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ABSTRACT

One of the key challenges to control diseases in fish population is achieving precise
and correct identification of fish parasites. Monogenean parasites are flatworms
(Platyhelminthes) that are primarily found on gills and skin of fishes. Organizing and
preserving specimens of monogenean is a time consuming and difficult task. In
addition, classification and identification of these specimens requires assistance of
taxonomy experts. Since last two decades, improvements in developing computational
tools made significant motivation to classify biological specimens’ images to their
correspondence species. These days, identification of biological species are easier for
taxonomists and non-taxonomists due to the development of models and methods that
are able to characterize species’ morphology. Monogeneans have categorical
homogeneous morphology, hence, pattern recognition techniques can be used to identify
them. In this study, fully automated identification model for monogenean images based
on the shape characters of their haptoral organs is developed. The morphological
features were extracted from anchors and bars of monogeneans by adoption of digital
image processing techniques. The Linear Discriminant Analysis (LDA) method was
used to transform extracted feature vector to lower dimension feature vector and the
transformed features were put into K-Nearest Neighbour (KNN) and Artificial Neural
Network (ANN) classifiers for identification of monogenean specimens of eight species,
Sinodiplectanotrema malayanus, Diplectanum jaculator,Trianchoratus pahangensis,
Trianchoratus  lonianchoratus,  Trianchoratus  malayensis,  Metahaliotrema
ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. Considerably, this
is the first fully automated identification system for monogenean with the accuracy of
86.25% using KNN and 93.1% using ANN classification techniques. Images are

classified based on monogenean diagnostic organs which are haptoral bars and anchors.



ABSTRAK

Salah satu cabaran utama bagi mengawal penyakit dalam populasi ikan adalah
mengenalpasti parasit ikan secara tepa. Parasit monogenean adalah cacing leper
(Platyhelminthes) yang ditemui pada insang dan kulit ikan. Menyusun dan memelihara
spesimen monogenean memakan masa yang lama dan merupakan suatu tugas yang
sukar. Di samping itu, klasifikasi dan pengenalan spesimen ini memerlukan bantuan
daripada pakar-pakar taksonomi. Sejak dua dekad yang lalu, peningkatan dalam
penggunaan alatan komputer dijadikan motivasi penting dalam mengklasifikasi ime;j
spesimen biologi berdasarkan spesies. Kini, pengecaman spesies biologi lebih mudah
bagi ahli taksonomi dan bukan ahli taksonomi melalui pembangunan model dan kaedah
yang dapat mencirikan morfologi species secara teratur. Monogenean mempunyai
morfologi homogenan yang mutlak di mana teknik pengecaman corak boleh digunakan
bagi mengenalpasti mereka. Dalam kajian ini, model pengecaman automatik
sepenuhnya untuk imej monogenean dibangunkan berdasarkan ciri-ciri bentuk organ
haptoral mereka. Ciri-ciri morfologi adalah berdasarkan sauh dan bar menggunakan
teknik pemprosesan imej digital. Analisis diskriminan linear telah digunakan untuk
memilih ciri-ciri terbaik dan dimasukkan ke dalam K-Nearest Neighbour (KNN) dan
Artificial Neural Network (ANN) bagi pengecaman lapan spesies monogenean iaitu
Sinodiplectanotrema malayanus, Diplectanum jaculator, Trianchoratus pahangensis,
Trianchoratus  lonianchoratus,  STrianchoratus  malayensis, = Metahaliotrema
ypsilocleithru, Metahaliotrema mizellei dan Metahaliotrema similis. Sehingga kini, ini
merupakan sistem pengecaman automatik sepenuhnya yang pertama bagi monogenean
dengan ketepatan 86.25% menggunakan KNN dan 93.1% menggunakan teknik
pengelasan ANN. Imej dikelaskan berdasarkan organ diagnostik monogenean iaitu bar

haptoral dan sauh.
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CHAPTER 1: INTRODUCTION

Monitoring biodiversity in consonance with the study of biological populations and
their growth is important and requires species identification which is time consuming
and reliant upon expert ecologists. Hence the demand for automated species
identification has increased over the last two decades. Research efforts in identification
of species include specimens’ image processing, extraction of identical features,
followed by classifying them into correct categories. Recently, automation of data
classification is primarily focussed on images and incorporated analyse or the images

that have become easier due to advance developments in computational technology.

On the other hand, one of the key challenges to control diseases in fish population is
achieving precise identification of fish parasites. Parasitic organisms have categorical
homogeneous morphology, hence, pattern recognition techniques can be used to
identify them (Castafion, Fraga, Fernandez, Gruber, & da F. Costa, 2007).
Monogeneans are used in this study because they are worthy taxons for investigation
(Brooks & McLennan, 1993). There might be around 25000 species of monogenean in
the world while barely 4000 of them are currently known (Whittington, 1998).
Monogeneans are flatworm clade that have advanced adaptive radiation (Brooks &
McLennan, 1993), with different structural designs in the attachment organs (Kearn,
1994), which are usually used for species identification. In particular, haptoral
attachment organ is characterized by sclerotized structures such as anchors, bars and
hooks. The morphology of these organs are usually unique to monogenean species
(Boeger & Kritsky, 1993) and are used as diagnostic characters in taxonomy (Vignon,
2011a, 2011D).

Automated classification of specimens’ images requires development of models and

methods that are able to characterize species’ images based on the texture or shape of



objects to extract important visual information for classification. In monogenean
identification models, all approaches are currently dependent on significant manual
input during image processing and feature extraction such as specifying morphological
landmark features. The adopted manual methods on each image, substantially slows the
process of identification and classification. Hence, it was aimed to develop a fully
automated identification model for monogeneans which is robust to variable imaging

conditions, damaged specimens and variations within species.

1.1 Overview

Monogeneans are flatworms (Platyhelminthes) that are primarily found on gills and
skin of fishes. Monogenean parasites have attachment appendages at their haptoral
regions that help them to move about the body surface and feed on skin and gill debris.
Haptoral attachment organs consist of sclerotized hard parts such as hooks, anchors and
marginal hooks. Monogenean species are differentiated based on their haptoral bars,
anchors, marginal hooks, reproductive parts’ (male and female copulatory organs)
morphological characteristics and soft anatomical parts. The complex structure of these
diagnostic organs and also their overlapping in microscopic digital images are
impediments for developing fully automated identification system for monogeneans
(Ali, Hussain, Bron, & Shinn, 2011, 2012; Strona, Montano, Seveso, Galli, & Fattorini,
2014). In this study images of hard parts of the haptoral organs such as bars and anchors
are used to develop a fully automated identification technique for monogenean species
identification by implementing image processing techniques and machine learning

methods.

According to the quality of captured images, images of eight monogenean species
namely Sinodiplectanotrema malayanus, Diplectanum jaculator, Trianchoratus
pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema

ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis were selected to

2



develop an automated technique for identification. Since recognition of monogeneans is
based on morphometric features of their hard parts (Lim & Gibson, 2010), images of the
hard haptoral organs such as anchors and bars were captured. All acquired images were
indexed according to slide tags and stored in image database. One of the biggest
challenges of monogenean images were their complexity in terms of messy background
and overlapping of anchors and bars. Although many efforts were made to acquire clear
images but still some overlapping and clutters were unavoidable. Here, image pre-
processing is needed to omit redundant information and to highlight reliable features in
order to prepare images for feature extraction. According to features such as: length of
bounding box, width of bounding box, centre of bounding box, orientation of bounding
box, perimeter, perimeter density, area, area density, Euler number, entropy and major
axis length, a feature vector was extracted. By use of Linear Discriminant Analysis
(LDA) feature selection technique, the feature vector was transformed to lower
dimensional feature vector. The extracted and selected features achieved in previous
stages were then used as input to K-Nearest Neighbour (KNN) and Artificial Neural
Network (ANN) classifiers to train the system based on training set and test the testing
dataset based on trained model.

The presented model in this study empowers fast and accurate fully automated

classification of monogeneans to the species level.

1.2 Research questions
e How to apply image processing on 2D digitized monogenean specimens’ images to
prepare them for classification?
e Which classification methods can be used for monogenean species automated
identification?
e What is the probability of correct identification and classification of monogenean

species?



1.3 Objectives of the study
e To prepare a 2D image database of eight selected monogenean species
e To compare the accuracy of two machine learning techniques (i.e. K-Nearest
Neighbour and Artificial Neural Network) in identifying/ classifying selected
species of monogeneans in Malaysia.
e To develop an automated species identification/ classification model for selected
species of monogenean.
1.4 Scope of the study
Images of eight monogenean species namely Sinodiplectanotrema malayanus,
Diplectanum jaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus,
Trianchoratus malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and
Metahaliotrema similis were used to develop an automated model for identification. K-
nearest neighbour (KNN) and Artificial Neural Network (ANN) were applied to classify
the monogenean specimens based on the extracted features. The automated
identification model was implemented in two, preliminary and extended phases. The
preliminary automated classification model was implemented by adoption of samples of
four species and the extended model was implemented based on samples of eight

species.

1.5 Outline of the study

Chapter One: In this chapter, the general research framework, which introduces
automated identification technique for monogenean species, besides presenting the
research questions, objectives and scope of this study was explained.

Chapter Two: This chapter contains the literature review on monogeneans, images
acquisition, database for automated systems, images processing, feature extraction,

feature selection and classification techniques.



Chapter Three: This chapter contains the materials and methods that have been
applied in two preliminarily and extended models, describing specimens’ collection and
image acquisition, followed by the details about construction of digital images for
database and finally explanations about image processing techniques, feature extraction
and selection. Finally, this chapter reports how KNN and ANN classification methods

were adopted in this study.

Chapter Four: This chapter presents the results of feature selection, classification and

evaluation in both preliminarily and extended models.

Chapter Five: This chapter discusses about the results of the development of
automated identification model for monogenean images. It also contains comparison of
current study with previous studies, confession about constrains and limitations,
declaration on the future works for enhancement of automated identification model and

finally conclusions.



CHAPTER 2: LITERATURE REVIEW

Environmental monitoring based on correct identification of specimens according to
their correct species or groups is an essential and cost effective task (Larios et al., 2008).
The demand for recognition of species has significantly influenced biologists to increase
the facilities and proper supply of skills for identification and classification task. In
addition, in some cases identification of species group is limited to available human
domain experts ( Ali, Hussain, Bron, & Shinn, 2011). Although there was undeniable
potential, the development of automated identification systems has been hampered by
some taxonomists who hesitated to embrace different methods of species identification
(Kiranyaz et al., 2011). The main reason that influenced developing image based
identification system was eagerness of taxonomist to reduce the time consumed for
analysing samples (Benfield et al., 2007) and to significantly cut down the costs.
Culverhouse et al. ( 2003) have shown that categorizing specimens from species which
have significant variations in their morphology is taxing. They also demonstrated that
the returned accuracy by trained personnel and experts for discriminations and labelling
specimens 1s expected to be in the range of 64% to 95% which is within the

performance range of automated methods.

Automated classification of specimens’ images to their corresponding species
requires development of models and methods that are able to characterize a species’
morphology and apply this knowledge for their recognition. These systems should be
combined with databases of images or text based information (Martins, Oliveira,
Nisgoski, & Sabourin, 2013). Selection of segmentation, feature extraction and
classification techniques are dependent on identification taxonomic rank. For example
identification and classification at species level require more detail information compare

to family level. The aim is discovering semantic concepts from images to identify and



classify objects of interest. For characterization of these objects, efficient features are
required to build computational models (Castaiion et al., 2007). Object curvature
(Riggs, 1973) from respective contour, morphological and geometrical measurements

are good examples of different characterization methods.

Previously, many systems have been developed for identification of biological
objects at different levels. In 1996, the Dinoflagellate categorization (DiICANN) system,
based on neural networks (Culverhouse et al., 1996) was developed. Later, forensic
identification of mammals according to their single hair patterns under a microscope
was investigated by Moyo et al. (2006), while Yuan et al. (2006) discussed the
identification of rats up to the species level from images of their tracks. Automation of
species identification systems proved that these tedious tasks could be accomplished in
more feasible and efficient manner while minimising sources of errors (Kay, Shinn, &
Sommerville, 1999). Examples of such systems are Automated Leathopper
Identification system (ALIS) (Dietrich & Pooley, 1994), Digital Automated
Identification System (DAISY) (O’Neill, Gauld, Gaston, & Weeks, 2000), Automatic
Identification and characterization of Microbial Populations (AIMS) (Jonker et al.,
2000), Automated Bee Identification System (ABIS) (Arbuckle, Schroder, Steinhage, &
Wittmann, 2001), BugVisux (Hanqing & Zuorui, 2002), automated identification of
bacteria using statistical methods (Trattner, Greenspan, Tepper, & Abboud, 2004), an
automated identification system which estimates whiteflies, aphids and thrips densities
in a greenhouse (Cho, Choi, Qiao, Ji, & Kim, 2008), species identification, automated
and web accessible (SPIDA-web) (Russell, Do, Huff, Platnick, & MacLeod, 2007),
But2fly (Liu, Shen, Zhang, & Yang, 2008), Automated Insect Identification through
Concatenated Histograms of Local Appearance (AIICHLA) (Larios et al., 2008), an
automated identification system for algae (Coltelli, Barsanti, Evangelista, Frassanito, &

Gualtieri, 2014), automatic recognition of biological particles in microscopic images



(Ranzato et al., 2007), automatic species identification of live moths (Mayo & Watson,
2007) automated image-based phenotypic analysis in zebrafish embryos (Vogt et al.,
2009), automatic recognition system for some cyanobacteria using image processing
techniques and ANN approach (Mansoor, Sorayya, Aishah, Mogeeb, & Mosleh, 2011),
automatic detection of malaria parasites for estimating parasitemia (Savkare & Narote,
2011), automated weed classification with local pattern-based texture descriptors
(Ahmed, Kabir, Bhuyan, Bari, & Hossain, 2014), automated processing of imaging data
through multi-tiered classification of biological structures illustrated using
caenorhabditis elegans (Zhan et al., 2015), automated identification of copepods using
digital image processing and artificial neural network (Leow, Chew, Chong, & Dhillon,
2015), automatic plant species identification using sparse representation of leaf tooth
features (Jin, Hou, Li, & Zhou, 2015), automated system for malaria parasite
identification (Savkare & Narote, 2015), a software system for automated identification
and retrieval of moth images based on wing attributes (Feng, Bhanu, & Heraty, 2016),
automatic wild animal monitoring by identification of animal species in camera-trap
images using very deep convolutional neural networks (Gomez & Salazar, 2016),
automated identification of anastrepha fruit flies in the fraterculus group (Perre et al.,
2016) and automated identification of fish species based on otolith contour, using short-
time Fourier transform and discriminant analysis (STFT-DA) (Salimi, Loh, Dhillon, &

Chong, 2016). Automated systems for biological species are summarized in Table 2.1.



Table 2.1: Examples of significant automated species identification systems.

No. of Accur
System ) Classification method acy Reference
classes
(%)
Automated Object (Thiel,
Recognition Of Blue-Green 9 Discriminant Analysis 98 Wiltshire, &
Algae Davies, 1996)
Automatic Classification Fuﬁiﬂ; E:g?)l zalglsck
Of Field-Collected 23 . 83 (PF et al., 1996)
Dinoflacellates Propagation of error
£ variant (BPN)
. . . (Yang, Park,
&”ﬁiﬂf;céifﬁﬁ;agons 12 ANN 86-90 | Kim, Choi, &
&8 Chai, 2001)
Automate Identification Of 13 Linear Discriminant 98 - | (Schroder et al.,
Bees Analysis 99.8 2002)
(Jalba,
Automatic Diatom Decision trees and k- W11k1n§ on,
. . 43 ) 82-84 Roerdink,
Identification nearest neighbour
Bayer, &
Juggins, 2005)
Automatic Identification
Of Whiteflies, Aphids And | 50 ANN 93.100 | (CHOetal,
. 2008)
Thrips
WEKA: Naive Bayes,
Automatic Identification 35 Instance-based learning, 25 (Mayo &
Of Live Moths Decision trees, Random Watson, 2007)
forests and SVM
Automatic recognition
system for some 4 ANN 95 (Mansoor et al.,
. 2011)
cyanobacteria
Automated weed ) Template matching & 88- (Ahmed et al.,
classification SVM 98.5 2014)
Automated insect
Automated Insect 4 identification, Kadir 82.95 (Larios et al.,
Identification entropy detector and 2008)
PCBR
Automated Taxon ..
Identification Of Teleost 420 k-nearest neighbour 72 (Parisi-Baradad
. et al., 2010)
Fishes
Automated Real-Time (Loke, Egerton,
Dynamic Identification Of Cristofaro, &
Flying And Resting 10 Random tree 85 Clementson,
Butterfly 2011)




Table 2.1: Continued.

