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ABSTRACT

With the advancement in science and technology numerous complex scientific ap-

plications can be executed in heterogeneous computing environment. However, the bottle

neck is efficient scheduling algorithms. Such complex applications can be expressed in

the form of workflows. Geographically distributed heterogeneous resources can execute

such workflows in parallel. This enhances the workflow execution. In data-intensive

workflows, heavy data moves across the execution nodes. This causes high communica-

tion overhead. To avoid such overheads many techniques have been used, however in this

thesis stream-based data processing model is used in which data is processed in the form

of continuous instances of data items. Data-intensive workflow optimization is an active

research area because numerous applications are producing huge amount of data that is

increasing exponentially day by day.

This thesis proposes data-intensive workflow optimization algorithms. The first algorithm

architecture consists of two phases a) workflow partitioning, and b) partitions mapping.

Partitions are made in such a way that minimum data should move across the partitions.

It enables heavy data processing locally on same execution node because each partition

is mapped to one execution node. It overcomes the high communication costs. In the

mapping phase, a partition is mapped on that execution node which offers minimum ex-

ecution time. Eventually, the workflow is executed. The second algorithm is a variation

in first algorithm in which data parallelism is introduced in each partition. Most com-

pute intensive task in each partition is identified and data parallelism is applied to that

task. It reduces the execution time of that compute intensive tasks. The simulation results

prove that proposed algorithms outperform from state of the art algorithms for variety

of workflows. The datasets used for performance evaluation are synthesized as well as

workflows derived from real world applications. The workflows derived from real world
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applications include Montage and Cybershake. Synthesized workflows were generated

with different sizes, shapes and densities to evaluate the proposed algorithms. The sim-

ulation results shows 60% reduced latency with 47% improvement in the throughput.

Similarly, when data parallelism is introduced in the algorithm the performance of the

algorithm improved further by 12% in latency and 17% in throughput when compared to

PDWA algorithm. In the real time stream processing framework the experiments were

performed using STORM with a use-case data-intensive workflow (EURExpressII). Ex-

periments show that PDWA outperforms in terms of execution time of the workflow with

different input data size.
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ABSTRAK

Dengan kemajuan dalam bidang sains dan teknologi, pelbagai aplikasi saintifik yang

kompleks boleh dilaksanakan dalam persekitaran pengkomputeran heterogen. Walau ba-

gaimanapun, kesuntukan ialah algoritma penjadualan yang cekap. Aplikasi yang kom-

pleks sebegini boleh dipersembahkan dalam bentuk aliran kerja. Sumber heterogen yang

teragih boleh melaksanakan aliran kerja ini secara selari. Ini memperbaikan pelaksanaan

aliran kerja. Dalam aliran kerja data intensif, pergerakan data besar-besaran berlaku di

seluruh nod-nod pelaksanaan. Ini menyebabkan overhed komunikasi yang tinggi. Untuk

mengelakkan overhed pelbagai teknik telah digunakan. Namun begitu, dalam tesis ini

model pemprosesan data berasaskan penstriman digunakan di mana data diproses dalam

bentuk data item diproses dalam aliran berterusan. Pengoptimunan aliran kerja data in-

tensif adalah bidang penyelidikan yang aktif kerana banyak aplikasi menghasilkan data

yang besar semakin meningkat dengan pesat dari hari ke hari.

Tesis ini mencadangkan algoritma pengoptimunan aliran kerja data intensif. Seni

bina algoritma pertama terdiri daripada dua fasa a) pemetakan aliran kerja, dan b) pe-

metaan pemetakan. Pemetakan dibuat di mana data yang bergerak di seluruh pemetakan

adalah minimum. Ia membolehkan pemprosesan data yang banyak pada nod pelaksanaan

yang sama kerana setiap pemetakan dipetakan kepada satu nod pelaksanaan. Ia mengatasi

kos komunikasi yang tinggi. Dalam fasa pemetaan, pemetakan yang dipetakan pada nod

pelaksanaan yang menawarkan masa pelaksanaan yang minimum. Akhirnya, aliran kerja

yang dilaksanakan. Algoritma kedua adalah variasi algoritma pertama di mana keselarian

data diperkenalkan dalam setiap pemetakan. Kebanyakan tugas pengiraan intensif dalam

setiap pemetakan dikenal pasti dan keselarian data digunakan untuk tugas tersebut. Ia

mengurangkan masa pelaksanaan itu tugas pengiraan intensif. Keputusan simulasi mem-

buktikan bahawa algoritma yang dicadangkan melebihi jangkauan algoritma-algoritma
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terkini untuk aneka aliran kerja. Dataset digunakan untuk penilaian prestasi termasuk

yang disintesis dan yang diperolehi daripada aplikasi aliran kerja dunia sebenar. Aliran

kerja yang diperolehi daripada aplikasi dunia sebenar termasuk Montage dan Cybershake.

Aliran kerja disintesis telah dihasilkan dengan saiz, bentuk serta kepadatan yang berbe-

za untuk menilai algoritma yang dicadangkan. Keputusan simulasi menunjukkan masa

pedam dikurangkan sebanyak 60% dengan peningkatan 47% dalam daya pemprosesan.

Begitu juga, apabila keselarian data diperkenalkan dalam algoritma prestasi algoritma

bertambah baik sebanyak 12% dalam kependaman dan 17% dalam daya pemprosesan

berbanding dengan algoritma PDWA. Dalam rangka kerja pemprosesan aliran masa nya-

ta, eksperimen telah dijalankan dengan menggunakan STORM dengan aliran kerja data

intensif kes kajian (EURExpressII). Eksperimen menunjukkan bahawa PDWA melebihi

jangkauan dari segi masa pelaksanaan aliran kerja dengan saiz data input yang berbeza.
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CHAPTER 1

INTRODUCTION

A revolution has been observed in the emerging science and the way how technology

has been used in the last two decades. Despite the facts that the development in sci-

ence and technology has solved many multidisciplinary and complex problems, it has

also introduced many challenges. Initially the workflows were associated with business

processes only. The concept has been used by the scientific community and scientists

started modeling complex experiments and applications as workflows. Major difference

between business and scientific workflows is that the business workflows are mostly

task-oriented and control-driven while scientific workflows can be data-driven as well

as control-driven (Shields, 2007). Large-scale experimentation and extensive simulations

in modern science are continuously generating huge amount of data. Such complex pro-

cesses are comprised of sequences of steps, which lead to the science of workflow design,

management and execution. Workflows help to make such tedious and data-intensive

processes manageable by modeling its steps in proper sequence. Scientific Workflow is

a term that refers to the activity of defining the sequence of tasks needed to manage any

computational process. Tasks take input from preceding tasks or from data resources and

carry out predefined computations on the data. The output of the tasks are then passed to

the successor tasks.

Workflows are managed by Workflow Management Systems (WMS), a comprehen-

sive description of number of WMS can be viewed in (LIEW et al., 2016). The basic

components of WMS include workflow composition, optimization, execution, and prove-

nance. At first an abstract workflow, a high level workflow is composed. The logical

sequence in which the workflow steps will be executed is referred as abstract workflow.
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The resources are not binded with the tasks at this stage. The workflow management

system finds and map appropriate resources to finalize the execution of workflow tasks,

the resulting workflow is called concrete workflow. The later stages include provenance

mechanism which keeps the history of workflow data that is useful in the resource map-

ping phase in determining the optimization approaches and parameters. The provenance

data is important for future relevant experimentation and analysis (LIEW, 2012). Work-

flows can be expressed using various languages like DISPEL (LIEW et al., 2013), BPEL

(Slominski, 2007) and YAWL (van der Aalst & ter Hofstede., 2005). Some workflows

management systems have their own workbench to compose and design workflows such

as Taverna1.

1.1 Data-Intensive Workflows

Scientific community is experiencing a TSUNAMI of data, that needs to be manipulated.

For example, Pan-STARRS2, the Panoramic Survey Telescope and Rapid Response Sys-

tem has 4 X 4.1 giga-pixel resolution digital cameras that loads nearly 700 new databases

which store nightly detected objects each day, merges 50,000 databases with existing

12 offline databases each week and captures greater than one petabytes of raw data and

generates one terabytes into the catalog databases each year. In addition, a recent study

reports (Berriman & Groom, 2011) several hundreds of petabytes of astronomical data is

gathered each day and it is growing quickly day by day.

The science of workflows has made convenient to manage and handle such a big data

easily. Data-intensive applications in astronomy, geology, bio-informatics, bio-medical

science,and e-commerce need special consideration for enactment. These applications

have led researchers to design and develop data-intensive workflow management sys-

1http://www.taverna.org.uk/download/workbench
2http://pan=starrs.ifa.hawaii.edu
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tems. We can find a study and comparisons of these systems presented in (Yu & Buyya.,

2005.; Deelman et al., 2009) in a comprehensive way. In contrast to task-oriented work-

flows, aspects like data storage, data movement, communication and computation costs

must be considered in data-intensive workflow enactment. Workflows can be classified

into two groups, a) control-driven, and b) data-driven workflows. In control-driven work-

flows the precedence of tasks is based on the shift of control. Workflows are represented

as a sequence of processes and each parent process needs to be completed before the

start of child process. Data-intensive applications are modeled as data-intensive work-

flows. Hence, these are mostly data-driven and the dependencies between the activities

represent the flow of data. In data-intensive workflows the data workload is significantly

higher than computational workload. That is why, data-intensive workflow execution re-

quirements are different than control-driven workflows. Since, in data-intensive workflow

huge amount of data is being processed therefore, data transfer cost between execution

nodes, data storage cost, data processing cost, the resource interconnection bandwidth,

resource buffering capability, and many other aspects are of major concerns in data-

intensive workflows enactment. Data-intensive workflows can be modeled in various

ways but commonly workflows are modeled as Directed Acyclic Graphs (DAGs) (Xu et

al., 2013) which is a graphical representation of tasks and data flow. The vertices or nodes

represent tasks and edges show the precedence of the tasks and data flow. Successor tasks

cannot start execution until predecessor task provide enough data for its execution. How-

ever, in the task-based workflows the successor task need complete input data to start its

execution once predecessor has been executed.

In recent years streaming model of workflow has gained immense popularity in sci-

entific community, especially in data-intensive applications. For instance, sensor-based

scientific experimentation produces live streaming data that require minimum latency and

maximum throughput to avoid loss of data and its deletion. Same parameters are crucial
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for the enactment of workflows which involves data stored in databases after prior experi-

mentation. The workflow enactment can be made even better using data streaming model

of workflows (Liew et al., 2010). In the context of data streaming the continuous stream

of data is a chain of data items produced from any scientific activity. In workflows prede-

fined computations are carried out on each data item of a data stream. It is a unidirectional

transformation process which means that data can only move downstream. Output of up-

stream tasks is the input of downstream tasks. In data-intensive applications the concept

of data streaming has emerged to be highly useful because processing large scale data on

execution node at a time incurs high computation cost and limitations of the computing

capacities of resources is also a bottle neck. Computation of large amount of data in the

form of data streams causes an inherent parallelism which enhances the performance of

data-intensive workflow execution. In addition data streaming model reduces overhead

by reducing a) I/O to the disk, and b) instantiation cost of the workflow nodes.

Scheduling in data-intensive WMS has key importance because the performance of

WMS depend on it to the significant extent. We can consider it in two parts a) mapping,

and b) scheduling in execution phase of a WMS. Mapping is a logical distribution of

tasks for resources while scheduling is a concrete plan and sequence in which task will be

executed on certain resources. This research work revolves around the scheduling of data-

intensive workflows and address the workflow optimization by improving techniques of

scheduling workflows for more than one performance metrics.

1.2 Motivation

Data-intensive science has emerged as a fourth paradigm (Collins, 2009) during the last

decade. It happened because of the exponential rise in data growth not only by the sci-

entific community but also by social networks like Google, twitter, facebook etc. Few

example of data-intensive applications are as follows
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• "IBM" claims that "every day, we creates 2.5 quintillion bytes of data, 90% of the

data in the world today has been created in the last two years (Aniello et al., 2013).

• DOMO, a business intelligence company recently reported (Aniello et al., 2013)

that 3125 photos are added on Flickr, 34722 likes are sent on Facebook, more than

100,000 tweets are done on Twitter, each minute.

• Data is gathering so easily and quickly that has exceed the speed of its processing

and management. Astronomers are collecting huge amount of data not only by

volume but also with increasing complexity and verity. According to the predictions

made in a study (Berriman & Groom, 2011), one petabytes of astronomical public

data is electronically accessible and this volume is growing at 0.5 petabytes per

year.

• Large Synoptic Survey Telescope (LSST)3, is 8.4m large synoptic survey telescope.

It will survey the sky deeply in multiple colors and explore the mysteries of sky

with its three billion pixel camera. This telescope will produce enormous volume

of data, 20 terabytes per night leading to a database of 60 petabytes of raw data

over ten years. The predictions of data size growth has been made due to emerging

projects. Similar anticipations are reported for upcoming project ALMA4.

• A major decision in astronomy was taken in 2012 when it was decided to install

Square Kilometer Array5 (SKA) in the deserts of South Africa and Australia. SKA

was installed to know the secrets of the world with world’s largest radio telescope.

Raw data will be available for public project website6 in the form of zip files. The

3http://www.lsst.org/lsst/
4http://www.eso.org/sci/facilities/alma.html
5https://www.skatelescope.org/
6https://www.skatelescope.org/
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research and scientific studies behind the location of the SKA high and mid fre-

quency telescopes in South Africa data is 8.7 gigabytes Zip files, while data of

low frequency telescope in Australia is 16 gigabytes Zip files. The data obtained

by SKA is such a huge size that collected data in a single day would take nearly

millions of years to play back on an iPod. SKA central computer will have the

processing power of about one hundred million PCs. The dishes of the SKA will

produce 10 times the global Internet traffic.

Big data is usually characterized by with four "Vs" that is high Volume, Variety,

Velocity and Value of data. In order to handle each "V", workflow management encom-

passes many challenges. Value is mostly considered in business oriented scenarios. These

challenges correspond to different dimensions of data-intensive workflow optimization.

There is a continuous development in the infrastructure of computing systems and this

process will continue to progress to tackle upcoming challenges of modern scientific de-

velopment in future.

Now-a-days stream computing is the efficient solution to manipulate and compute

information from such big data. The response time of big data stream applications is

always required to be the minimum for gigabytes of live data streams and petabytes of

archived simulated data streams. Big data stream applications modeled as data-intensive

workflows are aimed to be processed with minimum latency. The main challenge in data-

intensive workflow execution is to achieve reduced latency when execution nodes have to

process heavy data streams.

In this research work, we propose the data-intensive workflow optimization (schedul-

ing) algorithms by using stream-based data processing model. Scientific data-intensive

workflows are used for simulations and experiments. The proposed work aims to reduce

the latency or execution time and enhance the throughput.

6



1.3 Problem Statement and Research Objectives

The problem statement of this dissertation is stated as follows. The stream-based data

processing model is a proven smart method to enhance the performance of data-intensive

workflow scheduling. The latency and throughput of these workflows can be further im-

proved by using data parallelism phenomenon. On these grounds, we propose algorithms

that provide reduced latency and enhanced throughput as compared to other state of the

art algorithms. It is proved by simulations and implementations in a real-time streaming

framework.

This dissertation revolves around the following objectives.

• Obj.1: To propose and validate the scientific workflow optimization algorithm that

reduces schedule length/execution time.

• Obj.2: To propose and validate data-intensive workflow optimization algorithm for

stream-based data processing model that optimizes (reduce) latency and (increases)

throughput.

• Obj.3: To apply and validate data-parallelism phenomena in order to enhance fur-

ther the performance of proposed algorithm in Obj.2.

• Obj.4: To evaluate the proposed work in real-time streaming framework(STORM)

using real-application based workflow.

We have divided our research work into four phases to achieve the above research

objectives, which are also depicted in Fig. 1.1. In the phase 1, the literature of scien-

tific workflows is reviewed . To make the concepts clear, an algorithm is proposed that

optimizes the makespan of scientific workflows. The proposed algorithm named Hybrid

Genetic Algorithm (HGA) is evaluated and verified using scientific workflows. In the

next phase, the research work is narrowed down to data-intensive scientific workflows.
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Figure 1.1: Research Phases

The literature of data-intensive workflows, its scheduling algorithms and stream-based

data processing model is reviewed. A Partitioning based Data-intensive Workflow opti-

mization Algorithm (PDWA) is proposed that reduces latency and enhances throughput

of data-intensive workflows. PDWA is evaluated with the variety of workloads and per-

formance results show its effectiveness. In the phase 3 of this research, data parallelism is

introduced in the proposed algorithm to reduce the computation time of the data-intensive

workflows. The algorithm is evaluated and simulation results prove its better performance

as compared to other state of the art algorithms. Finally, the fourth phase is validation of

the proposed work in real-time stream processing framework. Number of stream process-

ing tools are studied and Apache STORM is selected to be the best candidate to carry

out experiments. A use-case workflow (EURExpressII) is used as workload. The per-

formance of the proposed work is evaluated in real-world environment with real-world
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data-intensive workflow and results authenticated its better performance.

1.4 Contributions

The contributions of this thesis are summarized as follows.

1. A Hybrid Genetic Algorithm (HGA) is proposed that optimizes makespan of sci-

entific workflows. It’s architecture is a hybrid approach based on a heuristic and

genetic algorithm. In addition to the makespan, HGA also provides load balanced

schedules. Its performance results show that the proposed algorithm outperforms

for synthesized as well as scientific workflows.

2. A Partitioning-based Data-intensive Workflow optimization Algorithm (PDWA)

that optimize data-intensive workflows by partitioning the workflow in order to

achieve minimum inter-partition data movement. Since, each partition is mapped

on one resource therefore, intra-partition data movement cost is zero. PDWA re-

duces latency and enhances throughput by adapting stream-based data processing

model to optimize data-intensive workflows. Its performance is significantly better

as compared to the workflow optimization algorithm without partitioning.

3. Introduced data parallelism in the proposed data-intensive optimization algorithm.

Data parallelism is applied on the most compute-intensive task of each partition.

This strategy significantly reduced the computation overhead. The simulation re-

sults prove that the proposed algorithm not only reduced latency but also enhanced

throughput. It outperforms the state of the art algorithms.

4. Implementation of proposed work in real-time data stream processing framework

that is Apache STORM based cluster. The cluster is established in Openstack, Vir-

tual Private Cloud (VPC) network to ensure the connectivity between master node

and remote worker nodes. The experiments are carried out on this cluster with a
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use-case workflow, EURExpressII which is a data-intensive workflow derived from

real application. The experiment results show that proposed work outperforms the

default STORM optimizer in terms of reduced execution time and better speedup

as well as efficiency.

1.5 Thesis Organization

This section presents the organization of this dissertation which is divided into six chap-

ters. Chapter 2 is the literature review, Scientific workflow scheduling using hybrid ap-

proach is presented in Chapter 3, Chapter 4 is about partitioning based algorithm to opti-

mize data-intensive workflows for stream processing, it also describes how the algorithm

performance is improved by introducing data parallelism. The algorithm presented in

Chapter 4 is implemented in STORM, the experiments using STORM based cluster and

the results are discussed in Chapter 5. Chapter 6 presents the conclusion and future re-

search directions in this important research area.
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Figure 2.1: Literature Review: An Overview
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Fig. 2.1 presents an overview of the literature that is reviewed in this research. In

this chapter, section 1 introduces scientific workflows and its different patterns. In section

2 we present a taxonomy that classify the workflows into different categories. Section 3,

briefly describes the life cycle of workflows. Workflow scheduling is presented in section

4 and a taxonomy showing different strands of workflow scheduling found in literature

are cited and discussed. In addition, workflow scheduling, data-intensive scheduling and

workflow scheduling objectives are also discussed in section 4. The concepts of Stream-

based data processing model is presented in section 5. This chapter end-up with the

research issues of data-intensive workflow scheduling in section 5.

We have covered the literature review in a general perspective in Chapter 2, but in

this thesis specific related work is spread over all upcoming chapters. The detailed related

study about workflow scheduling is presented in Chapter 3, Section 3.2. Similarly, the

data-intensive workflow optimization algorithms are reviewed in Chapter 4, Section 4.2.

In Chapter 5, Section 5.2 state of the art big data processing tools are discussed and

STORM in detail, which is meant for processing data streams.

