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ABSTRACT 

In this thesis, we investigate the properties of entropy as an alternative measure of risk. 

Entropy has been compared with the traditional risk measure, variance from different 

point of views. It has been established that though variance is computationally simple 

and very popular among practitioners, a more flexible measure of risk is demanded to 

cope with the uncertainty in real data that are typically non-normally distributed. 

Entropy, however, is not computationally easy but is not restricted to the assumption of 

normality. In this study we explore and investigate the application of entropy in 

portfolio models. More specifically, we use multi-objective models that are the mean-

entropy-entropy (MEE). The purpose of this new model is to overcome the limitations 

as observed in a traditional model; that is, having performance close to Markowitz’s 

mean-variance (MV) model when data comes from a normal distribution, but exhibit 

better performance when data comes from a non-normal distribution. The special 

advantage of the new model is that it is more diversified than any other models 

available in the literature. Also in this thesis, we address the issue of robust estimation 

of entropy. Special attention has been paid to entropy estimation with kernel density, 

which is popular among practitioners. The failure of this technique has been 

investigated and an adaptive beta-divergent method is proposed to ensure robust 

estimation. The usefulness of this technique has been verified with Monte-Carlo 

simulation in the context of portfolio analysis. Details of the algorithms which include 

entropy estimation which would enhance the application of a proper risk measure like 

entropy, is provided. Finally, the models are compared with Monte-Carlo simulation 

experiments and real data examples.  
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                                                                 ABSTRAK 

Dalam tesis ini, kami menyiasat sifat entropi sebagai ukuran risiko alternatif. Entropi 

dibandingkan dengan ukuran risiko tradisional, varians, dari sudut pandangan yang 

berbeza. Adalah sedia diketahui, walaupun varians adalah mudah dihitung dan sangat 

popular dikalangan pengguna, keperluan satu ukuran risiko yang lebih fleksibel adalah 

diharapkan dalam menghadapi ketidaktentuan dalam data sebenar yang biasanya 

bertaburan bukan normal. Entropi, bagaimanapun, bukan mudah dihitung tetapi ia tidak 

terhad kepada andaian taburan normal. Didalam kajian ini saya meneroka dan  

menyiasat penggunaan entropi dalam model portfolio. Lebih spesifik penggunaan model 

pelbagai objektif digunakan, iaitu min-entropi-entropi (MEE). Tujuan model baru ini 

adalah untuk mengatasi keterbatasan sebagaimana yang dilihat dalam model tradisional; 

iaitu, ia menghampiri min-varians (MV) Markowitz apabila data bertaburan normal, 

tetapi juga mempamerkan prestasi yang lebih baik apabila data tidak bertaburan normal. 

Kelebihan utama model ini adalah ianya lebih pelbagai daripada model-model yang 

sedia adadalam literatur. Tesis ini juga melihat isu anggaran teguh entropi. Perhatian 

khas dibuat ke atas anggaran entropi dengan kaedah kernel ketumpatan yang popular di 

kalangan pengguna. Kegagalan kaedah ini telah disiasat dan satu beta-divergent di 

cadangkan untuk memastikan keteguhan anggaran. Kegunaan teknik ini telah disahkan 

melalui simulasi Monte-Carlo dalam konteks analisis portfolio. Algorithma yang 

terperinci bagi anggaran entropi juga diberikan, bagi meningkatkan penggunaan ukuran 

risiko yang sesuai seperti entropi. Model-model sedia ada dan yang dibangunkan dalam 

kajian ini, dibandingkan melalui eksperimen simulasi Monte-Carlo dan contoh data 

sebenar. 
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CHAPTER 1: INTRODUCTION 

1.1 General introduction 

Entropy like variance is a collective measure of uncertainty but unlike variance, it can 

be applied on both cardinal and ordinal variables. Entropy is concerned with 

probabilities as a measure of disorder. It represents the investor’s average uncertainty of 

the returns of a project, and being distribution free, it is not affected by errors due to the 

fitting of the distribution of returns to a particular distribution. McCauley (2003) argues 

that entropy has the ability to capture the complexity of the systems without requiring 

rigid assumptions that can bias the results obtained. Interest in relating entropy to 

variance dates back to Shannon (1948) who proposed comparison of continuous random 

variables according to the entropy power fraction defined as the variance of a Gaussian 

random variable with given entropy. The performance and feasibility of entropy as a 

measure of uncertainty are compared with variance in several studies that established 

entropy as an alternative measure of dispersion (Maasoumi, 1993; Soofi, 1997). 

According to Ebrahimi et al. (1999), these two measures use different metrics for 

concentration. Unlike the variance which measures concentration only around the mean, 

the entropy measures diffuseness of the density irrespective of the location. They 

examine the role of variance and entropy in ordering distributions and random 

prospects, and conclude that there is no universal relationship between these measures 

in terms of ordering distributions. These authors found that, under certain conditions, 

the order of the variance and entropy is similar when continuous variables are 

transformed also using a Legendre series expansion shows that entropy may be related 

to high-order moments of a distribution which, unlike the variance, could offer a much 

closer characterization of probability since it uses much more information about the 

distribution than the variance. Noting the same point, Maasoumi and Racine (2002) 

Univ
ers

ity
 of

 M
ala

ya



2 

argue that in the case that the empirical probability distribution is not perfectly known, 

the entropy constitutes an alternative measure for the uncertainty, predictability and 

goodness-of-fit.  

Unlike variance, estimation of entropy from real data is not straightforward. Once the 

density function is known, the entropy can be estimated using plug-in or resubstitute 

estimator (see Cover and Tomas, 1991; Beirlant, 1997). However seldom do we know 

the true density for the available data. Dmitriev and Tarasenko (1973) and Ahmad and 

Lin (1976) address the plug-in estimate of entropy using kernel density estimator. This 

established estimator is consistent but bias increases with the dimension of data. The 

resubstitute estimate of entropy with kernel density also provide consistent estimator for 

dimension that are not more than 3 (see Hall and Morton, 1996 and Ivanov, 1981). The 

consistency of histogram based entropy estimation is established by Györfi and van der 

Meulen (1987) and Hall and Morton (1993). Applications of this estimator in real data 

are found in Moddemeijer (1999) and Darbellay and Vajda (1999).Vasicek (1976) 

proposed sample spacing estimator for entropy estimation from real data. A modified 

version of this estimator is offered by Correa (1995). Consistency and asymptotic 

properties are studied in (Tsybakov et al., 1996) and Beirlantand Zuijlen (1985). The 

nearest neighborhood estimator of entropy is proposed by Kozachenko and Leonenko 

(1987) and its consistency properly verified by Tsybakov and van der Meulen (1994). In 

a recent work, Gupta and Srivastava (2010) introduce Bayesian parameter estimation for 

entropy. 

Portfolio optimization has been the object of intense research and is still developing. 

Markowitz's (Markowitz, 1952) mean-variance (MV) efficient portfolio selection is one 

of the most widely used approaches in solving portfolio diversification problem and is 

very popular among practitioners. However, some drawbacks of this approach are 
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pointed out in the literature. Bera and Park (2008) argue that MV approach, based on 

sample moments like mean and variance, often concentrates on a few assets only and 

this leads to less diversified portfolio. Due to less attention to uncertainty in the data and 

adoption of a wrong model, sample estimates of mean and variance can be poorly 

estimated (Jobson and Korkie, 1980) and hence portfolio optimization based on 

inaccurate point estimates may be highly misleading. Sometimes, variations in the input 

data may affect the portfolio greatly and even a few new observations may change the 

portfolio completely. In addition, empirical evidences show that almost all asset classes 

and portfolios have returns that are not normally distributed (Xiong et al., 2011), and the 

first and second moments are generally insufficient to explain portfolios in the case of 

non-normal return distribution (Usta and Yeliz, 2011). Ke and Zhang (2008) notify 

another limitation of MV model that the standard deviation cannot perfectly represent 

the risk, because the sign of error does not affect the fluctuation. However, many assets’ 

return distributions are asymmetrical. In addition, most asset return distributions are 

more leptokurtic, or fatter tailed, than are normal distribution. Patton (2004) showed 

that knowledge of both skewness and asymmetric dependence leads to economically 

significant gains. Recent research (Müller, 2010, for example) suggests that higher 

moments are important considerations in asset allocation. Investors are particularly 

concerned about significant losses that are the downside risk, which is a function of 

skewness and kurtosis. There are few studies with conclusion that the out-of-sample 

performances of the MV portfolios are not quite sufficient (Bear and Park, 

2008andJordon, 1985). 

Through the works of Philippatos and Gressis (1975), Kapur and Kesavan (1992), 

Samanta and Roy(2005), Hoskisson et al. (2006), Jana et al. (2007) and Jana et al. 

(2009), it is now established that in order to measure the diversification, entropy is a 

widely accepted measure. Philippatos and Wilson (1972) introduce entropy in finance as 
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a tool for portfolio optimization. Their comparative analysis between the behaviors of 

the standard deviation and the entropy in finance conclude that entropy is more general 

and has some advantages over standard deviation. In another study, Saxena (1983) used 

entropy to select the best alternative investment projects. Nawrocki and Hardling (1986) 

verify investment performance when entropy is used as a measure of risk. He suggested 

a heuristic algorithm using portfolio analysis with state-value weighting entropy as a 

measure of investment risk. Philippatos and Gressis (1975) provide conditions in which 

mean-variance, mean-entropy and second degree stochastic dominance are equivalent. 

It is well known that the sample mean vector and covariance matrix, basic elements 

of portfolio analysis, are sensitive to outlying observations. A little amount of 

contamination may have huge effect on their estimate and a dramatic change may occur 

on the output of portfolio analysis (Demiguel and Nogales, 2009). Being non-

parametric, entropy based portfolio model has its own merit. However, entropy itself 

may be poorly estimated in the presence of contamination (Escolano et al., 2009) and, 

thus, asset allocation based on it could be misleading in some situations. Therefore, like 

other procedures, the robustness of entropy estimation should also be verified. 

1.2 Literature Review 

Entropy and information theory analysis became very popular in the finance and 

economics literature during the early 1970.Anumber of articles demonstrate that entropy 

analysis measures meaningful information that is not available to standard statistical 

techniques such as variance or correlation analysis. Though Horowitz (1976) claims that 

there should not be any statistical measure like entropy that tells whether information is 

meaningful in an economic sense, Philippatoes and Wilson (1972, 1975) defend that 

being nonparametric entropy is a better statistical measure of risk than the variance. 

Wyner and Ziv (1969) provided a bound on entropy in terms of a single moment of a 
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continuous random variable. This entropy-moment inequality, for which the variance is 

a special case, has played an important role in the development of prediction theory 

(Shepp et al., 1979). Maasoumi and Theil (1979) gave approximations for two entropy-

based income disparity measures in terms of the first four moments of the underlying 

income distributions. Chandra and Singpurwalla (1981) discussed entropy ordering in 

the context of some notions common between economics and reliability analysis. 

Mukherjee and Ratnaparkhi (1986) presented some relationships between the entropy 

and variance for a number of distributions, graphically. Smaldino (2013) exhibit two 

common measures of the uncertainty inherent in a distribution of possible outcomes are 

variance and entropy, yet there is currently no standard measure. For small numbers of 

discrete possible outcomes, Smaldino noted that variance is the better measure because 

it captures the spread between outcomes as well as their differential possibilities. 

However, variance can categorically fail as a measure of uncertainty when distributions 

are multimodal or discontinuous, in which case entropy should be used to characterize 

uncertainty. 

Popkov, (2005) proposed entropy-optimal investment portfolio which allows one to 

take into consideration the investor’s response to the reachable income. The author 

focus on the computational methods adapted to the problems arising in these models. 

Huang (2008) proposes two types of credibility-based fuzzy mean-entropy models. 

Entropy is used as the measure of risk, the smaller the entropy value is, the less 

uncertainty the portfolio return contains, and thus, the safer the portfolio. Furthermore, 

as a measure of risk, entropy is free from reliance on symmetrical distributions of 

security returns and can be computed from nonmetric data. In addition, it compares the 

fuzzy mean-variance model with the fuzzy mean-entropy model in two special cases 

and presents a hybrid intelligent algorithm for solving the proposed models in general 

cases. Wand and Pan (2010) applied entropy as a measure of risk in air defense 
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disposition problem which is full of uncertainties and risks in modern war, the smaller 

entropy value is, the safer the dispositions. Within the frame work of uncertainty theory, 

two types of fuzzy mean-entropy models are proposed, and a hybrid intelligent 

algorithm is presented for solving the proposed models in general cases. 

Ke and Zhang (2008) integrate the entropy theory into Markowitz portfolio model to 

make a better performance in simulation for the relation between investment return and 

risk. They argue that this model provides a natural probabilistic interpretation for daily 

return which usually changes from positive to negative, and it indicates that the entropy 

can be used as a complement to the mean-variance portfolio model. Bera and Park 

(2008) provide an alternative for portfolio selection model by introducing cross-entropy 

(CE) and generalized CE (GCE) as the objective functions. This automatically captures 

the degree of imprecision of the mean and covariance matrix estimates. Usta and Yeliz 

(2010) added the entropy theory to the mean-variance-skewness model (MVSM) to 

generate a well-diversified portfolio. They present a multi-objective model which 

includes mean, variance and skewness of the portfolio as well as the entropy of portfolio 

weights and compare its performance with traditional models in terms of a variety of 

portfolio performance measures. Their finding is that smaller portfolio turnover is 

achieved when all the variance, skewness and entropy are included in the objective 

function. We can hardly find such studies that evaluate if entropy based portfolio model 

alone can capture the asymmetry in the assets. This verification is necessary because if 

entropy itself can capture the asymmetry, adding skewness in the objective function is 

redundant. Although the superiority of entropy is highlighted in a number of papers, it is 

still not popular among practitioners since unlike MV the ready-to-use computational 

detail for entropy based portfolio is not easily available. Bhattacharyya et al. (2009) 

proposed fuzzy mean-entropy-skewness models for optimal portfolio selection. Entropy 

is favored as a measure of risk as it is free from dependence on symmetric probability 
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distribution. Yu and Lee (2011) compared five portfolios rebalancing models, with 

consideration of transaction cost and consisting of some or all criteria, including risk, 

return short selling, skewness, and kurtosis to determine the important design criteria for 

a portfolio model. They argue that rebalancing models which consider transaction cost, 

including short selling cost, are more flexible and their results can reflect real 

transactions. Yu et al. (2014) compare the mean-variance efficiency, realized portfolio 

values, and diversity of the models incorporating different entropy measures by 

applying multiple criteria method and conclude that including entropy in models 

enhances diversity of the portfolios and makes asset allocation more feasible than the 

models without incorporating entropy. Bhattacharyya et al., (2014) proposed fuzzy 

stock portfolio selection models that maximize mean and skewness as well as minimize 

portfolio variance and cross-entropy. To quantify the level of discrimination in a return 

for a given value of return, cross-entropy is used. To capture the uncertainty of stock 

returns, triangular fuzzy numbers are considered. The authors claim that their proposed 

model has better empirical performance than the others. 

In recent literature, more attention has been paid on the robust estimation of return 

and risk and on the robust optimization of portfolio analysis as well. Schied (2006) give 

a survey on recent developments in the theory of risk measures. He discusses risk 

measures and associated robust optimization problems in the frame work of dynamic 

financial market models. Lobo and Boyd (2000), Costa and Paiva (2002), Halldorsson 

and Tutuncu (2003) and Lu (2006) address the robust mean-variance portfolio 

considering uncertainties in the parameters involved in the mean and the covariance 

matrix and recommend using interior-point algorithms. The uncertainty is further 

addressed in the work of Zymler et al., (2011). The robust linear programming approach 

has been introduced by Ben-Tal et al., (2000) to formulate a robust multistage portfolio 

analysis. El Ghaoui et al., (2003) investigated the robust portfolio optimization using 
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worst-case VaR, where only partial information on the distribution is known. Goldfarb 

and Lyengar (2003) also consider the robust VaR portfolio selection problem by 

assuming a normal distribution. Ferties (2012) pay special attention to the robustness of 

risk measures where a robust version of CVaR and an entropy based risk measure are 

introduced. Glasserman and Xu (2014) develop a frame work for quantifying the impact 

of model error and for measuring and minimizing risk in a way that is robust to model 

error. Using relative entropy to constrain model distance leads to an explicit 

characterization of worst-case model errors; this characterization lends itself to Monte-

Carlo simulation, allowing straight forward calculation of bounds on model error with 

very little computational effort beyond that required to evaluate performance under the 

baseline nominal model. This approach goes well beyond the effect of errors in 

parameter estimates to consider errors in the underlying stochastic assumptions of the 

model and to characterize the greatest vulnerabilities error in a model. Recently, a data 

driven portfolio optimization technique has been proposed by Calafiore (2013). Lagus et 

al. (2015) use coherent and distortion risk measure in their robust portfolio optimization.  

Evaluation of the out-of-sample performance and diversification of the traditional 

model MV and its extensions suggest that there are still many avenues for 

improvements, needed in order to gain a better diversified portfolio model with higher 

out-of-sample performance. These will be the main emphasis of the study. 

1.3 Motivation and Objectives 

The information theoretic construction of entropy has been used in a variety of fields 

since its introduction in 1948 by Claude Shannon. This concept of entropy, in an 

analogy to the identically named object in statistical physics, is concerned with 

uncertainty of the outcome of a random variable. In recent years entropy has been 

applied to problem beyond those in communication theory, for which it was initially 
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developed, infields as varied as image processing, physics, economics, biology, and, as 

is the concern of this work, financial modeling. 

Uncertainty is a very common phenomenon of financial market and the only 

satisfactory description of uncertainty is the probability. Therefore, any measure the 

uncertainty should be in the form of probability. From this point of view, entropy is a 

more general measure than variance since entropy is a function of a probability 

distribution. Although the MV model is the pioneer of portfolio analysis, current 

practitioners are looking for some variant of this model to characterize the real data 

features. In searching for better discretion of reality, academics are involved in 

developing complex model (for example, in corporation of fuzzy logic in portfolio) that 

are sometimes computationally expensive or difficult to interpret. In this context, 

entropy based portfolio model can be a better alternative since entropy can provide risk 

measure as well as capturing uncertainty adequately; it is non-parametric and it is not 

restricted to normality assumption; by definition it is measure of diversity. Apart from 

verifying entropy as an alternative measure of risk and evaluate if entropy based 

portfolio model can overcome the limitations of Markowitz portfolio. 

The main objective of this study is to establish an alternative model, Mean-Entropy-

Entropy, which aims at optimizing a portfolio with less risk and more diversified than 

traditional models. This is done through: 

1. verifying working capability of entropy based portfolio models in real 

data  

2. study limitations and remedies of entropy based portfolio optimization 

3. provide robust procedure of risk measurement and portfolio analysis 

4. provide complete guidelines for portfolio optimization based on entropy  
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1.4 Outline of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 presents detail background of 

portfolio analysis. The existing models such as Mean-Variance and Mean-Entropy 

portfolios with their variants and different risk measures such as variance, semi 

variance, MAD, VaR, CVaR and Entropy are discussed with their application procedure 

and shortcomings.  

Chapter 3 discusses entropy estimation in detail. For this, we discuss different issues 

of density estimation such as number of bin selection for histogram and bandwidth 

selection for kernel density. We discuss the technical detail of entropy computation with 

R. We also compare estimation of entropy from histogram and kernel density. A 

comparison is made between entropy and variance to ascertain which of these provides 

a much meaningful characterization as a risk measure. 

In Chapter 4, we focus on multi objective portfolio models. We suggest a new 

nonparametric and well diversified multi objective portfolio model, MEE where both 

measures risk and diversity, are controlled by entropy. This model is evaluated with real 

and simulated data and comparison has been made with some benchmark models.  

In Chapter 5 the robustness of entropy measure is verified. Since the kernel density is 

robust up to certain level, a new highly robust method for estimating kernel density and 

entropy is proposed; this is verified and compared with traditional approach via 

simulation. The application of the new roust procedure has been discussed in context of 

portfolio analysis.  

Finally, Chapter 6 contains discussions and conclusions. 
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CHAPTER 2: TRADITIONAL PORTFOLIO MODELS 

2.1 Introduction 

A portfolio is a collection of investments all owned by the same individual 

or organization. These investments include securities and financial assets, 

like stocks, bonds, and mutual funds. Investments of a portfolio are usually diversified 

among risky and risk free asset. A risky asset is an investment with a return that is not 

guaranteed and each asset carry varying levels of risk. For example, holding a corporate 

bond is generally less risky than holding a stock. The risk-free asset is the (hypothetical) 

asset which pays a risk-free rate. In practice, short-term government securities (such as 

US treasury bills) are used as a risk-free asset, because they pay a fixed rate of interest 

and have exceptionally low default risk. The risk-free asset has zero variance in returns 

(hence is risk-free); it is also uncorrelated with any other asset (by definition, since its 

variance is zero). Treasury bills are the least risky and the most marketable of all money 

market instruments. They are considered to have no risk of default, have very short-term 

maturities, have a known return, and are traded in active markets. They are the closest 

approximation that exists to a riskless investment. 

2.2 Traditional Portfolio Selection Models 

In portfolio theory, given a set of assets, the portfolio selection problem is to find the 

optimum way of investing a particular amount of money in these assets. Each possible 

strategy is considered as a portfolio selection model. In this section, we present the well-

known traditional portfolio selection models and also provide definitions and notations 

required in this study. 
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2.2.1 Equally Weighted Model (EW) 

Equally weighted (EW) model considers the portfolio weights to be equal                 

𝑥𝑖 =
1  

𝑛 
 for  𝑖 = 1, 2 , … , 𝑛and does not involve any optimization or estimation, besides; 

it completely ignores the mean and variance of return. This naive rule for asset 

allocation has been extensively used by investors although a number of complicated 

derived models have been developed. Moreover, various studies in the literature such as 

Bloomfield et al. (1997); Jordon  (1985); Bear and Park (2008); DeMiguel (2009) show 

that the EW portfolio works well for the out-of-sample cases. There are two reasons for 

using the naive rule as a benchmark. First, it is easy to implement because it does not 

rely either on estimation of the moments of asset returns or on optimization. Second, 

despite the sophisticated theoretical models developed in the last 50 years and the 

advances in methods for estimating the parameters of these models, investors continue 

to use such simple allocation rules for allocating their wealth across assets. 