Automatic Identification (Luo et al.,
Of Diatoms 12 BP neural networks 94 2011)
Automatic Insect (Le-Qing &
Classification 10 SVM =90 Zhen, 2012)
Automated Identification .
. semantically-related (Feng &
And Retrieval Of Moth 50 visual (SRV) 85 Bhanu, 2013)
Images
(Hernandez-
Automatic Ideqtlﬁcatlon 740 ANN 91-93 S‘erlrla &
Of Species Jiménez-
Segura, 2014)
Water Monitoring -
Automated And Real Time 3 ANN : Self Organizing 08 (Coltelli et al.,
Identification And Map (SOM) 2014)
Classification Of Algae
Automatic Identification (Kaya, Kayci,
Of Butterfly Species > AR 78 & Uyar, 2015)
Automated System For
Malaria Parasite 2 SVM go | (Savkare&
. . Narote, 2015)
Identification
Automatic Plant Species 3 KNN & BP Neural 7679 (Jinetal.,
Identification Network 2015)
Automated identification of 3 ANN 93.13 (Leow et al.,
copepods 2015)
Automated identification (Feng et al
and retrieval of moth 50 SRV attributes 34-70 e2 g le6)a °
images
Automatic wild animal 26 Convolutional Neural 88.9- (Gomez &
identification Networks 98.1 Salazar, 2016)

2.1 Monogeneans

Monogeneans are members of the Platyhelminthes and without intermediate host,
they have direct life cycle (Woo & Leatherland, 2006). Usually, Monogeneans live on
lower aquatic invertebrates or gills, skin or fins of fishes as host. Monogeneans have
their greatest diversity on fishes. Currently in Malaysia, over 200 species of

monogeneans have been described from 60 species of fishes (35 and 25 species of
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freshwater and marine fish, respectively), three species of turtles and one species of frog
(Lim, Tan, & Gibson, 2010). Monogeneans commonly move on the body surface and
feed from skin mucus and debris on the gill. They have appendage attachments in their
anterior and posterior (haptoral) regions (Figure 2.1) that are used to prevent physical

dislodgement from the host.
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Figure 2.1: Illustration of a monogenean worm consisting of three main parts (i.e.
head, body and haptor parts) (Figure adapted from (Abu, Lim, Sidhu, & Dhillon,
2013)).

The haptoral organs consist of hard, sclerotized structural parts such as anchors and

bars. Since characters that can be extracted from haptoral hard parts of monogenean are
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prominent, The features from these characters are significant basis for taxonomic

classification and identification of monogenean (Bykhovsky & Nagibina, 1978).

Taxonomists essentially use morphological analysis from sclerotized organs such as
anchors and bars in classification of monogenean due to sharp and informative
qualitative variation in the latter. Investigations on morphometric characteristics of hard
sclerotized organs of monogeneans have been done in terms of evolutionary ecology
(Poisot & Desdevises, 2010) and also systematics (Shinn, Gibson, & Sommerville,
2001). Since the form of hard sclerotized organs will not simply change after
compression while mounting onto slides, they are ideal for geometric morphometric
analysis (Lim & Gibson, 2009). Anchors and bars of monogenean are species specific
with respect to their shape and size. To date, in many studies (Pariselle et al., 2011;
Rodriguez-Gonzalez, Miguez-Lozano, Llopis-Belenguer, & Balbuena, 2015; Vignon,
2011a), the data from geometric morphometric analysis of monogenean's anchors and

bars applied in identification and classification of monogenean.

2.2 Image Acquisition

Coltelli et al. (2014) believed that image acquisition is the most important step in
designing an automated system and capturing images should be well-focused with less
complexity. The acquisition condition should be clearly defined and kept equal for all
images, later labelled by expert taxonomists. In microscopic images, magnification
might be different in the data set and it is important to specify scales in each image to
prevent system confusion. Figure 2.2 illustrates three images of Euryhaliotrema organs.
In Figure 2.2 (a) there is a copulatory organ inside the black circle which is even
difficult to be recognised by human eyes. In Figure 2.2 (b) and (c), anchors and bars are
illustrated but still the outline of anchors and bars are not recognisable and the organs

are not separately distinctive because of overlapping of anchors and bars. All of these
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complications in the images might be the result of bad focus, lack of light and contrast

settings or other image acquisition factors.

Figure 2.2: Illustration of image acquisition problems of Euryhaliotrema during
digitization. a) Noise and debris in the images makes recognition of copulatory
organ difficult. b) Bad focus on bars and anchors. ¢) Messy background of
anchors and bars.

One of the challenges faced in creating image database is the lack of standard
imaging condition during image acquisition. A method to control imaging condition for

automated identification of stonefly larvae was proposed in which the imaging
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apparatus in this system posed and rotated the specimens under the microscope and

captured images in standard and consistent conditions (Larios et al., 2008).

2.3 Database

In all automated identification systems which are based on species images, the
systems are connected to a database of specimens’ digital images that contain different
number of dominant categories. Data in a database is commonly divided into two sets,
one for training the classifiers and the other set for testing the classification. The
number of species’ images used for training differs widely between systems and is
determined according to the applied classifiers. Table 2.2 demonstrates some databases
used in automated identification systems. Abu et al. (2013) proposed an image retrieval
framework for monogeneans that contains two databases, the monogenean image
database and the Monogenean Haptoral Bar Image (MHBI) Fish ontologies. In this
study, an ontology framework improves the relevancy of the training set to collect the
most relevant images to be used. In the stonefly identification system (Larios et al.,
2008), 263 specimens of four species were collected and approximately ten images of
each specimen were captured through their imaging apparatus. The database used in the
diatom identification system (Jalba et al., 2005) includes two sets of files, the first
consists of 120 images of six species from one genera and the second set contains 781
images of 37 species from different genera. The microscopic images in this system
varied in terms of quality and noise of contour (contours being noisy) but the system
was able to handle the noise. An automated identification systems for classification of
tree species (Martins et al., 2013) employed a database of 112 species’ images. The
microscopic images were acquired with 100X magnification and labelled by
dendrologists. The database contained 2240 images, 20 images from each species for

training and testing the system. They used 40% of their data for training (8 images for
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each species), 20% for validation (4 images for each species) and 40% for testing (4

images for each species).

Table2.2: Example of some species image databases applied in automated
identification systems.

Organism | Level of | No. of No. of No. of Total Reference
classific | classes | training testing No. of
ation set data Images
Monogenean | Species 6 148 19 167 (Abu et al.,
2013)
Stonefly Species 4 50 of each | 50 of each 1240 (Larios et
Spp spp al., 2008)
Diatom Species 43 - - 901 (Jalba et al.,
2005)
Softwood and | Species 112 8 of each 8 of each 2240 (Martins et
Hardwood spp spp al., 2013)
forest species
Copepods Genus 5 30 of each | 20 of each 400 | (Leow etal.,
spp spp 2015)

2.4 Image processing

The aim of image processing in the system is to transform digital images to a standard
pose (Gonzalez & Woods, 2007) and achieving recognizable objects on a uniform
background. In this step, image noises should be removed, also contrast and dynamic
range of image have to be improved. Image enhancement can be carried out by manual
or automatic methods. Manual methods such as the ones carried out using ImageJ
(Kiranyaz et al., 2011; Mayo & Watson, 2007) or Photoshop (Larios et al., 2008), may
yield better image pre-processing results but it is advisable to use fully automated
methods to build systems with large number of images as the manual image processing

methods require longer processing time.

Digital images of species, especially microscopic images, usually contain dust or
other noise artefacts. Noise makes neighbouring pixel values clutter (Trattner et al.,
2004), so it should be reduced by smoothing methods of filtering. The efficiency of

removing noise by filtering could be more if it be according to type of noise. Amplifier
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or Gaussian, salt and pepper, film grain, non-isotropic, speckle and periodic noise are
the most common types of noise. Noise reduction filters can be divided into two
categories: linear filters and non-linear filters (Mythili & Kavitha, 2011). Median
filtering (Bovik, Huang, & Munson, 1987) is a non-linear filtering which is commonly
applied to digital microscopic image (Avci & Varol, 2009; Hernadndez-Serna &
Jiménez-Segura, 2014; Saraswat & Arya, 2014; Weeks, O’Neill, Gaston, & Gauld,
1999). Leow et al. (2015) applied median filtering with 10 x 10 kernel in automated
identification system for copepods to suppress the salt and pepper noise created from

the water in images.

Image quality is highly affected by illumination, contrast, focus and acquisition
resolution (Castafion et al., 2007). Variation in illumination may be caused by different
types of lenses (Arce, Wu, & Tseng, 2013) and light sources (Bradbury & Bracegirdle,
1998; Saraswat & Arya, 2014). Histogram equalisation can be applied to reduce
variation in illumination (Castafién et al., 2007). Enhancing contrast by stretching the
histogram of digital image will spread the brightest and darkest pixel values of grey
levels which will later assign to white and black. Table 2.3 shows some image

processing algorithms, introduced by Gonzales and Wood (Gonzalez & Woods, 2007).

Table 2.3: Common image processing algorithms used in automated species
identification systems.

Algorithm Comments Reference
Noise Reduction Linear filtering, Non-linear filtering
Image Enhancement | Sharpening the image
Edge highlighting
Contrast improvement
. . . - (Gonzalez
Image Restoration Clearing away the blurriness made by linear & Woods,
motion 2007)
Clearing away the optical misrepresentation
Clearing away the periodic interference
Image Segmentation | Separation of particular shapes from background
partitioning an image
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The fundamental step after image processing and before feature extraction and
classification is segmentation (Haralick & Shapiro, 1992). Segmentation separates the
background from the foreground and is important in computer vision since it finds the
location of pixels that can be classified as an object. Pixels with common characteristics
(for example texture or colour distribution) are grouped according to the selected
segmentation algorithms. Although automated segmentation of specimens from
background may still encompass debris and clutter, robust automated systems can
categorize species satisfactorily (Culverhouse et al., 1996). Recognition of image parts
which belong to an object of interest is often more effective when making use of
boundaries and shape information extracted by segmentation methods. The Grabcut
algorithm (Rother, Kolmogorov, & Blake, 2004) is a segmentation technique used in
automated identification of species systems (Hernandez-Serna & Jiménez-Segura, 2014)
to remove background. In this technique, hard segmentation made by iterative graph-cut
optimization is combined with border matting to get rid of mixed and blurred pixels on
boundaries of object. Edge detection (Gonzalez & Woods, 2007) is another common
segmentation technique that can be achieved by filters such as Canny's (Canny, 1986) or
Sobel's (Gonzalez & Woods, 2007). Both sobel and canny detectors were applied for
image segmentation in the automatic algal identification system (Natchimuthu,
Natchimuthu, Chinnaraj, Parthasarathy, & Senthil, 2013), due to the significant edges
and contours of the objects. There are generally six methods for object segmentations:
thresholding (Gonzalez & Woods, 2007), fuzzy theory-based, Patial Differential
Equatuin-based, Artificial Neural Network-based, region-based and edge-based

methods (Kang, Yang, & Liang, 2009; Khan, 2014).

Thresholding is the most common technique in which binary images are produced
according to cut-off value. This method can be mainly subclasses to dynamic, global

and local thresholding techniques (Table 2.4) ( Kang, Yang, & Liang, 2009; Singh,
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Tomar, & Maurya, 2012). Sometimes, there are specimens overlapping that makes
object detection difficult, especially in microscopic images. Distance transforms and
watershed transforms can be applied to separate overlapping specimens (Di Ruberto,

Dempster, Khan, & Jarra, 2000; Savkare & Narote, 2011).

Table 2.4: Thresholding techniques used in automated species identification

systems.
Techniques Subclasses Reference
Dynamic Watershed thresholding (Doncic, Eser, Atay, &
Skotheim, 2013)
Global Otsu thresholding (Savkare & Narote, 2015)
Local Adaptive thresholding (Jin, Hou, Li, & Zhou, 2015)

2.5 Feature Extraction and Selection

Features extracted from digital images are used to train classifiers. Therefore,
extraction and selection of best features is important. Classes of features can be grouped
into feature vectors which create a representation of objects of interest in the image and
should contain taxonomic information. Using all extracted features in classifier will
cause heavy computational effort, therefore, selection of effective features is an
important task (Sang-Hee, 2010). Optimization of number of features selected for
training classifiers is done using feature selection techniques (Choras, 2007). Good
performance of both extracted and selected features depends on type of system's
classifiers and the analysing data (Kiranyaz et al., 2011). If employed classifiers are
strong enough, even with small number of features, the method may yield successful

results (Larios et al., 2008).

2.5.1 Feature Extraction
The most salient types of features in images are shape, colour and texture (Islam,

Dengsheng Zhang, & Guojun Lu, 2008; Ping Tian, 2013; Shih, Huang, Wang, Hung, &
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Kao, 2001). Feature extraction in automated systems may depend on the level of
identification, which means features for detection at the order level are different from
those at the species level. Some local features such as sparse coding spatial pyramid
matching (Lu, Hou, Lin, & Liu, 2010), concatenated feature histogram (Larios et al.,
2008) and bag of words (Wen, Guyer, & Li, 2009) which are based on Scale-invariant
feature transform (SIFT) (Lowe, 2004; Wang, Lin, Ji, & Liang, 2012) may not extract
enough information for identification of high level categories like species. In the
automated system for whiteflies, aphids and thrips identification, features such as size,
shape of boundary and colour components were considered (CHO et al., 2008) and due
to different attached part of each insect, morphological boundary was not used and only
three colour components and size were applied as feature. Figure 2.3 illustrates content
based features which are common in automated identification systems (Li, Tseng,
Hsieh, Yang, & Huang, 2014). Shape representation techniques (Yang, Kpalma, &
Ronsin, 2008) are applicable for shape feature extraction (Table 2.5). The techniques in

Table 2.5 are classified by their processing approaches.

Figure 2.3: Content based features.
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Table 2.5: Overview of shape representation techniques.

Shape Features

Center of gravity

Axis of least inertia

Average bending energy

Eccentricity

Principal axes method

Minimum bounding rectangle

Shape Circularity ratio

parameters Ellipse variance
Rectangularity
Convexity
Solidity
Euler number
Profiles
Hole area ratio
Complex coordinates
Centroid distance function

One
dimensional | Tangent angle
function for | Contour curvature
shape - Area function
representation
Triangle-area representation
Chord length function
Distance threshold method
Polygona} Merging methods Tunnelling method
approximation -
Polygon evolution
Splitting methods
Moments Boundary moments

Region moments

Invariant moments

Algebraic moment invariants

Zernike moments

Radial Chebyshev moments

Homocentric polar-radius
moments

Orthogonal Fourier-Mellin
moments

Pseudo-Zernike moments
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Table 2.5: Continued.

Adaptive grid resolution

Bounding box

Convex hull

Basic chain code

Differential chain codes

Chain code Re-sampling chain codes
Vertex chain code
) Spatialh Chain code histogram
interrelation >
feature Smooth curve decomposition

ALI-based representation

Beam angle statistics

Square model shape matrix

Sh tri
apc matrix Polar model shape matrix

Shape context
Chord distribution
Shock graphs

In the automated system for malaria parasites, area, perimeter, minor and major axis
of red blood cells (RBC) were calculated as shape feature components (Savkare &
Narote, 2015). Texture features consist of kurtosis, momentum, standard deviation and
mean of RBC and intensity values of the green channel were considered as colour
features. Local Binary Patterns (Ojala, Pietikainen, & Maenpaa, 2002) were considered
as texture descriptors and they are applied in images analysis. Kaya et al (Kaya et al.,
2015) extracted four texture features: average, correlation, entropy and energy from the
local binary pattern matrix in their automated identification system for butterfly species.
In the automated identification and classification system for algae (Coltelli et al., 2014),
dissimilarity measurement, centroid distance spectrum, points of contours and some
densitometry and morphological features like area, ferret diameters, extinction, centre of
gravity coordinates and etc. were calculated. Hernandez-Serna et al. (2014) proposed an

automated system which is applicable for identification and classification of plants,
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fishes and butterflies. Their approach in this system extended to three different
taxonomic groups, therefore, extraction of features should be as general as possible in
the way that it could be applied to all species. They used area, perimeter, diameter,
compatibility, compactness and solidity as geometrical features, uniformity, median,
entropy, variance, inertia, homogeneity and co-occurrence as texture features and Hu
invariant set of moments and related moment invariants as morphological features

(Ming-Kuei Hu, 1962; Flusser & Suk, 1993).

Feng and Bhanu (2013) developed a system which adopted semantically related
visual (SRV) attributes. They claimed that shape, texture and colour may fail in validity
if the images are visually complex and have semantic contents. According to the results
of their research, it is notable that in all iterations accuracy of using SRV is higher than
CBIR. Figure 2.4 illustrates the comparison of mean accuracy of SRV and Content-

Based Image Retrieval (CBIR) approaches in categorization of species in five iterations.

0.8
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Figure 2.4: The comparison of mean accuracy of SRV and CBIR approaches in
categorization of species in five iterations

Other features that have been applied in detection and categorization of specimens
are classical features such as branch length similarity entropy ( Kiranyaz et al., 2011;

Huddar, Gowri, Keerthana, Vasanthi, & Rupanagudi, 2012), corner based features,
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edge, ridge, curve, shape descriptors like Fourier descriptors, texture features like co-
occurrence, histogram intensity and gradient (Haralick, Shanmugam, & Dinstein, 1973).
Also some other feature extraction methods that can be named are Gabor packet based
methods (Grigorescu, Petkov, & Kruizinga, 2002), Histogram of Oriented Gradient
(Dalal & Triggs, 2005), Scale Invariant Feature Transform (SIFT), Active Shape Model
(ASM) (Al et al., 2012), Active Appearance Model (AAM) and Local Binary Patterns

(LBP) (Quivy & Kumazawa, 2011).

