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ABSTRACT 

The main objective of this study was to develop a framework and assess the visual 

reasoning process adopted by pre-university students when integrating Cartesian graphs 

to solve mathematical problems on functions and derivatives. The study identified the 

usage levels of graphs, method of preference and graph-reasoning ability, and 

subsequently, the correlation among them. The study also investigated the 

misconceptions and difficulties faced by the students. The study employed a 3-phase 

descriptive quantitative method. The development of framework in Phase 1 involved a 

three-stage process: the document analysis on theories and models on visual reasoning 

and Cartesian graphs, focus group discussion among experts in the domain content and 

visual reasoning, and a 3-round Delphi method to confirm the framework. In Phase 2, 

three instruments were prepared; the Visual Representation Usage Level on four 

categories of using graphs, the Mathematical Visuality Test to measure the students’ 

preference method and the Graph-Reasoning Test measuring their graph-reasoning 

ability. Phase 3 involved the collection and analysis of data on 194 pre-university 

students. The developed framework consisted of seven categories of encoding and five 

categories of decoding processes. Results indicated between 41.75% to 84.02% of the 

students were very positive towards the use of graphs and diagrams in the teaching and 

learning of mathematics although between 56.70% and 78.87% said they faced 

difficulties in constructing and interpreting them. Students exhibited fluctuating patterns 

of visual reasoning ability. In the encoding process, the students were categorised into 

three types of mathematical visuality; 26.8% were visual, 16.5% were partially-visual 

and 56.7% were non-visual. This exhibits their reluctance to sketch graphs although 

they managed to obtain the correct solutions which indicates that they had a 

predominant preference for algebraic method as compared to visuals. Responses in the 

decoding process were based on the three levels of graph reasoning. At least 68% of the 
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students managed to get correct solutions for all the read graph items. More than 70% 

of the students managed to obtain 75% and 43% of the items correct for the read 

between graph and read beyond graph respectively. These indicate that as the tasks get 

harder visually, more cognitive load is needed for the students to read and interpret 

graphs. Strong positive correlation values of at least 0.91 were obtained among the three 

decoding levels. They perform fundamental, operational and subjective types of errors 

and encountered the non-use of graph, generic and idiosyncratic difficulties when 

relating the algebraic forms of functions and derivatives to their visual representations 

on graphs and vice versa. The results of the study were significant in providing reliable 

and important ideas depicting the development of visual reasoning that is useful in the 

students’ thinking and understanding, to guide the development of instructional 

materials to improve students’ understanding and reasoning, for educators and 

curriculum developers to enhance the learning outcomes and teaching strategies to 

challenge students’ thinking and reasoning skills, and to reduce gap in the literature and 

knowledge on visual reasoning in the Malaysian educational system.   
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ABSTRAK 

Tujuan utama kajian adalah untuk membangun rangkakerja dan mentaksir proses 

penaakulan visual yang digunapakai oleh pelajar pra-universiti dengan mengintegrasi 

graf Cartesian dalam menyelesaikan masalah fungsi dan terbitan. Kajian mengenalpasti 

tahap penggunaan graf, kaedah pilihan dan keupayaan penaakulan graf, korelasi di 

antara ketiga-tiganya dan menganalisa kesukaran dan kesilapan yang dihadapi oleh 

pelajar. Rekabentuk kajian adalah berdasarkan kaedah 3-fasa deskriptif kuantitatif. Fasa 

1 melibatkan proses 3-peringkat pembangunan rangkakerja: analisa dokumen ke atas 

teori-teori dan model-model berkaitan penaakulan visual dan graf Cartesian, 

perbincangan kumpulan fokus melibatkan pakar-pakar dalam domain kandungan dan 

penaakulan visual, dan kaedah Delphi 3-pusingan bagi proses pengesahan rangkakerja. 

Tiga instrumen utama telah disediakan dalam Fasa 2: Visual Representation Usage 

Levels bagi mengukur empat kategori pelajar dalam pengggunaan graf, Mathematical 

Visuality Test bagi mengukur kaedah pilihan dan Graph-Reasoning Test bagi megukur 

kebolehan penaakulan visual pelajar. Fasa 3 melibatkan proses pengumpulan dan 

penganalisaan data kek atas 194 orang pelajar pra-universiti. Rangkakerja yang 

dibangunkan mengandungi tujuh kelas pengekodan dan lima kelas  penyahkodan. 

Seramai 41.57% hingga 84.02% pelajar adalah sangat positif terhadap pengunaan graf 

dan gambarajah dalam pembelajaran dan pengajaran matematik walaupun seramai 

56.70% hingga 78.87% pelajar menghadapi kesukaran dalam membina dan mengtafsir 

graf. Pelajar mempamerkan corak kebolehan penaakulan visual yang turun naik. Dalam 

proses pengekodan, pelajar dapat dikelaskan dalam tiga kumpulan: 26.8% visual, 16.5% 

separa-visual dan 56.7% bukan-visual. Ini mempamerkan keengganan pelajar untuk 

melakar graf tetapi mereka mampu untuk menyelesaikan masalah tersebut. Ini 

menunjukkan bahawa kaedah algebra adalah menjadi pilihan pelajar berbanding kaedah 

visual. Analisis proses penyahkodan adalah berdasarkan tiga tahap penaakulan graf. 
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Sekurang-kurangnya 68% pelajar berjaya menyelesaikan masalah bagi semua item baca 

graf. Lebih dari 70% pelajar berjaya menyelesaikan 75% dan 43% masing-masing 

daripada item baca antara graf dan baca luar graf. Ini menunjukkan bahawa beban 

kognitif yang lebih diperlukan apabila tahap visual yang dipaparkan semakin sukar 

untuk dibaca dan ditaksir. Ketiga-tiga tahap decoding mempunyai korelasi positif yang 

kukuh dengan nilai sekurang-kurangnya 0.91. Pelajar telah mempamerkan jenis 

kesilapan asas, operasi dan subjektif, dan menghadapi kesukaran dari segi tidak 

menggunakan graf, generik dan pelbagai bila mengaitkan hubungan di antara bentuk 

algebra dan graf serta sebaliknya. Hasil kajian adalah sangat signifikan dalam 

menyediakan ide ketara dan yang boleh dipercayai bagi menggambarkan pembangunan 

penaakulan visual yang berguna dalam pemikiran dan pemahaman pelajar, membimbing 

untuk pembangunan bahan pengajaran dan pembelajaran bagi membaikpulih proses 

pemahaman dan penaakulan pelajar, para pendidik dan penyedia kurikulum boleh 

memperkuatkan hasil pembelajaran dan strategi pengajaran yang boleh mencabar proses 

pemikiran dan penaakulan pelajar, dan membantu merapatkan jurang dalam tinjauan 

literatur dan pengetahuan tentang penaakulan visual setiap peringkat dalam sistem 

pembelajaran Malaysia.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background of the Study 

The role of visual reasoning in solving mathematical problems, such as functions and 

derivatives, at pre-university level has been a main area of interest in the mathematics 

educational research. For more than four decades, visual tools such as Cartesian graphs 

were regarded as essential in the work of mathematicians (Arcavi, 2003; Bayazit & 

Aksov, 2010; Esmeralda, 2011; Herbert, 2008; Huang, 2015; Ismail & Yusof, 2010; 

Kultur, Ozdemir & Konyalioglu, 2011; Oehrtman, Carlson & Thompson, 2008; 

Stylianou & Silver, 2004). The reform in the calculus teaching in 1980s acknowledged 

visual ability as an important cognitive tool to support the understanding of concepts in 

functions and derivatives and hence to help explore and solve related mathematical 

problems (Cheng, 2004; Goerdt, 2007; Hollebrands, 2007; Leng, 2011; Leung & Chan, 

2004; Mariotti, Laabourdes & Façade, 2003; Orhun, 2012). Therefore, visual reasoning 

is regarded as a major strategy that underlies the teaching and learning of functions and 

derivatives through the manipulation of graphs at pre-university level (Boesen, Lithner 

& Palm, 2010; Calder, 2008; Herbert, 2008; Pjanic, Lidan & Kurtanovic, 2015; Rosken 

& Rolka, 2006).    