2.2.2 Optimal Mean-Variance Portfolio 

Harry Markowitz (1952, 1959) developed his portfolio-selection technique, called 

modern portfolio theory (MPT). Prior to Markowitz's work, security-selection models 

focused primarily on the returns generated by investment opportunities. The standard 

investment advice was to identify those securities that offered the best opportunities for 

gain with the least risk and then construct a portfolio from these. The Markowitz theory 

retained the emphasis on return; but it elevated risk to a coequal level of importance, 

and the concept of portfolio risk was born. While risk has been considered an important 

factor with variance as an accepted way of measuring risk, Markowitz was the first to 

clearly and rigorously show how the variance of a portfolio can be reduced through the 

impact of diversification. He proposed that investors focus on selecting portfolios based 
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on their overall risk-reward characteristics instead of merely compiling portfolios from 

securities that each individually  that have attractive risk-reward characteristics. 

The main goal of portfolio selection is to obtain optimum weights associated with 

assets that minimize the risk of the portfolio subject to the portfolio’s attaining some 

target expected rate of return. In other words, a portfolio ),,,( 21 nxxxx   is a vector 

of weights that represents the investor's relative allocation of the wealth satisfying 

∑ 𝑥𝑖
𝑛
𝑖=1 =  𝑥′1𝑛 =  1,    where 1𝑛 is a 𝑛 × 1 vector of ones.                            (1) 

 In Markowitz mean-variance framework (Markowitz, 1952), the sample variance is 

used as the measure of risk and sample mean as a measure of return. Thus, the mean-

variance (MV) problem chooses weights, which minimizes the variance of the portfolio 

return subject to a pre-determined target, as follows  

min𝑥 𝑥
′∑𝑥                       (2) 

s.t. 𝐸(𝑥′𝑅) = 𝑥′  𝑚 = 𝜇0 ,  𝑥
′1𝑛 = 1   

where   Ʃ = 𝑉𝑎𝑟(𝑅) and 𝑚 = 𝐸(𝑅) of asset return vector, 𝑅 =  (𝑅1, 𝑅2, … , 𝑅𝑛). 

Alternatively, 

max𝑥 𝑥
′𝑚                       (3) 

s.t. 𝑥′Ʃ 𝑥 = 𝑑0,     𝑥′1𝑛 = 1. 

Mean-variance analysis is based on a single period model of investment. At the 

beginning of the period, the investor allocates his wealth among various asset classes, 

assigning a nonnegative weight to each asset. During the period, each asset generates a 

random rate of return so that at the end of the period, his wealth has been changed by 
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the weighted average of the returns. In selecting asset weights, the investor faces a set of 

linear constraints, one of which is that the weights must sum to one.  

2.2.2.1 Assumptions and Limitations of MV 

As with any model, it is important to understand the assumptions of mean-variance 

analysis in order to use it effectively. The MV model is based on several assumptions 

concerning the behaviour of investors and financial markets:  

1. A probability distribution of possible returns over some holding period can be 

estimated by investors.  

2. Investors have single-period utility functions in which they maximize utility within 

the framework of diminishing marginal utility of wealth.  

3. Variability about the possible values of return is used by investors to measure risk.  

4. Investors care only about the means and variance of the returns of their portfolios 

over a particular period.  

5. Expected return and risk as used by investors are measured by the first two moments 

of the probability distribution of returns-expected value and variance.  

6. Return is desirable; risk is to be avoided.  

7. Financial markets are frictionless. 

However, in reality, these assumptions may not always be true. One limitation of 

MV is that it is restricted to the normally distributed assets, which depend on only the 

first two moments. However, financial returns are typically non-normal (Bates, 1996; 

Jorion, 1988; Hwang and Satchell, 1999; Harvey and Siddiqui, 1999; 2000; Bonato, 

2010; Zuluaga and Cox, 2010; Xiong et al., 2011) and exhibit negative skewness, severe 

excess kurtosis (Bonato, 2011) and some form of asymmetric dependence (Erb et al., 

1994; Longin and Solnik, 2001; Ang and Bekaert, 2002; Ang and Chen, 2002; 

Campbell et al., 2002; Bae et al., 2003; Patton, 2004). According to Xiong et al. (2011), 
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investors are concerned about the significant losses which are related to the skewness 

and kurtosis and a portfolio based on only mean and variance neglects investors’ 

preferences. Recent researches (Müller, 2010, for example) suggest that higher 

moments are important considerations in asset allocation. 

The instability and ambiguity of MV optimization is that it magnifies the impact of 

estimation errors (Michaund, 1998). Thus, inaccuracy in point estimate of mean and 

variance may result in highly misleading optimization. Sometimes, variations in the 

input data may affect the portfolio greatly and even a few new observations may change 

the portfolio completely.  The success of the portfolio thus partially depends on the 

proper estimate of the risk. However, even if the risk is estimated properly from 

historical data, the problem of MV portfolio may not be resolved since it does not pay 

proper attention to the uncertainty of the data (Bera and Park, 2008; Usta and Yeliz, 

2010); MV often concentrates only on few assets. Therefore, an MV optimal portfolio 

may be less diversified and its out-of-sample performance is not as good as the naive 

1/N benchmark (Jorion, 1985; DeMiguel, 2009). Ke and Zhang (2008) notify another 

limitation of MV model that the standard deviation cannot perfectly represent the risk, 

because the sign of error does not affect the fluctuation. 

2.3 ALTERNATIVE TO MV PORTFOLIO 

2.3.1 Alternative risk measures 

Many studies have proposed alternative risk measures in line with the motivation for 

overcoming the limitations of variance. At least four alternative risk measures, namely 

Semi variance (SV), Mean Absolute Deviation (MAD), Value at risk (VaR), Minimax 

and Entropy are found in real state literature. 
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2.3.1.1 Semi variance (SV) 

Variance as a risk measure for portfolio selection is questioned by many researchers 

because variance penalizes both returns above and below expected return. But for an 

investor, risk is any possibility of getting below what he expects. Downside risk 

measures quantify possibilities of return below expected return. Markowitz (1959) 

suggested a downside risk measure known as semi variance (SV). Semi variance is the 

expected value of the squared negative deviations of possible outcomes from the 

expected return. The definitions derived as follows: 

𝑆𝑉𝜇 = 𝐸[(𝑅 − 𝜇)
−]2,                       (4) 

where (𝑅 − 𝜇)− = (𝑅 − 𝜇)𝐼(𝑅−𝜇)≤0, R=asset return,   𝜇 = 𝐸(𝑅) 

A portfolio selection problem using semi variance (𝑆𝑉𝜇) tries to minimize under-

performance and does not penalize over-performance with respect to expected return of 

theportfolio. This risk measure tries to minimize the dispersion of portfolio return from 

the expected return but only when the former is below the later. To conduct portfolio 

selection using semi variance, it is not required to compute the covariance matrix; but 

the joint distribution of securities is needed. If all distribution returns are symmetric or 

have the same degree of asymmetry, then semi variance and variance produces the same 

set of efficient portfolios (Markowitz (1959).  

When Markowitz (1959) developed his original theory, he did not use the variance as 

the only measure of risk; he proposed the semi variance as one of the other measures. 

However, for both theoretical and computational reasons, the use of the variance is the 

most accepted since it allows, not only a very detailed theoretical analysis of the 

properties of optimal portfolios (such as the efficient frontier), but also the use of the 

quadratic optimization methods. Semi variance risk measure is an important 
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improvement of variance because it only measures the investment return below the 

expected value. Many models have been built to minimize the semi variance from 

different angles. Markowitz (1959) recognized the importance of this idea and proposed 

a downside risk measure known as the semi variance to replace the ordinary variance, 

since the semi variance is only concerned with the downside, which was the first time 

that the downside risk had been included in a portfolio selection model. The semi 

variance measure is more consistent with the perception of the investment risk of a 

typical investor. However, the attitude towards risks can be vastly different. Since the 

semi variance is based on the second moment of the downside, it is natural to consider a 

general nth moments of downside to suit different investors. Research on the semi 

variance did continue in the 1960s and early 1970s. Quirk and Saposnik (1962) 

demonstrated the theoretical superiority of the semi variance versus the variance. Mao 

(1970) provided a strong argument that investors will only be interested in downside 

risk and that the semi variance measure should be used. 

Yan and Li (2009) and Yan et al. (2007) substituted variance with semi variance as 

the risk measure to deal with the multi-period portfolio selection problem. Pınar (2007) 

also used the downside-risk measure such as semi variance to study the multi-period 

portfolio selection problem. 

2.3.1.2 Absolute Deviation 

Konno and Yamazaki (1991) propose a new risk measure called absolute deviation 

(AD). The purpose of the model is to cope with very large-scale portfolio selection 

problem because quantifying the deviation from the expected return to make the 

formula linear instead of a quadratic programming leading to saving in computational 

time. Konno and Yamazaki (1991) showed that a problem can be solved with more than 

a thousand securities in a reasonable amount of time. The other advantage is that we do 
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not have to compute the covariance matrix to do portfolio selection using absolute 

deviation. In addition, the model generates a portfolio that is quite similar to the mean-

variance model if all the returns are normally distributed random variables. 

Konno and Yamazaki (1991) showed that the optimal solution using mean-absolute 

deviation portfolio selection ensure that we do not have to invest in impractically huge 

number of securities. MAD is easier to compute than Markowitz because it eliminates 

the need for a covariance matrix. The MV model assumes normality of stock returns, 

which is not the case; however the MAD model does not make this assumption. The 

MAD model also minimizes a measure of risk, where the measure in this case is the 

mean absolute deviation. For a larger mean absolute deviation, the risk is increased. 

Moreover, MAD is more stable over time than variance as it is less sensitive to outliers 

and it does not require any assumption on the shape of a distribution. Interestingly, it 

retains all the positive features of the MV model. MAD is also apply in situations when 

the number of assets (N) is greater than the number of time periods (T) (Konno & 

Yamazaki, 1991; Byrne and Lee, 1997, 2004; Brown and Matysiak, 2000; Konno, 

2003). 

However, the computation time is less significant nowadays due to the advancement 

of computer.  Additionally, the use of MAD is precluded in line with the findings of 

Simaan (1997) where by the ignorance of the covariance matrix lead to greater 

estimation risk that outweighs the benefits. 

2.3.1.3 Value at risk (𝐕𝐚𝐑) and Conditional Drawdown-at-Risk (𝑪𝑫𝒂𝑹) 

Value at Risk (VaR) is one of the very popular risk measures widely used in the 

financial industry. VaR describes the magnitude of likely losses a portfolio can be 

expected to suffer during normal market movements (Linsmeier and Pearson, 2000). In 
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plain terms, VaR is a number above which we have only (1 − 𝛼)100% of losses and it 

represents what one can expect to lose with 𝛼% probability, where 𝛼 is the confidence 

level. 

There are three ways to computeVaR: variance covariance, historical returns and 

Monte-Carlo simulation. The variance covariance method uses information on the 

volatility and correlation of stocks to compute the VaR of a portfolio. The Monte-Carlo 

simulation can be conducted by generating random scenarios for the future returns and 

computing VaR for these varied scenarios. 

To compute VaR using historical returns or any future projected returns of securities, 

let us assume that we have scenarios of information available to us regarding the future 

behavior of the returns. Based on this information VaR would be the loss that will be 

exceeded only by (1 − 𝛼)100% of the cases. VaR  is derived for losses adjusted for 

returns using the following approach. Usually losses are in monetary terms, but we list 

losses in terms of returns (percentage). 

Let                        𝑉𝑡 = market value at time 𝑡 

 𝑉𝑡+ℎ = market value at time 𝑡 + ℎ 

Define Loss L = 
 𝑉𝑡−𝑉𝑡+ℎ

𝑉𝑡
 = − 𝑟𝑥 

The 𝑉𝑎𝑅𝛼 satisfies 𝑃(𝐿 > Va 𝑅𝛼) = 1 − 𝛼, for a given 𝛼                                      (5) 

The following non-convex integer program could exactly solve for VaR. 

 Minimize  𝑉𝑎𝑅 = 𝑀⌊⌊(1−𝛼)𝑠⌋:𝑠⌋(−𝑟𝑥) 

Subject to 𝑥 ′𝜇 = 𝐸0 
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∑𝑥𝑖

𝑛

𝑖=1

= 1        ,           𝑥 ≥ 0 

Here the function 𝑀⌊𝑘:𝑁⌋denotes largest 𝑘𝑡ℎ among the 𝑁 numbers. 

If the portfolio returns are assumed to follow normal distribution, then VaR formulation 

is a nonlinear programming problem and can be formulated as follows. Suppose there 

are 𝑛 securities in which we can invest and their mean return is given by 𝜉 a random 

variable. Let us suppose that the mean return of the securities 𝜉 has a normal 

distribution 𝑁(𝜇; 𝐶), where 𝐶 is positive definite symmetric matrix. Then we can use 

some of the properties of normal distribution to formulate VaR. 

Since 𝜉~𝑁(𝜇, 𝐶),  

then − 𝑥′𝜉 =∑−𝑥𝑖𝜉𝑖~  𝑁(𝐸(𝑋), 𝜎(𝑋))

𝑛

𝑖=1

 

Here 𝐸(𝑋) = −𝑥′𝜇   and    𝜎(𝑋) = √𝑥 ′𝐶𝑥.                                                              (6) 

The following problem can be solved to compute VaR. 

Minimize    −(𝑥′𝜇) − 𝜙−1(1 − 𝛼)√𝑥 ′𝐶𝑥                    (7) 

Subject to 𝑥′𝜇 = 𝐸0        , ∑ 𝑥𝑖
𝑛
𝑖=1 = 1       , 𝑥 ≥ 0 

VaR is not a coherent measure. As such, risks measured under VaR are not sub-additive 

or convex. Combining two assets may even increase risks under VaR, which is contrary 

to the conventional wisdom of diversification. VaR is a point estimate on the tail, which 

implies it demands a lot more data to get an accurate estimate than variance. Since VaR 
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is not a convex function of portfolio weights, it is hard to implement its minimization. It 

can have many local optima that trap the optimization procedure. 

Rockafellar and Ursayev (2000) established a new risk measure called Conditional 

value at risk (𝐶𝑉𝑎𝑅). Value at risk measures the minimum loss corresponding to certain 

worst number of cases but it does not quantify how bad these worst losses are. An 

investor may need to know the magnitude of these worst losses to discern whether there 

are possibilities of losing huge sums of money. 𝐶𝑉𝑎𝑅 quantifies this magnitude and is a 

measure of the expected loss corresponding to a number of worst cases, depending on 

the chosen confidence level. Using 𝐶𝑉𝑎𝑅 makes the portfolio selection problem linear 

and when we solve it a minimum VaR is found since 𝐶𝑉𝑎𝑅 ≥ VaR (Rockafellar and 

Ursayev, 2000) but 𝐶𝑉𝑎𝑅 may have a relatively poor out-of-sample performance 

compared with VaR if tails are not modeled correctly. 

Conditional Drawdown-at-Risk (𝐶𝐷𝑎𝑅) is a closely related risk measure to 𝐶𝑉𝑎𝑅. 

𝐶𝐷𝑎𝑅 was established by Chekhlov et al. (2000) who showed how to implement it for 

portfolio selection. Portfolio's drawdown on a sample path is the drop of the 

uncompounded portfolio value as compared to the maximal value attained in the 

previous moments on the sample path (Krokhmal et al., 2002). 

2.3.1.4 Entropy 

Entropy is concerned with probabilities as a measure of disorder. It represents the 

investor’s average uncertainty of the returns of a project, and being distribution free, it 

is not affected by errors due to the fitting of the distribution of returns to a particular 

distribution. McCauley (2003) argues that entropy has the ability to capture the 

complexity of the systems without requiring rigid assumptions that can bias the results 

obtained. Interest in relating entropy to variance dates back to Shannon (1948) who 
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proposed comparison of continuous random variables according to the entropy power 

fraction defined as the variance of a Gaussian random variable with given entropy. 

Shannon (1948) ensures that entropy H(X), satisfies some desirable properties of an 

uncertainty measure (Dionisio et al., 2008). 

Let p(x) denotes the probability of a random variable X. Following Shannon (1948), the 

entropy of X is defined by: 

  𝐻(𝑋) = −∑ 𝐶(𝑥)𝑝(𝑥)𝑥𝜖𝑋 𝑙𝑜𝑔𝑝(𝑥) , 𝐻(𝑋) = 𝐸[−𝐶 log 𝑝(𝑥)]            (8) 

Where C is some constant. In the above formula, the uncertainty at point x is measured 

as 𝑙𝑜𝑔 (
1

𝑝(𝑥)
), 𝑝(𝑥) ≠ 0 thus, 𝐻(𝑋) is the average uncertainty contained in the variable 

X. 

Entropy is a continuous and concave function and is monotonic increasing. For some 

well-known distribution such as normal, entropy is a function of the variance and so 

they provide equivalent measure of risk if normality is maintained in the process. 

When 𝐶(𝑥) is not a constant, but it depends on states/levels of 𝑋 according to Nawrocki 

and Harding (1986), the above definition of entropy ignores the structure of the 

dispersion contain in the frequency classes of a variable. They introduce the state-value 

weighted entropy especially useful to measure investment risks. The form of weighted 

entropy is  

 𝐻(𝑋) = −∑ 𝐶(𝑥)𝑝(𝑥)𝑥𝜖𝑋 𝑙𝑜𝑔𝑝(𝑥) 

Two suggested form of C(x) are |𝑠(𝑥) − 𝑚| and (𝑠(𝑥) − 𝑚)2 where 𝑠(𝑥) is the state 

value of frequency classes and 𝑚 is the mean of the variable. 
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Entropy is first introduced by Philippatos and Wilson (1972) as a nonparametric 

alternative measure of portfolio risk to replace variance proposed by Markowitz. So, 

measuring uncertainty is a way of measuring risk. Their proposed model has two goals 

that are firstly maximize the expected portfolio return and then to minimize the portfolio 

entropy. 

Philippatos et al. (1972) propose the mean-entropy (ME) model where they use 

entropies of assets as a measure of risk. They introduce an index based framework 

where portfolio entropy is computed for a given market index. Suppose, to some extent 

R1, R2, …,Rn depend on a market index RI. The mean-entropy (ME) portfolio is then of 

the form 




n

i

Iii
x

RRHx
1

2 )|(min ,  

s.t. 𝐸(𝑤′𝑅) = 𝑤′𝑚 = 𝜇0,     𝑤′1𝑛 = 1,                                                  (9) 

where )|( Ii RRH  is the conditional entropy of an asset return, 𝑅𝑖, given the market 

index return, 𝑅𝐼. It should be noted that here conditional entropy, instead of joint 

entropy, is used to reduce the computational task. 

2.4 Multi-objectives portfolio 

Single-objective constrained optimization problems are enticing because solution 

methods are well-known and often only involve concepts from calculus. However, in 

many real-world scenarios, the single-objective approach proves inadequate. The 

portfolio optimization problem is one such instance. When creating an investment 

portfolio, the primary goal for investors is to maximize profit while minimizing risk. 

Since the return and risk of any investment portfolio are closely interrelated, investors 

need ways to balance the inherent risk-return trade-off. In recent years portfolio 
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optimization models consider more criteria than the standard expected return and 

variance objectives compare widely used Markowitz model. (See Jana.et al., 2009; 

Arditti, 1967; Konno et al., 1993; Pornchai et al., 1997). However, there is controversy 

over the issue of whether higher moments should be considered in portfolio selection 

(see Samuelson, 1970; Arditti and Levy, 1975; Kraus and Litzenberger, 1976; Singleton 

and Wingender, 1986; Prakash et al., 2003, and Sun and Yan, 2003). Chunhachindaet 

al., 1997; Arditti, 1967; Arditti and Levy, 1975 assert that higher moments cannot be 

neglected, unless there is a reason to believe that the asset returns are distributed 

normally or that higher moments are irrelevant to the investor’s decision portfolio.  

2.4.1 Mean variance skewness (MVS) portfolio 

The mean-variance-skewness (MVS) model 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑥𝑇𝑉𝑥 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥𝑇𝑆(𝑥 ⊗ 𝑥) 

Subject to            𝑥𝑇𝑀 = 𝜇,    xT1 = 1   and xi ≥ 0    for    𝑖 = 1,2, … , 𝑛 

Prakash et al. (2003), Harvey et al. (2000) and Ibbotson (1975) discuss existence of 

the higher moments in an asset allocation system if the returns do not follow a 

symmetrical probability distribution. Moreover, they show that when skewness is 

included in the decision process, an investor can get a higher return. 

The empirical evidence related to the performance of MVS model shows that the 

incorporation of skewness into MVM can provide significantly better portfolios the 

non-normal return distributions. 
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2.4.2 Mean variance entropy portfolio (MVE) 

some studies indicate that the portfolio weights obtained from the MV and the MVS can 

often focus on a few assets or extreme positions (Chunhachinda et al., 1997; Prakash et 

al., 2003; Bera and Park, 2008), although an important objective of asset allocation is 

diversification (Bera and Park, 2008; DeMiguel, 2009). In portfolio theory, it is well-

known that the diversification reduces unsystematic risk in portfolios. In the other 

words, the more diversified portfolio weights (probabilities) there are, the more reduced 

risk there is in the portfolio selection (Dobbins et al., 1994; Gilmore et al., 2005). 

Diversified portfolios also have lower idiosyncratic volatility than the individual assets 

(DeMiguel, 2009). Moreover, the portfolio variance decreases as the diversification in 

portfolio increases. Some authors (Samanta and Roy, 2005; Ke and Zhang, 2008; Jana 

et. al., 2009; Usta and Kantar, 2011 for instance) utilize entropy of weights together 

with variance of assets to obtain a diversified portfolio, called as mean-variance-entropy 

(MVE) portfolio. This model is an extension of MV and is written in the following 

form: 





n

i

ii
w

wwwVw
1

log'min  ,                 (10) 

s.t. 𝐸(𝑤′𝑅) = 𝑤′𝑚 = 𝜇0,   𝑤′1𝑛 = 1,  

where  is called momentum factor determining the significance of the term for entropy 

in the objective function. In MVE, the entropy is not utilized as a measure of risk; rather 

it is added here to obtain close to uniformly distributed portfolio weights. With proper 

choice of the momentum factor this model can compromise between the risk and 

diversification of a portfolio. For 0 , MVE equals to MV. Thus, MVE is more 

general than MV. 
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2.4.3 Mean variance skewness entropy portfolio (MVSE) 

In this approach, an entropy measure is added to the mean-variance-skewness model 

(MVSM) to generate a well-diversified portfolio that is MVSE. The multi-objective 

portfolio selection model where investor tries to maximize the skewness of portfolio and 

entropy of portfolio weights, while simultaneously attempting to minimize the portfolio 

variance. The multi-objective model based on mean, variance, skewness and entropy 

can be expressed in the following form: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑥𝑇𝑉𝑥 

         𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝑥𝑇𝑆(𝑥 ⊗ 𝑥) 

                                                                 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 − 𝑥𝑇ln (𝑥) 

subject to  𝑥𝑇𝑀 = 𝜇, xT1 = 1     and      xi ≥ 0     for       𝑖 = 1,2, … , 𝑛 

They find that the performance of the MVSE portfolio is better than the other models in 

terms of a variety of portfolio performance measures. Moreover, the MVSE is able to 

provide smaller portfolio turnover in comparison to the other models; thus, it meaning 

that the transaction costs associated with the implementation of MVSE are the lowest. 

