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ABSTRACT 

This research work focuses on the comprehensive analysis of proportional resonant 

(PR) controller for single-phase inverter. There is an increasing requirement for current-

controlled voltage source inverters with very low or zero steady-state error, better 

transient response and lower total harmonic distortion (THD). The most promising type 

of current regulator for single-phase inverter is PR controller because it can introduce an 

infinite gain at a selected resonance frequency such as the fundamental frequency to 

eliminate the steady-state error, which cannot be achieved by the well- known 

proportional integral (PI) controller. The PI controller faces problem in both steady-state 

magnitude error and phase error. In addition, it also has limited disturbance rejection 

capability, unlike the PR controller, which can also compensate the low-order 

harmonics. The imperfection in current control scheme results in higher harmonic 

distortion of the output current. This research presents detail analysis and 

implementation of PR current controller in single-phase inverter applications such as 

stand-alone and grid-connected renewable energy systems, energy storage systems and 

backup power supplies. Thus, the mathematical model of PR controller has been 

analyzed. In order to realize the important control features over conventional PI 

controller, PI controller has also been implemented in the same inverter and 

mathematically analyzed. The performances for both of these controllers have been 

analyzed in terms of steady-state and transient responses and current harmonics level. 

The effects of frequency variation on the PR controller performance have also been 

shown. The experimental result shows that the PR controller achieves zero steady-state 

error, better transient response and reduces the low-order harmonics distortion of the 

output current compared to PI controller. The harmonics has further been reduced by 

incorporating selective harmonic compensation with PR controller. The performances of 

the implemented controllers are simulated and compared in the widely used software 
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such as the MATLAB/Simulink environment which has reduced the developmental time 

and cost of the switching system. The experimental results of a 250 W laboratory test 

set have been implemented to validate the theoretical analysis and control principles of 

the PR and PI controllers.  
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ABSTRAK 

Kerja penyelidikan ini memberi tumpuan kepada analisis pengawal berkadar salunan 

(PR) bagi penyongsang fasa tunggal. Terdapat keperluan yang semakin meningkat bagi 

penyongsang sumber voltan kawalan arus dengan ralat yang sangat rendah atau ralat 

sifar pada keadaan mantap, sambutan fana yang lebih baik dan herotan harmonik (THD) 

yang rendah. Jenis kawalan arus yang paling baik untuk penyongsang fasa tunggal 

adalah pengawal PR kerana ia boleh memperkenalkan gandaan tidak terhingga pada 

frekuensi salunan terpilih seperti frekuensi asas untuk menghapuskan ralat keadaan 

mantap yang tidak boleh dicapai oleh oleh pengawal  berkadar kamiran ( PI). Pengawal 

PI menghadapi masalah dalam keadaan mantap dan kesilapan dari segi magnitud dan 

fasa. Di samping itu, ia juga mempunyai keupayaan penolakan gangguan terhad, tidak 

seperti pengawal PR yang boleh memberi pampasan kepada harmonik susunan rendah. 

Ketidaksempurnaan dalam skim kawalan menyebabkan herotan harmonik yang lebih 

tinggi pada arus keluaran. Kajian ini membentangkan analisis yang terperinci dan 

pelaksanaan kawalan salunan PR dalam aplikasi penyongsang fasa tunggal seperti 

sistem tenaga boleh diperbaharui yang berdiri sendiri dan tersambung grid, sistem 

penyimpanan tenaga dan bekalan kuasa sandaran. Oleh itu, model matematik pengawal 

PR telah dianalisa. Dalam usaha untuk menunjukkan kelebihan atau ciri-ciri penting 

bagi kawalan PR, pengawal PI juga telah dilaksanakan pada penyongsang yang sama 

untuk perbandingan. Prestasi untuk kedua-dua pengawal ini telah dianalisa dari segi 

tindak balas keadaan mantap, keadaan fana, dan tahap harmonik arus. Kesan perubahan 

frekuensi keatas prestasi pengawal juga telah terbukti. Hasil eksperimen menunjukkan 

bahawa pengawal PR mencapai ralat sifar pada keadaan mantap, sambutan fana yang 

lebih baik dan herotan harmonik arus yang rendah berbanding pengawal PI. Harmonik 

boleh dikurangkan lagi dengan menggabungkan pampasan harmonik terpilih dengan 

pengawal PR. Prestasi pengawal juga dilaksanakan secara simulasi dan dibandingkan 
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dengan perisian MATLAB/ Simulink. Keputusan eksperimen yang diperolehi daripada 

set ujian makmal 250W telah mengesahkan analisis dan teori kawalan arus PR dan PI. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Global energy demand is rapidly growing and therefore meeting the future energy 

demand becomes a major concern worldwide. To meet the energy demand, fossil fuels 

which have been used since many years ago are typically used as the primary energy 

sources. However, fossil fuels emit greenhouse gases that highly affect the environment 

and humanity (Cao, 2014; Du et al., 2013; Hasanuzzaman et al., 2012; Hasanuzzaman et 

al., 2011; Hosseini & Abdul Wahid, 2014; Islam et al., 2014; Ünal et al., 2015; Yang et 

al., 2001; Yu et al., 2010).  

For this reason, the alternative sources of renewable energy such as solar, wind, 

hydro, biomass and geothermal are getting popular. Figure 1.1 shows the average 

annual growth rates of renewable energy capacities in the world between 2009 and 

2014. A total amount of around 370-GW wind power and 177-GW solar/PV power have 

been installed in the world by the end of 2014, as shown in Figure 1.2 (a) and (b) 

respectively. Figure 1.3 shows the total installed capacity worldwide by the top ten 

countries in 2014. 

 

Figure 1.1: Average annual growth rates of renewable energy capacities (IEA, Global 

Energy Trends, 2014)  
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                                 (a)                                                                (b) 

Figure 1.2: Installed capacity in the world by end of 2014, (a) wind energy and (b) 

solar/PV energy (IEA, Global Energy Trends, 2014) 

 

        

                                    (a)                                                                     (b) 

Figure 1.3: Installed capacity in the world by the top ten countries in 2014, (a) wind 

energy and (b) solar/PV energy (IEA, Global Energy Trends, 2014) 

 

Hence, development of power converters for renewable energy sources is becoming 

more and more essential to provide clean power generation. For instance, in grid-

connected application, the power converter must satisfy standard  performance 

requirements on grid parameters such as voltage, current, frequency, harmonics, power 

factor and flicker (IEC 61727, IEEE 1547 and VDE V 0126) . For standalone renewable 

energy applications, the standard on safety is available such as IEC 62109 which is also 

applicable to grid-connected applications. Since the standalone application is isolated 

from the power grid, there is no specific requirement on the performance but it is 

recommended that it complies the basic harmonics standard for instance as specified by 
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IEC 61000-3-2 or IEEE 519. With today’s advancements in power electronics, inverter 

has becoming very common to power up ac loads used in residential and industrial 

sectors. The inverter is able to produce a sinusoidal output voltage and current which is 

important to achieve high energy efficiency and high power quality (Alepuz et al., 2006; 

Chung, 2000; Du et al., 2013; Hosseini & Abdul Wahid, 2014; Negroni et al., 2005; 

Tajuddin et al., 2015). Maintaining sinusoidal output requires voltage or current 

regulation to be incorporated into the inverter system, thus keeping the system output 

with low harmonics content for sustaining its performance, stability and reliability. The 

presence of harmonics reduces power quality and causes extra power losses that directly 

contribute to components failure and decreasing equipment’s lifetime. 

