The Geological Evolution of Borneo Island
THE GEOLOGICAL EVOLUTION OF BORNEO ISLAND

by

ROBERT B. TATE, B.Sc., A.R.C.S., C.Geol.

A thesis submitted to the University of Malaya in fulfilment of the requirements for the degree of Master of Science in the Faculty of Science.

Supervisors: Professor Charles S. Hutchison, Ph.D., F.I.M.M.
Associate Professor Azhar Hj. Husin, Ph.D.

Date of Submission: 2nd May 1996

Department of Geology,
University of Malaya,
Kuala Lumpur,
MALAYSIA
Frontispiece: Pamali Breccia, Meratus Mountains, SE Borneo

Specimen courtesy of S.G. Bergman, Arco Petroleum Co.
COPYRIGHT NOTICE

The copyright of this thesis belongs to the University of Malaya. No part of this thesis may be used or reproduced in any form or by any means whatsoever, or stored in a database or retrieval system, without prior written permission from the University of Malaya except in the case of brief quotations embodied in critical articles and reviews. Making copies of any part of this thesis for any purpose other than personal use is in violation of the copyright.
SYNOPSIS

The research described in this thesis has been addressed by reviewing existing geological maps, reports, professional papers and other published material pertaining to Borneo island and the surrounding seas and presently available to the author. Re-interpretations of some of the published data are given where, in the light of new information, new method or reasoned argument, it is appropriate to do so. Reports are included of independent field work funded partly by the University and conducted during his candidature.

The thesis commences with a brief description of the geology of the seas surrounding Borneo Island. The stratigraphy of the onshore geology is then described commencing with the nature and possible origin of the oldest Basement rocks followed by elucidation of the stratigraphy and origins of Mesozoic sediments and associated igneous and metamorphic rocks. Cretaceous volcano-plutonic arc rocks, oceanic crustal rocks and associated overlying deepwater sediments and melange zones are discussed in relation to postulated subduction zones and their implications for vertical tectonics and accretion of a late Mesozoic landmass. The rifting of the Mesozoic landmass and subsequent development of hydrocarbon-rich Cenozoic basins is described in terms of paleo-environment, sedimentology and structure. The characteristics and origins of a variety of Cenozoic igneous rocks is portrayed in relation to rifting processes as well as melting due to crustal thickening. The development of a Cenozoic tectonic framework and its effect on the present drainage and topography as well as its influence on Recent tectonics and seismicity is explained. The thesis concludes with a concise exposition of the geological evolution of Borneo and its relationship within the regional tectonic framework of SE Asia.
SINOPSIS

Penyelidekan yang dibincangkan dalam tesis ini telah dibuat dengan mengkaji semula peta-peta geologi, lapuran lapuran, kertas kertas profesiinal dan bahan bahan yang diterbitkan mengenai kepulauan Borneo dan lautan lautan sekeliling yang didapati oleh penulis. Penafsiran semula data-data yang diterbitkan ini dibuat apabila terdapat penerangan baru, kaedah baru atau perbincangan, dimana ianya harus dilakukan. Hasil dari kerja lapangan sendiri semasa pencialonan M.Sc ini juga dilapurkan.

terhadap saliran dan topografi dan kaitannya dengan tektonik Resen dan aktiviti aktiviti seismik diterangkan. Tesis ini disudahi dengan kupasan ringkas evolusi Borneo dan hubungannya dengan rangka tektonik rantau Asia Tenggara.
CONTENTS

CHAPTER 1 AN INTRODUCTION TO THE GEOLOGY OF BORNEO ISLAND

1.1 GEOMORPHOLOGY
1.2 PREVIOUS GEOLOGICAL STUDIES
1.2.1 History of geological studies in Borneo
1.2.1 Systematic geological mapping in Borneo
1.3 BRIEF DESCRIPTION OF THE GEOLOGY OF BORNEO ISLAND
1.4 A REVISED STRATIGRAPHIC CLASSIFICATION FOR BORNEO ISLAND
1.5 GEOLOGY OF THE SEAS SURROUNDING BORNEO ISLAND
1.5.1 Sundaland
1.5.2 Makassar Strait
1.5.3 Celebes Sea
1.5.4 Sulu Sea
1.5.5 South China Sea

