpur (R22). Previous studies have reported this subtype in chickens, quails, geese and birds. However, Tan et al. (2013) recently reported that Blastocystis sp. ST7 in the goats in Selangor, Malaysia. Since this subtype was previously reported in human infection in particular the Malaysian populations (Tan et al., 2008; Tan et al., 2009), domestic
animals namely chicken, goat and also wild rat may serve as reservoir hosts for transmission to humans.

4.5 Conclusion

The present study represents the first study to elucidate the epidemiology, phenotypic, ultrastructural and subtype characteristics of *Blastocystis* isolated from wild rats in Malaysia in order to determine the true pathogenicity of this zoonotic parasite. The importance of understanding *Blastocystis* in the environment is crucial because rodents are in close contact with human and a source of human infection. Therefore, rodent control and eradication measures must be carried out by the local municipals in order to prevent rodent borne diseases.
Table 4.3: List of previous publication on *Blastocystis* in rodents.

<table>
<thead>
<tr>
<th>Host</th>
<th>Reference/Origin</th>
<th>Prevalence (%)</th>
<th>Light microscope</th>
<th>SEM</th>
<th>TEM</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>Knowles and Das Gupta, (1924)</td>
<td>- Infected with Blastocystis (Not mentioned)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Chen et al. (1997a) /Singapore</td>
<td>- 60%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Chen et al. (1997b) /Singapore</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Axenic culture
- The cells were generally smaller, mostly typical vacuolar forms.
- Size: 6±15 \(\mu\)m in diameter.
- Ameboid forms were rare.
- Cyst forms were also found.

Axenic culture
- About 90% of the cells were vacuolar forms.
- Multivacuolar forms were also found together with the vacuolar forms.
- In one of the vacuolar forms, about ten vesicle-like structures were seen.
- The giant cells measuring 40 \(\mu\)m were occasionally seen.
- Ameboid forms were frequently found.
<table>
<thead>
<tr>
<th>Host</th>
<th>Reference/Origin</th>
<th>Prevalence (%)</th>
<th>Morphological characteristics</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Rats</td>
<td>Arisue et al. (2003) /Japan</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Noël et al. (2005) /Singapore</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Present study</td>
<td>- 133/293 (45.4) : Brown rats</td>
<td>- This contained elliptical vacuolar forms similar to those seen in day 1 cultured forms.</td>
<td>- The cells revealed an irregular form of vacuolar form.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- After prolonged cultures, rounded vacuolar forms were predominantly</td>
<td>- The cell had a thin membrane layer with the measurement ranging from 135.51 to 196.82 nm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 4 µm to 45 µm in diameter.</td>
<td>- The mitochondria-like organelle were round to oblong in shape.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The cells often possess one or two nuclei, and occasionally, quadrinucleate cell.</td>
<td>- The Golgi complex was not seen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Multivacuolar forms were also seen in the isolates.</td>
<td>- The nucleus was slightly elongated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The cyst of wild rat isolate is smaller than vacuolar form and ovoid in shape.</td>
<td>- A low electron dense area was observed in the central vacuole.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Size: 2 to 10 µm in diameter.</td>
<td>- The cyst form is relatively smaller in size with a thicker layer of membrane.</td>
</tr>
<tr>
<td>Mice</td>
<td>Lavier (1952) /France</td>
<td>- Infected with Blastocystis (Not mentioned)</td>
<td>- The surface of fresh caecum form showed slightly rough surface.</td>
<td>-</td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Mice</td>
<td>Pakandl (1992)</td>
<td>- 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>/Czechoslovakia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrew</td>
<td>Present study</td>
<td>- 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Chen et al. (1997a)</td>
<td>- 0/37 (0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>/Singapore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>Chen et al. (1997a)</td>
<td>- 0/37 (0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>/Singapore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerbil</td>
<td>Pakandl (1992)</td>
<td>- 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>/Czechoslovakia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinea pig</td>
<td>Silberman et al. (1996)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>/USA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5:

STUDY ON Blastocystis spp. IN COCKROACHES AND HOUSE GECKOS

5.1 Introduction

Cockroaches and house geckos are common house pests throughout the tropics. Cockroaches are notorious mechanical vectors to many diseases and have worldwide distribution, infesting many types of dwelling. It is believed that cockroaches may be a reservoir for a range of bacteria including Staphylococcus and Streptococcus. Meanwhile, house geckos faeces are often considered to be a nuisance and can even cause Salmonella infection when ingested (Callaway et al., 2011).

The occurrence of Blastocystis in the American cockroach (Periplaneta americana) was reported in Singapore with 80% of the cockroaches caught from sewage tanks were positive for Blastocystis (Zaman et al., 1993). To date, only one Malaysian study reported of the low occurrence of Blastocystis in cockroaches from human dwellings (10%) (Suresh et al., 1997). Both studies described the isolates were similar to B. hominis. However, little was known of those isolates as descriptions were based on morphological criteria only (Zaman et al., 1993; Suresh et al., 1997) and no systematic studies on subtype characterization of this parasite.

Meanwhile, the only published report on Blastocystis sp. infection in house geckos was conducted by Suresh et al. (1997). It was found that 7% out of 30 captured house geckos (Hemidactylus platyurus) were positive for Blastocystis with most of the cells seen were granular form.
Blastocystis is widespread in nature and infecting a wide range of hosts. However, there has been no conclusive evidence of the presence of this parasite in cockroaches as well as house geckos as they are commonly found in human dwellings and may play a role as a possible vector. Thus, prompted this study to determine the current prevalence, biological features as well as subtype characterization of Blastocystis isolated from cockroaches and house geckos as well as factors associated to infection.
5.2 Materials and methods

5.2.1 Study population

Cockroaches were captured in according to the types of urban dwellings and structures (drainage system, residential homes and grocery stores) from two states in Malaysia, namely in Ipoh, Perak and Puchong, Selangor. The cockroaches were trapped using sticky traps and barehanded technique. Each specimen was transferred into a sterile container, transported to the laboratory and anaesthetised at 4°C for 10 min. The host-stage for each specimen was noted prior to dissection (Appendix B).

Meanwhile, house geckos (*Hemidactylus platyurus*) were caught at night in randomly selected households within the study area in their hiding places. They were placed into transparent plastic container with old newspaper to provide a near similar environment of their hideout in which the lid of the bucket was finely perforated for ventilation and taken to the laboratory for *Blastocystis* screening.

5.2.2 Dissection

Dissection was carried out under sterile conditions. For cockroaches, the legs and wings were removed. The sides of the abdomen were cut on either side of the anus, and the complete gut were removed posteriorly. The contents were then removed and stored in a container prior to the *in vitro* culture method.

As for house geckos, the animals were anesthetized and a ventral midline incision was made to remove the entire intestine and rectum. The intestinal walls and rectum were scraped off using a blunt knife to remove the contents and placed in a sterile container prior to the cultivation method.
5.2.3 *In vitro* cultivation

All samples were subjected to *in vitro* cultivation as described in Chapter 3.2.4.

5.2.4 Microscopy examination

The positive faecal smears were stained with 10% Giemsa and Sudan Black B stain according to procedures highlighted in Chapter 3.2.5.

5.2.5 Cytochemical staining

Cytochemical staining was conducted on selected isolates according to Chapter 3.2.6.

5.2.6 Electron microscopy

Selected day-3 positive culture samples and *Blastocystis* cyst were subjected to ultrastructural studies using scanning and transmission electron microscope as described in Chapter 3.2.7.