This study is associated with the inverter development focusing on the current 

control technique for single-phase inverter systems. First, an overview of various 

current control structures and related power quality issues that affect its performance 

such as current harmonics is presented. The current control structures are classified into 

linear and non-linear control techniques. Among the control techniques, two of them 

have been selected for comparison in terms of performance which are proportional 

integral (PI) and proportional resonant (PR), taking into account their significance and 

also practical implementation. In general,  PI controller has been employed in many 

power converters applications, such as active power filters (APFs), wind turbines, water 

turbines, photovoltaic inverters, uninterruptable power supplies, dynamic voltage 

restorer, active rectifiers, boost converters, induction drives, fuel-cell inverters and 

micro grids. Recently, PR controller is gaining popularity because of its capability in 

tracking a sinusoidal reference with zero steady-state error especially for single-phase 

system. It can also be applied in three-phase system particularly for controlling 

parameters in the stationary -reference frame. Simulation studies are conducted on 
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both PR and PI controllers using MATLAB Simulink software. A prototype of an 

inverter with sensor circuits was built for experimental verification of both controllers. 

1.2 Problem Statement 

The conventional proportional integral (PI) controller is very well known and has a 

very good performance in various control system applications. However, when the 

controller is used for current control in a single-phase inverter application, it creates 

steady-state magnitude and phase errors especially when tracking a sinusoidal reference. 

A different type of controller that able to overcome these problems is called 

proportional resonant (PR) controller. In order to show the advantages of PR controller 

over the conventional PI controller, a comparative study and analysis of these 

controllers are performed. This study includes the design, modeling, simulation and 

experimental tests on a single-phase inverter prototype. 

1.3 Research Objectives 

The objectives of this study are as follow: 

1. To develop the mathematical model of PR and PI controllers. 

2.  To simulate current control of single-phase inverter by using PR and PI 

controllers in MATLAB/Simulink.   

3. To build an inverter prototype with sensor circuits for experimental verification 

of the PR and PI controllers. 

4. To evaluate the performance of both controllers in terms of current’s total 

harmonic distortion, steady-state and transient conditions. 
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1.4 Methodology 

Below are the descriptions of research methodology adopted in this study. The 

flowchart of research methodology is shown in Figure 1.4. 

 Literature Survey and Concept Development 

             An extensive literature reviews from thesis, books, journal articles, magazines, 

reports and conference proceedings will be carried out to determine the latest 

developments in current control techniques for inverters. 

  Modeling and Simulation 

             Based on literature reviews, two current controllers PI and PR will be modeled 

mathematically for single-phase standalone PV inverter system. The overall system will 

be simulated using MATLAB Simulink. The performance of the controllers will be 

simulated at various operating conditions. 

  Software and Hardware Development 

             When the simulation results are satisfactorily, the controllers will be 

implemented in hardware using C programming language. The hardware is developed 

for verification of the controller’s performance experimentally. The component will be 

properly selected to meet all requirements in terms of power, voltage, current and 

frequency. 

  Testing and Data Analysis 

             The controllers will be tested at several operating conditions including steady-

state and transient. The experimental results will be compared with the simulation 

results for verification. 
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Figure 1.4: Flowchart of research methodology 

1.5 Scope of Research 

This research study will focus only on the PI and PR current control technique of 

single-phase inverters. Both control techniques will be simulated and implemented in 

single-phase stand-alone inverter prototype and tested using resistive load. In order to 

compare the characteristics and the performance of the PI and PR controller tests are 

conducted at several operating conditions. 

Literature Survey and 

Concept Development 

Modeling and 

Simulation 

Software and 

Hardware 

Development 

Testing and Data 

Analysis 
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However, this study does not cover voltage control as it require an additional control 

loop to be implemented for maintaining a sinusoidal output voltage. The controller’s 

performances are verified based on experimental tests conducted on a 250 W single-

phase inverter prototype.   

1.6 Thesis Outline  

This thesis report is organized into five chapters. A brief summary of these five 

chapters is given in this section. 

Chapter 2 gives an overview of current control techniques for single-phase inverters. 

In this chapter, the general structures of both linear and non-linear control techniques 

are presented including their transfer functions. The advantages and disadvantages of 

each controller are also given. Chapter 2 also cover the techniques used to mitigate the 

current harmonics, especially the low-order harmonics.  

Chapter 3 presents the detail analysis and implementation of PI and PR current 

controllers. These include the mathematical modeling of the single-phase inverter, LC 

filter and the controllers. The controllers are analyzed in open-loop and closed-loop 

forms using bode plots. The explanations on hardware implementation for experimental 

verification are provided in this chapter.   

Chapter 4 presents the results from the performance investigation of PI and PR 

control techniques for single-phase inverter. A brief comparison between PI and PR 

controllers in terms of harmonics suppression, steady-state response and transient 

response is also included in this chapter.  

Chapter 5 presents the conclusion and future works. 
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CHAPTER 2:  AN OVERVIEW OF CURRENT CONTROL TECHNIQUES 

2.1 Introduction 

In this section, several important background concepts are introduced, and a brief 

review of the state-of-the-arts in current control techniques for single-phase inverters is 

presented. In a single-phase inverter, the challenge is to design a controller that can 

track a sinusoidal reference current. Several current control methods have been 

investigated in the literature for controlling such inverters (Teodorescu et al., 2004; 

Timbus et al., 2009; Zammit 2014). These current control methods can be classified into 

linear and nonlinear. Proportional integral (PI), proportional resonant (PR) and 

repetitive control (RC) are among the linear controllers while dead-beat (DB), hysteresis 

and predictive controls are the nonlinear types.  

2.1.1 Current Control Structures for Single-Phase Inverter  

Figure 2.1 illustrates an example of the current control scheme implemented in a 

single-phase inverter with advanced power control in the case of grid-connected 

renewable energy system (Monfared  & Golestan 2012). The actual grid current is 

measured and compared with the reference current where the error is fed to a current 

controller to produce the inverter PWM signals. For grid connected system voltage loop 

is not required since the grid voltage is regulated, unlike the standalone system which 

require additional control loop to maintain its output voltage. 
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       P

Q
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Figure 2.1: Structure of renewable power generation system with different energy 

sources 

 

2.1.2 Linear Current Control for Single-Phase Inverters 

2.1.2.1 Proportional-integral (PI) controller  

PI controller is one of the most studied, well-known and established controllers in 

many applications, in which a constant or slowly-varying reference should be tracked 

(Espinoza et al., 2015; Y.-S. Kim et al., 2015; Pitalúa-Díaz et al., 2015; Wang et al., 

2015). Most of the PI controllers are typically associated with dq control strategy since 

they are superior for controlling dc variables. The dq control is also called a 

synchronous reference frame control. A general structure of the dq control is shown in 

Figure 2.2 (Monfared  & Golestan 2012).  
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-
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+

+
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+
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Figure 2.2: General current control structure for dq-control strategy 
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In this case, the dc-link voltage controller can be used to generate the reference current 

that represents the active power component. The reactive power reference is set 

depending on the need for the reactive power. 