Polya (1945), Presmeg (1986, 1989) and Zimmermann and Cunnigham (1991), 

among the earliest group of researchers who had promoted the visual approach, 

emphasized the importance of visual thinking and the use of various visual 

representations that usually parallels success in solving mathematical problems. The 

Malaysian curriculum is, in general, very traditional. Visual displays play very limited 

roles and are regarded as illustrative graphics or guiding tools to help in solving the 

problems (Freitas & Sinclair, 2012; Natsheh & Karsenty, 2013). Visual reasoning 

should not be imposed as to explain, establish or provide new information or to be used 
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in the proving of mathematical concepts and properties. Realizing these states of affairs 

and that the methods of delivery are equally vital to equip and prepare students with 

understanding and readiness for higher levels of university learning (Bosse, Adu-

Gyamfi & Cheetham, 2011; Font, Bolite & Acevedo, 2010; Noraini, 2006; Presmeg, 

2006), ministries of education and curriculum developers globally (Japan: Ministry of 

Education, Culture, Sports, Science and Technology, 2010; NCTM, 2000; SACE, 2014; 

Singapore: Soh, 2008; UK, 2010) including Malaysia (CDC, 2010) have called for a 

search on different and upgraded perspectives on the teaching and learning of functions 

and derivatives (Guler & Ciltas, 2011; Yavuz, 2010) that focus on graphs as visual 

representations of relationships and connections between reasoning and conceptual 

knowledge (Ainsworth & Loizou, 2003; Calder, 2008; Dubinsky & Wilson, 2013) 

 

1.1.1 Learning of Functions and Derivatives 

 The concept of function is fundamental to the understanding of derivatives (Brijlall & 

Maharaj, 2010; Gagatsis, Elia, Panoura, Gravvani & Spyrou, 2006; Mahir, 2010; 

Sofronas, DeFranco, Vinsonhaler, Gorgievski, Schroeder, & Hamelin, 2011). In the 

Malaysian classroom scenario, students are introduced to the notion of functions 

through the algebraic expression of  xfy   while NCTM (2000) emphasizes for the 

introduction of functions to be in the forms of words, tables and graphs and to be done 

as early as grade 3 through grade 5. Teachers, on the other hand, need to highlight on 

the importance of interpreting various visual representations such as Cartesian graphs as 

guides for the students to be able to relate and manipulate various types of functions and 

their derivatives (Bayazit & Aksov, 2010; Elia & Spyrou, 2006; Esmeralda, 2011; 

Judson & Nishimori, 2005).     

Most calculus curriculums introduce derivative as the ratio of the change in the 

independent variable which is usually referred to as the x-value, with respect to a second 

Univ
ers

ity
 of

 M
ala

ya



3 
  

related variable which is usually referred to as the y-value, and is written as 
dx

dy
. The 

matriculation curriculum of the South Australian Certificate of Education (SACE, 2015) 

proposed for functions and derivatives to be taught in three different perspectives: 

numerical, algebraic and graphical, and further be expressed through various 

representation systems such as symbols, expressions and graphs. The common learning 

outcome worldwide is for the students to be able to present and communicate the 

concepts of functions and derivatives in a variety of ways. The representations that 

students use indicate the meaning they attribute to the concepts of functions and 

derivatives (Abbey, 2008; Berry & Nyman, 2003; Herbert, 2008; Ismail & Yusof, 2010; 

Kultur, Ozdemir & Konyalioglu, 2011; Tokgoz, 2012). The numerical representation of 

derivative refers to the slope of the function at a particular point while the symbolic 

representations are used in determining the differentiation techniques. Solving 

derivatives to search for the properties of any function such as the stationary points and 

intervals of concavity demonstrate the need for graphical representations (Brijlall & 

Ndlovu, 2013; Hahkioiemi, 2005; Huang, 2003; Orhun, 2012).      

Concepts in differentiation are intertwined as how rings are connected in a 

chain. One concept is linked to the others encountered before or after it. Students who 

face a problem in understanding one concept may have difficulties in understanding the 

other related concepts (Dikici & Isleyen, 2004; Habre & Abboud, 2005; Kultur et al, 

2011; Maharaj, 2013; Siyepu, 2012; Tarmizi, 2010; Ubuz, 2007). Among the important 

concepts in differentiation are limit, slope of tangent, properties of functions and their 

applications in various mathematical contexts and other disciplines such as engineering, 

chemistry, biology, and economics. In order for the students to understand and make 

sense of these concepts and their applications, they need to be well-equipped with 

strong conceptual knowledge in functions and Cartesian graphs (Alkharusi, Kazem, & 

Al-Musawai, 2011; Kultur et al, 2011; Lim & Hwa, 2007). Lack of understanding in 
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any of these concepts may lead to students facing difficulties in handling related 

problems and subsequently perform various types of misconceptions and errors.  

Over the last 30 years, mathematics researchers and educators have identified 

that most of the students’ misconceptions and difficulties in understanding and applying 

the concepts of derivatives were rooted in their weak understanding on the concepts of 

functions (Engelke, Oehrtman, & Carleson 2005; Ferguson, 2012; Makonye, 2011; 

Oehrtman, 2004, 2008a, 2008b ; Smith, 2003) and their inability to use functions to 

represent, relate, and reason on the relationships between any two related quantities and 

how they change with respect to one and the other (Carlson, Oehrtman & Engelke, 

2010; Herbert, 2008). These lead to the students’ lack of competency in understanding 

the main ideas on derivative such as limit and the first principles, tangent and normal, 

properties of functions and their applications into the real life situations (Brijlall & 

Maharaj, 2014; Cetin, 2009; Oehrtman, Carlson & Thompson, 2008; Smith, 2003).   

 

1.1.2 Graphs as Visual Tools 

Graphs in general, are indispensable visual tools used to encode and decode abstract 

ideas, to organize and analyse data (Batanero, Arteaga & Ruiz, 2009, Wall & Benson, 

2009), present and communicate mathematical concepts and information (Heiser & 

Tversky, 2006; Tversky Lozano, Heiser, Lee & Daniel, 2005), and to stimulate creative 

and innovative reasoning or thinking (Booth & Koedinger, 2012; Boyce & DiPrima, 

2009). Cartesian graphs, in specific, are efficacious in their use in different 

mathematical areas such as calculus and trigonometry, and other disciplines of study 

such as physics and economics (Kultur, Ozdemir & Konyalioglu, 2011; Lambertus, 

2007; Syed Mustapha, 2007). Among the uses of Cartesian graphs are: 1) to present 

complicated and complex data in a concise and precise manners for readers to be able to 

make meaning of (Alacaci, Lewis, O’Brien & Jiang, 2011, Bowen & Roth, 2005; Elia & 
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Philippou, 2004; Monteiro & Ainley, 2004), 2) to determine the co-variation and 

correlation between the data and variables for the readers to be able to relate them easily 

(Bowen & Roth, 2005; Connery, 2007; Glazer, 2011; Leung & Chan, 2004; Uesaka & 

Manalo, 2007, 2011),  3) to clarify the meaning of the data for the reader to make 

decision and deduction (Belenky & Schalk, 2014). They are also utilized in the 

textbooks, examinations and other education contexts (Edens & Potter, 2008) to reduce 

number of solution steps and procedures, and to coordinate comparisons of variables 

which usually require heavier cognitive load.  

The calculus contents, be it functions or derivatives, consist of many visual 

components especially graphs. The approach of ‘draw a graph’ is strongly encouraged 

as a tool for solving problems on functions and derivatives (NCTM, 2000). A graph is 

particularly an effective visual representation because it utilises the spatial arrangement 

of the related variables to depict a clear and logical relationship which holistically 

represent complex structures and processes (Stern, Aprea & Ebner, 2003; Terwel, van 

Oers, van Dijk & van den Eden, 2009; Yavuz, 2010). The process of generating graphs 

is able to assist students to conceptualize the problem structure that later leads to 

successful problem solution.  On the other hand, improper graphical representation of a 

problem, which may result from the students’ perception on its use and efficacy or 

inadequate knowledge about the structure and properties of graph, may limit students’ 

capabilities to arrive to the solutions (Lassak, 2009; Roth & Jin Lee, 2004; Sheehan & 

Nillas, 2010; Stavridou & Kakana, 2008; Uesaka, Manalo & Emmanual, 2011).        