5.2.7 Subtyping

All positives isolates were then subjected to DNA barcoding according to Chapter 3.2.8

5.2.8 Statistical analysis

Statistical analyses were described in Chapter 3.2.10.
5.3 Results

5.3.1 Prevalence of *Blastocystis* in cockroaches and house geckos

Out of 151 cockroaches, 61 (40.4%) were positive for *Blastocystis* infection. More adult (79) were captured compared to nymph (72) stages of which, higher infection 58.2% (46/79) were observed in the nymphs compared to 20.8% (15/72) the adult stage with significant association between the parasite infection with host-stage ($\chi^2 = 21.877$, [df] = 1, P = 0.000). *Blastocystis* infection was also associated to types of dwellings ($\chi^2 = 22.987$, [df] = 3, P = 0.000) where infection was highest in cockroaches from grocery stores (62.9%) compared to residential homes (30.6%) and drainage system (20.8%). In addition, infections were all asymptomatic.

However, this study failed to detect any *Blastocystis* positive sample out of 45 house geckos using the *in vitro* cultivation method since no organisms was not present up to day 3 in culture.
Figure 5.1: The prevalence of infected cockroaches with *Blastocystis* relative to host-stage.

Table 5.1: Prevalence of *Blastocystis* in cockroaches relative to sampling sites.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Sampling sites (%)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drainage system</td>
<td>Dwelling</td>
</tr>
<tr>
<td>Positive</td>
<td>11 (20.8)</td>
<td>11 (30.6)</td>
</tr>
<tr>
<td>Negative</td>
<td>42 (79.2)</td>
<td>25 (69.4)</td>
</tr>
<tr>
<td>Total (%)</td>
<td>53 (28.5)</td>
<td>36 (23.8)</td>
</tr>
</tbody>
</table>
5.3.2 Morphological forms

The *in vitro* cultures of cockroach isolates contained mostly vacuolar forms ranging in size from 7 to 14 µm (Figure 5.2a). On occasion, granular forms were also observed measuring between 9 to 20 µm (Figure 5.2b) in which the granules were prominent and refractile. It was also noted that the isolates grew at both 25°C and 37°C. However, cell growth was optimal at room temperature (25°C) with higher number of cells recovered (Figure 5.3a) compared to isolates incubated at 37°C (Figure 5.3b).

5.3.3 Surface structure

Scanning electron images showed that vacuolar form isolated from cockroach possessed a smooth surface (Figure 5.4a) and some showed a more coarse and folded surface (Figure 5.4b).

5.3.4 Ultrastructural

Transmission electron micrographs of *Blastocystis* isolated from cockroach showed spherical in shape with multiple vacuolar present in the cytoplasm (Figure 5.5a). High electron dense material was observed in the central vacuole of the granular from compare to the vacuolar form with two nucleuses was seen in the *Blastocystis* cells of cockroach isolates (Figure 5.5b). Meanwhile, the cell membrane of *Blastocystis* in vacuolar form was slightly thicker as compared to granular form with the measurement of 214.31 to 248.03 nm (Figure 5.6a) and 185.88 to 222.04 nm (Figure 5.6b), respectively.
Figure 5.2: Light micrograph of *Blastocystis* in cockroach under 400× magnification. (a) Vacuolar form (b) Granular form.
Figure 5.3: *Blastocystis* in cockroach incubated at different temperature under 400× magnification (a) 25°C (b) 37°C.
Figure 5.4: Surface structure of vacuolar form of *Blastocystis* from cockroach (a) smooth surface (b) coarse and folded surface.
Figure 5.5: Electron micrograph of *Blastocystis* from cockroach (a) Vacuolar form (b) Granular form. N; nucleus, V; vacuole, CV; central vacuole, SC; surface coat, CM; cell surface membrane, CVM; central vacuole membrane.
Figure 5.6: Measurement of the surface coat from cockroach isolates (a) Vacuolar form (b) Granular form.
5.3.5 Cytochemical studies

There was a lower FITC-labeled ConA binding observed in the membrane of both vacuolar and granular forms (Figure 5.7) of Blastocystis on day 2 of L82 culture isolate as evidenced by a faded green fluorescence. The fluorescence intensity and the percentage of the reactive forms of L82 isolate in FITC-labelled Con A stain range was (1+; 90-100%).

Acridine orange is a cell-permeant nucleic acid binding dye that emits green fluorescence when bound to double stranded DNA and red fluorescence when bound to single stranded DNA or RNA. The respective epifluorescence image showed that the vacuolar form was stained dull green while the nucleus was stained bright green (Figure 5.8).
Figure 5.7: Binding affinities of *Blastocystis* stained with FITC-labelled Con A. (a) Light microscopic images *Blastocystis* of cockroach isolate. (b) A same organism stained with FITC-labeled Concanavalin A (ConA) assay. V; vacuolar form, G; granular form.
Figure 5.8: Epifluorescence image of *Blastocystis* stained with acridine orange (a) Light microscopic images *Blastocystis* of cockroach isolate (b) A same organism stained with acridine orange.
5.3.6 Subtype identification

Using the DNA barcoding method, a total of eight DNA sequences covering the first 500 base pairs (5'-end) of the *Blastocystis* small subunit (SSU) rRNA gene were obtained. It was found that two isolates were identified as ST3, one isolate was closely related to allele 114 which is most likely to be the new subtype and one isolate showed low/poor signal-to-noise ratio which probably due to too little DNA template added to sequencing reaction or primer binding to the template was not very efficient. Another four sequences were found to be fungi.
5.4 Discussion

Information on *Blastocystis* in cockroaches and house geckos is very limited. Table 5.2 summarizes the previous descriptions and prevalence data on this parasite in cockroaches and house geckos.

The flat-tailed house geckos or *Hemidactyulus platyurus* caught in this study showed negative result of *Blastocystis* infection. However, the only published report on *Blastocystis* in house geckos by Suresh et al. (1997) found that 7% infection house geckos caught from human dwellings in Kuala Lumpur, Malaysia. There were several factors that could affect *Blastocystis* infection such as habitat and diet. House geckos have less exposure to contamination since the habitat was relatively clean compared to cockroaches commonly inhabit sewers and poorer sanitation areas. Meanwhile, gecko’s diets are composed mainly of insects from the order of Hemiptera, Hymenoptera and Coleoptera (Diaz Perez et al., 2012) also show no evidence of *Blastocystis* in those insects. Therefore, infection via the oral route is uncommon. However, the low prevalence of *Blastocystis* infection reported by Suresh et al. (1997) suggest that house geckos may be transiently and opportunistically infected by whichever *Blastocystis* is present in their environment, be it from a human or non-human source. Thus far, house geckos are unlikely to act as natural host for *Blastocystis*.

As compared to the previous study, a moderate *Blastocystis* infection was recorded (40.4%) in the cockroach in this study. This is the only study with a large number of cockroaches (n=151) caught from drainage system, grocery store and dwelling.

Blastocystis infections were found associated to types of habitat. High infections were noted for cockroaches captured from grocery stores compared to residential homes.
and drainage system. The abundance of starchy foods, sweet substances and meat product makes this type of habitat ideal for this nocturnal arthropod to come out from hiding such as sewers and toilets to forage. Zaman et al. (1993) reported infection incidences up to 80% in cockroaches and attributed the infections to type of habitats i.e. sewage tanks. Therefore, control of cockroaches can substantially minimize the spread of this parasite contaminating the environment.

In addition, significant association was observed between Blastocystis infection with host-stage with higher infections in nymphs compared to adults. Typically, nymphs are similar to adults, except for the absence of the wings, genitalia and also body colouring. Nymphs also differ in their feeding behaviour. According to Richter and Barwolf (1994), nymphs of P. americana took larger meals during the first three days post-moult. This behaviour suggests that nymphs were most highly exposed to infection while foraging for food.