CHAPTER 2 THE BASEMENT OF BORNEO

2.1 "CONTINENTAL" BASEMENT & THE SUNDA SHIELD
2.2 DEVONIAN
2.3 PRE-CARBONIFEROUS BASEMENT - NW KALIMANTAN
2.4 PRE-CARBONIFEROUS BASEMENT - W SARAWAK

CHAPTER 3 LATE PALEOZOIC SHELF SEDIMENTS & METAMORPHIC COMPLEXES

3.1 CARBONIFEROUS-PERMIAN METASEDIMENTS
3.2 PERMO-TIASSIC IGNEOUS & METAMORPHIC ROCKS

CHAPTER 4 MESOZOIC SHELF & SHELF MARGIN SEDIMENTS & ASSOCIATED IGNEOUS ROCKS

4.1 UPPER TRIASSIC TO LOWER CRETACEOUS SHELF SEDIMENTS
4.2 UPPER TRIASSIC VOLCANIC ROCKS
4.3 UPPER TRIASSIC - LOWER JURASSIC VOLCANICS & INTRUSIVES
4.4 JURASSIC-CRETACEOUS SHELF SEDIMENTS
4.5 CRETAUCEOUS SHELF MARGIN SEDIMENTS &
ASSOCIATED VOLCANICS
4.5.1 NW Kalimantan
4.5.2 Meratus Mountains

CHAPTER 5 CRETAUCEOUS VOLCANO-PLUTONIC ROCKS
5.1 SCHWANER MOUNTAINS
5.1.1 Introduction
5.1.2 Lower Cretaceous granitoids (K11)
5.1.3 Lower Cretaceous volcanics (K12)
5.1.4 Upper Cretaceous volcanics (Ku2)
5.1.5 Upper Cretaceous granitoids (Ku1)
5.2 WEST SARAWAK
5.2.1 Upper Cretaceous granitoids
5.3 PRESENT DAY HEAT FLOW
5.4 MERATUS MOUNTAINS
5.4.1 Lower Cretaceous volcanics
5.4.2 Upper Cretaceous volcanics
5.4.3 Upper Cretaceous granitoids

CHAPTER 6 OCEANIC CRUSTAL ROCKS & OVERLYING
SEDIMENTS INCLUDING TURBIDITE BASINS
6.1 INTRODUCTION
6.2 OPHIOLITES IN CENTRAL AND NW KALIMANTAN
& WEST SARAWAK
6.3 OPHIOLITES IN THE MERATUS MOUNTAINS AREA
6.4 OPHIOLITES IN SABAH
6.5 LOWER CRETAUCEOUS TURBIDITE BASINS
6.5.1 SE Borneo
6.5.2 Sabah
6.6 UPPER CRETAUCEOUS PALEOCENE TURBIDITE BASINS
6.6.1 NW & Central Kalimantan
6.6.2 Sarawak
6.6.3 Sabah

CHAPTER 7 OPHIOLITE,MÉLANGE & SUTURES - DEFORMATION
OF OCEANIC CRUST
7.1 "ALPINE-TYPE" OPHIOLITES & MÉLANGE IN
BORNEO
7.2 OPHIOLITE IN CENTRAL & WEST KALIMANTAN
& WEST SARAWAK
7.3 OPHIOLITE IN THE MERATUS MOUNTAINS, SE BORNEO 150
7.4 OPHIOLITE IN EASTERN SABAH 152
7.5 OPHIOLITE IN KUDAT PENINSULA & BANGGI ISLAND 155
7.6 CENOZOIC MÉLANGE IN EASTERN SABAH 157
7.7 GENERAL REMARKS 160

CHAPTER 8 THE PALEogene LAND SURFACE & ITS SUBSEQUENT RIFTING 161
8.1 THE PALEogene LAND SURFACE IN SUNDALAND 161
8.2 THE PALEogene LAND SURFACE IN BORNEO 162
8.3 SUMMARY OF EARLY CENOZOIC TECTONICS IN BORNEO 171
8.4 ORIGIN OF PALEogene RIFTING & DEVELOPMENT OF CENOZOIC BASINS 173