Graphs as visual representations of information play key roles in determining 

students’ understanding on the ideas of functions and derivatives, and in the reasoning 

or making sense of their concepts. These make drawing and interpreting graphs as 

essential mathematical skills in the calculus courses (Ubuz, 2007). The ability to 

retrieve and reason about information embedded in  graphs is a skill which require the 
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complex interaction of three primary elements: the cognitive ability of the students 

(Bowen & Roth, 2002, 2003; Glazer, 2011; Grueber, 2011; Presmeg, 1986, 1989; 

Sharma, 2006, 2013), the graphical characteristics and properties of the graph (Friel, 

Curcio & Bright, 2001; Lee, Khng, Ng & Ng, 2013), and the requirements of the tasks 

and subject content (Munez, Orrantia & Rosales, 2013; Shah & Hoeffner, 2002; Uesaka 

& Manalo, 2011). Therefore, it is important to highlight the call for the development of 

visual intuition in students when dealing with graphs in solving mathematical problems.  

Despite the many advantages and positive aspects of graphs in the learning and 

understanding of functions and derivatives, some researchers had also identified 

numerous setbacks related to their uses. In order to efficiently use graphs for solving 

mathematical problems, students must be well-equipped with the knowledge about the 

graphs and their related content domain (Eraslan, Aspinwall, Knot & Evitts, 2007; 

Gravemeyer & Cox, 2008). Students were also found to be reluctant to use graphs as 

tools to help them solving mathematical problems (Uesaka, Manalo & Ichikawa, 2007, 

2010). Although students have been exposed to some ideas of basic graphs since their 

secondary schooling, they were still not highly efficacious in answering questions that 

requires visualization or compel for higher order thinking skills (Ferrini-Mundy & 

Gucler, 2009). They tend to revert quickly to algebraic manipulations or appear to read 

or interpret graphs in such a way that portray their lack of understanding on the 

underlying principles (Li, 2006; O’Connor & Robertson, 2005; Ryken, 2009; Sharma, 

2013; Stylianou, 2010).  

        

1.1.3 Visual Reasoning in Learning Differentiation   

In general, visual reasoning provides an effortless way of acquiring new information 

and is able to reduce complexity in dealing with handful information (Giaquinto, 2007; 

Kadunz & Straber, 2004; Mudaly, 2007; Naidoo, 2007; Pulido, 2006; Singh, 2007). The 
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last decade has seen the rise of research and studies on pre-university students’ 

difficulties in acquiring and understanding the concepts of functions and derivatives 

(Calder, 2008; Herbert, 2008; Rasmussen, 2003; Rasmussen and Blumenfeld, 2007; 

Rowland, 2006). Problems involving functions and derivatives that employ graphs as 

reference is the most proposed approach to the teaching and learning of differential 

calculus (Font, Bolite & Acevedo, 2010; Hahkioniemi, 2004; Kendal & Stacey, 2003; 

Roorda, Vos & Goedhart, 2006) since this will develop their visual reasoning skills 

(Costa, 2011; Habre & Abboud, 2006, Liu, 2010; Lowrie, Diezmann & Kay, 2011; 

Presmeg, 1986, 1989, 2006) and help to cultivate students’ cognitive ability. To be 

competent in graphing, students need to be equipped with graph constructional skills 

(Gerofsky, 2010; Monteiro & Ainley, 2003; Temiz & Tan, 2009) and graphs 

interpretational skills (Amer & Ravindran, 2010; Aoyama, 2007; Glazer, 2011; Lowrie, 

et al., 2011; Sharma, 2013).    

At the lower educational level, the Ministry of Education, through its 

Curriculum Development Centre (CDC , 2010) and Kurikulum Bersepadu Sekolah 

Menengah (KBSM) (2006), encourages the use of technological tools such as graphic 

calculators and computer software (Nik Rafidah, Zarita & Safian, 2008; Noraini, 2006; 

Pumadevi, 2004; Rosihan, 2004; Sharifah Zarina, 2008) in the learning of Additional 

Mathematics so as to provide students with massive visual interface and as preparation 

for the pre-university level. The SACE (2014) curriculum developer implemented the 

use of graphic calculators in both of the mathematical subjects, Mathematical Studies 

and Specialist Mathematics, as a way to help students strategize their methods of 

solving problems and to enhance their understanding of mathematical concepts visually 

through the manipulation of graphs. Graphics calculators and other technological 

software are able to emphasize graphical representations of any objects, concepts and 

processes. The functions ‘zoom in’ and ‘zoom out’ allow students to explore in details, 
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for example, on what happen to the chord as the horizontal difference is getting smaller. 

Graphic calculator also assists students to experience the relationship between the 

numerical values of the derivatives and their ‘situation’ of the turning points (Kissane & 

Kemp, 2006).      

 Visual representations of mathematical objects, concepts and processes (Rivera, 

2011) such as Cartesian graphs are considered efficient representational approaches in 

differential calculus. The importance of using graphs in derivatives can be explained 

through the contributions they make to the development of conceptual understanding 

(delos Santos & Thomas, 2005; Lowrie & Diezmann, 2007), intuitional (Hattikudor, 

Prather, Asquith, Alibali & Knuth, 2012; Leung & Chan, 2004) and perceptual 

(Haciomeroglu, Aspinwall & Presmeg, 2010; Hahkioniemi, 2004; Moore, 2012, 2014) 

perspectives. A visual understanding of derivative should include appreciation of the 

main ideas underlying the concept of derivative, namely the rate of change, the limit, 

the slope of chord and tangent and the relationships among them (Bingolbali & 

Monaghan, 2008). Therefore, in order to develop students’ conceptual understanding of 

functions and derivatives, Malaysia, in line with the rest of the world, has proposed the 

emphasis on reasoning, representing, and describing relationships and information 

visually through the use of graphs. 

Allowing students to experience and practice visual reasoning as a tool for 

solving problems is of great advantage because; first, visual reasoning is an important 

and a powerful strategy in mathematics (Mahir, 2010; Peeble & Cheng, 2003; 

Tappenden, 2005), and second, for the students to adjust their views on mathematics, 

which had always been on the negative or more ‘difficult’ perspective, and what it 

means to do mathematics (Carter, 2010; Lappan and Evan, 1990; Mancosu, Jorgensen, 

& Pedersen, 2005; Miller & Cohen, 2001). Visual understanding of a given situations is 

‘stronger’ and is more likely to be remembered by the students in the longer term than a 
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purely algebraic manipulation, thus allowing them to build knowledge through their 

metacognitive mind (Balacheff & Gaudin, 2010; Kakihana, Fukuda and Shimizu, 2000; 

Starikova, 2012). 

The study on functions and derivative using graphs as visual tools to reason is 

essential for several reasons. Functions and derivative are the central concepts of 

differential calculus and calculus in general, which provide the foundation for various 

subjects and fields at higher levels of education. At the same time, graphs provide a rich 

source of visuals which is important in understanding the concepts of functions and 

derivatives. They also help to provide students with greater power in ‘seeing’ the 

relationship between two related quantities  (Huetinck & Munshin, 2004; Maharaj, 

2010; Roorda, Vos & Goedhart, 2009; Stewart, 2009; Tall, 2010; Uygur & Ozdas, 2005, 

2007) which in turn is the foundation for understanding and solving mathematical 

problems (Ministry of Education Malaysia, 2013; NCTM, 2000). A loose base of 

conceptual understanding of functions and derivatives at pre-university level might 

become critical at university levels where students need to encounter more complicated 

and advanced concepts and applications of derivatives (Sofronas, 2011).  

In Malaysia, the emphasis on developing visual reasoning is fairly new and little 

is known about the use and types of visual reasoning adopted by the students. 

Considering limited roles that visual reasoning plays in the pre-university curriculum 

and judging the potential aspects of how visual reasoning contributes to the conceptual 

understanding of functions and derivatives, this study aimed at assessing the types of 

visual reasoning employed by the pre-university students when using graphs to solve 

problems on functions and derivatives.   
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1.2 Statements of the Problem 

The notion of functions and derivative and the development of students’ ability in 

solving problems are vital in differential calculus (KBSM, 2006; NCTM, 2000; SACE, 

2015) but many students struggle to comprehend it and to nurture this potential 

respectively. Although they had informally dealt with derivatives in the form of rate of 

change in their daily context, unfortunately many are unable to associate this casual 

knowledge to a more mathematical way in the classroom environment. A commonly 

cited reason for a high non-performing rate in understanding calculus especially the 

functions and derivatives at pre-university level is on how the materials are delivered to 

the students and consequently on how the students understand the concepts taught in 

order to apply them to solve related mathematical problems. Most researchers focussed 

on the functions of graphs and the effects of using graphs (e.g., Cheng, 2004; Hipkins, 

2011; Gray, Loud & Sokolowski, 2009; Yerushalmy & Swidan, 2012). They had also 

revealed that pre-university students do not have a sound understanding of the concepts 

of functions (Mousoulides & Gagatsis, 2015) which later affects their understanding on 

derivatives. Students’ difficulties with derivatives emerged from their struggles when 

learning about functions, graphs and other related concepts in algebra (Judson & 

Nishimori, 2005). Their immature and weaknesses in understanding the notions of 

functions led to many misconceptions, which start from the basic slope of chord to the 

applications of the concepts of derivatives (Muzangwa & Chifamba, 2012; Pillay, 

2008).    