The light microscopy observations exhibited general morphology similar to Blastocystis from cockroaches collected from sewers in Singapore (Zaman et al., 1993). The cultures contained mostly vacuolar and granular forms. However, cyst-like stage and amoeboid forms were absent in this study.

The isolates grew in culture at both room temperature (24°C) and 37°C as reported previously by Zaman et al. (1993) however optimal growth was observed for isolates at room temperature (24°C) with an increasing number of viable cells compared to those incubated at 37°C. As previously described, some Blastocystis organisms in poikilothermal animals may have originated from homoiothermal hosts; Blastocystis cycluri isolated from an iguana and AFJ96-H1 isolated from a toad could survive at 37
°C and 34 °C, respectively, while another isolate from the same host iguana species could not (Yoshikawa et al., 2004b). These lines of evidence suggested that some isolates in poikilothermal animals were originated from homoiothermal hosts, and thus these isolates were positioned within the isolates of homoiothermal hosts. Therefore, phylogenetic analysis showed that the cockroach isolates are specifically related to herptiles (reptile and amphibian) and insect Blastocystis.

Scanning electron microscopy showed that Blastocystis isolated from cockroach possess a smooth surface similar to asymptomatic human isolates as well as coarse and folded surface as seen in IBS isolates (Ragavan et al., 2014).

The ultrastructural features of Blastocystis were observed as previously described by Yoshikawa et al. (2007) with multiple vacuolar present in the cytoplasm. However, general morphological vacuolar form was seen in Blastocystis isolated from cockroach in this study whereas the granular form contained a highly electron dense material within the central body. Besides, its surface coat seen more prominently thicker by TEM studies. It is high likely that this surface could be sticky and may influence in the adherence of Blastocystis. In human, the thicker surface coat shown by the ultrastructural study in IBS isolates could influence cytopathic effect of Blastocystis towards the intestinal lining of the gut (Ragavan et al., 2014).

There has been one report of the SSU rRNA sequences of Blastocystis isolates from cockroaches, which demonstrates that four isolates from cockroaches form a new clade that branches early within the Blastocystis lineage. Based on the previous study, amphibian and reptilian Blastocystis isolates were separately located at different
positions with an amphibian/reptilian clade (clade VIII) emerging immediately after the divergence of the cockroach clade (clade X) (Yoshikawa et al., 2007).

We then employed DNA barcoding to characterize the isolates of Blastocystis from cockroaches. Using this method, two isolates were identified as ST3 which had not been reported in this species. ST3 is the most common subtype in humans exclusively in patients with IBS (Alfellani et al., 2013; Ramírez et al., 2014). Besides, it was also been reported in other animal hosts such as non-human primates (Pertrášová et al., 2011), giraffe (Alfellani et al., 2013), goats (Tan et al., 2013). With representation among humans, non-primates, insects and artiodactyls, ST3 clearly has a very wide host range. Meanwhile, another cockroach isolate was found to be most likely the new subtype which was closely related to allele 114.
Table 5.2: List of previous publication on *Blastocystis* in cockroaches and house geckos.

<table>
<thead>
<tr>
<th>Host</th>
<th>Reference/Origin</th>
<th>Prevalence (%) /habitat</th>
<th>Morphological characteristics</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cockroach</td>
<td>Zaman et al. (1993)</td>
<td>- 8/10 (80) /sewage tanks</td>
<td>- The morphology of all of the isolates was similar to that of B. hominis.</td>
<td>Cyst</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The cultures contained mostly vacuolated forms.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Size: 10 to 20 µm.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Large forms measuring up to 50 gm as well as granular and amoeboid forms were also seen.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Suresh et al. (1997)</td>
<td>- 3/30 (10)/dwelling</td>
<td>- Mostly vacuolar forms ranging in size from 7 to 14 µm.</td>
<td>ST3 (allele 56)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The granular forms were also observed measuring between 9 to 20 µm in which the granules were</td>
<td>and new subtype (allele</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>prominent and refractile.</td>
<td>114)</td>
</tr>
<tr>
<td></td>
<td>Present study</td>
<td>- 11/53 (20.8) /drainage system</td>
<td>- The vacuolar form isolated from cockroach possessed a smooth surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 11/36 (30.6) /dwelling</td>
<td>- The granular form showed a coarser and folded surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-39/62 (62.9) /grocery store</td>
<td>- The cell membrane in vacuolar form was slightly thicker than granular form (214.31 to 248.03 nm).</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2/30 (7)</td>
<td>Light microscope: The cells found in cultures from the intestinal contents were rounded, numerous in number and varied in size with typical peripheral nuclei characteristic. Most of the cells were granular forms. Cyst-like forms were seen with one of the cells being enclosed within an outer membrane and another displaying a highly refractile, thickened cytoplasm.</td>
<td></td>
</tr>
<tr>
<td>House gecko</td>
<td>Suresh et al. (1997) /Malaysia</td>
<td></td>
<td>SEM: -</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TEM: TEM studies revealed the multivacuolar form with rounded mitochondria that showed prominent cristae. One of the cells contained three large vacuoles which were bordered by a distinct membrane and had the appearance of sac-like pouches enclosing rounded granules. One of the vacuoles showed a rupture of the membrane, releasing granules to the outer central body of the parasite.</td>
<td></td>
</tr>
<tr>
<td>Present study</td>
<td>- 0</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
5.5 Conclusion

Zero prevalence of *Blastocystis* infection in house geckos caught in this study may be attributed to low risk of food and water contamination as well as minimum exposure in their environment to faecal material from human and non-human hosts. Considering this prevalence, they are unlikely to be natural hosts of *Blastocystis*. Besides, this study presents the findings of *Blastocystis* infections in the common household cockroaches in Malaysia with a large number of samples and a first to characterize the subtypes infecting cockroaches in order to shed light on the transmission and distribution as well as, better understanding of the evolution and polymorphism of this organism.
CHAPTER 6:

STUDY ON Blastocystis spp. IN COMPANION ANIMALS

6.1 Introduction

Several Blastocystis human subtypes were isolated from companion animals (Lee et al., 2012; Leelayoova et al., 2013) especially cats and dogs were proposed as a potential source of Blastocystis infection to humans (Nagel et al., 2012). Knowles and Das Gupta (1924) first reported the presence of Blastocystis in domestic cats in Australia and more recently high prevalence of Blastocystis was reported in domestic cats (67.3%) and dogs (70.8%) (Duda et al., 1998). In contrast, Wang et al. (2013) reported low prevalence in stray dog populations in Australia (2.5%), and in Cambodia (1.3%) and India (24%). Ruaux and Stang (2014) recorded the prevalence of Blastocystis in dogs in shelters in the US Pacific Northwest as between 9.7-11.7%. Chuong et al. (1996) and Suresh et al. (1996) failed to detect Blastocystis in cat and dogs samples in Malaysia. A generally low prevalence in cats and dogs across the previous studies suggest these domestic animals are not a significant reservoir. Nevertheless, according to Parkar et al. (2010), Blastocystis sp. ST1 through to ST9 has been reported from both human isolates and non-human animals while ST10 has been reported exclusively from non-human animals.

