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Abstract 
 

Centrifugal microfluidic platforms, also known as CD-like microfluidics, are types of 

lab-on-a-chip devices that employ centrifugal force to pump liquid between micro chambers via 

micro channels. Magnetic particles can be used in centrifugal microfluidic platforms for 

bimolecular assays such as the enzyme-linked immune sorbent assay (ELISA), polymer chain 

reaction (PCR) and other applications. Magnetic particles can act as mobile solid supports for bio 

reactions due to their specific surface functionalization. For this reason, trapping, transport and 

detection of magnetic particles are very important operations in centrifugal microfluidic 

platforms for research applications and clinical diagnostics. 

Magnetic forces are required for controlling the magnetic particles in CD-like 

microfluidic devices. Therefore, external magnetic field should be applied on micro chambers. In 

previous studies, external magnetic field was generated by means of sophisticated coil arrays that 

require skillful technicians and permanent magnets which need manual tedious procedures. In 

addition, other studies attempted to manipulate magnetic particle when CD is in stationary state.   

This study introduces a novel electromagnetic platform that allows controlling of magnetics 

particles movements on CD-like microfluidics during rotational CD automatically. The required 

magnetic force to move magnetic particles under a centrifugal force are estimated by MATLAB 

software. By employing the magnetic force equation and based on the required magnetic force, 

the exact value of required magnetic flux density at the location of magnetic particles was 

calculated.  Then, an electromagnetic platform which produces required magnetic flux density 

was designed using COMSOL simulation software.  

Our results indicate that the designed electromagnetic platform with 16 solenoids inside 

the ring-shaped core is able to generate the required magnetic flux density (more than 1.91 T). 
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By utilizing the electromagnetic platform in this project, magnetic particles can be trapped in one 

chamber for 10 second and then can be transported from one chamber to another chamber 

automatically. This preliminary result will lead to the future development of electromagnetic 

platforms and implementation of fully automated biomedical assays in centrifugal microfluidic 

applications. 
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Abstrak 

 
Platform microfluidic Centrifugal, juga dikenali sebagai CD-seperti microfluidics, adalah 

jenis peranti makmal-on-a-chip yang menggunakan daya emparan untuk mengepam cecair antara 

dewan mikro melalui saluran mikro. Zarah magnet boleh digunakan dalam platform microfluidic 

empar untuk ujian bimolecular seperti imun cerakin enzim berkaitan pengerap (ELISA), tindak 

balas rantai polimer (PCR) dan aplikasi lain. Zarah magnet boleh bertindak sebagai sokongan 

padu bimbit untuk tindak balas bio kerana functionalization permukaan khusus mereka. Atas 

sebab ini, memerangkap, pengangkutan dan pengesanan zarah magnet adalah operasi yang 

sangat penting dalam platform microfluidic empar bagi aplikasi penyelidikan dan diagnostik 

klinikal. 

Kuasa-kuasa magnet yang diperlukan untuk mengawal zarah magnet dalam peranti 

microfluidic CD-suka. Oleh itu, medan magnet luaran perlu digunakan pada dewan mikro. 

Dalam kajian sebelum ini, medan magnet luar telah dijana melalui tatasusunan gegelung canggih 

yang memerlukan juruteknik mahir dan magnet kekal yang memerlukan prosedur membosankan 

manual. Di samping itu, kajian-kajian lain cuba untuk memanipulasi zarah magnet apabila CD 

adalah dalam keadaan pegun.  

Kajian ini memperkenalkan platform elektromagnet novel yang membolehkan 

pengawalan Nizhnian zarah pergerakan pada CD-seperti microfluidics semasa CD putaran 

automatik. Daya magnet diperlukan untuk menggerakkan zarah magnet di bawah daya emparan 

adalah dianggarkan melalui perisian MATLAB. Dengan menggunakan persamaan daya magnet 

dan berdasarkan daya magnet yang diperlukan, nilai sebenar diperlukan ketumpatan fluks 

magnet di lokasi zarah magnet telah dikira. Kemudian, sebuah platform elektromagnet yang 

menghasilkan diperlukan ketumpatan fluks magnet telah direka dengan menggunakan perisian 
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simulasi COMSOL. 

Keputusan kami menunjukkan bahawa platform elektromagnet yang direka dengan 16 

solenoid dalam teras berbentuk cincin yang mampu menjana ketumpatan fluks magnet yang 

diperlukan (lebih daripada 1.91 T). Dengan menggunakan platform elektromagnet dalam projek 

ini, zarah magnet boleh terperangkap di dalam satu ruang selama 10 kedua dan kemudiannya 

boleh diangkut dari satu ruang ke ruang lain secara automatik. Ini hasil awal akan membawa 

kepada pembangunan masa depan platform elektromagnet dan pelaksanaan ujian automatik 

sepenuhnya bioperubatan dalam aplikasi microfluidic empar. 
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Chapter  1.   INTRODUCTION 

1.1 Overview 

 

Medical testing in vitro plays an important role in modern health care. For this reason, the 

availability of high sensitive diagnostic tools is a significant issue for all people in the world. 

Nowadays, about 70% of medical tests are accomplished in centralized laboratories. The 

centralized laboratories should be equipped with sophisticated equipment to perform different 

processes of the medical test. In addition, working with this equipment is time-consuming and 

needs professional technicians. The remaining 30% of the medical tests are performed as point-

of-care (POC) tests. POC testing can provide immediate and convenient tests for patients. These 

types of tests integrate several diagnostic steps which lead to faster and less expensive procedure 

compared to centralized testing approaches (Bruls et al., 2009). However, POC devices need 

large analytical equipment due to the applied high reagent volume. As a result, microfluidic 

technologies have been emerged as powerful enabling tools to improve the related shortcomings 

by reduction of reagent volume. Moreover, microfluidic technologies can increase reliability of 

POC tests.  

Lab-on-a-chip (LOC) is one of the current POC testing systems which utilize 

microfluidic diagnostic technologies. There are various techniques for operating microfluidic 

functions. These methods are acoustics, pressure, syringe, electrokinetics, electrochemical 

bubble generation, and centrifuge (Madou et al., 2006). Among all of these techniques, 

centrifuge offers a number of intrinsic advantages such as, removing the need for external pump, 

providing wide range of rate flow and handling fluid independent to physicochemical properties 

of fluid. In addition, based on physical principle of centrifugal pumping, several centrifuge 

fluidic functions (e.g. mixing, valving, metering and switching) can be done in a CD-like plastic 
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substrate. LOC devices which employ centrifugal force to pump liquid between micro chambers 

via micro channels are called centrifugal microfluidic platforms or lab-on-a-disc (LOD) 

platforms. LOD platforms have successfully demonstrated their capability for high performance 

analytical measurement for a wide range of biological assays (e.g. Cell-based assay, 

immunoassay, polymerase chain reaction (PCR)). Biological assays need to deliver a great 

analytical performance with cost-effective materials. There are various types of magnetic (e.g. 

magnetic particles and Ferro fluids) and non-magnetic (diamagnetic objects) materials which can 

be applied in biological assays. 

 Magnetic particles are valuable materials which can be easily manufactured in a wide 

range of size from nanometer to micrometer (Aytur, 2007). Different types of biomolecules such 

as antigens, antibodies, and DNA strands can be easily attached to these particles due to their 

specific surface functionalization. Spherical shape and large surface area are other important 

properties of these particles which are desired in mass transferring (Pamme, 2006). The related 

advantages of magnetic particles make them appropriate materials for using in LOD systems in a 

large number of applications (Strohmeier et al., 2013; Wadle et al., 2012). For example, in cell-

based assays, identification, analysis, capturing, sorting, and selective manipulation of cells can 

be simply done by using magnetic particles inside the microfluidic channels (Chen et al., 2011; 

Siegrist et al., 2011; Kirby et al., 2012). 

Magnetic forces are required for controlling the magnetic particles in LOD platform. 

External magnetic field should be applied on microchambers. Magnetic field strength and pattern 

can be designed based on the variety types of LOD platforms. In order to obtain desired 

magnetic field strength and pattern, many types of permanent magnets and electromagnets have 

been manufactured. All of the methods used to control the magnetic particles in the LOD 
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platforms need skillful technicians for setting up the sophisticated electromagnetic arrays or 

manual tedious procedures to install permanent magnets. These methods make corresponding 

constraints on the automation and miniaturization concepts of LOD platform. By automatic 

controlling and manipulating magnetic particles movement from outside of the LOD platform, 

under a wide range of centrifugal force, more functions and flexibilities can be achieved in 

centrifugal microfluidic systems. For example, automatic controlling the movement of magnetic 

particles enables us to trap these particles inside a micro chamber (for binding particles with 

biomolecules) in a specified duration of time, and then transport them from one chamber to 

another one (for washing the weak binding). These abilities result in performing various assays 

on the LOD platform. 

The main goal of this project is implementing a multiplex electromagnetic ring that 

would be designed exclusively for LOD platforms in order to gain the aforementioned abilities. 

This system warrants controlled movements of magnetic particles in microchambers over LOD 

platforms. 

1.2 Objectives 

 

The objective of this project is to design the electromagnetic platform for controlling 

magnetic particles in centrifugal microfluidic platform.  

1.3 Scope of this Study 

 

In order to achieve the goal of this study, the following steps have been taken into 

account.  The corresponding literature has been reviewed to find an appropriate way to calculate 

the desired magnetic force for various sizes of magnetic particles under the wide range of 

centrifugal force. In addition, several mathematical methods to calculate the magnetic field at 
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any interesting point, above the magnetic ring, have been reviewed. AutoCAD software has been 

used to design the centrifugal microfluidic platform.  Then, electromagnetic platform has been 

designed by means of COMSOL software. Finally the equation of designed electromagnetic 

platform has been obtained by employing MATLAB software. 

The designed electromagnetic platform consists of 16 solenoids which are located at 

circular shape.  This electromagnetic platform is located under micro chambers of LOD 

platform. By this platform, magnetic particles can be trapped in one chamber in a specified 

duration of time and then can be transported from one chamber to another chamber 

automatically. 

1.4 Outline of Thesis 

 

This thesis consists of five chapters. In first Chapter, it discussed the objective, scope and 

summary of this project; while the Chapter 2 will be discussed more on literature review of 

platforms that have been simulated. It discussed about centrifugal microfluidic platform and 

magnetic theory. In Chapter 3 the discussion will be on the mathematical calculation, design and 

simulation of the electromagnetic platform. Moreover, the results and interpretations are shown 

in Chapter 4. The Chapter 5 is conclusion and recommendation for the overall project. 
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Chapter  2.   LITERATURE REVIEW 

 

This section is divided into three subsections. At the first section, the details regarding to 

Centrifugal microfluidic platform are provided. This section comprises; background, theoretical 

principle, centrifugal microfluidic functions, analytical measurement techniques and finally 

applications of this platform. At the second section, magnetic theory is reviewed. This section 

deals with the magnetic properties of different types of materials. Then, different types of 

magnets (ring permanent magnet and temporary magnet) are discussed in this section.  At the 

third section, the combination of microfluidics and magnetism are reviewed.  

2.1 Centrifugal Microfluidic Platform 

 

Centrifugal microfluidic platforms which are known as lab-on-a-disk (LOD) or compact 

disk (CD) microfluidics are a powerful solution for medical and clinical diagnostics applications. 

The principal of the technique is that it exploits centrifugal force to drive liquids inside 

microfluidic system for properly mixing the samples and reagents and to perform diagnostic 

assays. So, each steps of the process will be carried out automatically by controlling the rotation 

speed of the CD as well as the liquid flow (Lai et al., 2004). Based on physical principle of 

centrifugal pumping, several centrifuge fluidic functions can be implemented on LOD platform. 

In addition, various analytical measurement techniques can be utilized for this platform. The 

combination of centrifuge fluidic functions and analytical measurement techniques make a 

centrifugal microfluidic platform a great solution for diagnostics applications such as, 

immunoassay and polymerase chain reaction (PCR) (Madou et al., 2006).  
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2.1.1 Background 

 

The use of microfluidic technologies for carrying out miniaturization on the analytical 

equipment through the reduction in reagent volumes, improves the shortcomings related to the 

use of large and expensive instrumentations. In addition, microfluidic technologies simplify the 

job of analytical assays by full incorporation of analytical procedures in flowing systems. These 

technologies can be performed in low-cost and disposable instruments to prevent sample 

contamination. Furthermore, it has a potential to scale the important instrument process such as, 

cooling, heating, chromatographic and electrophoretic separation in micro domain (Madou et al., 

2006). In order to increase functionality of microfluidic systems to perform analytical assays, 

microelectromechanical systems (MEMs) are employed. The combination of these two 

technologies allows the integration of different types of functions (e.g. electrical and 

electrochemical functions) into chips for different procedures of analytical assays such as, 

sensing the parameters of assay and biomolecular detection (Verpoorte et al., 2003). Lab-on-a-

chip (LOC) is a device that utilizes the integration of these two technologies. Single or multiple 

laboratory functions are performed on a chip by handling small volume of fluid inside 

interconnected micro channels. Several technologies for handling fluid inside the micro channel 

exist, including acoustics, pressure, syringe, electrokinetics, electrochemical bubble generation 

and centrifuge. Table 2.1 displays the comparison of four important microfluidic propulsion 

techniques (Madou et al., 2006). 
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Table  2.1. Comparison of four important microfluidic propulsion techniques (Reproduced from Madou et al. (2006)). 

