TABLE OF CONTENTS

ACKNOWLEDGEMENTS...i
ABSTRACT..ii
ABSTRAK..iii
ABBREVIATIONS..v
TABLE OF CONTENTS..vii
LIST OF FIGURES...xiii
LIST OF TABLES..xviii
LIST OF PLATES..xx

CHAPTER 1 SLOPE STABILISATION: REVEGETATION OF THE SLOPE
1.1 Introduction..1
1.2 Bioengineering Technique...2
1.2.1 Bioengineering in the Tropics ..4
1.3 Problems..5
1.4 Philosophy of Studies...5
1.5 Leguminous Tree as a Pioneer Slope Plant..............................7
1.6 Research Objectives...9
1.7 Scope of Study...10

CHAPTER 2 LITERATURE REVIEW: THE INFLUENCE OF VEGETATION ON STABILITY OF SLOPE
2.1 Introduction..11
2.2 Root Reinforcement...13
2.2.1 Shear Strength of Soil and Soil-Root System.................13
2.2.2 The Effect of Root System on Shear Strength..............16
2.2.3 The Effects of Stratigraphy on the Stabilising Effects of Roots..16
2.2.4 Stability Analysis ...16
2.3 “Soil-Plant-Atmosphere” Continuum..................................19
2.4 The Environmental and Physiological Nature of Stress
2.4.1 Water Stress...20
2.4.2 Acidic Soil..20
2.4.3 Carbon Sink Potential..21
2.5 The Process of Natural Succession
2.5.1 The Concept of Natural Succession
2.5.2 Natural Plant Succession of the Slope
 (a) Biomass
 (b) Soil Development and Nutrient Flows
 (c) Species Diversity
 (d) Stability
2.5.3 Model of Plant Succession of the Slope
2.6 Introduction to Leucaena leucocephala
2.6.1 General Aspects
 (a) Origin and Distribution
 (b) Botany
 (c) Establishment and Germination
 (d) Rhizobium Requirements
 (e) Multipurpose Uses
2.6.2 An Erosion Control Plant
2.6.3 Acid-Tolerant Plant
2.7 The Need for Investigation

CHAPTER 3 THE EFFECT OF SOIL TYPE ON GROWTH OF L. LEUCOCEPHALA
3.1 Introduction
3.2 Materials and Methods
 3.2.1 Soil and Plant Materials
 3.2.2 Morphological Studies
 3.2.3 Physiological Studies
 (a) Photosynthetic Rate and Chlorophyll Content
 (b) Dry Weight Partitioning and Biomass
3.2.4 Statistical Analysis
3.3 Results and Discussion
 3.3.1 Plant Growth Performance
 3.3.2 Photosynthetic Rate and Chlorophyll Content
 3.3.3 Dry Weight Partitioning
 3.3.4 Nodulation
 3.3.5 Ranking Analysis of Physiological Parameters
3.4 General Discussion
CHAPTER 4 PHYSIOLOGICAL RESPONSES OF L.LEUCOCEPHALA TO DROUGHT CONDITIONS

4.1 Introduction .. 53

4.2 Materials and Methods

4.2.1 Plant Materials ... 53

4.2.2 Measurements

(a) Leaf Water Potential ... 54

(b) Relative Water Content 54

(c) Photosynthesis, Transpiration Rate, Water Use Efficiency and Stomatal Conductance 54