2.5 Portfolio Performance measure 

The Sharpe ratio is a commonly used measure of portfolio performance. However, 

because it is based on the mean-variance theory, it is valid only for either normally 

distributed returns or quadratic preferences. In other words, the Sharpe ratio is a 

meaningful measure of portfolio performance when the risk can be adequately measured 

by standard deviation. When return distributions are non-normal, the Sharpe ratio can 

lead to misleading conclusions and unsatisfactory paradoxes, see, for example, Hodges 
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(1998) and Bernardo and Ledoit (2000). For instance, it is well-known that the 

distribution of hedge fund returns deviates significantly from normality (see, for 

example, Brooks and Kat, 2002; Agarwal and Naik, 2004; Malkiel and Saha, 2005); 

therefore, performance evaluation of hedge funds using the Sharpe ratio seems to be 

dubious. Moreover, recently a number of papers have shown that the Sharpe ratio is 

prone to manipulation (see, for example, Leland, 1999; Spurgin, 2001; Goetzmann et 

al., 2002; Ingersoll et al., 2007). Manipulation of the Sharpe ratio consists largely in 

selling the upside return potential, thus creating a distribution with high left-tail risk. 

There are vast literatures on performance evaluation that takes into account higher 

moments of distribution is. Motivated by a common interpretation of the Sharpe ratio as 

a reward-to-risk ratio, many researchers replace the standard deviation in the Sharpe 

ratio by an alternative risk measure. For example, Sortino and Price (1994) replace 

standard deviation by downside deviation. 

In order to evaluate the performance of portfolio models, a number of alternative 

performance measures have been proposed in the literature. As a traditional 

performance measure, the Sharpe ratio (SR) has been used extensively and its formula is 

given as the following general form 

𝑆𝑅 =
𝐸[𝑅𝑝]

√𝜎2[𝑅𝑝]
 

where  𝑅𝑝 is the return of portfolio. 

However, since the SR is based on the mean-variance theory, it is only valid for 

normally distributed returns. Particularly, the SR can lead to misleading conclusions 

when the return distributions are skewed or display heavy tails. Several alternatives to 

the SR for optimal portfolio selection have been proposed in the literature. Some of 
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these alternatives are presented in the following: The adjusted for skewness Sharpe ratio 

(ASR) (Zakamouline, 2009), which takes into accounts the skewness of portfolio, is 

defined as follows: 

                                                 𝐴𝑆𝑅 = 𝑆𝑅√1 +
𝑆𝑘[𝑅𝑝]

3
𝑆𝑅 

(i) The mean absolute deviation ratio, (MADR) (Konno, 1990), which considers 

the risk as mean absolute deviation, is given as follows: 

𝐴𝐷𝑅 =
𝐸[𝑅𝑝]

𝐸[|𝑅𝑝 − 𝐸𝑅𝑝|]
 

(ii) The Sortino-Satchell ratio (SSR) and Farinelli and Tibiletti ratio (FTR) 

(Farinelli et al., 2009), are performance measures based on the partial 

moments and their formulas are given as follows, respectively: 

                                                       𝑆𝑆𝑅 =
𝐸[𝑅𝑝]

√𝐸[max(−𝑅𝑝,0)
2
]

, 

where 𝐸[max(−𝑅𝑝, 0)
2
] is the lower partial moment of order 2. 

(iii)                                  𝐹𝑇𝑅 =
√𝐸[max(𝑅𝑝,0)

𝑢
]

𝑢

√𝐸[max(−𝑅𝑝,0)
𝑣
]

𝑉
    𝑢, 𝑣 > 0, 

where 𝐸[max(−𝑅𝑝, 0)
𝑣
] and 𝐸[max(𝑅𝑝, 0)

𝑢
] are the lower partial moment of order v 

and the upper partial moment of order u, respectively. The selection of 𝑢and 𝑣are 

associated to investors’ styles or preferences. In the empirical part in chapter 3, we will 

consider the following cases for u and v according to Farinelli et al. (2008) and Keating 

and Shadwick (2002) with𝑢 = 0.5, 𝑣 = 2 for a defensive investor; 𝑢 = 1.5, 𝑣 = 2 for 
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a conservative investor; 𝑢 = 1, 𝑣 = 1 for a moderate investor. Additionally, it is 

known that if 𝑢 = 1, 𝑣 = 1, the FTR reduces to the Omega ratio of Keating (2002). 
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CHAPTER 3: COMPARISON BETWEEN VARIANCE AND ENTROPY 

3.1 Introduction 

Variance and other indices continue to be popular because of simplicity. The historical 

development has resulted in variance playing the central role in measuring dispersion, 

uncertainty, evaluating fit, and many more. While variance measures compactness of 

data around the mean, entropy, on the other hand measures diffuseness of the density 

irrespective of the location of compactness. Entropy like variance is a collective 

measure of uncertainty, but unlike variance, it can be either a cardinal or ordinal 

variable. 

3.2 Entropy at a glance 

Entropy measures the uncertainty inherent in the distribution of a random variable. 

Suppose 𝑝(𝑥) be the probability of a random variable 𝑋. Following Shannon (1948), the 

entropy of 𝑋 is defined by: 

                    𝐻(𝑋) = −∑ 𝑝(𝑥)𝑥𝜖𝑋 𝑙𝑜𝑔 𝑝(𝑥)               (3.1) 

 In the above formula, the uncertainty at point x is measure as 𝑙𝑜𝑔
1

𝑝(𝑥)
  so that 𝐻(𝑋) 

is the average uncertainty contained in the variable 𝑋. Entropy is non-negative. If the 

outcome is certain, the entropy is zero and it is positive when the outcome is not certain. 

Entropy is concave and continuous function. When the values of some probabilities are 

changed by small amount, the entropy should also change by only a small amount. In 

finance, entropy is used as a synonym for risk in the sense that uncertainty causes loss, 

and so, measuring uncertainty is an alternative way of measuring risk. Philippatos and 

Wilson (1972) use Shannon entropy as a measure of risk of securities. The logic of their 
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approach was that risk inherent in an investment whose returns are uncertain is 

adequately captured by the dispersion in the probabilities of the returns. 

The joint entropy and the conditional entropy are simple extensions that measure the 

uncertainty respectively, in the joint distribution and the uncertainty in the conditional 

distribution of a pair of random variables. The joint entropy ( , )H x y  of a pair of discrete 

random variables with a joint distribution ( , )p x y  is defined as:  

  𝐻(𝑋, 𝑌) = −∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)𝑦𝜖𝑌𝑥𝜖𝑋                 (3.2) 

Similarly, the conditional entropy ( )H Y X  is defined as: 

  𝐻(𝑌|𝑋) = −∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥)𝑦𝜖𝑌𝑥𝜖𝑋                   (3.3) 

As noted by Nawrocki and Harding (1986), the above definition of entropy ignores 

the structure of the dispersion contain in the frequency classes of a variable. They 

introduce the state-value weighted entropy that is especially useful to measure 

investment risks. The form of weighted entropy is  

 𝐻(𝑋) = −∑ 𝐶(𝑥)𝑝(𝑥)𝑥𝜖𝑋 𝑙𝑜𝑔 𝑝(𝑥)                  (3.4)

  

Here C(x) is not a constant, but it depends on states levels of  𝑋. One suggested form 

of C(x) is|𝑠(𝑥) − 𝑚|, where 𝑠(𝑥) is the state value of frequency classes and 𝑚 is the 

mean of the variable. 

Philippatos and Gressis (1975) conclude that if the asset distribution is either normal or 

uniform, mean-entropy and mean-variance portfolios are equivalent. Ebrahimi et al. 

(1999) examined the position of variance and entropy in ordering distributions and 

random prospects and argue that in terms of ordering distributions these measures do 
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not show any universal relationship. Using a Legendre series expansion, they show that 

entropy is a function of not only variance but also higher-order moments of a random 

variable. However, when continuous variables are transformed, under certain 

conditions, the order of the variance and entropy is similar. These authors conclude that, 

entropy uses more information than variance and thus, it offers better characterization 

of 𝑝𝑥(𝑋). Ebrahimi et al. (1999) provides significant insights about entropy and its 

relation to variance and higher-order moments by approximating the density function 

through a Legendre series expansion function. A smooth and continuous density can be 

well approximated as 

                     𝑝(𝑥) ≈ 𝑎0𝐺0(𝑥) + 𝑎1𝐺1(𝑥) + ⋯+ 𝑎𝑁𝐺𝑁(𝑥) ,               (3.5) 

where 𝐺𝑖(𝑥),    𝑖 = 1, … , 𝑁 are Legendre polynomials: 

    𝐺0(𝑥) = 1,    𝐺1(𝑥) = 𝑥, 𝐺2(𝑥) = 0.5(3𝑥2 − 1),…    .  

Note that 

∫ 𝐺𝑖(𝑥)𝐺𝑗(𝑥)𝑑𝑥 =
2𝛿𝑖𝑗

2𝑖 + 1

1

−1

 , 

where 𝛿𝑖𝑗 is the Kronecker’s delta, and 𝑥𝜖[−1, +1]. One might obtain 𝑎0 and 𝑎1 to 

satisfy the normalization restriction and mean zero restriction. 

Since 

𝑥2 =
1

3
[2𝐺2(𝑥) + 𝐺0(𝑥)], 

variance is approximated by   

                            V(x) = ∫𝑥2 𝑝(𝑥)𝑑𝑥 ≈
1

3
[
4

5
𝑎2 + 2𝑎0 ] 
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This approximation reveals that the variance increases if and only if 𝑎2 increases. 

Other 𝑎𝑖, 𝑖 ≥ 3, do not influence the variance. 

Now, employing Eq. (3.1), it can be verified that the derivative of H with respect to 

𝑎2 is 

𝜕𝐻

𝜕𝑎2
≈ −∫𝐺2 (𝑥) log[𝑎0𝐺0(𝑥) + 𝑎1𝐺1(𝑥) + ⋯+ 𝑎𝑁𝐺𝑁(𝑥)]𝑑𝑥 . 

Entropy increases with variance if this expression is positive, and also the variation 

of entropy depends on many more parameters than just 𝑎2. It is revealed fromthe 

Legendre series expansion that entropy is connected to higher order moments of a 

distribution, which unlike the variance, could provide a much improved characterization 

of 𝑝(𝑥). Maasoumi and Racine (2002) argue that in the case of unknown probability 

distribution, the entropy formulate an alternative statistical measure for the uncertainty, 

predictability and goodness-of-fit. The entropy can be replaced by the variance only in 

the case of Gaussian distributions. The 'fat' tailed distributions are not fully described by 

a variance; in such a case, we need more parameters. When the distribution is known, 

entropy can be calculated from variance in most of the cases. To make this clear we 

listed entropies and variances of some well-known distributions in Table 3.2. It is 

obvious that entropy is a function of variance (if it exists) and so if the form of the 

distributions is known, use of either entropy or variance is equivalent.  

The standard-deviation and the entropy usually decrease when we include one more 

asset in the portfolio (Dionosio, 2005). This fact allows us to figure out that entropy is 

responsive to the effect of diversification. These results can be explained by the fact that 

when the number of assets in the portfolio increases, the number of possible states of the 

system (portfolio) declines progressively and the uncertainty about that portfolio tends 

to fall. Since maximizing Shannon’s entropy subject to some moment constraints 
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implies estimating weight that is the closest to the uniform distribution (i.e., equally 

weighted portfolio), well-diversified optimal portfolio can be achieved. 

Based on the above discussion, we can conclude that  

1. variance is easy to calculate and more familiar than entropy; 

2. entropy and variance are equivalent for normal or uniform distribution; 

3. entropy is more informative than variance; 

4. entropy can be estimated  nonparametrically; thus, unlike variance, entropy 

is not restricted to symmetric and normal distribution; 

5. like variance, portfolio entropy is sensitive to diversity 

3.3 Estimation 

Beirlant (1997) categorize entropy estimation from the real data into three basic 

methods: plug-in estimate, sample spacing estimate and nearest neighbor distance 

estimate.  

(1) Plug-in estimates: There are four approaches for plug in estimates of entropy  

(a) Integral estimate: An integral estimate of entropy is the sample version of equation 

(3.2) and has the form  

                                 𝐻𝑛 = −∑ 𝑓𝑛(𝑥)𝑙𝑜𝑔𝐴𝑛 𝑓𝑛(𝑥)𝑑𝑥                (3.6) 

where 𝑓𝑛(𝑥) is a consistent density estimate evaluated at a bounded set  𝐴𝑛 that 

typically exclude that small or tail values of  𝑓𝑛 to make sense of −𝑙𝑛𝑓𝑛 . Dmitriev and 

Tarasenko (1973) propose to estimate entropy with this formula by plug-in kernel 

density estimator and show that is strongly consistent. Joe (1989) considers entropy in 

multivariate case where he points out that the calculation of the density by kernel 

estimator is difficult for more than two variables; however, it provide good estimate for 
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low dimensional data. Györfi and van der Meulen (1987) use histogram based density 

estimator to compute entropy and show that it is strongly consistent for finite entropy. 

(b) Resubstitution estimate: A resubstitution estimate of entropy has the form 

                                             𝐻𝑛 = −
1

𝑛
∑ 𝑙𝑛𝑓𝑛
𝑛
𝑖=1 (𝑋𝑖)                                           (3.7) 

Ahmad and Lin (1976) propose using kernel density estimate in this formula of 

entropy and show its mean square consistency. Joe (1989) finds the asymptotic bias and 

variance of this estimator and noted that as the dimension of the data increases, sample 

size should be large enough to obtain reasonable estimate. Hall and Morton (1996) show 

that histogram-based resubstitution estimator is root-n consistent for one dimensional 

data but for two-dimensional data it has significant bias. They also show that under 

certain condition this estimator with kernel density is root-n consistent. 

(c) Splitting data estimate: Suppose 𝑋1, … , 𝑋𝑙 and  𝑋1
∗, … , 𝑋𝑚

∗  are two subsamples of 

𝑋1, … , 𝑋𝑛 with 𝑙 + 𝑚 = 𝑛 and 𝑓𝑙  be a density estimate based on 𝑋1, … , 𝑋𝑙 then a splitting 

data estimate of entropy has the form  

                       𝐻𝑛 = −
1

𝑚
∑ 𝐼[𝑋𝑖

∗∈𝐴𝑙]
𝑚
𝑖=1 𝑙𝑛𝑓𝑙(𝑋𝑖

∗)                                   (3.8)  

Györfi and van der Meulen (1987, 1989) use histogram and kernel density estimates 

for 𝑓𝑙 under some mild tail and smoothness conditions on 𝑓𝑙 this estimator is strongly 

consistent. 

(d) Cross validation estimate: Ivanov and Rozhkova (1981) propose using the 

resubstitution formula with a kernel density estimate base on cross validation or leave-

one-out:  

                                        𝐻𝑛 = −
1

𝑛
∑ 𝐼[𝑥𝑖∈𝐴𝑛]
𝑛
𝑖=1 𝑙𝑛𝑓𝑛,𝑖(𝑋𝑖)                           (3.9) 
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They show that this estimator is strongly consistent. Hall and Morton (1993) show 

that under certain conditions it provides root-n consistent estimate for one to three-

dimensional data. 

(2) Sample spacing estimate: The sample spacing method is to estimate the density 

using sample spacing method and then use either integral estimate or resubstitution 

estimate to compute entropy. Let the ordered observations be 𝑋𝑛,1 ≤ 𝑋𝑛,2 ≤ ⋯ ≤ 𝑋𝑛,𝑛. 

The sample spacing method is to estimate the density using spaces between ordered 

observations 𝑋𝑛,𝑖+𝑚 − 𝑋𝑛,𝑖(1 ≤ 𝑖 < 𝑖 + 𝑚 ≤ 𝑛): 

                                          𝑓𝑛(𝑥) =
𝑚

𝑛

1

𝑋𝑛,𝑖𝑚−𝑋𝑛,(𝑖−1)𝑚
               (3.10) 

The entropy can then be computed using the formula in equation (3.6) or (3.7). 

Tarasenko (1968), Beirlant and Zuijlen (1985)and Hall (1984) find that this estimator is 

weakly consistent and asymptotically normal. 

(3) Nearest neighbor distance estimate: Kozachenko and Leonenko (1987) propose a 

formula for estimating entropy using the nearest neighbor distance of observations 𝜌𝑛,𝑖 

defined as 𝜌𝑛,𝑖 = 𝑚𝑖𝑛𝑗≠𝑖,𝑗≤𝑛‖𝑋𝑖 − 𝑋𝑗‖. Then the nearest neighbor estimate is 

                        𝐻𝑛 =
1

𝑛
∑ ln (𝑛𝜌𝑛,𝑖
𝑛
𝑖=1 ) + ln 2 + 𝐶𝐸                         (3.11) 

where 𝐶𝐸 is the Euler constant: 𝐶𝐸 = −∫ 𝑒−𝑡
∞

0
ln 𝑡 𝑑𝑡   

Tsybakov and van der Meulen (1994) show that this estimator is root-n consistent. 

3.3.1 Entropy estimation from sample data 

For a known density function, entropy can be calculated in terms of the estimated 

parameters (Cover and Thomas, 1991).Arellano-valle and Richter (2012) provides a 
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general expression for the entropy of multivariate skew elliptical distributions. A 

Bayesians parametric estimation of entropy is proposed by Gupta and Srivastava (2010). 

R codes for calculating entropy for a given density with different methods are given in 

Appendix 1. However, we seldom know the true density of the data in hand. Vasicek 

(1976) estimates entropy directly from a given set of data based on sample spacing. 

Correa (1995) modified Vesicek’s estimator which offers smaller mean square error. 

The common practice of computing entropy is to first estimate the density using 

histogram or kernel density methods (Hall and Morton, 1996; Moddemeijer, 1999; 

Darbellay and I. Vajda, 1999) and subsequently plug-in the raw estimate of the 

probability, 𝑝(𝑥)in equation (1) or (2). Plug-in estimators using histogram and kernel 

density provide consistent entropy estimates for low dimensional data (Györfi and van 

der Meulen, 1987). 

3.3.1.1 Histogram  

Widely employed in exploratory data analysis, a histogram is usually a graphical 

representation of the frequency distribution of a dataset. Because of the ease and 

simplicity of structure and interpretation, histograms are still popular compare to more 

sophisticated kernel–based density estimators (Wand,1994; Simonoff and Udina,1997). 

Summary quantities such as entropy using histograms, however, the values of such 

quantities depend upon the number of bins used (or the bin width used) and the location 

of the bins (Knuth, 2006). Let 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} be a univariate dataset with 

probability density function 𝑓(𝑥). Martinez andMartinez (2007) describe the 

construction of a histogram at first it needs an origin for the bins 𝑡0 (also referred to as 

the anchor) and a bin width  ℎ. Selection of these two parameters defines a mesh 

(position of all the bins) over which the histogram will be constructed. Each bin is 
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represented by a pair of bin edges as 𝐵𝑘 = [𝑡𝑘 , 𝑡𝑘+1], where 𝑡𝑘+1 − 𝑡𝑘 = ℎ for all 𝑘. Let 

𝑐𝑘(bin count for 𝐵𝑘) is the number of observations in 𝐵𝑘: 

                                                               𝑐𝑘 =∑𝐼𝐵𝑘

𝑛

𝑖=1

(𝑥𝑖) 

where 𝐼𝐵𝑘  is defined as 

𝐼𝐵𝑘(𝑥𝑖) = {
1   𝑥𝑖𝑖𝑛 𝐵𝑘

      0  𝑥𝑖𝑛𝑜𝑡 𝑖𝑛 𝐵𝑘
} 

while the density estimate for the underlying population (𝑐𝑘 for all 𝑘) satisfies the non–

negativity condition necessary for it to be a bona fide probability density function, the 

summation of all the probabilities do not necessarily add to unity. To satisfy that 

condition, the probability density function estimate, 𝑓(𝑥), as obtained from a histogram, 

is defined as: 

                                                           𝑓(𝑥) =
𝑐𝑘

𝑛ℎ
   for 𝑥 in 𝐵𝑘 

This assures that ∫𝑓(𝑥) 𝑑𝑥 = 1 is satisfied, and 𝑓(𝑥), represents a valid estimate for 

the probability density function of the population underlying the dataset.  

The usual practice of histogram construction is using 𝑡0 = min (𝑋). Wand and Jones 

(1994) noted that the value of 𝑐𝑘 heavily depends upon the parameters 𝑡0 and ℎ. 

Simonoff and Udina (1997) provide a method to quantify the effects of changing the 

parameter 𝑡0during the construction of a histogram. A common method to determine bin 

width ℎ is: 

ℎ =
max(𝑋) − 𝑚𝑖𝑛(𝑋)

𝑚
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Using a small value for 𝑚 in a large bin width causes a histogram that offers the 

shape of the underlying distribution impractical; and using large value for bins in a 

small bin width produces a histogram that capture the shape of the underlying 

distribution extremely noisy. Unless the underlying population distribution is Uniform 

by considering single number of bin (𝑚 = 1), and information relating to shape, 

modality, and symmetry will be lost. Even if we consider the number of bins more than 

one, there will still be a loss of information relating to shape, modality, and symmetry. 

Since, within each bin it is considered that observations are uniformly distributed. 

Examples of these two extreme cases suggests that “optimal” number of bins should be 

used to construct a histogram that can effectively capture information relating to shape, 

modality, and symmetry and imply sufficient values for summary quantities. Knuth 

(2006) suggests that the number of bins should be sufficient enough to capture all major 

structures of the underlying distribution, but small enough to avoid finer details and 

random sample noise. Thus, to achieve a proper balance between “degree of detail” and 

“noisy-ness” for a given dataset in selecting an “optimal” number of bins for 

constructing a histogram, is a sophisticated task. 