 

According to the table, centrifugal microfluidics done in a CD-like plastic substrate has 

got lots of advantages. This system employs centrifugal force for moving fluid while other 

systems need the external pump. A wide range of flow rate (i.e. less than 10 nl s
−1

 to more than 

100 μl s
−1

) can be provided by this technology compared to another technologies. Moreover, 

valving structures (i.e. fluid gating) play fundamental role in enabling sequential fluidic 

processing and multiplexing and miniaturization could be easily done in this system. Fig 2.1 

shows a general figure of LOD instrument and disposable CD (Madou et al., 2006). 

 

 

 

 

 

Fluid propulsion mechanism 

Comparison Centrifuge Pressure Acoustic Electrokinetic 

Valving solved? 
Yes for liquids, no 

for vapor 

yes for liquid  

and vapor 

Yes for liquids and 

vapor 

Yes for liquids, no for 

vapor 

Maturity Products available Products available Research Products available 

Propulsion force 

influenced by 

Density and 

viscosity 

Generic Generic pH, ionic strength 

Power source 
Rotary motor Pump, mechanical 

roller 

5 to 40 V 10 kV 

Materials Plastics Plastics Piezoelectric Glass, Plastics 

Scaling L3 L3 L2 L2 

Flow rate 

From less than 1 nl 

s
−1

 to greater than 

100 μl s
−1

 

Very wide range (less 

than nl s
−1

 to liter 

s
−1

) 

20 μl s
−1

 0.001–1 μl sec
−1

 

General 

remarks 

Inexpensive CD 

drive, mixing is 

easy, most samples 

possible (including 

cells). Better for 

diagnostics 

Standard technique. 

Difficult to 

miniaturize and 

multiplex 

Least mature of the 

four techniques. 

Might be too 

expensive. Better 

for smallest 

samples 

Mixing difficult. High 

voltage source is 

dangerous and many 

parameters influence 

propulsion, better for 

smallest samples  
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2.1.2 Theoretical Principle  
 

The theoretical principle of the LOD platform contains the principle of fluid rate as well 

as the principle of basic forces which are applied on fluid or on suspended particles.  Rotation 

rate, geometry and location of channels and reservoirs, as well as fluid properties determine the 

CD fluid propulsion which is occurred via centrifugally induced pressure. The average velocity 

of the liquid (u) can be found by Equation 2.1(Madou et al., 2006). 

 

      
          ………………………………………………………………………………………………………………………………………..……………..……(Equation 2.1) 

 
Definitions: 

 

Dh: hydraulic diameter of the channel 

L: the length of the liquid in the capillary channel 

r
-
: the average distance of the liquid in the channels to the center of the CD 

w: angular speed of the CD 

μ: radial extent of the fluid 

 Fig 2.1.General figure of LOD instrument and disposable CD (Reproduced from Madou 

et al. (2006)). 
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ρ: the density of the liquid 

∆r: radial extent of the fluid 

In addition, Equation 2.2 can be used for calculation the volumetric flow rate of liquid (Madou et 

al., 2006). Velocity of liquid (U) and cross sectional area of the channel (A) is two parameters 

which they have directly effect on volumetric flow rate. 

 

    ..........................................................................................................................................................................................................................................................................................................(Equation 2.2)  

 

In CD microfluidics, different combinations of rotational speeds (from 400 to 1600 rpm), 

channel widths (20–500 μm), and channel depths (16–340 μm) can give flow rates, ranging from 

5 nls
-1

 to >0.1 mls
-1

. 

 On the other hand, LOD platform utilizes the centrifugal force, Coriolis force and Euler force to 

manipulate and transport the liquid and suspended particles (Ducrée et al., 2007; Grumann et al. 

2005). Fluid is transferred from the inner part of CD to the outer part by means of centrifugal 

force. Angular speed of CD, mass density of liquid substance or particles and distance between 

liquid or particles and center of CD (r) are the parameters that have the effect on the magnitude 

of the centrifugal force. This force can be found according to Equation 2.3(Ducrée et al., 2007).  

 

       ………………………………………………….………………………………………………………...……………………………………………………………………………......(Equation 2.3)     

 

The second basic force is Coriolis force. The fluid flow can be separated in LOD platform by this 

force when the angular speed is high enough. The Coriolis force will be applied on the liquid 

when the flow velocity is in the radial direction. The effect of this force on liquid is not 

http://en.wikipedia.org/wiki/Centrifugal_force
http://en.wikipedia.org/wiki/Coriolis_force
http://en.wikipedia.org/wiki/Euler_force
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significant compared to the centrifugal force when the angular speed is not high. This force can 

be calculated by Equation 2.4(Ducrée et al., 2007). 

 

       ……………………………………….………………………………………………………...……………………………………………………………………….……………..(Equation 2.4)     

 

The Euler force is another basic force which can be applied on the liquid when the rotational 

speed of CD is not constant. In other words, the Euler force depends on the acceleration of 

angular speed. The Euler force can be determined by Equation 2.5 (Ducrée et al., 2007). 

 

     
  

  
 ……………………………………….………………………………………………………...……………………………………………………………………….……………….. (Equation 2.5) 

 

Fig 2.2 displays a rotational CD, which the liquid inside the CD experienced three basic forces 

(centrifugal force, Coriolis force and Euler force) (Ducrée et al., 2007). 

 

 

 

 

 

 

 

 

Fig  2.2. Liquid inside the rotating CD experienced three basic forces (centrifugal force, Coriolis 

force and Euler force (Reproduced from Ducrée et al. (2007)). 
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2.1.3 Functions 

 

There are various types of functions in a centrifugal microfluidic structure such as, 

mixing, valving, metering and switching.   

2.1.3.1 Valving 

 

Controlling of fluid flow consists of ability to start and stop the fluid flow. Valving 

structures play fundamental role in flow control and enabling sequential fluidic processing. The 

valve holds until spin velocities, measured in rotations per minute (RPM), are increased above a 

critical threshold, known as the burst frequency. This frequency can be found according to 

Equation 2.6 where θ is contact angle and γ is surface tension of fluid (Lai et al., 2004). 

 

    
     

             
    ……………………………………….………………………………………………………...………………………………….………………………….. (Equation 2.6) 

 

The microfluidic applications are multiplexed and, as such, several valving components 

must work simultaneously. In addition, compatibility, long-term stability, prevention of cross-

contamination and actuation in accordance with the design paradigms of the instrument are 

important factors in related to valving.  There are two kinds of valving; passive valve and active 

valve. The mechanism of passive valves is that centrifugal forces drive liquid outwards while 

surface tension created at the interface prevents from flowing. The liquid is released from the 

reservoir only when the applied produced pressure by rotational speed is greater than capillary 

force. Fig 2.3 can illustrate this mechanism. Although mechanism of passive valves is simple 

without barriers and external trigger they have some limitations like valving failures or 

decreasing burst frequency by increasing distance away from the disc center.it means passive 

valves are RPM-dependent. This problem makes limitation scope of use. There are different 
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kinds of passive valves such as hydrophobic valves, pneumatic passive valves, siphon valves, 

etc. The active valving was introduced to overcome the limitations of passive valving and also 

for expanded use. The mechanism of active valve is that act as programmable control of fluidic 

flow elements where a physical gating material is changed or removed by an external actuation 

source. Depend on type of active valve gating material and actuation source will be changed. 

There are many types of active valves such as using wax and focused infrared (IR) lamp; using 

Ferro wax and laser diode; heat absorbing printer toner with Laser diodes as gating and actuation 

source respectively. Thus active valve is not RPM-dependent and can solve some problems in 

passive valving (Madou et al., 2001; Yusoff et al., 2009).  

 

 

 

 

 

 

 

 

 

 

2.1.3.2 Metering 

 

Controlling the volume of the liquid (metering) as a function of LOD platform plays a 

key role in analytical sample processing procedure. This function can be achieved by connecting 

a common distribution channel to the metering reservoir chamber. Fig 2.4 shows the mechanism 

of the metering. At the specific rotational speed of CD, liquid moves from the distribution 

channel into reservoir channel. At the same time, the rest liquid of distribution channel move to 

Fig 2.3. Mechanism of passive valve (Reproduced from Yusoff et al. (2009)). 
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the waste channel. When the rotational speed of CD increases the liquid will transfer from 

reservoir channel into the next channel. The volume of the liquid can be determined by 

measuring the volume of the reservoir channel (Madou et al., 2006). 

 

 

 

 

 

 

 

 

 

 

2.1.3.3 Switching 

 

Controlling of a flowing fluid is necessary when routing fluid into different outlet 

channels. When CD is rotating, switching intend to move the liquid into the selected channels. 

Separation of biomolecule from the mixture of liquid is one of the significant applications of 

switching. There are variety techniques for performing switching. Using Coriolis force is a 

common technique for switching in LOD platform. Fig 2.5 display centrifugal force and Coriolis 

force that have the effect on the direction of fluid flow. This technique consists of two outlet 

channels with common inlet. At low rotational speed, centrifugal force pump the liquid toward 

the outer radius of Cd and liquid flow follow the original path. By contrast, when the rotational 

speed is increased, the Coriolis force can move the liquid in to the opposite direction of rotating 

CD (Kim et al., 2008). 

 Fig 2.4. Mechanism of metering function (Reproduced from Madou et al. (2006)). 
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2.1.4 Analytical Measurement Techniques  

 

Analytical measurement techniques consist of the variety types of methods for measuring 

the analyte of the biological assays. The presence or the functional activity of the analyte can be 

measured by these methods. Type of analytical measurement techniques can be determined 

based on biological assay, for an instance, detection of binding between analyte and biological 

(sensing) element is the basic principle of the measuring techniques for affinity bioassay. Optical 

imaging, absorbance and fluorescence spectroscopy are some of these techniques which are used 

in LOD platform. 

2.1.5 Application 

 

Centrifugal microfluidic platform is a kind of multi-purpose devices which can be used 

for many applications such as, sample preparation, Cell-based applications, DNA purification, 

Immunoassay, Polymerase chain reaction (PCR) and so on.  

2.1.5.1 Sample Preparation 

 

In analytical chemistry, sample preparation is referred to the ways in which a sample is 

treated prior to its analysis. Because the techniques are often not responsive to the analyte in its 

in-situ form, or the results are distorted by interfering species, preparation is a very important 

FCoriolis 

F Centrifugal 

 
Fig 2.5. Centrifugal force and Coriolis force which have the effect on the fluid flow direction 

(Reproduced from Kim et al. (2008)). 
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step in most analytical techniques. Manual sample preparation is relatively tiresome and time 

consuming, and can introduce errors common to multi-step pipetting. Developing LOD platform 

for automation of sample preparation has shown a lot of promises in this field (Glasgow et al., 

2003). 

2.1.5.2 Cell-Based Applications 

 

Cell separation, purification, sorting and manipulating are significant processes for 

clinical diagnostic applications. In addition, capturing of cell, cell counting and assaying play an 

important role for research usages. Cell separation and purification are primary process for cell 

analysis. The main objective of this process is separating the target cells from the surrounding 

medium. Separation of target cell from the medium can be done by different methods which 

depend on the characteristics of cell such as, dielectric features, size, density and morphological 

characteristics. In order to manipulate of cell, complex, expensive and sophisticated equipment 

are required. Therefore, both clinical diagnostic and research applications need to low-cost and 

portable systems. LOD platforms have effectively established their intrinsic advantages for Cell 

handling and cell identification applications (Burger et al., 2012; Chen et al., 2011). 

2.1.5.3 DNA Purification 

 

DNA purification is a process of isolation DNA from the sample. Several chemical and 

physical methods can be used for DNA purification. In general, isolation DNA from cellular 

components can be done by sequential stages including, disruption, lysis, removing proteins, 

removing contaminants and recovery of DNA. All of these sequential stages can be perfumed by 

professional techniques which are used in LOD platforms (Strohmeier et al., 2013; Wadle et al., 

2012).  
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2.1.5.4 Immunoassay 

 

An immunoassay is a biochemical test that measures the presence or concentration of a 

substance in solutions containing a complex mixture of substances. Immunoassay methods are 

usually used to assay analyte in biological liquids such as serum, saliva or urine. The exceptional 

ability of an antibody to bind with high specificity to one or a very limited group of molecules is 

the basic for this kind of assays. In addition to that, the other key feature of all immunoassays is 

a means to produce a measurable signal in response to a specific binding. Historically this was 

accomplished by measuring a change in some physical characteristic such as light scattering or 

changes in refractive index. The automation of immunoassays on microfluidic platforms is 

challenging because of the high number of fluidic processes and liquid reagents involved. CD 

platform is of interest for multiple parallel immunoassays because it can provide simultaneous 

and identical flow rates, incubation times, mixing dynamics and detection (Lai et al., 2004).  