2.5.2 Feature Selection

Feature selection is a process to identify relevant features while removing irrelevant
and redundant features. Relevant features should be informative, fast in computing and
also invariant to noise or given transformations. Feature selection is an ideal way in
many pattern recognition problems to reduce the dimensions of extracted features.
When there are high-dimensional samples but limited incorporated information, the best
action is selection of the most informative data (Lei, Liao, & Li, 2012). Now, the
decision whether a feature is relevant, redundant or not, are aspects that involves in
feature selection operations. The role of selecting features lies in improving the
prediction process, correlation coefficient of regression algorithms and
comprehensibility of learning results (Karagiannopoulos, Anyfantis, Kotsiantis, &
Pintelas, 2007). Table 2.6 shows some feature selection algorithms (Kudo & Sklansky,
2000). Principal component analysis (PCA) (Jolliffe, 2002) is multivariate statistical
technique, adopted by DAISY to select important features of images. Due to big
amount of detailed information collected by this technique, acquired features are
convenient for identification at species level (Wang et al., 2012). Ali et al. (2011) used
the assessment of Sequential backward Selection (SBS), Sequential Forward Selection
(SFS) and Sequential Forward Floating Selection (SFFS) techniques (Ververidis &

Kotropoulos, 2008) for selecting proper features for monogenean classification and the
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results indicated that of the 25 features, 21 were the best in classification of
Gyrodactylus species performances. Feature selection results are dependent on the size
of the training data as in (Jain & Zongker, 1997), the quality of feature selection for

small data is low and as the training size increases, the quality improves.

Table 2.6: Example of feature selection algorithms used in automated species
identification systems (Table was adapted from Kudo & Sklansky (2000)).

Algorithm Subset Search Type
SFS, SBS Looking for the best subset of given size | Sequential
GSFS(g), GSBS(g) Looking for the best subset of given size | Sequential
PTA(l, r) Looking for the best subset of given size | Sequential
GPTA(l, 1) Looking for the best subset of given size | Sequential
SFFS, SBFS Looking for the best subset of given size | Sequential
BAB, BAB*, BAB™* Looking for the best subset of given size | Sequential
RBAB, RBABM Looking for the smallest acceptable Sequential
subset
GA Looking for optimal combined size and Parallel
error rate subset
PARA Looking for optimal combined size and Parallel
error rate subset

2.4.2.1 Linear Discriminant Analysis (LDA)

One of the common methods for feature selection is Linear Discriminant Analysis
(LDA) (Song, Mei, & Li, 2010). LDA selects independent and most informative
features and it can be applied in machine learning, statistics and pattern recognition to
detect a linear composition of features that are able to classify classes of objects. The
popularity of LDA method is for selecting features that preserves class separation. The
goal of LDA is maximising between-classes covariance while minimizing in-class
covariance, it means separation between multiple classes by maximizing the component
axes (Cai, He, & Han, 2008). Therefore, besides projecting a feature space to smaller
subspace, the class-discriminatory information is also maintained. In LDA feature
selection, first, d dimensional mean vectors for n classes’ dataset are determined.
Subsequently, by computing in-between class and within-class scatter matrix, the

eigenvectors and corresponding eigenvalues are calculated. Next, sorting eigenvectors
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and picking eigenvectors with largest eigenvalues. Finally, the d x n dimension
eigenvector is adopted to transform feature space to new subspace. Different elements
of features statistically have different effects on the results of feature selection and they
can be evaluated by eigenvector elements. Since there are many eigenvectors, LDA
chooses some small elements of eigenvectors while evaluating the elements of extracted

features (Song et al., 2010).

2.6 Classification

The idea of classification is to classify objects of interest based on a specific feature
data set to discriminate between distinct classes. Performance of classifiers is highly
affected by the segmentation and feature extraction process. Jain et al. (2000) proposed
three categories of classifiers: similarity based, probabilistic and decision boundaries.
Most of the classification methods are mentioned elsewhere, see (Loncaric, 1998;
Zhang & Lu, 2004; Savkare & Narote, 2011), including structural, fuzzy, transform,
neural network-based methods and many more. Some automated identification systems
such as in copecodes (Leow et al., 2015) employ neural networks or learning algorithms
when there are many classes and small number of samples, but some other systems such
as in teleost fish (Parisi-Baradad et al., 2010) deal with huge numbers of samples and
use other algorithms like K Nearest-Neighbour (KNN) (Duda, Hart, & Stork, 2012).
Table 2.1 summarizes some automated identification systems adopting various kind of
classification methods. Jalba et al. (2005) used k-nearest neighbour and C4.5 (Quinlan,
2014) algorithms as classification techniques for an automated identification of diatoms.
In this system two types of feature vectors were adopted. Both types of feature vectors
were constructed for top and bottom curvature spaces. Type-1 feature vector computes
the number of peaks, mean curvature and variance for each cluster. Type-2 feature
vector computes the mean curvature and variance of the points with the highest

curvature for each cluster and the extent. The result with type-2 feature vectors was
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84% and better than type-1 feature vectors. The average accuracy of this system when
using C4.5 decision trees is higher compared to the rate of identification with human
experts (43% to 86.5%). Mayo & Watson (2007) employed methods from the WEKA
(Witten & Frank, 2005) machine learning toolkit such as Naive Bayes, J48, IB1, IBS,
Random forests and Sequential Minimal Optimization (SMO) classifiers. The results
demonstrated that random forest and SMO classifiers achieved accuracy of 83%, better
that other classifiers and by increasing the number of feature attributes, the accuracy
reaches to 85%. In identification of species of Gyroactylus genus in fish ectoparasite
(Ali et al., 2012), features which were extracted by Active Shape Models (ASM),
implemented to two linear classifiers, Linear Discriminant Analysis (LDA) and KNN
and two non-linear classifiers, Multilayer Perceptron (MLP) and Support Vector
Machine (SVM). According to results of this study, LDA method accuracy was 85.71%,
MLP method 95.59% and KNN classification accuracy of 98.75%. KNN was
outperforming classifier since the testing dataset in identification of Gyroactylus species
was 68 images and KNN was capable of classifying with limited number of dataset.
Hayat Mansoor et al (Mansoor et al., 2011) proposed a system operating with ANN for
identification of cyanobacteria genera images. This system recognized 71 of 80 images
correctly and detection accuracy was reported as 95%. In classifying insects, Le-Qing &
Zhen (2012) employed two SVM classifiers using radial basis functions (RBF) and
polynomial kernels respectively. Comparing the evaluated results of these two
classifiers, it is notable that polynomial kernel performs better than RBF in verification
(91.96-87.5%) and RBF performs better than polynomial kernel in discrimination
(93.35-91.57%). These two Support Vector Machine (SVM) classifiers were also
employed in an automated classification system for Erythrocytes infected with malaria
(Savkare & Narote, 2012). With combination of both classifiers, an identification

accuracy rate of 96.42% was achieved. In automated identification of insects at the
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order level (Wang et al., 2012), ANN and SVM were used as classification methods.
Since SVM is a binary classifier and for classification of multi-class problem it has to
use one over all classification for each class, SVM performs better than ANN.
Comparing SVM and ANN results with semantically-related visual (SRV) attributes in
an automated identification system for moths (Feng & Bhanu, 2013), SRV classifier
outperforms both SVM and ANN classifiers. In the study by Kaya et al. (2015),
classification was based on LBP and the accuracy rate in identification depends on

variables such as neighbouring and radius values.

2.6.1 K-Nearest Neighbour (KNN)

One of simplest methods in classification algorithms is K Nearest Neighbour which
is sorted as a lazy learning algorithm (Miller, Gregory, Aspden, Stollery, & Gilbert,
2014) but still has been used as a benchmark and workhorse classifier (Athitsos, Alon,
& Sclaroff, 2005; Athitsos & Sclaroff, 2005; Peng, Heisterkamp, & Dai, 2001). In
KNN, samples within a dataset cluster with other samples that contain similar properties
and classes are determined according to the class of nearest neighbours (Holmes &
Adams, 2002; Song, Huang, Zhou, Zha, & Giles, 2007). Based on value of nearest
neighbour (k), KNN uses majority vote and appoints the labels of classes. Therefore, the
performance of KNN is primarily dependent on value of k and the applied distance
metric (Latourrette, 2000). Usually, KNN classifier uses Euclidian distances as the
distance metric. In cases which the properties of samples are not uniformly distributed,
it is difficult to predetermine the value of k but generally, larger values of k show better
resistance to presented noise and distinct the boundaries between classes (Y. Song et al.,
2007). Therefore, different applications of KNN require applicable value for k. In each
application of KNN, k value has to be checked each time and the one with best

performance will be selected. First, the training model is computed and according to
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neighbours’ class, the similarity of each sample with samples in testing data will be

calculated (Cunningham & Delany, 2007).

The basic idea of KNN is shown in Figure 2.5 in which two classes of samples in
two dimensional feature space are represented. In this figure, three nearest neighbour
classifier has to decide p and q belong to which class of o or x. The decision is made by

either distance weighted or majority voting.

0]
0
0 X
O 0 (4°
X
q x X
X

Figure 2.5: K Nearest Neighbour classifier in two dimensional feature space. There
are two classes of X and O and KNN with k value of 3 has to decide q and p belong
to which class.

A disadvantage of using majority voting classification is the tension of classes with
more frequent samples to influence the prediction of unknown samples and the idea of
weighting the classification according to distance of unknown point to each of nearest
neighbours is a way to overcome this problem. Instead, the advantage of KNN is its
robustness to noisy training data (Cunningham & Delany, 2007). This is the reason why
recognition systems such as analysing received signals (Ault, Zhong, & Coyle, 2005)
and offline handwritten signature identification (Soleymanpour, Rajae, & Pourreza,
2010) adopted KNN in their analysis. KNN is a good classification tool for problems

with more than two classes (Yazdani, Ebrahimi, & Hoffmann, 2009).
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2.6.2 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a classifier which has been modelled according
to human brain. ANN, like human brain, has many nerve cells that are called neurons.
Each of neurons are connected to many other neurons and they create a complex
network of signal transmission. The inputs from other neurons are collected by each
connected neuron. In ANN, the word “perceptron” is mimicked as the neuron. The
perceptron (Figure 2.6) receives different weighted inputs and encapsulate them, and the
threshold determines if the combined input is exceeded to activate and send an output.
Generally, the activation function that is often between 0 and 1 or —1 and 1, determines
which output to send. Training network is accomplished by use of derivative of the
activation function and it would be better if these derivative expresses according to of

the original function value (Priddy & Keller, 2005).

X1

X2

O

Xn

Figure 2.6: A representation of a simple perceptron. In this illustration Y is the
output, Q is the activation function, x is the value of the n connection to the
perceptron, w is the weight and b represents the threshold. (Figure was adapted
from Priddy & Keller (2005).

The important aspect of classifier is learning from samples and adapting to them. In
ANN, learning archives through updating the weights follow the connections in middle
of layers. This can be achieved in several ways which involves initializing the weights.
Then output errors by network will be calculated and by the back-propagation process

will feed backward. Later the network will learn to categorize classes by updating the
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weights through back-propagation. Learning from complicated samples in ANN is
easily achievable since it has multilayer structure and multiple inputs can generate

single output by simple model.

Artificial neural networks (ANN) have presented fulfilling results in complex
classifications and proved capability in selecting proper structure and training
techniques for the network (Coltelli et al., 2014; Ginoris, Amaral, Nicolau, Coelho, &
Ferreira, 2007; Hernandez-Serna & Jiménez-Segura, 2014; Kiranyaz et al., 2011;

Culverhouse et al., 1996; Wang et al., 2012; Yang et al., 2001).

In earlier work, ANN performance has been compared with discriminant analysis
(DA) and decision trees (DT) techniques ( Ginoris, Amaral, Nicolau, Coelho, &
Ferreira, 2007) and ANN outperformed both DA and DT in image classification of
protozoa and metazoan with overall accuracy rate of 88%. In other study ( Culverhouse
et al., 1996) an automated classification system for dinoflagellates was implemented,
using ANN classifiers. In this work, Radial Basis Function (RBF) (Lowe & Broomhead,
1988) and back propagation of error variant (BPN) (McClelland, Rumelhart, Group, &
others, 1987) classifiers were compared with two statistical classification methods, K-
Nearest Neighbour (KNN) and Quadratic Discriminant Analysis (QDA). RBF
performance with accuracy rate of 83% was the best category estimation, leading
labelling task in the system where BPN, QDA and KNN lag with 66%, 56% and 60%

performance respectively.
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CHAPTER 3: METHODOLOGY

In this chapter, the approaches in methodology of this study are detailed as follows:
monogeneans collection, monogeneans image acquisition, database of digital images,
image processing, extraction of one anchor, feature extraction, feature selection,
classification and evaluation. Figure 3.1 illustrates the scheme of process for

development of automated identification system for monogenean.

Figure 3.1: The Scheme of process of proposed identification system for
monogeneans.
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3.1 Monogeneans Collection

Digital images of anchors and bars of monogeneans were used in this study.
Monogeneans were collected from gills of Malaysian fishes. The attached tissues were
removed using fine needles and placed on clean slides with a drop of water under a
coverslip. Specimens were flattened, so that the hard and soft anatomical structures of
their body were exposed. To study monogeneans™ specimens under phase contrast
microscopy, ammonium pirate glycerine was used to clear and fix the specimens. Later,
the specimens in ammonium pirate glycerine were washed, dehydrated by alcohol and

firmly fixed in Canada Balsam.

Since some of the slides of monogeneans used in this study were those collected by
experts since 1996 (Figure 3.2), Ammonium pirate glycerine was applied to very old
specimens’ slides to prepare them for image acquisition. Broken and spoiled specimens

were discarded during this phase.

Figure 3.2: Slides of monogenean specimens

3.2 Monogeneans Image Acquisition
The specimens were investigated by phase contrast microscopy. Recognition of
monogeneans is based on morphometric features of their hard parts (Lim & Gibson,

2010), Therefore, images of the hard haptoral organs such as anchors and bars of eight
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species were captured using Leica digital camera DFC 320 attached to Leica DMRB
microscope (Figure 3.3). The anchors and bars were observable with magnification of
40x%. The images of specimens were modified using QWin Plus image analysis module
by adding scale of 30 um to the images. The resolution of images was 1044x772 pixels

and saved in Tagged Image File format (TIF).

Figure 3.3: Digitizing the monogenean specimens, using Leica digital camera DFC
320 attached to Leica DMRB microscope.

Some of slides of monogenean samples were prepared since 1996 and accordingly,
there were variety of species in stored samples. 23 available slides of species were
picked and 1060 images of monogenean anchors and bars were captured and 160
images of eight species were selected based on quality of images for developing the

automated identification model for monogenean.

3.3 Database of Digital Images
In this study, automated identification model for monogenean is connected to a
database of specimens’ digital images that contain different number of dominant

categories. The database consisted of 160 images from eight species. There are
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Sinodiplectanotrema malayanus (Figure 3.4), Diplectanum jaculator (Figure 3.11),
Trianchoratus pahangensis (Figure 3.5), Trianchoratus lonianchoratus (Figure 3.8),
Trianchoratus malayensis (Figure 3.9), Metahaliotrema ypsilocleithru (Figure 3.10),

Metahaliotrema mizellei (Figure 3.6) and Metahaliotrema similis (Figure 3.7).

Figure 3.4: Sinodiplectanotrema malayanus.

Figure 3.5: Trianchoratus pahangensis.
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Figure 3.6: Metahaliotrema mizellei.

Figure 3.7: Metahaliotrema similis.

Figure 3.8: Trianchoratus lonianchoratus.
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Figure 3.9: Trianchoratus malayensis.

Figure 3.10: Metahaliotrema ypsilocleithru.

Figure 3.11: Diplectanum jaculator.
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According to successful experiments by Jin et al. ( 2015) and Sang-Hee (2010), 10
images of each species were used for training the KNN classifier and other 10 images as
testing set (Figure 3.12). In ANN classification, according to try and errors, the best
result were achieved by use of 70% of 160 images for training the system, 15% for

testing and 15% for evaluation of system.

Figure 3.12: Image database for training and testing dataset.

3.4. Preliminary Identification: Four Species (First Stage)
In first stage of the study, the structure of identification system was made based on four

species of monogeneans which were randomly picked from the database of eight species:
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Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei
and Metahaliotrema similis. The procedure of development of automated identification
model for four species are detailed as follow: image processing, feature extraction,
feature selection, classification and evaluation of automated identification model for

four species of monogeneans.

3.4.1 Image Processing

The Image Processing Toolbox in MATLAB R2013a (“Image Processing Toolbox -
MATLAB,” n.d.) (Figure 3.13) was adopted for image processing, installed on Intel(R)
Xeon (R) CPU E5-1620 v2 @ 3.70GHz, 16.00GB RAM, Windows 7 Professional (64-
bit) to conduct this study. The image processing played an important role in this
investigation and it was accomplished in two essential steps: First, image pre-processing

and second, image segmentation.
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MATLAE Version: B8.1.0.604 (R2013a)

MATLAE License Number: 262587

Operating System: Microsoft Windows 7 Version €.1 (Build 7601: Service Pack 1)
Java Version: Java 1.6.0 17-b04 with 5Sun Microsystems Inc. Java HotSpot (THM) 64-Bi
MATLLE Version 8.1 (R2013a)
Simulink Version 8.1 (R2013a)
Communications System Toolbox Version 5.4 (R2013a)
Computer Wision System Toolbox Version 5.2 (R2013a)
Control System Toolbox Version 9.5 (R2013a)
Curve Fitting Toolbox Version 3.3.1 (R2013a)
DSP Svstem Toolbox Version 8.4 (R2013a)
Data Acguisition Toolbox Version 3.3 (R2013a)
Fuzzy Logic Toolbox Version 2.2.17 (R2013a)
Global Optimization Toolbox Version 3.2.3 (R2013a)
Image Acquisition Toolbox Version 4.5 (R2013a)
Image Processing Toolbox Version 8.2 (R2013a)
MATLAE Builder NE Version 4.1.3 (R2013a)
MATLAE Coder Version 2.4 (R2013a)
HMATLAE Compiler Version 4.18.1 (R2013a)
Mapping Toolbox Version 3.7 (R2013a)
HNeural Network Toolbox Version 8.0.1 (R2013a)
Cprtimization Toolbox Version 6.3 (R2013a)
Parallel Computing Toolbox Version 6.2 (R2013a)
Signal Processing Toolbox Version &6.19 (R2013a)
SimPowerSystems Version 5.8 (R2013a)
Simscape Version 3.9 (R2013a)
Simulink 3D Animation Version 6.3 (R2013a)
Simulink Coder Version 8.4 (R2013a)
Simulink Control Design Version 3.7 (R2013a)
Simulink Design Optimization Version 2.3 (R2013a)
Statistics Toolbox Version 8.2 (R2013a)
System Identification Toolbox Version 8.2 (R2013a)
Wavelet Toolbox Version 4.11 (R2013a)
XPC Target Version 5.4 (R2013a)

Figure 3.13: List of installed toolboxes in MATLAB.