National educational organizations, curriculum developers and policy makers at 

the pre-university level have repeatedly calls for the calculus curriculum to greatly 

emphasize on understanding the notion of functions and derivatives for students to be 

able to continue smoothly to their applications at higher levels of educations. The design 

of the educational process, and instructional methods and materials are of utmost 
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important in conceptualizing functions and derivatives. The aim is for students to adopt 

mathematical thinking by using mathematical language, perform analysis and solve 

related problems. Students in general regard functions and derivatives as a pool of 

formulae and rules which are mere procedural knowledge and in abstract form that are 

not understood by the students. Graphs of functions and their derivatives contain all the 

details and the required information regarding the properties of functions or the 

behaviour of the related quantities represented by the functions. Pre-university students 

should be able to overcome a lot of misconceptions and difficulties by using graphs to 

solve related problems. Unfortunately they hardly use them. Thus, their operational or 

procedural knowledge dominate as compared to their conceptual knowledge and it is 

unlikely to coordinate the concepts of functions and derivatives to their graphs.                      

The calculus content of most pre-university curriculums, together with 

examinations and assignments tasks, composed of concepts that require students to 

present and analyse their work using graphs (Gundersen & Steihaug, 2010; Hausknecht 

& Kowalczyk, 2008). At the same time, there is an apparent increase in the problems on 

pre-university students learning and understanding the concepts of derivative such as 

tangents and slope functions (Salleh, 2006) and facing difficulties or performing various 

mistakes when solving problems related to the applications of functions and derivatives 

that rooted from their unable to conceptualize graphs. Students faced confusion when 

reading and interpreting even the constant rate of change or slopes of straight lines due 

to their difficulty in visualizing rate of change of two different quantities. To most 

students, derivatives are collections of differentiation rules, with neither visuals nor 

reasons (Siyepu, 2013a,b). Students may be very competent to solve algebraic 

differentiation tasks but most cannot explain the meaning of derivative when relating it 

to the basic ideas of rate of change, limit and slope of chord and tangent. Students’ weak 

understanding of derivative may due to: 1) their misconception on particular parts or 
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topics in differential calculus, 2) teaching that focuses on the procedural knowledge 

than the conceptual knowledge, 3) concentration on algebraic and symbolic 

representations to emphasize concepts, 4) superficial understanding on co-variational 

reasoning and 5) lack of visual teaching techniques used in solving problems.  

In the Malaysian classroom practices, function- and derivative-related 

definitions and theorems are presented using formulae, and later drilled through 

algebraic manipulations. Being an abstract subject, most students fail to grab the 

concepts taught, perceive the learning of differential calculus being very difficult and 

consequently dislike it. Students experienced little opportunity to discover and 

conceptualize the mathematical concepts using graphs and consequently barred them 

from optimal learning. Therefore, students must be well-equipped and should be 

allowed to personally examine and explore graphs to understand concepts in depth, their 

relative representations and applications to other fields of mathematics as well as real 

life situations.  

Visualization is very important in the process of understanding the concepts of 

function and derivative. Students may be able to efficiently construct the graphs of the 

function y = f(x) and its derivative y = f’(x), but most would struggle to interpret them 

effectively. Generally, for the students, graphs do not bring so much meaning but as an 

object to display functions. Using graphs as visual tools to solve problems require the 

ability to read, understand and interpret them effectively. The Matriculation Division of 

Malaysia (2006) reported that students were unable to convert problem statement(s) into 

graph(s) and performed various errors in visualizing mathematical concepts. The 

complicated cognitive processes involved and the convention used prohibit students 

from opting to graphs as aid for solutions. Lacking of this skill together with their 

perception about the efficacy and difficulties of graph usage may contribute to the 

reluctance to use graphs. Taking graphs as illusory and at the same time being oblivious 
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of their efficiency, students fail to read or extract relevant data or information, 

consequently cause them to revert to verbal or algebraic explanations for clarifications, 

assuming text alone provide all the required information. 

Assessing the learning and understanding of derivative using graphs is not easy. 

Some students were still weak in understanding the concepts of derivative even after 

been given the opportunity to work with graphs. Even those with good mathematical 

mind, may not possess the skills to visualize or are not visualizers. Students do not 

necessarily perceive what teachers appreciate in graphs. Those who are lack in 

understanding of the main concepts see ‘irrelevancies’ which are dismissed by the 

teacher’s vision. Teachers need to be aware of this and make effort to understand what 

students perceive in visual representations and consequently provide guidance in 

constructing and interpreting them.  

In many classroom practices, teachers unconsciously convey the idea that visual 

approaches in mathematics are inferior to analytics or algebraic approaches. In applying 

certain concepts, using graphs are neither a correct nor a valid method. For example, in 

solving or proving for the interval of increasing or decreasing or calculating the 

stationary points, students are not allowed to solve or show them using the graph of the 

particular function. Although educators and mathematicians utilize visual methods in 

their works, when it comes to teaching, they tend to employ analytic or algebraic 

methods of processing information, relying on sequential or procedural steps. Graphs 

are complex and concentrated with information, and therefore are more effective since 

they explicitly show important conceptual links among parts of information. 

Unfortunately their complexities need extra cognitive processing to make sense of. 

Students usually do not address graphs spontaneously to start solving any problem even 

if teachers practiced them in the classroom. The mode of how graphs are displayed is 
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critical in students’ sense-making that may cause potential conflict between the 

conceptual and perceptual features of the graphs.   

As literature confirms students’ difficulties with functions and derivatives, it 

does not come to surprise that as a mathematics lecturer, I have encountered many pre-

university students’ struggle with both concepts and methods of solving problems. For 

the last fifteen years, I have taught and worked with specifically pre-university students 

from various mathematical background and ability, ranging from those with very little 

understanding of mathematical concepts to those with excellent and high thinking skills. 

Despite their different abilities, prevailing issues that are common to all pre-university 

students are their reluctance to sketch graphs when there is no explicit instruction for 

using them, and having difficulty in reading and interpreting graphs. Lastly, there has 

been almost no Malaysian-based research that examined pre-university (and other levels 

of education) students’ visual reasoning through the use of graphs to solve problem on 

functions and their derivatives. Therefore, it seemed that a constructive way of 

discovering the scenario would be to assess how the Malaysian pre-university students’ 

employ graphs as tools when solving tasks demanding various types of visual reasoning 

skills.   

 

1.3 Objectives of the study 

The main purpose of this study is to assess the pre-university students’ visual reasoning 

when they solve mathematical problems involving functions and their derivatives. 

Specifically, the study is aimed to: 

1. develop an effective framework for assessing levels of pre-university 

students’ visual reasoning when using graphs in solving mathematical 

problems on functions and their derivatives. 

2. examine what are the pre-university students’ : 
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i. usage level of graphs when solving mathematical problems on functions 

and their derivatives 

ii. preference when solving mathematical problems on functions and their 

derivatives.  

iii. graph reasoning ability when using graphs to solve mathematical 

problems on functions and their derivatives.   

3. investigate the correlation between the pre-university students’ : 

i. usage levels of graphs and their preference in using graphs when solving 

mathematical problems on functions and their derivatives. 

ii. usage levels of graphs and graph reasoning ability when solving 

mathematical problems on functions and their derivatives.  

iii. preference and their graph reasoning ability when solving mathematical 

problems on functions and their derivatives. 

4. investigate the misconceptions and difficulties faced by pre-university 

students when using graphs in solving mathematical problems on functions 

and their derivatives.   

The second, third and fourth objectives are achieved following the completion of 

the first objective.  