Methods for the number of bins selection 

Robust estimation of entropy and mutual information from histograms is a challenging 

task. Perhaps the earliest reported method for constructing histograms is provided by 

Sturges, 1926. It is based on the assumption that a good distribution should have 

binomial coefficients (
𝑚 − 1
𝑖

), 𝑖 =  0, 1, 2, . . . , 𝑚 −  1 as its bin counts. With 

suggested bin width = 1 + log2 𝑛 , the bin number can then be determined by 𝑚 =
𝑅

𝑤
, 

where 𝑅 is the range of the dataset. The Sturges’ rule assumed that the data are normally 

distributed, thus, is not suitable for non-normal data.  

Univ
ers

ity
 of

 M
ala

ya



40 

Scott (1979) gave a formula for the optimal histogram bin width which 

asymptotically minimizes the integrated mean squared error (IMSE). The IMSE is 

defined as: 

   𝐼𝑀𝑆𝐸 = ∫𝑀𝑆𝐸(𝑥)𝑑𝑥 

             = ∫𝐸(𝑓(𝑥)−𝑓(𝑥))2𝑑𝑥 

where 𝑓(𝑥)estimated density using histogram, and 𝑓(𝑥) is the actual probability density 

of the underlying population. By considering Gaussian as the actual probability density, 

using this error metric, Scott (1979) suggests the bin width to be used as: 

ℎ =
3.49𝑠

𝑛
1

3

 

where 𝑠 is the sample standard deviation. 

Freedman and Diaconis (1981) make a slight modification with this formula and 

suggest: 

ℎ =
2(𝐼𝑄𝑅(𝑋))

𝑛
1

3

 

where IQR(X) is the Inter–Quartile Range for the dataset 𝑋. 

Knuth (2006) criticize these popular methods since the certain assumptions about the 

underlying population for estimating the value of MISE, which may not be satisfied by 

all datasets. The author proposes for using of Bayesian approach to select the number of 

bins. 

There is substantial literature on how to select the number of bins; see, for example, 

He and Meeden (1997), who provide a decision theoretic approach to the selection of 
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the number of bins. Several authors have addressed histogram as a density estimator; 

see, as examples, Sturges (1926), Doane (1976), Scott (1979), Freedman and Diaconis 

(1981), Rudemo (1982),Stone (1985), Kanazawa (1992), Wand (1996; 1997), 

Shimazaki and Shinomoto (2007), Scott and Scott (2008), Wang and Zhang (2012), and 

Lu et al. (2013). Stone (1985) offers a procedure based on minimization of a loss 

function defined on the basis of bin probabilities and number of bins. Rudemo (1982) 

proposes a method based on Kullback-Leibler risk function and cross–validation 

techniques. Wand (1996) extends Scott’s method to have good large sample consistency 

properties. The use of Akaike’s Information Criterion (AIC) and Kullback-Liebler 

Cross Validation techniques for preparing histogram investigated by Hall (1990). To 

construct histogram, Birge et al. (2006) use risk function based on a penalized 

maximum likelihood. Assuming that the data are sampled independently Shimazaki et 

al. (2007) propose minimization of the estimated cost function based on a modified 

MISE.  

Recently Hacine-Gharbi et al. (2013) derive a new approach for estimating the 

optimal number of histogram bins by minimizing the MSE for estimation of entropy and 

empirically shows its better performance over Sturges, Scott and Freedman-Diaconis 

rules. They proposed approximating pdfs with histogram by reducing the bias and MSE 

for estimating mutual information. When using the histogram approach with discrete 

finite-sample data, two biases appear: the 𝑅𝑏𝑖𝑎𝑠 caused by insufficient representation of 

the pdfs using the histogram, and the 𝑁𝑏𝑖𝑎𝑠 due to the finite sample size (Pearce and 

Hirsch, 2000). This Low MSE (LMSE) MI estimation approach is explained below in 

detail. 

For histogram-based mutual information (MI) estimation, Pearce and Hirsch divide 

the XY-plane into 𝑘𝑥 × 𝑘𝑦 equally sized ∆𝑥 × ∆𝑦 cells. In approximation of MI  
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𝐼2(𝑋; 𝑌) ≈∑∑𝑝𝑖𝑗

𝑘𝑥

𝑖=1

𝑘𝑦

𝑗=1

log
𝑝𝑖𝑗

𝑝𝑖𝑝𝑗
 

for two Gaussian variables X and Y, with standard deviation 𝜕𝑥 and 𝜕𝑦 respectively, and 

a correlation coefficient 𝜌, the first order 𝑅𝑏𝑖𝑎𝑠 with Taylor series expansion can be 

expressed as: 

𝑅𝑏𝑖𝑎𝑠 =
𝜌2

24(1 − 𝜌2)
((
∆𝑋
𝜎𝑥
)
2

+ (
∆𝑌
𝜎𝑦
)

2

) 

By Counting the number 𝑘𝑖𝑗 of samples in cell (𝑖, 𝑗), a classical estimator of 𝑝𝑖𝑗, for a 

total number of samples N, can be obtained as  �̂�𝑖𝑗 =
𝑘𝑖𝑗

𝑁
  the rows and columns are then 

summed to obtain �̂�𝑖 = ∑ �̂�𝑖𝑗
𝑘𝑦
𝑗−1

 and  �̂�𝑗 = ∑ �̂�𝑖𝑗
𝑘𝑥
𝑖−1 . 

 The expression of the MI becomes: 

𝐼2(𝑋; 𝑌) =∑∑(
𝑘𝑖𝑗

𝑁

𝑘𝑥

𝑖=1

𝑘𝑦

𝑗=1

) log(
𝑘𝑖𝑗𝑁

𝑘𝑖𝑘𝑗
) 

A Taylor expansion around 𝑘𝑖𝑗 leads to the first order 𝑁𝑏𝑖𝑎𝑠 

𝑁𝑏𝑖𝑎𝑠 =
(𝑘𝑋 − 1)(𝑘𝑌 − 1)

2𝑁
 

The total first order bias is the sum of the 𝑅𝑏𝑖𝑎𝑠 with the 𝑁𝑏𝑖𝑎𝑠 leads to: 

𝐵𝐼𝑋𝑌 = 𝐸(𝐼𝑋𝑌) − 𝐼𝑋𝑌 ≈
(𝑘𝑋 − 1)(𝑘𝑌 − 1)

2𝑁
−

𝜌2

24(1 − 𝜌2)
((
∆𝑋
𝜎𝑥
)
2

+ (
∆𝑌
𝜎𝑦
)

2

) 

Let 𝐴𝑥 and 𝐴𝑦 be the extents of 𝑋 and 𝑌 respectively. Then 
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𝑘𝑥∆𝑋= 𝐴𝑥 and       𝑘𝑦∆𝑌= 𝐴𝑦 

𝛼𝑥. 𝜎𝑥 = 𝐴𝑥 and    𝛼𝑦. 𝜎𝑦 = 𝐴𝑦 

where 𝛼𝑥 and 𝛼𝑦 are constants, and if we assume 𝑘 =  𝑘𝑥  =  𝑘𝑦 for simplicity, then 

we can write: 

∆𝑋

𝜎𝑥
=

𝛼𝑥

𝑘
  and   

∆𝑌

𝜎𝑦
=

𝛼𝑦

𝑘
 

Finally, 

𝐵𝐼𝑥𝑦 ≈
(𝑘 − 1)2

2𝑁
−

𝜌2

24(1 − 𝜌2)
((
𝛼𝑥
𝑘
)
2

+ (
𝛼𝑦

𝑘
)
2

) 

Furthermore, it has been shown previously (Scott, 1992) that the variance of 𝐼2(𝑋; 𝑌) 

for two Gaussian variables 𝑋, 𝑌 can be approximated by: 

𝑣𝑎𝑟𝐼𝑥𝑦 ≈
𝜌2

𝑁
 

Thus, MSE of 𝐼2(𝑋; 𝑌) is defined as: 

𝑀𝑆𝐸𝐼𝑥𝑦 = 𝑣𝑎𝑟𝐼𝑥𝑦 + (𝐵𝐼𝑥𝑦)
2 

                            ≈
𝜌2

𝑁
+ (

(𝑘 − 1)2

2. 𝑁
−

𝜌2

24(1 − 𝜌2)
((
𝛼𝑥
𝑘
)
2

+ (
𝛼𝑦

𝑘
)
2

))

2

 

 

The optimal number of bins for histogram, 𝑘𝑜𝑝𝑡, can then be obtained by minimizing 

the MSE:  

𝑘𝑜𝑝𝑡 = argmin
𝑘
𝑀𝑆𝐸𝐼𝑥𝑦 
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= argmin
𝑘
[
𝜌2

𝑁
+ (

(𝑘 − 1)2

2.𝑁
−

𝜌2

24(1 − 𝜌2)
((
𝛼𝑥
𝑘
)
2

+ (
𝛼𝑦

𝑘
)
2

))

2

] 

= argmin
𝑘
[(
(𝑘 − 1)2

2.𝑁
−

𝜌2

24(1 − 𝜌2)
((
𝛼𝑥
𝑘
)
2

+ (
𝛼𝑦

𝑘
)
2

))

2

] 

= argmin
𝑘
[(𝐵𝐼𝑥𝑦)

2] 

Therefore, the bin number which minimizes (𝐵𝐼𝑥𝑦)
2 is the same as the one which 

minimizes 𝑀𝑆𝐸𝐼𝑥𝑦 . Then, 𝑘𝑜𝑝𝑡 is determined by the solution of the following equation: 

(𝑘 − 1)2

2.𝑁
−

𝜌2

24(1 − 𝜌2)
((
𝛼𝑥
𝑘
)
2

+ (
𝛼𝑦

𝑘
)
2

) = 0 

Using simple algebraic manipulations, we rewrite the above expression as: 

𝑘4 − 2𝑘3 + 𝑘2 − 𝐿 = 0 

with constant 

                                                𝐿 =
𝑁𝜌2

12(1−𝜌2)
(𝛼𝑥

2 + 𝛼𝑦
2) 

    =
𝑁𝜌2

12(1 − 𝜌2)
((
𝐴𝑥
𝜎𝑥
)2 + (

𝐴𝑥
𝜎𝑦
)2) 

The number of bins as the nearest integer value of the positive real solution is: 

      𝑘 = 𝑟𝑜𝑢𝑛𝑑 {
1

2
+

1

2
√1 + 4√𝐿} 
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Traditionally, the histogram for a Gaussian distribution can be defined on a 6𝜎 range 

which leads to 𝐴𝑥 = 6𝜎𝑥 and 𝐴𝑦 = 6𝜎𝑦. Hence, the number of bins for the proposed 

low MSE histogram-based MI estimator becomes: 

                                      𝑘 = 𝑟𝑜𝑢𝑛𝑑

{
 

 
1

2
+
1

2
√1 + 4√

6𝑁�̂�2

1 − �̂�2

}
 

 

 

where the unknown correlation coefficient 𝜌 has been replaced by its classical 

estimator �̂�, and round stands for the closest integer of a real variable.  

In a case of estimating the mutual information between continuous random variables 

and a discrete class, the MI is expressed as a function of the entropy and the conditional 

entropy:  

                                          𝐼2(𝑋; 𝐶) = 𝐻(𝑥)-∑ 𝑝𝑐𝑐𝜖𝐶 (𝑐)𝐻(𝑋|𝐶 = 𝑐) 

where  𝑝𝑐 is just the probability that variable C takes the value c.  

A low MSE estimation of 𝐼2(𝑋; 𝐶) can be achieved by a low MSE estimation of the 

entropy 𝐻(𝑥), and that of each of the conditional entropies 𝐻(𝑋|𝐶 = 𝑐) for the 

individual classes c’s.  

The discrete approximation of  𝐻(𝑥) can be written: 

�̂�𝑥 = −∑(
𝑘𝑖
𝑁

𝐼

𝑖=1

) log(
𝑘𝑖
𝑁
) + log(∆𝑥) 

ki = number of observations in bin i 

The total first order bias can be derived for �̂�𝑥: 
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𝐵�̂�𝑥 = 𝐸(�̂�𝑥) − 𝐻𝑥 ≈
1

24
(
∆𝑥

𝜎𝑥
)
2

−
𝑘 − 1

2𝑁
 

The variances of the estimator, like for the MI estimator, is independent of the 

number of bins and is expressed as 

𝑣𝑎𝑟�̂�𝑥 ≈
1

2𝑁
 

The MSE of �̂�(𝑋) is defined as: 

𝑀𝑆𝐸�̂�𝑥 = 𝑣𝑎𝑟�̂�𝑥 + (𝐵�̂�𝑥)
2 

                ≈
1

2𝑁
+ (

1

24
(
𝛼𝑥
𝑘
)
2

−
𝑘 − 1

2𝑁
)2 

The optimal number of bins in the sense of a low MSE estimator of entropy 𝐻𝑥 is 

defined as: 

𝑘𝑥𝑜𝑝𝑡 = argmin
𝑘
𝑀𝑆𝐸�̂�𝑥  

                        = argmin
𝑘
[
1

2𝑁
+ (

1

24
(
𝛼𝑥
𝑘
)
2

−
𝑘 − 1

2𝑁
)
2

] 

                       = argmin
𝑘
[(
1

24
(
𝛼𝑥
𝑘
)
2

−
𝑘 − 1

2𝑁
)
2

] 

                      = argmin
𝑘
[(𝐵�̂�𝑥)

2] 

Therefore, the bin number which minimize the bias (𝐵�̂�𝑥)
2 is the same as the one 

which minimizes the 𝑀𝑆𝐸�̂�𝑥. The optimal value for 𝑘 is obtained by solving: 

                                                    𝑘3 − 𝑘2 − 𝐺 = 0 
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where constant 𝐺 is given as: 

                                               𝐺 =
𝑁𝛼𝑥

2

12
=

𝑁𝐴𝑥
2

12. 𝜎𝑥2
 

The solution is given by 

                                      𝑘 = 𝑟𝑜𝑢𝑛𝑑 {
𝜉

6
+

2

3𝜉
+

1

3
} 

With 

𝜉 = √(8 + 108𝐺 + 12√12𝐺 + 81𝐺2
2

)
3

 

Traditionally, the histogram for a Gaussian distribution is defined on a 6𝜎 range leading 

to 𝐴𝑥 = 6𝜎𝑥.  

In that case  𝜉 = √(8 + 324𝑁 + 12√36𝑁 + 729𝑁22
)

3

. 

 

3.3.1.2 Kernel density estimation 

Kernel density estimation is a generalization of histogram based method and is 

nonparametric. The most important part of kernel density estimation is the bandwidth 

selection. Joe (1989) finds that optimum bandwidth selection for entropy is quite 

difficult as the dimension increases. Here, we estimate the entropy in two steps. We first 

estimate the kernel density with an optimal bandwidth and then calculate entropy from 

the estimated density. If we have a good density estimate, our entropy computation will 

have less error. In the next subsection, we discuss kernel density estimator and its 

implementation in real data using R package ks. 
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For a d-variate random sample 𝑥1, 𝑥2, … . , 𝑥𝑛 drawn from a density 𝑓, the kernel 

density estimate is defined by 

                                    𝑓(𝑥;𝐻) = 𝑛−1∑ 𝐾𝐻
𝑛
𝑖=1 (𝑥 − 𝑋𝑖)                       (3.12) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑑)
𝑇and 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑑)

𝑇, 𝑖 = 1,2, … , 𝑛. Here 𝐾(𝑥) is the 

kernel which is usually a symmetric probability density function, 

𝐾(𝑥) = (2𝜋)−
𝑑

2 exp (−
1

2
𝑥𝑇𝑥),  the standard normal for example. 𝐻  is known as the 

bandwidth which should be symmetric and positive-definite. Earlier studies (Wand and 

Jones, 1993 and Simonoff, 1996 for instance) show that the choice of K is not crucial; 

however, the performance of 𝑓 strongly depends on the choice of  𝐻. 

Wand and Jones (1994) extend the idea of univariate plug-in method for bandwidth 

selection to multivariate kernel density estimation and show that it has a good rate of 

convergence compared to other methods of bandwidth selection. The choice of H is 

usually based on minimization of some global error criterion. The simplest criterion to 

work with is mean integrated squared error (𝑀𝐼𝑆𝐸) given by: 

               𝑀𝐼𝑆𝐸{𝑓(. ; 𝐻)} = 𝐸 ∫{𝑓(𝑥;𝐻) − 𝑓(𝑥)}
2
𝑑𝑥                          (3.13) 

It is obvious that the optimal bandwidth 𝐻𝑀𝐼𝑆𝐸 does not have a closed form. The 

useful approximation to  𝑀𝐼𝑆𝐸{𝑓(. ; 𝐻)} is the asymptotic (𝑀𝐼𝑆𝐸)(𝐴𝑀𝐼𝑆𝐸) of 𝑓(. ; 𝐻) 

given by 

 𝐴𝑀𝐼𝑆𝐸{𝑓(. ; 𝐻)} = 𝑛−1|𝐻|−
1

2𝑅(𝐾) +
1

4
𝜇2(𝐾)

2(𝑣𝑒𝑐ℎ𝐻)𝑇𝛹𝐹(vechH)        (3.14) 

Here  𝑅(𝐾) = ∫𝐾(𝑥)2 𝑑𝑥  and   𝜇2(𝐾) = ∫ 𝑥𝑖
2𝐾(𝑥)𝑑𝑥 < ∞ . 

Also   𝛹𝐹 = ∫𝑣𝑒𝑐ℎ{2𝐻𝑓(𝑥) − 𝑑𝑔𝐻𝑓(𝑥)} [𝑣𝑒𝑐ℎ{2𝐻𝑓(𝑥) − 𝑑𝑔𝐻𝑓(𝑥)}
𝑇
𝑑𝑥] 
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where 𝑣𝑒𝑐ℎ is the vector half operator. 𝐻𝑓(𝑥)  is the hessian matrix of 𝑓. The notation 

dg denotes the diagonal matrix form by replacing all off-diagonal entries by zeroes. 

Wand (1992) shows that if the entries of 𝐻𝑓(𝑥) are continuous and square integrable 

and all entries of H as well as 𝑛−1|𝐻|−
1

2  tend to zero as 𝑛 → ∞ then 

 𝑀𝐼𝑆𝐸{𝑓(. ; 𝐻)} =  𝐴𝑀𝐼𝑆𝐸{𝑓(. ; 𝐻)} + 𝑜 {𝑛−1|𝐻|−
1

2 + 𝑡𝑟2(𝐻)}             (3.15) 

Wand and Jones (1994) demonstrate the way of getting optimal diagonal plug-in 

estimate of H by minimizing 𝐴𝑀𝐼𝑆𝐸{𝑓(. ; 𝐻)}. They also show that the rate of 

convergence of this estimator 𝑛
−5

4   when d=1, and it is 𝑛
−2

𝑑+4 for 𝑑 ≥ 2. 

Duong and Hazelton (2003) argue that estimation of full bandwidth matrix by plug-

in method instead of diagonal has advantages compared to existing method. It produces 

a finite bandwidth matrix and requires significantly fewer pilot bandwidths. They also 

provide the algorithm for doing this and implemented it in ks package in R. An example 

is given below that shows how we can use ks package to select optimal plug-in 

bandwidth selector. 

# simulate from bivariate skew normal distribution 

library(sn) 

n=1000     # set size of random sample is 1000  

m=c(0.0, 0.0)       # set mean vector  

Omega = diag(2)   # set variance-covariance matrix  

alpha = c(0.5,0.4) # set shape parameter 
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#generate random sample of size n with parameter m, Omega and alpha 

X =rmsn(n, m, Omega, alpha)   

# plug-in bandwidth selections  

Library(ks) 

# full bandwidth matrix  

bw1=Hpi(X, pilot="amse") # Wand & Jones (1994) 

bw2=Hpi(X, pilot="samse") # Duong & Hazelton (2003) 

The function Hpi will give unconstrained plug-in selectors (full bandwidth matrix) 

and Hpi.diag will give diagonal plug-in selectors. 

# diagonal bandwidth matrix 

bw3=Hpi.diag(X, pilot="amse") 

bw4=Hpi.diag(X, pilot="samse") 

"amse" or "samse" represent the type of pilot estimation. There are three other 

arguments which further specify the plug-in selector: nstage is the number of pilot 

estimation stages (1 or 2). Wand and Jones (1994) recommend for using two-stage pilot 

estimation. The argument pre involves the pre-transformations ("scale" or "sphere"). If 

pre sphere is set, observations are transformed before performing bandwidth selector 

algorithm as 

                                                                𝑋∗ = 𝑆−
1

2𝑋, 

where S = sample covariance matrix of the untransformed data. 

 If “scale” is selected, data is transformed as  
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                                                                𝑋∗ = 𝑆𝐷
−
1

2𝑋, 

where 𝑆𝐷 = 𝑑𝑖𝑎𝑔(𝑠1
2, 𝑠2

2, … ) and 𝑠1
2, 𝑠2

2, … are the diagonal elements of 𝑆. 

The options pre-sphering or pre-scaling is only for the unconstrained bandwidths. For 

the diagonal bandwidths, only the pre-scaling can be used to avoid the back-

transformation of pre-sphering results in a non-diagonal matrix. 

Rudemo (1982) and Bowman (1984) implement cross validation method for 

selecting the smoothing parameter in the kernel density estimation while a biased cross-

validation method is proposed by Scott and Terrell (1987) for kernel density Taylor 

(1989) proposes the use of bootstrap method Sain et.al. (1994) and compare the earlier 

literature and derive multivariate kernel density estimation using the product kernel 

estimate. Their simulation studies suggest that the biased cross-validation method of 

Scott and Terrell (1987) performs well with a little variation as compared to the other 

two methods. Duong and Hazelton (2005) developed a smooth cross validation (SCV) 

method for multivariate data and show that it has a better convergence rate compare to 

other cross validation techniques like unbiased cross validation (UCV) and biased cross 

validation (BCV) and comparable with plug in bandwidth selector. The ks package of R 

(Doung, 2007) is able to compute multivariate optimal bandwidth using different 

methods of bandwidth selections: 

bw5 = Hlscv(x = data) # Bowman (1984) and Rudemo (1982) 

bw6 =Hlscv.diag(x = data) 

bw7 = Hbcv(x = data) # Sain, Baggerly& Scott (1994) 

bw8 = Hbcv.diag(x = data) 
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bw9 = Hscv(x = data) # Duong & Hazelton (2005) 

bw10 = Hscv.diag(x = data) 

These bandwidths can be used to compute a kernel density estimate using kde 

command:  

kde(x=X, H=bw1) 

Other important arguments of kdeare gridsize, eval.pointsand binned. Gridsize 

controls the number of grid points; kde compute density at specific eval.points if 

supplied or estimate density over a grid defined by gridsize. The default value of binned 

is FALSE; binned estimation is used if it is TRUE. 