A conventional PI controller is defined by the following transfer function: 

s

K
KsG i

pPI )(                                (2.1) 

where, pK  and iK   are the proportional and integral gains of the controller. However, 

the low order harmonics compensation capability is very poor when using the PI 

controller in the system (Hassaine et al., 2014; Saccomando & Svensson, 2001; 

Teodorescu & Blaabjerg, 2004; Teodorescu et al., 2003; Twining & Holmes, 2002). 

2.1.2.2 Proportional-resonant (PR) controller  

Over the last decade, PR controller’s popularity in current regulation for the stand-

alone and grid-connected system has increased (Fukuda & Yoda, 2001; Hassaine et al., 

2014; Teodorescu et al., 2006; Yuan 2002; Zmood & Holmes, 2003). Unlike PI 

controller, PR controller is able to track a sinusoidal current reference with zero steady-

state magnitude and phase error in the stationary reference frame (αβ frame). The 

current control structure of PR controller in αβ frame is shown in Figure 2.3 (Monfared  

& Golestan 2012).  

PR PWM FilterPI
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DC 
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dq
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+

+

-

-

-
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Figure 2.3: General current control structure for αβ-control strategy 

 

Univ
ers

ity
 of

 M
ala

ya



11 

 

The transfer function of PR controller is defined as: 

2

0

2
)(




s

s
KKsG ipPR

                        (2.2) 

where, 0  is the resonance frequency, Kp is the proportional gain, and Ki is the integral 

gain of the controller. Equation (2.2) shows an ideal PR controller which can achieve an 

infinite gain and zero phase shift at the resonance frequency spectrum as shown in Figure 

2.4 (a), depending on the value of the integral gain Ki (Teodorescu et al., 2006).  

 
(a) 

 
(b) 

 

Figure 2.4: Frequency response (a) ideal PR controller; and (b) non-ideal PR controller; 

using Kp =1, Ki = 20, ωo =314 rad/s and ωc = 10 rad/s 
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To avoid the stability problem associated with an infinite gain, Equation (2.3) 

represents a non-ideal PR controller which is defined by: 

2

0

2 2

2
)(








ss

s
KKsG

c

c
ipPR                       (2.3) 

where c  is the cut off frequency. The frequency response of Equation (2.3) is shown in 

Figure 2.4 (b), where the resonant peak has a finite gain of 50 dB which is satisfactorily 

high for eliminating the current tracking error. 

2.1.2.3 Repetitive current (RC) controller 

The repetitive current (RC) controller was constructed based on the internal model 

principle (IMP), where it is able to eliminate the steady-state error by periodically 

controlling its parameters (Z. Bin et al., 2008; Costa et al., 2004). The controller can 

achieve high gain at the integral multiples of fundamental frequency. The RC 

controllers are implemented as high order (e.g. 11
th

 and 13
th

) harmonic compensator and 

the current controller is able to track the fundamental reference current (Keliang et al., 

2009; Keliang et al., 2006). However, it was rather problematic, exhibiting a slow 

dynamic response that affects its stability (Costa et al., 2004). The block diagram of RC 

controller is shown in Figure 2.5. In order to obtain an optimal trade-off between 

practical realization and control performance, RC controllers are combined with PR 

controller (Yongheng et al., 2013).  

rcK )(sQ )(sG f
sT

e 0

-

       +

+

*

ii

ii

V

 

Figure 2.5: Block diagram of RC current controller 
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The transfer function of RC controller can be expressed as (Yongheng et al., 2013): 

)(
)(1

)(
)(

0

0

sG
sQe

sQeK
sG fsT

sT

rc

RC 




                       (2.4) 

where, Krc, is  the controller constants, Q(s) is the low-pass filter for increasing the 

stability of RC control system, T0 is the initial time period for grid voltage, and 

Ts

f esG )(  is a phase-lead compensation and T is the time period of phase-lead 

compensation. The repetitive controller can be expressed in discrete-time domain as 

(Yongheng et al., 2013): 

)(
)(1

)(
)( zQ

zQz

zQzK
zG fN

N

rc

RC 




                       (2.5) 

where, N is the frequency ratio (
g

s

f

f
N  ), sf  and gf  are the sampling and the grid 

frequency, respectively.  

2.1.3 Nonlinear Current Control for Single-Phase Inverters 

2.1.3.1 Dead-beat (DB) controller 

The dead-beat controller which belongs to the family of predictive regulators is a 

popular control technique in many recent applications (Mattavelli et al., 2005; 

Mattavelli et al., 2003). When a dead-beat controller is well-tuned, it permits faster 

transient response among all digital current controllers. The discrete transfer function of 

the dead-beat controller is defined by (Blaabjerg et al., 2006): 

)1(

1
1

1










zb

az
GDB                         (2.6) 

where a and b are represented by (2.7) and (2.8) respectively, 

Ts
L

R

T

T

ea


               (2.7)   
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)1(
1


 Ts

L

R

T

T

T

e
R

b              (2.8) 

and RT  and LT  are the equivalent interfacing resistance and inductance of the inverter. 

The dead-beat controller has one sample time delay since it regulates the current such 

that it achieves its reference at the end of the next switching period. In this case, an 

observer must be implemented in the control structure to compensate for the time delay 

(Mattavelli et al., 2003), as shown in Figure 2.6 (Blaabjerg et al., 2006). Since the 

discrete transfer function of the observer is defined by, 

1

1

1
DBF

z



                         (2.9)   

Hence, the new current reference becomes, 

*' *( ).DBi F i i                        (2.10)  

As a result, a fast and simple controller suitable for microprocessor-based application 

is obtained (Ito & Kawauchi, 1995). 

Observer
Dead beat 

controlleri

*i

*i

 

Figure 2.6: Block diagram of dead-beat controller 

2.1.3.2 Hysteresis controller 

Hysteresis control is a technique which can be used to control a current-controlled 

voltage source inverter where the reference current and the actual current are compared 

on an instantaneous basis to produce switching pulses for the inverter (Buso et al., 1999; 

Buso et al., 1998; Kazmierkowski & Malesani, 1998; Shukla et al., 2008).  This method 
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controls switches in an inverter asynchronously to ramp the current up and down 

through an inductor so that it tracks the reference current signal. A configuration of 

hysteresis current controller is presented in Figure 2.7 (Hojabri et al., 2012). The error 

signal, e is the difference between the referent current and the actual current. Lower and 

upper limits associated with the minimum and maximum values of error signal are emin 

and emax respectively. The range of error signal (emin- emax) where the output current of 

the inverter is controlled is called the hysteresis band. This allows the current to be kept 

within the upper and the lower hysteresis band limits as shown in Figure 2.8.  