3.4.1.1 Image Pre-processing

Background feature minimization is an important pre-processing step in
monogeneans classification. Otherwise, soft part features of monogeneans could mix
with those from hard parts and the texture analysis will yield unreliable results. The

image pre-processing follows as:

(1) Images were converted to intensity images.
(i1) Filtering intensity images with the average correlation kernel of size 20 x 20.

(111) Detecting the edge of the anchors and bars of monogeneans.
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After detecting the edges in the images, image segmentation was performed where

bars and anchors were identified and segmented from unwanted particles in the images:

3.4.1.2 Image Segmentation
After detecting the edges in the images, image segmentation was done where bars
and anchors were identified and segmented from unwanted particles in the images

(Figure 3.14):

1) The images were converted to binary images with threshold of zero. After creating an
average filter, the image was deducted from filter. The result is an intensity image
which contains negative and positive values. Therefore, pixels, greater than 0 will turn

to 1(white) and other pixels will turn to 0 (black).

2) Small particles (<1000 pixels) were excluded to ensure only the bars and anchors are

segmented for feature extraction.

Figure 3.14: Process in image pre-processing, edge detection and image
segmentation steps for four species of Sinodiplectanotrema malayanus,
Trianchoratus pahangensis, Metahaliotrema mizellei and Metahaliotrema similis.
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3.4.2 Feature Extraction

Features were extracted from the shape descriptors represented by the binary
images of the bars and anchors, using appropriate functions in MATLAB. The features
vector with 10 elements were extracted form the following shape parameters (Table
3.1): Euler number, perimeter, area, area density, perimeter density, centre of bounding

box, length of bounding box, width of bounding box and orientation of bounding box.

Table 3.1: Description of shape parameters, used for feature extraction in four
species ( Stage 1).

Shape Parameters

Description

Actual number of pixels in the region of particular

Ar .

ca object.
Area density The mass of a substance covering a unit of area.
Perimeter

Distance around the boundary of the region.
The measure of length of the perimeter of a set in free

Perimeter density

boundary.
Length of bounding
box Length of smallest rectangle containing the region.
Width of bounding
box Width of smallest rectangle containing the region.
Center of bounding
box Center point of smallest rectangle containing the region.

Orientation of
bounding box

The angle between the x-axis and the major axis of the
ellipse that has the same second-moments as the
smallest rectangle containing the region.

The number of objects in the region minus the number
of holes in those objects.

FEuler number

3.4.3 Feature Selection

To increase the performance of classifiers and decrease the number of unnecessary
features, Linear Discriminant Analysis (LDA) was applied for feature selection.
Practically, LDA as a feature dimensionality reduction technique would be pre-step for
a typical classification task. In this study, for calculation of LDA, 10 dimensional mean
vectors for four classes’ dataset was calculated. After computing in-between class and

within-class scatter matrix, the eigenvectors and corresponding eigenvalues were
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calculated. Subsequently, eigenvectors are sorted in line with increasing growth and 3
eigenvectors with largest eigenvalues were picked. Finally, 4x3 dimension eigenvector

was adopted to transform feature space to new subspace.

3.4.4 Classification

In this study, two classifiers were used to classify the images into the right species.

3.4.4.1 K-Nearest Neighbour (KNN) Training
We applied K-nearest neighbour (KNN) classifier to the same training and test

datasets. K-NN, as a non-parametric classifier, identifies the test sample by a majority
vote of its neighbours which are assigned to the class that is most common among its K
nearest neighbours. The KNN parameter was set to 1 in this study. The three selected
features obtained from previous stage were used as input to KNN classifier. Four
species of monogeneans were used and the vectors of image labels were prepared
according to their features. KNN was used in this study because our dataset was from
real world while practical and theoretical data do not follow the same assumptions in
KNN. Therefore, no hypothesis was made on the fundamental data distribution. The
trained model from KNN classifier was constructed using 40 images and tested with 40
images of monogeneans with 1 nearest neighbour.
The step by step process in KNN classification is as follow:

(1) Compute the distribution of feature values in each class of training dataset.

(1)) Compute Euclidean distance between training and testing feature vectors.

(i11)) Sort the Euclidean distance output into ascending order.

(iv) Obtain the first nearest neighbour classes for each of testing feature vectors.

(v)  Obtain the hypothesis of the class for each sample by weighted majority voting.
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3.4.4.2 Artificial Neural Network (ANN) Training

The other pattern recognition tool, used in this study was Artificial Neural Network
(ANN) to classify sample specimens to four classes. The ANN classifier structure was a
two layer feed-forward network with ten sigmoid hidden nodes and four output neurons
and scaled conjugate gradient back propagation was used to train the network (Figure

3.15).

Hidden Output
Input Output

U T =R

10 Fil

Figure 3.15: Neural Network with 10 sigmoid hidden nodes and four output
neurons.

Opening the neural network graphical user interface (GUI) in MATLAB was by
keying in ‘nnstart’ function. For ANN classification, pattern recognition tool was
adopted and the feature vector as input and target vector were assigned. The whole data
(80 images) was divided to three training (56 samples, 70%), testing (12 samples, 15%)
and validation (12 samples, 15%) dataset. Training dataset was used for training ANN,
testing dataset for performance measurement of the network and validation set to
measure generalization of network and terminates training before overfitting.

For evaluating the trained network the confusion matrices and Mean Square Error
(MSE) were used. Increasing the value of MSE in samples of validation set imply that
the improvement in network generalisation has been stopped and this causes training
break. The network was trained several times to obtain best performing train network.
Since MSE is the average squared difference between outputs and targets, the lowest

value means better performance of train network.
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3.4.5 Evaluation

The evaluation of the system with both classification techniques were accomplished
by correct classification accuracy rate of testing data set. A total number of 40 images
from image database were assigned to test the system with KNN classification and 12
images from image database were assigned to evaluate and test the system with ANN
classification. Since the sample size was small, Leave-One-Out (LOO) cross validation
was used to assess how the results of the system generalize to an independent data set.
The result for the evaluation of KNN, ANN and LOO cross validation is recorded in

confusion matrices presented in Chapter Four.

3.5. Extended Identification on Eight Species (Second Stage)

In second stage of the study, the structure of identification system was extended
based on four species of monogeneans to eight species from the database:
Sinodiplectanotrema malayanus, Diplectanum jaculator, Trianchoratus pahangensis,
Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema
ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. The procedure of
development of automated identification model for eight species are explained as
follow: image processing, extraction of one anchor, feature extraction, feature selection,
classification and evaluation of automated identification system for eight species of

monogencans.

3.5.1 Image Processing

The Image Processing Toolbox in MATLAB R2013a (“Image Processing Toolbox -
MATLAB,” n.d.) was adopted for image processing, installed on Intel(R) Xeon (R)
CPU E5-1620 v2 @ 3.70GHz, 16.00GB RAM, Windows 7 Professional (64-bit) to

conduct this study. The image processing played an important role in this investigation
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and it was accomplished in two essential steps: first, image pre-processing and second,

image segmentation.

3.5.1.1 Image Pre-processing

One of biggest challenges of monogenean specimen images was complexity in terms
of messy background and overlapping of anchors and bars. Although many efforts were
made to acquire clear images but still some overlapping and clutters were unavoidable

(Figure 3.16).

Hence, pre-processing stage played an important role as long as redundant
information are omitted and reliable features are highlighted for next process in feature
extraction. Pre-processing started with converting three dimensional colour image
(RGB images) to two dimensional intensity images using MATLAB function:
‘mat2gray’. For filtering the intensity images, average filtering mode as a mask with a
20-by-20 kernel was used to conceal the noise produced by clutters and debris under

slides.

Figure 3.16: The illustration of anchors and bars of Metahaliotrema
ypsilocleithrum. a) The illustration of dorsal and ventral anchors and bars. b) The
microscopic image of anchors and bars and their overlapping.
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3.5.1.2 Image Segmentation

In order to identify the edge of anchors and bars, the intensity images were deducted
from the filtered images (Figure 3.17). The images containing edges of anchors and bars
were then converted to binary images. Then, they were binarized with threshold of zero.
Then the borders were cleared and objects smaller than 1000 pixels were removed
(Figure 3.18). The coordinates of contour pixels for species’ anchors were also
calculated. Therefore, features were extracted once from all anchors and bars as a united

object and the other time only an anchors.
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Figure 3.17: The process of detecting edges from intensity image.
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Figure 3.18: The process of converting binary image to segmented image.

3.5.2 Extraction of One Anchor

The output of image processing stage was segmented images of segmented anchors
and bars of monogenean. As a result of dorsal and ventral organ’s overlapping, anchors
and bars in some were segmented as one unit of object and that means the computer
counted all haptoral organs as one organ. To overcome the misconception of segmented
images, one anchor was extracted in each image (Figure 3.19). Therefore, feature
extraction was accomplished by extracting features from all anchors and bars as a unit

object and also from one anchor.

Figure 3.19: Extraction of one anchor of each species.
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3.5.3 Feature Extraction

Binary images were used two times for feature extraction. Once using all anchors
and bars as a united object and another time, by calculating coordinates of one anchor
and then extracting the features from that anchor. Features were extracted by shape
representation techniques from shape descriptors of binary images in MATLAB.
According to parameters such as length of bounding box, width of bounding box, centre
of bounding box, orientation of bounding box, perimeter, perimeter density, area, area
density, Euler number, entropy and major axis length (Table 3.2), a feature vector with

24 elements was extracted.

Table 3.2: Description of shapes parameters, used for feature extraction in eight

species.
Shape Parameters Description
Actual number of pixels in the region of particular
Area s
object.
Area density The mass of a substance covering a unit of area.
Perimeter

Distance around the boundary of the region.

Perimeter density

The measure of length of the perimeter of a set in free
boundary.

Length of bounding

box Length of smallest rectangle containing the region.
Width of bounding

box Width of smallest rectangle containing the region.

Centre of bounding
box

Centre point of smallest rectangle containing the region.

Orientation of
bounding box

The angle between the x-axis and the major axis of the
ellipse that has the same second-moments as the
smallest rectangle containing the region.

FEuler number

The number of objects in the region minus the number
of holes in those objects.

Entropy

The measure of randomness that can be used to
characterize the texture of the region.

Major axis length

The length (in pixels) of the minor axis of the ellipse
that has the same normalized second central moments as
the region.
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3.5.4 Feature Selection

Feature selection is a technique for reducing the dimensions of feature vector. In this
study, the informative and independent features were selected using linear discriminant
analysis (LDA) feature selection method (Cai et al., 2008). The goal of LDA is
separation between multiple classes by maximizing the component axes. Therefore,
besides projecting a feature space to smaller subspace, the class-discriminatory
information was also maintained. In this approach, first, 24 dimensional mean vectors
for eight classes™ dataset was calculated. After computing in-between class and within-
class scatter matrix, the eigenvectors and corresponding eigenvalues were calculated.
Subsequently, eigenvectors were sorted in line with increasing growth and seven
eigenvectors with largest eigenvalues were picked. Finally, the 8x7 dimension

eigenvector was adopted to transform feature space to new subspace.

3.5.5 Classification
Two classifiers, K-Nearest Neighbour (KNN) and Artificial Neural Network (ANN)

were used to classify the images into species.

3.5.5.1 K-Nearest Neighbour (KNN) Training
. In this study, from all 160 images captured from eight different species, trained

model from KNN classifier was constructed using 80 images and tested with 80 images
of monogeneans with 9 nearest neighbours. The step by step process in KNN
classification is as follow:

(vi) Compute the distribution of feature values in each class of training dataset.

(vi1) Compute Euclidean distance between training and testing feature vectors.

(viii) Sort the Euclidean distance output into ascending order.

(ix) Obtain the 9 nearest neighbour’s classes for each of testing feature vectors.

(x)  Obtain the hypothesis of the class for each sample by weighted majority voting.

3.5.5.2 Artificial Neural Network (ANN) Training
The other pattern recognition tool, used in this study to classify sample specimens to

eight classes was Artificial Neural Network (ANN). The ANN classifier structure was a
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two layer feed-forward network with ten sigmoid hidden nodes and eight output

neurons and scaled conjugate gradient back propagation was used to train the network

(Figure 3.20).

Hidden Output
Input Output

U T IR

10 B

Figure 3.20: Neural Network with 10 sigmoid hidden nodes and four output
neurons.

The whole data (160 images) was divided to training (112 samples, 70%), testing (24
samples, 15%) and validation (24 samples, 15%) dataset. Training dataset was used for
training ANN, testing dataset for performance measurement of the network and
validation set to measure generalization of network and terminates training before
overfitting.

For evaluating the trained network confusion matrices and Mean Square Error (MSE)
were used. Increasing the value of MSE in samples of validation set imply that the
improvement in network generalisation has been stopped and this causes training break.
The network was trained several times to obtain best performing train network. Since
MSE is the average squared difference between outputs and targets, the lowest value

means better performance of train network.

3.5.6 Evaluation
The evaluation of the system with both classification techniques were accomplished
by correct classification accuracy rate of testing data set. A total of 80 images from

image database were assigned to test the model with KNN classification and 24 images
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to all images were assigned to evaluate and test the model with ANN classification.
Also, since the sample size was small, Leave-One-Out (LOO) cross validation was used
to assess how the results of the system generalize to an independent data set. The result
for the evaluation of KNN, ANN and LOO cross validation is recorded in confusion

matrices which are presented in chapter four.
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CHAPTER 4: RESULTS

In this chapter, the results of implementation and empirical considerations are
demonstrated. The various approaches, carried out in this study are addressed in detail.
First, the results of feature selection, K-Nearest Neighbour and Artificial Neural Network
classification and evaluation of classification for four species (first stage) are elaborated.
In feature selection, the feature vector with 10 elements was transformed to feature
vector with 3 elements. The adoption of selected features had increased the accuracy

rate of classification of four monogenean species.

Subsequently, the results of feature selection, KNN and ANN classification and
evaluation of classification for eight species (second stage) are explained in detail. In
this stage, the model feature extraction was extended to extraction a feature vector with
24 elements which was then transformed to feature vector with seven elements using the
LDA technique. The new feature vector employed in KNN and ANN classifications for

classifying eight species of monogeneans.

These two main stages follow the original model for automated identification system

for monogenean.
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4.1 Preliminary Identification Results (First Stage)

In this section, the experimental results for preliminary model of automated
identification model for four species of Sinodiplectanotrema malayanus, Trianchoratus
pahangensis, Metahaliotrema mizellei and Metahaliotrema similis are explained in
detail. Here, the results reveal the accuracy of proposed model for classification of four
species of monogenean in feature selection, classification and evaluation of automated

identification system.

4.1.1 Feature Selection

A feature vector with 10 elements was extracted from anchors and bars of four
species. The features were extracted from shape parameters such as Euler number,
perimeter, area, area density, perimeter density, centre of bounding box, length of
bounding box, width of bounding box and orientation of bounding box. After LDA
feature selection, the feature vector was transformed to feature vector with 3 elements.
The 3D scatter plots in Figure 4.1 (a), (b) and (c) show the clustering of four species
samples (different colours represent different species) based on features extracted,
before LDA feature selection. From the clusters, it is notable that the species of
Sinodiplectanotrema malayanus and Trianchoratus pahangensis and Metahaliotrema
similis are not well grouped and samples from Trianchoratus pahangensis tend to
mingle with Metahaliotrema similis before feature selection. In Figure 4.1 (d), the
clusters of features resulted from LDA feature selection of samples for four species are

shown and it is illustrious that the samples are well clustered according to the species.
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Figure 4.1: 3D scatter plot with different features. (a) scatter plot with
combination of three features which are Euler number, perimeter, area (b) scatter
plot with combination of three features which are area, area density, perimeter
density (c) scatter plot with combination of three features which are length of
bounding box, width of bounding box and orientation of bounding box (d) scatter
plot with combination of LDA transformed features: FvLDA1, FvLDA2 and
FvLDA3. The data were classified into four species: Sinodiplectanotrema
malayanus (Smm), Trianchoratus pahangensis (Tp), Metahaliotrema mizellei (Mmi)
and Metahaliotrema similis (Mma).