Monte-Carlo simulation for bandwidth selection 

We conduct a simulation study to select best bandwidth for estimating bivariate skew-

normal and skew-t densities.  

To select the best bandwidth for estimating bivariate densities, we run these methods on 

simulated data and compare the distances between estimated and true densities. We are 

particularly interested in skewed density since there are empirical evidences that most 

asset distributions are asymmetric (Xiong et al., 2011; Bonato, 2011). Our target 

densities are skew-normal and skew-t densities (Azzalini and Valle, 1996) with different 

shape parameters: (i) skew-normal with shape(0.5, 0.4), (ii) skew-normal with 

shape (−0.5,−0.4), (iii) skew-t with shape (0.5, 0.4) and (iv) skew-t with shape 

(−0.5, −0.4). We generate data from these distributions with sample sizes, 𝑛 =

1000 and 𝑛 = 100. We then estimate densities with all these bandwidth selectors and 

calculate the MISE in each case. The experiment is replicated 1000 times.  Figure 1 

display boxplots of log of MISEs for different bandwidth selectors and target densities. 

Univ
ers

ity
 of

 M
ala

ya



53 

It is desired that MISEs are close to zero or equivalently log of MISEs are large 

negative number. We notice that both full matrix and diagonal cross validation 

bandwidth selector given by Rudemo (1982) and Bowman (1984) has larger dispersion 

than other bandwidth selectors considered in this study. The biased cross validation 

(BCV) bandwidth of Sain et al. (1994), smooth cross validation (SCV) bandwidth of 

Duong and Hazelton (2005) and all the plug-in bandwidth selectors give consistent 

results regardless of target densities. Among these eight methods of bandwidth 

selection, cross validation bandwidth selectors have lower MISE compared to plug-in 

counterparts. Further, we observe that Duong and Hazelton’s (2005) full matrix 

bandwidth selector has little lower discrepancy (inter-quartile range) than others. 

3.3.1.3 Comparison between histogram and kernel density 

Kernel can be superior to the histogram in terms of (i) a better mean squarer error rate 

of convergence of the estimate to the underlying density, (ii) an insensitivity to the 

choice of origin, and (iii) the ability to specify more sophisticated window shapes than 

the rectangular window for binning or multivariate counting (Silverman, 1986; 

Devroye, 1987). 

While the histogram is easy to comprehend, it has several drawbacks. It is 

discontinuous and changes with the choice of the origin and bin width. Silverman 

illustrates these problems graphically. Histogram construction is such a routine process 

that may fail to realize that even when using identical bin widths, different origin 

choices may change the histogram significantly. Clearly it may be desirable to choose 

band width ℎ differently by coordinate in the multivariate setting. 
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Suppose we have a random sample 𝑋1, . . . , 𝑋𝑛 taken from a continuous, univariate 

density 𝑓. Suppose the knots are 𝑥0, … , 𝑥𝑛 where 𝑥𝑘 = 𝑥0 + 𝑘𝑏. Since 𝑓 is a density 

function, denote the c.d.f. 

𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
.  

The histogram could be written as 

𝑓(𝑥; 𝑏) =
1

𝑛𝑏
∑ 𝐼(𝑥𝑘,𝑥𝑘+𝑏)(𝑋𝑖)
𝑛
𝑖=1  where  𝑋𝜖 (𝑥𝑘, 𝑥𝑘 + 𝑏] 

Then 

𝐸𝑓(𝑥; 𝑏) =
1

𝑏
∫ 𝑓(𝑥)𝑑𝑥 =

𝐹(𝑥𝑘+𝑏)−𝐹(𝑥𝑘)

𝑏

𝑥𝑘+𝑏

𝑥𝑘
= 𝑓(𝑥𝑘) +

𝑏

2
𝑓′(𝑥𝑘) + 𝑜(𝑏) ; 

𝐵𝑖𝑎𝑠 = 𝑓(𝑥𝑘) − {𝑓(𝑥𝑘) + (𝑥 − 𝑥𝑘)𝑓
′(𝑥𝑘) + 𝑜(𝑥 − 𝑥𝑘)} +

𝑏

2
𝑓′(𝑥𝑘) + 𝑜(𝑏) 

                         = {
𝑏

2
− (𝑥 − 𝑥𝑘)} 𝑓

′(𝑥𝑘) + 𝑜(𝑏) ; 

𝐸𝑓2(𝑥; 𝑏) =
1

𝑛𝑏2
{𝐹(𝑥𝑘 + 𝑏) − 𝐹(𝑥𝑘)} +

𝑛(𝑛−1)

𝑛2𝑏2
{𝐹(𝑥𝑘 + 𝑏) − 𝐹(𝑥𝑘)}

2; 

𝑉𝑓(𝑥; 𝑏) =
1

𝑛𝑏
{𝑓(𝑥𝑘) +  𝑜(1)} −

1

𝑛
{𝑓(𝑥𝑘) +  𝑜(1)}

2. 

Vary 𝑥 in different bins, and take integration, we have 

MISE {𝑓(. ; ℎ)} = 𝐴𝑀𝐼𝑆𝐸{𝑓(. ; ℎ)} + 𝑜{(𝑛𝑏)−1 + 𝑏2}; 

AMISE {𝑓(. ; ℎ)} =
 1

𝑛𝑏
+

𝑏2

12
𝑅(𝑓′) 

Therefore, MISE is asymptotically minimized at 
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𝑏𝑀𝐼𝑆𝐸~(
6

𝑅(𝑓′)
)
1

3𝑛−
1

3  ,  inf  𝑀𝐼𝑆𝐸{𝑓(𝑥; ℎ)}~
1

4
{36𝑅(𝑓′)}

1

3𝑛−
2

3 . 

Thus, MISE of histogram has a convergence rate of 𝑜(𝑛
−2

3 ) 

Now, a kernel density is defined as 

   𝑓(𝑥; ℎ) =
1

𝑛ℎ
∑𝐾 (

𝑥 − 𝑋𝑖
ℎ

)

𝑛

𝑖=1

 

𝐸𝑓(𝑥; ℎ) = 𝐸𝐾ℎ(𝑥 − 𝑋) = (𝐾ℎ ∗ 𝑓)(𝑥) 

                               = ∫
1

ℎ
𝐾 (

𝑥 − 𝑦

ℎ
) 𝑓(𝑦)𝑑𝑦 = ∫𝐾(𝑧)𝑓(𝑥 − ℎ𝑧)𝑑𝑧. 

Expand 𝑓(𝑥 − ℎ𝑧) about 𝑥, we obtain that: 

                                 𝑓(𝑥 − ℎ𝑧) = 𝑓(𝑥) − ℎ𝑓′(𝑥) +
1

2
ℎ2𝑧2𝑓′′(𝑥) + 𝑜(ℎ2) 

which is uniformly in 𝑧, hence 

𝐸𝑓(𝑥; ℎ) − 𝑓(𝑥) =
1

2
ℎ2𝜇2(𝑘)𝑓

′′(𝑥) +  𝑜(ℎ2) 

Similarly, 

𝑉𝑓(𝑥; ℎ) = 𝑛−1{(𝐾ℎ
2 ∗ 𝑓)(𝑥) − (𝐾ℎ ∗ 𝑓)

2(𝑥)} 

=
1

𝑛ℎ
∫𝐾2 (𝑧)𝑓(𝑥 − ℎ𝑧)𝑑𝑧 − 𝑛−1∫𝐾(𝑧){𝑓(𝑥 − ℎ𝑧)𝑑𝑧} 

           =
1

𝑛ℎ
∫𝐾2 (𝑧){𝑓(𝑥) + 𝑜(1)}𝑑𝑧 − 𝑛−1∫𝐾(𝑧){𝑓(𝑥) + 𝑜(1)}𝑑𝑧 

                         =
1

𝑛ℎ
𝑅(𝐾){𝑓(𝑥) + 𝑜(

1

𝑛ℎ
)}. 
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Therefore, 

𝑀𝑆𝐸{𝑓(𝑥; ℎ)} =
1

𝑛ℎ
𝑅(𝐾){𝑓(𝑥) +

1

4
ℎ4𝜇2

2(𝐾)𝑓′′2(𝑧) + 𝑜{
1

𝑛ℎ
+ ℎ4}; 

𝑀𝐼𝑆𝐸{𝑓(. ; ℎ)} = 𝐴𝑀𝐼𝑆𝐸{𝑓(. ; ℎ)} + 𝑜{
1

𝑛ℎ
+ ℎ4}; 

           𝐴𝑀𝐼𝑆𝐸{𝑓(. ; ℎ)} =
1

𝑛ℎ
𝑅(𝐾) +

1

4
ℎ4𝜇2

2(𝐾)𝑅(𝑓′′). 

Notice that the tail term 𝑜{
1

𝑛ℎ
+ ℎ4} shows the variance-bias trade-off, while 𝐴𝑀𝐼𝑆𝐸 

could minimized at 

ℎ𝐴𝑀𝐼𝑆𝐸 = [
𝑅(𝐾)

𝑛𝜇2
2(𝐾)𝑅(𝑓′′)

]
1

5  ,  inf  𝐴𝑀𝐼𝑆𝐸{𝑓(𝑥; ℎ)} =
5

4
{𝜇2

2(𝐾)𝑅(𝐾)𝑅(𝑓′′)}
1

5𝑛
−4

5   

Equivalently, as 𝑛 → ∞ , we can rewrite 

ℎ𝑀𝐼𝑆𝐸 = [
𝑅(𝐾)

𝑛𝜇2
2(𝐾)𝑅(𝑓′′)

]
1

5  ,   inf  𝑀𝐼𝑆𝐸 {𝑓(𝑥; ℎ)} ≃
5

4
{𝜇2

2(𝐾)𝑅(𝐾)4𝑅(𝑓′′)}
1

5 𝑛
−4

5  

Aside from its dependence on the known 𝐾 and 𝑛, the expression shows us the 

optimal ℎ is inversely proportional to the curvature of 𝑓, i.e.𝑅(𝑓 ′′). The best obtainable 

rate of convergence of the 𝑀𝐼𝑆𝐸 of the kernel estimator is of order𝑛
−4

5 . 

We thus conclude that, the 𝑀𝐼𝑆𝐸 of histogram is asymptotically inferior to the kernel 

estimator, since its convergence rate is 𝑜(𝑛
−2

3 ) compared to the kernel 

estimator’s 𝑜(𝑛
−4

5 )  rate. 

We also compare the histogram and kernel density with a simulation experiment. 

Suppose X and Y follows a bivariate normal distribution with mean 𝜇𝑥 = 𝜇𝑦 = 0 and 

variance covariance matrix Σ = [
4 2
2 3

]. We simulate observations of different sample 
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size (𝑛 = 500, 1000, 10000) and estimate univariate and joint entropy of these 

simulated data with both histogram and kernel density. The procedure is replicated 

10,000 times. Table3.1 displays MSEs of entropy estimation. We observe that in case 

of large sample (𝑛 = 10000) MSEs in entropy estimation for histogram is equal to that 

for kernel density refers that for large sample, histogram and kernel density are 

equivalent. However, for small to moderate sample(𝑛 = 500, 1000), kernel density 

provides smaller MSE for entropy estimation than the histogram. Thus, we may 

conclude that kernel density has a better small sample property than histogram. 

 

                                Table 3.1: MSE in Entropy Estimation 

n Hx Hy Hxy 

 
Histogram Kernel Histogram Kernel Histogram Kernel 

500 

0.32 0.02 0.18 0.08 0.95 0.21 

1000 

0.22 0.01 0.11 0.05 0.62 0.12 

10000 

0.01 0.01 0.01 0.01 0.01 0.01 
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3.4 Scale of measurement 

For a known distribution, a relationship between entropy and variance can be 

established. If entropy exists, it is usually a function of the variance. For example, if 𝜎2 

is the variance of a normal variate X, the corresponding entropy is 
1

2
(1 + log 2𝜋𝜎2). 

Thus, as a measure of dispersion they seem to be equivalent. However, since the scale 

of measurement for variance and entropy are different, they are not comparable directly 

in analyzing real data. Figure 3.2 displays the entropy of different distributions against 

the corresponding standard deviation. As we observe entropy is increasing as the 

standard deviation (variance) is increasing. However, the rate of change in entropy 

decreases gradually as the standard deviation (variance) increases. This feature makes 

the basic difference between practical use of entropy and variance. For example, let, 𝑋1 

and 𝑋2 be two normally distributed assets with corresponding variance of 2 and 40, and 

corresponding entropy 2.112 and 3.263. The comparative riskiness between these two 

assets may be interpreted differently by entropy than that by variance. We propose a 

risk measure based on entropy which is equivalent to standard deviation (variance) in 

terms of scale measurement. Table 3.2 provides variance, entropy (H) and 𝑒𝑥𝑝(𝐻) for 

different distributions. For all these distributions, we notice that 𝐻 is a nonlinear 

function of standard deviation (variance). But, 𝑒𝑥𝑝(𝐻) is a linear function of standard 

deviation. For a normal distribution, for example, we have  

exp(𝐻) = ((2𝜋)
1

2𝑒𝑥𝑝(1/2)) × 𝜎 = 𝑘 × 𝜎 
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So that  

exp(𝐻) ∝ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛  

We, therefore, suggest using 𝑒𝑥𝑝(𝐻) as a nonparametric and distribution free measure 

of dispersion and risk which is equivalent to standard deviation in terms of scale of 

measurement. 
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       Figure 3.2: Measurement scale of entropy and standard deviation Univ
ers

ity
 of

 M
ala

ya



64 

  

  

  

      Figure 3.2 (cont.): Measurement scale of entropy and standard deviation 
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3.5 Diversity 

Markowitz (1952) formally developed the concept of portfolio diversification and show 

that diversification leads to risk reduction. However, "perfect diversification" does not 

mean the absence of risk, nor does it mean an optimally balanced portfolio. In the 

Markowitz model the variability of expected portfolio returns is reduced as the number 

of assets increases and the specific risk within the portfolio is reduced (see Figure. 3.3). 

The total risk can be divided into two parts: unsystematic risk or specific risk and 

systematic risk or market risk. Unsystematic risk is also called diversifiable risk. That is 

the portion of the total risk that is peculiar or unique to a firm. Systematic risk is that 

portion of total risk caused by factors affecting all the economy. In other words, 

portfolio risk can be decomposed as systematic risk and unsystematic risk or specific 

risk, which is contributed by the individual assets and can be reduced in a well-

diversified portfolio. The motivation of controlling the specific risk is that the risk 

coming from specific sources of the individual assets is more volatile and uncertain. 

It is interesting to note that the total risk of an asset can be split into systematic risk 

and specific risk with the notion of entropy. Let 𝑋 be an asset and 𝑌 represent a market 

index. Then the total risk, 𝐻(𝑋) in the 𝑋 can be decomposed as  

                               𝐻(𝑋) = 𝐼(𝑋, 𝑌) + 𝐻(𝑋|𝑌), 

where 𝐼(𝑋, 𝑌) is the mutual information of the asset 𝑋 and the market index 𝑌 that 

measures the share of risk common in the market and, therefore, can be treated as 

systematic risk. The, 𝐻(𝑋|𝑌) is the conditional entropy of 𝑋 given the market index 

𝑌 that measures the risk of 𝑋 after separating the market risk and, therefore, can be 

treated as the specific risk. 
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In this section, we examine whether entropy respond to diversification and if so, how 

sensitive the entropy is due to diversification. Being a convex function, the standard 

deviation (variance) is a well-known and popular measure of risk that is sensitive to 

diversification. At the same time, the entropy (𝐻) is a concave function and negative of 

entropy (−𝐻) is a convex. Moreover, the subadditivity property 𝐻(𝑋, 𝑌) ≤ 𝐻(𝑋) +

𝐻(𝑌)1 ensures that this risk measure is sensitive to diversification. Rao (1984) discuss 

the conditions and desirable properties of different entropy based diversity measures 

and noted that use of entropy as a measure of diversity has some advantages since is 

also applicable to non-metric data. 

Elton and Gruber (1995) empirically verified how diversification can be a factor of 

risk reduction, where they use variance as a measure of risk. In their experiment they 

use equally weighted portfolio model for randomly selected assets. They come out with 

a conclusion that as the number of assets increases, the portfolio risk measured by 

variance (standard deviation) decreases. Here, we conduct an experiment somewhat 

similar to Elton and Gruber (1995) and Dionisio et al. (2005) to verify empirically how 

entropy respond to the effect of diversity. We use monthly closing prices of 15 stocks 

rated on the New York stock exchange (NYSE), spanning from Aug 2004 to June 2013, 

which corresponds to 107 observations per stock. Unlike the previous literature, we first 

ordered the assets in terms of the magnitude of risk; starting with the most risky asset 

we add all the assets, in the portfolio sequentially. The specific risks of assets are 

measured with the conditional entropy of assets for given the market index. For the 

purpose of comparison, standard deviations of the portfolios are replaced by the normal 

entropies since standard deviation is not directly comparable with entropy in terms of 

                                                 

1 For proof see Appendix II 
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metric of measurement while the normal entropy is equivalent to standard deviation (see 

Table 3.2 for detail).  

Our results (see Figure 3.4) show that both the empirical entropy and the standard-

deviation (normal entropy) of the portfolios decreases gradually as more assets are 

added. These results can be explained by the fact that risk/uncertainty of the portfolio 

decreases with increasing number of assets. In other words, diversification makes a 

portfolio less risky which can be measured in terms of standard deviation or entropy. 

Thus, it can be inferred that like standard deviation entropy is also sensitive to the effect 

of diversification. 

This experiment also provides an empirical evidence of the subadditivity rule for 

entropy: 

                                  H[θX] + H [(1 − θ) Y] ≥ H[θX+ (1 − θ)Y], 

where θ= 1/N, 

which is a desired property of a portfolio risk measure (Reesor and McLeish, 2002). We 

further note that, in this experiment, the normal entropy is always greater than the 

empirical entropy. We can therefore, infer that the predictability level of portfolio 

maybe underestimated (or risk maybe overestimated) when assets are assumed to be 

normally distributed. From this analysis, we can conclude that entropy is a distribution 

free and more informative risk measure than the variance; besides, it can capture the 

effect of diversification.  
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                                               Fig. 3.3: Risk reduction by diversification 

   

 

Fig. 3.4: Comparative analysis of the empirical entropy (H) and the normal entropy 

(NH) for portfolios randomly selected. Entropy is measured in nats because we use 

natural logarithms. 
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CHAPTER 4: MULTI-OBJECTIVE PORTFOLIO MODELS 

4.1. Introduction 

Portfolio optimization has been the object of intense research and is still developing. 

Markowitz's (Markowitz, 1952) mean-variance (MV) efficient portfolio selection is one 

of the most widely used approaches for asset allocation and is very popular among 

practitioners. However, some drawbacks of this approach are pointed out in the 

literature. Bera and Park (2008) argue that MV approach, based on sample moments like 

mean and variance often concentrates on few assets only and thus leads to less 

diversified portfolio. Lack of attention to the uncertainty in the data and adoption of 

wrong model, sample estimates of mean and variance can be poorly estimated (Jobson 

and Korkie, 1980) and hence portfolio optimization based on inaccurate point estimates 

may be highly misleading. In some cases, variations in the input data may greatly affect 

the portfolio greatly and even a few new observations may change the portfolio 

completely. Demiguel (2009) noted that the out-of-sample performance of MV portfolio 

is sometimes, no better than the naive 
 
1

𝑁
 benchmark. In addition, empirical evidences 

show that almost all asset classes and portfolios have returns that are not normally 

distributed (Xiong et al., 2011), and the first and second moments are generally 

insufficient to explain portfolios in the case of non-normal return distribution (Usta and 

Yeliz, 2010). Ke and Zhang (2008) noted another limitation of MV model, that is, the 

standard deviation cannot perfectly represent the risk, because the sign of error does not 

affect the fluctuation. However, many assets’ return distributions are asymmetrical; 

also, most asset return distributions are more leptokurtic, or fatter tailed, than are normal 

distribution. Patton (2004) showed that knowledge of both skewness and asymmetric 

dependence leads to economically significant gains. Recent research (Müller, 2010, for 

example) suggests that higher moments are important considerations in asset allocation. 
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Investors are particularly concerned about significant losses, that is, the downside risk, 

which is a function of skewness and kurtosis.  

The MV approach is a single-objective optimized portfolio that cannot satisfy all 

investors demands or constraints. Thus, the need to accommodate multiple criteria 

renders the hypothesis of a single-objective function to be optimized subject to a set of 

constraints is no longer suitable, and the introduction of a multi-objective optimization 

framework allows one to manage more information. For instance, both risk 

minimization and diversification can be achieved through a bi-objective portfolio 

optimization. Multi-objective portfolio models with Fuzzy programming are discussed 

in Samanta and Roy (2005) and Jana et al. (2007; 2009). Usta and Kantar (2011) show 

that the empirical performance of a multi-objective model is better than that of a single-

objective model. The portfolio model by Ke and Zhang (2008) has two objectives: 

variance minimization and entropy maximization. Shirazi et al. (2013) argue that in 

multi-objective models, the use of portfolio entropy instead of portfolio variance 

ensures proper estimate of risk in case of non-normal asset distribution since entropy 

depends on higher order moments than variance and it is not restricted to a particular 

distribution. However, their argument is based on an empirical evaluation of one small 

set of equity market data.  

Most of the investors have multiple investment objectives and the traditional single-

objective mean variance optimization approach is not adequate to meet their demands. 

Thus, the increase in application of multi-objective optimization in portfolio selection 

problem is magnified. In this chapter, we propose a multi-objective portfolio model 

based on entropy which ensures a proper use of historical risk and is well diversified. 

The model is formulated in a generalized form that represents a class of portfolio 

models, where a single-objective model is a special case. We compare the performance 
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of the multi-objective portfolios with that of single-objectives in presence of stock 

markets. A rolling window procedure is used to compare empirical performances of 

single-and multi-objective portfolio models.  