2.1 Scientific Workflows

Workflows have simplified the execution and processing of complex scientific applica-

tions by introducing a step-wise approach which defines the precedence of the tasks and

flow of data. Workflows are sequences of tasks or operations, that can be represented

graphically as well as in the form of script. Graphically, the tasks are usually represented

as workflow nodes and in the script these are the processes or the jobs for example in the

form of XML document. In literature, the most common graphical way of the workflow

representation is Directed Acyclic Graphs (DAGs) (Couvares et al., 2007). The nodes in

the DAGs represent tasks/activities/data or data items and vertices show the precedence

constraint. Workflows can also be expressed as Petri Net (Hoheisel & Alt, 2007) in which
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Figure 2.2: Scientific Workflow: Montage (Deelman et al., 2005)

data is represented as tokens and processes as transitions. Other ways of representation

include scripting language and modeling language (UML) diagram (de Carvalho et al.,

2010). In this research work workflows are modeled as DAGs, therefore in the rest of our

discussion workflow and DAGs will be used interchangeably.

Montage is an example of scientific workflow, it is an astronomical image mosaic

engine created by NASA that is used to generate a mosaic of the sky. The input astro-

nomical images are combined to form the final mosaic. The geometry of the final mosaic

is determined by the input images that can be represented as a workflow. Fig. 2.2 illus-

trates the structure of a small size montage having 20 nodes. The size of the workflow

is proportional to the number of input images. Various examples of scientific workflows

can be viewed in (I. J. Taylor et al., 2007). There are different patterns in the work-

flow structure which depends on the nature of application which is modeled as workflow.

Some common workflow patterns that usually occur are discussed below (der Wijngaart

& Frumkin, 2002). The NASA Advanced Super-computing (NAS) parallel benchmarks

are designed for the performance evaluation of parallel and distributed systems as these
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benchmarks are the workflow patterns that are most common in workflows. These are

obtained from computational fluid dynamics (CFD) applications. They are in a set of

four benchmarks that are Embarrassingly Distributed(ED), Helical Chain(HC), Visual-

ization Pipeline(VP), and Mixed Bag(MB). Each of these consists of computational tasks

achieved from NAS parallel Benchmarks (NPB). They symbolize the typical applications

that run on the heterogeneous systems like grid, cloud, or any computing system.

1. ED represents an important class of workflow applications called parameter studies,

in which same program is run several times independently but with different set of

input parameters. The structure is shown in Fig. 2.3a.

2. HC represents long chains of sequential computations such as simulations in series

of tasks. It is the execution of repeating a process or set of processes/tasks one after

another. It is presented in Fig. 2.3b.

3. VP is compound of different structured processes. It contains some degree of par-

allel as well as sequential flow of tasks. Its structure is presented in Fig. 2.3c.

4. The structure of MB is similar to VP but the degree of parallelism, and heterogene-

ity increases. There is aggregation and split nodes as well. The structure of MB is

shown in Fig. 2.3d.

For all the figures of ED, HC, VP, and MB the dotted lines represents the control flow

while the solid lines represents the control and data flow. Russell et al. (2005, 2006) pro-

vide vast and detailed studies of data flow and control flow patterns in a workflows. The

complex and large workflows consist of usually such patterns that occur in different com-

binations. In Fig. 2.2, we can see different workflow patterns as labeled. Data aggregation

is a common pattern in which data from all predecessor task are aggregated in a successor
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Figure 2.3: Different Workflow Patterns.

task, similarly data partitioning is splitting of data into successor tasks. Pipeline pattern

is tasks in processing data in a sequence one after another also found in VP and MB.

2.2 Workflow Classifications

In this section, we present workflow classification based on their structure, types of work-

flow applications, data processing models and objectives. We discuss each type as follows

1. Structure: The structure of the workflows depend on the nature of its application.

Based on the structure of workflows, the types can be a) sequential, b) parallel,

and c) choice Several applications are expressed as sequence of tasks one after

another forming a sequential(linear) workflow. In a sequential workflow there is

a series of tasks that are executed in a sequential manner when the parent task is

completed (Agrawal et al., 2010). In the parallel structure of workflows some tasks

can be executed in parallel rather than sequentially. Most of the workflows have
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parallelism that can cause parallel execution of tasks ultimately reduces workflow

execution time. In case of choice, at run time a task is chosen to execute when its

all requirements are complete.

2. Application: Workflows can be classified as control-driven and data driven work-

flows as reported in (Shields, 2007). In the control-driven workflows the precedence

of tasks is based on the shift of control. The workflows are represented as sequence

of processes and each parent process needs to be completed before the start of child

process. The data driven-workflows support data-intensive applications and the de-

pendencies between the activities represents the flow of data. I. Taylor et al. (2007)

presents examples of data-driven workflows. In hybrid class, both approaches are

used as appropriate but workflows are usually biased as data or control-driven for

instance in (Laszewski et al., 2007). Sometimes the data flow is explicit and control

flow is implicit or vise-versa.

3. Data Processing: Based on the input type workflows are categorized into two

classes. The workflows can be driven by a single input and successor tasks depend

solely on the output of their predecessors. The output generated from predecessors

serve as input to the next level of task hence, successor tasks can’t start execution

unless predecessor are completed. Another type of workflows are those which take

input in the from of continuous data stream (LIEW, 2012) such as the output of the

sensors or simulators. Since, the output of each activity is a sequence of outputs

therefore, if the successor gets enough input to start its execution then the succes-

sors can start execution.

4. Objectives: The fourth classification differentiates between task-based and service-

based workflows as defined by Glatard et al. (2007). It is job oriented workflow in

which set of jobs represented by nodes are mapped on the set of resources. Work-
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Figure 2.4: Workflow Classifications

flow is based on computing tasks which require complete dataset to start execution.

On the other hand tasks are hidden under web services. Services are invoked on

the execution of each node and execution can start without knowing the complete

dataset.

The above discussion of workflow classification is summarized in Fig. 2.4.

2.3 Workflow Life Cycle

A workflow has a complete life cycle as presented in Fig. 2.5. There are three basic stages

of workflow life cycle as discussed below.

• Workflow Composition: Initially, the workflows are developed from the data

available in workflow libraries or databases. This data is usually the outcome of the

previous executions of the workflows with different parameters or scenarios (prove-

nance data). It can be the complex scientific experiments and simulation data saved

in databases. The data and software components are obtained from databases. This

information is used to develop a high level workflow called as abstract workflow us-
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ing a particular representation. The workflow tasks are not binded to the resources

at this stage, only the data and software components are identified. For instance,

in Pegasus (Deelman et al., 2015) wings1 is responsible for workflow composition.

Wings helps the selection of workflow templates and data (from data repositories)

to create workflow instances, which are also known as abstract workflows. Simi-

larly, Taverna (Wolstencroft et al., 2013) provides an easy way for domain experts

to find and design workflows through a workbench.

• Mapping: This stage maps workflow tasks on the physical resources from the exe-

cution environment. The abstract workflow converts into a complete execution plan

resulting in a concrete workflow. Selection of appropriate resources and allocation

to the workflow tasks can affect the performance of the workflow execution. Hence,

optimized mapping strategies may help in improving the overall performance. For

instance, Pegasus (Deelman et al., 2015) maps the workflow tasks on the execution

resources to create the executable workflow, which has all the execution specifica-

tions, that is the data to be used and its location, the computing resources selected

for execution, and the required data movements. The mapping process relies on

three important catalogs, a) site catalog, which describes the compute resources

known as the sites, that are used to run the workflow. A site can be cluster, virtual

machine in cloud, or local machine. Pegasus works with heterogeneous and dis-

tributed computing environments, b) replica catalog, it is used for data discovery

to resolve input/output files in the workflow. It keeps mapping logical files ids to

physical file ids, and c) transformation catalog, which maps logical transformation

to physical executable on the system. This thesis focus optimization of mapping

and discussed with details in chapter 4.

1http://www.isi.edu/ikcap/wings/
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• Execution: It performs the mapped workflow enactment in the execution environ-

ment and monitors the executions. This stage schedules the tasks on the mapped

resources and collects the resulting data. The output and provenance data is then

saved in the workflow repositories which may then accessed again to compose a

workflow. Provenance mechanism that keeps the history of workflow data which

is also useful for the resource mapping phase in determining the optimization ap-

proaches and parameters. In addition, provenance data is important for future rel-

evant experimentation and analysis. Pegasus (Deelman et al., 2015) is a workflow

planner and has no capability to execute workflow. However, it can run on various

execution engines for example, Condor DAGMan2 and Globus3. The input to the

execution engine is a concrete workflow for instance in Condor DAGMan file is

input for execution.

Mapping and execution are the optimization stages of workflow. Since, mapping and

scheduling of workflow tasks are performed in these stages therefore, the performance of

workflow execution depends on it. In this thesis, these stages of workflow life cycle is

optimized that enhances the execution performance.

Workflow composition, mapping and execution for complex scientific applications

is a tedious process, therefore scientific community have proposed Workflow Manage-

ment Systems(WMSs) to automate the procedure. Some examples of WMSs are Pega-

sus (Deelman et al., 2015), Taverna (Wolstencroft et al., 2013), Kepler (Ludäscher et

al., 2006), Swift (Y. Zhao et al., 2007), Trident (Barga et al., 2008), Meandre (Llora et

al., 2008), and KNIME (Berthold et al., 2009). Each WFM has its own mechanism to

compose, map and execute the workflows on resources, however the overall cause is to

optimize the management and execution of the workflows.

2http://www.cs.wisc.edu/condor/dagman/
3http://toolkit.globus.org/toolkit/
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2.4 Workflow Scheduling

As discuss in previous sections, the performance of workflow execution depends on it

mapping and scheduling on appropriate resources therefore, the its optimization can en-

hance the system efficiency. In this section, we discuss various aspects that workflow

scheduling involves. In grid, workflow scheduling is the allocation of workflow tasks to

distributed available resources, while in case of cloud resources are in the form of ser-

vices because a cloud can provide Iaas(Infra structure as a service), Paas(Platform as a

service) or Saas(Software as a service). Efficient scheduling is crucial for the optimal

workflow execution on every execution platform. Scheduling exploits the content of par-

allelism in workflows to enhance the performance but according to the Amdahl’s law the

advantage of parallelism is limited by the sequential part of the workflow. However, effi-

cient scheduling plays a vital role in the workflows execution. Scheduling is affected by

various types of parallelism. Task Parallelism is the simultaneous execution of different

tasks on the same data item. It helps to reduce latency in workflows. Pipelined paral-

lelism is the simultaneous execution of two different tasks of same workflow on same

data item. It helps in enhancing the throughput. Replicated parallelism also helps in in-

creasing the throughput as the different copies of same task executes on different data
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items concurrently. This is useful when the resources are more in number than workflow

tasks. Data parallelism corresponds to the parallelism present within the task inherently.

Many processing elements execute the same task for same data item. Data parallelism is

a mechanism in which multiple instances of task run simultaneously on different datasets.

1. Objectives: Most of the scheduling algorithms are single objective that optimize

the run time and makespan like (Topcuoglu & Wu, 2002; Daoud & Kharma, 2008a).

However there are numerous multi objective algorithms available in literature that

optimize the parameters based on the requirements or application (Wieczorek et al.,

2009).

2. Scheduling Strategy: Scheduling policies can be grouped into performance driven,

market driven or trust driven. In performance driven strategies the scheduling aim

is to improve the performance of workflow execution like execution time, through-

put or cost algorithms like MinMin, MaxMin, Suffrage (Braun et al., 2001) focus to

optimize the performance of the workflows. Market driven strategies focus the mar-

ket oriented parameters like budget, deadline, reliability, profit or other QoS based

aspects (Lee et al., 2012). Trust driven scheduling policies perform the resource

allocation based on their trust levels. By using this type of scheduling strategies the

scheduling reliability and security increases (S. Zhao & Lo, 2005).

3. Execution Platform: Based on the execution model, workflow scheduling can

be differentiated by homogeneous and heterogeneous environments. In homoge-

neous execution platforms the resources have identical characteristics like in clus-

ters (Wieczorek et al., 2005), while in heterogeneous environment, resources differ

from each other based on execution time, storage capacity, communication time and

I/O read time. Grid and cloud are example of heterogeneous environment (Khan,

2012). Scientists have experimented heterogeneous clusters and clusters developed

21



in grid or cloud environment which have characteristics of previous both categories

(Issa et al., 2013).

4. Scheduling Decision: Scheduling decision can be local or global depends upon the

scheduling policy. In local scheduling decision the scheduling strategy will apply

for only one task or a part of workflow, which may effect the overall performance

of the workflow. However, the global workflow scheduling algorithms apply for

entire workflow scheduling. It is observed that global workflow scheduling policies

provides better performance results as compared to local.

5. Dynamism: We can differentiate scheduling algorithms based on dynamism. When

the scheduling process carried out at runtime then scheduling is called dynamic

(Bansal et al., 2011). The resources and the jobs to be scheduled are not known

prior to the scheduling phase. It is possible that jobs are accumulated to form a

batch and then scheduled. This type of scheduling is also called as non determin-

istic scheduling. In case of static scheduling all the information regarding tasks

and resources are already in hand prior to scheduling. Most important aspect of

scheduling workflows is its validation.

6. Performance Estimation: We have classified the workflow scheduling based on

performance estimations methods. Researcher used various methods to evaluate

the performance of new scheduling algorithms in existing literature. Simulations

based validation involve simulators like cloudsim, gridsim, simgrid on the other

hand some researchers also used real-time data to analyze their work, which shows

the behavior of algorithm in real environment. Simulation are useful to check the

performance for large datasets. In case of analytical modeling the performance of

workflow on given set of resources is predicted based on the analytic metric. In
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Figure 2.6: Taxonomy of Workflow Scheduling

some situations the hybrid approach is used. The workflow scheduling classifica-

tions discussed in this section are summarized in Figure 2.6.

2.4.1 Workflow Scheduling Techniques

In the literature there are number of methods which have been adapted for solving work-

flow scheduling problem. We have proposed a taxonomy of various scheduling poli-

cies found in literature. We have divided the scheduling strategies into three groups.

a) heuristics, b) probabilistic search,and c) hybrid approaches.

• Scheduling is an NP-Hard problem and heuristics are mostly used to solve such

problems. Heuristics are time effective solution for specific scenario of problem

space. Heuristics are further of various types most common is list based scheduling

heuristics, which generates a priority list of tasks based on some specific criteria

and then tasks are allocated to resources (Topcuoglu & Wu, 2002). Resources al-

location is also dependent on the attribute used to select resources for tasks. Some
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workflow application are communication intensive, task duplication based heuris-

tics use the task duplication technique to multiple resources to avoid the setup and

communication cost (Agarwal & Kumar, 2009). Many clustering-based heuristics

are also available in literature (Y. Zhang et al., 2008). In clustering heuristics tasks

are clustered based on certain criteria to enhance the over all performance of work-

flow.

• Probabilistic search is another broad category of scheduling algorithms which in-

clude genetic algorithms, Simulated Annealing (Abdulal et al., 2012) and ant colony

or swarm optimization. Working principle of these algorithms are from real world.

Genetic Algorithms are well suited for large problem space and by starting from

initial population after number of generations the algorithm converge to an opti-

mal solution (Omara & Arafa, 2010). Lot of attention has been paid to ant colony

(Srikanth et al., 2012) and swarm optimization (L. Zhang et al., 2006) to solve the

scheduling problem. In both techniques the natural behavior of ants and swarm are

adapted to solve the scheduling problem.

• In hybrid approaches the above mentioned strategies are combined to enhance the

performance of algorithm like in (Guo-ning et al., 2010a) genetic algorithm is hy-

bridized with simulated annealing while in (Daoud & Kharma, 2011) heuristic and

genetic algorithm is hybridized. J. Liu et al. (2008); Srikanth et al. (2012) use the

combination of ant colony and genetic algorithm.

The taxonomy of workflow scheduling strategies is presented in Fig. 2.7.

2.4.2 Data-intensive Workflow Scheduling Techniques

The key rationale behind data-intensive workflow management is the storage and move-

ment of large volume of data. Data storage and movement incur huge cost. With the
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Figure 2.7: Taxonomy of Workflow Scheduling Techniques

emergence of big data, scientists have to focus in various domains to overcome the chal-

lenges. We can broadly group these research efforts in three major domains that include

modifications in a) architectures, b) programming models and c) data-intensive work-

flow optimization strategies. In (Givelberg et al., 2011) authors proposed a concept of

architecture for data-intensive computer based on data-intensive operating system that

can manage data in Petabytes. The proposed architecture can be run with high perfor-

mance computing clusters. The architecture exploits the parallel access (read/write) of

massive databases through an intermediate layer of operating system that runs on differ-

ent servers. Local data processing mechanism during workflow execution has been pro-

posed in (Reimann et al., 2011), which improves the optimization of the data-intensive

workflow execution.

MapReduce (Dean & Ghemawat, 2008) is widely used as a parallel and distributed

programming model for data-intensive applications. Hadoop framework is most common

implementation of MapReduce that has been used extensively by researchers to handle

data-intensive applications in scientific systems. Researchers exploited Hadoop frame-

work in many ways for example, G-Hadoop is a MapReduce based framework proposed

in (L. Wang et al., 2013) that enable distributed data-intensive computing across multiple
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clusters. Hadoop is integrated in Kepler (Ludäscher et al., 2006) an existing workflow

management system as described in (J. Wang et al., 2009). This integration facilitate

users to compose and execute MapReduce applications in Kelper.

This section describes the data-intensive management and scheduling techniques,

also presented in Fig. 2.8. The data-intensive workflow scheduling techniques can be

grouped into four major categories, a) data locality, b) data transfer, and c) data footprints.

Each category is described as follows citing the previous work which has been done in

that area.

1. Data Locality: In data-intensive workflow execution large amount of data is re-

quired to move between the execution nodes that causes significant delays depend-

ing on the size of data and network capacity. Therefore, most of the data-intensive

workflow scheduling techniques target on the optimization of the data transfer by

exploiting the data locality. This strategy can be further classified into a) spatial

clustering, b) task clustering, and c) worker centric.

• Spatial clustering: This scheme develops the workflow based on the spa-

tial relationship of files in the input dataset. The clusters of jobs are created

depending on the spatial proximity. The clustered jobs are then submitted

to the execution nodes on the same site. Hence, the data-intensive workflow

scheduling in this technique improves the data reuse and reduces the data

transfer between the execution sites, that reduces the network traffic. It also

enhances the execution performance.

Meyer et al. (2006) presents an algorithm for spatial clustering that make use

of data locality technique through dynamic replication of data and schedul-

ing the workflow tasks in such a way that reduces the number of replicas and

the data files transfers when workflow is executed. Quality of Service (QoS)
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aware Workflow Language(QoWL) is developed in (Brandic et al., 2006),

which is the extension of Business Process Execution Language(BPEL). It

provides the facility to the users to customize (define) preferences of the exe-

cution location affinity for jobs/tasks with high security and legal constraints.

QoS parameters restrict the system to move sensitive data from agreed do-

mains for confidential applications.

• Task clustering: In this technique small tasks are grouped together in order

to reduce the data movement between computing nodes. In the grouped tasks

the data/files transfers between computing nodes are minimum. Hence, the

tasks within one group can access data locally. This technique reduces the

transfer of intermediate data files between tasks that are grouped to single

computing node. In addition it also reduces the overhead of running small

tasks individually.

In (G. Singh et al., 2005), the authors restructures the workflow in order to

reduce the data dependencies. Independent tasks of same level in workflow

are clustered, but it is not necessary that tasks in none cluster will be executed

on same computing node. The authors present workflow performance in two

scenarios, a) tasks are submitted centrally by a master node, and b) tasks are

submitted by multiple and distributed nodes. In the first case, the complete

workflow is submitted and executed by single host. To increase the execution

performance in the distributed job submission scheme, there are multiple job

submission hosts and slave nodes. The workflow is restructured with multiple

clusters at each level. The clusters and submission hosts at each level are

always same in number. The scheduler on the host selects the suitable worker

nodes for the execution of submitted jobs.
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Pandey et al. (2009) apply the concept of task scheduling for a workflow

based on medical application. The clustering is based on execution time of

tasks, data transfer,and level. The most compute-intensive tasks are executed

without clustering and the rest of the tasks are clustered, that enhances the

makespan of the workflow execution.