To study the relationship between the four species according to the features
extracted from shape parameters and those transformed by LDA features selection
technique, 2D scatter plots were graphed for each selected feature. In 2D scatter plot in
Figure 4.2, well separation between species by use of only first element of selected
features is shown. Sinodiplectanotrema malayanus (represented by red colour dots) is

completely separated from Metahaliotrema mizellei (represented by blue colour dots)
and Metahaliotrema similis (represented by black colour dots). Also, samples from
Trianchoratus pahangensis (represented by green colour dots) mingle with

Sinodiplectanotrema malayanus and Metahaliotrema similis. In Figure 4.3, samples
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from Metahaliotrema mizellei (represented by blue colour dots) mingle with
Metahaliotrema similis (represented by black colour dots). Since these two species are
from same genera, it is expected that the features resembles. Although third element of
the selected feature vector in Figure 4.4 shows well separation of samples between both
species of Metahaliotrema, still samples from Sinodiplectanotrema malayanus
(represented by red colour dots) and Trianchoratus pahangensis (represented by green
colour dots) mingle between all species. However, the combination of three elements

for selected feature vectors, achieved acceptable clustering for four species (Figure 4.5).
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Figure 4.2: 2D scatter plot of first element of transformed feature vector by LDA
for samples of Sinodiplectanotrema malayanus, Trianchoratus pahangensis,
Metahaliotrema mizellei and Metahaliotrema similis.

57



750

700

atalll

GO0

400

340

300

250
0

4 B 8 10 12 14 16 18
Samples

Sm

Mmi
Mma

Figure 4.3: 2D scatter plot of second element of transformed feature vector by
LDA for samples of Sinodiplectanotrema malayanus, Trianchoratus pahangensis,

Metahaliotrema mizellei and Metahaliotrema similis.
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Figure 4.4: 2D scatter plot of third element of transformed feature vector by LDA
for samples of Sinodiplectanotrema malayanus, Trianchoratus pahangensis,

Metahaliotrema mizellei and Metahaliotrema similis.

58



3“0 T T T T T T T 1200

1000 -

800+

600 -

400 -

200+

or E
0.sf
-200 - B

0 400 L L I I I L L
o g 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Feature Values
Feature Values

Samples Samples

Figure 4.5: The distinction of feature values before and after LDA feature
selection. a) Illustration of discrimination between 10 feature vector elements of
Sinodiplectanotrema malayanus, Trianchoratus pahangensis, Metahaliotrema
mizellei and Metahaliotrema similis. b) Illustration of discrimination between 3
feature vector elements selected by LDA for four species of Sinodiplectanotrema
malayanus, Trianchoratus pahangensis, Metahaliotrema mizellei and
Metahaliotrema similis.

4.1.2 Classification
The results from feature selection in previous stage were invoked by KNN and ANN.
The details of classification approaches and results in both KNN and ANN are indicated

in the following sections:

4.1.2.1 K-Nearest Neighbour (KNN)

KNN does not make any hypothesis on the underlying data distribution. This is
useful in this study’s case since the data is from real world. Generally practical data
does not follow the theoretical assumptions like for example Gaussian mixtures or
linearly separable made. Non parametric algorithms like KNN come to the rescue here.
The trained model was constructed using 10 images of each monogenean species and
the model was tested by 10 images of each monogenean species in testing dataset. After
25 iterations of KNN classification with different k values, as reported by the majority

voting, the best result was achieved with k=1 nearest neighbour (Figure 4.6). According
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to the confusion matrix (Table 4.1), the overall classification score for four species with

KNN classification is 95%.
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Figure 4.6: Illustration of k value in 25 iterationss of KNN classification for four
species. The best result made by k=1.

Table 4.1: Confusion matrix of KNN classification for four species of:
Sinodiplectanotrema malayanus (Smm), Trianchoratus pahangensis (Tp),
Metahaliotrema mizellei (Mmi) and Metahaliotrema similis (Mma).

Results Accuracy %
Species Smm Tp Mmi Mma
Smm 10 0 0 0 100
Tp 0 10 0 0 100
Mmi 0 0 8 2 80
Mma 0 0 0 10 100
Overall 95

4.1.2.2 Artificial Neural Network (ANN)
The architecture of ANN classification was a two layer feed-forward network with
ten sigmoid hidden nodes and four output neurons and scaled conjugate gradient back

propagation was used to train the network. The network was trained by 56 samples and
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the trained model was tested by 12 samples and validated by 12 samples. Mean Square
Error (MSE) was used for evaluating the trained network and incrimination in MSE
imply that the improvement in network generalisation has been stopped and this causes
training break. In this experiment, the MSE value for training, testing and validation set
is reported in Table 4.2, MSE is the average squared difference between output and
targets and lower value of MSE means better performance of train network. The
percentage of error indicates the fraction of samples which are misclassified.

Table 4.2: Neural network training performance in terms of mean square error for
training, testing and validation sets.

Samples MSE Error (%)
Training Set 56 0.00517713 0.892857
Validation Set 12 0.00617574 0
Testing Set 12 0.00263427 0

After 52 iterations, best trained network was constructed with MSE of 0.0061757 at
epoch 46 (Figure 4.7). According to confusion matrix in Figure 4.8, it is notable that the
best overall accomplished classification was 98.8% of all 80 images in training,
validation and testing set. The plot for error distribution of neural network is shown in
Figure 4.9. The error histogram plot represents that the error of this proposed system is
very close to zero. The progress of other variables such as gradient magnitude and
validation checks are illustrated in Figure 4.10. On the training state plot, the maximum
validation check 6 at epoch 53 and at this point, the neural network halts the training
process to give best performance. Receiver Operating Characteristic (ROC) curve of the
network which illustrates true positive rate verses false positive rate at various threshold
settings of the network, is shown in Figure 4.11. Area under the curve (AUC) shows a
maximum perfect result for this proposed system. At the neural network train, test and
validation conclusion, this network performs around 93% correct classification of eight

classes of monogenean species.
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Figure 4.7: Neural network training validation performance according to mean

square error for four species. Best validation performance achieved at epoch 46.
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classified into four species: Sinodiplectanotrema malayanus (Smm), Trianchoratus
pahangensis (Tp), Metahaliotrema mizellei (Mmi) and Metahaliotrema similis
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Figure 4.9: Illustration of distribution of the neural network errors.
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Figure 4.11: The Receiver Operating Characteristic (ROC) of training network. In
the regression plot, a regression between network outputs and network targets is
illustrated.

4.1.3 Evaluation

The performance of the system with both classification techniques was evaluated by
correct classification accuracy rate of testing data set. A total number of 40 images from
image database were assigned to test the system with KNN classification and 12 images
to all images were assigned to evaluate and test the system with ANN classification.
Additionally, since the sample size was small in this study Leave-One-Out (LOO) cross
validation was applied to assess how the results of current system generalize to an
independent data set. The results of KNN and ANN reported in confusion matrices in
Table 4.1 and Figure 4.8. The result of LOO cross validation is illustrated in Table 4.3

with accuracy score of 91.25%.
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Table 4.3: Confusion matrix of leave one out cross validation for four species of

Sinodiplectanotrema malayanus (Smm), Trianchoratus pahangensis (Tp),
Metahaliotrema mizellei (Mmi) and Metahaliotrema similis (Mma).

Results Accuracy %
Species Smm Tp Mmi Mma
Smm 20 0 0 0 100
Tp 0 18 0 1 90
Mmi 0 0 19 1 95
Mma 0 3 1 16 80
Overall 91.25

4.2 Species Identification Results on Eight Species of Monogeneans (Second Stage)
In this section, the preliminary model for four species is extended to development
identification model for eight species of Sinodiplectanotrema malayanus, Diplectanum
Jjaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus
malayensis,  Metahaliotrema  ypsilocleithru,  Metahaliotrema  mizellei — and
Metahaliotrema similis. The experimental results for feature selection, classification and
evaluation of automated identification model for eight species are presented. The results

are demonstrated to reveal the accuracy of proposed model for classification of eight

species of monogenean.

4.2.1 Feature Selection

The features extracted for designing preliminary model was not enough to be
extended for eight species, therefore, a feature vector with 24 elements was extracted
from anchors and bars of eight species. The features were extracted from shape
parameters such as Euler number, perimeter, area, area density, perimeter density,
centre of bounding box, length of bounding box, width of bounding box, orientation of
bounding box, entropy and major axis length. The features were extracted from shape
parameters for two times, once, from all anchors and bars of sample as a unit object and
the other time from only one anchor of the sample. After LDA feature selection, the

feature vector was transformed to feature vector with seve elements. To study the
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relationship between the eight species according to the selected features, 2D scatter
plots were plotted for each element of selected features. 2D scatter plots in Figure 4.12,
Figure 4.13, Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17 and Figure 4.18 show
the discrimination between eight species (represented by eight different colours) by use
of only one element of selected features in each plot. The samples from Metahaliotrema
mizellei (represented by blue colour dots) mingle with Metahaliotrema similis
(represented by black colour dots) and Metahaliotrema ypsilocleithru (represented by
brown colour dots). Since these three species are from same genera, it is expected that
the features be close. In Figure 4.12, well separation between black, green and red dots
is obvious, which shows clustering among Metahaliotrema, Trianchoratus and
Sinodiplectanotrema malayanus. The samples in plots based on one selected feature
mingle in different species, but in 3D scatter plot, combination of three selected feature
elements (FVLDA1, FYLDA2 and FvLDA3) in Figure 4.19, well separation between

samples is illustrated.
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Figure 4.12: 2D scatter plot of first element of selected feature vector by LDA for
samples of Sinodiplectanotrema malayanus, Diplectanum jaculator,Trianchoratus

pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis,

Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis.
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Figure 4.13: 2D scatter plot of second element of selected feature vector by LDA

for samples of Sinodiplectanotrema malayanus, Diplectanum

jaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus

malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and
Metahaliotrema similis.
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Figure 4.14: 2D scatter plot of third element of selected feature vector by LDA for
samples of Sinodiplectanotrema malayanus, Diplectanum jaculator, Trianchoratus

pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis,

Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis.
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Figure 4.15: 2D scatter plot of fourth element of selected feature vector by LDA for
samples of Sinodiplectanotrema malayanus, Diplectanum jaculator,Trianchoratus

pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis,

Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis.
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Figure 4.16: 2D scatter plot of fifth element of selected feature vector by LDA for
samples of Sinodiplectanotrema malayanus, Diplectanum jaculator,Trianchoratus

pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis,

Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis.
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Figure 4.17: 2D scatter plot of sixth element of selected feature vector by LDA for
samples of Sinodiplectanotrema malayanus, Diplectanum jaculator,Trianchoratus

pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis,

Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis.
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Figure 4.18: 2D scatter plot of seventh element of selected feature vector by LDA

for samples of Sinodiplectanotrema malayanus, Diplectanum

jaculator,Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus

malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and
Metahaliotrema similis.
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Figure 4.19: 3D scatter plot with combination of LDA selected features: FvLDAI1,

FvLDA2 and FvLDA3. The samples were classified into eight classes illustrated
with eight circles in different colours.

In Figure 4.19 it is shown how transformed feature vector separates eight species; by

adopting LDA feature selection method, the feature vector with 24 elements was

transformed to feature space with seven distinct elements in feature space (Figure 4.20).
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Figure 4.20: Feature vector comparison after and before feature selection. a)
Illustration of 24 dimensional extracted feature vector for 80 samples. Except one
of the features, the rest contain close values. b) Illustration of seven dimensional
feature vector which is the result of LDA feature selection.
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4.2.2 Classification

The experiment was conducted on eight species of four monogenean families which
were classified by KNN and ANN. In KNN 80 images were used for training and 80
images for testing the trained model. In ANN, 112 images were used for training, 24
images for testing the network and 24 images for system validation. In achieved results,
ANN with accuracy of 93.1% was outperforming KNN classifier with accuracy of

86.25%.
4.2.2.1 K-Nearest Neighbour (KNN)

In KNN classification, we achieved best classification score with nine nearest
neighbours (Figure 4.21). According to the confusion matrix (Table 4.4), the overall
classification score for eight species was 86.25%. KNN was also employed to classify
intra genus specimens of Metahaliotrema and Trianchoratus. The confusion matrix in
Table 4.5 (A) shows the classification result in Metahaliotrema and the confusion
matrix in Table 4.5 (B) shows the classification result in Trianchoratus. The accuracy of
classification in Metahaliotrema genus was 76.66%. There were three misclassification
of Metahaliotrema ypsilocleithru with Metahaliotrema mizellei and two with
Metahaliotrema similis. Also it is notable that in Table 4.4 there are two
misclassification of Metahaliotrema ypsilocleithru with Metahaliotrema mizellei.
Mainly the misclassification between these two species is because of the shape of their

anchors and the way dorsal and ventral anchors lie in front of each other.
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Figure 4.21: Illustration of k value in 15 iterations of KNN classification for eight
species. The best result was shown by k=9 and k=10.
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Table 4.4: Confusion matrix of KNN classification for eight species.

Results Accuracy
(%)
Species Smm Tp Mmi Mma Tl Tm My Dj

Smm 10 0 0 0 0 0 0 0 100
Tp 0 9 0 1 0 0 0 0 90
Mmi 0 1 9 0 0 0 0 0 90
Mma 0 0 0 10 0 0 0 0 100
Tl 0 0 1 0 8 0 1 0 80
Tm 0 1 0 0 0 9 0 0 90
My 0 1 2 1 0 1 5 0 50
Dj 0 0 1 0 0 0 0 9 90
Overall 86.25

Table 4.5: Confusion matrix of monogenean Intra-genus KNN classification. A)
Metahaliotrema samples B) Trianchoratus samples

A Results Ac:;‘/:)“‘cy B Results Ac;‘,}:)“‘cy
Species | Mmi | Mma | My Species [ Tp Tl | Tm
Mmi 8 1 1 80 Tp 10 0 0 100
Mma 0 10 0 100 Tl 0 8 2 80
My 3 2 5 50 Tm 0 2 8 80
Overall 76.66 Overall 86.66

4.2.2.2 Artificial Neural Network (ANN)

The ANN classification structure was a two layer feed-forward network which was
trained with back propagation and with respect to ten hidden neurons in hidden layer
and eight neurons in output layer. After 46 iterations, best trained network was
constructed with MSE of 0.026168 at epoch 40 (Figure 4.22). In this experiment, the
MSE value for training, testing and validation set is reported in Table 4.6. MSE is the
average squared difference between output and targets and lower value of MSE means
better performance of trained network. The percentage of error indicates the fraction of
samples which are misclassified. According to confusion matrix in Figure 4.23, it is
notable that the best overall accomplished classification was 93.1% of all 160 images in
training, validation and testing set. The plot for error distribution of neural network is
shown in Figure 4.24. The error histogram plot represents that the error of this proposed

system is very close to zero. The progress of other variables such as gradient magnitude

76



and validation checks are illustrated in Figure 4.25. On the training state plot, the
maximum validation check 6 at epoch 45 and at this point, the neural network halts the
training process to give best performance. Receiver Operating Characteristic (ROC)
curve of the network which illustrates true positive rate verses false positive rate at
various threshold settings of the network, is shown in Figure 4.26. Area under the curve
(AUC) shows a maximum perfect result for this proposed system. At the neural network
train, test and validation conclusion, this network performs around 93% correct
classification of eight classes of monogenean species.

Table 4.6: Neural network training performance in terms of Mean Square Error
(MSE) for training, testing and validation sets

Samples MSE Error (%)
Training Set 112 0.00920595 8.92857
Validation Set 24 0.0261682 8.33333
Testing Set 24 0.0205884 8.33333

Best Validation Performance is 0.026168 at epoch 40
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Figure 4.22: Neural network training validation performance according to mean
square error for eight species. Best validation performance achieved at epoch 40.
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Figure 4.23: Confusion matrix of testing dataset. The confusion matric shows the

classification of eight species of monogeneans by ANN classifier.
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Figure 4.24: Illustration of distribution of the neural network errors.
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Gradient = 0.004154, at epoch 46
1[] F T T T T T T T T T3

gradient

Validation Checks = 6, at epoch 46

E T T T T T T T T T *

+ + &+ + + + +

10 15 20 25 30 35 40 45
46 Epochs

Figure 4.25: The neural network training state showing the progress of the
gradient magnitude, the number of validation checks
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Figure 4.26: The Receiver Operating Characteristic of training network. In the
regression plot, a regression between network outputs and network targets is
illustrated.

4.2.3 Evaluation

The performance of the system with both classification techniques was evaluated by
correct classification accuracy rate of testing data set. A total number of 80 images from
image database were assigned to test the system with KNN classification and 24 images
were assigned to evaluate and test the system with ANN classification. Also, since the
sample size was small in this study Leave-One-Out (LOO) cross validation was applied
to assess how the results of our system generalize to an independent data set. The result
for KNN and ANN classificatiom reported in confusion matrices in Table 4.4 and
Figure 4.23 The result of LOO cross validation is illustrated in Table 4.7 with accuracy

score of 88.13%.
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Table 4.7: Confusion matrix of leave one out cross validation for eight species of
Sinodiplectanotrema malayanus (Smm), Diplectanum jaculator (Dj), Trianchoratus

pahangensis (Tp), Trianchoratus lonianchoratus (Tl), Trianchoratus malayensis

(Tm), Metahaliotrema ypsilocleithru (My), Metahaliotrema mizellei (Mmi) and

Metahaliotrema similis (Mma).

Results Acg;or )a <y

Species | Smm Tp Mmi | Mma Tl Tm My Dj

Smm 19 0 0 1 0 0 0 0 95
Tp 0 19 0 1 0 0 0 0 95
Mmi 0 1 18 0 0 0 2 0 90
Mma 0 3 0 16 0 0 1 0 80
Tl 0 0 1 0 18 0 1 0 90
Tm 1 1 0 0 0 18 0 0 90
My 0 0 3 2 0 1 14 0 70
Dj 0 0 1 0 0 0 0 19 95
Overall 88.13

4.3 Overall Results
The overall results of preliminary (first stage) and extended models (second stage) of

automated identification of monogenean images, are presented in Table 4.8. According

to the results, ANN outperforms KNN in both preliminary and extended models.