CHAPTER 9 CENOZOIC SEDIMENTARY BASINS 176
9.1 INTRODUCTION 176
9.2 WEST SARAWAK, NW & C KALIMANTAN 180
 9.2.1 Paleogene Basins - W Sarawak 180
 9.2.2 Paleogene Basins - W & C Kalimantan 182
 9.2.3 Neogene Basins - W Sarawak & Kalimantan 188
9.3 CENTRAL & N SARAWAK & BRUNEI DARUSALAAM 190
 9.3.1 Paleocene-middle Eocene turbidite basins in Central Sarawak 190
 9.3.2 Post-upper Eocene basins - N Sarawak & Brunei 192
9.4 CENTRAL & E SABAH 211
9.5 NORTHERN SABAH 216
9.6 OFFSHORE N & NE SABAH 217
9.7 OFFSHORE NORTHWEST BORNEO 219
 9.7.1 NW Sabah 219
 9.7.2 Baram Delta Province 228
 9.7.3 Sarawak shelf & offshore Brunei 237
 9.7.4 Balingian Province 249
 9.7.5 Central Luconia Province 249
9.8 EAST & SOUTHEAST KALIMANTAN
 9.8.1 The Kutei Basin 252
 9.8.2 Makassar Strait 263
 9.8.3 The Barito, Pasir & Asem Asem Basins 263
 9.8.4 The Paternoster Platform 268

9.9 NORTHERN KALIMATAN
 9.9.1 Mangkalihat Peninsula 272
 9.9.2 Tarakan and Berau 274

9.10 SOUTH SULAWESI 279

9.11 THE JAVA SEA 279

9.12 OVERALL STRATIGRAPHIC FRAMEWORK
 FOR CENOZOIC HYDROCARBON BASINS
 IN THE BORNEO REGION 281

9.13 ORIGIN OF BASIN FORMATION &
 SUBSEQUENT BASIN INVERSION 282

CHAPTER 10 CENOZOIC IGNEOUS ROCKS 289

10.1 EOCENE VOLCANIC ROCKS - W KALIMANTAN
 & SARAWAK 289

10.2 OLIGOCENE - MIDDLE MIocene INTRUSIVE
 ROCKS - W KALIMANTAN & W SARAWAK 292

10.3 UPPER MIocene - Pliocene VOLCANIC
 ROCKS IN W KALIMANTAN & SARAWAK 294

10.4 UPPER MIocene GRANODIORITES OF
 GUNONG KINABALU TYPE 298

10.5 MIocene VOLCANIC ARC, EASTERN SABAH 300

CHAPTER 11 QUATERNARY GEOLOGY 307

11.1 INTRODUCTION 307

11.2 QUATERNARY TERRACES 308

11.3 PLEISTOCENE GLACIATION 310

11.4 EROSION CYCLES 310

11.5 QUATERNARY EROSION LEVELS & CRUSTAL
 MOVEMENTS 311

11.6 CONCLUSIONS 315

CHAPTER 12 GEOPHYSICAL STUDIES & VERTICAL TECTONICS
 IN BORNEO 319

12.1 THE USE OF GEOPHYSICS IN BORNEO 319

12.2 MAGNETIC LINEATIONS 320

12.3 PALEOMAGNETISM 329
12.4 GRAVITY
 12.4.1 Regional gravity studies 331
 12.4.2 Gravity studies in Central & NW Kalimantan 335
 12.4.3 Gravity studies in Sarawak 336
 12.4.4 Gravity studies in Sabah 337
12.5 VERTICAL TECTONICS IN BORNEO 338
 12.5.1 SE Borneo - Meratus Mountains 338
 12.5.2 Eastern Sabah 338
 12.5.3 NW Borneo 339
 12.5.4 Conclusion 340

CHAPTER 13 CONCLUSIONS 342
13.1 CORRELATION OF PALEozoic & MESOZoIC
 STRATIGRAPHY OF BORNEO WITH SE ASIA 342
 13.1.1 Introduction 343
 13.1.2 Stratigraphic correlation between Borneo
 & China & Indochina 344
 13.1.3 Stratigraphic correlation between Borneo
 & the western part of Sundaland 345
 13.1.4 Stratigraphic correlation between Borneo
 & the southern part of Sundaland 346

13.2 THE DANAU SEA, CRETACEOUS SUBDUCTION
 & ACCRETION TO SOUTHEAST
 SUNDALAND 346
13.3 THE INDIA-EURASIA COLLISION & THE
 RIFTING & DEVELOPMENT OF CENOZOIC
 SEDIMENTARY BASINS IN BORNEO 352
13.4 AN OVERALL STRUCTURAL FRAMEWORK
 FOR BORNEO ISLAND 356
 13.4.1 The Anambas orocline and its counterpart
 in Borneo 356
 13.4.2 Major tectonic lineaments in Borneo 357
13.5 WHAT LIES BENEATH BORNEO ISLAND? 358
LIST OF FIGURES