• Worker centric: In this category of workflow scheduling technique, locality

of interest present in the execution environment is exploited to schedule the

workflow tasks. For instance, Ko et al. (2007) presents an algorithm, that allo-

cates the workflow tasks to the workflow node upon receiving a request from

worker node. The algorithm determines the weight of unscheduled tasks and

submit to suitable node. The weight calculation involves the data files already

present on the worker node and any additional data required to perform the

task on that particular worker node. This algorithm reduces the transfers of

data files and increases the chance of using same data which has been used

in the past. The performance measured in terms of number of files transfers

between the node and the results show better performance of proposed algo-

rithm.

2. Data Transfer: In literature, several techniques are available that reduces the time

of data transfer. These are a) data parallelism, b) data streaming, and c) data

throttling.

• Data Parallelism: It refers to a process of computation of data fragments

simultaneously with minimum performance loss. This technique processes

independent data items on different computing nodes by replicating the work-

flow task. In (Glatard et al., 2008), a workflow engine MOTEUR is presented.

The proposed algorithms that combine well-defined data composition strate-
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gies and fully parallel execution. Tasks and data is scheduled in such a way

that most datasets are computed by independent resources without violating

the precedence constraints. The performance of the proposed research work

is carried out using a medical imaging application that run on the Enabling

Grids for E-Science EU IST project 4 (EGEE) grid.

The technique of data parallelism and related work is discussed in detail in

Chapter 4, section 4.4 and section 4.2.

• Data Streaming: In data streaming real-time real time streams of data gen-

erated by simulations and experiments are processed at high throughput, low

latency and robust way. Bhat, Parashar, & Klasky (2007); Bhat, Parashar, Liu,

et al. (2007) address data-streaming and design self-managing data-streaming

service that enables efficient data transport in scientific workflow execution.

The proposed system provides adaptive buffer management schemes as well

as QoS management policies. The proposed work shows that online streaming

can significantly effect the performance of workflow execution. The detailed

literature review of scheduling algorithms for data-streams are presented in

Chapter 4, section 4.2.

• Data Throttling: It is the process to control and select the data rate that can be

delayed in the transfer from one compute node to the other. The data-intensive

tasks have to wait for long time for the generation of data from predecessors

and to transfer that large amount of data. Data throttling is a mechanism in

which such data-intensive tasks are identified and further delays are caused

purposefully by using slow network link to transfer data. The delay time can

be used by computation nodes for the execution of tasks with high priority or

4http://www.eu-egee.org
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urgency.

The limitation of existing systems are identified in (Park & Humphrey, 2008),

that are firstly, no control on the data arrival time, and secondly, rate of data

transfer between nodes. In this research work, a data throttling-based frame-

work is proposed that controls that rate of data transfer between workflow

tasks. The scheduler in the proposed system determines before hand that the

data when/where will be executed and the data transfer rate also. It also spec-

ifies the data transfer delays in the system. The delays caused by this scheme

helps to create balance between the execution time of workflow branches by

reducing the extra usage of bandwidth that results efficient execution. Di-

rected Acyclic Graph MANager (DANMan5) is a workflow execution engine

used in WMS, Pegasus (Deelman et al., 2015). Pegasus uses DAGMan to ex-

ecute the executable workflow. Data throttling phenomena is also used in this

system.

3. Data Footprints: WMS use several methods to use data footprints. These methods

can be classified as a) cleaning jobs, b) restructuring of workflow, and c) data

placement and replication.

• Cleaning Jobs: This mechanism is used in workflow execution to remove

the data files from the resources which are no longer in use. The workflow

tasks are scheduled to those nodes which have enough storage capacity to

store input and output data files. In short, the scheduling is done based on the

storage capability of compute resources.

Two algorithms proposed in (Ramakrishnan et al., 2007) reduces the data foot-

prints of the workflows. In the first algorithm, the data files are cleaned up

5http://www.cs.wisc.edu/condor/dagman/
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that are no longer in use or being transferred (as data is replicated to multi-

ple nodes) to permanent storage. In the second algorithm, an improvement in

terms of reduced number of clean up jobs is done. It reduces the system to

establish and replication of data to multiple nodes. Hence, it reduces the data

footprints but as a consequence the workflow execution.

A storage constrained algorithm is proposed in (G. Singh et al., 2007), that

that schedules data-intensive workflows on storage constrained resources. In

the proposed algorithm, resource disk space availability is considered and then

based on the resources computing power priorities are generated. The algo-

rithm looks for the suitable resource that can accommodate the data files for

the task to be scheduled on it. If no such resource is available then algorithm

halts. The algorithm allocates that task to the resource which offers earliest

finish time. Earliest finish time is the sum of data transfer time and execution

time of the task. Eventually, the algorithm cleans up all the unwanted files

from the resources.

• Restructuring of Workflow: The workflow structure determines the data

footprints. Restructuring of the workflow is the change in the workflow struc-

ture that effects input/output data is placed, transferred, replicated, and cleaned

up. Usually, task clustering and workflow partitioning are used to restructure

the workflow in order to minimize the data transfer, increase in the data re-use,

to balance the storage and compute resources, and so on.

Pegasus (Deelman et al., 2015) has a characteristic to map and schedule the

portions of workflow by partitioning it. Deelman et al. (2015) proposed a

level-based partitioning algorithm. The level of the workflow is its depth,

hence the tasks of each level are partitioned. In algorithm (Blythe et al., 2005),
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Pegasus waits for the execution of preceding workflow partition and then map

the dependent partition. The precedence constraint is maintained even after

the partitioning. The partition level failure recovery is also carried out in this

algorithm.

• Data Placement and Replication: In this category of data-intensive work-

flow scheduling technique the data is strategically placed before and during

the execution. Data replication is common method to make data available

on multiple resources. In data-intensive workflow scheduling data replication

may or may not be useful based on the optimization objectives of the work-

flow.

A scheduler Stork for data placement in grid is proposed in (Kosar & Livny,

2004). In Stork, data placement is considered as a separate job apart from data

computational jobs. In classads, i.e. job description file, users clearly define

the data placement jobs. Stork is used in DAGMan to manage data placement

jobs. The precedence between computational jobs handled by Condor and

Stork jobs are not violated as defined in workflow. Stork classify data place-

ment jobs into three categories, a) transfer jobs, transfer data files between

physical locations, b) allocation jobs, allocate bandwidth of network and data

storage space at the destination resources, and c) release jobs, release the re-

sources which were allocated before.

2.4.3 Workflow Scheduling Objectives

Workflow optimization involves various objective functions depending on the nature of

workflow application and modeling. The data-streams produced by simulations and ex-

periments are delivered at low latency and high throughput, therefore the processing sys-

tem at the receiving end must be synchronized with the incoming data speed. Hence, in
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Figure 2.8: Taxonomy of Data-intensive Workflow Scheduling Techniques

the processing such data-streams in data-intensive workflows require minimum latency

and maximum throughput for efficient system. Latency and throughput is defined as fol-

lows:

• Latency is defined as the maximum time a dataset spends in the system. Latency

is directly related to the data size and can be reduced by deploying the processing

element with reasonable computing power (Vydyanathan et al., 2011).

• Throughput is the number of data items processed per unit time. The reciprocal of

throughput is period which is the time required to enter two consecutive datasets

entering the system (Guirado et al., 2013).

The overall workflow execution time also termed as makespan is always optimized to

the minimum (Munir et al., 2013). In data-intensive workflows massive data storage, its

movement and data management between nodes are primary issues. Methods to achieve

less expensive, low latency and energy efficient data storage is one of fundamental ob-

jectives in data-intensive workflows (BrykMaciej et al., 2016). In addition, transfer of
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the massive data between processing elements involves huge data transfer costs, causes

delay and increase in the network traffic (Prajapati & Shah, 2014). In case of processing

(execution) node failure useful data may loss. Therefore, fault tolerance, redundancy and

reliability are also crucial in data-intensive workflow scheduling (L. Zhao et al., 2010).

In service oriented environments like, cloud Quality of Service (QoS) is the prime

importance factor. Each user is competing for earliest and cheapest response. Therefore,

execution time (makespan) and cost are the main objective functions in cloud computing.

Budget is a user defined parameter, it is the cost that a user can spend for the service

used (Arabnejad & Barbosa, 2014a). In some cases, users want job completions at some

pre-defined time called as deadline. Deadline-based scheduling complete workflow exe-

cution before user given deadlines (Luo et al., 2015). The deadline can be at the task level

or at the workflow level.Optimal resource utilization reduces the cost of workflow execu-

tion. Objective function of load balancing is usually associated in this regard (K. Wang et

al., 2016). Some objectives are from user perspective and some are from resources per-

spective. For instance, load balancing and optimized resource utilization are the workflow

scheduling objectives from resource perspective.

In literature there are number of articles regarding scheduling multiple workflows

in grid and cloud environment (Hirales-Carbajal et al., 2012; Tsai et al., 2012) but to the

best of our knowledge no review paper is available for data-intensive workflow scheduling

with stream-based data processing model and its performance perspective. This domain

has still lot of research potential. Another relevant survey (Yu & Buyya, 2005) proposed a

taxonomy of workflow management system characteristics. The author also discussed the

scheduling aspect in workflow management systems in grid and a survey is presented in

the paper which lists various characteristics of workflow management systems including

the scheduling characteristics.
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In data-intensive workflow execution large volumes of data movements among exe-

cution nodes incur high communication costs and causes network delays. With increas-

ing amount of data sizes the network delays are increasing, therefore, time delays also

increase to retrieve data from data storage to the execution nodes. To overcome this is-

sue data should be executed or processed in place. In other words bring the code to the

data contrary to the traditional approach to bring the data to the code (Kaisler et al.,

2013). In addition to the data transportation issues, timely data processing is another ma-

jor challenge of data-intensive workflows. Fast computations and efficient data executions

require extensive parallel processing and multi-dimensional algorithms for data-intensive

workflows. Data storage and management is a key challenge while dealing data-intensive

workflows. Data storage can adversely effect the performance of data-intensive work-

flows if not managed in an effective manner. Avoiding data replication and deletion of

unwanted data might help in reducing costs of acquiring extra storage space. Stream-

based data processing model is an effective way to overcome this problem because data

processing model produces an inherent parallelism that enhance the performance of data-

intensive workflow execution moreover, large bulk of data is not required to be replicated

at each execution node. However, buffering between each compute node of workflow is

challenging because the size of output data is unpredictable and different for each appli-

cation (Benoit et al., 2014). To determine the size of buffer is challenging and when data

exceeds the buffer size, data must be stored in local disk that may cause delays in data

retrieval and storage. These issues becomes more crucial when processing live stream

of data. Mismatch in data processing and data arrival speed would cause loss of data.

Data security, reliability, scalability, heterogeneity, data complexity and number of other

domains need to be addressed for effective data-intensive workflow performance (Wen et

al., 2015).
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2.5 Stream-Based Data Processing Model (SDPM)

In connection oriented communication a data stream is a sequence of digitally encoded

coherent signals (data packets) used to transmit and receive information that is in process

of being transmitted.

At higher abstraction level, streaming data is the data that is generated continuously

by thousands of data sources, which is send in data records simultaneously and in small

sizes. Streaming data includes a wide verity of data such as a log file generated by cus-

tomers using mobile or web applications, e commerce purchases, in-game player activity,

information of social networks, financial trading floor or geo-spatial services and teleme-

try from connected devices or instruments in data centers. This data needs to be pro-

cessed sequentially and incrementally on a record by record basis or over sliding time

windows and used by wide verity of analytic including correlation, aggregation, filtering

and sampling. Information derived from such analysis gives companies visibility into

many aspects of their business and customer activity.

2.5.1 Data Stream

Data streams are continuous instances of data items that need to be processed instantly,

if D is a data then data stream can be represented as d1,d2,d3, ˙..., where d1, d2, d3 and

so on are continuous instances of items of data D, which are being generated by a data

source. Moreover, the sequence and arrival speed of these data items cannot be controlled

by the processing nodes. The definition of data stream is taken from Encyclopedia of

data base systems (L. Liu & Ozsu., 2009) to be extracted from data bases. It is suitable

for data generated for from modeling and simulations. A data item may be composed of

relational tuple, raw data packets or pieces of text.
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2.5.2 Data Stream-based System

The data stream is processed through sequence of procedures usually called as tasks.

The continuous stream of data items are being processed (transferred) each task in work-

flow. The up-stream task (predecessor) performs certain operation on data and passes to

down-stream task (successor). The direction of data flow cannot be changed. The trans-

formation is done by each task independently and self-contained, although there are data

dependencies between them. There must be a source of data stream called entry task and

a sink called exit task that passes data out of the system. Further explanations of SDPM

and workflow optimization algorithms for SDPM will be presented in Chapter 4.

Data stream processing has great capability to perform data-intensive computation.

Large scale data impose challenges on the infrastructure to transmit entire data into, from

the system and between tasks, compute large amount of data with limited resources and

store the raw data, intermediate results as well as final results. These challenges can be

resolved using stream data processing model, as it is easier to transfer, compute, and store

smaller continuous instances of data. A comprehensive survey (Muthukrishnan, 2005)

covers number of algorithms and applications used in various domains, e.g. network

traffic monitoring, text mining, and real-time streaming applications on the web.

Stream processing provide the advantage of parallel execution where the tasks are

independent of each other. With the advancement in multi-core architectures and dis-

tributed computing it has become possible to do parallel executions. Software systems,

e.g. Imagine (Khailany et al., 2001), and Streamware (Gummaraju et al., 2008), are devel-

oped to support streaming applications. Further discussion on parallelism in data streams

processing is presented in Chapter 4. Stream processing model reduces the overhead of

input/output read write as well as processing element instantiation overhead. Therefore,

we have adapted stream-based data processing model in this research.
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There are different tools to process big data. Either data is processed in batches or in

data streams. Apache STORM is an open source stream-based data processing real-time

framework that is used to process unbounded streams of data. In Chapter 5, Section 5.2

various big data processing tools are reviewed and compared with STORM. Detailed

description of STORM architecture and concepts are presented in Chapter 5, Section 5.3.

2.6 Research Issues

In data-intensive workflow optimization the main concern is the storage, transfer, and

process large data. The existing infrastructures and algorithms are not smart enough

to deal with these concerns as data increases. Scientific community is working hard to

overcome the challenges caused by increasing data but due to the rapidly increasing data

still these challenges are bottle neck .

Most of the research work focused task-based data processing model for scheduling

and managing data-intensive workflows. The reason might be due to the amount of data

considered is not too large. Stream-based data processing model has great capability to

optimize data-intensive workflow execution. With the increasing amount of data genera-

tion and gathering, it is essential to focus the data models that can help in processing such

large data in optimized manner.

In globally distributed resources, data transfer from one computing site to another

cost extremely high. Stream-based data processing model also help in this regard. In ad-

dition to that, scheduling schemes must be proposed that can minimize the data transfer

overheads. The growing data causing these research issues to challenges for the scien-

tific community. These issues become more challenging when the distributed computing

environment comprises with different capability resources. This research work addresses

these issues by proposing data-intensive optimizing algorithms using stream-based data

processing model.
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In this chapter, we have discussed the scientific workflows and different workflow

patterns. Based on the literature review workflows are classified and a taxonomy is de-

veloped. Each category is discussed citing related work. Workflow life cycle is discussed

briefly. The workflow scheduling is presented with the literature review of its classifi-

cation on different criterion. Various workflow scheduling techniques and data-intensive

workflow scheduling techniques are reviewed. Workflow scheduling objectives found in

literature are briefly discussed. This chapter also presents the concept of data stream pro-

cessing model and eventually the research issues in data-intensive workflow scheduling.
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CHAPTER 3

SCIENTIFIC WORKFLOW SCHEDULING USING HYBRID GENETIC
ALGORITHM

This chapter presents preliminary research and investigation to the data-intensive work-

flow optimization. In this chapter we present an evolution based approach to solve the

workflow scheduling problem. The proposed work is evaluated with the scientific work-

flows and resulting behaviors of workflows are observed and discussed. The architecture

and performance of proposed hybrid approach is discussed followed by the discussion of

the performance results achieved with different types of workflows.

3.1 Introduction

Workflow scheduling is a well-known NP hard problem (Ahmad et al., 2012), which

is studied extensively by the scientists to enhance the workflow execution performance.

There is a lot of diversity in the approaches to schedule workflows but evolution based

approach gained lot of popularity in the last two decades. These approaches provide

promising results for even large problem spaces. The performance of evolutionary algo-

rithms can be further improved if these are supported by any high performance heuris-

tic (L. Singh & Singh, 2013). The evolutionary approaches include genetic algorithms,

ant-colony optimization, particle swarm optimization and bee colony optimization. How-

ever, genetic algorithms are comparatively more extensively focused in research commu-

nities. In addition, it can be hybridized with heuristics to enhance the performance of

workflow scheduling. In this chapter we presents a Hybrid Genetic Algorithm (HGA) to

solve the workflow scheduling problem. Mostly, the execution environment for workflow

executions are homogeneous like clusters but in this research we adopted more realistic

(practical) computing environments that is heterogeneous computing platforms like grid,
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cloud, virtual private network (VPN) etc. The proposed algorithm provides optimized

schedules of workflows with the significantly reduced makespan because of the load bal-

ancing. The performance of HGA is evaluated with different types of workflows and the

comparative results show that HGA outperforms several state of the art approaches.

3.2 Related Work

In literature, numerous approaches are available to solve the workflow scheduling prob-

lem. Fig. 3.1 presents a taxonomy that highlights the major paradigms that are being

explored by the scientific community. We can broadly group the workflow scheduling

algorithms into a) Heuristics and b) Meta-heuristics. Heuristics are algorithms that pro-

vide a reasonable solution for specific conditions, however meta-heuristics guarantee an

optimized solution. Meta-heuristics are the evolutionary algorithms including genetic al-

gorithms. List based heuristics are most popular in literature for workflow scheduling.

As presented in Fig.3.1 some renowned heuristics include Heterogeneous Earliest Finish

Time (HEFT) (Topcuoglu et al., 2002), Critical Path On Processor (CPOP) (Topcuoglu

et al., 2002), Performance Effective Task Scheduling (PETS) (Ilavarasan et al., 2005),

Modified Critical Path (MCP) (Samriti et al., 2012) and Longest Dynamic Critical Path

(LDCP) (Daoud & Kharma, 2008b). The algorithm of list based scheduling heuristics

mostly consist of two phases. The first phase prioritizes the tasks based on weights,

maintains a queue for ready tasks, and sorts the tasks in a priority queue. The second

phase picks a task from the queue, submits it to the available resource and repeats until

all tasks are assigned to the processors. Mostly, the resource is selected for task assign-

ment based on some criteria such as Earliest Finish Time (EFT) in HEFT algorithm. The

priority criteria of few list based algorithms are shown in the Table 3.1.

In clustering heuristics, tasks of a workflow are mapped on unlimited number of

clusters. At each step, the tasks that are selected to cluster can be any task not nec-
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Figure 3.1: Taxonomy of the Workflow Scheduling Algorithms

Heuristics Task Prioritization Criteria
HEFT Up-word Rank (b level)
CPOP Up-word Rank (b level) Down-word Rank (t-

level)
PETs Average computation cost (ACC)+ Data transmit

cost (DTC) + Data receive cost (DRC)
MCP As Late as possible (ALAP) = Critical Path

Length – upward rank

Table 3.1: Different Priority Criteria of List Based Scheduling Heuristics

essarily the ready task. The iterative process in these category of heuristics refines the

previous clustering by merging some clusters. A clustering heuristic requires following

steps to generate the final schedule. a) Cluster merging step, so that the finally gener-

ated cluster match the available number of processors, b) Cluster mapping step, to map

cluster on certain processor and c) A task prioritization queue within each cluster. Few

examples of classic clustering heuristics are Domain Sequence Clustering (DSC) (Yang

& Gerasoulis, 1994), Linear Clustering Method (Kim & Browne, 1988), and Mobility

Directed (Wu & Gajski, 1990). In the category of task duplication heuristics some tasks

are copied/duplicated redundantly to more than one processor to reduce the inter-process

communication over head. These type of heuristics differ from each other by the selection

strategy of tasks for duplication. The algorithms in this group are mostly designed for un-
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bounded number of processors and the complexity of such heuristics are comparatively

much higher than other groups of heuristics.