In culture, Blastocystis grow optimally at neutral pH (Stenzel and Boreham, 1996). Zhang et al. (2012) reported no significant changes to the reproduction capability of B. hominis under pH conditions between 7 and 8, while the short-term and in vitro culture method is reported to be optimal at pH values between 7 and 7.5. The low prevalence of Blastocystis in cat and dog populations is possibly due to the low gastric pH and high enzymes secretion in cat and dog gastrointestinal tracts making the
environment unsuitable for *Blastocystis* reproduction (Sutton, 2004). High acidity in the gastrointestinal system facilitates protein breakdown and kill the pathogenic bacteria often abundant in flesh foods. Both cats and dogs have the ability to secrete concentrated hydrochloric acid (HCl) (pH 1 to 2) in the presence of food. Following a meal, the average feline stomach has a pH of 2.5 (Brosey *et al*., 2000) while the average canine stomach has a pH between 2.0 and 2.5 (Sjaastad *et al*., 2010).

Therefore, the objectives of the present study was to determine the transmission potential of *Blastocystis* to humans via cat and dog reservoirs, specifically to determine the prevalence and subtypes of *Blastocystis* in cat and dog populations in Peninsular Malaysia and to assess changes in the morphology and viability of *Blastocystis* isolates when subjected to pH changes.
6.2 Materials and methods

6.2.1 Ethical approval

The ethics approval for all non-human animal subjects in this study has been obtained as described in greater detail in Chapter 3.2.1. Meanwhile, human ethical approval for this study was obtained in accordance with University Malaya Medical Centre research policy with Reference No: 20154-1218.

6.2.2 Sampling sites

This study sites involved three selected states in Peninsular Malaysia namely; Ipoh, Perak, Penang Island and Federal Territory of Kuala Lumpur, in the west coast of Peninsular Malaysia. In Perak, sampling was carried out in Ipoh situated at Kinta District, a district in central Perak governed under the Ipoh City Council whereas in Penang Islands, sampling was carried out in Jelutong, a suburb of Georgetown and Teluk Bahang, a fishing village in the northwest corner of Penang. In Federal Territory of Kuala Lumpur, sampling was carried out in Ampang and Setapak, two metropolitan areas governed under the Kuala Lumpur City Hall. The three sites were randomly selected as the landscapes were typical in terms of geographical location and where there are presence of both stray and sheltered dogs and cats.

6.2.3 Study population

6.2.3.1 Stray cats and dog

Stray animals refer to street, alley or semi-dependent cats and dogs that may possibly receive food directly from humans also through scavenging scraps from rubbish bins, dump sites or from slaughter remains on farms. No attempt was made to house these animals and normally inhabit man-made structures such as buildings or abandoned
vehicles. In this study, 10 and 38 stray cats and dogs respectively were screened for *Blastocystis*.

6.2.3.2 Sheltered cats and dogs

Sheltered animals refer to cats and dogs that are housed, fed and generally cared for by human or owner. During certain periods in the day and night they are kept free within a confined space, usually well fed and looked after. A total of 178 and 44 domestic cats and dogs from animal shelter such as SPCA (Society for the Prevention of Cruelty to Animals), Cat Beach Sanctuary, private pet shops, government and private veterinary clinics were randomly selected for *Blastocystis* screening.

6.2.4 In vitro cultivation

All samples were subjected to *in vitro* cultivation as described in Chapter 3.2.4.

6.2.5 Subtyping

All positives isolates were then subjected to DNA barcoding according to Chapter 3.2.9.

6.2.6 Viability experiment

Blastocystis isolates were obtained from fresh faecal samples of a village chicken (*Gallus gallus*) (A3) and a peafowl (*Pavo cristatus*) (M2) from a mini zoo in Perak. Three *Blastocystis* isolates (H1, H2 and H3) were obtained from patients at University of Malaya Medical Centre (UMMC). Human ethical approval for this study was obtained in accordance with University Malaya Medical Centre research policy with Reference. No: 20154-1218.
Six media (Jones’ medium supplemented with 10% horse serum) with a range of acidities (pH 6, 5, 4, 3, 2, 1), adjusted by adding 01M HCl, were prepared to simulate gastrointestinal pH. A control media (pH 7) was also prepared. Approximately 1 x 10⁶ cells of day-3 culture of avian isolates (A3 and M2) and 1 x 10⁵ cells of human isolates (H1, H2 and H3) were inoculated into 3 ml of the seven media. Culture tubes were prepared in triplicate for each media and subsequently incubated at 37°C. After 24 hours, the cells were counted using a haemocytometer chamber (Improved Neubauer, Hausser Scientific) with 0.5% Tryphan blue solution. The cells were evaluated for distinct morphological details, including size, shape and staining properties (indicative of viability).
6.3 Results

6.3.1 Prevalence of Blastocystis in cat and dog populations

Faecal samples from 188 cats (Felis catus) and 82 dogs (Canis lupus) obtained from stray and shelter-housed animals showed no presence of Blastocystis sp. in the in vitro culture medium. However, DNA barcoding of twelve cat samples (20%) were positive for Blastocystis with sequences assigned to ST1. Additionally, another five faint PCR bands were observed from five separate samples from cats which were considered negative or indicative of a very low parasite burden.

6.3.2 Viability of Blastocystis in acidic conditions

The number of viable cells observed after 24 hours was highly correlated with pH, with higher pH media (less acidic) having a greater number of viable cells (Figure 6.1). Blastocystis isolates of avian and human origin showed the typical round vacuolar form when cultured in media at pH 5 to pH 7 (Figure 6.2e and f). When cultured in media at pH 4, the vacuolar forms of the avian isolate Blastocystis exhibited a wrinkled, shrunken morphology (Figure 6.2c dan d); in contrast, the human Blastocystis isolates showed typical morphology at pH 4. In media at pH 3, 2 and 1 the growth of Blastocystis of both avian and human origin was suppressed and no viable cells were observed (Figure 6.2 a and b).
Figure 6.1: Total number of viable cells from (a) avian and (b) human isolates after 24 hours incubation.
Figure 6.2: *Blastocystis* cells of (a) avian and (b) human isolates cultured in a pH range of 1 - 4 showing the rounded structures of non-viable cells (arrow) whereas cells of (c) avian and (d) human isolates in pH4 showing non-viable vacuolar forms with a wrinkled or shrunk appearance (arrow) compared to the human isolates showing smaller viable vacuolar forms with low parasite count. Meanwhile, *Blastocystis* cells of (e)
avian and (f) human isolates in a pH range of 5 - 7 showing the typical rounded vacuolar form (arrow).

6.4 Discussion

The prevalence of Blastocystis infections in companion animals varies greatly worldwide, according to the available reports. High prevalence was reported in Australia (Duda et al., 1998) and Iran (Daryani et al., 2008), while no infections were detected in cats and dogs in Germany (König and Müller, 1997), Malaysia (Chuong et al., 1996) and Japan (Abe et al., 2002). Wang et al. (2013) suggested geographical and subtype variation in the Blastocystis infecting dog populations. Higher prevalence was reported in stray dog populations in India, with a greater subtype diversity, compared to Australian and Cambodian dogs (Wang et al., 2013). Ruaux and Stang (2014) reported high prevalence of subtype ST10 in shelter-resident dogs in the United States indicating low transmission potential, particularly to animal handlers and owners.

The variation in the detection results for Blastocystis across studies reflects the sensitivity of the adopted methods (Stensvold et al. 2007a). Roberts et al. (2011) reported that light microscopy had the lowest sensitivity compared to PCR-based detection. In contrast, Wang et al. (2013) suggested that light microscopy may be prone to false positive detections as Blastocystis is a pleomorphic organism with extensive variation in morphology which may lead to misinterpretation. Leelayoova et al. (2002) demonstrated that xenic in vitro culture was a significantly more sensitive detection method compared to the concentration or direct smear/light microscopy technique. Duda et al. (1998) successfully cultured Blastocystis from two dog samples with inspissated egg slant medium over a short growth period but failed to culture Blastocystis from cat faecal samples. Presently, the medium of choice for xenic culture
Blastocystis is Jones’ medium supplemented with 10% horse serum (Leelayoova et al., 2002; Suresh and Smith, 2004). None of the cat or dog samples obtained as part of this study was successfully cultured in this medium. A DNA barcoding method (sequencing a species specific DNA fragment) was adopted instead and successfully detected the presence of Blastocystis in cat samples. Despite being costly and time-consuming, this method was most sensitive compared to light microscopy and cultivation (Stensvold et al., 2007a) and proved to be a useful proxy for intra-subtype diversity. Nevertheless, concerns were raised that the template for PCR amplification may have been DNA derived from dead Blastocystis cells due to high gastric acid level in cats and dogs, and considering that no Blastocystis were successfully cultured in growth medium.