4.2.3 Soil Water Profiles ... 55

4.2.4 Statistical Analysis ... 55

4.3 Results and Discussion

4.3.1 Leaf Water Potential .. 57

4.3.2 Relative Water Content 57

4.3.3 Photosynthesis, Transpiration and g_s Responses 61

4.3.4 Water Use Efficiency .. 64

4.3.5 Influence of LWP on Stomatal Conductance 64

4.3.6 Influence of LWP on Photosynthetic Rate 68

4.4 General Discussion .. 68

CHAPTER 5 CARBON SINK POTENTIAL OF L.LEUCOCEPHALA

5.1 Introduction ... 72

5.2 Materials and Methods

5.2.1 Plant Materials ... 73

5.2.2 CO₂ and Light Response Curves 73

5.3 Results and Discussion

5.3.1 Carbon Dioxide Response Curves 74

5.3.2 Relationship between g_s, C_bar, Transpiration Rate and C/C_o Ratio 82

5.3.3 Water Use Efficiency .. 86

5.3.4 Light Response Curve 91

5.3.5 Photosynthetic Components and Leaf Water Potential 94

5.4 General Discussion ... 97

CHAPTER 6 A MICROCLIMATE TRIAL : ADAPTATION OF L.leucocephala ON ACIDITY

6.1 Introduction .. 101
CHAPTER 7 ROOT PROFILE OF L. LEUCOCEPHALA

7.1 Introduction .. 122

7.2 Materials and Methods

7.2.1 Plant Materials .. 122

7.2.2 Measurements

(a) Photosynthesis, Transpiration Rates and Stomatal Conductance .. 123

(b) Root Length Density .. 123

(c) Water Absorption Capacity .. 123

(d) Leaf Area and Biomass ... 125

7.2.3 Statistical Analysis ... 125

7.3 Results and Discussion

7.3.1 Root Growth Rate ... 125

7.3.2 Root Length Density .. 128

7.3.3 Water Absorption Capacity ... 134

7.3.4 Dry Weight Partitioning and Biomass 134

7.3.5 Root/shoot Ratio .. 134

7.3.6 Photosynthesis, Transpiration Rates and Stomatal Conductance and Water Use Efficiency 141

7.4 General Discussion .. 141
CHAPTER 8 SHEAR BOX TEST: SOIL-ROOT MATRIX SHEAR STRENGTH

8.1 Introduction .. 147
8.2 Materials and Methods
 8.2.1 Plant Materials .. 148
 8.2.2 Shear Box Apparatus .. 148
 8.2.3 Laboratory Testing .. 150
8.3 Results and Discussion
 8.3.1 Shear Strength, Cohesion and Friction Angle
 (a) Six-month Trial ... 150
 (b) Twelve-month Trial ... 156
 (c) Comparison of Two Trials .. 159
 8.3.2 Residual Strength ... 163
 8.3.3 Root Profiles of All Species Studied ... 166
 8.3.4 Relationship between Shear Strength and Root Profiles 172
 8.3.5 Shear Strength and Physiological Criteria ... 172
8.4 General Discussion .. 175

CHAPTER 9 THE CONTRIBUTION OF L. LEUCOCephala TO NATURAL SUCCESSION

9.1 Introduction ... 181
9.2 Materials and Methods
 9.2.1 Plant Materials .. 182
 9.2.2 Natural Succession Experiment ... 182
 (a) Transplanting ... 184
 (b) Experimental Design .. 184
 9.2.3 Measurements
 (a) Gross Parameters .. 184
 (b) Root and Soil Water Profiles ... 188
 (c) Soil Penetrability .. 188
 (d) Shear Strength .. 189
9.3 Results and Discussion
 9.3.1 Physiological Performance of L. leucocephala 189
 9.3.2 Growth Rate ... 189
 9.3.3 Performance of the Plant Community
 (a) Species Diversity ... 193
 (i) Performance of Pioneer Species .. 197
 (ii) Performance of Dominant Successors ... 199
(b) Leaf Area Index ... 201
(c) Biomass ... 201

9.3.4 Stability of the Slopes
(a) RLD of Plant Community 207
(b) Soil Penetrability .. 207
(c) Shear Strength ... 211
(d) Soil Water Content ... 213