2.1.5.5 Polymerase chain reaction (PCR) 

 

The polymerase chain reaction (PCR), an important process for nucleic acid analysis, is a 

scientific technique in molecular biology to amplify a single or few copies of a piece of DNA 

across several orders of magnitude, generating thousands to millions of copies of a particular 

DNA sequence. This process needs substantial sample preparation that, unless automated, is 

laboured extensive. Current bench-top PCR systems can take on the order of hours to complete a 

set of PCR cycles. As a primary example, combined sample preparation with PCR on the CD 

was reported by Kellogg et al. (Kido et al., 2007) They demonstrated sample preparation and 

PCR amplification for two types of samples, whole blood and Escherichia coli, on the CD 

platform and shown that the results are as good as the conventional methods. 
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2.2 Magnetism 

 

2.2.1 Magnetic Theory 

 

There are four main magnetic vectors namely, magnetic field (H), magnetization (M), 

magnetic flux density (B) and magnetic force (F). All of these vectors can be specified by both 

strength and direction. 

Magnetic fields (H) are produced by magnetic materials and electric currents. Atomic 

structure of materials consists of positive charges (i.e. nucleus) and negative charges (i.e. 

electrons). Spinning of atomic components comprising, rotating electrons around nucleus and 

rotating nucleus and electrons relative to their axes is the reason of creation magnetic dipoles. 

The magnetic dipole moment of rotating electrons around nucleus is more significant than 

rotation electrons or nucleus around their axes. Therefore, the presence of moving charges in 

magnetic materials (i.e. spinning of electrons around nuclei) and electric currents (i.e. flowing of 

electrons along a wire) is the main reason of magnetic field generation. There are two types of 

magnetic field including, static magnetic field and time-varying magnetic field. Static magnetic 

fields are generated by permanent magnets and steady currents whereas time-varying magnetic 

fields are produced by time-varying currents. The unit of magnetic field vector is Ampere per 

meter (A/m).  

The number of atoms which have the specific value of magnetic dipole moment per unit 

volume is the description of magnetization (M) vector. The net magnetic dipole moment of most 

materials is zero due to the randomly orientation of their magnetic dipoles by contrast; magnetic 

dipoles of permanent magnet or the materials which are placed under the external magnetic field 

are aligned equivalently and net magnetic dipole moment has value. The unit of magnetization 

vector is ampere per meter (A/m). Fig 2.6 displays the effect of external magnetic field on non-
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magnetized material (Cheng, 1989).  

 

 

 

 

 

 

 

Different materials respond differently in terms of supporting magnetic field creation 

inside them, when they are placed under same magnetic field strength.  In other words, the 

density of magnetic field lines within a material depends on its magnetic permeability (µ). The 

density of magnetic field lines per unit area is defined by magnetic flux density (B). Magnetic 

flux density value will be reduced by increasing the distance from the magnetic field source. The 

unit of magnetic flux density vector is Tesla (T). Fig 2.7 shows the density of magnetic field lines 

inside the soft iron and the effect of distance on the magnetic flux density (Pamme, 2006). 

 

 

 

 

 

 

 

 

 

 

Fig 2.6. (a) Domains before magnetization. (b) Domain after magnetization 

(Reproduced from http://hyperphysics.phy-astr.gsu.edu/). 

Fig 2.7. (a)The density of magnetic field lines inside the soft iron. (b) The effect of distance on the 

magnetic flux density (Reproduced from Pamme (2006)). 
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Magnets apply magnetic forces (F) on each other as a result of interactions between 

magnetic dipoles of first magnet and magnetic dipoles of second magnet. Attractive and 

repulsive magnetic force can be determined by recognizing the all magnetic dipoles of the first 

and second magnets. The unit of magnetic force vector is Newton (N). 

2.2.2 Magnetic Properties of Materials 

 

Produced effects within materials are different when materials are placed in magnetic 

field. Therefore, materials have been divided into two main groups; namely, materials which are 

not magnetically arranged (i.e. diamagnetic and paramagnetic materials) and materials that are 

magnetically well-ordered (i.e. ferromagnetic, ferrimagnetic and antiferromagnetic materials) 

under certain temperature. Table 2.2 displays the classification of different magnetic materials. 

 

Table  2.2.Classification of different materials. 

 

 

2.2.2.1 Diamagnetic materials:  
 

All materials have a fundamental property which is called diamagnetism. This property is 

related to atomic behavior of a material when it subjected to the magnetic field. The orbital shells 

of diamagnetic materials are filled. For this reason, this type of material does not have the net 

Class Χ dependent on 

temperature 

Hysteresis Example Χ value 

Diamagnetic  No No Water -9.0 ×10
-6

 

Paramagnetic Yes No Aluminum 2.2 ×10
-5

 

Ferromagnetic Yes Yes Iron 3000 

Ferrimagneti Yes Yes MnZn(Fe2O4)2 2500 

Antiferromagnetic Yes Yes Terbium 9.51E
-02
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magnetic moment. When this material is subjected to the magnetic field the molecules of this 

material acquire induced moment which this moment is opposite to the magnetic field. Fig 2.8 

displays the Susceptibility (χ) of these kinds of materials which is negative, the effect of 

temperature on susceptibility values and relationship between induced magnetic flux density and 

applied magnetic field. 

 

 

 

 

 

 

 

 

2.2.2.2 Paramagnetic materials:  

These materials comprising atomic structures with partially field orbital shells. Therefore 

these materials can be magnetized to some extent in the presence of magnetic field. 

Susceptibility of these materials is positive. In addition, increasing the temperature has the 

opposite effect on the susceptibility values. Fig 2.9 shows these features of susceptibility and 

relationship between applied magnetic field and induced magnetic flux density. 

 

 

  

 

Fig 2.9. (a) The positive value of susceptability. (b) The relationship between susceptability and temprature (c) By 

applying magnetic field (H) on these materials the magnetic flux density (B) is more than vacume (dashed line) 

(Reproduced by http://www.irm.umn.edu). 

 

Fig  2.8. (a) Susceptibility of diamagnetic materials is negative.  (b) The value of susceptability is independent of 

tempratures. (c) By applying magnetic field (H) on these materials the magnetic flux density (B) is less than 

vacume (dashed line) (Reproduced from http://www.irm.umn.edu). 
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2.2.2.3 Ferromagnetic materials:  

 

These materials can be magnetized more strongly than paramagnetic materials due to the 

strong interactions of atomic moments when the magnetic field is applied. The magnetic moment 

of atoms in such materials have tendency to become parallel (Fig 2.10.(a)). By applying the 

magnetic field to this material, the magnetic flux density will be in the range of Tesla and the BH 

curve (Fig 2.10.(b)) will not be linear while both diamagnetic and paramagnetic materials have 

magnetic flux density in the range of milliTesla and their BH curves are linear.  

 

 

 

 

 

 

 

 

 

 

Remanence and coercivity are two another features of ferromagnetic materials which 

make them distinct from paramagnetic and diamagnetic materials. Magnetic flux density of these 

materials is zero in the absence of external magnetic field.  By applying magnetic field on the 

material, magnetic flux density will be appearing. Hysteresis loop is a curve which can be used 

for learning about the properties of some materials (Fig 2.11). In this curve, increasing magnetic 

field strength is the cause of growing magnetic flux density until the material reach to the 

Fig 2.10. Ferromagnetic material.  (b) BH curve of ferromagnetic materials. (Reproduced 

by http://www.irm.umn.edu). 

http://en.wikipedia.org/wiki/Remanence
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saturation point (i.e. in this point all domains of material are aligned). When external magnetic 

field is removed, there will be a remaining magnetic flux density which is called romance. 

Magnetic flux density will be zero by increasing the magnetic field in opposite direction 

(coercivity point). Material can be magnetized in opposite direction and reach to the saturation 

point by increasing the magnetic field in opposite direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2.4 Ferrimagnetic materials:  

The atomic structure of these kinds of materials consist of opposite and parallel magnetic 

moments. In addition, magnetic moments of one direction are stronger than the magnetic 

moment in opposite direction (Fig 2.12.(a)). There is wide range of application for these types of 

materials such as, sensors, inductors, motors and so on. 

Figure 2.11. (a) Saturation point. (b)Retentivity point. (c) Coercivity point. (d) Saturation point in 

opposite direction. (e) Retentivity point in opposite direction. (f) Coercivity point in opposite direction 

(Reproduced from http://www.ndt-ed.org). 
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2.2.2.5 Antiferromagnetic materials:  

The magnetic moments of these materials are opposite and parallel. Unlike ferromagnetic 

materials, the magnetic moments of antiferromagnetic materials are equal (Fig 2.12.(b)). 

 

 

 

 

 

 

2.2.3 Types of Magnets 

 

Magnetic field can be generated by magnets. There are two types of magnets based on the 

source of magnetism; namely, Permanent magnet and Temporary magnet. 

2.2.3.1 Permanent Magnet 

 

These types of magnets are made of materials which are magnetized and they can retain 

their magnetism properties. So, there is no control on this type of magnet to increase or reduce 

the magnetic field strength.  In general, for selecting permanent magnet for specific application 

different parameters should be considered such as, material (e.g. neodymium iron boron, 

samarium cobalt and ceramic or ferrite), shape (e.g. disk, cylinder, block, ring and spheres), and 

direction of magnetization (e.g. axially and diametrically magnetization). Colombian method is 

used to calculate the parameters of permanent magnet. 

 

Fig 2.12. (a) Ferrimagnetic material. (b) Antiferromagnetic 

material(Reproduced from http://www.irm.umn.edu). 
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2.2.3.1.1 Ring Magnet 

 

There is wide range of applications for axially and radially magnetized ring permanent 

magnet for instance, sensors and actuators, magnetic bearing and magnetic separating devices. 

Therefore, calculation the magnetic parameters (e.g. magnetic field, magnetic flux density and 

magnetic force) of such structures are very significant. In order to calculate the magnetic force of 

ring at any point of interest, the exact value of magnetic field at that point is required. So far 

variety analytical and numerical methods have been used for calculation the magnetic field 

strength around a ring magnet which is axially or radially magnetized (Ravaud et al., 1989; 

Babic et al., 2008; Ravaud et al., 2009). Fig 2.13 shows axially and radially magnetized ring. 

This study deals with axially magnetized ring permanent magnet. 

 

 

 

 

 

 

 

Cylindrical coordinate is used in order to calculate three components of magnetic field 

(i.e. Hr, Hθ, Hz) around permanent ring magnet. Coulombian method (Equation 2.7) is one of the 

analytical methods for calculation the magnetic parameters of permanent magnet. Fig 2.14 

displays the parameters which were used in this method.  

 

𝐻⃗⃗   , 𝜃, 𝑧    𝐻⃗⃗ +  , 𝜃, 𝑧 + 𝐻⃗⃗    , 𝜃, 𝑧  …………………………………………………………………………………………………………..……..(Equation 2.7) 

 

 

 Fig 2.13. (a) Axially magnetized ring. (b) Radially magnetized ring 

(Reproduced from http://www.kjmagnetics.com) 
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𝐻⃗⃗ +  , 𝜃, 𝑧   
𝜎

4 𝜇0
∫ ∫

𝑃1+𝑀

|𝑃1+𝑀|3

𝑟1=𝑟𝑜𝑢𝑡

𝑟1=𝑟𝑖𝑛
  𝑑  𝑑𝜃

 =  

 =0
………………………………………………………………………………………….(Equation 2.8) 

 

 

𝑃 + 𝑀⃗⃗    −    𝑐𝑜𝑠 𝜃 𝑖𝑟⃗⃗  −   𝑠𝑖𝑛 𝜃 𝑖 ⃗⃗  ⃗ +  𝑧 − ℎ 𝑖𝑘⃗⃗⃗  …………………………………………………………………………………(Equation 2.9) 

 

 

 

𝐻⃗⃗    , 𝜃, 𝑧   
 𝜎

4 𝜇0
∫ ∫

𝑃1 𝑀

|𝑃1 𝑀|3

𝑟1=𝑟𝑜𝑢𝑡

𝑟1=𝑟𝑖𝑛
  𝑑  𝑑𝜃

 =  

 =0
……………………………………………………………………………………... (Equation 2.10) 

 

 

𝑃 − 𝑀⃗⃗    −    cos 𝜃 𝑖𝑟⃗⃗  −   sin 𝜃 𝑖 ⃗⃗  ⃗ +  𝑧 + ℎ 𝑖𝑘⃗⃗⃗   …………………………………………………………………………...….(Equation 2.11) 

 
Definitions: 

σ: Surface magnetic pole density (Tesla) 

μ0: Magnetic permeability of vacuum (Henry per meter)  

 

 

 

 

 

 

 

 

 

 

 

Coulombian method was employed by (Ravaud et al., 1989) for calculating three components of 

magnetic field around ring but this method was not successful for all points (i.e. just for regular 

points) around the ring. The equations of this method were modified by (Babic et al., 2008) in 

order to calculate magnetic field components for any point of interest (i.e. regular and singular 

points) around ring permanent magnet. Radial component (r) of magnetic field can be calculated 

by Equation 2.12. Table 2.3 shows the parameters were used in this equation. 