 

1.4 Research Questions 

This study focuses on answering the following research questions: 

1. What is an effective framework for assessing levels of pre-university 

students’ visual reasoning when using graphs in solving mathematical 

problems on functions and their derivatives?  

2. What are the pre-university students’  
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i. usage levels of graphs when solving mathematical problems on functions 

and graphs?  

ii. preference when solving mathematical problems on functions and 

derivatives? 

iii. graph reasoning ability when solving mathematical problems on functions 

and derivatives.    

3. What is the correlation between the pre-university students’ : 

i. usage levels of graphs and their preference in using graphs when solving 

mathematical problems on functions and their derivatives 

ii. usage levels of graphs and graph reasoning ability when solving 

mathematical problems on functions and their derivatives.  

iii. preference in using graph and their graph reasoning ability when solving 

mathematical problems on functions and their derivatives. 

4. What are the misconceptions and difficulties encountered by pre-university 

students when using graphs in solving mathematical problems on functions 

and their derivatives.  

The second, third and fourth research questions are answered following the 

completion of the first research question.  

 

1.5 Definition of terms 

The important terms as used in this study are operationally defined as follows : 

 

Reasoning. This was defined as the process of thought students adopted to reach 

solutions or conclusions in solving problems on functions and derivatives that appears 

in the students’ written sequence of worked solutions. The act of reasoning does not 
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necessarily base on rules or formal logic as long as students are able to support them 

rationally (Bergqvist & Lithner, 2012).     

 

Visual Reasoning. This was defined as the act of understanding and applying the 

objects, concepts and processes of functions and derivatives through reasoning activities 

on visual elements, such as graphs in this study. Students undergo the processes of 

encoding and decoding graphs as visual tools. According to Lowrie et al. (2011), the 

encoding process allows the students to compose meaningful visual communication 

from the text such that they are expected to sketch graphs to explain solutions. The 

decoding process requires the students to interpret and make meaning from the visual 

messages where they are to use the information embedded in the accompanied graphs in 

order to search for solutions.   

 

Graph reasoning. This was referred to as the decoding process and defined as the act of 

understanding, interpreting and making meaning of the Cartesian graphs where they 

need to use the data or information embedded in the graphs in order to solve the 

problems   

 

Visualization. This was referred to the ability for students to process and produce, 

through the  interpretation and reflection upon graphs, on paper with the purpose of 

communicating information and enhancing understanding (Pulido, 2006). Mathematical 

visualization refers to the process of encoding functional and logical properties and 

relationships of mathematical objects, concepts and process (functions and derivatives 

in this study) in visual form which is the Cartesian graphs.     
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Preference. This was referred to the act of spontaneity with which students, under their 

own volition, solve algebraically or draw or use graphs (through the use of graphic 

calculators) when dealing with derivative problems. In the tasks provided, no graphs 

were supplied, no hints were given for their use and no instructions were provided to 

encourage the use of graph in solving the derivative problems (Uesaka & Manalo, 

2010).  

 

Usage level. This was referred to the feedback, responses, behaviour and choices 

provided by the students when confronted with a task. The usage levels were 

determined by their self-concepts, self-efficacies and personal ideas or theories with 

reference to their knowledge and the ability to use graphs and diagrams in specific 

domains (Panaoura & Michael, 2010).   

  

Mathematical visuality. This was referred to the encoding process and defined as the 

degree to which students preferred to use graphs when attempting the tasks on functions 

and derivatives which can be solved using either the graphical method or non-

graphical/algebraic method.    

 

Conceptual knowledge. This was referred to a skilful process of thinking on concepts, 

rules or problems presented in various forms. Conceptual knowledge can be 

differentiated from the procedural knowledge by the students’ consciousness on they 

used the knowledge. While procedural knowledge indicates the students’ use of visual 

representation, the conceptual knowledge, on the other hand, signifies the establishment 

of connections between the algebraic representation and the visual representations, the 

graphs.    
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1.6 Significance of the Study 

While there is literature on students’ understanding of functions and derivatives, there is 

no study in the Malaysian educational context that connects the concepts with a focus 

on the use of visual reasoning skills. There is also no study involving these ideas that 

uses Cartesian graphs as a method of data collection. Therefore, this study sought to 

provide a reliable and significant idea depicting the types of visual reasoning employed 

by pre-university students in order to understand their reasoning and thinking and in 

improving the instructional methods and materials when dealing with functions and 

derivatives.    

 In collaboration with several models and theories, the study developed a 

framework to assess the visual reasoning of pre-university students when they are 

solving tasks on functions and derivatives. The analysis on their usage levels, preference 

method and types of visual reasoning will contribute to a better understanding of how 

students comprehend the concepts of functions and derivatives and the use of Cartesian 

graphs. This knowledge can be used to revise the course curriculum to include and 

emphasize on the applications of functions and derivatives with respect to the use of 

graphs and at the same time to identify the difficulties and misconceptions struggled by 

the students. Providing the students with a strong foundation in the use of graphs at pre-

university level will help them to be in a better position to apply the concepts to other 

mathematical areas and disciplines at higher educational levels.    

The Malaysian Mathematics Education yearns to ensure that all pupils and 

students are engaged in visual reasoning in solving mathematical problems (CDC, 2006; 

KBSM, 2006; Shahrul, 2011). One significant method is to challenge their thinking 

through tasks that guide their exploration of concepts and understanding (Rivera, 2011; 

Saifulnizam, 2011). Thus the study is hope to lead and help adjusting the learning 

environment from the ‘product’ or ‘cognitive’ of learning to the ‘process’ or ‘meta-
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cognitive’ learning (Gilbert, 2005). Performance assessment can be to assess ‘product’ 

such as simplifying algebraic expressions or solving algebraic equations. On the other 

hand, assessing ‘process’ allows teachers to learn about students’ thinking and 

reasoning in completing tasks in functions and derivatives through the use of graphs as 

communication tools. Students are able to understand which are the key ideas and 

proceed to grasp the heuristic values of the ideas. They then employ the ideas 

strategically to solve non-routine problems, avoiding common misunderstanding and 

acquire inflexible knowledge and skills. Metacognitive ability is higher level of 

cognitive skills that allow students to use their prior knowledge, on functions and 

derivatives, strategize plan to use graphs to produce information through non-linear 

approach. These reflect the quality of the students’ thinking and reasoning.     

Curriculum for all subjects could be designed to focus on how pre-university 

students draw, interpret, and understand graphs effectively. Ng and Lee (2009) proposed 

‘meta-visualization’ as visual reasoning skills and graph literacy to be included in the 

‘thinking curriculum’ (McCulloch, 2011; Novick, 2006). The introduction of 

educational software and technological tools in the classroom environment to facilitate 

visual reasoning and thinking processes is of greatest help. The visual effects of graphs, 

could assist students to draw, interpret and understand concepts of functions and 

derivatives through their intuitions and experiences (Presmeg, 2006; Rivera, 

2010).Thus, teachers who have learned and became skilful in the use of visualization 

technique to reason would be able to reinforce concepts of derivatives to improve the 

learning process in the classroom (Rahim & Siddo, 2010) 

Teaching and learning methods should essentially be equipped with tools that 

promote visual reasoning and visual thinking. Educators are able to redefine the 

classroom objectives and redesign the classroom activities to improve and upgrade 

approaches to teaching that gear towards the use of visual tools such as graphs. 
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Indirectly, the study is able to help characterize features of the appropriate classroom 

tasks that may reveal various forms or types of visual reasoning. Breen and O’Shea 

(2011) advised on linking formal mathematical representations of functions and 

derivatives to students’ informal understanding of real life problems to enhance 

understanding of classroom mathematical concepts, independent of the use of formulae 

or algebra. Students’ mathematical concepts can be enhanced by viewing, analysing and 

adjusting graphs (Clark & Lovric, 2008; SACE, 2015). Teachers with strong visualizing 

power are able to train students to connect mathematics with other thinking abilities and 

aspects relevant to the real world. 