4.2. Multi-Objective Optimization 

Mathematically multi-objective optimization can be expressed as: 

 min[𝑓1 (𝑥), 𝑓2(𝑥),…,𝑓𝑛(𝑥)],         𝑥𝜖𝑆,    𝑛 > 1,          (4.1) 

where 𝑆 is the set of the constraint. As a special case, a bi-objective optimization can be 

expressed as: 

min  [𝑓1 (𝑥), 𝑓2(𝑥)], 𝑥 𝜖 𝑆              (4.2) 

 

Let the objective space 𝐶 be the space in which objective vector belongs. Such a set is 

defined as: 

𝐶 = {𝑦𝜖𝑅𝑛: 𝑦 = 𝑓(𝑥) , 𝑥𝜖𝑆}             (4.3) 

In a multi-objective setting, we need the concept of Pareto optimality. A vector 𝑥∗𝜖𝑆 

is said to be Pareto optimal for multi-objective problem if all other vector 𝑥𝜖𝑆 have a 

higher value for at least one of the objective function 𝑓𝑗(𝑗 = 1,2, … 𝑛) or have the same 

value for all the objective functions. This can be defined as: 

A point 𝑥∗is said to be a weak Pareto optimum or a weak efficient solution for the 

multi-objective problem if and only if there is no 𝑥 ∈ 𝑆 such that 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥
∗) for all 

𝑖 ∈ {1,2, … , 𝑛}. 
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A point 𝑥∗ is said to be a strict Pareto optimum or a strict efficient solution for the 

multi-objective problem if and only if there is no 𝑥 ∈ 𝑆 such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
∗) for all 

𝑖 ∈ {1,2, … , 𝑛}, with at least one strict inequality. 

We can also speak of locally Pareto-optimal points, for which the definition is the 

same as above, except that we restrict attention to a feasible neighborhood of 𝑥∗. In 

other words, if 𝐵(𝑥∗, 𝜀 ) is a ball of radius ε >0 around point 𝑥∗, we require that for 

some 𝜀 > 0, there is no 𝑥 ∈ 𝑆 ∩ 𝐵(𝑥∗, ε ) such that 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
∗) for all 𝑖 ∈

{1,2, … , 𝑛}, with at least one strict inequality. 

The image of the efficient set, that is the image of all the efficient solutions, is called 

Pareto front or Pareto curve or surface. The shape of the Pareto surface indicates the 

nature of the trade-off between the different objective functions. An example of a Pareto 

curve is present Figure 4.1, where all the points between ( 𝑓2(�̂�) , 𝑓1(�̂�)) 

and (𝑓2(�̃�), 𝑓1(�̃�)) define the Pareto front. These points are called non-inferior or 

nondominated points. 

 

 

                                            Figure 4.1: Example of Pareto curve 
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4.3. Entropy based Multi-Objective Portfolio Model 

A diversified portfolio model should have at least two objectives: risk minimization and 

diversification, which can be formulated as  

                         {
min∑ 𝑥𝑖

2𝐶𝑖
𝑛
𝑖=1

max (−∑ 𝑥𝑖𝑙𝑛𝑥𝑖)
𝑛
𝑖=1

}  

such that   

                              ∑ 𝑥𝑖𝑅𝑖
𝑛
𝑖=1 = 𝑑0  ,  

                                   ∑ 𝑥𝑖
𝑛
𝑖=1 =1           (4.4) 

where         𝐶𝑖= Risk associated with the 𝑖𝑡ℎ asset. 

 𝑅𝑖 =Return from the 𝑖𝑡ℎ asset. 

𝑑0 =Expected portfolio return 

  𝑥𝑖=Portfolio weight for the 𝑖𝑡ℎ asset. 

This problem is equivalent to: 

                min𝑓1(𝑥) = min∑ 𝑥𝑖
2𝑛

𝑖=1 𝐶𝑖    ,  

max 𝑓2(𝑥) = max∑ 𝑥𝑖
𝑛
𝑖=1 ln 𝑥𝑖            (4.5) 

such that   

         ∑ 𝑥𝑖𝑅𝑖
𝑛
𝑖=1 = 𝑑0  ,  

                ∑ 𝑥𝑖
𝑛
𝑖=1 =1 

Univ
ers

ity
 of

 M
ala

ya



74 

4.3.1 Solution to the multi-objective optimization  

A Pareto solution for multi objective optimization may not be straightforward. 

Approximations can help in such cases. One approach to solve this kind of problems is 

scalarization. This involves combining multiple objectives into one single objective 

scalar function: 

min ∑ 𝛾𝑗
𝑛
𝑗=1 𝑓𝑗(𝑥),                          (4.6)                   

∑ 𝛾𝑗 = 1
𝑛
𝑗=1 ,   𝛾𝑗 > 0, 𝑗 = 1,2, … . 𝑛    ,     𝑥𝜖𝑆. 

The bi-objective portfolio model in eq. (4.5) can be written in the following form 

min (𝛾1∑ 𝑥𝑖
2𝑚

𝑖=1 𝐶𝑖 + 𝛾2∑ 𝑥𝑖𝑙𝑛𝑥𝑖
𝑚
𝑖=1 )            

(4.7) 

such that  ∑ 𝑥𝑖𝑅𝑖
𝑚
𝑖=1 = 𝑑0 and ∑ 𝑥𝑖 = 1

𝑚
𝑖=1 . 

Equivalently we can write 

min (∑ 𝑥𝑖
2𝑚

𝑖=1 𝐶𝑖 + 𝜉 ∑ 𝑥𝑖𝑙𝑛𝑥𝑖
𝑚
𝑖=1 )             

(4.8) 

such that ∑ 𝑥𝑖𝑅𝑖
𝑚
𝑖=1 = 𝑑0 and ∑ 𝑥𝑖 = 1

𝑚
𝑖=1    and    𝜉 =

𝛾2

𝛾1
 

Equation (4.8) is a class of portfolio models. In this model, 𝜉 is called the momentum 

factor that determines the trade-off between historical risk and diversity. If the future 

risk is different from the historical risk, this multi-objective model certainly performs 

better than the single-objective model. If 𝜉 = 0, and the risk, 𝐶𝑖 is replaced by 

corresponding variance estimate, this model is single-objective and is called mean-

variance (MV) model; if 𝐶𝑖 is replaced by corresponding entropy estimate, this model is 
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called mean-entropy (ME) model. In cases when 𝜉 > 0 and the risk 𝐶𝑖 is replaced by 

corresponding variance estimate, the model is called mean-variance-entropy (MVE) 

model; if 𝐶𝑖 is replaced by corresponding entropy estimate, this model is called mean-

entropy-entropy (MEE) model. The later has some interesting features: entropy is used 

for measuring both risk and diversity. Use of entropy as an alternative measure of risk 

especially for non-normal data has been suggested in the literature (Philippatos and 

Gressis, 1975; Philippatos and Wilson, 1972; Nawrocki and Harding, 1986). Estimation 

of entropy risk for an asset given the market index is discussed in Shirazi et al (2013). 

Apparently, the Lagrange multiplier technique can be used to solve eq. (4.8). Since 

the objective functions are nonlinear, an exact expression for x is not available. 

However, a number of methods such as the argumented Lagrange multiplier with 

sequential quadratic programming(𝑆𝑄𝑃) interior algorithm are available to solve this 

type of nonlinear problem. 

4.4. Illustration 

Let 𝑊 be the size of window and 𝑘 be the number of observations to be dropped as we 

move from one window to the next. If 𝐿 be the total number of observations, the total 

number of window will be (𝐿 −𝑊)/𝑘 + 1.We first estimate portfolio weight vector, 𝑤1 

, for the sample period 𝑆1: (1,𝑊) and calculate the return, 𝑅𝑝,1 and risk, 𝑉𝑝,1. We then 

repeat the procedure for the next sample period 𝑆2: (1 + 𝑘,𝑊 + 𝑘). We proceed this 

way until the data is exhausted. At the end of the procedure, we will have (𝐿 −𝑊)/𝑘 +

1 portfolio weight vectors. The average of in-sample estimate of the Sharpe Ratio (SR) 

is calculated as 
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𝑆𝑅𝑖𝑛 =
1

((𝐿 −𝑊)/𝑘 + 1)
∑

𝑤𝑡
′𝑅𝑝,𝑡

√𝑤𝑡
′𝑉𝑝,𝑡𝑤𝑡𝑡

 

In the same way, we calculate other performance measures alternative to 𝑆𝑅 (for 

example, Bera and park, 2008; Usta and Kantar, 2011): certainty equivalent return 

(𝐶𝐸𝑄), adjusted Sharpe ratio (𝐴𝑆𝑅), mean absolute deviation ratio (𝑀𝐴𝐷𝑅), Sortino-

Satchell ratio (𝑆𝑆𝑅) and Farinelli-Ferreira-Rossello Ratio (𝐹𝑇𝑅). 

The portfolio turnover (𝑃𝑇) is defined as the average absolute change in the weights 

and its formula is given as follows  

𝑃𝑇 =
1

(𝐿−𝑊)/𝑘
∑ ∑ |𝑤𝑖,𝑡+1 − 𝑤𝑖,𝑡|

𝑛
𝑖=1𝑡 , 

where 𝑤𝑖,𝑡  is the i-th portfolio weight for the t-th window.  

The out-of-sample return of portfolio in period 𝑡 + 1, denoted by 𝑅𝑝,𝑡+1, is 

calculated by 𝑅𝑝,𝑡+1 = 𝑤𝑡
′𝑅𝑡+1, where 𝑅𝑡+1 = (𝑅1,𝑡+1, 𝑅2,𝑡+1, … 𝑅𝑛,𝑡+1)denotes the 

return vector in period 𝑡 + 1. Similarly, the portfolio variance is calculated as 𝑉𝑝,𝑡+1 =

𝑤𝑡
′ 𝑉𝑡+1𝑤𝑡.  

The average of out-of-sample estimate of the 𝑆𝑅 is calculated as 

𝑆𝑅𝑜𝑢𝑡 =
1

(𝐿 −𝑊)/𝑘
∑

𝑤𝑡
′𝑅𝑝,𝑡+1

√𝑤𝑡
′𝑉𝑡+1𝑤𝑡𝑡

 

To measure the diversity of an estimated portfolio, we use two diversity indices 

proposed by Woerheide (1993). 

𝐷𝐼1 = 1 − ∑ 𝑤𝑖
2𝑛

𝑖=1  and 𝐷𝐼2 = 1 − 𝑤1 − ∑ 𝑤𝑖
2[1 + (1 − 𝑤𝑖)]

𝑛
𝑖=2  
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where 𝑤1 is the largest single portfolio weight. A value 0 of the above indices indicates 

no diversification and a value 1 indicates ultimate diversification. 

4.4.1 Monte-Carlo Simulation 

We apply four portfolio models, discussed above, on a simulated data that consists of 

four normally distributed variables (say four stocks) correlated with another variable 

(say index). Portfolio weights and their performance measures are reported in Table 4.1. 

We observe that 𝑀𝐸𝐸 offers highest portfolio return, highest 𝑆𝑅 and is most diversified. 

We further calculate the 𝑆𝑅 of these models for different values of desired portfolio 

returns (Figure 4.2). As we observe, for normally distributed data all the models 

perform equivalently. 
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          Table 4.1: Portfolio models and their performance in simulated data 

Portfolio Weights 

 Risk Measure Portfolio Weights 

 Variance Entropy ME MEE MV MVE 

Variable1 0.9112 2.2472 0.3678 0.3607 0.4486 0.4281 

Variable2 3.5850 4.3378 0.1905 0.194 0.1405 0.1503 

Variable3 1.8460 3.0069 0.2749 0.2741 0.2716 0.2750 

Variable4 4.5446 4.9547 0.1668 0.1711 0.1393 0.1466 

Portfolio Performance 

Portfolio Return  0.4109 0.4131 0.3940 0.3985 

Portfolio Variance  0.3673 0.3710 0.3490 0.3500 

Portfolio Entropy  0.8265 0.8267 0.8558 0.8437 

SR (variance)  0.6780 0.6782 0.6670 0.6736 

SR (Entropy)  0.4520 0.4543 0.4259 0.4338 

Diversity 

 DI1 0.7250 0.7278 0.6859 0.6970 

  DI2 0.3852 0.3880 0.3511 0.3598 

 

 

 

 

 

   

(a)  (b) 

Figure 4.2: Sharp Ratio (SR) of different portfolios for normally distributed data 
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4.4.2 Application of Stock Market Data 

We compare the performance of the multi-objective portfolio models with that of 

single-objective models in presence of four stock markets: Shanghai stock exchange 

(SSE), Korea exchange (KRX) and New York stock exchange (NYSE). Our empirical 

datasets consist of 15 stock prices and the market index of these four stock marketsover 

the period March 02, 2009 to August 23, 2012 and data have been collected from yahoo 

finance. 
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Summary statistics of stock returns of Shanghai stock exchange (SSE), Korea 

exchange (KRX), New York stock exchange (NYSE) are displayed in Table 4-4.  

Most of the stock returns are non-normal, asymmetric and have excess kurtosis. Ranges 

of stock return variances are different from that of conditional entropy subject to the 

market index. This difference is not unexpected since the data are non-normal and that 

entropy also depends on higher order moments compared to variance. 

Performance measures of portfolio models for SSE are reported in Table 4.5. The 

highest portfolio returns are given by MEE in case of both in- and out-of-sample 

periods. The lowest in-sample variance is given by MV accompanied by MVE, 

whereas, the lowest out-of-sample variance is obtained from solely MV. The in- and 

out-of-sample entropies are the lowest for MEE and ME. The highest in-sample SR 

(Variance) is given by MEE and ME as well, whereas, out-of-sample SR (variance) is 

highest for solely MEE. The highest in-and out-of-sample SR (Entropy) is obtained 

from MEE. The highest in-sample ASR is given by MEE, whereas the highest out-of-

sample ASR is obtained from both ME and MEE. Both in- and out-of-sample MADR is 

the highest for MV and MVE. Both in- and out-of-sample SSR is given by MEE and the 

highest in-sample FTR is from MVE and the highest out-of-sample FTR is obtained 

from MVE. The lowest portfolio turnover is obtained from MEE. As whole, multi-

objective models, MEE and MVE, perform better than single-objective models, ME and 

MV. More specifically, MEE offers the highest in- and out-of-sample portfolio returns 

and performs better than the other models in most of the cases. 

Performance measures of portfolio models for KRX are reported in Table 4.6. The 

highest portfolio return for both in- and out-of-sample periods is given by MEE. The 

lowest in-sample variance is given by MV accompanied by MVE. The lowest out-of-

sample variance is given by MVE. The lowest in- and out-of-sample entropy is given by 
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MVE. Both in- and out-of-sample SR (Variance) is the highest for MEE and ME. Both 

the highest in- and out-of-sample SR (Entropy) is obtained from MEE. The highest in-

and out-of-sample ASR is given by MEE and the highest in-sample MADR is given by 

ME and out-of-sample MADR is given by MEE. The highest In-sample SSR is obtained 

from MEE and ME, whereas, the highest out-of-sample SSR is given by MEE. The 

highest in-and out-of-sample FTR is in favor of MEE and ME. The lowest portfolio 

turnover is obtained from MEE. As a whole, MEE offers the highest in- and out-of-

sample portfolio return and most of the performance measures show it has better in- and 

out-of-sample performance. 

Performance measures of portfolio models for NYSE are reported in Table 4.7. Both 

the highest portfolio returns in- and out-of-sample periods is given by MEE. The lowest 

in-sample variance is given by MV. The lowest out-of-sample variance is given by 

MVE accompanied by MV. The lowest in- and out-of-sample entropy is given by ME. 

In-sample SR (Variance) is the highest for MV and the highest out-of-sample SR 

(Variance) is MEE. Both the highest in- and out-of-sample SR (Entropy) is obtained 

from MEE. The highest in-sample ASR is given by MV and the highest out-of-sample 

ASR is given by MEE. Both the highest in- and out-of-sample MADR is given by ME. 

Both the highest in-and out-of-sample SSR is obtained from MV and the highest in-

sample FTR is in favor of MV and the highest out-of-sample FTR is given by MEE. 

The lowest portfolio turnover is obtained from MEE. As a whole, MEE offers the 

highest in- and out-of-sample portfolio return and most of the performance measures 

show it has better in- and out-of-sample performance. 

4.5. Summary 

We observe that stock returns are non-normal, asymmetric and have excess kurtosis and 

ruled by uncertainty; hence, diversity of the portfolio is demanded. In the early 
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literature, entropy is used independently either as an alternative risk measure or as a 

means of achieving diversity. In MEE, the multi-purpose use of entropy in the same 

model offers a more complete portfolio model: entropy of historical returns provides a 

nonparametric, thus less restricted, risk measure, and at the same time, inclusion of 

entropy of weights in the objective function ensures a desired level of diversity. Our 

simulation results support that MEE is most diversified and maintain a better 

performance compared to other models. Entropy based multi-objective model is further 

evaluated and compared with single-objective portfolio in context of a wide range of 

empirical data set. A rolling window procedure is used to assess the in- and out-of-

sample performances of asset allocation models. Evaluation on different equity market 

data reveals that a multi-objective model with entropy risk offers higher in- and out-of-

sample portfolio return as well as higher out-of-sample Sharp ratio than other models 

considered in this study. MEE also has lower transaction cost (portfolio turnover). The 

out-of-sample results of stock market data indicate that the potentially large investment 

gain can be realized using MEE in place of several approaches for portfolio invest. 
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CHAPTER 5: ROBUST ENTROPY ESTIMATION FOR 

PORTFOLIO ANALYSIS 

5.1 Introduction 

The presence of outlier and non-normality are the major problem of decision making 

based on historical data. Portfolio performance mostly depends on asset allocation 

strategy. The Markowitz portfolio optimization estimates the expected return and the 

covariance matrix from historical return time series and treats them as true parameters 

for portfolio selection. The simple sample mean and covariance matrix are used as the 

parameters since they are the best unbiased estimators under the assumption of 

multivariate normality. However, mean and covariance are sensitive to outlier, and even 

small changes in these estimates can lead to a significant change in the composition of 

the efficient frontier. This naive certainty equivalence mean-variance approach, thus, 

often leads to extreme portfolio weights instead of a diversified portfolio as the method 

anticipates and dramatic swings in weights when there is a minor change to the expected 

returns or the covariance matrix (Dickenson, 1974; Jorion, 1986 and Klein et al., 1979). 

This may lead us to frequently and mistakenly rebalance our portfolio to stay on this 

elusive efficient frontier, incurring unnecessary transaction costs. The problem is further 

exacerbated if the number of observations is of the same order as the number of assets, 

which is often the case in financial applications to select industry sectors or individual 

securities. Nevertheless, the original form of mean-variance portfolio optimization has 

rarely been applied in practice because of this drawback. 

A number of alternative models have been developed to improve parameter estimation. 

For example, factor-based models try to reduce the model complexity (number of 

parameters) by explaining asset return variances/covariances using a limited number of 

common factors. Multivariate GARCH models try to address fat tails and volatility 

Univ
ers

ity
 of

 M
ala

ya



90 

clustering by incorporating the time dependence of returns in the covariance matrix but 

neither approach effectively reduces or eliminates the influences of outliers in the data. 

A small percentage of outliers, in some cases even a single outlier, can distort the final 

estimated variance and covariance. 

Evidence has shown that the most extreme (large positive or negative) coefficients in 

the estimated covariance matrix often contain the largest error and as a result, mean-

variance optimization based on such a matrix routinely gives the heaviest weights either 

positive or negative to those coefficients that are most unreliable. This “error-

maximization” phenomenon (Michaud, 1989) causes the mean-variance technique to 

behave very badly unless such errors are corrected. 

In this chapter, we focus on investigating robust statistical approaches to reduce the 

influence of outliers, to increase the stability of the portfolio. We first examine the 

sensitivity of risk measures such as variance or entropy due to outliers and found that 

both variance and entropy are sensitive to outlier. We, therefore, propose a new robust 

estimator for kernel density that is eventually used for robust estimation of entropy and 

portfolio analysis as well. Our simulation results show that use of proposed robust 

measure of risk in portfolio analysis can render the effect of contamination. 

5.2 Basic concept of Robustness 

Outlier  

An outlier is an observation that lies an abnormal distance from other values in a 

random sample from a population. Barnett and Lewis (1995) define an outlier to be an 

observation or subset of observations which appears to be inconsistent with the 

remainder of the dataset. Outliers are sometimes referred to as contaminants. Outliers 

have different sources: they may be the result of a recording and measuring errors, they 
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may arise from the inherent variability of the dataset (i.e. extreme values from the tails 

of the distribution) or they may be generated from another model. Outliers may be 

univariate or multivariate. Multivariate outliers are observations that are inconsistent 

with the correlational structure of the dataset. Thus, while univariate outlier detection is 

performed independently on each variable, multivariate methods investigate the 

relationship of several variables.  

Masking and Swamping  

Barnett and Lewis (1994) define masking as the tendency for the presence of extreme 

observations not declared as outliers to mask the discordancy of more extreme 

observations under investigation as outliers. Swamping refers treating clean 

observations as outliers mistakenly. Masking can occur when we specify too few 

outliers in the test, for example, if we are testing for a single outlier when they are in 

fact two (or more) outliers, the additional outlier may influence the value of the test 

statistic enough so that no points are declared as outlier. On the other hand, swamping 

can occur when we specify too many outliers in the test. For example, if we are testing 

for two or more outliers when they are in fact only a single outlier, both points maybe 

declared outlier. 

Measure of Robustness 

There are several measures to determine the robustness of an estimator. The breakdown 

point of an estimator is the largest fraction of the data that can be moved arbitrarily 

without perturbing the estimator to the boundary of the parameter space thus the higher 

the breakdown point, the more robust the estimator against extreme outliers. However, 

the breakdown point is not enough to assess the degree of robustness of an estimator.  
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A natural way to assess the stability of an estimator is to make a sensitivity analysis 

and a simple way to do this is to obtain the influence function (IF) or compute the 

sensitivity curve (SC). The influence function (Costa and Deshayes 1977, Deniau et al. 