Overall, the result of our field study together with those from the literature review reporting the generally low prevalence of Blastocystis in cats and dogs suggest these companion animals do not represent a significant reservoir capable of shedding potentially zoonotic subtypes (ST1, ST2, ST3, ST4, ST5, ST6 and ST10). Both cats and dogs were possibly transiently or opportunistically infected with diverse subtypes of Blastocystis through coprophagia of other hosts faeces or through drinking contaminated water.

In this study, we detected the Blastocystis subtype ST1 in isolates from 12 shelter-housed cats. Blastocystis ST1 is the most common human subtype in Europe, Thailand, Libya, Nigeria and Peninsular Malaysia (Alfellani et al., 2013; Leelayoova et al., 2008; Nithyamath et al. 2016) and is associated with irritable bowel symptom (IBS) in patients (Alfellani et al., 2013), and is also zoonotic, having been isolated from farm animals (Tan, 2008). Subtype ST1 was also the subtype predominantly detected from
dogs in Australia, Cambodia and India (Wang et al., 2013) and also from a cat from the United States (KJ872776) (Ruaux and Stang, 2014).

Physiologically, *Blastocystis* requires a neutral pH to grow (Stenzel and Boreham, 1996) and results from this study supported the view that pH values between 7 and 5 facilitate optimal growth of avian *Blastocystis* isolates. However, *Blastocystis* isolated from human appear to have a slightly broader optimal pH range (pH 7 to 4). In this study, a smaller number of smaller sized, yet still viable *Blastocystis* cells were observed at pH 4. These results suggest that human *Blastocystis* isolates may be more tolerant to mild acidic condition compared to *Blastocystis* isolated from birds, due to the low pH levels in human digestive tract (Kararli, 1995).

In this study, in vitro cultivation using Jones’ medium, the standard and universal medium for *Blastocystis* culture, failed to culture *Blastocystis* from cat and dog samples. It is postulated that viable cells or cysts of *Blastocystis* were not present in the faecal samples of the cat and dogs due to the extreme acidic (pH 1, 2 and 3) condition of the cat and dog gastrointestinal tract, which suppressed the growth of the parasite. This hypothesis is supported by the results of our viability experiment described above.

The low pH in the stomach of cats and dogs is attributable to gastric juice, the digestive fluid produced by parietal cells (also called oxyntic cells). Gastric juice comprises concentrated hydrochloric acid (HCl) as high as 0.1 M, potassium chloride (KCl) and sodium chloride (NaCl). This fluid is responsible for the initial steps of protein digestion; protein denaturation and the activation of the first proteolytic enzyme, pepsin, as well as inactivation of ingested microorganisms such as bacteria (Persson, 2008).
In contrast, a bird’s stomach is well differentiated with the gastric acid secretion occurring only in the proventriculus and is responsible for protein denaturation and the activation of pepsinogen to pepsin. According to Rynsburger (2009), there is a linearly decline from 5.20 - 3.37 and 3.49 - 3.27 in pH respectively, in the proventriculus and gizzard of an ageing broiler chicken. However, it is also noted that poultry feed (i.e. oilseed meals, soybean and wheat) may also effect the pH on both organs.
Table 6.1: List of previous publication on *Blastocystis* in cats and dogs.

<table>
<thead>
<tr>
<th>Host</th>
<th>Reference/Origin</th>
<th>Prevalence (%)</th>
<th>Morphological characteristics</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Canine</td>
<td>Chuong et al. (1996) /Malaysia</td>
<td>- 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>König and Müller (1997) /Germany</td>
<td>- 0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Duda et al. (1998) /Australia</td>
<td>- 51/72 (70.8) : Dog</td>
<td>- The cells were irregular in shape. - Size: 3 to 10 µm in diameter (average 4.5 µm). - The cells appeared as the vacuolar form: a thin outer rim of cytoplasm, containing barely discernible organelles, surrounded a central vacuole of varying morphology.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Abe et al. (2002)/Japan</td>
<td>- 0/54 (0) : Pet dog</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canine</td>
<td>Daryani et al. (2008) /Iran</td>
<td>- 14/50 (28)</td>
<td>Dog</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Wang et al. (2013) /Australia</td>
<td>- 2/80 (2.5)</td>
<td>Pet and pound dog (Australia)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1/80 (1.3)</td>
<td>Semi-domesticated dog (Cambodia)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 19/80 (24)</td>
<td>Stray dog (India)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ruaux and Stang (2014) /USA</td>
<td>- 10/103 (9.7)</td>
<td>Shelter-resident canines</td>
<td>-</td>
</tr>
<tr>
<td>Present study</td>
<td>- 0/71 (0)</td>
<td>Dogs from the sheltered and stray population</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Feline</td>
<td>Knowles and Gupta (1924) /India</td>
<td>- Infected with Blastocystis (Not mentioned)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Host</td>
<td>Reference/Origin</td>
<td>Prevalence (%)</td>
<td>Morphological characteristics</td>
<td>Genotypes</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Light microscope</td>
<td>SEM</td>
</tr>
<tr>
<td>Feline</td>
<td>Duda et al. (1998)</td>
<td>- (67.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>/Australia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>: Cat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruaux and Stang (2014)</td>
<td>- 12/103 (11.65)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>/USA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>: shelter-resident felines</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Present study</td>
<td>- 0/130 (0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>: Cats from the sheltered and stray population.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.5 Conclusion

The viability of *Blastocystis* isolates in culture is pH-dependent with suppression of growth at low pH while a further increase in pH towards neutral conditions significantly increases the number of viable cells. It is proposed that both cats and dogs in Peninsular Malaysia were clear of *Blastocystis* infection, and the low prevalence found in cats and dogs in global reports, is attributable to the high acidity of cat and dog gastrointestinal tracts making them uninhabitable for the growth of *Blastocystis*. Therefore, they are unlikely to be natural hosts of *Blastocystis*.
CHAPTER 7:

FINAL DISCUSSION AND CONCLUSION

7.1 Final Discussion

Numerous studies on *Blastocystis* have been carried out in Malaysia however, mostly on human infections (Tan and Suresh, 2006a, b; Chandramathi *et al.*, 2010; Ithoi *et al.*, 2011). There are limited studies in a range of animal hosts including laboratory animals, sheep, rabbits, monkeys, dogs and cats however, only in a small numbers (Suresh *et al.*, 1996). Therefore, in order to better understand the zoonotic nature of this pathogen in animals a study was conducted to determine the prevalence, phenotypic, ultrastructural, and molecular studies of *Blastocystis* in animals hosts that were in close association to humans and their surroundings particularly; companion animals (cats and dogs), household pests (rats, house gecko and cockroaches) and poultry population as no data is available. Epidemiological studies on *Blastocystis* sp. among these animal hosts are important as it will provide a better understanding on the role of these animals as possible potential for zoonotic transmission.