Table 4.8: The performance of classification techniques’ in preliminary and

extended models

KNN ANN LOO
Preliminary
model (first 95% | 98.80% | 91.25%
stage)
Extended model | o6 550, | 93 1094 | 88.13%
(second stage)
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CHAPTER 5: DISCUSSION AND CONCLUSIONS

The proposed automated identification method in this study is able to classify
monogenean to species level with the overall accuracy of 86.25% with K-nearest
neighbour (KNN) classification and 93.1% with Artificial Neural Network (ANN)
classification for eight species of monogenean. In this study a model based was
developed for monogenean images which can assist taxonomists and non-taxonomists

or ecologists to identify monogenean according to image of their anchors and bars.

Generally, morphometric approaches are built according to distance measurements (Gussev,
1976). However, results of morphometric analyses can depend upon the acquired images
(Kalafi, Tan, Town, & Dhillon, 2016) and the particular set of measurements chosen (Strauss &
Bookstein, 1982; Rohlf & Marcus, 1993). According to several authors' believe, most
morphological features that are extracted from haptoral hard parts are highly correlated (Shinn,
des Clers, Gibson, & Sommerville, 1996; Du Preez & Maritz, 2006) and automatic
classification of monogenean species require improved discriminant methods for such
multicollinearity, especially for small sample sizes where several morphological measurements

are used to classify a few individuals (Vignon, 2011a).

In this study, some set of measurements from shape parameters failed to capture the
complete spatial arrangement of the anatomical features. Due to preserving geometric
information from data collection, Linear Discriminant Analysis (LDA) was used for
transforming extracted features to new feature vector. Also alternative method, based on the
overall form of the haptoral hard parts, was adopted for taxonomic diagnoses of monogenean
species. Combination of such method could free taxonomists from collections of landmarks and
associated linear distances by directly taking into account the shape and size information of
morphological features. This provided a better discrimination between individuals or species

than by use of the traditional system.
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5.1 Image Acquisition and Database

Traditionally, the morphological classification of monogenean species is based on
measurements from shape of individual hard structures such as haptoral parts and
copulatory organs. Therefore, images were focused on anchors and bars of specimens
since these organs contain diagnostic features which are used for classification of
monogenean species. Using overall form of anchors and bars for extraction of features
were lead to achieve new characters in morphological classification of monogeneans
which has been never used before. The need for the discovery of new characters for
identification of species has been acknowledged for log by systematic parasitology
(Vignon, 2011a) and because of the lack of discrimination of traditional methods,
several researchers have used additional points to take into account the maximum
amount of shape information (Murith & Beverley-Burton, 1985; Rehulkova * & Gelnar,

2005).

Although the best slides of specimens were prepared, but still because of limited
number of some specimens, overlapping, broken specimens and clutters in slides were
unavoidable and this caused image acquisition not to be always perfect. Since the
feature extraction process is highly affected by the quality of images, therefore, one of
important factors in classification is the quality and clearness of images. This could be
achieved by using better specimens” slides and high quality microscope and attached

camera especially in terms of lenses.

The acquired images were in two dimensional (2D) and due to loss of some
information in 2D imaging, it is suggested that in future, the model can be based on
three dimensional (3D) images. As the solution to loss of information in 2D imaging, in
the study by Leow et al. (2015), they used built in function in imaging software, called

Extended Focus Imaging (EFI) to create a single plane image with in-focus details.
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The acquired images were stored in a database and based on classification method,

the database was divided into testing, training and validation sets.

5.2 Monogenean Identification

Two classification techniques, KNN and ANN were adopted for developing
automated identification model for monogeneans. Since successful experiments by
using these two classifiers with small size of samples have been reported (Jin, Hou, Li,
& Zhou, 2015; Ali, Hussain, Bron, & Shinn, 2012), it was reasonable to use KNN and
ANN in current study. However, other classification techniques such as SVM, DA, and
decision tree may improve the performance of the system if the size of database is
increased as the performance of classification in some of these methods (e.g. SVM) is

dependent on size of training samples (Maglogiannis, 2007).

KNN and ANN invoked features which were selected by adoption of LDA technique
for transforming feature vectors to distinct feature space of seven elements. In both
KNN and ANN, Sinodiplectanotrema malayanus was correctly classified in all cases
due to distinct shape and size of anchors and bars of the species. Also the sample
images of this species were clear and anchors were perfectly recognised. There was one
misclassification of Trianchoratus pahangensis as Metahaliotrema similis by KNN
method. Mainly, because the shape of their anchor's tails were similar and one
misclassification with Trianchoratus malayensis by ANN as both of them have three
anchors and from same genus. There was one misclassification of Metahaliotrema
mizellei with Metahaliotrema similis by KNN since both are from same genus, overall
shape of all anchors and bars as an object is similar. In KNN, the classification of
Metahaliotrema similis was 100% correct while by ANN there was one
misclassification with Trianchoratus pahangensis as the similar shape of their anchor's
tails. The classification of Trianchoratus lonianchoratus by ANN was 100% correct

while there were two misclassifications with Metahaliotrema mizellei and
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Metahaliotrema ypsilocleithru by KNN. Since the identification of Trianchoratus
lonianchoratus by ANN is 100% correct this means the features were distinct enough
for training the network but the distance distinction by KNN was not sufficient for
classification. In classification of Trianchoratus malayensis samples by KNN, one was
misclassified as Trianchoratus pahangensis. The anchors of both species are similar in
shape but distinct in size. In ANN classification, Trianchoratus malayensis, had one
misclassification with Trianchoratus lonianchoratus and one misclassification with
Metahaliotrema ypsilocleithru. Mainly, the images from samples of Metahaliotrema
ypsilocleithru species were not well pre-processed. Due to overlapping of anchors and
bars in images, even it is not easy for human eyes to separate them. Therefore, this is
the main reason for misclassification of Metahaliotrema ypsilocleithru with other

species.

5.3 Comparison with Previous Studies

The presented automated monogenean identification model in this study, used shape
descriptor parameters as distinguishing features and KNN and ANN as classification
techniques in pattern recognition tool to identify and classify monogeneans.
Considerably, this is the first fully automated identification model for monogeneans
based on monogenean diagnostic organs which are haptoral bars and anchors. In
previous studies of monogenean specimes’ classifications, measurements were attained
from hard structure of monogeneans based on landmarks (Vignon, 2011a; Ali, Hussain,
Bron, & Shinn, 2011; Khang, Soo, Tan, & Lim, 2016). But we used new morphological
measurements from overall shape of all anchors and bars and successfully classified
eight species according to those characters.

In 1999, an experiment was conducted by (Kay et al., 1999) in which they classified
the specimens of monogeneans (Gyrodactylus colemanensis; Gyrodactylus derjavini;

Gyrodactylus caledoniensis; Gyrodactylus truttae; Gyrodactylus salaris). They used
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and compared four classification techniques in their study: Nearest Neighbours (NN),
Feed-Forward Neural Network (FFNN), Projection Pursuit Regression (PPR) and
Linear Discriminant Analysis (LDA). The classification by NN and LDA from total
sclerotized structures acquired by light microscopy had best results among all
classification methods. In the present study, the advantage of research by Kay et al
(1999) was taken to choose Artificial Neural Network technique for the classification.
In the previous study ( Ali, Hussain, Bron, & Shinn, 2011), the multi stage classification
technique was developed for classification of nine species of Gyrodactylus by using
LDA, KNN and Naive Bayes (NB) techniques. They extracted 25 features from shape
descriptors of anchors, ventral bar which spans the two anchors and marginal hooks. In
this study, the features were extracted from ventral and dorsal anchors and bars.

In previous studies, the image processing stage was manual and features were
extracted by manual pointing of landmark coordinates whereas in this study, all stages,
including image processing was automated. Although the detected edges and segmented
images were not perfect, but still could be used for feature extraction. In future by
improvement of quality of samples and digitized images, the automatic image

processing will be enhanced.

5.4 Constraints and Limitations

Since some of the specimens’'slides were old or some were not preserved in good
condition, the specimens inside them were blemished. Some specimens were broken
and the background of some specimens was cluttered due to compression of
monogenean's soft parts under slides. Finding slides which contain specimens in good
condition was time consuming. Still, in some cases, because of small number of

available specimens, using improper slides was unavoidable.

The quality of images is one of the important factors in image analysis and it is

highly affected by imaging tools and equipment. During first two months of this study,
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the images were taken from three species using JVC TK-1280E colour video camera
attached to Leitz Diaplan microscope. Comparing to other 23 species that have been
digitized by Leica Digital Camera DFC 320 attached to Leica Leitz DMRB microscope,

the quality of 23 species’ images was better than the first three.

The diagnostic organs of monogenean which were used in this study are haptoral
anchors and bars. Most of monogeneans have four anchors (2 dorsal and 2 ventral) and
two bars (1 dorsal and 1 ventral). The geometrical structure of dorsal and ventral
anchors and bars are overlapping and separating them during image processing was

difficult.

With respect to conversion of three dimensional (3D) vision under the microscope
lenses to two dimensional (2D) digital images, it is noticeable that some information
will be lost. By use of 3D imaging equipment this weakness of automated identification
system will be reduced. Another solution for this matter is focus stacking of multiple

images taken at different focus distances (e.g. EFI function).

5.5 Future Works

As an idea to improve the automated identification model is to increase the size of
datasets in future studies. By extending the size of training set, more features can be
achieved and samples within a class can be identified more accurately.  Also, the
number of species in database could be expanded. For further application with complex
models, incrementing the number of samples may yield better results. Currently, the
models’s database consists of 160 images from eight different species. In addition to
number of images, the number of species can be extended and the number of images
will be expanded with increase in number of species used in database. By increased
quantity of images, other classification techniques can also be used and a considerably

more detailed, including statistical, evaluation can be performed. There are many
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classification techniques such as SVM, DA, and decision tree may improve the

performance of the system in future.

Besides the number of images, quality of images is an important factor in automated
classification of species. Since the images processing stage is automated and the same
threshold is used for all images, it is crucial that the imaging condition (e.g. light, focus,
magnification) be equal during image acquisition. In this study, some of specimens
were old and as a result, the quality of images acquired, was not good enough. In future
works, the quality of all images should be standardized and image acquisition has to be
done with better equipment such as better microscope and camera in terms of lenses and

light source.

According to previous study by Khang et al. (2016) and Abu et al. (2013),
monogenean classification can be based on extracted features from only anchors and
bars. Therefore, in this study, the features were extracted from shape parameters of only
anchors and bars, but other than these organs, monogenean can be classified by
morphometric information of male and female copulatory organs and marginal hooks
(Tan, 2013). In future studies, the morphological data from shape parameters of all
anchors, bars, marginal hooks and copulatory organs can be used as input to
classification techniques and results would be more reliable. Also, other feature
extracting techniques which can extract further informative features may help to
improve the future studies. One of these techniques is skeleton graph matching (Bai &
Latecki, 2008) when skeleton graph is made by comparison of geodesic paths and
skeleton endpoints. In this technique, the identification is made based on similarity of

the each pair of endpoints and shortest paths.

This study proposes a model for automated identification of eight selected

monogenean images and it works by running the commands in MATLAB workspace
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which means there is no user interface. As a future work, the Graphical User Interface

(GUI) can be deployed as an executable application for ease of use by taxonomists.

Finally, the adaptability and flexibility of the current work presented in this study can
be explored for other species (e.g. copepods and otoliths). The integrated model of
automated identification of monogenean images successfully combines the range of
feature extraction, feature selection and classification techniques. In future works, the

success of applying this model for other species can be evaluated.

5.6 Conclusions

In this study, a model for identification of monogenean based on shape of anchor and
bars is proposed. The dataset consisted of 160 images, discussed in this research and has
been successfully used for classification and identification of monogenean, using
feature selection and pattern recognition methods. The database contained images of
haptoral organs of eight species: Sinodiplectanotrema malayanus, Diplectanum
Jjaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus
malayensis,  Metahaliotrema  ypsilocleithru, = Metahaliotrema  mizellei  and
Metahaliotrema similis. K-Nearest Neighbour and Artificial Neural Network
classification techniques were used to perform identification while Linear Discriminant
Analysis was selected as a feature selection technique to select feature vector with
seven elements from feature space with 24 elements. Segmentation was carried out to
separate each organ of bars and anchors from the background and the challenge was
overlapping of dorsal and ventral bars and anchors on each other. As a solution to this
problem, whole organs were considered as an object while only one anchor was also
tested in feature extraction. Two classification techniques for species identification are
more reliable as this will prevent lack of confidence in the final results. The highest
classification result was achieved by ANN classifier which is 93.1% whereas

classification by KNN yielded 86.25% accuracy. Although KNN was less accurate than
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ANN, both methods were able to identify selected eight monogenean species with

accuracy more than 85%, thus the model developed in this study was successful.
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APPENDIX A

Leica DFC320 camera specifications

Digital camera

Leica DFC320 (R2)

Camera type

Digital camera for microscopy with control
software

Sensor

Interline transfer frame readout CCD —
ICX252AQ

Sensor Grade/Size

Grade Zero / 8.10mm x 6.64mm, Diagonal
8.93mm (Type 1/1.8)

Color filter

RGB Bayer mosaic

Protective color filter

Hoya CM500S (IR cut-off 650nm)

Shutter control

Electronic global shutter/interlaced readout

Number of pixels

3.3 Mpixel, 2088 x 1550

Max scaled resolution (PC
only)

7.3 Mpixel, 3132 x 2325

Sensitive area

7.2 mm X 5.35 mm

Pixel size 3.45 pm x 3.45 um
Color depth 36 Bit

A/D converter 12 Bit

Dynamic range > 59 dB

Readout noise

s <5.0 LSB (12 Bit) typical

Exposure time

230 psec - 60 sec

Dark current

1.2 LSB/sec at 12 Bit typical

Quantum efficiency

Relative: Blue 465nm 98%; Green 530nm
100%; Red 610nm 94%

Gain control/Offset control

10x /0.. 255 LSB (12 Bit)

Live image

On computer screen

Shading correction

Yes, stored for all formats

Brightness correction

On all color binning modes
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APPENDIX B

close all

clear

clc
ETTTTTIEITTTRETTTRRERRY
readImsTrain

for i=1 : length(d)

im=mat2grayv (A{il}):

mIM=imfilter (im, fspecial ("average',20), 'replicate’);
sIH=mIM-im-0.02;

bw0=imZbw (sTM, D) :

bw=bwareaopen (bwl,1000) »

bwl= imfill (bw, 'holes'):

cf = contour_following (bw):

img = zeros(1000,1000):

img (subZind(gize(img), cf(:,2), cfi(:,1))) = 1:
bw= imfill (img, 'holss');

CHI = imEulerld (bw):

perim = imPerimeter (bw);

area = imArea (bw);

DENSITY = imAreaDensity(bw):

Pv = imPerimeterDensity(bw):;

OBB = imOrientedBox (bw);

CHI2 = imEulerid(bwl);

perim? = imPerimeter (bwl);

area? = imhArea (bwl);

DENSITY2? = imAreaDensity(bwl);

Pv2 = imPerimeterDensity (bwl);

©BB2 = imOrientedBox (bwl) :‘

entl=entropy (bw) ;

entZ=entropy (bwl) !

statsl = regionprops (bwl, "MajorAxisLength') s
stats = regionprops (bw, "MajorRxisLength'):
ChR=statal.MajorkxisLength;
ChR2=sztats.MajorkxisLength;

nBlack = sum(bwl(:)):
nWhite = numel (bwl) - nBlack;
al{i}=CHI;

a2{i}=perim;

a3{i}=area;

a4{1}=DENSITY:

as{i1=Fv;

26{1}=0BB;

aT{i}=CHIZ;

ag{i}=perim2;

af%{i}=area2;

al0{1}=DENSITYZ;

all{i}=pPv2;

212{i}=0BB2;

al3{il}=entl;

al4{il}=ent2;

2l5{i}=CA;

alé{i}=nWhite;

Afeat{il=[al(i) a2 (i} a%(i) =a4(i) a5(i) a&(i)...
a7 (i) aB(i) af(i) alo(i) all(i) alz(i
al3(i) al4(i) al5(i) aleii)]-

end
Afeat=padcat (Afeat{:});
Afeat=celllmat (Afeat);

for i=1 : length(B)

im=matZgrav(B{i}):

mIM=imfilter (im, fspecial ("average',20), "replicate')
sIM=mIM-im-0.02;

bwo=im2bw (3IM,0) »

bw=bwareaopen (bwd, 1000) ;

bwl= imfill (bw, "holes'):

cf = contour_following (bw):

img = zeros(1000,1000);

img(subZind(size (img), cf(:,2), ef(:z,1))) = 1:
bw= imfill (img, "holes'):;

CHI = imEulerid (bw) :

perim = imPerimeter (bw);

area = imArea(bw);

DENSITY = imAreaDensity (bw);

Pv = imPerimeterDensity (bw);

CBE = imOrientedBox(bw):

CHIZ = imEulerid (bwl):

perim? = imPerimeter (bwl);
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area2 = imArea (bwl):;

DENSITY2 = imAreaDensity(bwl);
Pv2z = imPerimeterDensicy (bwl)
0BB2 = imCrientedBox (bwl)
entl=entropy (bw) r
entZ=entropy (bwl) ;

statsl = regionprops(bwl, "Maj
stats = regionprops(bw, 'Majo
Ch=statsl.MajorAxisLength;
Ch2=stats.MajorAxisLength;

nBlack = sum(bwl(:))
nWhite = numel (bwl) - nBlack:
bl{i}=CHI;

b2{i}=perim;

b3{il}=area;

b4{i}=DENSITY;

b5{1}=Pv;

b&{1}=0BB;

bT7{i}=CHIZ;

b8{i}=perim2;

b9{i}=area2;

bl0{i}=DENSITYZ;

bll{i}=Pv2;

bl2{i}=0BB2;

bl3{il}=entl;

bl4{i}=ent2;

bl5{i}=Ch;

bl&{i}=nWhite;

Bfeat{i}=[bl(i) b2 (i) b3 (i) b4(i)
b7(i) be(i) b2(i) blo (i)
b13(i) bl4(i) bl5(i) blé

end
Bfeat=padcat (Bfeat{:});
Bfeat=celllmat (Efeat);

for i=1 : length(C)
im=mat2grav(C{i});

mIM=imfilter (im, fspecial ('average'
sIM=mIM-im-0.02;

bwl=im2bw (sIM, Q) ;

bw=bwareaocopen (bw0,1000) ;

bwl= imfill (bw, 'holes');

cf = contour_following (bw);

img = zeros (1000,1000);

img (gub2ind (size (img), cf(:,2), cf
bw= imfill (img, 'holes');

CHI = imEulerld (bw);

perim = imPerimeter (bw);

area = imArea (bw);

DENSITY = imAreaDensity(bw);

Pv = imPerimeterDensity (bw);

OBB = imOrientedBox (bw):;

CHI2 = imFulerld(bwl);

perim2 = imPerimeter (bwl);

area? = imfArea (bwl);

DENSITY2 = imAreaDensity(bwl):

Pv2 = imPerimeterDensity (bwl);
OBB2 = imOrientedBox(bwl);
entl=entropy (bw);

ent2=entropy (bwl) ;

statsl = regionprops (bwl, "Majorkxi
stats = regionprops (bw, 'MajoriAxisL
Ch=statsl.MajorAxisLength;
Ch2=stats.MajorAxisLength;

nBlack = sum(bwl(:}):
nWhite = numel (bwl) - nBlack:
cl{i}=CHI;

c2{i}=perim;
c3{ir=area;
c4{1i}=DENSITY;
c5{1i}=Fv;
c6{1}=0BB;
cT{i}=CHIZ;
c8{i}=perim2;
c9{i}=area;
cl0{i}=DENSITY2;
clil{i}=PvZ;
cl2{i}=0BB2;
cl3{i}=entl;

b5 (1)
b1l1l(i) bl2(i)...