9.4 General Discussion ... 213

CHAPTER 10 THE CONTRIBUTION OF L.LEUCOCEPHALA TO SLOPE STABILITY – A TRIBUTE

10.1 Introduction .. 224

10.2 The Pioneering Characteristics of L.leucocephala
10.1.1 Drought Resistance Mechanisms 224
10.1.2 A Carbon Sink Potential 225
10.1.3 An Acidic Tolerant Species 226
10.1.4 Engineering Properties of L.leucocephala
(a) Root Profile .. 226
(b) Soil-Root Matrix Shear Strength 226

10.3 Can L.leucocephala be a Good Pioneer? 227

10.4 The Contribution of L.leucocephala to Slope Stability 228

10.5 Interaction with Various Parameters 228

10.6 Contribution of the Project 232

10.7 Challenges Ahead .. 232

10.8 Conclusion and Recommendations 233

BIBLIOGRAPHY .. 234

APPENDIX 1 ... 248

APPENDIX 2 – 19 .. 249

APPENDIX 20 .. 267

APPENDIX 21 ... 272
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A proposed concept for establishing vegetation cover on slopes and enhancing the process of natural succession.</td>
<td>8</td>
</tr>
<tr>
<td>2.1a</td>
<td>Shear stress/displacement curves for specimens tested under three different normal pressures.</td>
<td>15</td>
</tr>
<tr>
<td>2.1b</td>
<td>Typical graph of shear strength. Maximum shear stress related to normal stress from shear box tests.</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>The Mohr-Coulomb criterion describes shear strength of soils as c' (see Equation 2.2). Root as a reinforcement factor would increase the shear strength by c'_r. The contribution of roots (c'_r) to the shear strength can be described as follows: $c = c' + c'_r$.</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Influence of slope stratigraphy on the stabilising effect of roots against slope stability (adapted from Tsukamoto and Kusakabe, 1984).</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>A conceptual diagram of landslide succession. Vegetative development is shown in the upper portion of the diagram, soil development in the lower portion (Walker et al., 1996).</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Increment in (H) height (%), (LN) leaf number (%) and (LLN) leaflet number (%) of L. leucocephala in five different types of soil.</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Growth rate (%) of L. leucocephala in five different types of soil (SL=sandy loam, P=peat, C=clay, SLO=slope and S=sand).</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Photosynthetic rate of L. leucocephala in five different types of soil (vertical bars represent LSD$_{p=0.05}$).</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Chlorophyll content of L. leucocephala in five different types of soil (vertical bars represent LSD$_{p=0.05}$).</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Dry weight partitioning of L. leucocephala in different types of soils.</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>(a) Total leaf number, (b) leaflet number and (c) total biomass L. leucocephala in soil type experiment (SL=sandy loam, P=peat, C=clay, SLO=slope and S=sand).</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Nodule frequency of L. leucocephala in five treatments (SL=sandy loam, P=peat, C=clay, SLO=slope and S=sand). Vertical line on the bar represents standard deviation. Vertical bar represents LSD$_{p=0.05}$.</td>
<td>45</td>
</tr>
<tr>
<td>3.8</td>
<td>The relationship between nodule frequency and soil pH.</td>
<td>46</td>
</tr>
<tr>
<td>3.9</td>
<td>The relationship between nodules frequency and (a) root biomass and (b) shoot biomass.</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Soil water profile of the experimental tanks during the drought treatment.</td>
<td>56</td>
</tr>
</tbody>
</table>
Fig. 4.2 : LWP of WW and WS *L. leucocephala* ..58
Fig. 4.3 : Diurnal LWP and RWC. The lowest value was inferred as midday LWP and RWC, which was at 1200 hours ...59
Fig. 4.4 : RWC of WW and WS *L. leucocephala* ..60
Fig. 4.5 : (a) Photosynthetic rate, (b) transpiration rate and (c) stomatal conductance of WW and WS *L. leucocephala* ...62
Fig. 4.6 : Correlation between photosynthetic rate and stomatal conductance63
Fig. 4.7 : Correlation between transpiration rate and stomatal conductance65
Fig. 4.8 : WUE of WW and WS *L. leucocephala* ..66
Fig. 4.9 : Correlation between stomatal conductance and midday LWP67
Fig. 4.10 : Correlation between photosynthetic rate and midday LWP69
Fig. 5.1 : AC_a curve of *L. leucocephala* during 0800 hour ..75
Fig. 5.2 : AC_a curve of *L. leucocephala* during 1200 hour ..76
Fig. 5.3 : AC_a curve of *L. leucocephala* during 1700 hour ..77
Fig. 5.4 : AC_i curve of *L. leucocephala* during 0800 hour ..78
Fig. 5.5 : AC_i curve of *L. leucocephala* during 1200 hour ..79
Fig. 5.6 : AC_i curve of *L. leucocephala* during 1700 hour ..80
Fig. 5.7 : Mesophyll conductance and carbon compensation point of WW and WS *L. leucocephala* ...83
Fig. 5.8 : Relationship between g_s and C_a concentration of WW and WS plant84
Fig. 5.9 : Relationship between E and g_s ..85
Fig. 5.10 : Relationship between C_i/C_a ratio and C_a (ppm) in WW and WS plant87
Fig. 5.11 : Relationship between WUE and C_a concentration in WW and WS plant88
Fig. 5.12 : Relationship between WUE and E ..89
Fig. 5.13 : Relationship between WUE and A ...90
Fig. 5.14 : Light response curve of *L. leucocephala* in WW and WS treatments at 1200 hour ..93
Fig. 5.15 : Quantum efficiency and light compensation point of *L. leucocephala* in two treatments ...95
Fig. 5.16 : Correlations between photosynthetic component and LWP (MPa)96
Fig. 6.1 : Planting technique. Seedling is grown in an open-ended customised PVC tube for two months (~1.0m in height) ...103
Fig. 6.2: Four treatments were established in the first trial. *L. leucocephala* seedlings were planted in such a way that the root zone was located at a soil depth of 80-100cm.