The findings of this study now provide proof that chickens, wild rats and cockroaches were the natural hosts of this parasite as the infections remained asymptomatic in these animal hosts in addition to be infected with the human subtypes. The possibility of these animal hosts contaminating the environment, food and water sources with *Blastocystis* spp. posed a public health risk as these animals live in close association with humans.
Results of the first epidemiological survey of *Blastocystis* in broiler chickens showed surprisingly high infections despite being raised in an intensive barn system known for clean and hygienic environment which was less exposed to contamination. It was unclear the sources of contamination, however one plausible explanation could be the conditions the animals were housed and sources of food and water. Lee and Stenzel (1999) investigated an establishment with high-quality hygiene and sanitary conditions resulted with no positive birds for this protozoan parasite indicating good hygiene practices contributed to better health maintenance of the birds.

Cats and dogs were not the natural host for this organism. No presence of infection was detected from faeces and *in vitro* cultivation, in both the local sheltered and stray population. However, DNA barcoding of twelve cat samples (20%) were positive for *Blastocystis* with sequences assigned to ST1. The result prompted a pH medium study to understand the nature of gastric pH on the influenced *Blastocystis* infection in gastrointestinal tract of carnivorous animals. The viability of *Blastocystis* isolates in culture is pH-dependent with suppression of growth at low pH while a further increase in pH towards neutral conditions significantly increases the number of viable cells. It is proposed that both cats and dogs in Peninsular Malaysia were clear of *Blastocystis* infection, and the low prevalence found in cats and dogs in global reports, is attributable to the high acidity of cat and dog gastrointestinal tracts making them uninhabitable for the growth of *Blastocystis*. Both cats and dogs were possibly transiently or opportunistically infected with subtypes of *Blastocystis* through coprophagia of other hosts faeces or through drinking contaminated water.

Similarly, no *Blastocystis* infection was found from *in vitro* cultivation and faeces of house geckos. This could be attributed to low risk of food and water contamination as
well as minimum exposure in their environment. Therefore, they are unlikely to be natural host of *Blastocystis* However, further molecular and larger scale studies should be carried out to obtain clearer epidemiological information on *Blastocystis* in these reptilians.

Microscopic examination revealed vacuolar and granular forms were most commonly observed with the multi-vacuolar rarely seen. While, the amoeboid forms were absent in the animal culture medium. Vacuolar forms in cultures from chicken isolates were the largest ranging between 10 to 100 µm, followed by isolates from wild rats (4 to 45 µm) and cockroaches (9 to 15 µm) in diameter (Table 7.1). Otherwise, the general morphology appeared similar to *B. hominis*. As these morphological characteristics were in accord with the general features of *Blastocystis*, it was difficult to differentiate the newly isolated *Blastocystis* organisms from human and animals.

This study also reports the first comparative description of *Blastocystis* directly from the infected caecum of wild rats and with forms *in vitro* culture. The findings showed distinct morphological differences with the elongated vacuolar forms reverted to become more rounded after prolonged cultures which concurred with Stenzel *et al.* (1994) that culture conditions may alter the actual morphology of this organism. However, this unique morphology was not observed in other animal isolates apart from rats.

Furthermore, the surface analysis of vacuolar forms isolated from chickens, wild rats and cockroaches when cultured showed similarity to the surface structure of human isolates with a smooth and undulating cell surface with some organisms showing a coarser and folded surface without the small projections seen in the fresh forms.
According to Zaman et al. (1999), the surface coat enables the parasite to adhere to the intestinal epithelial of the gut. Also, it has been suggested that the surface coat acted in protection against osmotic shock (Mehlhorn, 1988).

Ultrastructure description of *Blastocystis* isolated from animal hosts is scarce compared to human isolates. Therefore, this study was carried out to elucidate the ultrastructure of *Blastocystis* isolated from chicken, wild rat and cockroach. Among the interesting findings were the variation in surface coat thickness and electron density varied between host’s isolates. In addition, the central vacuole showed considerable variation in its contents, ranging from completely electron-lucent to electron-opaque with fully distended vacuoles. Occasionally high electron dense areas were observed in the parasites isolated from the chicken, wild rat and cockroach samples. The electron dense material responded to the dark staining by Sudan Black B indicating the presence of lipids. Zierdt and Williams (1974) postulated that the highly electron dense material were granules to form the granular form and suggested the central body probably acted as an energy storage for cell growth. A surface coat was present on all isolates with thickness varying in sizes. The surface coat was thickest in the cockroach isolate followed by chicken isolate. Only a thin surface coat surrounded the parasite isolated from wild rat. Although the results suggested that basic morphology of *Blastocystis* organisms isolated from different animal host were similar however, several morphological variations were observed within those isolates.

The animal host isolates also differed in the optimal growth temperature and was indicative of their origins. However, the cockroach isolates grew in culture at both room temperature (24°C) and 37°C as a result of the origin of this organism in poikilothermal animals was originally from homoiothermal hosts. *Blastocystis cycluri* isolated from an
iguana and AFJ96-H1 isolated from a toad survived both at 37 °C and 34 °C, respectively, while another isolate from the same host iguana species failed (Yoshikawa et al., 2004b). These lines of evidence suggested that some isolates in poikilothermic animals could have originated from homioiothermal hosts, which eventually adapted to homioiothermal hosts. Therefore, phylogenetic analysis showed that the cockroach isolates are specifically related to herptiles (reptile and amphibian) and insect *Blastocystis*.

Using molecular identification, high diversity of *Blastocystis* subtypes was recorded in the local poultry population. The presence of five different subtypes were noted namely; ST1, ST6, ST7 and ST8. ST6 and 7 all of which were considered as avian subtypes (Stensvold et al., 2009) however, was also found for the first time in humans in Thailand (Jantermtor et al., 2013). However, these subtypes were rarely reported in Asia.

This study also highlighted two zoonotic subtypes from wild rat population with ST4 predominantly circulating in the population followed by ST1. As previously described, rodents are known reservoir host of ST4 (Noël et al., 2003, 2005; Silberman et al., 1996; Yoshikawa et al., 1998). Interestingly, the findings of this study also reported for the first time the occurrence of ST5 and ST7 in wild rat isolates in Peninsular Malaysia. It is therefore very likely that continued sampling will uncover additional new hosts for existing subtypes.

There has been one report of the SSU rRNA sequences of *Blastocystis* isolates from cockroaches, which demonstrates that four isolates from cockroaches form a new clade that branches early within the *Blastocystis* lineage (Yoshikawa et al., 2007). Based on
the previous study, amphibian and reptilian Blastocystis isolates were separately located at different positions with an amphibian/reptilian clade (clade VIII) emerging immediately after the divergence of the cockroach clade (clade X). However, the present study demonstrated for the first time that cockroaches shared the same subtype as those usually been in humans which was ST3.

Blastocystis is ubiquitous and known to infect a wide array of animals especially livestock or domestic animals. Figure 7.1 shows variable subtypes distribution of Blastocystis subtypes in both humans and animals surrounding the environment. Domesticated mammals such as pigs, cattles, goats, and poultry shared the same subtypes as in humans (ST1 to ST4) (Parkar et al., 2010, Stensvold, 2013) whilst subtypes from cattle and goats (ST10) rarely in humans. This study is the first to provide evidence supporting the zoonotic potential of Blastocystis in cats, dogs, wild rats, chickens and cockroaches in Peninsular Malaysia.

Tan et al. (2013) revealed the presence of Blastocystis ST1, ST3, ST6 and ST7 in the local goat population with similar human subtypes in particularly the local communities (Tan et al. 2008, 2009). Notably, ST6 and ST7, avian subtypes (Stensvold et al., 2009) were also found infecting goats and therefore can be postulated that both chickens and goats are reservoir for human infections as Blastocystis exhibited low host specificity.