CHAPTER 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The geology of Borneo Island according to Hamilton (1979).</td>
<td>9</td>
</tr>
<tr>
<td>1.2</td>
<td>Position of Borneo Island within the submarine physiographic features of SE Asia</td>
<td>12</td>
</tr>
<tr>
<td>1.3</td>
<td>Location of ODP drill sites, Celebes & Sulu Seas</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Logs of drill cores, Sulu & Celebes Seas</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>Geological elements of the Sulu Sea</td>
<td>22</td>
</tr>
<tr>
<td>1.6a,b</td>
<td>Seismic profiles - Dangerous Grounds, South China Sea</td>
<td>23, 24</td>
</tr>
<tr>
<td>1.7</td>
<td>Seismic profile SE Sulu Sea to to Zamboanga</td>
<td>26</td>
</tr>
<tr>
<td>1.8</td>
<td>Bathymetry of the South China Sea</td>
<td>28</td>
</tr>
</tbody>
</table>

CHAPTER 2

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sketch map showing locality of Devonian limestone, Sg. Telen, Kalimantan.</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>Photograph showing exposure in Tuang Formation, Kim Hin Brickworks, SE of Kuching, Sarawak</td>
<td>49</td>
</tr>
</tbody>
</table>

CHAPTER 3

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Distribution of Carbo-Permian metasedimentary rocks and Permo-Triassic igneous and metamorphic Complexes in Kalimantan and W Sarawak</td>
<td>56</td>
</tr>
</tbody>
</table>

CHAPTER 4

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Distribution of Triassic and Triassic-Jurassic sediments and associated igneous rocks, W Kalimantan & W Sarawak.</td>
<td>61</td>
</tr>
</tbody>
</table>
4.2 Distribution of Pedawan/Selangkai Formations across central Borneo

CHAPTER 5

5.1 Distribution of Pinoh Metamorphics & Cretaceous granitoids & associated volcanics, Schwaner Mountains, C & W Kalimantan

5.2 Distribution of Pinoh Metamorphics, Cretaceous granitoids & associated volcanic rocks, NW Kalimantan & W Sarawak

5.3 Location of Upper Cretaceous granitic intrusions in W Sarawak

5.4 a,b Microphotographs of cordierite adamellite, Pueh, W Sarawak

5.5 a,b Microphotographs of biotite-garnet intergrowths, Pueh Adamellite, W Sarawak

5.6 Distribution of Cretaceous granitoids & associated volcanics, Meratus Mountains area, S E Borneo

CHAPTER 6

6.1 Distribution of ophiolites, Central Borneo & NW Kalimantan

6.2 Distribution of Lower Cretaceous ultrabasic rocks, turbiditic sediments (Alino Group), Paleogene limestones and fluviatile deposits, SE Borneo

6.3 Sketch map of the general geology of Central & NW Borneo showing Cretaceous - Eocene flysch basins of the Rajang Group and its equivalents, Cenozoic rift basins and Eocene volcanism

page 69

78

80

84

85

86

92

99

104

121
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Sketch map showing location and geology of the Balingian Shear Zone</td>
<td>125</td>
</tr>
<tr>
<td>6.5(a)</td>
<td>Highly deformed metasediments, Balingian Shear Zone</td>
<td>127</td>
</tr>
<tr>
<td>6.5(b)</td>
<td>Vertically dipping arenaceous turbidites: sheared with the development of graphitic layers between more competent beds. Balingian Shear Zone</td>
<td></td>
</tr>
<tr>
<td>6.6 (a)</td>
<td>Fold outlined by sedimentary banding, Balingian Shear Zone</td>
<td>128</td>
</tr>
<tr>
<td>6.6 (b)</td>
<td>Folded quartz veining in phyllites, Balingian Shear Zone</td>
<td></td>
</tr>
<tr>
<td>6.7 (a)</td>
<td>Quartzite horizons stretched into boudins and rotated into the plane of maximum shear</td>
<td>129</td>
</tr>
<tr>
<td>6.7 (b)</td>
<td>Tight Z-shaped fold and later quartz-filled tension joints. Balingian Shear Zone</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>Bouguer gravity map, Tatau horst area and offshore Balingian basin</td>
<td>130</td>
</tr>
<tr>
<td>6.9</td>
<td>Stereographic projection on lower hemisphere, equal area net, of structural measurements in the Balingian Shear Zone</td>
<td>131</td>
</tr>
</tbody>
</table>