Another major group of algorithms are meta-heuristics that works well for specific sce-

narios and for larger problem spaces. Meta-heuristics are well suited for such problems

and workflow scheduling is one of these research problems. In literature, we find ex-

tensive research work based on workflow scheduling using meta-heuristics. It includes

variety of algorithms that are nature inspired, e.g. ant colony optimization (Srikanth et al.,

2012), bee colony optimization (Taheria et al., 2013), particle swan optimization (Awad

et al., 2015), simulated annealing (Guo-ning et al., 2010b) and genetic algorithms (Ah-

mad et al., 2012). However, genetic algorithms gained comparatively high popularity to

solve task scheduling problem. The working of a genetic algorithm is an analogy of hu-

man evolution. The basic architecture of genetic algorithm is presented in Algorithm 1.

Genetic algorithms start with a set of solution called initial population. Each solution is

called as chromosome, which is evaluated based on a fitness function. In task scheduling

problem, the fitness function is usually the schedule length (makespan) or it reciprocal.

Hence, ultimately the fitness function determines which chromosome (solution) is com-

paratively better than other. As shown in Algorithm 1 the rest of the procedures of genetic

algorithms are in a while loop of stopping criteria that shows that the loop continues until

the stopping criteria is met. Mostly the stopping criteria is the number of generations or a

reference fitness function. Within the loop the evaluated chromosomes are selected based

on stochastic methods such as roulette wheel section method, binary selection method etc.

for genetic operations. Genetic operators include crossover and mutation that are applied

over selected chromosome to obtain better solutions and search the rest of the problem

space. There is lot of diversity in crossover operation such as single point, double point

crossover etc and similarly mutation can be single point, double point or random. The

process continues until the solution converges to an optimal solution.
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Initial Population Generation();
while stopping criteria not met do

Selection();
Crossover();
Mutation();
Evaluation();

end
Return best schedule();

Algorithm 1: Basic Genetic Algorithm

Below is a brief comparison of heuristics and genetic algorithms.

• Genetic algorithms start with a number of solutions in hand in the form of initial

population while heuristics tend to navigate to a single solution.

• Genetic algorithms search the problem space depending upon the quality of ge-

netic operators while heuristics limit the search space. Heuristics usually provide a

feasible solution in some specific scenario of problem space.

• Genetic algorithms are well suited for problems with large search space while

heuristics work well for relatively small scale search space problems.

• Genetic algorithms are recursive in nature, while heuristics are iterative.

• The time complexity of genetic algorithms is normally higher as compared to heuris-

tics.

• Genetic algorithms converge to a best solution after certain generations while heuris-

tic construct a schedule or solution using some predefined criteria.

In literature, there is another class of algorithm that is the combination of heuristics and

genetic algorithms that can be grouped as hybrid algorithms. Various hybrid approaches

can be found in literature however, our work focuses on a hybrid approach that uses

both a heuristic and a genetic algorithm to try to reach an optimal (makespan) solution
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for workflow scheduling. Various hybrid algorithms have been proposed by combining

heuristics with genetic algorithms. A Hybrid Successor Concerned Heuristic-Genetic

Scheduling (HSCGS) algorithm was presented in (C. Wang et al., 2012), in which the

authors, combined a heuristic and a GA. In the first phase, the heuristic named Successor

Concerned List Heuristic Scheduling (SCLS) was employed to generate a schedule. The

SCLS is a list-based heuristic in which the priority list of tasks was formed based on

the up-ward rank and successor of tasks. In the second phase the schedule generated

by SCLS heuristic is incorporated in a GA. After number of generations, the algorithm

converges and provides a schedule with reasonable schedule length. Another recently

proposed algorithm, Performance Effective Genetic Algorithm (PEGA) (Ahmad et al.,

2012) optimizes makespan using a hybrid approach. However, the time complexity of

PEGA is high. The PEGA only optimizes makespan while the HGA reduces makespan

as well as provides a load balanced schedule. In addition, a heuristic is also incorporated

in the HGA that enhances the performance of the HGA by directed search.

A recently proposed GA, Multiple Priority Queues Genetic Algorithm (MPQGA) (Xu

et al., 2014) exploits multiple queues of the tasks (priority lists) in a GA. The chromo-

somes are represented by the priority lists produced for the DAG by b-level, t-level, and

sum of both parameters. The b-level (rankb(vn)), and t-level (rankt(vn)) values of each

task are calculated by Eq. 3.2, and Eq. 3.1 respectively.

rankt(vn) = maxvm∈pred(vn)
{wn +dnm + rankt(vm)}, (3.1)

where wn is the average execution cost, dnm is the average communication cost between

nodes n and m, and vm is the predecessor of vn. The t-level (downward rank) of each of

the task is calculated by the above recursive function given in Eq. 3.1 and a task priority

list is generated by an ascending order of the corresponding values of t-level.

45



The initial population consists of these priority queues based chromosomes and the

mapping of tasks on the processors is performed based on earliest finish time parame-

ter. Fitness for each chromosome is then computed using roulette wheel method and fit

chromosomes are selected for genetic operations. Single point crossover and swap muta-

tion operation comprises the genetic operations of the MPQGA. Our proposed algorithm

differs from the MPQGA by the chromosome representation because in the HGA chromo-

some length is twice the number of tasks in a DAG and half of the chromosome consists

of the random processor allocation to each of the task and the other half represents the

priority list of tasks within the DAG. The HGA dominates the MPQGA from its two-fold

crossover and mutation operations that are twice as efficient as compared to the traditional

genetic operations. Load balancing is an additional strength of our proposed algorithm.

Daoud and Kharma have proposed a two phase algorithm, named the Hybrid Heuristic

Genetic Algorithm (H2GS) (Daoud & Kharma, 2011). In the first phase, schedules in

the form of chromosomes are generated by employing the Longest Dynamic Critical Path

(LDCP) heuristic. The LDCP generates schedules and thereafter such schedules are used

in the initial population of a customized GA, called the Genetic Algorithm for Schedul-

ing (GAS). The produced schedules work as catalyst and support GAS during the second

phase to reach the resulting schedule. A two-dimensional chromosomal representation

used in the GAS and the customized operators are used to search the problem space. In

our proposed technique, we have used a comparatively less complex one-dimensional

direct chromosome representation. The genetic operators (crossover and mutation) are

modified to a two-fold operators that enhance the process of search to pursue an optimal

(makespan) solution. Based on the aforementioned features, the HGA has a capability to

arrive efficiently at the best solution.
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In Salimi et al. (2014) an improvement of well-known multi-objective GA, NSGA-II

is presented. In the market oriented grid environment, the price for the workflow execu-

tion is an important constraint. Therefore, in addition to makespan, price is also consid-

ered as the objective function in the proposed algorithm. A fuzzy system is implemented

to optimize the third objective that is load balancing. The proposed algorithm improved

these parameters but the complexity is increased considerably. However, the improve-

ment in the makespan, and load balancing can be achieved by the HGA with much less

time.

3.3 Proposed Hybrid Approach

The proposed algorithm is a hybrid genetic algorithm (HGA) that is a combination of

a heuristic and genetic algorithm. The proposed algorithm has similar architecture to

genetic algorithm however, a seed chromosome is added to the initial population to di-

rect the search towards optimal solution. The pseudo code of the proposed algorithm is

presented in Algorithm 2. The detailed explanation of the algorithm is as follows.

3.3.1 Initial Population and Chromosomal Representation

The algorithm HGA gets the population size Np and number of generations Ng as input.

Ng is taken as the stopping criteria. However, the initial population of size Np− 1 is

generated randomly at first step. The remaining one solution (chromosome) is added in

the pool obtained from a renowned heuristics HEFT (Topcuoglu et al., 2002). The chro-

mosomal representation used is direct and has two parts. The length of chromosome is

double the number of tasks in a workflow. The left half represents the resource alloca-

tion and its length is equal to the number of nodes in the DAG. The genes represent the

processor numbers from 1 to P, where P is the maximum number of available processors.

The size of the second half is also the number of nodes within a DAG, which represents

the sequence or order of the tasks to be scheduled. The precedence constraints must not
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Input: Np Population Size,
α Elitism Rate,
β Mutation Rate,
Ng Number of Generations.

Output: S Near Optimal Solution.
Initial population generation of size Np−1;
Seed HEFT schedule as a chromosome in Np;
for i = 1 to Ng do

/* Evaluation */
for j = 1 to Np do

Compute fitness value of each chromosome;
end
/* Elitism */
Number of Elite Chromosomes E = α×Np;
Select E Chromosomes having best fitness values as NE ;
Selection Routine as shown in Algorithm 3;
Crossover Routine as shown in Algorithm 4;
Mutation Routine as shown in Algorithm 5;
/* Next generation */
/* Ns are the selected chromosomes */
Np = NE +Ns;
Load Balancing Routine as shown in Algorithm 6;

end
Return Near optimal (makespan) solution S;

Algorithm 2: Hybrid Genetic Algorithm

be violated; otherwise the chromosome will be an invalid chromosome and will not rep-

resent a correct schedule. Each chromosome represents a valid schedule. An example

chromosome is shown in Fig. 3.2, and the corresponding schedule on three processors in

the form of Gantt Chart is shown in Fig. 3.3. The first half is randomly generated, while

the second half is determined by the up-ward rank of tasks using Eq. 3.2. The sequence of

tasks in the example chromosome shown in Fig. 3.2 will be in the descending order of the

b-level. The task priority list will be {1, 3, 4, 6, 2, 7, 5}. If the tasks are mapped on the

processors according to the processor allocation shown in the first half of chromosome,

then the resulting schedule length will be 51 time units. The corresponding schedule is

shown in Fig. 3.3.
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Figure 3.2: Chromosome representation.

sc
he

du
le

 le
ng

th

resources

p1 p2 p3

5

10

15

20

25

30

35

40

45

50

55

t1

t2t3

t6
t4

t5

t7

Figure 3.3: Corresponding schedule of example chromosome shown in Fig. 3.2.

rankb(vn) = wn +maxvm∈succ(vn)
{dnm + rankb(vm)}, (3.2)

where wn is the average execution cost (it is the amount of time required to execute a task

on execution node), dnm is the average communication cost (it is the cost of data transfer

from a parent to child node in a workflow) between nodes n and m, and vm is the successor

of vn. The up-ward rank of each of the task is calculated by the above recursive function

and a task priority list is generated by a descending order of the corresponding upward

rank values.
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3.3.2 Evaluation

Evaluation step is to determine the fitness of each chromosome. The fitness of chromo-

some any chromosome x depends on the fitness function given below.

f (x) = c/makespan(x), (3.3)

where c is a constant and the makespan is defined as:

makespan(x) = F.T (texit), (3.4)

with F.T (texit) being the finish time of exit node. In case there are more than one exit

task, the makespan is defined by Eq. 3.5:

makespan(x) = max(F.T (ti)), i = {1,2,3, . . . ,n}. (3.5)

Hence, the fitness of a chromosome is higher which has short makespan. According

to the fitness function defined in Eq. 3.3 the chromosomes with lower makespan are

evaluated to be more fit.

3.3.3 Selection

In HGA, the fit chromosomes are selected by binary tournament selection method. In

which couple of chromosomes are randomly picked up from the initial population and

their fitness values are compared and the chromosome with higher fitness is selected and

transferred to selected pool of chromosomes Ns. This processes continues for all ini-

tial population. The selected chromosomes are further used for genetic operations. The

selection routine is presented in Algorithm 3.

50



Pick two chromosomes at random from initial population;
for k = 1 to Ng do

if f (x)< f (y) then
Select chromosome x as Ns;

end
end

Algorithm 3: Selection Routine

3.3.4 Genetic Operators

In genetic algorithms, genetic operators are key to get optimal solution. In Elitism the

chromosomes with highest fitness values are copied to next generation. The parameter

elitism rate (α) determines the number of chromosomes with highest fitness that will be

copied to next generation. Elitism eliminates the chance of losing best solutions in the

next generations.

Crossover is the core part of genetic algorithm which is an analogy of mating process.

In the proposed algorithm two fold crossover is introduced that explores more problem

space. Two fold crossover is single and double point crossover at a time with same par-

ents and among the resulting four off-springs, two are copied to next generation that have

high fitness values. The second half of the chromosome is not used in crossover as it

represents the precedence of task execution, therefore only first half that is processor al-

location part is involved in crossover and mutation. Fig. 3.4 illustrates the single point

crossover, in which a crossover point is chosen randomly between 1 . . .n, where n is the

number of tasks in a workflow. Two chromosomes cut off at the crossover point and ex-

change their parts. Similarly, in double point crossover two points are selected randomly

between 1 . . .n. The part of chromosome between the two crossover points is exchanged

between parent chromosomes as shown in Fig. 3.5 and two new off-springs are formed.

The crossover process is applied to all selected chromosomes in Ns that can be in a couple

(pair), it is shown in Algorithm 4.
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Figure 3.4: Single Point CrossOver.

Figure 3.5: Double Point CrossOver.

Mutation genetic operation is usually carried out with comparatively less probabil-

ity as compared to crossover. It explores the rest of the problem space that is spared by

crossover. Mutation produces new chromosome (solution) that can provide better fitness

and help to reach optimal solution. In the proposed algorithm, single and double point

mutation is applied on the selected chromosomes with the probability of β that is an in-

put for this algorithm. Similar to crossover single and double point mutation is applied to

the parent chromosome and two different off-springs are generated. The mutation points
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Data: Number of crossover C = Ns/2
for k = 1 to C do

Randomly select two chromosomes xa and xb for mating;
Off springs by single point crossover is xc and xd;
Off springs by double point crossover is xe and x f ;
Compute fitness values of xc, xd , xe and x f ;
Select two best off springs as Ns;

end

Algorithm 4: Crossover Routine

are randomly selected between 1 . . .n and the selected processor allocation gene is also

changed at random. The phenomena of single and double point mutation is illustrated in

Fig. 3.6 and Fig. 3.7 respectively. The fitness values of both off-springs are computed

and compared and the chromosome with higher fitness is copied to next generation. The

procedure of mutation is presented in Algorithm 5.

The chromosomes obtained from elitism, crossover,and mutation constitute next gener-

ation Np. It must be considered that number of chromosomes within each generation

always remain the same.

Figure 3.6: Single Point Mutation.

Figure 3.7: Double Point Mutation.
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Data: Number of mutations M = βxNs
for l = 1 to M do

Randomly select a chromosome xi from Ns;
Perform single point mutation off spring = x j;
Perform double point mutation off spring = xk;
Compute fitness of x j and xk;
Select offspring with better fitness value as Ns;

end

Algorithm 5: Mutation Routine

3.3.5 Load Balancing in HGA

The resources must be utilized in such a fashion so that the resources should neither be

overloaded nor stay idle for a long time. The load balancing algorithm distributes the

tasks among the processors in such a way that all of the processors complete the job with

the minimum difference in the finish time. At the end of each iteration, load balancing

is carried out that enhances the quality of the schedules in terms of schedule length by

balancing the load across all of the processors.

The load balancing parameter (LB) is defined in Eq.3.6, that is used in load balancing

algorithm to determine the quality of the load balance in each of the schedule:

LB = SLength−min{FT1,FT2,FT3, . . . ,FTn}, (3.6)

where SLength being the schedule length of the corresponding chromosome and FTn is

the finish time of processor n. The greater the LB value the worse is the load balancing.

The pseudo code of the routine is given in Algorithm 6. The complexity of the proposed

algorithm is nm+n2, where n is the number of generations and m is the population size.

Increase in any of these two factors, the runtime of HGA will also increase.
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Calculate LB parameter for all chromosomes using Eq. 3.6;
Select 50% of chromosome with higher LB values;
forall the selected chromosomes do

Identify the overloaded processor pl from chromosome yol;
Randomly select a processor pi such that pi 6= pl;
Replace the pol by pn at two places;
A new chromosome xlb is formed;
if f (xlb)> f (yol) then

Replace xlb by yol;
end

end

Algorithm 6: Load Balancing Routine

3.4 Simulation Results and Discussion

In this section the datasets (workflows) used for evaluation HGA and simulation results

are discussed.

3.4.1 Data Sets

Researchers have been working on the workflow patterns 1 and many benchmarks are

available for the performance evaluation of new algorithms. As an example, the NAS

Grid Benchmarks2 (NGB) are designed for the performance evaluation of parallel and

distributed systems. The benchmarks include four classes of problem obtained from

computational fluid dynamics (CFD) applications: Embarrassingly Distributed (ED), He-

lical Chain (HC), Visualization Pipeline (VP), and Mixed Bag (MB) (der Wijngaart &

Frumkin, 2002). These benchmarks represent the typical applications that run on the het-

erogeneous systems like grid. Each of these consists of computational tasks achieved

from NAS parallel Benchmarks (NGB). They symbolize the typical applications that run

on the heterogeneous systems like grid. ED represents an important class of applications

called parameter studies, in which same program is run several times independently but

with different set of input parameters. HC represents long chains of sequential compu-

1www.workflowpatterns.com
2www.nas.nasa.gov/publications/npb.html
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tations. It is the execution of repeating a process one after another. VP is compound of

different structured processes. It contains some degree of parallel as well as sequential

flow of tasks. The structure of MB is similar to VP but the degree of parallelism, and het-

erogeneity increases. The selected datasets, i.e. Montage (Deelman et al., 2005), Cyber-

Shake (Deelman et al., 2015), and Gaussian Elimination are complex and large workflows

that consist of most of the NGB classes of problem. These are real-world workflows that

demonstrate realistic execution behavior on distributed environment. Together with the

synthesized workflows that are generated randomly, we have a comprehensive set of test

loads to analyze the performance of the proposed algorithm.

Table 3.2: Characteristics of datasets

Workflows Type Source Nature Nodes Shape
Montage Real (Juve et al.,

2013)
Regular 25,50,100 Fixed 3.8

CyberShake Real (Juve et al.,
2013)

Regular 30,50,100 Fixed 3.9

Gaussian
Elimination

Simulated Generated Regular 14,20,
. . . 104,119

Fixed 3.13

Random Synthesized Generated Random 20,40,60,
80,100

Varying

3.4.2 Montage and CyberShake Workflows

Montage is an astronomical image mosaic engine created by NASA that is used to gen-

erate a mosaic of the sky. The input astronomical images are combined to form the final

mosaic. The geometry of the final mosaic is determined by the input images that can

be represented as a workflow. Fig. 3.8 illustrates the structure of a small size montage

having 20 nodes. In Montage, there are a lot of jobs with short execution time, such

as mProjectPP, mDiffFit, mBackground, and mJpeg that are required to be executed on

a number of different data items. On the other hand, some jobs such as mConcatFit,

mBgModel, and mAdd take much longer time to execute. The CyberShake workflow is

used by the Southern California Earthquake Center (SCEC). The CyberShake workflow
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Figure 3.8: Workflow benchmark: Montage (Deelman et al., 2005)

is used to identify the earthquake hazards within a region. CyberShake is a relatively sim-

ple workflow but can handle large datasets. As an example, a small 20 node CyberShake

workflow is shown in Fig. 3.9. CyberShake is compute-intensive as well as data-intensive

workflow. The details regarding the characteristics of both workflows can be obtained

from (Juve et al., 2013), in which the authors provided the details of the execution of six

diverse workflows including Montage and CyberShake. Therefore, these workflows with

different characteristics make them highly suitable to be used for the validation of our

proposed work.

3.4.3 Performance Evaluation

In this section the performance of the proposed algorithm is analyzed. The HGA is eval-

uated by using datasets with diverse characteristics and the achieved results are com-

pared with the following selected algorithms. We selected heuristics (MCP and HEFT), a

generic evolutionary algorithm (PEGA), and recently proposed hybrid genetic algorithms

(MPQGA and HSCGS) for comparative analysis with the proposed algorithm. These
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Figure 3.9: Workflow benchmark: CyberShake (Deelman et al., 2005)

selected algorithms based on different approaches provide sound grounds to study and

compare the behavior of the HGA. We have selected Average Schedule Length (ASL)

of 1000 runs as a performance metric. The range bars for ASL of all algorithms shows

a 95% of the confidence interval for corresponding ASL. This shows that for any other

workflow of similar type, the schedule length of that workflow would be in the given

interval with 95% of certainty. In some of the bar charts the confidence interval is not

distinguishable from the mean value for the scale used in those graphs.

The proposed algorithm is evaluated by simulations in a target system that is het-

erogeneous. The resources as well as the network links both are heterogeneous in the

execution environment. Since the tasks are different based on the type of the workloads,

therefore the heterogeneity of execution nodes and tasks both are considered in the hetero-

geneous execution times of each task on execution nodes. Similarly, the heterogeneity of

network links and the edges are implicitly considered as the varying communication costs

mentioned on the edges. After number of simulations, the most suitable parameters for

the proposed algorithm that provides best results with the crossover and mutation proba-
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bilities are 0.8 and 0.02 respectively. The population size and the number of generations

both attributes are taken as 100 to simplify the simulations.