Sequence and phylogenetic analyses of partial ssu rDNA of Blastocystis from a human, pig and horse by Thathaisong et al. (2003) revealed a common subgroup which demonstrated isolates from the pig and horse were monophyletic and closely related to the Blastocystis isolated from humans, with 92 to 94% identity. Therefore, Blastocystis isolates from domestic animals are closely linked to humans.
Animals may act as reservoirs for *Blastocystis* and facilitate zoonotic transmission from animals to the community particularly among animal handlers working in zoos/slaughter houses/wet markets or even consumers. Li et al. (2007a) reported pig ownership was a risk factor for *Blastocystis* in humans in China similar subtype ST5 infecting 16 pigs, as well three humans living in the same rural area (Yan et al., 2007). However, the potential risks can be minimised with proper farm hygiene as well as pest control and eradication measures carried out by the local municipals. As *Blastocystis* infection is fast becoming a common feature in humans, it is also crucial to screen animals especially poultry and livestocks in order to maintain good hygiene during processing meat and meat products to eliminate the risk of infection to humans.
Figure 7.1: Subtypes classification characterised from animal *Blastocystis* isolates.

* Subtypes described by ¹Tan et al. (2013), ²Stensvold et al. (2009), ³Abe et al. (2003b), ⁴Yoshikawa et al. (2004a), ⁵Thathaisong et al. (2003), ⁶Parkar et al. (2007), ⁷Noël et al. (2003), ⁸Arisue et al. (2003), ⁹Hess et al. (2006), ¹⁰Wang et al. (2013), ¹¹Ruaux and Stang, ¹²Present study and ¹³Suresh et al. 1997.
Table 7.1: Summary on comparison *Blastocystis* isolates from human and study animals in terms of morphological, morphometry and genotype characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Human (Tan et al., 2006; 2008)</th>
<th>Chicken</th>
<th>Wild rat</th>
<th>Cockroach</th>
<th>House Gecko</th>
<th>Cat and dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuolar forms</td>
<td>Rounded shape with a large vacuole, immotile and surrounded by a thin peripheral band of cytoplasm.</td>
<td>Similar to B. hominis, except for the variation seen in terms of its size.</td>
<td>Elliptical vacuolar forms similar to day 1 cultured forms but after prolonged cultures, rounded vacuolar forms were predominantly seen</td>
<td>Similar to B. hominis with small size in ranged.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granular forms</td>
<td>Rounded shape with a large vacuole, immotile, surrounded by a thin peripheral band of cytoplasm and presence of inclusion bodies or granules in the central vacuole.</td>
<td>Occasionally seen in chicken isolates, similar to the vacuolar forms except for the present of numerous granules.</td>
<td>Similar to B. hominis</td>
<td>Similar to the vacuolar forms in which the granules were prominent and refractile.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameoboid forms</td>
<td>Irregular shape with prominent nucleus at the central zone and multiple extended pseudopodia at the periphery, immotile.</td>
<td>Not seen.</td>
<td>Similar to B. hominis but rarely seen.</td>
<td>Not seen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size range</td>
<td>Vacuolar form: 5 µm - 90 µm</td>
<td>10 µm - 100 µm</td>
<td>4 µm - 45 µm</td>
<td>7 µm - 14 µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human (Tan et al., 2006; 2008)</td>
<td>Chicken</td>
<td>Wild rat</td>
<td>Cockroach</td>
<td>House Gecko</td>
<td>Cat and dog</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Granular forms</td>
<td>10 µm - 35 µm</td>
<td>10 µm - 30 µm</td>
<td>5 µm - 15 µm</td>
<td>9 µm - 20 µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ameoboid forms</td>
<td>5 µm - 65 µm</td>
<td>Not seen.</td>
<td>10 µm - 20 µm</td>
<td>Not seen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acridine orange staining : vacuolar forms</td>
<td>Nucleus: bright green fluorescence</td>
<td>Nucleus: bright green fluorescence</td>
<td>Nucleus: bright green fluorescence</td>
<td>Nucleus: bright green fluorescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central body: dull green</td>
<td>Central body: dull green</td>
<td>Central body: dull green</td>
<td>Central body: dull green</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>: granular forms</td>
<td>Nucleus: yellow to orange</td>
<td>Nucleus: bright green fluorescence</td>
<td>Nucleus: bright green fluorescence</td>
<td>Nucleus: bright green fluorescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Central body: yellow to orange</td>
<td>Central body: bright green fluorescence</td>
<td>Central body: bright green</td>
<td>Central body: bright green</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FITC-labeled ConA</td>
<td>Nil</td>
<td>Dull green florescence</td>
<td>Dull green florescence</td>
<td>Dull green florescence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>: vacuolar forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td>Dull green florescence</td>
<td>Dull green florescence</td>
<td>Dull green florescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>: granular forms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface level analysis</td>
<td>Surface structures</td>
<td>Spherical and smooth surface with tiny pores.</td>
<td>Rounded to spherical in shape and had a smooth surface coat with undulating cell surface.</td>
<td>Appeared spherical in shape with slightly rough surface.</td>
<td>Vacuolar form: smooth surface.</td>
<td>Granular form: coarser and folded surface.</td>
</tr>
<tr>
<td></td>
<td>Human (Tan et al., 2006; 2008)</td>
<td>Chicken</td>
<td>Wild rat</td>
<td>Cockroach</td>
<td>House Gecko</td>
<td>Cat and dog</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Ultrastructural analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface coat thickness</td>
<td>Thin membrane (184.70 to 208.72 nm)</td>
<td>Thick and compact membrane (237.74 to 342.63 nm)</td>
<td>Thin membrane (135.51 to 196.82 nm)</td>
<td>Slightly thicker membrane (214.31 to 248.03 nm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central vacuole</td>
<td>Clear</td>
<td></td>
<td></td>
<td>Clear</td>
<td>Clear</td>
<td></td>
</tr>
<tr>
<td>Localization of lipid</td>
<td>Negative reaction (No staining was observed in the central vacuole)</td>
<td>10% of the cells in portions shows positive reactions (Dark droplets were observed in the central vacuole)</td>
<td>Negative reaction (No staining was observed in the central vacuole)</td>
<td>Negative reaction (No staining was observed in the central vacuole)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular</td>
<td>ST1 – ST9</td>
<td>ST1, 6, 7 and 8</td>
<td>ST1, 4, 5 and 7</td>
<td>ST15, ST17 and Blastocystis C2 isolate (Clade X)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotyping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil (Negative for Blastocystis sp. infection)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.2 Final conclusion

1. The present study is the first to elucidate the current status, ultrastructural and subtype of *Blastocystis* sp. isolated from the local poultry population. The finding highlighted zoonotic implication to humans especially among animal handlers in the chicken farming community. Furthermore, this study also recorded multiple *Blastocystis* subtypes in the chicken isolates.

2. The present study represents the first study to elucidate the epidemiology, phenotypic, ultrastructural and subtype characteristics of *Blastocystis* sp. in urban wild rodents. The finding has important implications as *Blastocystis* ST4 and pathogenic subtype; ST1 was recorded for the first time from the local wild rat population. The importance of understanding *Blastocystis* sp. in the environment is crucial because rodents found in close contact with humans and source infection to humans. Therefore, rodent control must be carried out by the local municipals in order to prevent rodent borne diseases.

3. This study presents the findings of *Blastocystis* infections in *P. americana*, the common household cockroach in Malaysia and a first to characterize the subtypes infecting cockroaches namely, the newly discovered subtype, ST15 and ST17. The study shed light on the transmission and distribution as well as, better understanding of the evolution and polymorphism of this organism.