CHAPTER 7

7.1 Distribution of mélange in Sabah | 153 |

CHAPTER 8

8.1 The Paleocene landmass of SE Sundaland and rift zones | 163 |
8.2 Stratigraphic sections of Cenozoic basins of the South China Sea area. | 164 |
8.3 Stratigraphic sections of Cenozoic basins S of the Rajang Group in Borneo | 167 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Paleogene grabens and lithostratigraphy of the Barito Basin, S.E. Kalimantan</td>
<td>169</td>
</tr>
<tr>
<td>8.5</td>
<td>Diagrammatic cross sections from the Barito Basin through the Meratus Mountains to the Pasir and Asem Asem Basins.</td>
<td>172</td>
</tr>
<tr>
<td>8.6</td>
<td>Eocene rift basins and areas of Eocene outcrop in Java & Kalimantan</td>
<td>175</td>
</tr>
<tr>
<td>9.1</td>
<td>The principal Cenozoic sedimentary basins of Borneo Island and surrounding offshore areas</td>
<td>178</td>
</tr>
<tr>
<td>9.2</td>
<td>Correlation chart for early Cenozoic stratigraphy in W & C Kalimantan</td>
<td>181</td>
</tr>
<tr>
<td>9.3</td>
<td>Early Cenozoic basins of Central and NW Kalimantan</td>
<td>184</td>
</tr>
<tr>
<td>9.4</td>
<td>Paleofacies of central Luconia, Balingian & Baram Delta Provinces</td>
<td>193</td>
</tr>
<tr>
<td>9.5</td>
<td>Oligocene deltas prograding towards the NE and terminating at the onshore trace of the West Baram Line which transects Borneo</td>
<td>198</td>
</tr>
<tr>
<td>9.6</td>
<td>Distribution of Oligocene sediments in N Sarawak, Brunei and SW Sabah</td>
<td>200</td>
</tr>
<tr>
<td>9.7</td>
<td>Distribution of paleo-environments in Temburong District, East Brunei</td>
<td>201</td>
</tr>
<tr>
<td>9.8</td>
<td>Deformed and slumped flaser bedded silts, Temburong Formation, E Brunei</td>
<td>202</td>
</tr>
<tr>
<td>9.9</td>
<td>Deformed burrows in siltstone, Temburong Formation, E Brunei</td>
<td>203</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>9.10</td>
<td>Contoured stereographic plots of structural measurements in the Temburong Formation, Temburong District, E Brunei</td>
<td>204</td>
</tr>
<tr>
<td>9.11</td>
<td>Distribution of lithostratigraphic units in Brunei</td>
<td>209</td>
</tr>
<tr>
<td>9.12</td>
<td>Stratigraphy of offshore NW Sabah and eustatic curves</td>
<td>220</td>
</tr>
<tr>
<td>9.13</td>
<td>NW Borneo regional geology</td>
<td>221</td>
</tr>
<tr>
<td>9.14</td>
<td>Tectonic-stratigraphic Provinces of northern Borneo (colour)</td>
<td>222</td>
</tr>
<tr>
<td>9.14</td>
<td>Tectonic-stratigraphic Provinces of northern Borneo (monochrome)</td>
<td>223</td>
</tr>
<tr>
<td>9.15</td>
<td>Imbrication in the Fold-Thrust Belt, Offshore NW Sabah</td>
<td>225</td>
</tr>
<tr>
<td>9.16</td>
<td>Clay diapirism in the Outboard Belt, Offshore NW Sabah</td>
<td>227</td>
</tr>
<tr>
<td>9.17</td>
<td>Delta topset sequences in the Nosong area, offshore NW Sabah</td>
<td>229</td>
</tr>
<tr>
<td>9.18</td>
<td>Distal part of toe thrust zone, Baram Delta, offshore NW Sabah</td>
<td>230</td>
</tr>
<tr>
<td>9.19</td>
<td>Lower Cenozoic Thrust Sheet, 50 Km N of Kota Kinabalu, NW Sabah</td>
<td>232</td>
</tr>
<tr>
<td>9.20</td>
<td>SE extremity of the Cenozoic Thrust Sheet, offshore NW Sabah</td>
<td>235</td>
</tr>
<tr>
<td>9.21</td>
<td>Geological provinces offshore Sarawak and Brunei</td>
<td>238</td>
</tr>
<tr>
<td>9.22</td>
<td>Location of offshore oil and gas fields, Brunei</td>
<td>245</td>
</tr>
</tbody>
</table>
9.23 Principal Cenozoic basins of Kalimantan
9.24 Stratigraphic chart for the Teweh and Upper Mahakam (W Kutei) basin
9.25 Distribution of Oligo-Miocene and Mio-Pliocene limestones in Indonesia
9.26 Location of principal oil & gas fields and sedimentary basins, E Kalimantan
9.27 Stratigraphic chart showing main reservoir units in offshore (lower) Kutei basin
9.28 Successive positions of shelf breaks in the Kutei delta from seismic profiles
9.29 Delta front positions in the Kutei basin from foraminiferal zones
9.30 Diagrammatic section across the Makassar Strait in the region of the Paternoster Platform
9.31 Stratigraphy of the Tanjung and Pasir basins on either side of the Meratus Mountains
9.32 Distribution of Paleogene fluviatile sediments and limestones in SE Borneo
9.33 Stratigraphic chart & diagrammatic cross section for E Kalimantan
9.34 Growth faulting and reef anomalies on crests of tilted blocks, Sankurilang Bay, S of Mangkalihat Peninsula, E Kalimantan
9.35 Eocene paleo-environments and rock units in Kalimantan
9.36 Distribution of Lower and Middle Miocene paleo-environments in E Kalimantan
9.37 Tarakan basin oilfields and faults structures