HEFT is a well-known heuristic that provides good schedules. We seed HEFT sched-

ule in the initial population of HGA that accelerates the process to reach an optimal

(makespan). We have made simulations with and without HEFT solution in the initial

population of HGA. The results are given in Table 3.3. The results show that the HEFT

solution in the initial population accelerates the runtime of the algorithm.

Table 3.3: Comparision of results with and without HEFT Seed in Initial Population

Workflow
Nodes

HGA with
HEFT (sec)

HGA with-
out HEFT
(sec)

100 6.55 7.94
500 30.66 39.99
1K 72.11 80.07
2K 143.52 159.45

We have performed extensive simulations using Montage and CyberShake work-

flows to evaluate the behavior of the HGA. We obtained the data of these benchmark

workflows from (Deelman et al., 2015). The obtained data was the complete details of

previous executions of Montage and CyberShake. All of the algorithms were tested under

the same conditions to observe the comparative results. The performance metric used for

the performance results is ASL for 1000 runs. In the plots the horizontal axis represents

number of processors (P). The plots in Fig. 3.10 and Fig. 4.21 show the behavior of algo-

rithms in terms of ASL when the number of processors increase. The HGA outperformed

the state of the art algorithms, with its performance becoming better as the processors

increase. The average percentage improvement of the HGA over PEGA, MCP, HEFT,

HSCGS, and MPQGA was 73.97%, 59.55%, 29.85%, 12.58%, and 6.32%, respectively

for 30 nodes CyberShake (Fig. 3.10a).
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Similar results were obtained for CyberShake of 50, and 100 nodes with improved

performance as the size of workflow increased. The proposed algorithm showed 19.53%

and 25.05% improvement over the HSCGS, and 29.85% and 45.99% from the HEFT for

50 (Fig. 3.10b), and 100 (Fig. 3.10c) nodes CyberShake respectively. However, the HGA

significantly outperforms the PEGA and MCP in case of the CyberShake workflows. The

HGA outperformed the MPQGA by 11.3% for 50 nodes, and 13.86% for 100 nodes

Cyberhake workflows. The better performance of the HGA with the increasing size in

CyberShake workflows proves the scalability of the HGA.

Similar experiments were carried out with the Montage workflows of 25, 50, and

100 nodes. The results in Fig. 4.21 show a better performance of proposed algorithm,

as compared to the other five algorithms. In case of the 25 nodes (Fig 3.11a) Montage

workflow the HGA is better than the PEGA by 32.07%, MCP by 16%, HEFT by 6.7%,

and HSCGS by 4.97%. However, minimum average percentage improvement was 5.4%

and 8.56% over MPQGA for 50(Fig 3.11b) , and 100 (Fig 3.11c) nodes Montage work-

flows respectively. For the rest of the algorithms the average percentage improvement is

comparatively high. It is noticeable that the performance of proposed algorithm is better

for CyberShake workflows as compared to Montage workflows. Both types of work-

flows have different characteristics, CyberShake is data-intensive workflow as compared

to Montage workflow.

The bar charts of Fig. 3.12 show the overall performance of the CyberShake and

Montage workflows of different sizes. The average schedule lengths obtained from pro-

posed algorithm are less considerably than the other five algorithms. The HGA perfor-

mance improved from MPQGA by 6.54%, HSCGS by 7.99%, HEFT by 10.73%, MCP by

17.7%, and PEGA 29.33% for Cybershake workflows (Fig. 3.12a). In case of the Mon-

tage workflows (Fig. 3.12b) average percentage improvement of HGA over MPQGA is

5.46%, and rest of the results are also similar to CyberShake workflow. The proposed
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Figure 3.10: Performance of CyberShake workflows.

algorithm outperforms aforementioned algorithms, however the performance is signifi-

cantly better than PEGA. In the proposed algorithm the heuristic accelerates the process

to search an optimal (makespan) schedule and modified genetic operators help to search

the problem space efficiently. These features dominate the HGA among other algorithms

and it outperforms completely.
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Figure 3.11: Performance of Montage workflows.

3.4.4 Gaussian Elimination

The Gaussian elimination algorithm generates a repeating pattern as shown in Fig. 3.13.

The parameter m determines the size of the workflow. As an example, a small 20 nodes

Gaussian elimination data flow for m = 6 is shown in Fig. 3.13 to illustrate the structure.

Number of nodes for any matrix size can be calculated by using Eq. 3.7.

n = (m2 +m−2)/2, (3.7)
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Figure 3.12: Performance of CyberShake and Montage workflows of different sizes.

where n being the number of nodes within the graph.

The parameter m is also called as matrix size which determines the number of nodes

in Gaussian Elimination workflow by using Eq. 3.7. Greater the value of parameter m

higher the number of nodes in the workflow. We used different values of parameter m

and generated workflows of various sizes. The values of parameter m used in our exper-

imentation are from 5 to 15, which generated workflows of suitable sizes for our simu-

lations. HGA and aforementioned algorithms were experimented with these workflows.

Fig. 3.14a shows the plot of average schedule length with the increase in the workflow

size determined by the matrix size (m) taken along x-axis. We can see that as the size

of workflows become bigger the average schedule lengths increase because the execution

time of bigger workflows will be higher. The plot in Fig. 3.14a shows a significant av-

erage improvement of 19.6% of HGA over PEGA, which is considerable improvement

as compared to other algorithms. The HGA is better than MCP by 7.86%, HEFT by
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Figure 3.13: Gaussian elimination workflow for matrix size 6 (20 nodes).

4.07%, HSCGS by 2.14%, and MPQGA by 1.32%. The performance of the HGA with

increase in the processors was also investigated and the results obtained are presented

in bar chart 3.14b. The bar chart shows that as compared to MPQGA, and HSCGS, the

proposed algorithm did not performed well for less number of processors but as proces-

sors increase the results of HGA became better. The HGA results are approximately 28%

better than PEGA while about 7% better as compared to HEFT on the average. Proposed

algorithm showed considerable improvement for Gaussian Elimination workflow.

3.4.5 Synthesized Workflows

The synthesized workflows can be generated randomly (Topcuoglu et al., 2002) based on

the following parameters and these are used for performance evaluation of the HGA.

• Workflow Size (n): The parameter n is the number of nodes in a workflow that rep-

resents the size of a workflow. Various sizes of random workflows using different

values of n given in the following set were used in the performance evaluation of

the HGA. n = {20,40,60,80,100}.
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Figure 3.14: Performance results with Gaussian Elimination workflow.

• Shape Parameter (α): The shape of workflow can be handled by the parameter α .

If α < 1, then longer workflows with less parallelism are generated. If α > 1, the

small size workflows with higher parallelism are generated. If α = 1, the workflows

of balanced size are generated that are neither long nor short. The HGA is evaluated

with three different sizes of workflows, with α= {0.1, 1, 2}.

• Communication to Computation Ratio (CCR): The parameter CCR determines whether

the workflow is computation-intensive or communication-intensive. If CCR > 1,

then the workflow is communication-intensive. If CCR < 1, then the workflow is

compute-intensive. If CCR = 1 then the workflow is neither communication nor

computation-intensive. The values of CCR considered in experimental evaluation

were 0.1, 1, and 10.
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• The number of resources is represented by the parameter P, we use the number of

resources as 2x, where x = {2, 3, 4, 5, 6}.

• Out degree: This parameter determines the number of edges going out from a node.

Because the workflows were random, the out degree was chosen at random.

• Range percentage of computation costs on processors (β ): It determines the het-

erogeneity factor for processor speed. Its higher value causes significant difference

in the computation costs of tasks and lower value indicates similar or equal compu-

tation costs of tasks. The values of β used in simulations are 0.1, 0.5, and 1.

Variety of random workflows with different characteristics were generated to analyze the

performance of proposed algorithm. Fig. 3.15 presents the behavior of algorithms for ran-

dom 100 nodes workflow when processors increase. We must note that as the resources

increase the average schedule lengths decrease up to certain extent, which indicates that

execution times can be reduced by exploiting parallelism in workflows but it is limited

due to the serial content in workflows. The HGA showed 50.6% over PEGA, 44.57% over

MCP, 22.76% over HEFT, 13% over HSCGS, and 6.78% over MPQGA average percent-

age improvement. Sets of workflows 5k, 10k, and 15k with different characteristics as

mentioned above were generated and simulation results are achieved with CCR values of

0.1, 1, and 10. The results are shown in Fig. 3.16. The HGA showed significant improve-

ment over MPQGA, HSCGS, HEFT, PEGA, and MCP for the results achieved for CCR

values of 1 and 10. However, the performance of the proposed algorithm is not convincing

for CCR value 0.1. This indicates that HGA performs well for communication-intensive

workflows.

The load balancing feature in the proposed algorithm is also evaluated by comparing

the results achieved from algorithm with and without load balancing. Results are pre-

sented in Fig. 3.17. The plot shows the strength of load balancing feature of HGA as
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Figure 3.15: Performance results with random workflows with increasing number of pro-
cessors.

the average schedule lengths are better with load balancing. The HGA outperformed and

considerable better results proved the supremacy of proposed algorithm over the other

five algorithms. The time complexity of HGA is O(nm+n2) ,where n is number of gen-

erations and m is the population size. Overall the time complexity of heuristics is rela-

tively low as compared to evolutionary algorithms for instance in the evaluation of HGA,

HEFT a famous heuristic is used to compare the results. Its time complexity for low

density workflows is O(vp) and O(v2 p) for dense workflows, where v is the number of

tasks in the workflow and p is the number of processor of execution environment. Which

is less as compared to HGA. On the other hand, the time complexity of genetic algorithm

MPQGA is O(gener×n2×m), where gener are the number of generations, n is the num-

ber of task in a workflow and m is the number of processors in a system. Although it is in

the order of two but product of these parameters shows that MPQGA is more time com-

plex. The proposed algorithm has high complexity as compared to heuristics for instance

HEFT but low as compared to MPQGA. Since the proposed algorithm is designed for

the static scheduling, therefore the limitation of high complexity of HGA might not affect

the system performance.
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Figure 3.16: Performance of synthesized workflows.
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Figure 3.17: Performance results of HGA with and without load balancing with increas-
ing number of nodes.
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3.5 Conclusion

In this chapter, a genetic evaluation based approach is modified and a new hybrid genetic

algorithm (HGA) for workflow scheduling is presented. The proposed algorithm seeds

the Heterogeneous Earliest Finish Time (HEFT) based schedule in the initial population

that guides the algorithm to reach an optimal (makespan) schedule in fewer generations.

Rigorous search with two fold crossover and mutation operators cover the large problem

space and enhances the HGA performance. The proposed algorithm optimizes workflow

schedule length with an additional feature of load balancing that ensures the optimized

resource utilization. The scheduling algorithms with different approaches are compared

with the HGA. The simulations with variety and different sizes of datasets show the di-

versity and scalability of proposed algorithm. The results prove that the HGA outper-

forms and the quality of schedules is better by reduced schedule lengths. The simulation

with different communication to computation ratio (CCR) shows that proposed algorithm

performs well for workflows with CCR values greater than 1, that is communication-

intensive workflows.

As discussed in chapter 2, the scientific communities are facing data deluge problem

in conducting their experiments. The data-intensive aspect has forced them to model

data-intensive applications in workflows. Stream-based data processing mechanism is an

effective way to optimize the data-intensive workflows. In the next chapter, we focus

optimization of data-intensive workflows using stream-based data processing model.
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CHAPTER 4

PARTITION BASED ALGORITHMS FOR DATA-INTENSIVE WORKFLOW
OPTIMIZATION

This chapter presents two proposed algorithms to optimize data-intensive workflows.

First approach is a workflow partitioning based algorithm that reduces latency and en-

hances throughput of data stream based applications. The second algorithm is the ex-

tension of first approach, in which data parallelism is deployed to improve the latency

and throughput. The simulation results prove that the second approach is not only an im-

provement of first algorithm but also outperforms many state of the art algorithms. The

description of algorithms and discussion on simulation results are organized in the later

sections.

4.1 Introduction

Scientists are struggling to manage the data-intensive applications, these efforts can be

categorized in three different domains: a) hardware design or architectural improve-

ments (Givelberg et al., 2011; Reimann et al., 2011), b) new storage and memory man-

agement techniques (Dean & Ghemawat, 2008; L. Wang et al., 2013), and c) algorithms

to optimize data-intensive applications (Jung & Kettimuthu, 2013; Shibata et al., 2010).

The science of workflows has emerged to simplify the complex scientific processes by

step-wise representation in the form of workflows (Laszewski et al., 2007). The develop-

ments in the aforementioned areas optimize the execution of data-intensive applications

in different ways. Traditionally, the data-intensive workflow optimization problem is ad-

dressed by using a number of techniques, but data stream computing is proven to be a well

established concept in data-intensive workflow optimization in which data stream consists

of continuous instances of data items (Han, Liew, et al., 2011). Stream computing is usu-
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ally associated with real-time continuous data from sensors, audio/video systems, and

dynamic social network. Moreover, this concept can also be used for processing archived

data, e.g., a single query to a database can invoke a stream of data items for processing,

where a stream of data consists of different instances of data (Atkinson et al., 2012). The

behavior of each task in such applications constitute the following three stages and repeats

for each instance of the data: a) the task gets inputs of the data instances, b) processes

the data, and c) passes the output processed data. The continuous stream of input data can

be either from predecessors or an I/O read operation. The output processed data can be

passed on to the successors or I/O write operation or store the data in the memory. The

streaming model of data processing introduces an inherent parallelism within the work-

flow. At the execution level, if processed data items are sufficient to start the execution of

a successor task, the successor task can start its execution. This reduces the waiting time

of the successor tasks,which significantly reduces the execution time of the application.

In stream-based applications, throughput and latency are two main metrics to measure the

performance of an application execution.

In this research, we adopt the stream-based data processing model and propose a dual

objective Partitioning based Data-intensive Workflow optimization Algorithm (PDWA)

see section 4.3. The proposed algorithm optimizes data-intensive workflow by provid-

ing low latency schedules with reasonable throughput. PDWA partitions the application

task graph in such a way that inter-partition data movement is minimum. Large amount of

data movement among execution nodes incurs high overhead in the execution cost of data-

intensive applications. The optimized partitions in PDWA ensure that inter-partition data

movement is the lowest. Each partition is mapped to the execution node that provides

minimum execution time, which reduces the latency. Furthermore, we leverage partial

task duplication to further reduce the latency. We consider a heterogeneous computing

system in which the execution nodes and communication links have different computing
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and communication capacities, respectively. Most of the existing work (Guirado et al.,

2013; Hackett et al., 2013; Vydyanathan et al., 2011) consider homogeneous execution

environment for data-intensive optimization without incorporating the system heterogene-

ity. We have also proposed the Improved PDWA (I-PDWA), which shows better results in

terms of reduced latency and improved throughput for details see section 4.4. We show

that both proposed approaches provide considerably better schedule with lower latency

and improved throughout. We validate the proposed algorithms using synthesized and

real-world workloads (Arabnejad & Barbosa, 2014b),and show the performance advan-

tages of the proposed algorithms.

4.2 Related Work

Number of approaches are found that optimize latency and throughput of streaming ap-

plications but most of them are designed for homogeneous computing environment. In

Guirado et al. (2013) coarse-grained applications in which communication costs are neg-

ligible and algorithms are designed to reduce the latency of such applications. The authors

proposed two different approaches to optimize both latency and throughput of streaming

applications a) Data Parallel Replication Mechanism (DPRM), b) Task Copy Replication

Mechanism (TCRM). In the former algorithm, data parallelism is exploited to enhance the

throughput while in the later task replication technique is used to reduce latency. The task

and data replications increases the complexity and the overhead of the algorithms. How-

ever, the algorithm proposed in this paper optimizes both (latency and throughput) per-

formance indicators with relatively simple approach. In addition to this, the algorithm is

designed for heterogeneous computing environment. Similarly, Vydyanathan et al. (2011)

proposed algorithm that generates pipeline schedules for streaming applications but us-

ing two different approaches. The algorithm minimizes latency by satisfying throughput

constraint and vise versa. The authors exploited pipeline, task, and data parallelism that
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Table 4.1: Comparison of proposed algorithms with related algorithms.

Algorithm Parallelism Workflow Data
Processing

Optimization Execution References

Partitioning Model Metric Environment
I-PDWA Task,Data,

Pipelined
Yes SDPM Latency,

Throughput
Heterogeneous Proposed

Algorithm
PDWA Task,

Pipelined
Yes SDPM Latency,

Throughput
Heterogeneous Proposed

Algorithm
AWOP - No TDPM Latency Heterogeneous (Munir et

al., 2013)
PEFT - No TDPM Latency Heterogeneous (Arabnejad

& Barbosa,
2014b)

TCRM Task Yes SDPM Latency Homogeneous (Guirado et
al., 2013)

TCLO Task,Data,
Pipelined

Yes SDPM Latency,
Throughput

Homogeneous (Vydyanathan
et al., 2011)

increases the algorithm complexity and the target system is homogeneous.

Same problem is addressed in numerous algorithms which are for specific execution

platform like Cloud (Issa et al., 2013). In these algorithms, along with latency or through-

put time and cost of computation are crucial to minimize. It is due to the cloud system

that is based on "resources on demand" and "pay as you go" policy. Similarly many

approaches based on different execution platforms (grid, cloud, clusters etc) are found

in literature. A scheduling heuristic for stream based application for grid is proposed

in (Agarwalla et al., 2007). In this paper authors proposed a dynamic scheduler named

streamline, that is adaptive in nature and performs scheduling in three phases a) stage

prioritization phase, b) resource filtering phase, and c) resource selection phase. In first

phase, a priority list of tasks is generated and then resources that are capable of perform-

ing tasks are filtered and lastly resources are allocated for tasks. The scheduler is designed

specifically for grid environment and implemented on Globus toolkit.

A recent research effort by Hackett et al. (2013) proposes an approach for stream

based applications. Authors leverage network topology graph for optimizing throughput.

Analogy has been used between communication links and electrical circuit. Based on

this analogy the load on the communication links are considered as resistance in elec-
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trical circuit, which is called Kirchhoff Index (KI). KI metric is used as a proxy for the

optimization of throughput. The research entirely targets homogeneous computing envi-

ronment. Several other research studies (Gu & Wu, 2010; Agrawal et al., 2009; Gu et al.,

2012) are found in literature but they propose solutions either for homogeneous comput-

ing environment or for specific scenarios. The algorithm proposed in this paper differs

from these approaches in two respects a) the algorithm is a balance between task and

data parallelism that optimizes large variety of workflows, b) the computing environment

is heterogeneous in addition to the TPGs. Table 4.1 presents a comparative overview of

related algorithms that differentiate the proposed algorithm from other algorithms.

4.3 Partition Based Approach

The data-intensive workflows are characterized by the high communication costs due to

large data movement among execution nodes. The workflows are modeled as Directed

Acyclic Graph (DAG) (Xu et al., 2013). A DAG, G(V,E), consists of a set of vertices,

V , and edges, E. Each vertex represents a process (application task) that an input stream

of data instances undergo, while the edges show the precedence of processes and the

direction of the data flow. The execution environment, H(U,L), consists of a set of com-

pute nodes, U , and communication links, Li j between nodes i and j. In heterogeneous

computing systems, computation nodes have different computation capacity, Es. We as-

sume that all computation (execution) nodes are fully connected with each other through

bi-directional high speed communication links. The cost model of a pipelined schedule

for data-intensive workflows include throughput, T P, and latency, L. Both metrics are

closely related to each other with a trade-off between them. Following section outlines

an approach to estimate throughput and latency of the pipelined schedule.