1977, Huber 1981, Hampel et al. 1986) of an estimator 𝑇 = 𝑇(𝑥1, … , 𝑥𝑛)is defined as  

                   






)())1((
lim),;(

0

FTFT
FTyIF

y 


               (5.1)
 

for any 𝑦 ∈ ℝ such that the limit exists. ),;( FTyIF  measures the sensitivity of the 

risk estimator 𝑇 to the addition of a new data point in a large sample. An alternative to 

IF is the sensitivity curve (SC), which can be defined as  

          𝑆𝐶𝑛(𝑦) = 𝑛(𝑇𝑛(𝑥1, … , 𝑥𝑛−1, 𝑦) − 𝑇𝑛−1(𝑥1, … , 𝑥𝑛−1)),               (5.2) 

where 𝑇𝑛(𝑥)denotes the estimator of interest based on the sample 𝑥 of size 𝑛. The 

sensitivity curve 𝑆𝐶𝑛(𝑦) is a translated and rescaled version of the empirical influence 

function. In many situations, 𝑆𝐶𝑛(𝑦) will converge to the influence function            

when 𝑛 → ∞. 

The Gross Error Sensitivity (g.e.s.) expresses asymptotically the maximum effect a 

contaminated observation can have on the estimator. It is the maximum absolute value 

of the IF. The asymptotic bias of an estimator is defined as the maximum effect of the 

contamination of a given distribution with a proportion from an outlying 

distribution. Instead of breakdown point, the gross error sensitivity gives an exact 

measure of the size of robustness, since it is the supremum of the influence function of 

an estimator, and it is a measure of the maximum effect an observation can have on an 

estimator. Details of robust statistics and their measures of assessment are available in 

Huber (1981); Hampel et al. (1986); Rousseeuw and Leroy (1987); Staudte and 

Sheather (1990). 
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5.3 Sensitivity of outlier on risk estimation  

Methods of robust statistics are known to be relevant in quantitative finance. Statistical 

estimation and sensitivity analysis of risk measures have been studied by Gourieroux et 

al.(2000) and Gourieroux and Liu (2006). In particular, Gourieroux and Liu (2006) 

consider non-parametric estimators of distortion risk measures and focus on the 

asymptotic distribution of these estimators.  

The presence of outliers leads to distorted estimates of the population mean and the 

dispersion. It is, therefore, important that these unusual observations in both tails of the 

distribution be treated adequately. Two simple robust estimators of location and scale 

parameters are the median and the MAD (the median absolute deviation), respectively. 

However, median and MAD are not efficient estimator since they are not based on all 

observations. For full uncensored data sets, simple robust estimates such as the trimmed 

mean or Winsorized mean (Hoaglin, Mosteller, and Tukey, 1983) are sometimes used to 

estimate the population mean in the presence of outliers. For example, a 

100𝑝% trimmed mean is obtained by using only the middle 𝑛(1 − 2𝑝)data values and 

the 𝑛𝑝 values are omitted from each of the two (left and right) tails of the data set. 

A good compromise between robustness and efficiency can be obtained with M-

estimates. If 𝜎 is known, an M-estimate of 𝜇 is implicitly defined as a solution of the 

estimating equation 

∑ 𝚿𝐤
𝐧

𝐢=𝟏
(
𝐱𝐢 − 𝛍

𝛔
) = 𝟎 

where Ψk(. ) is a suitable function. Huber (1981) suggests 

                                         Ψk(𝑥) = 𝑚𝑎𝑥(−𝑘,𝑚𝑖𝑛(𝑘, 𝑥))                    (5.3) 
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An M-estimate of mean can be written as ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 , where 𝑤𝑖 = 𝑊 (

𝑥𝑖

𝜎
) is a weight 

𝑖 = 1, … , 𝑛 with 𝑊(𝑢) suitable weight function. For example, for the Huber-type 

estimate   

                                             𝑊(𝑢) = Ψk(𝑢)/𝑢                                       (5.4) 

with  Ψk(. ) given in (5.3). 

Figure 5.1 shows the sensitivity of variance and entropy for a single outlier of 

different sizes. As we observe, the traditional estimates of both variance and entropy are 

affected by outliers largely. On the contrary, the robust methods (trimming, Huber) 

provide estimators that are less affected by outliers. These preliminary results suggest 

using robust procedure for portfolio risk estimation. 

 

 

                         Figure 5.1: Sensitivity Curve of Variance and Entropy 

 

5.4 Multivariate outlier and Mahalanobis’ Distance 

Mahalanobis’ distance can be thought of as a metric for estimating how far each case is 

from the center of all the variables’ distributions (i.e. the centroid in multivariate space). 

Univ
ers

ity
 of

 M
ala

ya



95 

For a 𝑑-dimensional multivariate sample 𝑥𝑖  (𝑖 =  1, . . . , 𝑛) the Mahalanobis’ distance is 

defined as 

                                𝑀𝐷𝑖 = √(𝑥𝑖 − 𝜇)𝑇𝑉−1(𝑥𝑖 − 𝜇),               (5.5) 

where 𝜇 is the multivariate location and 𝑉 the covariance matrix.  

A classical way for multivariate outlier detection is to compute Mahalanobis’ 

distance (Mahalanobis, 1927; 1936). Using estimates of the location and variation, this 

distance identify observations that are isolated from the main stream of data. 

Multivariate outliers can now simply be defined as observations having a large 

(squared) Mahalanobis’ distance. For this purpose, a quantile of the 𝜒2distribution (e.g., 

the 97.5% quantile) could be considered. With the assumption of multivariate normal 

distribution (d dimensions), Mahalanobis distance of sample data follows a 𝜒2 

distribution with d degrees of freedom. The standard method for multivariate outlier 

detection is−robust estimation of the parameters in the Mahalanobis’ distance and the 

comparison with a critical value of the 𝜒2distribution (Rousseeuw and Van Zomeren, 

1990). However, also values larger than this critical value are not necessarily outliers; 

they could still belong to the data distribution. A better procedure than using a fixed 

threshold is to adjust the threshold to the data set at hand. In order to distinguish 

between extremes of a distribution and outliers, Garrett (1989) introduced the 𝜒2plot, 

which draws the empirical distribution function of the robust Mahalanobis distances 

against the 𝜒2distribution. A break in the tail of the distributions is an indication for 

outliers, and values beyond this break are iteratively deleted. 

The Mahalanobis distances need to be estimated by a robust procedure in order to 

provide reliable measures for the recognition of outliers. Single extreme observation or 

groups of observations, departing from the main data structure can have a severe 
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influence to this distance measure, because both location and covariance are usually 

estimated in a non-robust manner. Many robust estimators for location and covariance 

have been introduced in the literature. The minimum covariance determinant (MCD) 

estimator is probably most frequently used in practice, partly because a computationally 

fast algorithm is available (Rousseeuw and Van Driessen, 1999). Using robust 

estimators of location and scatter in (5.5) leads to so-called robust distances (RD). 

Rousseeuw and Van Zomeren (1990) used these RDs for multivariate outlier detection. 

If the squared RD for an observation is larger than, say, 𝜒𝑑,0.975
2 ,it can be declared a 

candidate outlier.  

When using R there are multiple ways of calculating the Mahalanobis distance of a 

given data set. One way is using the chemometric package (Filzmoser and Varmuza, 

2013). The chemometric package contains a function Moutlier for calculating and 

plotting both the Mahalanobis’ distance and a robust version of the Mahalanobis’ 

distance. The robust Mahalanobis’ distance is based on the minimum covariance 

determinant (MCD) estimate. The robust Mahalanobis distance can also be obtained 

using robust package with covRob function. In order to obtain a good estimate in a 

reasonable amount of time, this function choose either Stahel-Donoho, Fast MCD or 

Orthogonalized Gnanadesikan-Kettenring for computing robust covariance depending 

on dimension and size of data. 

Fast MCD 

The general principle of robust statistical estimation is to give full weights to 

observations assumed to come from the main body of the data, but to reduce or 

completely eliminate weights for the observations from tails of the contaminated data. 

The minimum covariance determinant (MCD) method, a robust estimator introduced by 

Rousseeuw in 1985, eliminates perceived outliers from the estimation of the mean and 
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the covariance matrix. It uses the mean and the covariance matrix of hdata points 

(
T

2
≤ h < T)with the smallest determinantto estimate the population mean and the 

covariance matrix. The method has a breakdown value of 
 (T −h)

T
. If the data come from a 

multivariate normaldistribution, the average of the optimal subset is an unbiased 

estimator of the population mean. The resulting covariance matrix is biased, but a finite 

sample correction factor (ch,T ≥ 1) can be used to make the covariance matrix 

unbiased. The multiplication factor ch,T can be determined through Monte-Carlo 

simulation. For our specific purpose, the bias by itself does not affect the asset 

allocations in all pairs of covariances are underestimated by the same factor. 

MCD has rarely been applied to high-dimensional problems because it is extremely 

difficult to compute. MCD estimators are solutions to highly nonconvex optimization 

problems that have exponential complexity of the order 2𝑁 in terms of the dimension N 

of the data. Therefore, these original methods are not suitable for asset allocation 

problems when N > 20. Yet, in practice, assetallocation problems often include dozens 

of industrial classes or hundreds of individual securities, which makes the MCD method 

computationally infeasible. 

In order to cope with computational complexity problems, a heuristic FAST-MCD 

algorithm developed by Rousseeuw and Van Driessen (1999), provides an efficient 

alternative. A naive MCD approach would compute the MCD for up to (
𝑇
ℎ
) subsets, 

while FAST-MCD uses sampling to reduce the computation and usually offers a 

satisfactory heuristic estimation. The key step of the FAST-MCD algorithm takes 

advantage of the fact that, starting from any approximation to the MCD, it is possible to 

compute another approximation with a determinant no higher than the current one. The 

methods based on the following theorem related to a concentration step (C-step): 
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Let 𝐻1 ⊂ {1,2, … , 𝑛} be any h-subset of the original cross-sectional data, put 

�̂�1 =
1

ℎ
∑ 𝑅𝑡𝑡∈𝐻1  and Σ̂1 =

1

ℎ
∑ (𝑅𝑡 − �̂�1)𝑡∈𝐻1 (𝑅𝑡 − �̂�1)

′. If det (Σ̂1) ≠ 0, define the 

distance 𝑑1(𝑡) = √(𝑅𝑡 − �̂�1)(𝑅𝑡 − �̂�1)′, t=1,2,…,T. Take 𝐻2 such that {𝑑1(𝑖);  𝑖 ∈

𝐻2} = {(𝑑1)1:𝑇 , … , (𝑑1)ℎ:𝑇} where (𝑑1)1:𝑇 ≤ (𝑑1)2:𝑇 ≤ ⋯ ≤ (𝑑1)𝑇:𝑇 are the ordered 

distributions, and compute �̂�2 and Σ̂2 based on 𝐻2. Then det (Σ̂2) ≤ det Σ̂1with equality 

if and only if �̂�2 = �̂�1 and Σ̂1 = Σ̂2. 

If det(Σ̂1) > 0, the C-step yields Σ̂2 with det (Σ̂2) ≤ det Σ̂1. Basically, the theorem 

indicates the sequence of determinants obtained through C-steps converges in a finite 

number of steps from any original h-subset to a subset satisfying det (∑̂𝑚+1) =

det (∑𝑚). Afterward, running the C-step no longer reduces the determinant. However, 

this process only guarantees that the resulting det (∑̂) is a local minimum instead of the 

global one. To yield the h-subset with global minimum det (∑̂) or at least close to 

optimal, many initial choices (often >500) of 𝐻1are taken and C-steps are applied to 

each. 

Stahel-Donoho projection based estimator 

The first affine equivariant multivariate location estimator robust enough to tolerate up 

to 50% of outliers in the sample before it breaks down was independently discovered by 

Stahel (1981) and Donoho (1982). They proposed to solve the dimensionality problem 

by computing the weights for the robust estimators from the projections of the data onto 

some directions. These directions were chosen to maximize distances based on robust 

univariate location and scale estimators, and the optimal values for the distances could 

also be used to weight each point in the computation of a robust covariance matrix.  
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Let 𝑋 be an 𝑛 × 𝑝 data matrix that contains 𝑛 observations 𝑥1, 𝑥2, … , 𝑥𝑛. Let 𝜇 and 𝜎 

be shift and scale equivarentunivariate location and scale statistics. Then for any 

 𝑦 ∈ ℝ𝑝, the Stahel-Donohooutlyingness is defined as 

                                      𝑇𝑆𝐷 =
∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 , 

and 

                                      𝑆𝑆𝐷 =
∑ 𝑤𝑖(𝑥𝑖−𝑇𝑆𝐷)(𝑥𝑖−𝑇𝑆𝐷)

′𝑖=1
𝑛

∑ 𝑤𝑖
𝑛
𝑖=1

, 

where 𝑤𝑖 = 𝑤(𝑟𝑖) and 𝑤:ℝ+ → ℝ+ is a weight function so that observation with 

large outlyingness get small weights (see Stahel,1981; Donho,1982). 

To ensure a high breakdown point, one global optimization problem with 

discontinuous derivatives had to be solved for each data point, and the associated 

computational cost became prohibitive for large high-dimensional datasets. This 

computational cost can be reduced if the directions are generated by a resampling 

procedure of the original data, but the number of directions to consider still grows 

exponentially with the dimension of the problem. 

Orthogonalized Gnanadesikan-Kettenring pairwise estimator 

The orthogonalized Gnanadesikan-Kettenring (OGK) estimator, proposed by Marrona 

and Zamar (2002), is a modified version of Gnanadesikan-Kettenring robust covariance 

estimate. The authors argue that performance of OGK is comparable to that of the 

Stahel-Donoho (SD) and better than fast MCD (FMCD) estimates. Moreover, it is much 

faster than both, especially for large dimension.  
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Let 𝑥1, 𝑥2… , 𝑥𝑛 ∈ ℝ
𝑝 be a dataset. Let 𝜎(. ) and 𝜇(. ) be robust univariate dispersion 

and locationstatistics, and let 𝑉(. , . ) be a robust estimate of the covarianceof two 

random variables. Define a scatter matrix 𝑉(𝑋)anda location vector t(X) as follows: 

1. Let D=diag (𝜎(𝑋1), … , 𝜎(𝑋𝑝)) and 𝑦𝑖 = 𝐷
−1𝑥𝑖 , 𝑖 = 1,2, … , 𝑛. 

2. Compute the “correlation matrix”𝑈 = [𝑈𝑗𝑘], applyingGnanadesikan–

Kettenring estimator 𝜈 to the columns of 𝑌, that is 

𝑈𝑗𝑗 = 1 and 𝑈𝑗𝑘 =
1

4
[𝜎(𝑌𝑗 + 𝑌𝑘)

2
− 𝜎(𝑌𝑗 − 𝑌𝑘)

2
],             𝑗 ≠ 𝑘. 

3. Compute the eigenvalues 𝜆𝑗  and eigenvectors 𝑒𝑗of 𝑈 (𝑗 ≡ 1,2, … , 𝑝) and call E 

the matrix whose columns are the 𝑒𝑗
,s, so 

that 𝑈 ≡ 𝐸⋀𝐸′,where ⋀ = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑝) 

4. Define 𝐴 = 𝐷𝐸      and     𝑧𝑖 = 𝐸′𝑦𝑗 = 𝐴−1𝑥𝑖 so that 𝑥𝑖 = 𝐴𝑧𝑖 

Then the location and dispersion estimate is computed as 

𝑡(𝑋) = 𝐴𝜈  and 𝑉(𝑋) = 𝐴𝐴′ 

where  = 𝑑𝑖𝑎𝑔(𝜎(𝑍1)
2, … , 𝜎(𝑍𝑝)

2) and 𝜈 = (𝜇(𝑍1), … , 𝜇(𝑍𝑝))
′ 

The OGK estimator will be obtained by an iterative reweighted process. 

5.5 Robustness of Entropy Estimation  

Recall the Shanon entropy for variable 𝑋 with pdf 

𝐻𝑋 = −∫𝑝(𝑥) ln 𝑝(𝑥) 𝑑𝑥 

For a plug in estimator we first need an empirical estimation of 𝑝(𝑥), say �̂�(𝑥). A 

histogram or a kernel density estimator usually discretize the distribution and provide 

Univ
ers

ity
 of

 M
ala

ya



101 

estimates of probability at some discrete points over the range of the variable 𝑋. Let 

𝑋 be discretized at (𝑥1, 𝑥2, … , 𝑥𝑚) with corresponding 

probability (𝑝(𝑥1), 𝑝(𝑥2), … , 𝑝(𝑥𝑚)). The estimator of 𝐻𝑋 is thus 

                              �̂�𝑥𝑚 = −∑ 𝑝(𝑥𝑖)
𝑚
𝑖=1 ln 𝑝(𝑥𝑖)                           (5.6) 

The value of �̂�𝑥 will be heavily dependent on discretization. If  𝑚 > 𝑙, it is obvious 

that �̂�𝑥𝑚 ≥ �̂�𝑥𝑙. Therefore, the selection of number of bins for a histogram or the 

number of evaluation points of a kernel density is crucial. Too many evaluation points 

may results over estimate while too small number of evaluation points may results 

under estimate of the density. 

The second important issue in entropy calculation is that too small value of 𝑝(𝑥) may 

largely affect the estimate of 𝐻𝑋 since 𝐻𝑋 is directly estimated from 𝑝(𝑥). In turn, 

entropy could be wrongly estimated if 𝑝(𝑥) takes value close to zero. Small value of 

𝑝(𝑥) usually comes from the tail area. Specifically, if the data contain outlier, a good 

density estimator (specially, a robust density estimator) should provide small value of 

𝑝(𝑥) for the corresponding outlier. Therefore, presence of outliers can affect the 

estimate of entropy. A precaution can be taken in computing entropy from real data: 

𝐻𝑋
𝑝(𝑥)→0

≅ 0  

This will results in truncated entropy such as for given a small positive         

quantity 𝛼 > 0, 

             �̂�𝑋(𝑡𝑟𝑎𝑛𝑐𝑎𝑡𝑒) = ∑ 𝑝(𝑥𝑖)𝑝(𝑥)≥𝛼 log 𝑝(𝑥𝑖)                            (5.7)   

We, thus, suggest using a robust density estimator that is not affected by outlier and at 

the same time adequately select the number of bins (for histogram) or the number of 
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grid points (for kernel density). Additionally, during computation of entropy, small 

values of the probability estimate should be avoided. 

5.6 Adaptive Robust Kernel Density Estimator 

The classical kernel estimator is introduced by (Parzen, 1962 and Rosenblatt, 1956). 

Epanechnikov (1969) shows that there exists an optimal kernel in the sense of the 

asymptotic integrated square error (AMEX), which is a part of a parabola. In fact any 

reasonable kernel gives results that are close to optimal.  Kernel density estimation is a 

very useful tool for exploring the distribution structure of unknown population (Park 

and Marron, 1990). For computational convenience, the standard normal kernel or its 

Fast Fourier transform (Silverman, 1986) is often used. There are several studies on 

bandwidth selection for kernel density. Surveys on the most interesting approaches for 

kernel density estimation and their variants are available in Bowman (1985) or 

Silverman (1986). The computational issue of kernel density has been addressed by 

Wand and Jones (1994) and Duong and Hazelton, (2003; 2005). Furthermore, there are 

comparative studies of some of these methods in Scott and Factor (1981), Bowman 

(1985) and Kappenman (1987). M-estimation applied to kernel density has been studied 

by Kim and Scott, (2012), and Demitri and Zoubir (2014). The proposed method 

achieves robustness by combining a traditional kernel density estimator with M-

estimation for the mean of the kernel. They argue that the kernel density is sensitive to 

outlier and can be improved if robust procedure is adapted.  

We propose a robust version of the kernel density estimator, the weights for the 

kernel density is selected by a robust estimate of Mahalanobis distance linked with 𝛽-

divergent principal (Higuchi and Eguchi, 2004; Mollah et al., 2010). The weight 

function that we propose has the form 
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                   𝜓𝛽(𝑥, 𝜇, 𝑉) = 𝑒𝑥𝑝(−𝛽𝑤(𝑥, 𝜇, 𝑉))                           (5.8) 

with 

                𝑤(𝑥, 𝜇, 𝑉) =
1

2
(𝑥 − 𝜇)𝑇𝑉−1(𝑥 − 𝜇)                 (5.9) 

                 =
1

2
𝑀𝐷2 ,  a half of the squared Mahalanobis distance, 

where 𝜇  and 𝑉 are the mean vector and covariance matrix of 𝑥. The procedure of 

weight calculation and selection of the tuning parameter 𝛽 will be discussed in the next 

section. 

The 𝛽-divergent principal is a highly robust procedure, and has been applied in 

principal component analysis (Highuchi and Eguchi, 2004; Mollah et al., 2010) and 

hierarchical clustering (Badsha et al., 2013). Mollah et al. (2012) examine the influence 

function and sensitivity curve of 𝛽-divergent estimator. They found that with proper 

choice of 𝛽, both IF and SC of this estimator are bounded and, thus, 𝛽-divergent 

estimator is B-robust. 

Consider the density functions 𝑝(𝑥) and 𝑞(𝑥) defined on a d-dimensional data 

space, ℝ𝑑. The 𝛽-divergence of  𝑝(𝑥) with respect to 𝑞(𝑥) is defined as 

𝐷𝛽(𝑝, 𝑞) = ∫ [
1

𝛽
{𝑝𝛽(𝑥) − 𝑞𝛽(𝑥)}𝑝(𝑥) −

1

𝛽+1
{𝑝𝛽+1(𝑥) − 𝑞𝛽+1(𝑥)}] 𝑑𝑥 for 𝛽 > 0 (5.10) 

which is non-negative, that is 𝐷𝛽(𝑝, 𝑞) ≥ 0, equality holds if and only if 𝑝(𝑥) = 𝑞(𝑥) 

for almost all 𝑥 in ℝ𝑑, see Basu et al. (1998) and Minami and Eguchi (2002), for 

example. Note that when the tuning parameter 𝛽 tends to 0, 𝛽-divergence becomes 

Kullback-Leiber (KL) divergence such as 

lim
𝛽↓0

𝐷𝛽(𝑝, 𝑞) = ∫𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 = 𝐷𝐾𝐿(𝑝, 𝑞) 
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If 𝑝(𝑥) be the density function for the variable of interest 𝑥, then the minimum 𝛽-

divergence procedure is defined by 

min
𝑞∈𝑀

𝐷𝛽(𝑝, 𝑞), 

where 𝑀 denotes a statistical model. Consider a kind of volume match by 

                                          𝐷𝛽
∗(𝑝, 𝑞) = min

𝑘
𝐷𝛽(𝑝, 𝑘𝑞) 

          =
1

𝛽(𝛽+1)
[𝑝𝛽+1(𝑥)𝑑𝑥 −

{∫𝑝(𝑥)𝑞𝛽(𝑥)𝑑𝑥}
𝛽+1

{∫𝑞𝛽+1(𝑥)𝑑𝑥}
𝛽 ] 

For a fixed data density 𝑝 the functional 𝐷𝛽
∗(𝑝, . ) is defined on the space of 

nonnegative functions with a finite mass and 𝐷𝛽
∗(𝑝, 𝑘𝑞) = 𝐷𝛽

∗(𝑝, 𝑞) for any positive 

scalar 𝑘. If the first terms that depend only on 𝑝 isneglected, it will be of the form 

−
{∫𝑝(𝑥)𝑞𝛽(𝑥)𝑑𝑥}

𝛽+1

{∫ 𝑞𝛽+1(𝑥)𝑑𝑥}𝛽
 

which is monotonically transformed into 

−
∫𝑝(𝑥)𝑞𝛽(𝑥)𝑑𝑥

{∫ 𝑞𝛽+1(𝑥)𝑑𝑥}
𝛽

𝛽+1

 

This will provide a linear functional on 𝑝 as 

𝐿𝛽(𝑞; 𝑝) =
1

𝛽
[1 −

∫𝑝(𝑥)𝑞𝛽(𝑥)𝑑𝑥

{∫ 𝑞𝛽+1(𝑥)𝑑𝑥}
𝛽

𝛽+1

] 

By definition 

argmin
𝑞𝜖𝑀

𝐷𝛽
∗(𝑝, 𝑞) = argmin

𝑞𝜖𝑀
𝐿𝛽

∗(𝑝, 𝑞) 
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for any statistical model M of density function. We observe that 

lim
𝛽↓0

𝐿𝛽(𝑞; 𝑝) = −∫𝑝(𝑥) log 𝑞(𝑥)𝑑𝑥 

which is the expected log-loss function, or minus the expected log likelihood  function. 