The advantages of the hysteresis control are simplicity, unconditioned-stability, 

independent of load parameters, robustness, and good transient response (Buso et al., 

1999; Buso et al., 1998; Kazmierkowski & Malesani, 1998; Shukla et al., 2008).  

 

Figure 2.7: Configuration of hysteresis current controller 

 

Figure 2.8: Hysteresis current controller operational waveform 
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2.1.3.3 Predictive controller 

Predictive controller is well known for their ability to handle a system with 

nonlinearities. The predictive current control compromises the potential for achieving 

precise current control with low harmonic distortion and noise, but it is normally more 

difficult to be implemented (Y. Bin & Liuchen, 2005; Bode et al., 2005; Cortes et al., 

2008; Gálvez-Carrillo et al., 2009; Mattavelli et al., 2005). The predictive controller 

calculates the inverter voltage required to force the output current to follow the current 

reference. A predictive current control scheme is shown in Figure 2.9 (Cortes et al., 

2008; Hojabri et al., 2012) where the switching states S(k) and the output current i(k) are 

used to predict the characteristic of the system variables for each switching state. 

Quality function
Predictive 

controller

aS

bS

)(kS

)1( ki)(ki

)(* ki

 

Figure 2.9: Block diagram of predictive controller 

 

2.1.4 Analysis of Current Control Structures 

Current regulation using PI controller in synchronous reference can achieve the same 

performance as the PR controller implemented in stationary reference frame. However, 

the control structure becomes more complicated which require voltage feed-forward and 

the cross-coupling terms. This makes PR controller more favorable for current 

regulation in single phase application since it is simpler. PLL is not a must for PR 

controller in grid-connected application, only the filtered voltage is needed to generate 

the current reference. For standalone application, look-up table can be used for the same 

purpose. In the case of non-linear controllers such as hysteresis, dead-beat and 

predictive controllers, the difficulty in terms of the current control operation becomes 
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higher when implemented in the stationary reference frame. Although the phase angle is 

not a must, these controllers generally require high sampling rate in order to achieve a 

superior performance. Observer is required for the dead-beat controller to compensate 

for the time delay, whereas, the predictive controller requires information on the system 

parameters for implementation.  

2.1.5 Current Harmonics Compensation  

Nowadays, the use of electrical appliances driven by power electronics is increasing 

to produce and supply current at utility level. Hence, attention should be given so that 

the generation of current at unwanted frequencies may not grow without limit, because 

it may affect the public mains adversely. Therefore, the harmonics content on the public 

networks has to be restricted to a safe tolerance.  

Similarly, for standalone inverter system where the inverter itself is the power source 

should be able to deliver high quality power to the load. In this case, the output voltage 

must contain a very low total harmonic distortion so that it produces very clean 

sinewave output. For current-controlled standalone inverter system, the output current 

should have relatively low current harmonics. Presently, there is no specific 

international standard for standalone system pertaining to voltage and current harmonics 

requirements. Only, those standards related to inverter system that is connected to the 

grid are available. Most international standards are addressing the harmonic limits of the 

electrical load or equipment that is supplied from the grid such as IEC 61000-3-2 and 

IEEE 519. In this section, several methods on how current harmonics can be 

compensated using different type of controllers are presented. 

2.1.5.1 Harmonics compensation using PI controllers 

For the implementation of PI controllers in dq control, the harmonic compensation 

can be applied based on low-pass and high-pass filters (Blaabjerg et al., 2006; de la 
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Parra et al., 2015; Newman et al., 2002). Therefore, the compensator can be designed 

such that specific current harmonics are eliminated. Due to load interruptions, the 

harmonic compensators are necessary for both positive and negative sequences of each 

harmonic order, thus increasing the complexity of control. For example, four 

compensators are required for the fifth and seventh harmonics compensation.  

2.1.5.2 Harmonics compensation using PR controllers 

The harmonics can be reduced further by incorporating the PR controller with 

selective harmonic compensation, especially for low-order harmonics. Usually, a 

harmonic compensator (HC) is designed to compensate for the 3
rd

, 5
th

 and 7
th

 harmonics 

(Blaabjerg et al., 2006; Teodorescu et al., 2004). However, an attempt to compensate 

high-order (e.g. the 11
th

 and 13
th

) harmonics may introduce higher computational 

burden. The specific resonant gain (Kih ) must be tuned to a comparatively high value for 

reducing the steady-state error. The main advantage is that only one harmonic 

compensator is needed to eliminate a harmonic order since it is able to work on both 

positive and negative sequences. A block diagram showing the resonant filter for 

filtering 3
rd

, 5
th

, 7
th

 harmonics is shown in Figure 2.10. 

 

pK

2

0

2 2

2





 ss

s
K

c

c

i

2

0

2
7,5,3 )(2

2





hss

s
K

c

c

h

ith





+

-

+

+



ii

*

i
i *

iv

 

Figure 2.10: Block representation of harmonic compensator with PR controller 

 

Based on PR controller, a series set of resonant blocks are utilized in particular to 

eliminate several selected low order odd harmonics (Blaabjerg et al., 2006; Teodorescu 
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et al., 2004; Teodorescu et al., 2006). Similar to PR controller, a series of resonant 

controllers cascaded together are tuned to the desired low order odd frequencies to 

further reduce current harmonics. The transfer function of non-ideal harmonic 

compensator (HC) and (PR+HC) to compensate the 3
rd

, 5
th

 and 7
th

 harmonics are given 

as (Teodorescu et al., 2006): 

2
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2
7,5,3 )(2

2
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                          (2.12) 

where, h is the harmonics number and Kih  is the specific resonant gain which must be 

tuned relatively high (but within stability limit) for the reducing the steady-state error 

(Lezana et al., 2007; Yuan 2002).  

Since no transformations are necessary, this controller can be easily used in single-

phase inverter systems. Figure 2.11 shows the bode diagram of harmonic compensation 

(HC) for 3
rd

, 5
th

 and 7
th

 harmonics with Kih  set to unity (Kih =1) and 1c  rad/s using 

Equation (2.11). Figure 2.12 shows the bode diagram of harmonic compensation for the 

summation of 3
rd

, 5
th

 and 7
th

 harmonics with 1c  rad/s and 10c   rad/s. whereas 

the bode diagram of PR+HC as shown in Figure 2.13 where, 1c  rad/s and 10c   

rad/s based on Equation (2.12).  Univ
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Figure 2.11: Bode diagram of HC for the individual of 3
rd

, 5
th

 and 7
th

 harmonic with Kih 

=1, ωc =1 rad/s and ωo = 314 rad/s  

 

Figure 2.12: Bode diagram of HC for the summation of 3
rd

, 5
th

 and 7
th

 harmonics with 

Kih =1, ωc =1 rad/s, ωc =10 rad/s and ωo=314 rad/s  
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Figure 2.13: Bode diagram of PR+HC using Kp =1, Ki = 100, Kih =1, ωc =1 rad/s, ωc 

=10 rad/s and ωo=314 rad/s  

 

2.1.5.3 Harmonics compensation using nonlinear controllers 

Since nonlinear controllers such as dead-beat, predictive and hysteresis controllers 

have a very fast dynamic response, there is no issue for low-order harmonic 

compensation. The output current typically contains harmonics at the switching and 

sampling frequencies order. The only issue is that it requires fast sampling that could be 

a limitation in hardware implementation. 