Fig. 6.3: Survival rates (%) of *L. leucocephala* in four treatments (first trial).

Fig. 6.4: Survival rates (%) of *L. leucocephala* in SCNR treatment in the second trial.

Fig. 6.5: Chlorophyll content of sphagnum- and calcium-treated (SCNR) *L. leucocephala*.

Fig. 6.6: Al and Mn concentration in *L. leucocephala*.

Fig. 6.7: Comparison in Al concentration between the species studied and *M. malabathricum*.

Fig. 7.1: Photosynthetically Active Radiation observed during the measurements.

Fig. 7.2: Root growth rate of *L. leucocephala* (245 DS).

Fig. 7.3: Root profile of *L. leucocephala* in two experimental periods.

Fig. 7.4: Percentage (value on bar) of RLD at the first 40 cm of soil depth in eight (08) and sixteen (16) months of experiment.

Fig. 7.5: Comparison of WAC in two experimental periods.

Fig. 7.6: Dry weight partitioning of S=stem, L=leaf and R=root in eight (08) and sixteen (16) months of experiment.

Fig. 7.7: Total biomass (TB), leaf area (LA) and root length (RL) in eight (08) and sixteen (16) months of experiment.

Fig. 7.8: Ratio of root biomass (RB) to both shoot biomass (SB) and leaf area (LA).

Fig. 7.9: Physiological parameters studied in eight an sixteen months of experiment. Vertical line represents LSD$_{p<0.05}$.

Fig. 8.1: Soil sample was prepared in a stacked perspex box.

Fig. 8.2: A schematic diagram of the automatic modified direct shear box machine.

Fig. 8.3: Shear strength of (a) control (b) *L. leucocephala*, (c) *B. purpurea* and (d) *B. orellana* after six months of growth.

Fig. 8.4: Values of cohesion factor (kPa) after six months of growth.

Fig. 8.5: Angle of friction (°) after six months of growth.

Fig. 8.6: Shear strength of (a) control (b) *L. leucocephala*, (c) *B. purpurea* and (d) *B. orellana* after twelve months of growth.