The study may be of benefits to the education ministry, curriculum developers 

and assessment designers into enhancing the goals and learning outcomes at all levels of 

education. Since graphs, not to forget other visuals such as diagrams and geometry, 

encompass the understanding of visual phenomena (Arzarello & Robutti, 2010; Freitas 

& Sinclair, 2012), they are encouraged to be included massively into the curriculum, not 

only in mathematics but across all subjects (Noraini, 2008; Pierce, Stacey, Wander & 

Ball, 2011). The curriculum developers and assessment designers are able to analyze the 

requirement of graphical literacy, the types of visuals appropriate for particular teaching 

goals and learning outcomes (Ruthven, Deaney & Hennessy, 2009; Sheehan & Nillas, 

2010), their assessments that should emphasize on relevant constructs instead of 

emphasizing algebra and procedural knowledge,  and the levels to introduce to them 

starting from the primary through pre-university levels and pre-service teachers as 

response to the Malaysian Ministry of Education’s recommendation.  

Visuals are likely to enliven dull materials such as words or difficult concepts. 

Authors and publishers of textbooks could profits by adding more visuals such as 

diagrams and graphs for pupils and students to easily grasp concepts besides capturing 

their interests and motivations. In addition, the study would help to identify and 
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recommend on when, how and to what extent should visuals be used in the textbook or 

classroom presentation. The understanding of cognitive coordination and the knowledge 

of visual representations could help educational target to promote the use of visuals in 

mathematical problem solving setting. 

 The study helps to tackle and reduce gap in the literature and knowledge on 

visualization and visual reasoning in functions and derivatives, differential calculus and 

other mathematical areas or other educational disciplines. It will also open opportunities 

for researchers to proceed with related or unanswered phenomenon (Presmeg, 2006; ) or 

effective instructional methods or strategies to adopt (Huntley & Davies, 2008; Moore, 

Teuscher & Carlson, 2011; Shepherd, Selden & Selden,  2012).  

 

1.7 Conclusion 

As implicitly suggested, the intended result of the study was an effective framework to 

assess students’ use of Cartesian graphs as visual tools to reason in solving problems on 

functions and derivative. Subsequently, the study will investigate how the pre-university 

students make use of Cartesian graphs to relate and understand the concepts of functions 

and derivatives to solve problems together with the identification of the errors that lead 

to some difficulties and misconceptions, both in the constructing and reading or 

interpreting graphs. The study does not intend to make general claims about the way 

that all pre-university students use visual reasoning. Instead, these pre-university 

students’ use of visual reasoning serves as an illustrative example on how it is possible 

to use graphs to help the thinking and reasoning process as preparation to encounter 

more challenges concepts and applications at the university levels.   
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CHAPTER 2: LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK 

 

2.1 Introduction 

The primary purpose of this study was to develop a framework and hence to assess the 

types of visual reasoning adopted by pre-university students in solving problems on 

functions and derivatives through the use of Cartesian graphs. The study investigated 

the students’ usage level of graphs as visual tools during their learning of mathematics, 

their preference method adopted and their graph-based reasoning ability. Subsequently, 

the study proceeds to identify the misconceptions and difficulties encountered when 

dealing with problems on functions and derivatives using graphs.  

The first part of this chapter presents the review of related studies in the 

literature regarding the visual reasoning process in mathematics education focusing on 

pre-university students and on the teaching and learning of functions and derivatives. 

This includes literature on Cartesian graphs as visual tools to solve mathematical 

problems and students’ conceptual understanding on functions and derivatives. This part 

also reviewed studies on student’s conceptual understanding of functions and 

derivatives together with the difficulties and misconceptions that they encountered when 

constructing, reading and interpreting graphs. The second part of the chapter presents 

the selected theories and models that contribute to the development of the framework 

for this study.  

 

2.2 Review of Literature 

The review of literature is presented in the following sections: (a) defining visual 

reasoning, (b) visual reasoning in mathematics education, (c) conceptual understanding 

of functions and derivative, (d) defining graphs, (e) making sense of graphs and (f) 

visual reasoning models.  
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2.2.1 Defining Visual Reasoning 

Mathematics is a branch of knowledge domain with vast number of entities to be 

visualised. Many educators, mathematicians and researchers have emphasized the 

importance of visual learning, visual communication and visual reasoning (Arcavi, 

2003; Booth & Koedinger, 2012; Diezmann & Lowrie, 2009; Friendly, 2009; Holvikivi, 

2007; Lee, Khng, Ng & Ng; 2013; Orhun, 2012; Presmeg, 2006; Sinclair & Whiteley, 

2004; Tallman & Carlson, 2012; Tarmizi, 2010; Trigueros & Martiinez-Planell, 2010; 

Wall & Benson; 2009) in the learning of mathematics and observed that a lot more 

research in mathematics education are to be carried out on these topics (Ahmad Tarmizi, 

Mohd Ayub & Abu Bakar, 2010; Huang, 2015; Pjanic, Lidan & Kurtanovic, 2015; 

Presmeg, 2006; Rivera, 2011). A number of visualization and visual reasoning 

approaches are conceptualised, designed and developed by various educators, 

mathematicians and researchers in the literature. These visual reasoning approaches 

include the use of many forms, variations and aspects of visual representations (Lam, 

Bertini, Isenberg, Palisant & Carpendale, 2012).  While they have difference importance 

in the ways students adopt their reasoning, a common thread among these reasoning 

techniques is the focus on how students use visual to relate concepts and solve 

mathematical problems. Concerning the terms ‘visual reasoning’ and ‘visualization’, 

disagreement and even confusion, are common among educators, mathematicians and 

researchers (Van Garderen, 2006). In most situations visualization always parallel visual 

reasoning, therefore the terms have often been used interchangeably to describe the 

learning and thinking processes that involve visuals such as diagrams, pictures, graphs, 

tables and other non-written representations. Mathai (2004) refers, in the most basic 

gist, ‘visual’ as elements seen simultaneously, continuously and directly from the 

surrounding. The brain will then sort the perceived information into various paths 

Univ
ers

ity
 of

 M
ala

ya



25 
  

accordingly, such as the properties of the object or their locations with respect to other 

related objects (Ball & Ball, 2007; Naidoo, 2007; Roorda, Vos & Goedhart, 2007).  

Visual reasoning concerns with the understanding and comprehending problems, 

concepts, objects or processes in terms of visuals. Park and Kim (2007) defined visual 

reasoning as, preceded by the process of observation and interpretation of the visual 

information, a two-way process that goes beyond the visual provided: the first way is to 

transform visuals based on the rules or models and the second is to make judgement and 

generalization from the visuals. Earlier, Zimmermann and Cunningham (1991) 

emphasized that the influence of mental and physical attributes on the visualization 

process to consists of constructing images mentally, with pencil and paper or with the 

aid of technology, and subsequently using such images for effective mathematical 

discovery and understanding. From the mathematical teaching and learning points of 

view, employing visualization and visual reasoning as tools and methods seems to 

enhance students understanding and comprehending of various concepts, not only in 

mathematics but in other disciplines such as physics, biology, chemistry, applied 

statistics and other areas such as architecture, designs and engineering. Literature also 

reveals that the ability to ‘see’ can be learned and induced instead of an individual 

natural practice (Goerdt, 2007; Goldin, 2004). Rodriguez, Espinosa and Uriza (2007) 

classified four different visualization approaches from the mathematics educational 

viewpoint: 1) visualization as a link between reasoning and intuition (Clark, Nguyen & 

Sweller, 2006; Woleck, 2001), 2) visualization as a way to form mental images, (Hitt, 

2002; Presmeg, 2006; Zimmerman & Cunningham, 1991), 3) visualization is the 

connection of different representations of mathematical object (Goldin, 2004), and 4) 

visualization as mental process to represent, transform, generate, describe, maintain and 

reflect visual information (Aparicio, Rodriguez-Vasquez & Cantoral, 2003; Cantoral & 

Montiel, 2001; Rodriguez-Vasquez, 2003).  
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A similar definition of visualization is a skill, a product and a way of creativity 

and interpretation, a reflection of the diagrams in the minds and is significant in 

understanding and steering steps to solve problems (Owens & Clements, 2004). Sinclair 

and Whiteley (2007) specified visual reasoning to mathematics and mathematics 

education as to understand and to apply mathematical concepts, objects and processes 

using visually based information or representations. Using Zimmermann and 

Cunningham’ definition, Rodrigues, Esinosa and Uriz (2007) proposed a three-step 

activity of action-formulation-validation for students to visually reasoned mathematical 

concepts through recognizing the conceptual characteristics and establishing 

relationships to their graphical forms.  