2.2 Summary  

In this chapter, the comprehensive literature reviews of linear and non-linear current 

control techniques in terms of control structures, as well as harmonic compensation for 

single phase inverter application, have been performed.  
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CHAPTER 3: ANALYSIS AND IMPLEMENTATION OF PI AND PR CURRENT 

CONTROLLERS 

3.1 Introduction    

The design and development of LC-filter, PR current controller, frequency response 

for open loop and closed-loop controller and experimental setup have been described in 

this chapter. In this chapter, both controllers of PI and PR are implemented in hardware 

setup using difference equation have been presented. 

3.2 Single-Phase PWM Inverter 

PWM inverters are extensively used in various applications such as ac drives, energy 

conversion, power conditioning devices and many more. The schematic diagram of a 

single-phase inverter is shown in Figure 3.1. In this study, unipolar PWM method is 

used instead of bipolar PWM to achieve a better inverter output quality at the same 

switching frequency. Since the inverter produces high switching frequency components, 

it has to be filtered out to generate a clean sinusoidal output. 

 

Figure 3.1: Schematic diagram of a single-phase inverter 

A power filter is therefore required and can be classified into active and passive 

filters. Passive filter is chosen in this study since it is simple and easier to be 

implemented. There is a first order passive L-filter, which consists only inductor 
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component that can attenuate current ripples due to inverter switching (Hobraiche et al., 

2009; Kim  & Sul January 2011; H. Kim et al., 2008). The limitation of L-filter is the 

size which is very bulky especially when the system deals with high power. The second 

order LC-filter is used to control both the output current and voltage which is the reason 

why it is very useful for standalone application (Hobraiche et al., 2009; H. Kim & Sul, 

2005; Kim  & Sul January 2011). The alternative third order LCL-filter offer smaller 

filter size at lower switching frequencies as compared to the other two filters for the 

same level of current harmonics. However, due to resonance it can cause steady-state 

and transient problems for the output current (Gabe et al., 2009; Liserre et al., 2005; 

Park et al., 2008). In this study, as a tradeoff LC-filter is chosen for hardware 

implementation. Figure 3.2 shows an inverter supplying power to the load through the 

LC-filter. 

Vdc

S1

S2

S3

S4

Lf

Cf RL

IL

LC-Filter Load

 

Figure 3.2: Inverter supplying power to load through the LC-filter 

 

3.3 Current Control Scheme for Single-Phase Inverter with LC-Filter 

This section describes a control method for single-phase inverter system which can 

provide low harmonics content in the output current waveform. The PR controller 

reduces the computational burden and control efforts while attaining frequency response 
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characterized similarly to PI controller. Moreover, with PR controller selective 

harmonics compensation technique can be implemented without any excessive 

requirements particularly for non-linear load (Abdel-Qawee et al., 2013). Figure 3.3 

illustrates a block diagram of a current control scheme for single-phase inverter with 

LC-filter.  

In this figure, there is only one current control loop to regulate the inverter output 

current to be sinusoidal. First, the current error is obtained by comparing the reference 

current generated and the measured load current. Then, the error will be fed to the PR 

controller and the output is the modulating signal used for PWM switching signals 

generation. The output voltage is not controlled in which its magnitude depends on the 

amount of current flows into the load. For stand-alone applications, the control scheme 

usually consists of two cascaded loops. One is the internal current loop, which is used to 

regulate the load current, and another is the outer voltage loop, which is used to 

maintain the sinusoidal output voltage (Agirman & Blasko, 2003; Huibin et al., 2003; 

Teodorescu et al., 2004).  
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Figure 3.3: Block diagram of a current control scheme for single-phase inverter with 

LC-filter  
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3.3.1 Analysis the Design of Filter Parameters 

A second order low pass LC filter can be used to obtain lower total harmonic 

distortion (THD) due to inverter switching and to improve the quality of the output 

power (Abdel-Qawee et al., 2013; Chen et al., 1992; Chiang et al., 1996). Figure 3.4 

shows the equivalent circuit of an LC-filter. 

+

-

Vinv

Lfrf

Cf
RL

+

-

VL

IL

LC-filter

 

Figure 3.4: Equivalent circuit of an LC-filter 

where, Lf  is the filter inductor, rf  is the internal resistance of the filter inductor,            

Cf is the filter capacitor, RL  is the load resistor, Vinv  is the inverter output voltage and            

VL  is the output  load voltage. 

The resonance frequency of the low pass LC filter is defined as below:  

ff

res
CL

f
2

1
                          (3.1) 

Assuming rf is small and negligible, the transfer function of the LC filter is given by 

the following equation: 

f

f

f

f
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sC
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)(             (3.2) 
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The frequency response of the LC filter is shown in Figure 3.5 in the case of L = 5 mH 

and C = 0.22 µF are selected. From the figure, the resonance frequency of the filter is 

4.79 kHz and the filter gives about -25 dB attenuation of the inverter current at 20 kHz 

switching frequency. Therefore, current ripple will be highly attenuated. 

 

Figure 3.5: Frequency response of LC filter with L = 5 mH and C = 0.22 µF 

The overall transfer function of the inverter with LC filter and resistive load can be 

expressed by the following equation: 
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3.3.2 Analysis the Design of PR Current Controller 

The design and analysis of PR controller is normally performed by using Bode 

diagrams and phase margin criterion, and to study the stability by means of the phase 

margin at the crossover frequency defined by the proportional gain (Bojoi et al., 2008; 

Castilla et al., 2009). In many applications, analysis using Bode diagrams is enough to 

achieve satisfying results. A more systematic method by means of Nyquist diagrams can 

also be used to tune the PR controller parameters which can give higher stability and 

improved performance (Basic et al., 2001; Bojoi et al., 2008).  

3.3.2.1 Frequency response of open-loop non-ideal PR controller 

The response of non-ideal PR controller has been described in chapter 2, as shown in 

Equation (2.3) is comparable to that of the ideal PR controller. From the equation, it is 

clear that there are three parameters in the non-ideal PR controller comprising pK , iK  

and c . In order to investigate the effect of the controller parameters on the PR 

controller’s performance, one of the parameters will be varied while the other 

parameters will be kept constant. Figure 3.6 (a) shows the open-loop frequency response 

of the controller in terms of the magnitude and phase when iK
 
is varied while pK = 0 

and c = 1 rad/s. 