 

Fig 2.14. Axially magnetized ring permanent magnet at cylindrical coordinate (Reproduced 

from Babic et al. (2008)). 
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𝐻𝑟
⃗⃗ ⃗⃗    , 𝜃, 𝑧    𝐻⃗⃗ +𝑟  , 𝜃, 𝑧 + 𝐻⃗⃗  𝑟  , 𝜃, 𝑧 ………………………………………………………………………………………………………….(Equation 2.12) 

 

 

𝐻+
𝑟  , 𝜃, 𝑧   

𝜎

 𝜇0
∑  −1      

 = 
 

𝑘+
𝑛
√

𝑟𝑛

𝑟
[𝐸 𝑘+

  − (1 −
𝑘+ 

𝑛

 
)𝐾 𝑘+

   ……………………….(Equation 2.13) 

 

 

𝐻 
𝑟  , 𝜃, 𝑧   

 𝜎

 𝜇0
∑  −1      

 = 
 

𝑘 
𝑛
√

𝑟𝑛

𝑟
[𝐸 𝑘 

  − (1 −
𝑘  

𝑛

 
)𝐾 𝑘 

  ] ……………..……….(Equation 2.14) 

 
Definitions: 

 

r1: inner radius and r2: outer radius  

K (k): complete elliptical integral of first kind 

E (k): complete elliptical integral of second kind 

 

Table  2.3. Required parameters for Equation 8. 

 

 

 

 

Azimuthal Component (θ) of this field is zero due to the cylindrical symmetry (Equation 2.15). 

 

𝐻 
⃗⃗⃗⃗  ⃗  , 𝜃, 𝑧    𝐻⃗⃗ +   , 𝜃, 𝑧 + 𝐻⃗⃗     , 𝜃, 𝑧  0…………………………………………………………………………………..………(Equation 2.15) 

 

 

Equation 2.16 is used for calculation the axial component (z) of magnetic field. Table 2.4 defines 

the parameters of equation 2.16.  

 

𝐻𝑧
⃗⃗ ⃗⃗   , 𝜃, 𝑧    𝐻⃗⃗ +𝑧  , 𝜃, 𝑧 + 𝐻⃗⃗  𝑧  , 𝜃, 𝑧 ………………………………………………………………………………………………..…..…….(Equation 2.16) 

 

 

Parameters 

𝒌+𝟐
𝒏  

4   
  +     +  𝑧 − ℎ  

 𝒌 𝟐
𝒏  

4   
  +     + 𝑧 
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𝐻+
𝑧  , 𝜃, 𝑧   

𝜎

  𝜇0
∑  −1      

 = {
𝑘+

𝑛 𝑧   √𝑟 + 𝑧    

√𝑟𝑟𝑛(√𝑟 + 𝑧    +𝑟)
𝐾 𝑘+

           +
 

 
𝑠𝑖𝑔𝑛  𝑧 −

ℎ 𝑠𝑖𝑔𝑛 (√  +  𝑧 − ℎ  −   ) [1 − Λ0 𝜃
+
  , 𝑘

+
  ] +

 

 
𝑠𝑖𝑔𝑛 𝑧 − ℎ [1 −

Λ0 𝜃
+
  , 𝑘

+
  ]} …………………………………………………………………………………………………………………………………………………………………..……..(Equation 2.17) 

 

 

𝐻 
𝑧  , 𝜃, 𝑧   

 𝜎

  𝜇0
∑  −1      

 = {
𝑘 

𝑛𝑧√𝑟 +𝑧 

√𝑟𝑟𝑛(√𝑟 +𝑧 +𝑟)
𝐾 𝑘 

           +
 

 
𝑠𝑖𝑔𝑛  𝑧 𝑠𝑖𝑔𝑛(√  + 𝑧 −

  )[1 − Λ0 𝜃
 
  , 𝑘

 
  ] +

 

 
𝑠𝑖𝑔𝑛 𝑧 [1 − Λ0 𝜃

 
  , 𝑘

 
  ]}………………………………………………………………(Equation 2.18) 

 
Definitions: 

 

ᴨ (h, k): complete elliptical integral of third kind 

ʌ (ɛ, k): Heuman’s Lambda function 

 

 

Table 2.4.The required parameters for Equation 2.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnets apply magnetic forces on each other when they are placed close together.  Based 

on the polarization of each magnet, the applied forces can be attractive or repulsive. Magnetic 

field strength of source magnet (external magnetic field) should be measured firs in order to 

calculate the applied magnetics force on target magnet. There are several methods for 

Parameters 

𝜽+
𝟏  𝑠𝑖𝑛  √

1 − ℎ+
 

1 − 𝑘+ 
 
 

𝜽+
𝟐  𝑠𝑖𝑛  

|𝑧 − ℎ|

√  +  𝑧 − ℎ  +  
 

𝜽 
𝟏  𝑠𝑖𝑛  √

1 − ℎ+
 

1 − 𝑘+ 
 
 

𝜽 
𝟐  𝑠𝑖𝑛  

|𝑧|

√  + 𝑧 +  
 

𝒉+
𝟏  

  

 + √𝑧 +  𝑧 − ℎ  
  𝒉+

𝟐  
  

 − √𝑧 +  𝑧 − ℎ  
 

𝒉 
𝟏  

  

 + √𝑧 +   
  𝒉 

𝟐  
  

 − √𝑧 +   
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computation the magnetic force comprising, Surface integration (Maxwell’s Stress Tensor 

approach), volume integration (Virtual Work Method) and finally surface and volume integration 

(Equivalent Source Method) (Delfino et al., 2001).  Among all of these methods, equivalent 

source method has got a lot of interests. This method is based on replacing of permanent magnet 

with surface and volume distribution of currents, dipoles or magnetic charges. Then, magnetic 

force of each element is calculated. The total force is the result of summation the calculated 

magnetic force of each element. The Equations 2.19, 2.20 and 2.21 represent the magnetic force 

which is applied on target magnet by replacing magnets with surface and volume distribution of 

currents, dipole and magnetic charges respectively. 

 

𝐹  ∫ 𝐽𝑚𝑣 × 𝐵𝑒𝑥 𝑑𝛺 + ∮ 𝐽𝑚 × 𝐵𝑒𝑥 𝑑𝛺
 

𝛴

 

𝛺
…………………………………………………………………………………………..………………….(Equation 2.19) 

 

𝐹  ∫ 𝑀 𝛻𝐻𝑑𝛺 +
 

 𝜇0
∮  𝑀 𝑛  𝑑𝛺

 

𝛴

 

𝛺
 ………………………………………………………………………………………..…………………………….. (Equation 2.20) 

 

𝐹  ∫  𝑚𝐻𝑒𝑥 𝑑𝛺 + ∮ 𝜎𝑚𝐻𝑒𝑥 𝑑𝑆
 

𝛴

 

𝛺
………………………………………………………………………………………..………………………………………(Equation 2.21) 

Definitions: 

 

Jmv: Volume density of current      𝐽𝑚𝑣  1  0∇ × 𝑀 

Jms: Surface density of current      𝐽𝑚  1  0𝑀 × 𝑛 

ρm: Volume density of magnetic charges       𝑚  −∇ 𝑀 

σm: Surface density of magnetic charges      𝜎𝑚  𝑀 𝑛 

Bext: External magnetic flux density 

Hext: External magnetic field 

M: Magnetization 

Ω: Volume occupied by permanent magnet 

Σ: External surface 
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Equivalent surface method with magnetic dipole is one of the common methods which 

are used for calculation magnetic force between permanent magnets. In most of studies this 

method has been used for calculation the levitation force between permanent magnets. This 

method was employed by (Delinchant et al., 2011) to calculate the magnetic force between ring 

permanent magnet and other shapes of permanent magnets. The only volume contribution of 

Equation 2.12 can be used in the case of rigid, isotropic and linear magnets. (Alqadi et al., 2008) 

calculated the levitation force between cylinder superconductor and ring permanent magnet. 

Furthermore, this method was utilized for calculation the magnetic force for MEMS applications 

such as micro valves (Williams et al., 2008; Rakotoarison, H. L., 2006). Moreover, many studies 

have been done which they considered permanent magnet as magnetic charges in order to 

calculate the magnetic force between two ring permanent magnets. By contrast the magnetic 

dipole methods, only surface contribution of Equation 13 can be used for rigid, isotropic and 

linear magnets. (Ravaud et al., 2009) used this method for calculation the magnetic force 

between two axially magnetized ring permanent magnets for bearing applications. In addition, 

axially magnetized permanent ring magnets which act as rotor and stator (inner ring as a rotor 

and outer ring as a stator) can be used for many other applications such as turbo molecular 

pumps. The (Bekinal et al., 2012) deals with the calculation of the force which is applied from 

outer ring on the inner ring when inner ring moves. While (Ravaud et al., 2010) utilized this 

method to calculate magnetic force between axially ring permanent magnet and radially ring 

permanent magnet.  

2.2.3.2 Temporary Magnet 

 

The principle of this type of magnets is based on transmission of electrical current 

through the wire which leads to produce electromagnetic field around wire. The magnetic field of 
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this type of electromagnets can be controlled by changing the current. The electromagnets are 

classified based on different parameters such as, winding shape (e.g. solenoid coil, toroid coil 

and etc.), geometry of core (e.g. “E” core, “I” core, planer core, “U” core, ring core and etc.), 

materials of core (e.g. ferromagnetic or ferromagnetic materials) and the polarization of 

electromagnets (e.g. axially magnetization, diametrically magnetization) . Ampere’s law is used 

in order to calculate the magnetic parameters of an electromagnet. 

2.2.3.2.1 Solenoid 

  

 A solenoid is a type of electromagnet that it acts as a permanent magnet when an 

electrical current is passed through it. A solenoid consists of a long straight coil of wire which 

can generate a nearly uniform magnetic field in a volume of space. The strength of generated 

magnetic field can be increased by the addition of iron core at the center of solenoid. Fig 2.15 

shows the magnetic field lines around a solenoid without core and solenoid with core. Solenoids 

have an enormous number of medical applications such as medical analysis of fluids, blood 

analysis, medical transfusion, medical sterilization, medical ventilation, medical laser, medical 

imaging and etc.  

 

 

 

(a) (b) 

Fig 2.15. (a) Magnetic field lines of solenoid without core. (b) Magnetic field lines of solenoid with metallic core. 

(Reproduced from http://etc.usf.edu). 
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Magnetic field of a solenoid which has length “L” and “N” current loops of radius “a” is 

calculated at the point of “P” in the solenoid axis by Equation 2.22 (Cheng, 1989). Fig 2.16 

shows different parameters of following equation. 

 

𝐵  
𝜇0𝐼𝑁

 𝐿
∫  − sin 𝛽 𝑑𝛽  

𝜇0𝐼𝑁

 𝐿
 cos 𝛽 − cos 𝛽  

𝛽 

𝛽1
………………………………………………………………..…………………. (Equation 2.22) 

 

 

 

 

 

 

 

 

 

 

 

According to Fig 2.16, when a permanent magnet or an electromagnet is placed at the 

point of “P”, the solenoid applies magnetic force on the magnet. Variety methods are used for 

calculation the applied magnetic force on magnet by solenoid such as the filament method, the 

shell method, an integral method, the integral method of Babic et al which are employed for 

calculation the applied force on cylindrical permanent magnet (Robertson et al., 2012). Equation 

2.23 is employed for calculation the applied magnetic force on cylindrical magnet by solenoid. 

Fig 2.17 illustrates the parameters of following equation. 

 

Fig 2.16. Different parameters of Equation 2.14 (Reproduced form 

http://physics.aalto.fi/pub/kurssit). 
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𝐹𝑧3  
𝐵𝑟𝑁𝐼

𝑙𝑐[ 𝑐 𝑟𝑐]
∫ ∫ ∑ [𝑒 𝑚6 𝑧3]𝑑  𝑑𝑧 

{ ,  }
𝑒1

 𝑐

𝑟𝑐

𝑙𝑐  

 𝑙𝑐  
……………………………………………………………………..…………………. (Equation 2.23) 

Definitions: 

Br: Magnet remanence  

N: Coil turn  

I: Coil current  

lc: Coil length  

Rc: Coil outer radius  

rc: Coil inner radius  

 

 𝑧3  [1 −
 

 
𝑚 ]𝐾 𝑚  − 𝐸 𝑚   ………………………………………….……………………………………………………………………..…………………. (Equation 2.24) 

 

𝑚  
4  𝑟 

𝑚 
  ………………………………………………………………………………….…………………………………………………………………………………..…………………. (Equation 2.25) 

 

𝑚6
  [ 𝑚 +   ]

 + [𝑧 +
 

 
𝑒  𝑚 − 𝑧 ]

 
……………………………………..………………………………………………………………..…………………. (Equation 2.26) 

 

 

 

 

 

(a) 
(b) 

Fig 2.17.  (a) Three dimensional sketch of solenoid and cylindrical magnet. (b) This geometry describe the terms of 

Equation 2.16 (Reproduced from Robertson et al. (2012)). 
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2.2.4 Magnetic Particles 

 

Magnetic particles are valuable materials which can be easily manufactured in a wide 

range of size from nanometer to micrometer (Aytur, 2007). Magnetic particles are used for a 

wide range of medical applications such as immunoassay, separation, magnetic resonance 

magnetic resonance imaging (MRI), drug delivery systems and etc. Different types of 

biomolecules such as antigens, antibodies, and DNA strands can be easily attached to these 

particles due to their specific surface functionalization (Fig 2.18). Spherical shape and large 

surface area are other important properties of these particles which are desired in mass 

transferring (Pamme, 2006).  