Liu and Stasko (2010) presented a four-level cognitive processing that describes 

visual reasoning as the interplay between internal graphical representations or the 

mental models, and external graphical representations. In the first level of 

‘internalization’, the process of encoding involved the information being extracted from 

the stage of perception in the long-term memory. In the ‘processing’ level, the internal 

representations make sense of the new external representations using different structural 

properties preserved in the long-term memory while  in the ‘augmentation’ level, the 

internal representations are developed and referred to for the sense-making and 

reasoning. The last level of ‘creation’ involved the cognitive process of creativity and 

innovation that give rise to new concepts in visual forms.  

In summary, visual presented to the students by teachers or used by teachers in 

the teaching process, although the students’ perception on the benefits of these visuals 

may not necessarily consistent to that of the teachers, tend to influence the students’ 

understanding and application skills of the mathematical concepts, objects and 

processes onto their solving of mathematical problems.      
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2.2.1.1 Visual Reasoning in Mathematics Education 

Research examining the impact of visual reasoning and visualization on mathematics 

teaching and learning, and academic achievement has mostly indicated positive results 

in various subject matters and for most levels of educations. Earlier in the 1960s, 

psychologist Rudolf Arnheim argued that educators had failed to notice visual thinking 

as one of the most compelling and powerful human cognition. Gyorges and his 

colleagues, followed by Ferguson, Miller, Gooding and more others strove to value 

visual reasoning and visualization as essential and fundamental  parts in the problem 

solving process across multiple domains (Jacobson & Turner-Rahman, 2007).  Bishop’s 

work on visualization in mathematics education, between 1970 and 1990s,  ended up 

with three main findings: 1) students takes more time and cognitive load in developing  

mental images as compared to analytical method and process, 2) various systems and 

schemes with different effectiveness were identified by encouraging the use of visual in 

learning and understanding mathematical objects, concepts and processes and 3) 

students’ reluctance to visualize in learning mathematics at all levels, must be taken 

seriously and could not be analyzed in simple terms.  

 Earlier in 1991, Presmeg conducted a study on how 13 high school teachers 

employed visualization in their daily classroom practices. Her interesting findings 

include three levels of visual skills: strong, average and weak. Those teachers with 

strong visualization skills will try to connect mathematics with other thinking skills 

instead of applying visualization ability solely. They allowed students to associate 

mathematics to real world situations through their creativity, playfulness, self-awareness 

and openness to their own experience. Teachers with average visualizations skill tend to 

emphasize on the values of visualization skills and approach while those teachers with 

weak or no visualization skills opted for the symbolic or algebraic manipulations which 

led to rote memorization as a mean of solving mathematical problems.  Later studies 
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also seem to lend support to the positive impact of visual reasoning on mathematics 

understanding and achievement.  

In Canada, Lam, Bertini, Isenberg, Palisant & Carpendale, (2012) reviewed 800 

publications on visual reasoning and visualization and categorised them into seven 

themes that were able to guide researchers and educators to adopt the most effective 

evaluation approach for their students. The themes were formed based on the goals of 

the articles or research, areas of focus of the research objectives and research questions. 

The themes focused on evaluating: 1) the environment and work practices (Plaisant, 

2004), 2) visual data analysis and reasoning (Isenberg, Tang & Carpendale, 2008; 

Saraiya, North, Lam & Duca, 2006), 3) communicating through visualization (Hinrichs, 

Schmidt & Carpendale , 2008; Pousman, Stasko & Mateas, 2007), 4) collaborative data 

analysis (Pirolli & Card, 2005), 5) user performance ( Greenberg, 2008), 6) user 

experience (Eccles, Kapler, Harper & Wright, 2008) , and 7) automated evaluation of 

visualizations (Haroz & Ma, 2006). For each theme, Lam et al. (2012) outlined the 

popular types of goals and outputs, the typical research questions and the applicable 

methodology adopted. The categorization of themes captured the current practices of 

visual reasoning and visualization activities and was able to guide or monitor 

researchers and educators on the various approaches and for them to decide on the most 

applicable approach to adapt.           

Visualization skills had been empirically proven to correlate to the success of 

mathematical problem solving. Van Garderen (2006) investigated visual and spatial 

ability of 66 grade six students when solving mathematical word problems. They were 

categorised as students with learning disabilities, average-achiever students and full-

scale scorers on the Wechsler Intelligence Scale for Children-Revised (Wechsler, 1976). 

They adopted the 13 items in the Mathematical Processing Instrument (MPI) developed 

by Hegarty and Kozhevnikov (1999). Four categories of measurements were based on: 
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the number of correct solutions, the use of visual and the use of pictorial or schematics 

types of visual. The results confirmed the positive correlation between the visualization 

skills and mathematical word problems achievement on the MPI. Additional outcome 

suggested that the full-scale scorers performed better than those with learning 

disabilities and average achiever students.    

Bremigan (2005) investigated how high school students used prepared diagrams 

to help them in solving applied calculus problems. The results managed to alert 

educators on the various methods on how students made use of diagrams, modified 

them and sketched new ones. The study further examined the relationships between the 

number of diagrams produced by both groups of high- and low-achievers and their 

accomplishment of the problem. Results indicate that the males produced less diagrams 

than the female students although they were more successful in solving the problems 

(Lowrie, 2005). The diagrams produced by the male students were also found to be 

more direct and simple.      

 On the other hand, some studies identified negative results on visual reasoning. 

Despite the positive views by researchers and educators on the importance of 

visualization and visual reasoning, there are some tendencies for visualization and 

visual reasoning to be under appreciated in mathematics teaching and learning and 

consequently students, although were able to visualize mathematically, swapped for 

non-visual or algebraic approaches when  solving problems.  

In Cyprus, Pantziara, Gagatsis and Pitta-Pantazi (2004) explored the use of 

diagrams as visuals to solve non-routine problems. They administered two tests for the 

students, one that allowed students to use any method of their preference while the other 

guided the students to use the diagrams that accompanied the tasks. As suggested by 

some studies in the literature, the visuals provided in the tasks did not seem to help the 

students to handle the non-routine mathematical problems (Woolner, 2004). Although 
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some of the visuals were repetitive of some that had been used in the classroom context, 

they still failed to read and interpret them efficiently. This led to the fact that the 

experience that they have in handling visuals to solve problems together with their 

ability in reading and interpreting visuals do not really determine the success or failure 

of the students when using visuals as tools to solve mathematical tasks.   

In her study, Bardelle (2010) tried to prove the Pythagoras and Convergence 

theorems using only geometrical figures. She discovered that students were very weak 

and faced difficulties in employing visual to reason or to justify ideas. The majority of 

them preferred to prove the theorems algebraically. They either ignored or did not 

notice the details provided in the figures, but had considered them as basic tools that 

need only be used to help them in the proving processes. She proposed that these could 

due to the students’ lack of concepts of geometrical knowledge which then led them to 

be unable to analyse the figures in detailed. The lack of quality in methods of proving 

was indicator of a weak understanding in the related mathematical concepts. Similar 

study carried out by Uesaka and Manalo (2011) on students’ spontaneous use of 

diagrams to solve problems confirmed the results. They observed that promoting 

students to the use of diagram is affected by their perceptions on the ‘efficacy of 

diagram use’ and their ‘diagram construction skills’.   

In Malaysia, Rohani (2010) conducted a study on 20 undergraduate students’ 

performance together with the difficulties they faced in solving problems on calculus. 

The students were also interviewed after they had solved the problems to probe into 

their thought processes. The analysis was coded based on Polya’s four-problem-solving-

steps. Results of the study concluded that students did perceive calculus as difficult and 

consequently misunderstood the idea of functions and applied procedural methods as an 

alternative. Cheah (2007) also identified some constraints that hindered the 

implementation of a more constructive and progressive approach, such as the use of 
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visual, to promote mathematical reasoning and thinking. Among the constraints were: 1) 

teachers tended to instruct and inform students on what and how to do mathematics 

instead of letting them work and construct their own mathematical ideas, 2) the culture 

on exam-oriented tended to lead to teachers emphasizing procedural competency in 

order to arrive to the correct answers, and 3) the belief on practice-makes-perfect and 

hard-working are the main elements to success in mathematical learning.             

 From this review, it seems that a variety of visual reasoning formats and aspects 

were of interest in order to enhance understanding and achievement in various 

mathematical areas. The effectiveness of visual representations in many forms of 

mathematical understanding and achievement appears generally positive especially for 

the pre-university students. In terms of the research design, most studies adopted case 

studies with intact classes. The assessment of mathematical understanding and 

achievement also varied, with both standardized and researchers’ constructed tests or 

items being used.  