It can be observed that the magnitude of the PR controller gain increases when  is 

increased. But  has no effect on the bandwidth of the system as seen from the phase 

response of the PR controller. Assuming = 0,  = 1,  the change of  has an 

effect on both the magnitude and the phase of the PR controller. Both the magnitude and 

the phase increase when  is increased, as shown in Figure 3.6 (b). 

  

 

iK

iK

pK iK c

c
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     (a) 

 
      (b) 

     
      (c) 

Figure 3.6: Frequency of the non-ideal PR controller as a function of (a) iK changes, (b)

c changes and (c) pK changes 
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When  = 1, = 1 rad/s and  the proportional gain is varied, the magnitude of 

PR controller increases, but the phase of PR controller decreases, as shown in Figure 3.6 

(c). To obtain the best output response the controller need to be tuned appropriately. A 

tuning method given in (Guo et al., 2006; Zmood & Holmes, 2003) can be used for this 

purpose. Generally, a suitable should be selected to provide a reasonable bandwidth 

around the resonance frequency. is then selected to ensure that superior performance 

in sinusoidal reference tracking could be attained. Finally,  is selected so that the 

steady-state errors in both magnitude and phase are eliminated. 

According to the analysis from the frequency response of open-loop non-ideal PR 

controller, the best values are selected, pK = 0.5, iK  = 1000 and c = 0.1 rad/s. Figure 

3.7 shows  the Bode plot of open-loop PR controller in MATLAB using the selected 

values. From Figure 3.7, the following points have been satisfied, (Alexandra et al., 

2013; Hanju et al., 2009; Khairy et al., 2011; Lee 2012; Teodorescu et al., 2006; 

Teodorescu  et al., 2011).   

i. Gain margin is finite and relatively high to achieve small steady-state error.  

ii. Stability is maintained as phase is always kept below 180
0
, 

iii. Wide bandwidth reduces sensitivity to slight frequency variation.  

 

iK c
pK

c

pK

iK
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Figure 3.7: Bode plot of open-loop non-ideal PR controller (Kp = 0.5, Ki = 1000 and ωc 

= 0.1 rad/s) 

 

3.3.2.2 Frequency response of closed-loop control system 

For comparison, both the closed-loop transfer functions of the PI and PR current 

controllers are analyzed. The block diagram of a closed-loop current control scheme 

used for the comparison is shown in Figure 3.8.  
 

 

Figure 3.8: Block diagram of closed-loop current control scheme 

The closed-loop transfer function of the system using PI controller can be defined as: 

)()()(1

)()()(
)(

sGsGsG
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I
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where, 
s

K
KsG i

pPI )( , KsGI )(  and 
2

L
F

L f f f L

R
G

R L C s L s R


 
 are the transfer 

functions of the PI controller, the inverter and the filter including the load respectively.  

Substituting all the transfer functions yields the complete transfer function of the 

system which is represented by Equation (3.6). 

LiLpLfffL

Lip

PI
RKKsRKKRsLsCLR

RKsKK
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


)(

}{
)(

23                        (3.6) 

Similarly, the closed-loop transfer function of the system using PR controller can be 

defined as below: 

)()()(1

)()()(
)(

sGsGsG

sGsGsG

I

I
sM

FIPR

FIPR

ref

L
PR


                      (3.7) 

where,
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2
 

are the transfer functions of the PR controller, the inverter and the filter including the 

load respectively. The complete transfer function of the system can be obtained as 

Equation (3.8) below. 
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where,   

ff CL4 ; )2(3 Lffcf RCLL   ; 

)2(
2

02 LpLfffcL RKKRCLLR   ; 

 )222(
2

01 LciLcpfLc RKKRKKLR   ; and )(
2

0

2

00 LpL RKKR    
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Figure 3.9 and Figure 3.10 show the frequency responses of the closed-loop PI and PR 

current control systems respectively.  

 

Figure 3.9: Frequency response of closed-loop transfer function using PI controller ( Kp 

= 0.5 and Ki =200) 

 

Figure 3.10: Frequency response of closed-loop transfer function using PR controller    

( Kp = 0.5, Ki =1000 , ω0 = 314 rad/s and ωc = 0.1 rad/s) 
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3.4 Implementation of PI Controller Using Discrete Transfer Function  

The discrete transfer function of the PI controller can be obtained by applying bi-

linear transformation and substituting 
)1(

)1(2






zT

z
s  into in Equation (2.1). This yields 

the following transfer function in z-domain; 

1

21

1

10)(









zaa

zbb
zGPI                         (3.9) 

where T  is the sampling time and: 

0
2

p i

T
b K K             (3.10) 

1 2
2

p i

T
b K K              (3.11) 

1 1a                          (3.12) 

2 1a                          (3.13) 

The discrete equation of the PI controller for hardware implementation is given as: 

0 1 2

1 1 1

( ) ( ) ( 1) ( 1)
b b a

u n e n e n u n
a a a

             (3.14)
    

Finally, the difference equation of PI controller becomes,
 

0 1( ) ( ) ( 1) ( 1)u n b e n b e n u n                         (3.15) 

where, 

)(nu  present controller output,  

 )1(nu  previous controller output, 

)(ne present error, 

 )1(ne previous error. 
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Based on the optimized PI controller parameters (Kp = 0.5 and Ki = 200), the co-

efficient of PI controller becomes, 505.00 b , 995.01 b , 11 a and 12 a .  

The transfer function in z-domain PI controller is given as: 

1

1

1

995.0505.0
)(










z

z
zGPI           (3.16) 

3.5 Implementation of PR Controller Using Discrete Transfer Function  

The non-ideal PR controller represented by Equation (2.3) makes the controller more 

easier to be implemented in the digital system due to their finite precision (Zammit 

2014; Zmood & Holmes, 2003). The discrete transfer function of the non-ideal PR 

controller can be obtained by applying bi-linear transformation and putting 
)1(

)1(2






zT

z
s  

into in Equation (2.3). This yields the following transfer function in z-domain; 
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where T  is the sampling time. Equation (3.16) can be rearranged in the following form 

in terms of the controller’s output U (z) and the error E (z). 
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Finally, the difference equation of the PR controller for hardware implementation is 

given as: 

)2()1()2()1()()( 21210  nuanuanebnebnebnu                 (3.24) 

where,  

)(nu  present controller output, 

 )1(nu  previous controller output, 

 )2(nu earlier controller output, 

)(ne present error, 

 )1(ne previous error, 

 )2(ne earlier error. 

Based on the optimized the PR controller parameters (Kp = 0.5, Ki = 1000 and ωc = 

0.1 rad/s), the co-efficient of PR controller becomes, 504999.00 b , 99987.01 b ,

494995.02 b , 9997.11 a and 12 a .  

The transfer function in z-domain PR controller is given as: 
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3.6 Experimental Design and Setup 

 Figure 3.11 shows the block diagram of the experimental design showing the 

connections between the inverter, digital signal processor (DSP) board, sensors, gate 

drive circuit and the phase-locked-loop (PLL) source.  