74



4.3.1 Throughput Estimation of Pipelined Schedule

Since the execution environment consists of two components, i.e., the execution nodes,

and the communication links between these nodes, therefore, the system throughput is

based on both these components. The two parts of throughput are termed as communi-

cation throughput, T Pcomm, and computation throughput, T Pcomp. We estimate T Pcomm of

Li j between execution nodes, ui and u j, as:

T Pcomm(Li j) = Bw(Li j)/
n

∑
e=1

W (Li je) (4.1)

where, Bw(Li j) is the data transfer capacity of link Li j between nodes ui and u j. ∑
n
e=1W (Li je)

is the data transfer load on the link Li j, e represents the edges of application graph mapped

to the links L. The communication throughput of communication links is given by:

T Pcomm = min(T Pcomm(Li j)) (4.2)

Similarly, the computation throughput, T Pcomp, of an execution node is defined as:

T Pcomp(ui) = Es(ui)/
n

∑
i=1

W (ui) (4.3)

where, Es(ui) is the execution speed of compute node ui and ∑
n
i=1W (ui) is the compu-

tation load on the node ui. The computation throughput of execution nodes is given by:

T Pcomp = min(T Pcomp(ui)) (4.4)

where, i = {1,2,3, . . . ,n}. The system throughput will be minimum between T Pcomm and

T Pcomp and is given as:

T P = min(T Pcomm,T Pcomp) (4.5)
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(a) Example DAG with 8 application nodes
(v1,v2, . . . ,v8) and 11 edges (e1,e2, . . . ,e11).

(b) Execution environment of 3 execution nodes
(u1,u2,u3) connected with links (l1, l2, l3).

Figure 4.1: An example DAG and execution environment.

4.3.2 Latency Estimation of Pipelined Schedule

Latency is defined as the time spent by an instance of the data in the system. Let D

represents a stream of input data and data instances are {d1,d2, . . . ,dn}. Latency is given

by:

L = tdn− tdn−1 (4.6)

where, tdn and tdn−1 is the time when dn and dn−1, the consecutive instances of a data

stream, complete their processing in the system, respectively. The difference between

their completion times is the latency of the pipelined schedule.

4.3.3 Algorithm Architecture

The proposed algorithm consists of two phases. a) partitioning phase, and b) mapping

phase. In the partitioning phase, the algorithm partitions the workflow based on pre-

defined maximum possible number of tasks in single partition. This grouping of tasks in
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Input: Given an application task graph G(E,V ).
Output: S of a Near Optimal Solution.
Read the graph: let E is the set of e edges and V is the set of v application tasks;
Partition(E,V ) ; // Algorithm 8
Mapping(P Partitions) ; // Algorithm 9
Return optimal solution S

Algorithm 7: Partitioning based Data-intensive Workflow Optimization Algorithm
(PDWA).

Input: E: Set of e edges; V : Set of v application tasks.
Output: P: Partitions of application task graph. Each partition contain m number

of tasks.
Compute the threshold edge weight eth = ∑

n
i=1 ei/n;

Npmax = v∗ fp;
Duplicate the entry tasks ve;
while pool of non-partitioned tasks is not empty do

let ei j be the edge weight between task node vi & v j;
if (ei j > eth) then place vi & v j in partition Pk;
delete tasks vi & v j from the pool of tasks to be partitioned;
if (Np = Npmax) next partition Pk+1;

end
The application task graph splits into Pn partitions;
/* Optimization of partitions */
while Inter-partition edge weights ei j > eth do

Shift the task vi or v j to any other partition such that inter-partition edge
weight always less than eth;

end
Return Pn partitions;

Algorithm 8: Workflow Partitioning Algorithm.

each partition is carried out in deterministic way. A threshold edge weight is determined,

which is considered as the mean value of all edge weights. These initial partitions are

then optimized in such a way that inter-partition data movement is minimum.

4.3.3.1 Illustration with an example

For a given data-intensive application, modeled as a DAG, G(V,E), PDWA minimizes

the latency with reasonable throughput for a stream-based data processing model. An

example DAG is shown in Fig. 4.1a to illustrate the proposed methodology. The applica-

tion tasks are represented as vertices (v1,v2, . . . ,v8), and edges (e1,e2, . . . ,e11) show the

dependencies between them. The edge weight shows the time required to transfer the
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Input: P Partitions of application task graph and each partition contain almost
equal m number of tasks.

Output: M mapped partition on the set of R resources.
for u1 to un do

Compute the CI of each partition using equation 4.8;
end
for P1 to Pn do

Determine the minimum CI value among the execution nodes i.e., CImin(ui);
if (ui is Idle) then Map partition P to CImin(ui);

end
Return M mapped P partitions;

Algorithm 9: Partitions Mapping Algorithm.

data between the pair of execution nodes. PDWA is designed for heterogeneous comput-

ing environment where the computing capacity of execution nodes and the data transfer

capability of the communication links between the nodes are heterogeneous. Consider

an execution environment H(U,L) as shown in Fig. 4.1b that consists of three execution

nodes (u1,u2,u3) that are fully connected through communication links (l1, l2, l3). We

assume that the baseline computing capacity is 1 GHz and each execution nodes have

7, 5 and, 3 cores, respectively, as shown in Table 4.2. The basic data transfer capabil-

ity of communication links is 1 Gb/sec, and data transfer rate of each link is 10, 100,

1000 Gb/sec, respectively. CT (vi) represents the computation time of application task vi.

The computation times of all application tasks of the example DAG shown in Fig. 4.1a

are given in Table 4.3. The pseudocode of the proposed algorithm is presented in Algo-

rithm ??. The DAG is partitioned using the Partition algorithm, shown in Algorithm 8.

The DAG is split into suitable number of partitions such that the inter-partition data move-

ment is minimum. We incorporate partial task duplication in PDWA. Partial task dupli-

cation only duplicates the entry tasks, which helps to reduce the latency of the schedule.

The threshold edge weight, eth, is the minimum allowed edge weight between partitions,

which is 15 in the example. eth is determined by the statement 1 of Algorithm 8. Npmax

is the maximum possible number of application tasks in a partition, that is determined by
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the product of vertices v and partitioning factor fp. We assumed fp = 0.7 that provides

suitable partitions. As a result of Algorithm 8, the example DAG will be split into two

parts. Fig. 4.2a shows the initial partitions in which two edges, e57 and e68, with weights

that exceeds eth. Lines 10 to 12 of Algorithm 8 perform iterations until all inter-partitions

edges have weights less than eth. Fig. 4.2 illustrates that after two iterations, the DAG is

partitioned such that there is no edge that violates the condition. In the first iteration, the

application node 5 is shifted from partition P1 to P2, and during the second iteration v8 is

moved to P1. Finally, the required condition is satisfied and the DAG is divided into two

optimized partitions where, P1 consists of application tasks {1, 2, 4, 6, 8}, and partition,

P2, consists of application tasks {1, 3, 5, 7}. The optimized partitioned DAG is mapped to

the execution nodes by using the method shown in Algorithm 9. We define computation

index, CIu j(Pn), of execution node, u j, for partition, Pn, a criteria to select execution node

for partition Pn.

CIu j(Pn) = ∑
vi∈Pn

CT (vi) (4.7)

where, vi,{i = 1,2, . . . ,m}, if there are m vertices in a DAG, are the application tasks

that are grouped to the partition Pn. Each partition is mapped to the execution node

which gives minimum CI. In the example DAG, the CI(P1) is 55, 48, and 45, for the

execution nodes u1,u2, and u3, respectively. Similarly, the CI(P2) is 45 for u1, 50 for

u2, and 55 for u3. The minimum CI of partition P1 is for execution node u3, so P1 is

mapped on u3. Similarly, P2 is mapped to u1. The pipelined schedule with latency 76 is

obtained by PDWA, which is shown in Fig. 4.3a. The schedule of the algorithm without

partitions (AWOP) is shown in Fig. 4.3b, and its latency is 88. The proposed algorithm

outperforms with significant improvement in the schedule latency. It must be noted that

PDWA performs better while utilizing fewer number of execution nodes.
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(c) Optimized partitions achieved after second itera-
tion.

Figure 4.2: PDWA partitioning process for DAG shown in Fig. 4.1a.
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Table 4.2: Heterogeneity model of three execution nodes.

Network Data Transfer Execution Computing
Links Capability Nodes Capacity

l1 10 u1 7
l2 100 u2 5
l3 1000 u3 3

Table 4.3: Application tasks completion time of DAG shown in Fig. 4.1a

Tasks (vi) CT (u1) CT (u2) CT (u3)
1 11 13 9
2 10 15 11
3 9 12 14
4 11 16 10
5 15 11 19
6 12 9 5
7 10 14 13
8 11 15 10

4.4 Data Parallelism Based PDWA (I-PDWA)

In data stream processing there can be three types of parallelism, i.e. a) task parallel

execution, b) data parallel execution,and c) pipeline execution. Lets discuss these types

with the help of example. Assuming Task Parallel Graph (TPG) shown in Fig.4.4 as an

example and v1, v2, v3, and v4 have expected execution time for three identical execution

nodes are 5, 10, 15, and 20 respectively and edge weights e1,e2, e3, and e4 as 2, 4, 6,

and 8 respectively, we illustrate these execution options. Task parallel execution:Task

parallelism can be deployed to those tasks that have no dependencies between them. Two

tasks are called independent of each other if the output data stream never reaches the

input stream of the other. Such independent tasks can be executed in parallel on different

execution nodes instead of the execution of these tasks sequentially that causes longer

time to execute. For the example in Fig. 4.4 the resulting task execution will be as shown

in Fig. 4.5. In this example tasks v2 and v3 are independent of each other, therefore these

tasks execute in parallel on two different execution nodes. Task v2 can start execution

as soon as task v1 is completed because both tasks are on same execution node, however

the delay caused in the start of task v3 is because it is submitted to different execution
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Figure 4.3: Pipelined schedules of example in Fig. 4.2.

Figure 4.4: Example Task Parallel Graph

node and the delay is due to the edge between tasks v2 and v3 that is e2 = 4. The overall

execution time is 51 time units as shown in Fig. 4.5.

Data parallel execution:Data parallelism is the parallel execution of data items with

no data dependencies between them. In data parallel execution, data is chopped into
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Figure 4.5: Task Parallel Execution

Figure 4.6: Data Parallel Execution

number of independent chunks of data and tasks are replicated to execution nodes that

process these independent chunks of data in parallel. For the example in Fig. 4.4, the data

parallel execution is shown in Fig. 4.6. Since, there are three execution nodes (u1,u2,u3),

therefore all the tasks are replicated on these execution nodes and the input data is also

chopped into three independent chunks. The completion time in data parallel execution

is 50 time units as shown in Fig. 4.6.

Pipelined execution:The task graph is mapped by taking into account the iterative be-

havior. A pipeline schedule will be developed and synchronous stages will be produced

on all execution nodes as shown in Fig. 4.7. The input data is in the form of stream of

different data items therefore, in Fig. 4.7 the tasks blocks without pattern present the exe-

cution sequence of first data item and the blocks with pattern represent second data item,
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Figure 4.7: Pipelined Execution

similarly a pipeline execution continues for complete input data stream. The completion

time is 48 time units in this scenario.

Task parallelism and pipelined execution features are already integrated in PDWA,

however we have incorporated data parallelism in Improved PDWA (I-PDWA) presented

in this paper. We apply the data parallelism technique to the most compute-intensive tasks

of a workflow that reduces the latency of data-intensive workflow execution as compared

to PDWA. In PDWA, partial task duplication is used in which the initial (entry) task is

duplicated to multiple execution nodes that reduces the latency. We can further optimize

latency by introducing data parallelism. In data parallelism mechanism different data

items are processed by the same task, that are replicated on different execution nodes.

The parallel execution of different chunks of data reduces the execution time. Fig. 4.8

depicts the Data Parallel Technique (DPT) using an example task with execution time

of 40 time units and the amount of data processed is 20 MB. It is assumed that the task

data parallel capabilities and each data item of input stream can be divisible into equal

parts. As shown in Fig. 4.8 data is chopped into 4 pieces and 5 MB of each data chunk is

processed by replicating the task T as {T ′,T ′′,T ′′′,T ′′′′}. Then the execution time of task

T is reduced to 10 time units by the factor of 4. This concept is exploited in I-PDWA to

optimize latency.
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Figure 4.8: Data Parallel Technique

Figure 4.9: An example workflow to illustrate the proposed algorithm.

4.4.1 Illustration with an Example

We illustrate the proposed algorithm with an example workflow shown in Fig. 4.9 that is

required to be executed on three fully- connected node target system as shown in Fig. 4.10.

We consider the heterogeneity in the following two ways: a) The execution tasks are

different, therefore, they require different execution times to process the input stream of

data. Table 4.4 shows the completion time of all execution tasks across all execution

nodes, b) The target system (execution environment) is also heterogeneous in which the
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Figure 4.10: Execution environment for example workflow shown in Fig 4.9.

Table 4.4: Application tasks completion time of DAG shown in Fig. 4.9.

Tasks (vi) CT (u1) CT (u2) CT (u3)

1 19 14 6
2 19 12 8
3 17 8 3
4 13 11 5
5 16 13 9
6 15 11 7
7 16 10 9
8 14 11 5
9 20 18 12

10 21 16 7

Table 4.5: Heterogeneity model of three execution nodes.

Execution Nodes DPS Communication Links DTC
u1 2 l1 10
u2 4 l2 100
u3 6 l3 1000

Data Processing Speed (DPS) of each execution node (u1,u2,u3) is different. Moreover,

the Data Transfer Capacity (DTC) of communication links (l1, l2, l3) between these nodes

are different. Table 4.5 presents the characteristics of the execution environment. The

baseline DPS of each execution node is assumed to be 1 GHz and the numbers in the

second column of Table 4.5 are the number of cores in each execution node. Similarly the

baseline DTC is assumed to be 1 Gb/Sec and the links l1, l2, l3 have multiple of 10, 100,

1000 of baseline DTC.

The pseudo code of the proposed algorithm is given in Algorithm 10. A workflow

modeled as TPG and execution environment T EE is read by the proposed algorithm.

Then the T PG is partitioned based on the Algorithm 11. Entry task is duplicated in first

two partitions, which reduces the latency significantly. The Algorithm 11 partitions T PG
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Input: Given an application task graph T PG(V,E).
Output: S of a Near Optimal Solution.
Read the graph: let V is the set of v application tasks & E is the set of e edges;
Partition(V,E) ; // Algorithm 11
Mapping(P Partitions) ; // Algorithm 12
DPT(P Partitions, T EE(U,L)) ; // Algorithm 13
Return optimal solution S

Algorithm 10: Data Parallel Technique based Partitioning based Data-intensive Work-
flow Optimization Algorithm (DPT-PDWA).

Input: E: Set of e edges; V : Set of v application tasks.
Output: P: Partitions of application task graph. Each partition contain n number

of tasks.
Npi = 0; i = 1;
n = The number of tasks in the task graph;
Compute the threshold edge weight eth = ∑

n
i=1 ei/n;

Npmax = vn ∗ fp; // Maximum possible number of tasks in one partition
Duplicate the entry tasks ve to first two partitions;
while (i <= n) do

if(Np j < = Npmax)
Assign task vi to Partition p j;
i = i+1; //number of application task
Np j = Np j + 1; // Number of tasks in p j partition
else
p j = p j +1; // Next Partition
Np j = 0; // Reset the number of tasks in a partition

end
The application task graph splits into Pn partitions;
/* Optimization of partitions */
while Inter-partition edge weights ei j > eth do

Shift the task vi or v j to any other partition such that inter-partition edge
weight always less than eth;

end
Return Pn partitions;

Algorithm 11: Workflow Partitioning Algorithm.

and iteratively process until the inter-partition edge weights is less than the threshold edge

weight (eth). eth is assumed to be the average of the edge weights of entire workflow i.e.

eth = ∑
n
i=1 ei/n. In the example workflow eth is 19. After a number of experiments, it

is selected that partition factor fp should be 0.5 in order to achieve suitable partitions.

Maximum possible number of tasks in a partition is given by Npmax = vn ∗ fp i.e. 5 in the

example workflow. The T PG is partitioned according to Algorithm 11 and the resulting

partitions obtained are P1 = {1,2,4},P2 = {1,6}, and P3 = {3,5,7,8,9,10}. In the map-
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Input: P Partitions of application task graph and each partition contain almost
equal m number of tasks.

Output: M mapped partition on the set of R resources.
for u1 to un do

Compute the CI of each partition using equation 4.8;
end
Determine the minimum CI value among the execution nodes i.e., CImin(ui);
Make a queue of partition QP to be mapped based on the descending order of
their CImin(ui);
while Qp not empty do

if (ui is Idle)
Map partition from queue QP j to CImin(ui);
else
Map partition QP j to ui that offer next lowest computation time;
Delete the partition QP j from the queue;

end
Return M mapped P partitions;

Algorithm 12: Partitions Mapping Algorithm.

Input: P Mapped Partitions of application task graph. Each Mapped Partition
contain almost equal m number of tasks. Each execution node has n
number of cores.

Output: M DPT applied to bottle neck task
for P1 to Pn do

Determine the bottle neck task TBN in each partition;
Determine the execution node ui where TBN is mapped;

end
There are n cores in the execution node then Divide the input data to n parts for
ui1 to uin do

Map each chunk of data to each core
end
Return DPT applied to TBN ;

Algorithm 13: DPT Algorithm.

ping phase (see Algorithm 12) each partition is mapped to one execution node, therefore

within a partition the cost of data movement is zero. We define a criteria to map partition

on the execution node named as Computation Index (CIu j(Pn)), which shows the CI of

the execution node u j of partition Pn. CI is given by:

CIu j(Pn) = ∑
vi∈Pn

CT (vi) (4.8)

where, i = 1,2, . . . ,m , if there are m vertices in a DAG, are the application tasks that are

88



grouped to the partition Pn. Each partition is mapped to the execution node that gives the

minimum CI. Hence, according to the above definition in this example CIu1(P1) is 51,

CIu2(P1) is 37 and CIu3(P1) is 19. Similarly, for partition P2, CIu1(P2) is 34, CIu2(P2) is

25 and CIu3(P2) is 13. CIu1(P3) is 104, CIu2(P3) is 76 and CIu3(P3) is 45, for partition P3.

According to Algorithm 12 line 5, CImin(ui) for all partitions are determined and a priority

queue Qp is generated for the assignment of partitions to the execution nodes as shown

in line 6. Qp is generated based on the descending order of CImin(ui) values. Therefore,

in the example Qp will be P3, P1, and P2. So, based on Algorithm 12 line 6 to 12 P3 will

be mapped to u3, P1 will be mapped to u2 and P2 will be mapped to u1. At this stage, we

apply DPT to bottleneck tasks Tbn. These are the tasks with maximum execution times

in each partition. In this example, task v1 is most compute intensive (Tbn) in partition 1

as well as in partition 2, while v9 is Tbn in partition 3. Therefore, computation time of

Tbn is 19, 14, and 12 on execution nodes u1, u2, and u3 respectively. From Table 4.5 we

can observe that execution node u1 is dual core, u2 is quad-core and u3 has six cores. On

each Tbn tasks we apply DPT, as discussed in Section 4.4. The execution time of task

v1 on u1 is reduced to half (i.e. 9.5 time units) similarly the execution time of v1 on u2

is reduced to one fourth (i.e. 3.5 time units) and the execution time of v9 is decreased

by six times that is 2 time units. After applying DPT the resulting pipelined schedule

obtained is shown in the Fig. 4.11 with latency of 56.5 time units while by applying

PDWA on the same workflow the latency is 77 as shown in Fig. 4.12. In both figures the

plain blocks represent first instance of data item and the dotted pattern filled boxes show

second instance of data item. The arrow represents pipelined schedule for further stream

of data. In the similar pipelined fashion, whole stream of data is processed in the target

system. I-PDWA outperforms not only from latency but also in throughput values as the

throughput of PDWA is 0.013 and proposed algorithm is 0.0176. The proposed algorithm

provides lower latency and high throughput and shows about 36% improvement in both

89



Figure 4.11: Corresponding schedule of example workflow shown in Fig. 4.9 using I-
PDWA.

Figure 4.12: Corresponding schedule of example workflow shown in Fig. 4.9 using
PDWA.

performance metrics as compared to PDWA.

4.5 Simulation Results and Discussion

In this section we evaluate the performance of I-PDWA with variety of datasets. We se-

lected synthesized workflow (Ahmad et al., 2012) with diverse characteristics in addition

using real-world applications to evaluate the performance of the proposed algorithm. The

real-world applications that we used in our evaluation are Montage and Cybershake (Deel-

man et al., 2009). We performed 1000 runs of each simulation and calculated average la-

tency and throughput which are discussed in detail in the following section. The selected

datasets include almost all workflow patterns that are usually considered as benchmarks

to study the performance of the given algorithm.
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4.5.1 Performance Evaluation Using Synthesized Workflows

Synthesized workflows with different workflows characteristics are generated to evaluate

the proposed algorithm. The characteristics of the synthesized workflows depend on the

following parameters.