9.38 Structure map of the Java Sea between Kalimantan and Java

9.39 Correlation diagram showing relationship between deformation and tectonic events in the SE Asian region

CHAPTER 10

10.1 Pliocene flood basalts, Central Borneo

10.2 Western margins of early Middle Miocene Sulu Sea rift zone, Dent Peninsula, E Sabah

10.3 Diagrammatic cross section of the Sulu Sea marginal basin & early Middle Miocene vulcanicity in the Semporna Peninsula, SE Sabah

10.4 Geological map of the Sandakan area showing recently discovered andesitic tuffs and location of volcanic neck

CHAPTER 11

11.1 Quaternary erosion levels in NW Borneo

11.2 Pliocene erosion surface in Sabah

11.3 Regional tilt in Sarawak, Brunei and Sabah

11.4 Drainage and hypsography in the Meratus Mountains area, SE Borneo

CHAPTER 12

12.1 Magnetic lineations, South China Sea

12.2 Two contrasting models for the opening of the South China Sea
12.3 Reconstruction of sea floor spreading and opening of the South China Sea

12.4 Selected free-air gravity anomalies in SE Asia

12.5 Free air gravity anomaly map of the South China Sea offshore NW Borneo

12.6 NW-SE seismic section across the NW Borneo Trough showing free-air and magnetic anomalies

CHAPTER 13

13.1 Major fault patterns in SE Asia

APPENDICES

APPENDIX A Stratigraphic units for the geology of Borneo

APPENDIX B Stratigraphic correlation chart for W and C Kalimantan and W Sarawak (after Williams et al., 1988)
ACKNOWLEDGMENTS

The author is indebted to Professor C.S.Hutchison for the many knowledgeable discussions pertaining to geological problems in SE Asia in general and Borneo in particular. The author would like also to thank Dr K.R.Chakraborty for many thought-provoking discussions, particularly relating to structural geology and granite genesis. Successive Heads of the Geology Department, academic staff and many other departmental staff have provided a warm-hearted and welcoming atmosphere in which the author has been able to pursue his research and their help and assistance is gratefully acknowledged.

Funding from an F-Vote was provided by the University of Malaya to defray the cost of transport and subsistence during field work in Sarawak and Sabah and the author is grateful to the University for the facility.

Finally, the author is indebted to Mr. H.S.Kong who agreed unhesitatingly to be a guarantor during his residence in Malaysia.