1)1z

£20), 'rep

b&(i)...

cate'):

(:,1))) = 1;

alen
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161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
130
191
132
193
194
195
196
197
198
199
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

cl4{i}=ent2;
c15{i}=Ca;
clé{i}=nWhite;

Cfeat{i}=[cl(i) c2 (i) c3(i) c4(i)
cT(i} cB(i} cB(i) cl0(i)
cl13(i) cl4(i) cl15(i}

end
Cfeat=padcat (Cfeat{:}):
Cfeat=cell?mat (Cfeat) ;

for i=1 : length(D)
im=mat2gray (D{i}):

mIM=imfilter (im, fspecial ('average',20), 'replicate’);

sIM=mIM-im-0.02;

bwO=im2bw (sIM, 0) ;
bw=bwareaopen (bw0, 1000} ;
bwl= imfill (bw, "holes'):
cf = contour_following (bw);
img = zeros(1000,1000);

img (sub2ind (size (img), cf(:,2),

bw= imfill (img,
CHI = imFulerld(bw):
perim = imPerimeter (bw):

les");

area = imArea (bw):

DENSITY = imAreaDensity(bw):
Pv = imPerimeterDensity (bw):
OBE = imOrientedBox (bw):
CHIZ = imEulerld(bwl):
perimZ = imPerimeter (bwl):
area2 = imArea(bwl);

DENSITYZ = imAreaDensicy(bwl):
Pv2 = imPerimeterDensicy (bwl):

0BBE2 = imOrientedBox(bwl):
entl=entropy (bw) ;
ent2=entropy (bwl);

statsl = regionprops(bwl, "MajorAxisLeng
atats = regionprops (bw, 'Majorhxislength

Ch=statsl.MajorAxisLength;
Ch2=sztats.MajorAxisLength;

nBlack = sum(bwl(:));
nWhite = numel (bwl) - nBlack:
dl{i}=CHI:

d2 {i}=perim;
d3{i}=area;
d4{i}=DENSITY;
d5{i}=Pv;
d6{i}=0EBE’
d7{i}=CHIZ;
de{i}=perim2;
d3{i}=areal;
dl10{i}=DENSITYZ2;
dll{i}=Pv2;
dl2{i}=0BB2:
dil3{ir=entl;
dlg{i}=ent2;
d15{1}=Ch;
dl6{i}=nWhite;

Dfeat{i}=[dl(i) d2 (i) d3(i) d<(i)
d7(i) dB(i) do9(i) di0(i)
d13 (i) di4(i) dis5(i)

end
Dfeat=padcat (Dfeat{:});
Dfeat=celllmat (Df=at);

for i=1 : length(E)
im—mat2gray(E{i});

mIM=imfilter (im, fspecial ('average',20), '

sIM=mIM-im-0.02;

bwl=im2bw (3IM, 0) ;
bw=bwareaopen (bw0,1000);
bwl= imfill (bw, 'holes");
cf = contour_following (bw);
img = zeros (1000,1000);

img (sub2ind(size(img), cf(:,2),

bw= imfill (img, "holes");
CHI = imEulerid (bw);

perim = imPerimeterx (bw);
area = imArea (bw);

DENSITY = imAreaDensity (bw):

c5 (i) c6(i)...

€11 (i)

cl6(i)]1:

ez, 1))}

€12 (i) ...

ef(:,1))) = 1:
Vi
")
dS(i) dé(i)...
dil(i) di2{(i)...
dl&(i}];

=1;
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241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

Pv = imPerimeterDensity (bw):
OBB = imOrientedBox (bw);
CHIZ = imEulerid (bwl);
perim? = imPerimeter (bwl);

area? = imArea (bwl):

DENSITY2 = imAreaDensity(bwl);
Pv2 = imPerimeterDensity(bwl);
O0BB2 = imOrientedBox(bwl);

entl=entropy (bw) ;
ent2=entropy (bwl);

statsl = regionprops(bwl, 'Maj
stats = regionprops (bw, 'Ma

ChR=statsl.MajorAxisLength;
ChRZ=stats.MajorAxisLength;

nBlack = sum(bwl(:))
nWhite = numel (bwl)
el{i}=CHI:
e2{i}=perim;
e3{i}=area;
e4{i}=DENSITY;
e5{i}=Fv;
e6{1}=0BE;
e7{i}=CHI2;
e8{i}=perim2;
ed{i}=area2;
el0{i}=DENSITYZ;
ell{i}=Pv2;
el2{i}=0BB2:
el3{i}=entl;
el4{i}=ent2;
els{i}=Cha;
elé{i}=nWhice;

- nBlack;

rAxisLength

Efeat{il}=[el(i) e2 (i) e3(i) e4(i) e5(i) e6(i)...
eT7(i) e8(i) e9(i) el0(i) ell(i)
el3 (i) el4(i) e15(i)

end
Efeat=padcat (Efeatc{:

Fy:

Efeat=cellZmat (Efeat);

for i=1 : length(F)
im=mat2gray (F{i}):

mIM=imfilter (im, fspecial ('average',20), 'replicate’);

sIM=mIM-im-0.02;
bwO=im2bw (sIM, 0) ;

bw=bwareaopen (bw0, 1000} ;

bwl= imfill (bw, "hol

es");

cf = contour_ following (bw);
img = zeros(1000,1000);
imgy (sub2ind(size (img), cf(:,2),

bw= imfill (img, "hol

CHI = imFulerld (bw):

es"):

perim = imPerimeter (bw):

area = imArea (bw):

DENSITY = imArealensity (bw):
Pv = imPerimeterDensity (bw);
OBE = imOrientedBox (bw):
CHIZ = imEulerld(bwl):
perim? = imPerimeter(bwl):

area2 = imArea(bwl):;

DENSITYZ = imAreaDensicy(bwl):
Pv2 = imPerimeterDensicy (bwl):

entl=entropy (bw) ;
entZ=entropy (bwl)

atatsl = regionprops(bwl, "Maj
atats = regionprops (bw, 'Major

‘ 0BBE2 = imOrientedBox(bwl):

Ch=statsl.MajorAxisLength;
Ch2=sztats.MajorAxisLength;

nBlack = sum(bwl(:))
nWhite = numel (bwl)
f1{i}=CHI:
f2{i}=perim;
f3{i}=area;
f4{i}=DENSITY;
£5{i}=Fv;
£6{1i}=CEE;
f£7{i}=CHIZ;
fE{i}=perim2;
f9{i}=areal;

- nBlack;

xisLength

elé(i)]:

efi:,1)))

el2(i)...

=1
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321 - f10{i}=DENSITY2;

32z - f11{i}y=Fvi;

323 - f12{i}=CBBE2Z;

324 - fi3{i}=entl;

325 - fi4{i}=ent2;

326 — fi15{i}=CAh;

327 - fle{i}=nWhite;

328 - Ffeat{i}=[f1(i) f2(i) £3 (i) f4(i) £5(i) f£e(i)...
329 £7(1) f8(i) £9(i) flo(i) f11(i) fiz2(i
330 £13(i) fl4(i) fis5(i) fie(i)]:

331 - end

332 - Ffeat=padcat (Ffeat{:});

333 - Ffeat=cellZ2mat (Ffeat);

334

335 - for i=1 : length(G)

336 — im=mat2gray(G{i});

337 - mIM=imfilter (im, fspecial ('average',20), 'replicate');
3ag - sIM=mIM-im-0.02;

338 = bw0=im2bw (=IM,0) ;

340 - bw=bwareaopen (bw0, 1000) ;

341 - bwl= imfill (bw, 'holes");

342 - cf = contour_following (bw);

343 - img = zeros(1000,1000);

344 - img (subZind(size(img), cf(:,2), cf(:,1))) = 1;:
345 - bw= imfill (img, holes'):

346 — CHI = imEulerild (bw);

347 — perim = imPerimeter (bw);

348 - area = imArea (bw);

349 — DENSITY = imAreaDensity (bw);

350 — Pv = imPerimeterDensity(bw):

a5y — CBB = imOrientedBox (bw):

352 = CHIZ = imEulerld(bwl);

353 — perim2 imPerimeter (bwl);

354 — area? = imArea (bwl);

355 — DENSITY2 = imAreaDensity(bwl);

356 — Pv2 = imPerimeterDensity (bwl);

sy — CBB2 = imOrientedBox(bwl):

358 — entl=entropy (bw) :

359 — ent2=entropy (bwl) ;

360 — statsl = regionprops(bwl, 'MajorAxisLength');
361 — stats = regionprops (bw, "Majorixis )i !
362 — Ch=statsl.MajorAxisLength;

363 — CA2=stats.MajorAxisLength;

364 — nBlack = sum(bwl(:));

365 — nWhite = numel (bwl) - nBlack:;

366 — gl{i}=CHI;

367 — g2{i}=perim;

368 — g3{i}=area;

369 — g4{i}=DENSITY;

370 - gS{il=Pv:

3n - g6{i}=0BB;

372 = g7{i}=CHIZ;

373 = g8{i}=perim2;

374 — gS{i}=areaz;

IS = gl04{i}=DENSITYZ;

376 — glil{i}=FvZ;

377 — gl2{i}=0BB2;

378 — | gl3{i}=entl;

379 — | gl4fi}=ent2;

380 — @15{i}=CA:

381 — gl6{i}=nWhite:

382 — Gfeat{i}=[gl(i) g2(i) g3(i) g4(i) g5(i) g6(i)...
383 | g7(i) g8(i) g9(i) glo(i) gll(i) glZ{(i)...
384 gl3(i) gl4{i) @l5(i) glé(i)]:

385 — end

386 — Gfeat=padcat (Gfeat{:}):

387 - Gfeat=cellZmat (Gfeat)

388

389 - for i=1 : length(H)

390 — im=mat2gray (H{i}):

391 - mIM=imfilter (im, fspecial ('average',20), 'replicace’) !
392 - sIM=mIM-im-0.02;

393 - bw0=im2bw (=2IM,0) ;

394 - bw=bwareaopen (bw0, 1000) ;

395 - bwl= imfill (bw, 'holes"};

396 — cf = contour_following (bw) !

397 - img = zeros(1000,1000)

398 - img (sub2ind (size(img), cf(:,2), cE(:,1))) = 1;
399 - bw= imfill (img, holes"):

400 - CHI = imEulerld(bw):
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Tan
142
143
a1
115
145
a7
118
140
150
151
452
153
454
455
156
57
158
459
460
461
162
163
464
465
466
467
168
469
470
amn
a2
473
a7e
475
476
am
478
479
480

perim = imPerimeter (bw);
area = imArea(bw);

DENSITY = imAreaDensity (bw):
Pv = imPerimeterDensity (bw)
OBB = imOrientedBox (bw);
CHIZ = imEulerld(bwil) :
perim? = imPerimeter (bwl):
areaz imArea (bwl) ;

DENSITYZ2 = imAreaDensity(bwl):
PvZ2 = imPerimeterDensity (bwl):
0BBZ2 = imOrientedBox (bwl)
entl=entropy (bw) !
ent2=entropy (bwl) ;

statsl = regionprops (bwl, 'M
stats = regionprops(bw, "Maj
Ch=statsl.MajorkxisLength;
Ch2=3tats.MajorkxisLength;

nBlack = sum(bwl(:)):
nWhite = numel (bwl) - nBlack:;
hl{i}=CHI:

ha{i}=perim:;

h3{i}=area;

h4{i}=DENSITY:

h5{i}=Pv:

h6{i}=CBB:

h7{i}=CHIZ;

he{i}=perim2;

ho{i}=areal;

hl0{i}=DENSITYZ;

h11{i}=Pv2;

h12{i}=0BB2;

hiz{il}=entl;

hil4{i}=ent2;

his5{i}=Ch;

hlg{i}=nWhite;

Hfeat{i}=[h1l(1i) h2(i) h3(i) h4(i)
h7(i) h8(i) ho(i) h1O(i)

hS(i) h6(i)...

hill (i)

h13(i) hl4(i) hi1S(i) hl&(i}]:

end
Hfeat=padcat (Hfeat{:});

Hfeat=cellZmat (Hfeat);

featureVector=[Afeat:Bfeat:;Cfeat;Dfeat;Efeat;Ffeat:;Gfeat;Hfeat]:

a='a
b='b
c='c
d
e
£='1';
o='g';

sppl=length (&) ;
spp2=length (B);
spp3=length (C) ;
spp4=length (D) ;
spp5=length (E) ;
sppé=length (F) ;
sppT=length (G) ;
spp8=length (H) ;

a2=repmat (a,sppl,l);
b2=repmat (b, spp2, 1) ;
c2=repmat (c, spp3,1):
d2=repmat (d, spp4,1)
e2=repmat (e, sppS5,1):
f2=repmat (£, sppé,1):
g2=repmat (g, spp7, 1)
h2=repmat (h, spp8,1):

valname=[a2;b2;c2;d2;e2;£2;92;h2];
EEITLLLIRTLLLEATESTREE33302283 53438

readImsTest

for i=1 : length(A2)
im=mat2grav (R2{i});
mIM=imfilter (im, fspecial ("average'

,20),'r

hl2(i)...
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481
482
483
484
485
486
487
488
489
490
491
432
493
494
4395
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
513
512
513
514
515
516
517
518
515
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
555
560

sIM=mIM-im-0.02;
bwo=imZbw (sIM,0)
bw=bwareaopen (bw0, 1000) ;
bwl= imfill (bw, 'holes'):

cf = contour_ following (bw)
img = zeros(1000,1000);
img (sub2ind (size(img), cf(:,2), cf(:,1))) = 1:

bw= imfill (img, holes"):
CHI = imEulerld(bw):
perim = imPerimeter (bw);

area = 1imArea (bw):

DENSITY = imAreaDensity(bw);
Pv = imPerimeterDensity (bw);
CBE = imCrientedBox (bw);

CHIZ = imFulerld(bwl);

perim?2 = imPerimeter (bwl)
area2 = imArea (bwl):

DENSITY2 = imAreaDensity (bwl):
Pv2 = imPFerimeterDensity (bwl);
CBB2 = imCrientedBox(bwl);
entl=entropy (bw) ;
ent2=entropy (bwl) ;

statsl = regionprops (bwl, 'Maj
stats = regionprops (bw, "Major
Ch=statsl.MajorAxisLength;
ChZ2=stats.MajorAxisLength;
nBlack = sumibwl(z));

nWhite = numel (bwl) - nBlack;

i}=nWhite;
thAfeat{i}=[tal(i) ca2(i) ta3(i) ta4(i) tas(i) tae(i).
ta7(i) ta8(i) tad(i) tald(i) tall(i) ctal2(i)...
tal3 (i) tal4(i) tals(i) talé6(i)]:

end
tAfeat=padcat (thfeat{:}
thAfeat=cellZmat (tAfeat)

for i=1 : length(B2)

im=matigray(B2{i}):

mIM=imfilter (im, fspecial ('average',20), 'replicate');
SIM=mIM-im-0.02;

bw0=im2bw (=IM,0) ;

bw=bwareaopen (bw0,1000) ;

bwl= imfill (bw, 'holes");

cf = contour_following (bw);

img = zeros(1000,1000);

img (sub2ind(size(img), cf(:,2), cf(:,1))) = 1;
bw= imfill (img, 'holes");

CHI = imEulerld(bw);

perim = imPerimeter (bw);

area = imArea (bw);