4. House geckos were free from infection and could be attributed to their diet and low risk of food and water contamination as well as minimum exposure in their environment to faecal material from human and non-human hosts. As a result, house geckos were unlikely to be the animal reservoir of *Blastocystis* sp. However, further molecular and larger scale studies would provide clearer picture of the epidemiology of *Blastocystis* in house geckos.

5. Faecal samples from cats and dogs from both shelter-housed and stray populations were screened for *Blastocystis* using culture/microscopy and DNA barcoding. In addition, we investigated the viability of human and avian *Blastocystis* isolates cultured across a range of pH conditions. DNA barcoding detected *Blastocystis* ST1 in 12 feline samples, but cultivation was unsuccessful from all cat and dog samples. The cultures of human and avian isolates showed an increase in the number of viable cells as the pH conditions changed from acidic to neutral. The results provide evidence that the low pH in the intestinal tract of cats and dogs create conditions unsuitable for
Blastocystis and therefore these animals are unlikely to be natural hosts of Blastocystis.

REFERENCES

Matsumoto, Y., Yamada, M., and Yoshida, Y. (1987). Light-microscopical appearance and ultrastructure of Blastocystis hominis, an intestinal parasite of

subunit rRNA gene sequences. *Molecular Biochemical Parasitology, 126*: 119-123.

COMPILATIONS OF PUBLISHED PAPERS

PUBLICATIONS:

PAPER PRESENTED:

5. Hemalatha C., Suresh Kumar G., Chandrawathani P., Premaalatha B. & Farah Haziqah M.T. (5-7 March 2014). **Infectivity of Blastocystis isolates from different animal hosts in Sprague Dawley rats.** 6th ASEAN Congress of
Tropical Medicine & Parasitology (ACTMP). Intercontinental Kuala Lumpur, Malaysia.

SEMINARS:

1. **Farah Haziqah M.T., Mohd Zain S.N., Suresh Kumar G. & Chandrawathani P.** (May 2013). **A preliminary study of Blastocystis sp. from chicken in Perak and Selangor, Malaysia.** Monthly Meeting of Research & Development (R&D). Veterinary Research Institute, Ipoh, Malaysia.

2. **Farah Haziqah M.T., Mohd Zain S.N., Suresh Kumar G. & Chandrawathani P.** (February 2014). **Natural occurrence of Blastocystis sp. in rodents.** Monthly Meeting of Research & Development (R&D). Veterinary Research Institute, Ipoh, Malaysia.

3. **Farah Haziqah M.T., Mohd Zain S.N., Suresh Kumar G. & Chandrawathani P.** (April 2014). **Detection of Blastocystis sp. in companion animals.** Monthly Meeting of Research & Development (R&D). Veterinary Research Institute, Ipoh, Malaysia.

5. Farah Haziqah M.T., Mohd Zain S.N., Suresh Kumar G. & Chandrawathani P. (January 2015). Isolation, detection and identification of *Blastocystis* sp. in companion animals, household pests and poultry population. Postgraduate Seminar. Institute of Biological Sciences, Faculty of Science, University of Malaya.
APPENDIX A

Modified Jones’ Medium

Stock solution

\[
\begin{align*}
1.233 \text{ g of sodium hydrogen phosphate (Na}_2\text{HPO}_4) \\
0.397 \text{ g of potassium hydrogen phosphate (KH}_2\text{PO}_4) \\
7.087 \text{ g of sodium chloride (NaCl)}
\end{align*}
\]

\[960 \text{ ml of distilled water}\]

- Discard 12.5 ml of the solution
- Add 100 ml of 1% yeast extract (100 ml water + 1 g yeast) into the solution
- Autoclave at 121°C for 15 minutes
- The medium was then supplemented with 10% of horse serum
 (Heat inactivated at 56°C for 30 min)
- Transfer into 3 ml tubes
- Store in the chiller
APPENDIX B

Posterior abdominal segments of cockroaches

(a) Male dorsal view
(b) Male ventral view
(c) Female dorsal view
(d) Female ventral view

(Source: http://biology4isc.weebly.com)
APPENDIX C

Summary of morphological characteristics of *Blastocystis* isolated from village chicken (A3) and peacock (M2) grown in Jones’ medium with different pH

<table>
<thead>
<tr>
<th>pH</th>
<th>Morphological characteristics</th>
<th>Village chicken isolates</th>
<th>Peacock isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Average size range</td>
<td>Cells viability</td>
</tr>
<tr>
<td>1</td>
<td>Non–viable vacuolar forms with the typical characteristics seen.</td>
<td>5.0µm - 10.0µm</td>
<td>Not viable</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.0µm - 10.0µm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4.0µm - 8.0µm</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Non–viable vacuolar forms appeared shrunk with less perfectly rounded to ovoid in shape.</td>
<td>4.0µm - 8.0µm</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Smaller vacuolar forms with low parasite numbers were seen.</td>
<td>5.0µm - 10.0µm</td>
<td>17.6 x 10^7 cells/ml</td>
</tr>
<tr>
<td>6</td>
<td>Vacuolar forms predominated with no significant changes noted.</td>
<td>5.0µm - 10.0µm</td>
<td>22.0 x 10^7 cells/ml</td>
</tr>
<tr>
<td>7</td>
<td>Large rounded vacuolar form surrounded by a thin peripheral band of cytoplasm.</td>
<td>10.0µm - 20.0µm</td>
<td>24.0 x 10^7 cells/ml</td>
</tr>
</tbody>
</table>
Summary of morphological characteristics of *Blastocystis* isolated from human (H1, H2 and H3) grown in Jones’ medium with different pH

<table>
<thead>
<tr>
<th>pH</th>
<th>Morphological characteristics</th>
<th>Isolates H1</th>
<th>Isolates H2</th>
<th>Isolates H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non–viable vacuolar forms with the typical characteristics seen.</td>
<td>10.0µm - 50.0µm</td>
<td>Not viable</td>
<td>10.0µm - 20.0µm</td>
</tr>
<tr>
<td>2</td>
<td>Larger vacuolar forms with low parasite numbers were seen.</td>
<td>10.0µm - 50.0µm</td>
<td>10.0µm - 20.0µm</td>
<td>20.0µm - 30.0µm</td>
</tr>
<tr>
<td>3</td>
<td>Smaller vacuolar forms with low parasite numbers were seen.</td>
<td>10.0µm - 50.0µm</td>
<td>10.0µm - 20.0µm</td>
<td>20.0µm - 30.0µm</td>
</tr>
<tr>
<td>4</td>
<td>Larger vacuolar forms with low parasite numbers were seen.</td>
<td>20.0µm - 70.0µm</td>
<td>3 x 10⁵ cells/ml</td>
<td>20.0µm - 30.0µm</td>
</tr>
<tr>
<td>5</td>
<td>Large rounded and viable vacuolar form surrounded by a thin peripheral band of cytoplasm.</td>
<td>30.0µm - 80.0µm</td>
<td>5 x 10⁵ cells/ml</td>
<td>20.0µm - 30.0µm</td>
</tr>
<tr>
<td>6</td>
<td>Larger vacuolar forms with low parasite numbers were seen.</td>
<td>30.0µm - 80.0µm</td>
<td>6 x 10⁵ cells/ml</td>
<td>20.0µm - 50.0µm</td>
</tr>
<tr>
<td>7</td>
<td>Larger vacuolar forms with low parasite numbers were seen.</td>
<td>30.0µm - 80.0µm</td>
<td>7 x 10⁵ cells/ml</td>
<td>20.0µm - 50.0µm</td>
</tr>
</tbody>
</table>