Let us consider this β-divergence 𝐷𝛽
∗(𝑝, 𝑞) or 𝐿𝛽(𝑝, 𝑞) in which the model function is a 

Gaussian density function 𝜑𝜇,𝑉(𝑥) with the mean vector 𝜇 and variance matrix 𝑉. Then 

the minimum β-divergence estimators for 𝜇 and 𝑉 are obtained by minimization of 

𝐷𝛽
∗(𝑝, 𝜑𝜇,𝑉) or equivalently, the minimum 𝛽-divergence estimators are derived by 

minimization of 

𝐿𝛽(𝜇, 𝑉; 𝑝) =
1

𝛽
 1 − 𝑑𝑒𝑡(𝑉)

−
1 

2

𝛽

𝛽+1 × ∫ 𝑒𝑥𝑝{−𝛽𝑤(𝑥, 𝜇, 𝑉)} 𝑝(𝑥)𝑑𝑥              (5.11) 

since 𝐿𝛽(𝜇, 𝑉; 𝑝) ≡ 𝐿𝛽(𝜑𝜇, 𝑣; 𝑝)where w is defined in (5.9).  

The expected 𝛽-loss function has the empirical form 𝐿𝛽(𝜇, 𝑉): 

𝐿𝛽(𝜇, 𝑉) =
1

𝑛
∑

1

𝛽

𝑛
𝑡=1 [1 − det(𝑉)

−1

2

β

β+1 exp {−β𝑤(xt, μ, V)}]             (5.12) 

Similarly, we find another form equivalent to 𝐿𝛽(𝜇, 𝑉; 𝑝) as 

𝐿𝛽
∗(𝜇, 𝑉; 𝑝) = (𝛽 + 1) log{∫ 𝑝(𝑥)𝜑𝜇,𝑉

𝛽
𝑑𝑥} − 𝛽 log{𝜑𝜇,𝑉

𝛽+1(𝑥)𝑑𝑥}          (5.13) 

If a gradient of 𝐿𝛽(𝜇, 𝑉) with respect to (𝜇, 𝑉) is taken, the minimizer of 𝐿𝛽(𝜇, 𝑉) 

will be obtained. It is equivalent to solving the equations 𝜇∗ = 𝜇 and 𝑉∗ = 𝑉 in the 

following: 

𝜇∗ =
∑ 𝜓𝛽(𝑥𝑡,𝜇,𝑉)𝑥𝑡
𝑛
𝑡=1

∑ 𝜓𝛽(𝑥𝑡,𝜇,𝑉)
𝑛
𝑡=1

                             (5.14) 
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and 

𝑉∗ = (𝛽 + 1)
∑ 𝜓𝛽(𝑥𝑡,𝜇,𝑉)(𝑥𝑡−𝜇)(𝑥𝑡−𝜇)

𝑇𝑛
𝑡=1

∑ 𝜓𝛽(𝑥𝑡,𝜇,𝑉)
𝑛
𝑡=1

                           (5.15) 

where 

𝜓𝛽(𝑥, 𝜇, 𝑉) = 𝑒𝑥𝑝{−𝛽𝑤(𝑥, 𝜇, 𝑉)}                           (5.16) 

𝑤(𝑥, 𝜇, 𝑉) =
1

2
(𝑥 − 𝜇)𝑇𝑉−1(𝑥 − 𝜇)               (5.17) 

Note that 𝑤(𝑥, 𝜇, 𝑉) is nothing but half of the squared Mahalanobis distance (MD), 

which is a popular and well accepted measure for identifying outlier. Eventually, the 

weight 𝑤(𝑥, 𝜇, 𝑉) =
1

2
𝑀𝐷2, thus, becomes a function of univariate variable, MD from a 

function of multivariable variable 𝑥. In our analysis we use robust version of MD for 

calculating the weights. 

 The estimation of 𝜇 and 𝑉 can be obtained iteratively as  

       𝜇𝑗+1 =
∑ 𝜓𝛽(𝑥𝑡|𝜇𝑗,𝑉𝑗)𝑥𝑡
𝑛
𝑡=1

∑ 𝜓𝛽(𝑥𝑡|𝜇𝑗,𝑉𝑗)
𝑛
𝑡=1

=
∑ 𝜓𝛽(𝑥𝑡|𝑀𝐷𝑗)𝑥𝑡
𝑛
𝑡=1

∑ 𝜓𝛽(𝑥𝑡|𝑀𝐷𝑗)
𝑛
𝑡=1

                        (5.18) 

                        𝑉𝑗+1 = (𝛽 + 1)
∑ 𝜓𝛽(𝑥𝑡|𝜇𝑗,𝑉𝑗)(𝑥𝑡−𝜇𝑗)(𝑥𝑡−𝜇𝑗)

𝑇𝑛
𝑡=1

∑ 𝜓𝛽(𝑥𝑡|𝜇𝑗,𝑉𝑗)
𝑛
𝑡=1

                                 (5.19) 

= (𝛽 + 1)
∑ 𝜓𝛽(𝑥𝑡|𝑀𝐷𝑗)(𝑥𝑡 − 𝜇𝑗)(𝑥𝑡 − 𝜇𝑗)

𝑇𝑛
𝑡=1

∑ 𝜓𝛽(𝑥𝑡|𝑀𝐷𝑗)
𝑛
𝑡=1

 

Selection of 𝜷 

We observe that the performance of the proposed method for robust kernel depends on 

the value of the tuning parameter𝛽. To ensure better performance by this method, 

𝛽 should be selected with an adaptive selection procedure depending on data structure. 

To find an appropriate 𝛽, a number of trial values should be evaluated. 
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Define a measure for evaluating the estimators for 𝜇 and V as 

𝐷𝛽0(𝛽) = 𝐸{𝐿𝛽0(�̂�𝛽, �̂�𝛽)} 

where 

(�̂�𝛽 , �̂�𝛽) = argmin
𝜇,𝑉

𝐿𝛽0(𝜇, 𝑉) 

The measurement 𝐷𝛽0(𝛽) is of the generalization performance of an        

estimatorat 𝛽 = 𝛽0. 

To serve our purpose, the K-fold cross validation (CV) method can be used which is 

simple and popular among practitioners (see Hastie, Tibshirani and Friedman, 2001). In 

K-fold CV method, one part of the available data is used for the estimation and a 

different part for evaluation. For the current problem, the K-fold CV method can be 

employed as a generalization scheme. It needs to split the data into 𝐾 approximately 

equal-sized and homogeneous sections. After estimation from 𝐾 − 1 parts of the data, 

the 𝛽-divergence for the 𝐾 − 1th section is calculated. The calculated values of 𝛽0-

divergence is then combined to obtain the CV estimate. 

The procedure to find the K-fold CV estimate �̂�𝛽0(𝛽) is summarized below. 

 Split the data set into 𝑘 subsets: 

  {℘(1),… ,℘(𝐾)}. 

  Let ℘−𝑘 = {𝑥𝑡|𝑥𝑡 ∉ ℘(𝐾)}, for  𝑘 = 1,… , 𝐾 

 Estimate 𝜇 and V using dataset ℘−𝑘 by 

i. Minimizing 𝐷𝛽 (℘(𝑥𝑡), 𝜑𝑢,𝑣(𝑥𝑡)) 
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⟹ (�̂�𝛽 , �̂�𝛽)=𝑎𝑟𝑔min
𝜇,𝑉

𝐿𝛽(  𝜇, 𝑉) 

 Compute  𝐶𝑉(𝑘) using data set ℘(𝑘), 

ii. 𝐶𝑉(𝑘)=𝐿𝛽0(�̂�𝛽, �̂�𝛽). 

iii. Then �̂� = 𝑎𝑟𝑔min
𝛽
�̂�𝛽0(𝛽) 

iv. where �̂�𝛽0(𝛽) =
1

𝑛
∑ 𝐶𝑉(𝑘)
𝑛
𝑘=1  

 Compute 𝑆𝐷𝛽0(𝛽) = SE
1

|℘(k)|
C𝑉(𝑘 )as a measure for variation of �̂�𝛽0(𝛽) where 

|℘(k)| denotes the number of elements in the 𝑘𝑡ℎ part of data ℘(k) .Plots of 

�̂�𝛽0(𝛽) for 𝛽 with the auxiliary boundary curves �̂�𝛽0(𝛽) ± 𝑆𝐷𝛽0(𝛽) will help 

us to select an optimum. 

Robust Kernel Density Estimator (RKDE) 

The standard kernel density estimator (KDE) for the sample 𝑋𝑡 is given by 

𝑓𝐾𝐷𝐸(𝑥) =
1

𝑛
∑ 𝐾𝐻(𝑥, 𝑋𝑡)
𝑛
𝑡=1                                        (5.20) 

where 𝐾𝐻 is a kernel function with bandwidth H. Using the kernel trick, the kernel 

function can be expressed as an inner product in the Hilbert space ℋ, such that 

𝐾𝐻(𝑥, 𝑋𝑡) = 〈Φ(𝑥),Φ(𝑋𝑡)〉                 (5.21) 

Where 𝛷 is the mapping function Φ:ℝ𝑑 → ℋ and 〈. 〉 denotes the inner product. These 

yields 

  𝑓𝐾𝐷𝐸(𝑥) =
1

𝑛
∑ 〈Φ(𝑥),Φ(𝑋𝑡)〉
𝑛
𝑡=1                 (5.22) 

      = 〈Φ(𝑥),
1

𝑛
∑Φ(𝑋𝑡)

n

t=1

〉 

 = 〈Φ(𝑥), �̂�Φ,𝑀𝐿〉 
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which is the inner product between Φ(𝑥) and the sample mean of Φ(𝑋𝑡). Replacing the 

sample mean by the robust 𝛽-divergent estimate 

�̂�Φ =
∑ 𝜓𝛽(𝑥,𝜇,𝑉)Φ(𝑥𝑡)
𝑛
𝑡=1

∑ 𝜓𝛽(𝑥,𝜇,𝑉)
𝑛
𝑡=1

                 (5.23) 

leads to robust KDE (RKDE) 

𝑓𝐾𝐷𝐸(𝑥) = 〈Φ(𝑥), �̂�Φ〉 = 〈Φ(𝑥),∑ 𝑤𝑡Φ(𝑥𝑡)
𝑛
𝑡=1 〉 = ∑ 𝑤𝑡𝐾𝐻(𝑥, 𝑋𝑡)

𝑛
𝑡=1       (5.24) 

They can be obtained using iteratively re-weighted least squares (IRWLS) (Marrona 

et al., 2006) as 

�̂�Φ𝑗+1
=

∑ 𝜓𝛽(𝑥𝑡|𝜇𝑗,𝑉𝑗)Φ(𝑥𝑡)
𝑡=1
𝑛

∑ 𝜓𝛽(𝑥𝑡|𝜇𝑗,𝑉𝑗)
𝑛
𝑡=1

=
∑ 𝜓𝛽(𝑥𝑡|𝑀𝐷𝑗)Φ(𝑥𝑡)
𝑡=1
𝑛

∑ 𝜓𝛽(𝑥𝑡|𝑀𝐷𝑗)
𝑛
𝑡=1

             (5.25) 

Algorithm 

Step 1: Obtain robust estimators of  𝜇 and 𝑉 and then estimate MD robustly 

Step 2: Obtain an estimate of β and calculate �̂�, �̂�, �̂�Φ defined in (5.14), (5.15) and 

(5.23) using the initial weight 𝑤(0) =
1

2
𝑀𝐷2 and 𝜓𝛽(𝑥, 𝜇, 𝑉) defined in (5.16). 

Step 3: Use an iterative reweighted least square to update the triple �̂�, �̂�, �̂�Φ using 

equation (5.18), (5.19) and (5.25). 

 Stop when |�̂�Φ(𝑗 + 1) − �̂�Φ(𝑗)| < 𝜖. 

5.7 Monte-Carlo Simulation 

To investigate the performance of the proposed RKDE in a comparison of the 

traditional KDE, we conduct a simulation study. We first investigate the effect of our 

adaptation for the outliyingness on kernel density estimation. We simulate 1000 

observations from bivariate normal distribution with mean vector 0 and covariance 

identity. 5% of the simulated data are randomly replaced by normal variates with mean 
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6 and same variance. We apply KDE and RKDE methods on these contaminated data. 

The process is repeated for 10%, 15% and 20% contamination. Figure 5.2 display the 

contour plots of KDE and RKDE for different level of contamination. We observe that 

both KDE and RKDE are not affected by 5% contaminated data. However, if the 

contamination level increases to 10%, 15% and 20% KDE provides bimodal 

distributions. On the other hand the RKDE is not influenced by the contamination even 

up to level 20%. 
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(a) KDE (No contamination) (b) RKDE (No contamination) 

 

 

(c) KDE (5% contamination) (d) RKDE (5% contamination) 

 

 

(e) KDE (10% contamination) (f) RKDE (10% contamination) 

 

v.  

(g) KDE (15% contamination) (h) RKDE (15% contamination) 
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(i) KDE (20% contamination) (j) RKDE (20% contamination) 

 

                                Figure 5.2: Effect of outlier on kernel density 
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To demonstrate the validity of proposed algorithm we further simulate from bivariate 

normal and compute the precision (in terms of MSE) and the robustness (in terms of 

bias) in entropy estimation using KDE and RKDE for different level of contamination. 

The results are shown in Figure 5.3. We first compute the joint entropy for the clean 

data (no contamination) with KDE. We take this value of entropy as a standard for 

making comparison. For 5% contamination, the MSE and Bias of KDE, obtain from 

1000 replications, is slightly higher than that of RKDE. However, as the contamination 

level increases to 10% or more, the MSE and Bias of KDE increases sharply. On the 

other hand, the MSE and Bias of RKDE increases gradually with the contamination 

level, but those are much lower than KDE for higher level of contamination.  

We can conclude that the traditional kernel density estimator is robust up to certain 

level of contamination while our proposed robust kernel density estimator is highly 

robust and provide reliable output even for 20% contamination. 

 

 

 

              Figure 5.3: MSE and Bias in entropy estimation using kernel density 
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5.8 Application in portfolio 

We provide an illustration of application of our proposed robust method in portfolio 

optimization. Recall the mean entropy entropy (MEE) model where the entropy is used 

as a risk measure of the asset and portfolio as well. This model needs to estimate the 

conditional entropies of assets for a given market index. In chapter 4, we use kernel 

density estimator to obtain the conditional entropies. Here, through an example, we will 

show that due to presence of outlier both the return and risk could result in bias 

estimate. The biasness is greatly reduced when we use the robust kernel density 

estimator for computing. For the illustration, we assume a portfolio based on four assets 

which are correlated to a market index. We, thus, simulate five variables from a 

multivariate skew normal distribution with mean, 𝜉 = [0 0 0 0 0], Covariance, 

               Ω =

[
 
 
 
 
1 0  0  0 . 4
0 1  0  0 . 6
0
0
. 4

0
0
. 6

 1  0 . 5
 0  1 . 4
. 5 . 4 1]

 
 
 
 

, shape, 𝛼 = [0.5 0.4 0.6 0.7 0.5]. 

We perform MEE portfolio analysis on the simulated data using both traditional 

kernel density estimator (KDE) and our robust kernel density estimator (RKDE). When 

the data is not contaminated, we found that with few exceptions, the RKDE provide 

estimates of mean, conditional entropy, portfolio weight, portfolio return and portfolio 

entropy quite close to those obtained by using KDE. We then contaminate the data with 

5%. We then randomly replace 5% of the simulated data from multivariate skew normal 

distribution with same parameters except ξ= [6 6 6 6 6]. We observe that results of 

MEE for this contaminated data obtained using KDE vary a large from the results of 

clean data (Table 5.1). Specifically, the portfolio return and portfolio risk (entropy) are 

estimated as 0.66204 and 0.51532 which deviates from those estimated for clean data 

(0.37010 and 0.67669). Note that the portfolio return is over estimated while the 
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portfolio risk is underestimated. On the other hand when RKDE is used on 

contaminated data, the results are quite similar to that obtained from the clean data; for 

instance, the portfolio return and entropy are estimated as 0.32077 and 0.68043. The 

results suggest that if data are contaminated, use of KDE for entropy estimation in 

portfolio analysis may produce misleading results. Our proposed RKDE is a useful 

remedy in such cases.  

                                Table 5.1: MEE Portfolio with KDE and RKDE 

  

Clean data 5% contaminated data 

  

KDE RKDE KDE RKDE 

Mean Asset 1 0.48395 0.46317 0.75297 0.44251 

 

Asset 2 0.19700 0.19015 0.50157 0.16721 

 

Asset 3 0.38634 0.36836 0.71447 0.34358 

 

Asset 4 0.42068 0.39143 0.68781 0.33572 

Conditional 

Entropy 

Asset 1 2.75516 2.77490 2.13381 2.77193 

Asset 2 2.62672 2.64319 1.98024 2.65096 

Asset 3 2.68927 2.70895 2.03760 2.70427 

Asset 4 2.76023 2.77856 2.10015 2.76327 

Portfolio Weight 

Asset 1 0.24591 0.24583 0.24224 0.24578 

Asset 2 0.25709 0.25723 0.25932 0.25621 

Asset 3 0.25151 0.2541 0.25265 0.25151 

Asset 4 0.24549 0.24553 0.24579 0.24650 

Portfolio Return 

 

0.37010 0.35149 0.66204 0.32077 

Portfolio Entropy 

 

0.67669 0.68132 0.51532 0.68043 

 

We further investigate why the portfolio entropy is under estimated for contaminated 

data. Figure 5.4 displays the KDE of simulated data from N(0,1) distribution. The upper 

panel of the figure shows the KDE of clean data and the lower panel shows the KDE of 

the same distribution with one outlier. As we observe, the estimated density for 

contaminated data has large tail area with probability close to zero at more grid points 

than the estimated density for clean data has. Subsequently, an entropy estimate with 

contaminated data will be inflated since probability estimates are small at more grid 

points than it should be. This result confirms the rationality of using truncation for 

entropy estimation.  
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Figure 5.4: Effect of outlier on kernel density 
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   CHAPTER 6: CONCLUSION 

6.1 Summary of contribution 

This study addressed two core problems of asset allocation: risk measure and portfolio 

diversification. Review on early literature reveals that traditional risk measures are 

subject to estimation error that results unstable portfolio allocation in practice. Diversity 

is, thus, essential to control the instability of asset allocation. We advocate for entropy, a 

nonparametric alternative of variance as a risk measure. We found that entropy can 

balance diversification to reach a good performance with reasonable risk. Relation 

between entropy and variance is studied for a range of probability distributions. It 

reveals that entropy is equivalent to variance for most of the return distributions, 

however, the benefit of entropy is that it not restricted to the assumption of normality. 

Investigation on real data suggests that asymmetry and heaviness of tail are common in 

return distributions. Entropy, therefore, is in advantageous position since it depends on 

many more parameter than variance and contains more information regarding data 

distribution. We further argue that like variance entropy measure can capture the effect 

of diversity as a risk measure. However, estimation of entropy is not an easy task, 

especially, when the data distribution is unknown. This study discussed different steps 

of entropy estimation from real and simulated data. We note that the accuracy of 

entropy estimation depends on density estimation. Different methods of density 

estimation are compared; the technical details like bandwidth selection for kernel 

density and bin selection for histogram are provided in this thesis with computer codes. 

We proposed a class of portfolio policies that have better stability properties than the 

traditional minimum-variance portfolio. The portfolio weights of the resulting policies 

are less sensitive to changes in the distributional assumptions than those of the 

traditional minimum-variance policy. Our proposed an entropy-based new multi-
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objective portfolio model is compared with existing models using a rolling window 

procedure. Our numerical results on simulated data reveal that the proposed model is 

more stable (diversified) and that they preserve (or slightly improve) the already 

relatively high out-of-sample Sharpe ratio of the minimum-variance policy when data 

comes from normal distribution. The proposed model is further evaluated using equity 

market data. A variety of performance measures confirm that this model is more 

diversified than its competitors and provide better performance in both in-and out-of-

sample cases. 

We then investigated the robustness of entropy measure and found that like variance 

entropy is sensitive to outlier. We proposed a robust procedure of entropy estimation 

based on kernel density estimator (KDE). The 𝛽-divergent principal is first utilized to 

obtain a robust kernel density estimator (RKDE). The RKDE is a weighted kernel 

density estimate, where smaller weights are given to more outlying data points. Our 

simulation results suggest that our proposed method has lower root mean square error 

than the classical KDE. Entropy from RKDE is then estimated with a truncation 

procedure to render the effect of outlier. A numerical example is given to illustrate the 

idea of our model and demonstrate the effectiveness of the designed algorithm. The 

computational results show that the proposed model and the designed algorithm are 

reliable and provide greater accuracy in estimating portfolio weights. 
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