Fig. 8.7: Values of cohesion factor after twelve months of growth.

Fig. 8.8: Angle of friction (°) after twelve months of growth.
Fig. 8.9 : Comparison of cohesion factor between two experimental periods in the different species studied (6 months and 12 months).................162
Fig. 8.10 : Comparison of angle of friction between two experimental periods in the different species studied (6 months and 12 months).................164
Fig. 8.11 : Residual strength of the samples after six months of growth..................165
Fig. 8.12 : Residual strength of the samples after twelve months of growth..................167
Fig. 8.13 : Comparison of cohesion factor of residual strength (kPa) between two experimental periods in the three species studied.................................168
Fig. 8.14 : Comparison of friction angle of residual strength (kPa) between two experimental periods in the three species studied.................................169
Fig. 8.15 : Root profile of all species studied at three different normal pressure...............171
Fig. 8.16 : Correlations between shear strength and RLD..173
Fig. 8.17 : Correlations between shear strength and physiological parameters studied...174
Fig. 8.18 : Contribution of root profile of *L. leucocephala* to shear strength after six months of growth..............................176
Fig. 8.19 : Contribution of root profile of *L. leucocephala* to shear strength after twelve months of growth..............................177
Fig. 9.1 : A Microclimate Plant Propagation Technique. Initial physiological processes of the plant takes place in a "micro-environment" which is more conducive for plant establishment and adaptation.................................185
Fig. 9.2a : Four treatments on a showcase slope, Rimba Ilmu, University of Malaya........186
Fig. 9.2b : A schematic design of mix-culture plots (SS and LLSS). All plant species were planted in a complete randomised design in these plots. The monoculture (LL plot) was laid-out in the similar design to the mix-culture plots. Only *L. leucocephala* was grown in LL plot. The dashed line is *P. phaseoloides* (legume cover)..187
Fig. 9.3 : LAI of *L. leucocephala* in LL and LLSS plots. Vertical bars represent standard deviation and vertical lines represent LSD$_{P=0.05}$..190
Fig. 9.4 : Gross parameters of *L. leucocephala* in LL and LLSS plots at 18th months. bars Vertical represent standard deviation and vertical lines represent LSD$_{P=0.05}$..191
Fig. 9.5 : Diurnal photosynthesis of *L. leucocephala* in LL and LLSS plots (value of growth rate indicated within brackets)..194
Fig. 9.6 : Percentage of barren soil in LL and LLSS plots..195
Fig. 9.7 : Percentage of diversity increment in LL and LLSS plots (arrow shows the time of soil erosion in LL treatment)..196
Fig. 9.8 : Percentage of ground cover and frequency of pioneer species..........................198
Fig. 9.9 : Dominant successors in either both plots or only in the LLSS plot...........200

xvi
Fig. 9.10 : LAI in four different plots after 12 and 24 months. Vertical bars represent standard deviation and vertical lines represent LSD_{p<0.05}202

Fig. 9.11 : Biomass in four different plots after 12 and 24 months. Vertical bars represent standard deviation and vertical lines represent LSD_{p<0.05}203

Fig. 9.12 : Relationship amongst the gross parameters studied..205

Fig. 9.13 : RLD in four different plots..208

Fig. 9.14 : Soil penetrability of the experimental slopes after 24 months of experiment...210

Fig. 9.15a : Soil shear strength (at 30cm of soil depth) in four plots. Vertical bars represent standard deviation and vertical lines represent LSD_{p<0.05}212

Fig. 9.15b : Soil shear strength (kPa) in LL and LLSS plots at 4" (10cm) and 12" (30cm) of soil depth. Vertical bars represent standard deviation and vertical lines represent LSD_{p<0.05}212

Fig. 9.16 : SWC and FC of two plots (LL and LLSS)...215

Fig. 9.17 : Relationship between penetrability (MPa) and SWC (%)..................................218