DENSITY = imAreaDensity (bw);
Pv = imPerimeterDensity (bw);

CBB = imOrientedBox (bw);

CHI2 = imFulerld(bwl);

perim? = imPerimeter (bwl);
area? = imArea (bwl);

DENSITY2 = imAreaDensity (bwl);
Pv2 = imPerimeterDensity (bwl);
OBB2 = imCrientedBox(bwl):

ntropy (bw) ;

ent2=entropy (bwl);
statsl = regionprops (bwl, 'MajorixisLength

stats = regionprops (bw, "MajorAxisLengt!
Ch=statsl.MajorAxisLength;
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561
562
563
564
565
566
567
568
569
570
571
572
273
574
375
576
277
578
579
580
581
582
583
584
585
586
587
588
589
530
591
592
593
594
595
596
597
598
599
600

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

CAZ=stats.MajorAxisLength;

nBlack = sum(bwl(:)):

nWhite = numel (bwl) - nBlack:

tbl{i}=CHI;

tb2{i}=perim;

tb3{i}=area;

tb4{i}=DENSITY;

tb5{i}=Pv;

tb6{i}=0BE;

tb7{i}=CHI2;

th8{i}=perim2;

tb3{i}=area;

tbl0{i}=DENSITYZ;

tbll{i}=Fv2;

tbl2{i}=0BB2;

tbl3{i}=entl;

tbl4{i}=ent2;

tbl5{1i}=Ch;

thle{i}=nWhite;

tBfeat{il}=[tbl(i) tb2(i) th3 (i) tb4(i) tb5 (i) th&(i)...
tb7 (i) th8{i) tb9d(i) tblO(i) tbll (i) thl2(
tb13 (i) thil4(i) thl5(i) tbl6(i)]:

end
tBfeat=padcat (tBfeat{:}):
tBfeat=cell2mat (tBfeat):

for i=1 : length(C2)

im=mat2gray (C2{1}):

mIM=imfilter (im, fspecial ('average',20), 'replicace’) s
gIM=mIM-im-0.02;

bw0=im2bw (3IM, 0)

bw=bwareaopen (bw0, 1000}

bwl= imfill (bw, "holes'):

cf = contour_following (bwW) ;

imy = zeros(1000,1000):

img (sub2ind (=ize (img), cf(:,2), cf(:,1))) = 1r
bw= imfill (img, "holes'):

CHI = imFulerld (bw);

perim = imPerimeter (bw):

area = imArea (bw);

DENSITY = imArealensity(bw):

Pv = imPerimeterDensity (bw):

0BE = imOrientedBox (bw):

CHIZ = imEulerld(bwl):

perimz = imPerimeter (bwl);

area2 = imArea(bwl);

DENSITYZ = imAreaDensicy(bwl):

Pv2 = imPerimeterDensicy (bwl):

0BB2 = imOrientedBox(bwl):
entl=entropy (bw) ;

entZ=entropy (bwl):

atatsl = regionprops (bwl, "MajorAxisleng
astats = regionprops (bw, 'MajorhixisLlength
ChA=statsl.MajorAxisLength;
Ch2=stats.MajorAxisLength;

nBlack = sum(bwl(:)};

nWhite = numel (bwl) - nBlack;
£el{i}=CHI;

te2{i}=perim;

Vi

R

tei{il=area;
Ltc4{i}=DENSITY;

| £o5{i}=Pv;

tcE{i}=0BE;
teT{i}=CHI2;
teB{i}=perim2;
tef{i}=area2;
tcl0{i}=DENSITY2;
tcll{i}=FPv2;
tcl2{i}=0BB2;
tel3{it=entl;
tel4{il=ent2;
tcl5{i}=Ca;
tclé{i}=nWhite;
tCfeat{il=[tcl (i) tc2 (i) tc3(i) tcd(i) ted(i) tcE(i)...

teT (i) teB(i) ted(i) teld(i) tell(i) tel2 (i)...

tcl3(i) tclé(i) tcl5(i) telé(i)]:
end

tCfeat=padcat (tCfeat{:});

tCfeat=cell2mat (tCfeat);
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641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
877
678
679
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
718
720

for i=1 : length(D2)
im=mat2gray (D2{i});

mIM=imfilter (im, fspecial ('average"

sIM=mIM-im-0.02;
bw0=im2bw (=IM,0) ;
bw=bwareaopen (bw0,1000) ;
bwl= imfill (bw, 'I
cf = contour_following (bw);

img = zeros(1000,1000);

img (sub2ind(size (img), cf(:,2),

les'");

bw= imfill (img,
CHI = imEulerld (bw);
perim = imPerimeter (bw);

les'");

area = imArea (bw);

DENSITY = imAreaDensity(bw):
Pv = imPerimeterDensity (bw);
CBBE = imOrientedBox (bw):

CHI2 = imEulerid(bwl):

perim? = imPerimeter (bwl);
area? = imArea (bwl);

DENSITY2 = imAreaDensity (bwl);
Pv2 = imPerimeterDensity (bwl);
CBB2 = imOrientedBox(bwl);
entl=entropy (bw) ;
ent2=entropy (bwl) ;

statsl = regionprops(bwl, 'Maj
stats = regionprops (bw, "Maj
CA=statsl.MajorAxisLength;
CR2=stats.MajorAxisLength;
nBlack = sum(bwl(:));
nWhite = numel (bwl) - nBlack;
tdl{i}=CHI;

td2{i}=perim;

td3{i}=area;

td4{i}=DENSITY;

td5{i}=Pv;

td&{1i}=0BE;

td7{i}=CHIZ;

td8{i}=perimZ;

tdd{i}=areal;

tdl0{i}=DENSITY2Z;

tdll{i}=Fv2;

tdl2{i}=0BB2:

tdl3{i}=entl;

tdl4{i}=ent2;

tdl5{i}=Ch;

tdle{i}=nWhite;

tDfeat{i}=[tdl (i) td2(i) td3(i)
td7 (i) tdE(i) tds(i)

©dl3 (i) tdl4 (i) tdls(i)

end
tDfeat=padcat (tDfeat{:});
tDfeat=cellZmat (tDfeat);

for i=1 : length(E2)
im=mat2gray (E2{i});

mIM=imfilter (im, fspecial ('average

sIM=mIM-im—0.02;

bwi=im2bw (sIM, 0} ;

bw=bwareaopen (bw0,1000) ;

bwl= imfill (bw, 'holes");

cf = contour_following (bw);

img = zeros(1000,1000);

img (sub2ind(size (img), cf(:,2),
bw= imfill (img,
CHI = imEulerld (bw);
perim = imPerimeter (bw);

les'");

area = imArea (bw);

DENSITY = imAreaDensity(bw);
Pv = imPerimeterDensity(bw);
CBBE = imOrientedBox (bw):

CHI2 = imEulerid(bwl):

perim? = imPerimeter (bwl);
area? = imArea (bwl);

DENSITY2 = imAreaDensity (bwl);
Pv2 = imPerimeterDensity (bwl);
CBB2 = imOrientedBox(bwl);
entl=entropy (bw) ;

rixisLength

cf(:, 1))}

=1

td4 (i) td5(i)
tdl0 (i) ©dll(i)

cf(:, 1))}

tdlé(i)]:

=1

+20), 'replicate’');

td6 (i) .
tdl2 (i

+20), 'replicate’');
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721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

T61
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
7e1
7e2
783
784
785
786
787
7ee
789
780
791
792
793
794
795
796
797
798
799
BOO

ent2=entropy (bwl);

statsl = regionprops (bwl, 'MajorkxisLeng

stats = regionprops (bw, "Majorixis
Ch=statsl.MajorAxisLength;
CA2=stats.MajorAxisLength;

nBlack = sum(bwl(:));

nWhite = numel (bwl) - nBlack;
tel{i}=CHI;

te2{i}=perim;

te3{i}l=area;

te4{i}=DENSITY:;

tes{i}r=Pv;

te6&{i}=0BE;

teT{i}=CHIZ;

ted{ir=perimZ;

ted{i}=areal;

tel0{i}=DENSITYZ;

tell{i}=Fv2;

tel2{i}=0BB2;

tel3{i}=entl;

tels4{i}=entZ;

tel5{i}=Ch;

tele{i}=nWhite;

tEfeat{i}=[tel(i) te2(i) te3 (i) te4(i) te5(i) te6(i)...
te7 (i) te8{i) ted(i) teld(i) tell(i) telZ(i)...
tel3 (i) teld (i) teld(i) teld(i)]:

end

tEfeat=padcat (tEfeat{:}):

tEfeat=cellZmat (tEfeat)

for i=1 : length(F2)

im=mat2gray(F2{i}):

mIM=imfilter (im, fspecial ('average',20), 'replicace’) !
sIM=mIM-im-0.02;

bwo=im2bw (3IM,0) !

bw=bwareaopen (bw0, 1000) ;

bwl= imfill (bw, 'holes'):

cf = contour_following (bw) !

img = zeros(1000,1000)

img (sublind(size(img), cf(:,2), cE(:,1))) = 1;
bw= imfill (img, 'holes");

CHI = imEulerld(bw);

perim = imPerimeter (bw);

area = imhrea (bw);

DENSITY = imAreaDensity(bw);

Pv = imPerimeterDensity(bw);

OBE = imOrientedBox (bw):

CHIZ = imEulerld(bwl)

perim2 imPerimeter (bwl);

area2 = imArea (bwl);
DENSITY2 = imAreaDensity(bwl):
Pv2 = imPerimeterDensity (bwl);
OBB2 = imOrientedBox(bwl);
entl=entropy (bw) ;
ent2=entropy (bwl) ;

statsl = regionprops (bwl, 'Maj

stats = regionprops (bw, "MajorkxisL

Ch=statsl.MajorAxisLength;

CA2=stats.MajorAxisLength;

nBlack = sum(bwl(:));

nWhite = numel (bwl) - nBlack;

t£1{i}=CHI;

tf2{i}=pexrim;

tf3{i}=area;

tf4{i}=DENSITY:

tf5{i}=Fv;

t£6{i}=0BEB;

t£7{i}=CHIZ;

tfa{ir=perimzZ;

tfg{i}=areaZ;

tf10{i}=DENSITYZ;

tf11{i}=Pv2;

tf12{i}=0BB2;

tfl3{i}=entl;

tfls{i}=entZ;

tf15{i}=Ca:

tflg{i}=nWhite;

tFfeat{i}=[tf1(i) tf2(i) tf3 (i) tf4(i) tf5(i) tf6(i)...
£f7(i) tf8{i) tf9(i) tfl0(i) tfll(i) tf1Z(i)...
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801 tf13 (i) tfl4(i) tfi15(i) tfl6(i)]:

802 — end

803 - tFfeat=padcat (tFfeat{:});

B804 - tFfeat=cell2mat (tFfeat);

805

BOE — for i=1 : length(G2)

807 — im=mat2gray(G2{i}):

Bgog - mIM=imfilter (im, fspecial ('average',20), 'replicate');
g09 - sIM=mIM-im-0.02;

810 - bw0=im2bw (=IM,0) ;

g11 - bw=bwareaopen (bw0, 1000) ;

g1z - bwl= imfill (bw, 'holes'");

813 - cf = contour_following (bw);

814 - img = zeros(1000,1000);

815 — img (sub2ind(size(img), cf(:,2), cf(:,1))) = 1;
gle — bw= imfill (img, 'holes");

817 — CHI = imEulerild (bw);

g1s — perim = imPerimeter (bw);

819 — area = imArea (bw);

820 — DENSITY = imAreaDensity (bw);

821 — Pv = imPerimeterDensity(bw):

822 — CBB = imOrientedBox (bw):

a3 - CHIZ = imEulerld(bwl);

824 — perim? = imPerimeter (bwl);

825 — area? = imArea (bwl);

826 — DENSITY2 = imBreaDensity(bwl);

827 — Pv2 = imPerimeterDensity (bwl);

B28 — CBB2 = imOrientedBox(bwl):

829 — entl=entropy (bw) :

830 — entZ=entropy (bwl) ;

A31 — statsl = regionprops (bwl, 'Major&xisLength');
832 - stats = regionprops (bw, "MajorAxisLength');
A33 — ChA=statsl.MajorAxisLength;

834 — CR2=stats.MajorAxisLength;

R3S — nBlack = sum(bwl(:));

836 — nWhite = numel (bwl) - nBlack;

837 — tgl{i}=CHI;

838 — tg2{i}=perim;

B39 = tg3{il=area;

B40 — tg4{i}=DENSITY:

841 - tgs{i}=Fv;

842 - tg6{i}=0BE;

843 — tg7{i}=CHIZ2;

B44 — tg8{i}=perim2;

845 — tg9{i}t=areal;

g46 — tgl0{i}=DENSITY2;

847 — tgll{i}=Pv2;

g4 — tgl2{i}=0BB2;

849 — tgl3{i}=entl;

B850 — tgl4{i}=ent2;

B = tgl5{i}=Ch;

852 — tgl6{i}=nWhite;

853 — tGfeat{i}=[tgl (i) tg2(i) tg3 (i) tg4(i) tg5(i) tg6(i)...
854 tg7(i) tg8(i) tg9(i) tglo(i) tgll(i) tglZ(i)...
855 tgl3 (i) tgld(i) tgl5(i) tglé(i)]:
856 — end

857 — tGfeat=padcat (tGfeat{:}):

858 — tGfeat=cellZmat (tGfeat) ;

B59

B60 — for i=1 : length(H2)

861 — im=matZgray (H2{i}):

Bg2 - mIM=imfilter (im, fspecial ('average',20), 'replicate');
86l — sIM=mIM-im-0.02;

864 — bwo=imZbw (sIM, 0) ;

BG5S — bw=bwareaopen (bw0, 1000) ;

BEE — bwl= imfill (bw, 'holes'):

867 — cf = contour following (bw);

geg - img = zeros(1000,1000)

869 — img (subZind (size(img), cf(:,2), cE(:,1))) = 1:
870 - bw= imfill (img, 'holes'):

871 - CHI = imEulerld(bw):

872 - perim = imPerimeter (bw);

873 - area = imArea(bw):

874 - DENSITY = imAreaDensity(bw)

875 - Pv = imPerimeterDensity(bw)

876 — OBBE = imOrientedBox (bw):

877 — CHIZ = imEulerld(bwl)

878 - perim? = imPerimeter (bwl)

879 - areal2 = imArea (bwl):

Beo - DENSITY2 = imfAreaDensity (bwl):
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ge1
ge2
ge3
884
88es
886
887
geg
ges
890
891
892
893
894
895
896
897
898
899
200
201
802
203
204
205
206
207
g08
209
910
911
912
913
914
915
916
917
a1g
918
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
242
943
944
945
946
947
948
949
950
o531
952
953
954
955
956
957
as58
959
960

961
962
963
964
965
966
967
968
969

Pv2 = imPerimeterDensity (bwl):

0BB2 = imCrientedBox(bwl):

statsl = regionprops(bwl, 'MajorZzisL

stats = regionprops (bw, "MajorAxisL

CR=statsl.MajorAxisLengths

CR2=stats.MajorAxisLengths

nBlack = sum(bwl(:))

nWhite = numel (bwl) - nBlack:;

entl=entropy (bw) ;

entZ=entropy (bwl) ;

thl{i}=CHI:

th2{i}=perim;

th3{i}=area;

th4{i}=DENSITY;

thi{i}=Fv;

thé{i}=0BE;

th7{i}=CHIZ;

thi{i}=perim2;

thi{i}=area2;

thl0{i}=DENSITY2;

thll{i}=Fv2;

thl2{i}=CBE2;

thil3{i}=entl;

thl4{i}=ent2;

thil5{i}=Ch;

thlg{i}=nWhite;

tHfeat{i}=[thl(i) th2(i) th3(i) th4(i) thS5(i) thé(i)...
th7(i) th8(i) thS(i) thlO(i) thll(i) thl2(i)...
thl3 (i) thl4(i) thl5(i) thlé(i)]:

end
tHfeat=padcat (tHfeat{:});
tHfeat=cellZmat (tHfeat);

tfeatureVector=[tAfeat;tBfeat;tCfeat;tDfeat;tEfeat;tFfeat;tGfeat; tHferat]

a='a

h='h

sppl=length (&)
sppZ=length (B):
spp3=length (C)
spp4=length (D)
sppS5=length (E)
spp6=length (F):
sppT7=length (G);
spp8=length (H) ;

aZ=repmat (a,sppl,1):
b2=repmat (b, spp2, 1)
cZ2=repmat (c, spp3, 1)
d2=repmat (d, spp4,1):
eZ=repmat (e, spp5,1):
f2=repmat (£, spp6,1):
g2=repmat (g, Spp7,1):
h2=repmat (h, spp8, 1)

Target=[a2:b2:rc2;d2;e2rf2rog2rn2]:;

0;1 1 071 1071 1 0;110;...
0;0 1 070 1 0;01 0;

1;0 0 1;0 0 1;0 0 1;...
1;011;0 1 1;0 1 1];

[classhvpo,L] = ENNI (featureVector, tfeatureVector, valname, 10);
classhypo=char (classhypo) ;

confusion matrix(classhypo,Target, {'5mm', 'Tp', 'Mui', "Mma’', "T1', "Tn’, "M

[eigvector, eigvalue, elapse] = LDA(valname, 'PCARatio', featureVector);
yyvy=featureVector*eigvector;
tyyy=tfeatureVector*eigvector;

[classhypo,l] = EKNNI(yyy,tyvy,valname,6 10);
classhypo=char (classhypo) ;

Tm', "M

confusion_matrix(classhypo,Target, {'Smm','Tp", 'Mmi', 'Mma', "'T1',
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