1. Workflow Size (n) The parameter n selects the number of nodes in a workflow.

Higher the value of n bigger will be the size of the workflow. We generated the

workflows of different size to evaluate the proposed algorithm. The following set n

shows the sizes of workflows that is used in simulations n = {2k,4k,6k,8k,10k}.

2. Communication to Computation Ratio (CCR) This parameter determines weather

the workflow is communication intensive or compute intensive. If CCR> 1 then the

workflow is communication intensive. If CCR < 1 then the workflow is compute

intensive and for CCR = 1, the workflow is neither communication nor compute

intensive.

3. Shape Parameter (α) This parameter determines the shape of the workflow. If

α < 1, longer workflows with less parallelism are generated. If α > 1, smaller

workflows with higher parallelism are generated, however if α = 1 then a balanced

workflow which is neither long nor short in length is generated.

4. Out-Degree This parameter determines the number of edges going out of a node. A

workflow will be dense if the value of it’s out-degree is high. Since the synthesized

workflows are generated randomly hence, the out-degree is selected randomly for

each node.

5. Number of Processors (P) This parameter selects the number of processors. We

selected the number of processors as 2x where x = {2,3,4,5,6}.

91



10k

20k

30k

40k

50k

60k

70k

80k

90k

100k

2k 4k 6k 8k 10k

La
te

cy
 (

m
se

c)

Nodes

I-PDWA
PDWA
AWOP
PEFT
TCRM
TCLO

Figure 4.13: Impact on latency with increasing workflow size using synthesized work-
flows.
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Figure 4.14: Impact on throughput with increasing workflow size using synthesized work-
flows.

6. Heterogeneity Factor (β ) It determines the heterogeneity of the processor speed.

Higher value in β causes significant difference in the execution costs of tasks for

each processor while the lower value causes similar values of execution costs. Fol-

lowing values of β are used in our simulations, β = {0.1,0.5,1}.

We performed different simulations to evaluate the performance and effectiveness

of the proposed algorithm. We generated a dataset of 100 random workflows with dif-

ferent characteristics as discussed above and the same dataset is used as input under the

same conditions to the proposed algorithm, PDWA (Ahmad et al., 2014), AWOP (Mu-

nir et al., 2013), PEFT (Arabnejad & Barbosa, 2014b), TCRM (Guirado et al., 2013),

and TCLO (Vydyanathan et al., 2011) and measure the latency and throughput for each

algorithm. The results obtained show that the proposed algorithm outperforms all other
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algorithms that we have used in this evaluation as shown in Fig. 4.13 and Fig. 4.14.

The proposed algorithm shows 6.3% improvement in latency and similar improvement in

throughput as compared to PDWA.

Similarly, a set of synthesized random workflows of three different types is gener-

ated by varying the CCR parameter. The purpose of this experiment is to evaluate the pro-

posed algorithm for different types of workflows. The results of synthesized workflows

with CCR > 1 are shown in Fig. 4.15. The communication intensive workflows show

9.15% improvement in the latency over PDWA. The results show that the proposed algo-

rithm significantly performed better as compared to the other algorithms and performance

becomes better as the size of workflows increases. Similar results were achieved for the

workflows with CCR = 1, shown in Fig. 4.16. The proposed algorithm shows 7.7% im-

provement as compared to PDWA. However, the proposed algorithm shows reduced per-

formance for the compute intensive workflows with CCR < 1 as shown in Fig. 4.17. This

is because the proposed algorithm is mainly designed for communication intensive work-

flows and optimized partitions specifically minimizes the inter-partition data movements.

We also evaluated the proposed algorithm with workflows of different shapes by varying

the shape parameter α . The simulation results are shown in Fig. 4.18, Fig. 4.19, and

Fig. 4.20. We observe that the proposed algorithm performs better for longer (α < 1) and

medium (α = 1) shaped workflows. The proposed algorithm shows 2.76% and 0.237%

improvement over PDWA respectively. Conversely, for short workflows having higher

parallelism (α > 1) the proposed algorithm shows reduced performance. The reason of

reduced performance is due to high parallelism in the workflows with α > 1. In the pro-

posed algorithm, the partitions can not be optimized because of too many edges, therefore,

the inter-partition edge weights are higher that causes the low performance of proposed

algorithm.
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Figure 4.15: Impact on latency using synthesized workflows having CCR=10.
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Figure 4.16: Impact on latency using synthesized workflows having CCR=1.
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Figure 4.17: Impact on latency using synthesized workflows having CCR=0.1.

4.5.2 Performance Evaluation Using Real-World Applications

Montage (Deelman et al., 2009) is an astronomical mosaic engine created by NASA that is

used to generate a mosaic of a sky. The input astronomical images are combined together

to find the final mosaic. The geometry of the mosaic depends on the input images. The

process can be represented in the form of a workflow. There are some jobs in Montage
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Figure 4.18: Impact on latency using synthesized workflows having α = 0.1.
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Figure 4.19: Impact on latency using synthesized workflows having α = 1.
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Figure 4.20: Impact on latency using synthesized workflows having α = 2.

workflow that have very short execution time and few job take longer to complete. The

structure of Montage workflow with twenty nodes is illustrated in Fig. 4.21. We use the

publicly available workflow data from Pegasus Workflow Gallery1 for this experiment,

and executed Montage with 25, 50, and 100 nodes in our simulations. The simulation

1https://confluence.pegasus.isi.edu/display/pegasus/Workflow+Data
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Figure 4.21: Twenty nodes Montage workflow.
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Figure 4.22: Impact on latency with 25, 50, and 100 nodes Montage workflows.

results of latency and throughput with different sizes of Montage workflow are shown in

Fig. 4.22 and Fig. 4.23. The results show that proposed algorithm shows better perfor-

mance as compared to the algorithms used in our evaluation and shows 5.46% reduced

latency in comparison with PDWA. Similarly, the proposed algorithm outperforms other

algorithms in terms of throughput and provides 13% improved throughput over PDWA.

Cybershake (Deelman et al., 2009) is used by the Southern California Earthquake

Center (SCEC) to identify the earthquake within the region. Cybershake is relatively

simpler workflow but it can handle large sizes of datasets, therefore it is a compute as
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Figure 4.23: Impact on throughput with 25, 50, and 100 nodes Montage workflows.
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Figure 4.24: Twenty nodes Cybershake workflow.

well as data intensive workflow. Fig. 4.24 shows the structure of a small size twenty

nodes Cybershake workflow. We selected different sizes of Cybershake workflow for the

performance evaluation of the proposed algorithm. Latency and throughput of 30, 50,

and 100 nodes Cybershake workflows were determined for the proposed and other five

algorithms. The simulation results of latency and throughput are presented in Fig. 4.25

and Fig. 4.26 respectively. The results show that the proposed algorithm provides 6.5%

and 9.37% better results for both latency and throughput respectively as compared to

PDWA. The results are even more better for other five algorithms.
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Figure 4.25: Impact on latency with 30, 50, and 100 nodes Cybershake workflows.
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Figure 4.26: Impact on throughput with 30, 50, and 100 nodes Cybershake workflows.

In this research work, the stream-based data processing model is used, which differs

from real-time data streams. The data-intensive workflow scheduling is not online or run

time scheduling which is called dynamic scheduling. Hence, the proposed algorithms are

static scheduling algorithms that perform scheduling with all the system information prior

to the execution of workflow. In this category of scheduling algorithms the scheduling

overhead does not cause any problem or inefficiency in the execution as well as perfor-

mance of the system. On the other hand, the scheduling overhead in dynamic scheduling

can cause serious issues like data loss if there is a scheduling overhead. In this scenario,

the delay caused by the scheduling overhead makes unsynchronized data processing and

data processing rate. That effect adversely on the system performance and useful data

might loss.
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The proposed algorithms are heuristics hence the time complexity is low. In I−PDWA

the time complexity is determined by asymptotic analysis. Since, the architecture of the

algorithm consists of three phases a) Partitioning, b) Mapping, and c) DPT. Based of

asymptotic analysis the time complexity of partitioning phase is O(n), where n is the

number of nodes of workflow. O(n+ un) is for mapping phase and time complexity of

DPT is O(n+ uin), where un is the number of execution node in the computing envi-

ronment and uin is the number of core in an execution nodes used for data parallelism.

Hence, the overall time complexity is O(n+un+uin). From the expression it is clear that

the time complexity depends on workflows size and execution environment. Bigger the

workflow and greater the number of execution node with more core the time complexity

increases. There is always a compromise between time complexity and the algorithm

optimization parameters i.e. latency and throughput in this case.

4.6 Conclusion

In this chapter, we presented algorithms to optimize data-intensive workflows. The al-

gorithm splits the workflow into suitable partitions in such a way that the inter-partition

communication cost is minimum. Each partition is mapped to one selected execution

node, therefore, intra-partition data-movement is eliminated, which reduces the over-

heads of large data movement. Moreover, the execution environment is heterogeneous

that makes the optimization more challenging. In the mapping phase of PDWA, each par-

tition is assigned to the execution node that offers minimum execution cost. Improvement

in PDWA (I-PDWA) is also presented in this chapter. In which data parallelism is applied

to most most compute intensive task in each partition. This addition in PDWA improves

the results to significant extent, reduces the latency and increases the throughput due to

optimized partitioning, mapping, and data parallel technique. The proposed approach is

evaluated with synthesized and real-world applications of various characteristics. The
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evaluation of the proposed algorithm shows that it provides significantly reduced latency

with improved throughput. Next chapter is about the implementation of these algorithms

in real time SDPM execution platform i.e. STORM.
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CHAPTER 5

EVALUATION OF PROPOSED ALGORITHM USING A REAL-WORLD USE
CASE IN STORM

In this chapter, the proposed algorithm as presented in Chapter 4 is implemented in real-

time stream-based execution platform, i.e. STORM, which is an open source frame work

to process unbounded streams of data. In order to evaluate the performance we adopted

real-world use case (EURExpressII workflow). The performance is measured in terms

of execution time of the workflow.n addition, this chapter presents detailed discussion on

related workflow execution platforms and highlights the key features of STORM. Also,

it explains the selected use-case and experimental setup. Finally, it presents the detailed

results and discuss the key outcomes of experiments.

5.1 Introduction

The data-intensive workflow execution is optimized in PDWA by partitioning the work-

flow. The detailed explanation of the algorithm is given in Chapter 4. Initially, the per-

formance of the algorithm was evaluated through simulations. The results presented in

Chapter 4 proved that PDWA performs better for data-intensive workflows as compared

to the algorithm which did not partition the workflow. The characteristics of real-world

workflows and environment cannot be fully simulated therefore, we setup the experiments

in real-world environment and evaluate our algorithm with real-world workflow. In this

chapter, the proposed algorithm PDWA is fully implemented in STORM and evaluated in

real data stream based framework with a use case from real-world. Since, the experimen-

tal setup is STORM based cluster therefore, I-PDWA couldn’t be implemented in homo-

geneous environment. However, we have introduced data parallelism in the workflow at

certain levels. After vast study of various frameworks STORM was selected to implement
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PDWA and evaluated the proposed algorithm with real-world workflow (EURExpressII).

It is a data-intensive workflow described in forthcoming section in this chapter.

In our research work, the proposed algorithm is evaluated with simulations (see

Chapter 4) as well as in real time framework. Both evaluation methodologies have their

own benefits. Simulations allow the designer to determine the correctness and efficiency

of the designed algorithm before it is implemented/deployed in real system. Conse-

quently, merits and efficiency of the proposed work can be studied and can consider al-

ternative designs. In addition to that the design and evaluation can be carried out without

using real computing resources. Thus, simulations provides an initial low cost evalua-

tion and design solution, that allow to measure algorithm’s efficiency and even compare

with state of the art algorithms. Simulations also provide an advantage to test the pro-

posed algorithm at extreme conditions such as in this research, the proposed algorithm

can be evaluated with different shapes, sizes, types of workflows, number of execution

nodes and input data size at even maximum and minimum levels. This helps to deter-

mine the limitations and complexity of the proposed algorithm. In addition, the behavior

of proposed algorithm also needs to be observed with real-world data and in real-time

framework. The performance of proposed algorithm is analyzed by its implementation in

real time framework and with data-intensive workflow based on real world application.

These experiments help to analyze the proposed algorithm (PDWA) performance in the

real system.

5.2 Execution Platforms

There is an escalating interest found in the scientific research on the big data stream pro-

cessing. In literature we find number of frameworks that support batch mode of data

processing however, few for data streams. We discuss these frameworks briefly as fol-

lows.
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1. Spark: Apache Spark is a fast engine for processing large scale data. It is about

100 times faster than Hadoop MapReduce in memory, or about 10 times faster on

disk. Spark takes MapReduce to next level with less expensive shuffles in the data

processing with capabilities like in-memory storage and near real-time processing.

Its performance is several times faster than other big data frameworks. Spark also

evaluates lazy evaluation of big data queries, which helps with optimization of the

steps in data processing workflows. It provides a higher level of API to improve de-

veloper productivity and a consistent architect model for big data solutions. Spark

holds intermediate results in memory rather then writing them to disk which is very

useful especially when you need to work on same datasets multiple times. It is

designed to be an execution engine that works both in-memory and on-disk. Spark

operators perfrom external operations when data does not fit in-memory. Spark can

be used for processing datasets that is larger than the aggregate memory in a clus-

ter. Spark will attempt to store as much as data in memory and then spill to disk. It

must be considered for data and use cases to access memory requirements with this

in-memory data storage, spark comes with performance advantage.

Spark Architecture: It includes following three main components

a) Data Storage: Spark uses HDFS file system for data storage purposes. It

works with any Hadoop compatible data source including HDFS, HBase, Cas-

sandra, etc.

b) API: The API provides the application developers to create spark based ap-

plications using a standard API interface. Spark provides API for Scala, Java,

and Python programming languages.

c) Resource Management: Spark can be deployed as a stand alone server or it

can be on a distributed computing framework like Mesos or Yarn.
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Mainly, in spark batch processing is used for data processing however, micro-

batching is also used in spark streaming. Since, spark is not solely used for stream

processing moreover it was difficult to plugin custom scheduler, therefore it is not

used in our experiments.

2. Hadoop: It is an open source software framework for storing and processing big

data in a distributed fashion on large clusters of commodity hardware. Essentially,

it accomplish two tasks a) massive data storage and b) faster processing. Hadoop

framework can store huge amounts of data by breaking the data into blocks and

storing it in clusters of lower cost commodity hardware. Hadoop also processes

large amounts of data in parallel across clusters in the form of batches. It is low

cost, high computing power, scalable, and have flexible storage. It has inherent data

protection and self healing capabilities.

Hadoop architecture consists of two main components, a) HDFS and b) MapRe-

duce. HDFS is a java based distributed file system that can store all kinds of data

without prior organization. MapReduce is a software programming model for pro-

cessing large datasets in parallel.

3. HBase: Apache HBase is a non-relational (NoSQL) database that runs on the top

of HDFS. It is an open source database that provides real-time read/write access

to those large datasets. HBase scales linearly to handle huge datasets with billions

of rows and millions of columns and it easily combines data sources that use a

wide variety of different structures and schemas. HBase is naively integrated with

Hadoop and works seamlessly alongside other data access engines through YARN.

Since, HBase is integrated with Hadoop so data is processed in batches.

Apache HBase provides random, real-time access to data in Hadoop. It was created

for hosting very large tables making it a great choice to store multi-structured or
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sparse data. Users can query HBase for a particular point in time, making "flash-

back" queries possible. These following characteristics make HBase a great choice

for storing semi-structured data like log data and then providing that data very

quickly to users or applications integrated with HBase. Considering the batch pro-

cessing behavior, we did not selected HBase in these experiments.

4. S4: S4 is a general purpose distributed, scalable, fault-tolerant, pluggable platform

that allows programmers to easily develop applications for processing continuous

unbounded streams of data. S4 fills the gap between complex proprietary system

and batch-oriented open source computing platforms. S4 is high performance com-

puting platform that hides the complexity inherent in parallel processing system

from the application programmer.

S4 is not selected for the experimental platform for this research because of its ar-

chitecture as it is more like event-driven instead of data-driven platform. S4 uses

processing elements as its basic computational unit and a new process will be in-

stantiated for each value of the key attribute in other words its kind of auto scaling

for each different key attribute. These processing elements are then distributed

evenly across the processing nodes. The processing nodes are like the logical hosts

for processing elements and can do any kind of work. Basically, there is no pre-

set number of processing elements and the generated processing elements are not

known initially. When the processing elements are instantiated then these are re-

quired to schedule on the processing nodes.

5. STORM: STORM 1 is an open source frame work to process unbounded streams

of data. Apache Storm is developed by Nathan Marz at BackType, which is later

acquired by Twitter. Now-a-days, some organizations are using Apache Storm, for

1http://storm.apache.org/
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instance, Yahoo!, Alibaba, Baidu, Groupon and so on. Apache Storm is a real-time

distributed stream data processing engine. Its characteristics are as below:

• Scalable: Nodes can be easily added or removed from the Storm cluster with-

out disrupting existing data flows through Storm topologies.

• Resilient: Fault-tolerance is crucial to Storm as it is often deployed on large

clusters, in which hardware components can fail. The Storm cluster must

continue processing existing topologies with a minimal performance impact.

• Extensible: Storm topologies may call arbitrary external functions (e.g. look-

ing up a MySQL service for the social graph), and thus needs a framework

that allows extensibility.

• Efficient: Since Storm is used in real-time applications; it must have good

performance characteristics. Storm uses a number of techniques, that includes

keeping all its storage and computational data structures in memory.

• Easy to Administer: Early warning tools are needed to quickly point out the

source of problems as they arise.

In literature, few research articles has been found related to STORM that addresses

data-intensive workflow optimization and the article (Aniello et al., 2013) is one of them.

In this article the authors presents a scheduling scheme for STORM that enhances the

performance of different STORM typologies. The algorithm has two parts, first part

works offline and allocate resources based on the structure of the topology while the

second part supports the resource allocation and works at run time. The second part of

the algorithm supports the previous deployments by monitoring online and rescheduling

at runtime. It reduces the latency of input data stream. However, topology based scientific

workflows are not being discussed, moreover the execution environment is a STORM
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cluster of 8 worker nodes (homogeneous computing environment) while in this paper we

analyze the scheduler in a heterogeneous STORM cluster.

In another recent research work, DaweiSun et al. (2015) proposed a framework for

real-time resource scheduling for big data streams but energy efficiency is mainly focused.

This framework is aided utilizing an energy efficient heuristic and critical path within the

data stream graph. The algorithm achieve a trade-off between computation and response

time. This algorithm does not perform well for data-intensive workflows, in addition

to this the performance evaluation of the proposed work is carried out on a 16 virtual

machine in data centers. Since the virtual machines of same data center are used, therefore

the distributed and heterogeneous execution environment is ignored. Moreover, overall

system latency is not measured neither analyzed.

In a similar proposed work (Rychly et al., 2014), a stream based scheduling algo-

rithm is designed for heterogeneous cluster. It does not focus the latency of entire topol-

ogy, however the proposed work optimizes the cluster utilization.

5.3 STORM

In this section presents the details of STORM architecture, fault tolerance and tuple

grouping in STORM.

5.3.1 STORM Architecture

According to the physical view, STORM consists of following parts, as presented in

Fig. 5.1.

• Nimbus node: It is a master node and similar to the Hadoop JobTracker. It dis-

tributes jobs and launches workers across the cluster. It also monitors jobs and

reallocate workers as required.

• ZooKeeper node: It communicates and coordinates the Storm cluster.
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• Supervisor node: It communicates with Nimbus through Zookeeper. It starts and

stops workers according to Nimbus.

Figure 5.1: STORM Physical View (Evans, 2015)

Similarly, the conceptual view of STORM is shown in Fig. 5.2. The basic STORM

data processing architecture consists of streams of tuples flowing through topologies (So-

laimani et al., 2014).

• Spout: Source of input tuples streams for the topology. It can read from external

data source.

• Bolt: Processor units with most crucial or analysing logic. It can process any num-

ber of input tuples streams and produce any number of output streams to the next

set of bolts downstream.

• Topology: Network of Spouts and Bolts. It is a directed graph where the vertices

represent computation nodes and the edges represent the data flow between the

computation components. It runs indefinitely when it is deployed.

Clients submit topologies to a master node, which is called the Nimbus. Nimbus is re-

sponsible for distributing and coordinating the execution of the topology, where the actual

work is done on slave nodes. Nimbus is also responsible for scheduling the topologies on

the worker nodes and monitoring the progress of the tuples flowing through the topology.