Fig. 9.18 : Relationship between penetrability (MPa) and RLD (Km m^{-3}).........................219

Fig. 9.19 : Relationship between shear strength (kPa) and RLD (Km m^{-3}).....................220

Fig. 9.20 : Relationship between SWC (%) and shear strength (kPa)..................................222

Fig. 10.1 : Various interactions in determining the role of L.leucocephala in accelerating the process of natural succession and stability of slope.........................229
LIST OF TABLES

Table 1.1 : Classification of bioengineering methods (Gray and Sotir, 1992)..........................3

Table 1.2 : Mean runoff and soil loss at different stages of cover establishment
(Ling et al., 1980)..6

Table 2.1 : Adverse consequences of the absence of vegetation ground cover
(Barker, 1996)..12

Table 2.2 : Influence of hedgerows and alley crops on soil nutrient levels
(Hernandez et al., 1996)..30

Table 2.3 : Effect of Al and calcium concentration on the growth of leucaena in vitro
(Wong and Devendra, 1982)...31

Table 3.1 : Root/shoot ratio of L.leucocephala in all soil treatments..43

Table 3.2 : Weighted value of physiological parameters..49

Table 3.3 : Cumulative ranking analysis of parameters studied in soil treatments......................51

Table 5.1 : Some parameters related to photosynthetic components of L.leucocephala
in different treatments...81

Table 5.2 : Percentage of increment in WUE (%) to ambient CO2 concentration at
two levels of CO2...92

Table 5.3 : Value of A_max in ten potential future plants...99

Table 6.1 : Four treatments were established in the first trial..105

Table 6.2 : Soil pH profile at Km 425.0 SB (value is the mean of three replications).................107

Table 7.1 : Root length of L.leucocephala at eight and sixteen months of observation.............126

Table 7.2 : Root length density (RLD) of L.leucocephala at eight and sixteen months
of observation...131

Table 7.3 : Water absorption capacity and related parameters..135

Table 7.4 : Dry weight partitioning, total biomass, leaf area and root length of
L.leucocephala in (a) eight and (b) sixteen months of experiment...138

Table 7.5 : Correlation coefficient of other physiological parameters and RLD (n=6).............144
Table 7.6: Root profile and water absorption capacity (WAC) of *L. leucocephala* and other potential slope species .. 145

Table 8.1: Shear strength and residual strength of all the species studied in two experimental periods (see also Appendices 2-19) .. 152

Table 8.2: Root profile of all species studied (RL = root length (m); RLD = root length density (m m⁻³)) .. 170

Table 8.3: Root reinforcement of *L. leucocephala* throughout the experimental period 178

Table 8.4: Root reinforcement (kPa) of all species studied (as compared to control) after twelve months of growth .. 180

Table 9.1: Description of the plots ... 183

Table 9.2: Growth rate of potential slope plants .. 194

Table 9.3: Root length density (RLD) of the bioengineered plots at Rimba Ilmu, University of Malaya .. 209

Table 9.4: Percentage of SWC and FC of the experimental plots. Values of FC indicated within brackets ... 214

Table 9.5: The difference in slope stability parameters between two treatments 217

Table 9.6: Critical value of slope stability .. 223
LIST OF PLATES

Plate 6.1: The plants produce smaller and thinner leaves in response to Al toxicity 111
Plate 6.2: Leaf necrosis — a visual symptom of Aluminium toxicity .. 113
Plate 6.3: A well grown L.leucocephala on non-acidic slope .. 119
Plate 7.1: Root profile of L.leucocephala after eight months of growth 127
Plate 7.2: The extensive root profile of L.leucocephala at the first 40cm of soil depth 133
Plate 8.1: Large shear box test apparatus .. 151
Plate 10.1a: A showcase slope at Rimba Ilmu, University of Malaya, six months after planting (January 2000) ... 230
Plate 10.1b: Showcase slope revisited (January 2004) ... 231