 

 

 

 

 

 

 

 

 

2.2.4.1 Force on Magnetic Particles 

 

 Magnetic force is applied on magnetic particles when they are placed inside a magnetic 

field. This force depends on strength and gradient of the applied magnetic field, the volume of 

the particles and the difference in magnetic susceptibilities of particles and their medium. 

Equation 2.27 is utilized for calculation the applied force on magnetic particles (Gijs, 2004). 

Fig 2.18. Biomolecules such as antibodies, antigens, DNA strand can be attached to the 

surface of magnetic particles for biomedical applications (Reproduced from Pamme, 

(2006)). 
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𝐹  
𝑉  𝑥

𝜇0
 𝐵 ∇ 𝐵 …………………………………………………………………………………………………...………………………………………………………………..……..(Equation 2.27) 

Definition: 

V: Volume of particles  

∆x: The difference in magnetic susceptibilities 

(B.∇)B: Strength and gradient of magnetic particles 

 

2.3 Combination of Microfluidics and Magnetism 

 

 In recent years the microfluidics and the magnetism have been combined. Combination 

of microfluidics and magnetism is very useful especially for medical applications. Two 

approaches are used for controlling the magnetic particles inside the microfluidic systems. 

Firstly, permanent magnets or electromagnets which they are used outside of the microfluidic 

systems. Secondly, micro fabricated permanent magnets or electromagnets which they are used 

inside the microfluidic systems (Pamme, 2006). Magnetic particles are controlled for many 

purposes such as trapping of particles within a microfluidic chamber, transporting of magnetic 

particles between reagents, washing and detection of magnetic particles and so on.  

2.3.1 Trapping of Magnetic Particles  

 

Trapping of magnetic particles is useful for cell sorting and cell identification 

applications. For cell sorting or cell identification applications, cells are labeled by magnetic 

particles.  In order to trap magnetic particles in a specific chamber of microfluidic platform, saw-

tooth shaped permanent magnets or electromagnetic arrays which they are turned on alternatively 

are used.  By employing these types of magnets, magnetic particles are trapped at locations with 

maximum magnetic field. As a final step, target cells are sorted and identified from background 

population (Wirix et al., 2005; Lee et al., 2001; Burger et al., 2012). 
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 2.3.2 Transporting of Magnetic Particles  

 

Magnetic particles are transported between different chambers of a microfluidic platform 

for different applications such as DNA separation, mRNA purification and so on. In this method 

biomolecules are labeled with magnetic particles and they moved between different reagents by 

employing variety shapes of permanent magnets or electromagnetic arrays. Shapes of permanent 

magnets and numbers of electromagnetic arrays are chosen based on the shape of microfluidic 

platforms. Strohmeier et al (2013) presented a magnetic platform for manipulation of magnetic 

particles within a centrifugal microfluidic platform. This platform was designed and fabricated 

by permanent magnet for transporting magnetic particles between three chambers for binding, 

washing and elution of DNA. In this method, spinning speed of centrifugal microfluidic platform 

should be zero during the manipulation of magnetic particles. 

2.3.3 Detection of Magnetic Particles 

 

Bimolecular detection assays are very challenging issues for diagnosis purposes. 

Magnetic platform can be used for reduce the time-consuming problem of biological bead-based 

assays in detection of biomolecules. Bruls et al (2009) described using magnetic nanoparticles in 

stationary microfluidic system for immunoassays and detection of these particles by employing 

optomagnetic technology. This method is based on actuating magnetic particles by using two 

electromagnetic at the top and bottom of the microfluidic system.  
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Chapter  3.   METHODOLOGY 

 

The procedure to design and development of an electromagnetic platform for 

manipulation magnetic particles is discussed in the following sections. This platform can be used 

for several usages such as, washing and detecting steps in sandwich immunoassays and 

purification of biomolecules from background populations (e.g. DNA purification). This part of 

study is divided into six divisions; designing the microfluidic disc platform by AutoCAD 

software, finding the best design of electromagnetic platform to produce desired magnetic field 

pattern by COMSOL software, calculating the forces which act on magnetic particles by 

MATLAB software, changing the variables of the platform and measuring the values of produced 

magnetic flux density over limited space of microfluidic chamber (COMSOL), obtaining the 

general magnetic flux density equation for this platform by MATLAB, and finally acquiring 

appropriate parameters of electromagnetic platform to generate desired force. The following 

block diagram (Fig 3.1) shows the procedures of this study. Although the mentioned procedures 

have been done for DNA applications, this platform can be designed easily for other applications 

by obtaining the general magnetic force equation. 
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3.1 Design the Microfluidic Disc Platform 

 

Microfluidic disc platform can be designed in different forms based on its application. 

The application and design of LOD platform should be specified in order to design 

electromagnetic platform for manipulation of magnetic particles inside the chambers. 

Manipulation of magnetic particle can be done for many purposes such as washing, detection, 

purification, separation and so on. In this study AutoCAD software was used for drawing the CD 

design for DNA purification. 

Fig 3.1. Block diagram shows the procedures of design electromagnetic platform. 

 

 
AutoCAD  

Software 

 
COMSOL  

Software 

 

Theoretical 

Calculation 

 
COMSOL 

 Software 

MATLAB  

Software 

Calculation of Fs,  Fc and Fm , Fm >  Fs + Fc 

Calculation of 𝐵 and 𝛻 𝐵, 𝐵 𝛻 𝐵  
𝐹𝑚𝜇0

𝑉 𝑥
 

Design of centrifugal microfluidic CD 

Determination of shape and dimensions of 

electromagnetic platform  

Determination of biological assay 

Definition of desired properties related to magnetic field 

pattern 

Magnetic field simulation of electromagnetic platform by 

manipulating of two parameter (M and A) 

Approximate the magnetic field function of 

electromagnetic platform based on “M” and “A” 

Determining the appropriate range of “M” and “A” values 

for generating required 𝐵 𝛻 𝐵  
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 Magnetic particles act as mobile solid support in some biological assays (e.g. DNA 

extraction and mRNA purification). These magnetic particles play fundamental role in such 

assays by displacing between different reagents. DNA purification is an example of these kinds 

of assays. Hence, complex set-up and design for CD is required in order to transportation of fluid 

and manipulation magnetic particles between different chambers. The complexity of the CD 

design can be reduced by applying suitable external magnetic field on CD. This magnetic field 

helps to move particles from one chamber to another one easily. Therefore, DNA purification 

was implemented on CD with three chambers. Design of CD for this application consists of 

binding chamber, washing chamber, and elution chamber (Strohmeier et al., 2013). Fig 3.2 

displays the design of CD for DNA purification. In this study following design was used for 

displaying the movement of magnetic particles inside the chambers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2. Design of CD for DNA purification (Reproduced from Strohmeier et al. (2013)). 
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3.2 Developing the Magnetic Field Pattern 

 

This study aims to design an electromagnetic platform which produce desired magnetic 

field pattern over centrifugal microfluidic CD. As mentioned in Chapter 2, rotational motion of 

microfluidic CD provides many advantages to perform biological assays. Therefore, 

manipulating of magnetic particles during the rotation of CD plays a key role in time-reducing of 

process and integration of assay. On the other hand, CD platforms are designed in standard size 

(limited size) with different shapes of chambers and channels to perform sequential steps of 

bioassay. So, the chambers are very close together and magnetic particles should be controlled 

very accurately. Magnetic particles can be controlled within the chambers accurately during the 

rotation of CD by applying desired magnetic field pattern. There are three main objectives in 

order to get desired pattern. Firstly, the magnetic field pattern should be symmetry relative to z-

axis in cylindrical coordinate. Secondly, the maximum values of magnetic field pattern should be 

located at the target places (chambers that contain magnetic particles) over the CD. Finally, the 

magnetic field pattern should be constant for the points which have constant distance from centre 

of coordinate.  

Ring permanent magnet is proper option as a magnetic platform to provide these three 

objectives. The ring shape of magnet produces symmetric magnetic field pattern relative to z-

axis. Additionally, axially magnetized rings produce maximum magnetic field over the surface of 

magnet and this magnetic field pattern is constant for any points with specific distance from 

centre of coordinate as well (Fig 3.3).  Although permanent ring magnet provides many benefits, 

the magnetic field is not controllable.  
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In this study electromagnetic platform has been employed to overcome this problem. 

Consequently, this study has attempts to design electromagnetic platform which is switched 

between “on” and “off” positions. In “on” positions it produces magnetic field pattern same as 

ring permanent magnet while in “off” positions it does not produce magnetic field.  COMSOL 

software was used for simulation the magnetic field pattern around the electromagnetic platform. 

3.2.1 Electromagnetic Platform (Symmetric Magnetic Field Pattern) 

 

There are several reasons why symmetric magnetic field pattern is necessary. First of all, 

CD obviously has the round shape (i.e. it is axially symmetric). In the second place, microfluidic 

CD is divided into several partitions for performing several assays simultaneously. So, 

symmetric magnetic field should be applied on the CD to affects all partitions identically. In 

addition, the magnetic field should be applied on the small area of each partition. For these 

reasons, ring-shaped electromagnetic platform has been used for generating symmetric magnetic 

field pattern. Dimensions of an electromagnetic ring platform are based on CD design and its 

application. On the other hand, the efficacy of magnetic platform on magnetic particles depends 

on the distance between them. Table 3.1 demonstrates the dimensions of ring electromagnetic 

platform which are designed for microfluidic CD for DNA purification. 

 

 

Fig 3.3. Magnetic field lines around ring permanent magnet. 



 

41 

 

 

Table 3.1.Dimensions of electromagnetic platform. 

 

 

 

 

 

 

 

 

 

3.2.2 Electromagnetic Platform (Maximum Values of Magnetic Field Pattern) 

 
Imagine electromagnetic platform which is located at the centre of Cartesian coordinates. 

The maximum values of magnetic field have been distributed in magnetic field pattern along “x” 

direction. The location of maximum values on this pattern plays fundamental role in controlling 

magnetic particles. Therefore, magnetic platform should be designed with specific features to 

produce desired magnetic field pattern (i.e. the pattern which have maximum values at target 

places). The locations of maximum values can be determined based on the CD design and its 

application. Moreover, the maximum values of magnetic field should be applied on the small 

areas of CD (specific chambers) due to the chambers proximity to each other.  

The CD for declared application (i.e. transporting of magnetic particles for DNA 

purification) require the maximum values of magnetic field above the electromagnetic ring. In 

other word, the magnetic field pattern along “x” direction should have two maximum values at 

the overhead of ring. Fig 3.4 displays the desired location of maximum magnetic field along “x” 

direction. 

 

Application DNA Purification 

Inner Radius (Rin) 
30(mm) 

Outer Radius (Rout) 
45(mm) 

Height (h)  19(mm) 

Distance to magnetic particles (d) 10(mm) 
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Once the desired locations for peak of pattern were determined, different designs of 

solenoid electromagnet (simple solenoid and combination of solenoids) were simulated to meet 

the desired pattern. Solenoid was chosen for simulation due to its ability to produce axial 

magnetic field. According to the magnetic field equation of solenoid, simple solenoid with air 

core produces maximum value of magnetic field at the centre. Fig 3.5.a displays the simple 

solenoid with air core. Thus, the following factors have been applied on the simple solenoid to 

disperse the maximum value from centre toward the edges. 

- Using the combination of solenoid in circular configuration.  

- Using material with permeability higher than air as a core of solenoid. 

The proposed electromagnetic platform is shown in Fig 3.5.b. 

 

 

Fig  3.4. Desired locations of maximum magnetic field along “x” direction. 
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3.2.3 Electromagnetic Platform (Nearly Homogenous Magnetic Field Pattern) 

 

In this section another type of magnetic field pattern is considered. This pattern is related 

to the magnetic field value of points which are located with specific distance directly above the 

electromagnetic platform in a circular shape.  The homogeneity characteristic of this magnetic 

field pattern is another objective of the platform design. As discussed earlier about this 

parameter, the rotational motion of CD provides many advantages for performing bioassays. 