The hardware prototype that has been developed for testing the performance of both 

PI and PR current controllers is shown in Figure 3.12. The inverter is connected to the 

resistive load through the LC filter. For implementation of both controllers’ algorithms, 

a 32-bit floating-point TMS320F28335 eZdsp development board was used. The C 

program for both controllers was developed by using Texas Instrument Code Composer 

Studio 6.0 (CCS) software. The inverter switching frequency was set to 20 kHz and the 

dead band was set to 1.3 µs, since the load is less inductive. The PWM pulses were 

generated through the internal PWM module of the DSP. Voltage and current signals 

were measured by using the 12-bit analog-to digital converter (ADC) built inside the 

eZdsp development board. Sinusoidal reference signal was generated by sensing the 

grid voltage and using the phase-locked-loop module. The power electronic switches 

used were IGBT module. The major parameters of the prototype are listed in Table 3.1.  

 

Figure 3.11: Block diagram of experimental design 
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DC Power Supply

Oscilloscope

5V dc supply

DSP
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Inverter

Filter

Current Probe

Resistive 
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(a) Front view  

 

DSP

Sensor Board

Current Probe

5V dc supply

Inverter

Gate Drive

Filter

Resistive 

Load

 
(b) Top view 

Figure 3.12: Prototype setup of the single-phase inverter using resistive load (a) Front 

view and (b) Top view 
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Table 3.1: Inverter specifications. 

Parameters                                Value 

         DC voltage, Vdc                                  180 V 

         IGBT Module (S1-S4)                        INFINEON 

                                                                    (F4-50R06W1E30) 

         Voltage transducer                               LEM LV25 - P 

         Current transducer                               LEM LA25 – NP 

         Filter inductor,  Lf                                5 mH 

         Filter capacitance, Cf                           0.22 µF 

         Resistor, RL                                          50 ῼ 

         Switching frequency,  fs                                  20 kHz 

 

3.7 Summary 

The design details of PI and PR controllers including LC filter are presented in this 

chapter. This includes open loop & closed loop frequency response analysis for both 

controllers. In the last section, details on hardware implementation and testing are 

presented. 
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CHAPTER 4: RESULTS AND DISCUSSION                                           

4.1 Introduction 

This chapter shows the simulation and practical implementation results of closed-

loop PI and PR current controller for single-phase inverter. MATLAB/SIMULINK® 

software is used for the simulation. The performance of both controllers is compared in 

terms of steady-state response, transient response, current total harmonic distortion 

(THDi) and also response to frequency variation in the sinusoidal reference signal. The 

controller parameters obtained from the simulation is used for experimental verification. 

Simulation and experimental studies are performed on a 250W inverter at 110 V rms. 

The RMS current is therefore equal to 2.27 A rms with 3.21 A peak. 

4.2 Steady-State Response of PI Controller 

The switching frequency of the inverter is set to 20 kHz. The value of Kp and Ki for 

the PI controller are optimally set to 0.5 and 200 respectively. The simulation results of 

load current, voltage and FFT analysis are presented in Figure 4.1 (a), (b) and (c) 

respectively. When using PI controller the FFT analysis on the load current yields a 

THD value equal to 6.43% as shown in Figure 4.1 (c).  

Figure 4.2 show the experimental results of load current and voltage waveforms 

obtained by using the PI controller. From the figure, the load current reached only 2.8 A 

peak, in which represents an error of 12.77% from the reference current  (Iref), 3.21 A 

peak. Both experiment and simulation results of load current have shown that steady-

state error occurred when using PI controller. The FFT analysis showing the current 

harmonics shown in Figure 4.3, where the percentage of the 3
rd

 and 5
th

 harmonics were 

found to be 4.2% and 1.77% respectively.  
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4.1: Simulation results using PI controller (a)  load current, (b)  load voltage and 

(c) FFT analysis 
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Load current

Load voltage

2A/div

100V/div

 

Figure 4.2: Experiment results using PI controller (Kp = 0.5 and Ki = 200) (a) load 

current and (b) load voltage 

 

 Fundamental (50 Hz)

3
rd

 harmonic

 4.2%

150 Hz 250 Hz

5
th 

harmonic

 1.77%

 

Figure 4.3: Experiment result using PI controller showing load current harmonics 

 

When the value of Kp is increased (Kp = 0.7), the results of load current and voltage 

are shown in Figure 4.4. The current reached the maximum 3.21 A peak, but it is over 

modulated and therefore increased the 3
rd

 harmonic level.  

(a) 

(b) 
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Load voltage

Load current

2A/div

100V/div

 

Figure 4.4: Experiment results using the PI controller (Kp = 0.7 and Ki = 200) (a) load 

current and (b) load voltage 

  

4.3 Steady-State Response of PR Controller  

The PR controller parameters, Kp, Ki and c are optimally set to 0.5, 1000 and 0.1 

rad/s respectively. Simulation results of load current, voltage and FFT analysis are 

shown in Figure 4.5 (a), (b) and (c) respectively. The THD of the load current is lower 

when using PR controller where the value is equal to 4.85% as shown Figure 4.5 (c). 

The simulation results show that PR controller can track the sinusoidal reference current 

with zero steady-state error and able to suppress current harmonics better than PI 

controller. 

The experimental results of load current and voltage waveforms are shown in Figure 

4.6. The load current able to reach the maximum 3.21 A peak of the current reference. It 

is clear that the load current achieved zero steady-state error as compared to PI 

controller, 12.77 %. The FFT analysis showing the current THD is given in Figure 4.7, 

where the magnitude of 3
rd

 and 5
th

 harmonics were found to be 3.8% and 1.61% 

respectively. 

 

(a) 

(b) 
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(a) 

 

 
(b) 

 

     

(c) 

 

Figure 4.5: Simulation results using PR controller (a)  load current, (b)  load voltage 

and (c) FFT analysis 
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Figure 4.6: Experimental results using PR controller (Kp = 0.5 and Ki = 1000) (a) load 

current (b) load voltage   
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Figure 4.7: Experimental results using PR controller showing load current harmonics 

 

 

(a) 
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4.4 Transient Response of PI Controller  

The transient performance was examined by applying a step change in the current 

reference during normal conditions. Figure 4.8 depicts the simulation results for the step 

response in the load current using the PI controller. It can be seen that the PI controller 

is able to achieve a fast response to reach the steady-state condition.  

 

Figure 4.8: Simulation result showing the transient response in load current by using 

the PI controller 

 

When the value of Kp   is set to 0.5 and Ki   is varied to three different values, 100, 

200 and 300. The experimental results of transient response are shown in Figure 4.9, 

Figure 4.10 and Figure 4.11 respectively. In all conditions, the current reference was 

changed from 1 A peak to 3.21 A peak.  In each case, the results for the load current, 

controller output response and step signal are shown. 

From the analysis of transient response, the PI controller shows a reduced steady-

state error when the value of Ki is increased from 100 to 300 but this leads to over 

modulation and caused more ripple in the load current. 