108



Figure 5.2: STORM Conceptual View (Evans, 2015)

Nimbus plays a similar role as the “JobTracker” in Hadoop, and act as interface between

the user and the Storm system. Nimbus is an Apache Thrift service and Storm topology

definitions are Thrift objects. To submit a job to the Storm cluster (i.e. to Nimbus), the

user describes the topology as a Thrift object and sends that object to Nimbus. With this

design, any programming language can be used to create a Storm topology. As part of

submitting the topology, the user uploads the user code as a JAR file to Nimbus. Nimbus

uses a combination of the local disk(s) and Zookeeper to store state about the topology.

5.3.2 Fault Tolerance in STORM

All coordination between Nimbus and the Supervisors is done through Zookeeper. Fur-

thermore, Nimbus and the Supervisor daemons are fail-fast and stateless, and all their

state is kept in Zookeeper or on the local disk(s) to assure the Storm’s resilience. If the

Nimbus service fails, then the workers still continue to make forward progress. In addi-

tion, the Supervisors restart the workers if they fail. However, if Nimbus is down, then

users cannot submit new topologies. Also, if running topologies experience machine fail-

ures, then they cannot be reassigned to different machines until Nimbus is revived. The

supervisor runs on each Storm node. It receives assignments from Nimbus and spawns

workers based on the assignment. It also monitors the health of the workers and respawns

them if necessary. Each worker node runs one or more worker processes. At any point in
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time a single machine may have more than one worker processes, but each worker process

is mapped to a single topology. More than one worker process on the same machine may

be executing different part of the same topology. STORM based system is redundant.

There are 4 possibilities of failure and the handling methods of STORM are discussed as

following

• If the Nimbus daemon fails, the task processing is still continued, but without topol-

ogy life cycle operations and reassignment facilities.

• If the Supervisor daemon fails, the task processing is still continued, but the assign-

ment is never synchronized.

• If the worker process fails, the Supervisor daemon will restart the worker process

and continue processing the tasks.

• If the remote slave nodes fail, the Nimbus will reassign the tasks to other cloud

machines in the same cluster to continue the task processing.

5.3.3 Tuple Grouping Strategies in STORM

Each worker process runs a JVM, in which it runs one or more executors. Executors are

made of one or more tasks. The actual work for a bolt or a spout is done in the task. A

task is an instance of a spout or a bolt. A task is strictly bound to an executor because that

assignment is currently static. Thus, tasks provide intra-bolt/intra-spout parallelism, and

the executors provide intra-topology parallelism. Worker processes serve as containers

on the host machines to run Storm topologies. With each spout or bolt, a set of tasks

are running in a set of executors across machines in a cluster. Data is shuffled from a

producer spout/bolt to a consumer bolt (both producer and consumer may have multiple

tasks). Main partitioning strategies of Storm:

• Shuffle grouping, which randomly partitions the tuples.
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• Fields grouping, hashes on a subset of the tuple attributes/fields.

• All grouping, which replicates the entire stream to all the consumer tasks.

• Global grouping, which sends the entire stream to a single bolt.

• Local grouping, which sends tuples to the consumer bolts in the same executor.

The default STORM scheduler is based on round robin strategy designed for even

allocations therefore, called as even scheduler (Aniello et al., 2013). In the first phase it

iterates through the topology executors, grouped by component, and allocates them to the

configured number of workers in a round-robin fashion. In the second phase the workers

are evenly assigned to worker nodes, according to the slot availability of each worker

node. This scheduling policy produces workers that are almost assigned an equal number

of executors, and distributes such workers over the worker nodes at disposal so that each

one node almost runs an equal number of workers.

5.4 EURExpressII

The EURExpressII project (Han, van Hemert, & Baldock, 2011) aims to build a transcriptome-

wide atlas of gene expression for developing mouse embryo established by RNA in situ

hybridisation. The project annotates images of the mouse embryos by tagging images

with terms from the ontology for mouse anatomy development. The data consists of

mouse embryo image files and an annotation database (in MySQL) that describes the im-

ages. In this project, 4 TB of images have been produced and 80% of the annotation is

done manually by human curators. Based on 600 MB that we have received, we will

produce multiple classifiers where each classifier recognize a gene expression from a set

of 1,500 anatomical components to classify the remaining 20% of images (85,824 im-

ages) automatically. The overall EURExpressII automated annotation task is divided into
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3 stages: training, testing, and deployment. Both testing and training stage are performed

in a workflow. Dataset is split into 2 parts: for training a classifier and for testing.

The block diagram of workflow is shown in Figure 5.3. Initially, raw image file and

annotation database is read, image is then scaled to standard size of 320×200 pixels. The

noise is removed from the images by applying median filter. Features Generation, using

wavelet transformation, generate the image features as matrices of wavelet coefficients.

64,000 features are generated per image of 320× 200 pixels. In features extraction, it

reduces the features set by selecting the representative features for constructing classifiers

using Fisher Ratio analysis (Fisher, 1936). In our experiment, 24 most significant features

are extracted from 64,000 features generated in feature generation stage. The classifier

design stage build a separate classifier for each anatomical feature which takes image

features as input and outputs a rating of "not detected", "possible", "weak", "moderate"

or "strong" for anatomical features such as eyes, nose, etc. The evaluation stage, test

the classifier built in classifier design step against a partition of the data not used in the

preceding steps but already classified.

Figure 5.3: EURExpressII Workflow Block Diagram (Han, van Hemert, & Baldock,
2011)
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5.5 Computing Environment for Experiments

The system architecture of the proposed solution, which demonstrates the logical design,

is shown in Fig. 5.4.

Figure 5.4: Computing Environment for Experiments

The system is developed in OpenStack Virtual Private Cloud (VPC) network, to

ensure the inter-connectivity between the master node and the remote slave nodes. In the

STORM cluster of proposed system Nimbus and Zookeeper are together on the master

node and the Supervisors and worker nodes are on same slave nodes. The Nimbus at the

master node would submit the assigned workflow tasks in the form of topology to the

Supervisor of the remote slave nodes for processing purposes. The Supervisor spawns

workers based on the assignments from the Nimbus. The Nimbus, Supervisor and workers

would produce the log files encompass the detail of the overall process that can be used

for error tracing as well.

The experiment is implemented using Apache Storm 0.9.6. A Storm topology is

created and deployed on our computational platform. The topology is executed and

performance data is collected. The execution is repeated with different data sizes e.g.,
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pre-process different numbers of image files over a range of 800 to 8000. The results col-

lected for subsequent analysis. The workflow converted to STORM topology as shown in

Fig. 5.5.

Figure 5.5: EURExpressII STORM Topology

The hardware infrastructure comprises 5 Virtual Machines with 2 Intel Xeon Proces-

sor Core 2.2 GHz with 8 GB RAM connected using a 10/100 Mbps switch. One of the

virtual machine act as the Apache Zookeeper and Storm Nimbus to keep track the status

of the Storm supervisor and scheduling the tasks to the supervisors. While the other four

act as Storm supervisor to run the task given to them. All of these virtual machines are

run on Dell PowerEdge R820 Rack Server. The software infrastructure include five vir-

tual machines are running on CentOs 6 (Linux−version2.6.32−573.18.1.el6.x86−64).
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Table 5.1: Communication Cost Table of EURExpressII Workflow for 8000 input images
shown in Fig. 5.5.

Edges (predecessor,successor) Data Size(Mb)
(1,2) 1.77
(2,3) 400
(1,7) 5.31
(3,4) 250
(4,5) 190
(5,6) 190
(6,8) 360

(6,11) 360
(7,12) 0.02
(8,9) 7

(9,10) 7
(10, 11) 0.00112
(10, 11’) 0.00112
(11,12) 1.27
(11’,12) 0.53

In order to run Apache Storm, all of the VMs are installed with Apache Storm 0.9.6 and

prerequisite software, such as Java 7.

5.6 Results and Discussion

This section describes the experimental results, and discuss the comparative observations

with default STORM scheduler and benchmark. Benchmark represents the average exe-

cution time when the workflow is executed on local (single) node. The performance of

workflow execution is measured in terms of execution time because the structure of the

workflow is pipelined from task 1 to 9 but due to the data aggregation at node 9 and 12

latency and through put can not be measured. There are following parameters that we

have used to compare the performance of PDWA.

• Average Execution Time(AET)

The performance is measured in terms of Average Execution Time(AET). It is de-

fined as

AET =
m

∑
n=1

ETn/n (5.1)
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where, ETn is the execution time of the single run of workflow, m is the maximum

number of runs and n is the number of execution of workflow.

• Speedup

Speedup is another performance metrics that is considered in performance eval-

uation. It is defined as the ratio between the sequential execution time that is the

cumulative execution cost of all workflow tasks on single (local) node to the parallel

execution of the workflow.

Speedup =
n

∑
vi=1

ETvi(u1)/ET (u j) (5.2)

where, ETvi(u1) is the sum of execution time of n workflow tasks vi on single pro-

cessing node u1 and ET (u j) is the execution time achieved when workflow is exe-

cuted on u j execution nodes, where, j = 1,2,3, . . . that cause parallel executions.

• Efficiency

The third performance metric is the efficiency, which is defined as

Efficiency = Speedup/n,n = 1,2,3 . . . (5.3)

where, n is the number of execution nodes.

The experiments was repeated for number of times and AET, speedup and efficiency

is determined. Fig.5.6 represents the PDWA ouput in terms of AET for different data-

sizes (Number of Images = {800, 1600, 3200, 4800, 6400, 8000}). The achieved results

are plotted against number of worker (execution) nodes. In Fig. 5.6 it must be noted

that AET increases with increasing datasize. The graph pattern is almost similar for all

datasets that shows the stability of the proposed algorithm. AET reduces at the cost of
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increasing worker nodes but this behaviors of PDWA is more significant for large datasets

as compared to small input datasets.
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Figure 5.6: Average execution time of PDWA for execution nodes.

Speedup in the execution of EURExpressII using PDWA implemented in STORM is

presented in Fig. 5.7. For each plot it is observed that there is an abrupt rise in speedup

for 2 and 4 worker nodes, which shows the high parallelism in workflow execution when

workflow is executed on 2 and 4 worker nodes. It is caused due to the four (even number

of) data pipelines as shown in Fig. 5.5. The results of speedup is not significant when the

workflow is executed on 3 worker nodes.

Fig. 5.8 shows comparative results of AET achieved by PDWA and STORM default

scheduler. AET increases with the increase in datasize as the big amount of data needs

more time to process or compute. PDWA outperformed STORM default scheduler. It

is significant for 2 and 3 worker nodes as shown in Fig. 5.8a and Fig. 5.8b respectively,

while less significant improvement as compared to plot of 4 worker nodes. The plot of

benchmark is AET when all tasks are executed sequentially one single (local) node. It is

obvious from Fig. 5.8 that PDWA shows considerable improvement as compared to the

benchmark. The percentage improvement of PDWA over STORM default scheduler and
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Figure 5.7: Speedup of PDWA for execution nodes.

Table 5.2: The percentage improvement of PDWA.

Images Worker nodes SDS Benchmark
800 2 7.77% 32.37%

8000 2 12.57% 34.04%
800 3 16.59% 53.01%

8000 3 14.37% 40.56%
800 4 20.12% 60.86%

8000 4 13.67% 52.9%

benchmark for 800 and 8000 input images are tabulated in Table 5.2. Table shows that

the percentage improvement of PDWA as compared to STORM default scheduler and

benchmark. PDWA shows significant improvement in AET when workflow was executed

on 4 worker nodes. The suitable partitions produced by PDWA due to the structure of

EURExpressII causes considerable improvement in AET.

Performance metric that is used for comparison is efficiency that is defined in Eq. 5.3.

The results of efficiency for 2, 3, and 4 worker nodes are presented in Fig. 5.9a, Fig. 5.9b,

and Fig. 5.9c respectively. The bar charts shows that PDWA is more efficient as com-

pared to STORM default scheduler. As shown in Fig. 5.9 PDWA outperformed for all

sizes of datasets and shows significant improvement of 25% for 800 input images for 2

worker nodes, however for 8000 nodes the improvement in the efficiency over bench-
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(a) Worker nodes = 2.
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(b) Worker nodes = 3.
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Figure 5.8: Comparative AET of PDWA and STORM default scheduler for increasing
datasets.
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Figure 5.9: Comparative Efficiency of PDWA and STORM default scheduler.
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mark is 15.82%. Similarly, PDWA shows improvement in efficiency while processing

800 and 8000 images over STORM default scheduler and benchmark for 3 worker nodes

is 20.58% and 16.66% respectively. For the similar number of images PDWA efficiency

is 5.88% higher than STORM default scheduler and 14.29% from benchmark. PDWA

is proved to be better than STORM default scheduler due to reduced AET and enhanced

efficiency.

5.7 Conclusion

In this chapter, a STORM based computing environment is developed to analyze the per-

formance of our proposed algorithm PDWA. In previous chapter the performance of the

proposed algorithm was analyzed through simulations but in this chapter the algorithm is

implemented and tested in real world framework. The experiments were performed with

workflow of EURExpressII workflow, a use case derived from real world application. The

performance of PDWA implemented in STORM was investigated with varying range of

dataset size and on different number of execution node. The execution performance was

measured in average execution times and speed up of the workflow. The results show that

PDWA outperforms to the significant extent as compared to the STORM default sched-

uler. In future, we aim to extend these experiments to be performed with comparatively

complex and more data-intensive workflows. Moreover, we also plan to observe the ex-

ecution behavior of PDWA in heterogeneous execution node with different computing

capacities.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This chapter concludes the thesis by summarizing what we have done in this research

work in Section 6.1. It then suggests possible future research direction in Section 6.2.

6.1 Summary and contributions to knowledge

The exponential rise in the growth of data has exposed new challenges to the scientific

communities. The complexity of scientific experiments and the heterogeneity of comput-

ing environments have opened a vast research area to work in. In this thesis data-intensive

scientific applications (modeled as workflows) are focused for the performance optimiza-

tion. This research is just like a drop added in the big ocean of data-intensive research.

We have presented a overview of complex scientific workflows and how data del-

uge has changed the research directions. Chapter 2 presented workflow optimization by

covering related work regarding workflow classifications, scheduling and performance

indicators. Literature review of workflow optimization algorithms i.e. heuristics and

meta-heuristics specifically genetic algorithms and hybrid approaches were reviewed in

Chapter 3, Section 3.2. Then we narrow down the research to data-intensive workflow

optimization. We adapted Stream based Data Processing Model (SDPM) to enhance the

performance of data-intensive workflows. SDPM was discussed in Section 2.5 and re-

lated optimization algorithms are reviewed in Chapter 4, Section 4.2. Finally, real-time

stream processing platform (STORM) and other relevant frameworks were reviewed in

Chapter 5.

In Chapter 3 the proposed a Hybrid Genetic Algorithm (HGA) for workflow op-

timization in heterogeneous computing environments was described. It is an evolution
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based approach that reduces the execution time (Schedule length) of workflows. Major

features of HGA are a) Hybrid algorithm (combination of a heuristic and genetic al-

gorithm), b) Modified genetic operator (crossover & mutation), and c) Load balancing

across execution nodes. Simulation results show that HGA outperforms number of state

of the art algorithms for verity of input workflows. The performance of the proposed

algorithm was evaluated with synthesized workflows as well as workflows derived from

real-world applications (Montage, Cybershake, Gaussian elimination). The overall per-

formance proved that HGA generate schedules with lower schedule lengths and load is

also balanced among resources.

The core part of the thesis lies in Chapter 4. It presented data-intensive optimization

algorithms (PDWA, I-PDWA). This chapter mainly focused on data-intensive workflow

optimization and data streaming model. The algorithm PDWA optimizes data-intensive

workflows in terms of reduced latency and enhanced throughput. Salient feature of the al-

gorithm include partitioning of workflow in such a way that inter-partition data movement

is minimum. PDWA overcomes the communication overhead caused by the heavy data

movement between execution nodes. After suitable partitions each partition is mapped

on that execution node that offer minimum execution time for that particular partition, it

reduces the latency. I-PDWA is an enhanced version of PDWA in which an additional

feature of data parallelism is applied to the most compute intensive task in each parti-

tion. This added feature further improved the performance of PDWA. Simulation results

proved that PDWA is better than non-partitioning algorithm and I-PDWA performed even

better than PDWA and other state of the art streaming algorithms. The simulations were

carried out with verity of datasets both synthesized and real-world based workflows.

In Chapter 5, we have implemented PDWA in real-time stream processing system

(STORM) and experiments were performed with a use case workflow (EURExpressII).

The experiments were performed with different input data sizes and number of execu-
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tion nodes. A homogeneous execution environment was developed in Openstack. The

results show that PDWA outperformed STORM default scheduler. Finally, in this chap-

ter we conclude the dissertation by summarizing it and by listing our contributions and

suggesting future research directions.

The contributions of this dissertation are summarized below:

• a comprehensive literature review on workflows, data-intensive workflows and op-

timization algorithms,

• a Hybrid Genetic Algorithm (HGA) to optimize workflow execution,

• a Partition based Data-intensive Workflow optimization Algorithm (PDWA) to op-

timize data-intensive workflows using stream based data processing model,

• an Improved PDWA (I-PDWA) that further improved the performance of PDWA,

• a demonstration how PDWA performs with real world data-intensive workflow in

real stream processing framework.

6.2 Future Directions

In the course of the work, we have come across many potential research directions that

can be build on the work in this thesis.

• This research mainly focus the time based matrices that is latency, execution time,

and throughput, however energy optimization is crucial issue. The data centers con-

sume huge amount of power. The total energy consumed by data centers all over the

world is equal to the energy consumed by Czech Republic. Therefore, the carbon

foot prints on the environment is increasing. Energy efficient scheduling algorithms

and policies are required to be developed to address these issues. It must be focused

how the performance of the data centers and energy consumption is compromised
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while scheduling decisions. The performance of the data centers depends on the

usage of the hardware devices by the virtual machine management software de-

pending on the user needs. When more CPUs are used the hardware temperature

increases. Due to this increased temperature the performance and hardware might

damage, therefore cooling of the data centers is required. Thus, the energy con-

sumption is directly related with the performance of data centers. Most of the cost

of operation of data centers is the energy consumed. The energy efficient schedul-

ing algorithms must be adopted to save energy and cooling cost of data centers.

• Scheduling sensitive data-intensive applications, e.g. banking data require secured

data scheduling and processing. The security of sensitive information is crucial in

scheduling applications. The flow of private data and its storage must be ensured

in order to built/keep trust of the users. Both data and computations are susceptible

to attacks resulting from any intruder. In addition, when carried out on shared

resources the data security become a vital issue. Thus, the possibility of exposure

and sharing of data on shared resources. These security issues need to be taken into

account while scheduling data and tasks as well as mapping them onto resources.

• In this research, we have focused static scheduling in which complete information

of resources and tasks are available before scheduling. As discussed in Chapter 2,

there are two optimization phases, mapping and execution. This research is the op-

timization of mapping phase, however run-time optimization can also be desirable

where live data streams are processed. Dynamic resources and tasks are managed

and optimized by online scheduling. Dynamic scheduling is faster as it schedules

on the fly, which is carried out at execution phase of workflow life cycle. In com-

puting environments, like cloud where resources are not fixed in number, dynamic

scheduling is effect in such scenarios.
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• In this thesis we used the concept of stream-based data processing model, which is

usually used for archived data. In static scheduling, archived data from a database

can be used as a stream of data because a single SQL query can invoke a chain of

data items for instance images from the database. These set of concepts are used in

this research, however in future this work can be modified to handle real time live

data stream. Run time scheduling algorithms can be designed to serve the purpose

that must have high execution/processing speed that need to be synchronized with

the data arrival rate. In case of difference in the data processing speed and its arrival

rate, data can be lost. There are numerous examples of real time data generation for

instance data from sensors, geo-spatial services, information of social networks, e

commerce purchases so on and so forth.

• In this thesis, STORM is used a real time framework for the evaluation of proposed

algorithm in real-time environment. Recently, few new streaming framework have

been developed for instance Flink and Heron that can also be studied and used for

analyzing the behavior of proposed algorithm. Algorithm must be transformed and

make it compatible for these frameworks to be used as a plugin. EURExpress II

is used as a use case for the workload to evaluate the proposed algorithm. Other

data-intensive workflows can also be investigated to use as the test workload, for

instance workflows from other scientific areas, e.g. seismology, life sciences and

medicine, and banking.
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