Additionally, CD is used for performing several assays simultaneously. Hence, magnetic field 

should be same for all points which have specific radial distance from the centre of platform (Fig 

3.6). In this condition, during the rotation of CD, all target chambers experience same magnetic 

field. 

Fig 3.5. (a) Simple solenoid with air core (red color indicates maximum 

magnetic field strength around solenoid). (b) Electromagnetic platform 

which constructed from combination of solenoids (4 solenoids). 
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In proposed electromagnetic platform (combination of solenoids in circular 

configuration), the homogeneity is affected by number of solenoids which are used. Number of 

solenoids specifies the distance between two solenoids. By using large number of solenoid in 

electromagnetic platform the homogeneity of magnetic field pattern will be increased. In order to 

calculate the number of solenoids which can be used in specific area of platform (circular 

configuration) the following procedures has been used (Fig 3.7). Firstly, the diameter of each 

solenoid was specified based on the width of ring platform. Secondly, the area of solenoid and 

the area of ring were calculated. Thirdly, the area of ring was divided by the area of solenoid and 

the result can approximately show the maximum number of solenoids which can be used in the 

ring platform.  

For this application, according to Table 3.1, width of ring platform for a CD is 13 mm, so 

the radius of solenoid should be 6.5mm. As a result, the exact number of solenoids which can be 

used in circular configuration is 16. Finally the location of each solenoid should be specified in 

“XY” plane by employing trigonometric functions.  

Fig 3.6. The magnetic field pattern should be homogenous for black 

points which have specific distance from center of platform. 



 

45 

 

𝑦   𝑠𝑖𝑛 𝜃 , 𝑥    𝑐𝑜𝑠𝜃…………………………………………..………………………..………………………..……………………………………………..……………………..………..(Equation 3.1) 

Definition: 

 

The distance of solenoid from centre of ring (r):       +
 𝑜𝑢𝑡  𝑖𝑛

 
………………………..……………………….………………(Equation 3.2) 

    
Θ: the angle of each solenoid 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Calculating the Applied Forces on Magnetic Particles 

 

 Force should be applied on magnetic particles to transfer them from one chamber into 

another one. So, calculation of required magnetic force is essential. The required magnetic force 

for moving magnetic particles should be bigger than the summation of other forces which act on 

magnetic particles in opposite direction of movement. This section deals with the calculation of 

applied forces on magnetic particles. All calculations have been done by MATLAB software. 

 

 

Fig 3.7. The number of solenoid which is used to create homogeneity inside the electromagnetic platform. 
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 3.3.1Centrifugal Force 

 

 This force is due to the rotational speed of microfluidic CD. In fact, when CD is rotating 

with specific rotational speed, all points of CD will experience the centrifugal force. As 

explained in microfluidic section, this force is proportional with the density of magnetic 

particles, the radial distance of magnetic particles from the centre of CD and rotational speed of 

CD. Table 3.2 shows the required information about the magnetic particles and conditions of 

rotating CD for different steps of DNA purification (Strohmeier et al., 2013). 

 

Table 3.2.The information about the magnetic particles and condition of rotating CD                                           

(Reproduced from Strohmeier et al.(2013)). 

 

 

 

 

 

 

 

 

 

 

The centrifugal force density is calculated by Equation 3.3. In order to calculate the 

centrifugal force, the density of magnetic particles should be multiplied to centrifugal force 

density equation. 

 

𝐹𝐶𝑒  𝑟 𝑓𝑢𝑔𝑒  𝑉𝑚𝑎𝑔 𝑒    𝑝𝑎𝑟   𝑙𝑒 ×  ×   ×   1  6 𝑒 3 𝑁  1  6   𝑚𝑁 …………….. (Equation 3.3) 

Parameters Value 

Rotational Speed (w) 20.94(rad/sec) 

Diameter of magnetic sphere (D) 1.05e
-6

(m) 

Density of magnetic sphere (dsphere) 1.8 (g/cm
3
) 

Volume of magnetic particles (Vmagnetic partticles) 4e-5 (L) 

Mass of Volume particles(m) 7.2e
-6

 (Kg) 

Density of volume particles (ρ) 1.8 (Kg/L) 

Radial distance form centre of CD(r) 0.04(m) 
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3.3.2 Surface Tension Force 

 

Another type of force which should be considered is surface tension force. Actually 

magnetic particles are in liquid phase when they are in binding chamber and they should cross 

from the gas phase to get to another chamber (washing chamber). Surface tension force is a 

result of transporting magnetic particles from liquid phase to gas phase. Table 3.3 shows required 

parameters for calculation this force (Strohmeier et al., 2013). 

 

Table 3.3.  The required information for calculating surface tension force.                                                               

(Reproduced form Strohmeier et al. (2013)). 

 

 

 

 

 

 

 

 

 

 

The following calculation was done based on the information of Table 3.3 and the 

Equation 3.4 is used to calculate surface tension force. 

 

𝐹 𝑢𝑟𝑓𝑎 𝑒  𝑒   𝑜  6  3 × 𝜋  3 × 𝜎𝑙 𝑞𝑢  × 𝑉𝑚𝑎𝑔 𝑒    𝑝𝑎𝑟   𝑙𝑒 
  3  0 448𝑒 3 𝑁  0 448  𝑚𝑁  

…………………………………………..………………………..………………………..………………………..………………………..………………………..………………………..………………………..………………………(Equation 3.4) 

 

 

Parameters Value 

Susceptibility of magnetic particles(Xmag) 0.29  

Susceptibility of liquid (water) (Xliquid) 9e
-63132

 

Permeability of vacuum (μ0) 1.25e
-6

(NA
2
) 

Surface tension of liquid(water) (σliquid) 72.5(mNm
-1

) 

Volume of magnetic particles (Vmagnetic particles) 4(mm
3
) 
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The total forces which apply in the opposite direction of movement magnetic particles 

were calculated by summation centrifugal force and surface tension force. The total value of 

applied force is 1.71 mN. Fig 3.8 illustrates directions of centrifugal force, surface tension force 

and magnetic force which are applied on magnetic particles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Magnetic Force 

 

In order to transfer magnetic particles from binding chambers toward the electromagnetic 

platform, magnetic force should overcome the summation of centrifugal force and surface 

tension force. So, magnetic force should be bigger than 1.71mN. Equation 3.5 shows that the 

value of magnetic force is related to the volume of magnetic particles, susceptibility of magnetic 

particles, susceptibility of background liquid, and permeability of vacuum. The values of all 

these parameters have been specified in Table 3.3. In addition magnetic force is related to the 

magnitude and gradient of magnetic flux density at the point of magnetic particles. 

Fig 3.8. The directions of forces which act on the magnetic sphere. 

Magnetic 

Sphere Fcentrifuge 

Fsurface tension 

Fmagnetic 

z 

Y 

 X 
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𝐹𝑚𝑎𝑔  
𝑉𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑋 𝑎𝑔 𝑋𝑙𝑖𝑞𝑢𝑖𝑑)

𝜇0
 (𝑔 𝑎𝑑  𝐵 ) 𝐵 ………………………..………………………..………………………..…………………………………….. (Equation 3.5) 

Definition: 

Bxyz: magnetic flux density  

(𝑔 𝑎𝑑  𝐵 ) 𝐵  

  𝐵𝑥
𝜕𝐵𝑥

𝜕𝑥
𝐵𝑦

𝜕𝐵𝑥

𝜕𝑦
𝐵𝑧

𝜕𝐵𝑥

𝜕𝑧

 𝐵𝑥
𝜕𝐵𝑦

𝜕𝑥
𝐵𝑦

𝜕𝐵𝑦

𝜕𝑦
𝐵𝑧

𝜕𝐵𝑦

𝜕𝑧

𝐵𝑥
𝜕𝐵𝑧

𝜕𝑥
𝐵𝑦

𝜕𝐵𝑧

𝜕𝑦
𝐵𝑧

𝜕𝐵𝑧

𝜕𝑧

  ………………………………………….. ……………………….. ……………………….. …………………(Equation 3.6) 

Definition: 

(Grad (B)) xyz: gradient of magnetic flux density 

 

The range of (grad (B)).B can be determined by employing the specified parameters in 

magnetic force equation. Therefore, the value of (grad (B)).B should be at least 1.84 T. 

According to Fig 3.8, the magnetic particles should move toward the centre of CD (radial 

direction in cylindrical coordinate). On the other hand, COMSOL software calculates the 

magnetic flux density in Cartesian coordinate. Hence, the gradient of magnetic flux density was 

calculated for a point on CD which in this point the radial direction of cylindrical coordinate is 

parallel with y direction of Cartesian coordinate. Although CD is rotating and the point is 

displaced, the gradient of magnetic flux density keeps constant due to the homogeneity of the 

electromagnetic platform. Thus, (grad (B)).B can be calculated as following in order to reduce 

the complexity of calculation (Gijs, 2004). 

 

(𝑔 𝑎𝑑  𝐵 ) 𝐵  𝐵𝑥
𝜕𝐵𝑦

𝜕𝑥
+ 𝐵𝑦

𝜕𝐵𝑦

𝜕𝑦
+ 𝐵𝑧

𝜕𝐵𝑦

𝜕𝑧
 1 84 𝑇  ………………………..………………………..……………………………………(Equation 3.7)  
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3.4 Measuring the Magnetic Flux Density  

 

 Different designs of electromagnetic platform produce the different magnetic flux density 

at the location of magnetic particles. The design of an electromagnetic platform depends on 

several parameters such as dimension of platform, the material of platform, the number of 

solenoids which are used in the platform structure, the current of solenoids, the number of turns 

in solenoid, distance of particle from platform and so on. Some of these parameters must be kept 

constant and some of them can be varied in specific range. Hence, the main objective of this part 

is investigation the effect of each parameter on produced magnetic flux density and obtaining the 

design which can produce 1.84T or more magnetic flux density at the target point.  

3.4.1 Dimensions of Electromagnetic Platform 

 

The size of electromagnetic platform has effect on the produced magnetic flux density. In 

fact, bigger electromagnetic platform provides more spaces to increase the number of turns in 

each solenoid. As a result magnetic flux density will be amplified around platform. The size of 

inner radius and outer radius of platform should be kept constant based on the design of 

microfluidic CD. Height of platform is only variable parameter in platform. Nevertheless, 

miniaturization is one of the main purposes of “point of care" devices and it limits the size of 

electromagnetic platform. Therefore, in this study the dimension of platform was considered as a 

constant parameter (inner radius=24.5mm, outer radius=37.5mm and height=15mm). Fig 3.9 

displays the dimension of electromagnetic platform. 
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3.4.2 The Distance between Magnetic Particles and Electromagnetic Platform 

 

 Magnetic flux density decreases extremely by increasing the distance between magnetic 

particles and the surface of electromagnetic platform. The magnetic particles should be located at 

particular axial distance from platform due to the fluctuation of microfluidic CD during the 

rotation. On the other hand, based on the design of CD magnetic particles are placed at specific 

radial distance from platform. For these reasons changing these parameters is impossible. In this 

design the axial distance is 6 mm and the radial distance is 2.5 mm (Fig 3.9).   

3.4.3 Material of electromagnetic platform 

 

  There are variety types of materials which can be used as core of electromagnetic 

platform. Relative permeability is one of the parameters which should be considered for selecting 

the material. Materials with high relative permeability have the ability to support magnetic flux 

formation inside the platform. Therefore, material of core is appropriate parameters to obtain the 

desired magnetic flux density at a point. For selecting best material as core of platform, the effect 

of each material on produced magnetic flux density should be investigated. COMSOL software 

was employed to measure the magnitude and gradient of magnetic flux density when the material 

Fig  3.9. Dimension of an electromagnetic platform and the distance of 

magnetic particles from platform. 



 

52 

 

of core is changed. Table 3.4 shows several materials with different relative permeability and 

electrical conductivity which were used in this study. The relative permeability of these material 

is higher than 1.0 (relative permeability of air). 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 Ampere Turns of Coils 

 

  As mentioned earlier, the proposed electromagnetic platform consists of 16 solenoids in 

its structure. In order to preserve the homogeneity of electromagnetic platform, all solenoids 

should generate equal magnetic flux density at the point of interest. So, the features of all 

solenoids should be similar. These features consist of the resistance of wire and current which 

pass through the wire. The resistance of wire depends on three parameters; resistivity, length and 

cross sectional area of wire. So, the material, length and diameter of wires in all solenoids must 

be selected equally. Another parameter is current. For passing same current through all solenoids, 

both parallel and series connection can be used to connect solenoids to the source of voltage. In 

this study, all solenoids were connected to each other in parallel.  