 

Univ
ers

ity
 of

 M
ala

ya



46 

 

Load current

Controller output
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Figure 4.9: Experimental results showing transient response using PI controller for Kp = 

0.5, Ki = 100                                       

Load current

Controller output

Step signal

2A/div

 

Figure 4.10: Experimental results showing transient response using PI controller for Kp 

= 0.5, Ki = 200  
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Load current

Controller output
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Figure 4.11: Experimental results showing transient response using PI controller for Kp 

= 0.5, Ki = 300 

  

4.5 Transient Response of PR Controller  

Figure 4.12 shows the simulation results for the step response in the load current 

using the PR controller.  The PR controller shows a fairly fast response and comparable 

to the PI controller performance. 

 

Figure 4.12: Simulation result-transient response of load current using by the PR 

controller. 
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For experimental verification, the value of Kp is set to 0.5 while varying the value of 

Ki to 1000, 2000 and 3000. The results for the three different controller parameters are 

shown in Figure 4.13, Figure 4.14 and Figure 4.15 respectively with the current 

reference stepped from 1 A peak to 3.21 A peak. The transient response of PR controller 

is slightly slower where it takes a few cycles to reach the steady-state condition.  But, it 

produces higher output quality with very low current harmonics as compared to PI 

controller with high distortion especially at both positive and negative peak of the load 

current. This is also reflected by the smooth controller output response in PR as 

compared to that of PI controller shown in the figures. 

For each case, the system is tested under the same value of Kp and a different value 

of Ki. It can be seen from the step response analysis that the controller response is faster 

when Ki is increased. Increasing Ki to a higher value will cause more distortion as more 

harmonic components around the fundamental frequency are included. 

Load current

Controller output

Step signal

2A/div

 
 

Figure 4.13: Experiment results showing transient response using PR controller for Kp 

= 0.5, Ki = 1000  
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Controller output
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Figure 4.14: Experiment results showing transient response using PR controller for Kp 

= 0.5, Ki = 2000 

 

Load current

Controller output
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2A/div

 
 

Figure 4.15: Experiment results showing transient response using PR controller for Kp 

= 0.5, Ki = 3000  
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4.6 Effect of Frequency Variation for PR Controller 

Although the PR controller has more advantages as compared to the PI controllers, 

its performance can be affected by a certain factor such as frequency variation. When 

the reference signal frequency is different from the fundamental frequency setting of the 

PR controller, the expected output will be attenuated and contains a phase error. 

Therefore the effect of frequency variation is investigated when the reference signal 

frequency is higher and lower than the fundamental frequency. The effect of frequency 

variation is not performed on PI controller since its output contains magnitude and 

phase errors even at the fundamental frequency.   

Figure 4.16 (a), (b) and (c) show the effect when the frequencies were set to 45 Hz, 

50 Hz and 55 Hz respectively. Frequency, f = 45 Hz indicates under frequency whereas 

f = 55 Hz indicates over frequency. This occurs when the frequency of the reference 

signal is not the same as the fundamental frequency of the PR controller (50 Hz). 

Generating reference signal from look-up table will not have this issue, only when the 

reference signal is externally sourced such as from the grid or other sine-wave 

generators. When the reference signal frequency is set at f = 45 Hz, the output current is 

phase-shifted by 53.91
0
 (leading) with respect to the reference voltage as illustrated in 

Figure 4.16 (a). The current has reached only about 1.8 A peak. The frequency has 

dropped 10%, and the load current is found to be 43.92% of the current reference. When 

the system frequency is normal f = 50 Hz, the load current is almost in phase with 

respect to the reference voltage as shown in Figure 4.16 (b). The load current has 

reached the maximum current of 3.21 A. When the system frequency is set at f = 55 Hz, 

the current is phase-shifted by 60
0
 (lagging) and obtained 2 A peak as shown in Figure 

4.16 (c). It can be seen from Figure 4.17 (c) that when the system frequency rises by 

10% when the load current drops to 37.69%. 
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(a) 

Load current
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(b) 

Reference voltage

Load current
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(c) 

Figure 4.16: Effect of frequency variation using PR controller (a) under frequency at f 

= 45 Hz, (b) normal frequency at f = 50 Hz and (c) over frequency at f = 55 Hz) 
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It has been observed that phase-shift and amplitude change occurs with frequency 

variation in the reference signal for the practical PR transfer function represented by 

Equation (2.3). The effects are expected and illustrated by the closed-loop frequency 

response of the controller in Figure 3.10. The controller gain is finite and relatively high 

at the fundamental frequency for enforcing a small steady-state error. The controller’s 

bandwidth can be widened by setting c  appropriately, which helps to reduce sensitivity 

towards slight frequency variations, iK  can be tuned for shifting the magnitude response 

vertically, but this does not give rise to a significant variation in bandwidth (Alexandra et 

al., 2013; Teodorescu et al., 2006; Teodorescu  et al., 2011). 

4.7 Summary Comparison of Current Controllers 

Good stability, low steady-state error, fast transient response and low harmonics 

distortion are among the desirable features needed to achieve superior inverter 

performance. Table 4.1 summarizes the benefits and limitations of PI and PR controllers 

in various current-controlled applications. 

Table 4.1: Benefits and limitations of PI and PR current controllers 

Controller type Benefits Limitations 

 

 

PI controller 

 Easy hardware 

implementation 

 Simple current control 

 Good dynamic response 

 Very poor harmonics 

compensation 

 Steady-state error is not 

eliminated 

 

 

 

 

PR controller 

 High  gain around 

resonance frequency 

 Very low steady-state error 

 Good dynamic response 

 High current harmonic 

compensation especially 

low-order harmonics 

 

 

 Comparatively complex 

software 

implementation 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this study, the detailed analysis and implementation of PR controller for a single-

phase inverter for renewable energy applications has been completed, that include both 

open-loop and closed-loop analysis. The PR current controller was found to be the most 

promising controller for single-phase inverter application because it has an infinite gain 

at the fundamental frequency, which can achieve zero steady-state error and good 

transient response. The PR controller is advantageous over the well-known PI controller 

that has significant drawbacks such as steady-state error, phase error, and limited 

disturbance rejection capability from the comparison that have been made by simulation 

and experiment. Both controllers have optimally been tuned for fair comparison and 

implemented using the same inverter prototype and load. For PR controller, the 

parameters such as Kp, Ki and c have optimally been determined by the phase margin 

analysis using the bode plots. In addition, the effect of frequency variation to the 

controller performances has also been demonstrated for under, over and normal 

frequency conditions. The experimental results obtained validate the simulation and 

analytical analysis that has been carried out on the PR current controller. 

5.2 Future Work   

Several suggestions are provided for future enhancement of this research work. They 

are listed below in points form. 

 Implementing the PR controller for single-phase / three-phase grid-connected 

PV inverters. 

 Developing the new optimization technique to enhance the performance of the 

PR controller for renewable energy application.  
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