By increasing the current, magnetic flux density of platform will be increased 

dramatically. However, this platform has been designed for “point of care” testing and portable 

devices and there is limitation for the usable range of current. So, understanding the value of the 

Material 
Relative 

permeability μ/μ0 

Electrical conductivity 

σ(S/m) at 20° C 

Nickel 650 1.43e7 

Mild steel 2000 6.99e6 

Iron(99.8% pure) 4000 1.00e7 

Silicon iron 8000 6.96e6 

Mu-metal 100000 1.74e6 

Purified iron (99.95%) 200000 1.029e7 

Table 3.4. Relative permeability and electrical conductivity of materials. 
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current which produce the desired magnetic flux density is very significant. The selected current 

for this platform are (50 mA, 150 mA, 250mA, 350 mA, 450 mA, 550 mA, 650 mA, 750 mA, 

850 mA and 950 mA).  

On the other hand, number of turns in coils play important role in the magnitude of 

magnetic flux density. Specific number of turns can be used in limited area. Therefore number of 

turns depends on the size of wire. And size of wire is selected based on current.  American wire 

gauge (AWG) table has been used to select appropriate size of wire for coils. Table 3.5 indicates 

a part of this table. Twice of maximum current should be supported by selected size of wire. In 

this study the maximum current is 0.95A, hence, the size of wire should support 2 A. 

 

Table 3.5. American wire gauge (AWG) to select the size of wire (Reproduced from http://www.powerstream.com). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AWG 

Diameter Area 
Copper 

Fusing current, copper 

 resistance 

(mm) (mm
2
) 

(Ω/km)  

(mΩ/m) ~10 s 1 s 32 ms 

22 0.644 0.326 52.96 41 A 94 A 525 A 

23 0.573 0.258 66.79 35 A 74 A 416 A 

24 0.511 0.205 84.22 29 A 59 A 330 A 

25 0.455 0.162 106.2 24 A 47 A 262 A 

26 0.405 0.129 133.9 20 A 37 A 208 A 

27 0.361 0.102 168.9 17 A 30 A 165 A 

28 0.321 0.081 212.9 14 A 23 A 131 A 

29 0.286 0.0642 268.5 12A 19 A 104 A 

30 0.255 0.0509 338.6 10 A 15 A 83 A 

31 0.227 0.0404 426.9 9 A 12A 65 A 

32 0.202 0.032 538.3 7 A 9A 52 A 

33 0.18 0.0254 678.8 6 A 7A 41 A 

34 0.16 0.0201 856 5 A 6A 33 A 

35 0.143 0.016 1079 4 A 5A 26 A 

36 0.127 0.0127 1361 4 A 4A 20 A 

37 0.113 0.01 1716 3 A 3A 16 A 

38 0.101 0.00797 2164 3 A 2A 13 A 

39 0.0897 0.00632 2729 2 A 2A 10A 

40 0.0799 0.00501 3441 1 A 2A 8A 

http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Ohm_(unit)
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On the other hand, duty cycle of solenoid play key role in selecting size of wire. If the 

time of applying current on wire was long the bigger size of wire should be selected to prevent 

the melting of wire. In this study solenoids are on for 10 second. Based on mentioned 

parameters, all sizes of wire is appropriate for this study except AWG40. Number of turns 

depends on the size of solenoid and size of wire. For an instance, the number of turns is 156 for 

each solenoid when AWG 24 (diameter=0.205mm) is selected for solenoid with inner radius= 2.6 

mm, outer radius=5.8mm and h=13mm. In an attempt to find the appropriate value of ampere 

turns, COMSOL software was used. The proposed electromagnetic platform was simulated for 

mentioned currents and number of turns. Then, the magnitude and gradient of magnetic flux 

density was obtained. In fact the effect of ampere turn was investigated on the produced 

magnetic flux density.  

3.4.5 Simulation by COMSOL Software 

 

The effects of using different types of materials and also using different ampere turns in 

producing magnetic flux density at point of interest above electromagnetic platform were 

investigated by COMSOL software. Magnetic flux density was calculated by AC/DC physic in 

three dimension space. In addition, stationary domain was selected as a type of study due to the 

using DC current on solenoids. The simulation of electromagnetic platform was repeated 60 

times for six different materials and ten different ampere turn values. In each simulation, the 

effect of specific type of material with specific ampere turn value was surveyed. COMSOL 

software uses the meshing method (i.e. finite element method) for division a portions of the 

geometry into small units of a simple shape. To obtain the result with high accuracy, this 

software has ability to use meshing with better performance for high sensitivity spaces. In this 

study, finer meshing method was employed for getting the high accuracy results along the shape. 
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Fig 3.10 shows the meshing of electromagnetic platform for calculation the magnetic flux 

density values. 

 

 

 

 

 

 

 

 

 

 

 

3.5 Magnetic Flux Density Equation of Electromagnetic Platform  

 

 Finding the relationship between material, ampere turn value and produced magnetic flux 

density play fundamental role in design the parameters of electromagnetic platform.  MATLAB 

software has a function (curve fitting) which can be used to find the relationship between 

parameters. Hence, the value of permeability of each material and the value of ampere turns and 

obtained magnitude and gradient of magnetic flux density are required for acquiring the 

relationship between them. In the first step, all parameters should be defined in MATLAB. 

MATLAB assigns a point in space for each parameter. Therefore these three parameters are 

defined in three dimension space. In the second place, curve fitting function is applied on the 

parameters. MATLAB proposes a curve which covers some parts of defined points in space. The 

Fig  3.10. Meshing (fine mesh) on electromagnetic platform. 
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accuracy of covering points by curve can be changed, when the method of fitting is changed. The 

SSE value shows the error of method. So, the value of SSE helps to find the best method of 

fitting. In this study linear model poly 34 was selected. In this equation the order of ampere turn 

is 3 and the order of material is 4. This model can cover all values of three parameters in 3D 

space. In addition the SSE value of this model is minimum compared to other model. Finally, 

MATLAB shows the relationship between the parameters as an equation. By employing above 

procedures, the obtained equation shows the relationship between magnetic flux density ((grad 

(B)).B), permeability of material and ampere turn. Based on the selected method for fitting, the 

order of equation and the value of coefficients are changed. 

 3.6 Acquiring Appropriate Parameters for Design  

 

 The final step is acquiring the exact value of parameters for design the electromagnetic 

platform. The magnetic force should be at least 1.71mN and for producing this force 1.84 T 

magnetic flux density is required at the point of magnetic particles. Therefore, desired value of 

magnetic flux density will be gained by employing the obtained equation and changing the 

variable parameters in allowed ranges. In this study MATLAB software has been used to define 

the allowed ranges of materials and ampere turns and also for calculation the magnetic flux 

density by magnetic flux density equation.  
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Chapter  4.   RESULTS AND DISCUSSION 

 

The results generated by proposed electromagnetic platform are described in the 

following sections. The first section, presents all simulation results which are related to 

procedures for obtaining desired magnetic field pattern. In this section, the effects of the desired 

pattern on the manipulation of magnetic particles will be discussed. After that the simulation 

outputs and the results of mathematical calculations regard to obtain required strength of 

magnetic field will be shown in the second section. Third section, deals with the significance of 

proposed electromagnetic platform and finally the performance of this platform in controlling 

magnetic particles within CD will be compared with existing methods. 

4.1 Simulation Results for Developing the Desired Magnetic Field Pattern 

 

This part is divided into two subsections; first subsection shows simulation results of 

modifying the locations of maximum values on magnetic field pattern and second subsection 

deals with the simulation results of improving the homogeneity of magnetic field over the 

electromagnetic platform. 

4.1.1 Simulation Results for Improving the Locations of Peaks on Magnetic Field Pattern 

 

The washing and detecting functions which are applied on CD for sandwich 

immunoassay and also the transporting of magnetic particles within the CD for DNA purification 

require the magnetic field pattern along “X” direction with two peaks. The desired pattern is 

defined with two maximum values at the top of the edges of ring and the zero values for rest of 

the points. Manipulation of magnetic particles within chambers will be facilitated by possessing 

two maximum values at the top of the edges. The effect of magnetic field on the neighbour 

chambers leads to incompatible manipulating of magnetic particles. For this reason, the magnetic 
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field should be zero at the rest of the points along this pattern. Fig 4.1, Fig 4.2 and Fig 4.3 show 

the improvement of magnetic field pattern by altering the design of electromagnetic platform. 
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Fig 4.1. (a) Single solenoid with air core (yellow color shows the maximum magnetic field, red color shows the minimum 

magnetic field).  (b) The magnetic field pattern along “x” direction of simple solenoid. 
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X direction 

Fig  4.2. (a)Solenoid with ring-shaped of aluminum core (red color shows maximum values of magnetic field). (b) The magnetic field pattern along 

“x” direction of solenoid with ring-shaped of aluminum core. 



 

60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In these figures, firstly simple solenoid with air core was simulated and magnetic field 

pattern along “x” direction was obtained. The magnetic field pattern displays that magnetic field 

lines have concentrated at one point in center of solenoid. Therefore, the material of core was 

changed. The magnetic field pattern of simple solenoid with aluminum core (material which has 

Line Grapgh: Magnetic field norm (A/am) 
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Fig 4.3. (a) Combination of solenoids inside the aluminum ring-shaped core (red color shows maximum magnetic field, black color 

shows minimum magnetic field). (b) The magnetic field pattern along “x” direction of multiplex solenoids. 
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the permeability higher than air) was simulated. The obtained result shows that the magnetic 

field lines concentrate at two points which are at the top of the cores. This variation happened 

due to the permeability index of core. As a result the magnetic field lines tend to concentrate at 

the edges of the core. Fig 4.4 indicates the magnetic field line in this solenoid. 

 

 

 

 

 

 

 

 

 

 

 

The problem of using this kind of platform is that, magnetic field value at the rest of the 

points is not zero. Hence, the electromagnetic platform was proposed which has been constructed 

from a number of solenoids. These solenoids were located inside the ring core (the material of 

core has permeability higher than air) in a circular configuration. The simulation results of this 

platform indicated that the density of magnetic field lines is maximum at two points at the top of 

the edges.  Moreover, the magnetic field values for rest of the points are approximately zero. 

Consequently, this design of electromagnetic platform could provide the requirements of desired 

magnetic field pattern.  

 
Fig 4.4. concentration of magnetic field around the edge of core. 
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4.1.2 Simulation Results for Improving the Homogeneity of Magnetic Field Pattern 

 

One of the objectives of this study is the control on magnetic particles during the rotation 

of microfluidic CD and performing the several biological assays simultaneously as well. 

Therefore, to achieve this end, homogeneity of magnetic field pattern along the circle-shaped 

area is essential. In order to improve the homogeneity of magnetic field pattern, the proposed 

design of an electromagnetic platform was modified. As previously described, increasing the 

number of solenoids leads to improving the homogeneity of magnetic field patter. Fig 4.5, 4.6, 

4.7 shows the progress of improvement the homogeneity of the magnetic field pattern.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Fig 4.5. (a) Electromagnetic platform with 4 solenoids. (b) Magnetic field pattern of ring electromagnetic 

platform with 4 solenoids. 

Surface magnetic field norm (A/m) Contour: Magnetic field norm (A/m) 
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(a) 

(b) 

Fig 4.6. (a) Electromagnetic platform with 8 solenoids. (b) Magnetic field pattern of ring electromagnetic 

platform with 8 solenoids. 

Surface magnetic field norm (A/m) Contour: Magnetic field norm (A/m) 
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In electromagnetic platform with four solenoids, the magnetic field pattern shows the 

magnetic field lines are concentrated on only four points. Increasing the number of solenoid to 

eight creates more homogeneity in the magnetic field pattern. Lastly, the simulation result 

indicates that magnetic field pattern in nearly homogenous for all point by increasing the number 

of solenoids to 16. Fig 4.8 demonstrates the difference between these three patterns. 

(b) 

Fig 4.7. (a) Electromagnetic platform with 16 solenoids. (b) Magnetic field pattern of ring 

electromagnetic platform with 16 solenoids. 

(a) 

Surface magnetic field norm (A/m) Contour: Magnetic field norm (A/m) 
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Fig 4.8(a) shows that the magnetic field pattern has 4 peaks and other points have zero 

magnetic fields. The magnetic field of Fig 4.8(b) has 8 peaks but the magnetic field of other 

points are not zero. While the in Fig 4.8(c) the magnetic field values for all points are nearly 

same. This design of electromagnetic provides many advantages for manipulation of magnetic 

particles within the CD. By employing this platform the magnetic field is applied only on the 

target chamber, magnetic particles are manipulated within the microfluidic CD in several 

biological assays simultaneously during the rotation of CD. Consequently, this design enhances 

the accuracy of controlling on magnetic particles, improve the integrity and automation of LOD 

devices and reduce the time for performing the procedure of bioassays. 

4.2 Results for Developing the Desired Magnetic Flux Density Strength 

 

According to Chapter 3, several steps have been done to design the electromagnetic 

platform which can produce desired magnetic flux density at the point of interest. The first step 

was calculation the required magnetic force. This force should be more than summation of 

Fig 4.8. (a) The magnetic field pattern of electromagnetic platform with 4 solenoids (N=4) (b) The magnetic field pattern of 

electromagnetic platform with N=8 (c) The magnetic field pattern of electromagnetic platform with N=16. 
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centrifugal force and surface tension force. The calculated value of this force was 1.71 mN. Then 

according to the magnetic force equation, the value of magnetic force depends on the 

susceptibility of liquid, susceptibility of magnetic particles and the value of magnetic flux 

density. Therefore, the required magnetic flux density was calculated. The require value of 

magnetic flux density was 1.84 T. Third step attempted to investigate the effects of different 

parameters on produced magnetic flux density.  So, magnetic flux density was measured by 

changing the parameters of platform. The measured values of magnetic flux density were used to 

find an equation. This equation presented the relationship between different parameters and 

produced magnetic flux density.  Finally, the appropriate values of theses parameters were 

obtained to design desired electromagnetic platform. 

4.2.1 Results of the Values of Magnetic Flux Density  

 

As mentioned in Chapter 3, among all parameters, the material of core and the ampere 

turn values of solenoids are most effective parameters in producing desired magnetic flux 

density. Therefore, electromagnetic platform was simulated for 60 times by COMSOL to 

investigate the effect of different types of materials and ampere turn values on the produced 

magnetic flux density. The results of each part consist of three components of magnetic flux 

density (Bx, By, Bz) and the gradient of magnetic flux density just for “y” component (∂By/∂x, 

∂By/∂y, ∂By/∂z). Finally, obtained results were used to calculate the (grad (B)).B.  Finding the 

relationship between type of material, ampere turn and produced magnetic flux density is 

necessary to find out appropriate values of these parameters (best type of material for core of 

platform and ampere turn values of solenoids). 
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4.2.2 Result of the Relationship between Produced Magnetic Flux Density and Variable 

Parameters 

 

Finding the equation between magnetic flux density and other parameters of 

electromagnetic platform is useful for design the platform. MATLAB software was used to 

identify the relative permeability of material, ampere turn value and magnetic flux density as a 

point in 3 dimension spaces. Then the equation between them was found by applying curve 

fitting function on identified points. Fig 4.9 displays MATLAB analysis results. In this figure X, 

Y and Z represent the relative permeability of material, ampere turn value and the value of (grad 

(B)).B respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

 

 

Fig 4.9.  (a) Relative permeability value of material and ampere turn values of solenoids in 2D space. (b) The relative 

permeability of materials, ampere turn values and the results of (grad (B)).B in 3D. 
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For covering all identified points in 3D spaces, the correct model of fitting should be 

selected.  At the first time polynomial 11 was selected to obtain the equation (Fig 4.10). This 

model was not suitable for fitting. Equation 4.1 shows the obtained equation by this model.  In 

following equation F(x,y) is Z which is the function of X and Y. The SSE of this model is 1.063e
-

15
.  

F(x,y) = 1.655e-09   + 3.775e-14  *x + -1.591e-10  1*y……………………………………………………………………………..(Equation 4.1) 

 

 

Desired covering obtained by changing the degree of X and Y in polynomial model. The best 

degree for X is 2 (in this condition SSE value is lowest). Fig 4.11 shows the covering of points 

by polynomial 23(X=2, Y=3). 

 

 

 

 
Fig 4.10. The covering of points by polynomial 11. 



 

69 

 

 

Equation 4.2 shows the obtained equation by this method.  

 

F(x, y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y + p12*x*y^2 + 

p03*y^3……………………………………………………………………………………………………………………………………………………………………………………………………(Equation 4.2) 

 

 The coefficients with 95% confidence bounds are described as following. 

 p00 = -2.098e-11, p10 =   5.577e-16, p01 =   3.007e-12, p20 = -2.518e-21, p11 = -7.031e-17        

p02 = -1.295e-12, p21 =   3.325e-22, p12 =   4.362e-18, p03 =   2.455e-16 

The obtained equation represents the relationship between the relative permeability of materials, 

ampere turn values and the value of (grad (B)).B. Therefore, the appropriate values of 

permeability of materials and ampere turn values can be obtained by employing this equation. 

 

 

 

 

 

 
Fig 4.11. The covering of points by polynomial 23. 
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4.2.3 Results of Appropriate Values for Permeability of Materials and Ampere-Turn of 

Solenoids 

 

The appropriate values of variable parameters (permeability of materials and ampere turn 

values) can be gained by using MATLAB software. The first step is identifying the wide range of 

values for these tow parameters in MATLAB. After identifying the ranges of inputs, the obtained 

equation was employed to calculate the produced magnetic flux density at the point of interest. 

Table 4.1 displays the results of this part. According to Table 4.1, material with relative 

permeability 200000 can produce desired values of (grad (B)).B (i.e. (grad (B)).B > 1.9).  As 

mentioned in Chapter 3, this material is 99.95% purified iron. The availability to other materials 

such as silicon iron is easier than this material. Hence, there are different methods to increase the 

magnetic flux density of an electromagnetic platform when the other materials are chosen as a 

core of platform. One of these methods is using a thin layer of ring permanent magnet on the 

surface of electromagnetic platform. In this case, the value of produced magnetic flux density by 

electromagnetic platform and permanent magnet should be 1.84 T.  
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Table  4.1. The appropriate values of relative permeability of materials and ampere-turn value. 

Number 
Relative 

permeability  
of materials 

Ampere turn 
values 

 of solenoids 
(grad (B)).B Number 

Relative 
permeability  
of materials 

Ampere turn 
values 

 of solenoids 
(grad (B)).B 

1 650 78 -4.78E-07 31 8000 78 0.11741 

2 650 234 -4.77E-07 32 8000 234 0.117415 

3 650 390 -4.77E-07 33 8000 390 0.117419 

4 650 546 -4.77E-07 34 8000 546 0.117423 

5 650 702 -4.77E-07 35 8000 702 0.117428 

6 650 858 -4.76E-07 36 8000 858 0.117432 

7 650 1014 -4.76E-07 37 8000 1014 0.117437 

8 650 1170 -4.76E-07 38 8000 1170 0.117441 

9 650 1326 -4.75E-07 39 8000 1326 0.117445 

10 650 1482 -4.75E-07 40 8000 1482 0.11745 

11 2000 78 -3.21E-06 41 100000 78 0.232554 

12 2000 234 -3.21E-06 42 100000 234 0.232561 

13 2000 390 -3.20E-06 43 100000 390 0.232567 

14 2000 546 -3.20E-06 44 100000 546 0.232574 

15 2000 702 -3.20E-06 45 100000 702 0.232581 

16 2000 858 -3.20E-06 46 100000 858 0.232588 

17 2000 1014 -3.19E-06 47 100000 1014 0.232595 

18 2000 1170 -3.19E-06 48 100000 1170 0.232601 

19 2000 1326 -3.19E-06 49 100000 1326 0.232608 

20 2000 1482 -3.18E-06 50 100000 1482 0.232615 

21 4000 78 -4.99E-06 51 200000 78 1.912214 

22 4000 234 -4.98E-06 52 200000 234 1.912241 

23 4000 390 -4.97E-06 53 200000 390 1.912269 

24 4000 546 -4.96E-06 54 200000 546 1.912296 

25 4000 702 -4.95E-06 55 200000 702 1.912323 

26 4000 858 -4.94E-06 56 200000 858 1.91235 

27 4000 1014 -4.93E-06 57 200000 1014 1.912378 

28 4000 1170 -4.91E-06 58 200000 1170 1.912405 

29 4000 1326 -4.90E-06 59 200000 1326 1.912432 

30 4000 1482 -4.89E-06 60 200000 1482 1.912459 
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4.3 Manipulation of Magnetic Particles 

 

The designed electromagnetic platform can be used for different application. As 

explained in chapter 3 force=1.71 mN was required to transfer magnetic particles from binding 

chamber toward the electromagnetic platform. In order to generate this value of magnetic force, 

1.84 T magnetic flux density is required. According to the results of previous section, the 

designed electromagnetic platform can generate magnetic flux density approximately 1.9(T) at 

the point of interest when this platform is “on”. Therefore, this platform can transfer magnetic 

particles from binding chamber toward electromagnetic platform while microfluidic CD is 

rotating. The electromagnetic platform is “on” for 10 second. After 10 second, the 

electromagnetic platform will become “off”. In this condition, Coriolis force is applied on 

magnetic particles. This force can transfer the magnetic particles from the electromagnetic 

particles toward the opposite direction of rotating CD. Finally, centrifugal force transfer 

magnetic particles toward the washing chamber.  Fig 4.12 displays the different steps of 

manipulation of magnetic particles.   

 

 

 

 

 

 

 

Fig 4.12. (a) Magnetic particles inside the binding chamber. (b) Magnetic chamber move toward electromagnetic 

platform. (c) Coriolis force is applied on magnetic particles to move them toward the opposite direction of rotation CD. 

(d) The centrifugal force transfer magnetic particles to the washing chamber (Reproduced from Strohmeier et al. (2013)). 

http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/fw/crls.rxml
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Chapter  5.   CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 

5.1 Conclusion 

 

In this study, an electromagnetic platform for controlling magnetic particles in a 

centrifugal microfluidic platform is designed and simulated. The dimensions of electromagnetic 

platform have been selected based on the design of microfluidic CD which provided by 

(Strohmeier et al., 2013) for DNA purification.  Then geometrical shape of electromagnetic 

platform has been designed based on producing the magnetic field pattern with three features 

including; symmetrical shape of magnetic field pattern relative to the z axis, the maximum 

magnetic field strength at the specific locations and finally homogeneity of produced magnetic 

field pattern above electromagnetic platform. Magnetic field pattern which have these three 

features is called desired magnetic field pattern. In order to obtain desired magnetic field pattern, 

an electromagnetic platform has been designed. This platform consists of the circular-shaped 

core with 16 solenoids. 

  The value of produced magnetic flux density is another objective of this study. So as to 

obtain the required magnetic flux density, the following procedures have been done. At the first 

place, the required magnetic force for transporting magnetic particles has been calculated. The 

value of the required magnetic force should be more than the summation of centrifugal force and 

surface tension force which are applied at the opposite direction of magnetic force. At the second 

place, required magnetic flux density has been calculated by employing the magnetic force 

equation. Then, the effects of structural parameters of electromagnetic platform on producing 

magnetic flux density have been investigated. The value of some of these parameters should be 

considered constant such as the axial and radial distance between magnetic particles and 

electromagnetic platform. While other parameters can be considered as variables including the 
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type of material which is used as a core of platform and ampere turn of solenoid. The effects of 

these two parameters on produced magnetic flux density have been investigated by COMSOL 

software. Electromagnetic platform has been simulated for 60 times to obtain magnitude and 

gradient of magnetic flux density when the variable parameters were changed. The obtained 

results have been used to find the relationship between variable parameters and produced 

magnetic flux density. The equation of these parameters has been obtained by employing the 

curve fitting function in MATLAB software. This equation is general for designed 

electromagnetic platform. The wide ranges of variable parameters have been identified as inputs. 

Finally, appropriate values of variable parameters have been gained by employing obtained 

equation to design the desired electromagnetic platform. This procedure can be used in different 

conditions such as, changing the rotational speed of microfluidic CD or changing the size or 

susceptibility of magnetic particles. The electromagnetic platform with purified iron as a material 

of core and different ranges of ampere turn values can produced desired value of magnetic flux 

density at the location of magnetic particles. The magnetic force caused by the designed 

electromagnetic platform can overcome the centrifugal force and surface tension force. As a 

result, magnetic particles are transferred toward the electromagnetic platform when this platform 

is “on”. The electromagnetic platform is “on” for 10 seconds and then it will be “off”. When 

electromagnetic platform is “off”, magnetic particles are transferred toward washing chamber by 

the effect of Coriolis force and centrifugal force. 
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5.2 Limitations and Recommendation for Future Work 

 

Accessibility of purified iron is less than other material such as, silicon iron. There are 

variety methods to produce desired magnetic flux density value by using other types of materials. 

One of the methods is using thin layer of ring permanent magnet on the surface of 

electromagnetic platform.  

Designed electromagnetic platform has been used for different applications such as DNA 

purification. This platform can be used for other applications such as, different types of sandwich 

immunoassay. In these assays washing step is used for presenting the target in a measurable 

form. This step requires the additional chambers on the LOD platform for storage the washing 

liquid. In addition, mechanical actuation of washing liquid is time consuming process. In the 

magnetic particles-based assays, employing magnetic field facilitates the washing step. As 

mentioned earlier these types of assays are based on labelling analyte with magnetic particles. 

Thus magnetic field acts as washing solution to remove the analyte which have a weak bind with 

immobilized specific antibodies. Therefore, washing chambers were eliminated in the design of 

LOD platform. On the other hand, detection chambers are required in immunoassay to measure 

target (analyte).  The antibodies should be immobilised on the surface of detection chamber. So, 

magnetic field can be used in this chamber for binding the analyte and immobilized antibodies. 

As a result, the design of CD for sandwich immunoassay can be included only four chambers 

namely; sample chamber, mixing chamber, waste chamber and detection chamber.  
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