 

2.2.1.2 Visual consideration in problem solving   

In some aspects of pre-university and university mathematical teachings, visual 

considerations are naturally prominent. Be it on the board or the use of electronic 

technology, educators would put some thought on the layout of the presentation such as 

the fonts and sizes of the words and the quantity and quality of information on each 

page, so that students are able to see everything that are supposed to be delivered. 

Specifically in mathematics, visual works usually involve graphs or other types of 

mathematical diagrams to enhance students’ ability to generate reasoning on 

mathematical concepts and relationships rather than manipulating symbols and 

expressions.     
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 In 2014, Anderson-Pence, Moyer-Packenham, Westenskow, Shumway and 

Jordan took some efforts to restructure the relationships between the usage of visual 

tools and the students’ written worked solutions. The two open-ended tasks were 

distributed to 371 students, one with diagram for them to refer to and another one, a 

word problem for them to sketch diagrams or graphs to help the solution process, to 

trace the patterns of solutions and errors performed. Students were found to lack 

flexibility in the reading and interpreting graphs either from those provided in the tasks 

or the ones that they had to construct by themselves. It was also detected that their 

exposure to various types of mathematical representations influenced their choice of 

solution methods and hence their understanding of related concepts.       

The use of diagrams which are visual in nature is regarded as one of the most 

effective ways to encourage students to strategize their method of solving mathematical 

problems (Ainsworth & Loizou, 2003; Cheng, 2004; Mayer, 2003; Stern, Aprea & 

Ebner, 2003). Nevertheless Uesaka, Manalo and Ichikawa (2007, 2010) had identified 

that students were reluctant to use diagrams when solving mathematical word problems. 

They were unaware of the diagrams’ efficacy when dealing with word problems on real 

life situations. In their series of studies on the area, Uesaka and Manalo (2011) 

identified factors related to the students’ lack of urge to use diagrams. In their first 

experiment on 125 Japanese students, they identified that students were prone to use 

diagrams on problems that require more mental efforts as compared to problems 

involving length or distance measurements. The National Curriculum of New Zealand 

(2007) stressed on the importance of both teaching students to understand diagrams and 

the use of diagrams as communication tools. Therefore, in their second experiment, they 

made a comparison between the same Japanese students and 323 New Zealand students. 

The tasks were translated to English language for the New Zealand student. As 
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expected, a significantly higher proportion of the New Zealand students exhibited their 

preference to the use of diagrams when solving mathematical word problems.              

Many researchers and educators highlighted the importance of visual reasoning 

in the teaching and learning of differential calculus and had proposed that there were a 

lot to cultivate in the topics (Presmeg, 2006).  Kannemeyer (2005) noted that teachers 

emphasized on the completion of the syllabus through the typical process on recurring 

problems instead of stressing on the handling of application or non-routine problems. 

Visuals such as diagrams, graphs or other representations serve both as tools for solving 

problems and communication purposes.  Therefore designing suitable tasks or real life 

problems so as to promote the use of visual in solving the problems is vital (Doerr & 

English, 2006). Francisco & Maher (2005) carried out a study on the nature and types of 

visual tasks that should be used for classroom purposes and determined that the more 

complex the task was, the more cognitive efforts and reasoning skills that were required 

from the students.  

In 2004, Leung and Chan’s students, Kevin, experienced a visual process of 

understanding the global features of graphs of functions through the manipulation of 

local parts using the zooming capabilities of graphing software, the graphic calculator. 

He was able to view the whole continuous and separated portions of graphs together in 

one screen. The zooming function allows him to scrutinize visually the situation of 

separated curves that led him to his own idea of law of continuity. This allowed him to 

combine all his prior knowledge on the visual information to explain his understanding 

on functions through graphing.      

Teacher’s knowledge on the subject content has a large effect on how students 

learn and grasp concepts. In Singapore, Toh (2009) gathered information on 27 new 

(less than five years experienced) in-service mathematics teachers from various 

secondary schools. He adopted Amit and Vinner’s (1990) model using a questionnaire 
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to stimulate the teachers’ knowledge in calculus. Two, out of the seven tasks, were 

graphed-based. The tasks were mostly dealing with the definition and images of various 

concepts in derivative and calculus essential for the secondary levels. Among the 

mistakes that they had performed were: 1) failure in grasping the essential principles to 

solve problems, 2) did not recognize the discontinuity of the graphs of functions, 3) did 

not manage to identify the correct values of limits, and 4) unable to link the concepts to 

the tasks. He identified that most of the pre-service teachers did not possess strong or 

convincing concepts images related to the derivative concepts. They would generally 

favour the procedural understanding in handling the tasks.   

 

2.2.2 Conceptual Understanding of Functions and Derivatives  

The notions of functions are among the most important concepts in mathematics. While 

the ideas of functions had been introduced to the students since the early stages of 

schooling, students at pre-university level are still facing difficulty in understanding 

what it actually means (Abdullah, 2010; Akkoc & Tall, 2005; Carlson, 1998; Clement, 

2001; Cooney & Wilson, 1996; Dubinsky & Wilson, 2013; Oehrtman, Carlson, & 

Thompson, 2008; Sajka, 2003). Among the common difficulty for students is the 

transition between the algebraic form and the graphical forms (Eraslan, 2005, 2008; 

Kotsopoulos, 2007; Metcalf, 2007). Some researchers proposed the use of graphics 

calculator, or other technological software, to help students overcome this particular 

complication (McCulloch, 2011; Mesa, 2007). However, the problem proceeds to exist 

in the calculus classroom at the pre-university level where the students struggled on the 

concepts of derivatives graphically (Borgen & Manu, 2002; Ellis & Grinstead, 2008). In 

their study, Ellis and Grinstead (2008) discovered that students had the misconception 

that changing the coefficient of the leading coefficient of quadratic function will not 
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affect the location of the vertex, or stationary point. The use of graphics calculator will 

help them to view the changes in the graphs while manipulating the expressions.     

Within the topics in differential calculus, there are a number of important 

concepts that students need to be well-equipped with before they pursue to higher 

mathematical explorations at undergraduate level.   For the last thirty years, educators, 

mathematicians and researches had documented difficulties students experienced when 

learning concepts of functions, rate of change or derivatives that reflect their inability to 

comprehend and to reason about the problems. Studies also indicated that the success 

and failure in derivative and calculus are likely to be caused by the firm understanding 

on the concepts of functions (Carlson, Oehrtman & Engelke, 2010). The idea of 

movement concerning the teaching and learning of derivatives has sparked debate 

among researchers and educators. In the past, the teaching of derivative concepts had 

focused on drills and memorization, manipulations of signs and symbols, or not linking 

algebraic mathematical concepts to other representations such as graphs (Ainsworth & 

Loizou, 2003; Aspinwall, Shaw & Presmeg, 1997; Borgen & Manu, 2002; Breen & 

O’Shea, 2011; Cates, 2002; del Mas, Garfield & Ooms, 2005; Mesa, 2007; Orton, 1983; 

Stroup, 2002; Ubuz, 2007; Viholainen, 2005; Zandieh, 2000) with the hope that 

students will master the procedures and be able to answer them in the examinations 

(Chazan & Yerusalmy, 2003; Parmjit & White, 2006). There were massive concerns in 

the failure to develop a conceptual understanding of calculus topics that rooted from the 

rote and manipulative learning that took place at the introductory course (Bingolbali & 

Monaghan, 2008; Biza & Zachariades, 2010; Eraslan, 2005; Lam, 2009; Şahin, 

Yenmez-Aydoğan, & Erbaş, 2015). This has led to the encouragement and increased on 

research to investigate students’ ability to solve derivative graphically (Abbey, 2008; 

Asiala, Brown, DeVries, Dubinsky, Mathews, & Thomas, 2004; Aspinwall & Shaw, 

2002; Baker, Chapell & Kilpatrick, 2003; Cooley, Trigueros & Baker, 2007; 
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Haciomeroglu, Aspinwall & Presmeg, 2010; Maharaj, Brijlall & Govender, 2008; 

Nemirovsky & Tierney, 2001; Roddick, 2001; Tiwari, 2007; Ubuz & Kirkpinar, 2000) 

Topics in mathematics such as algebra, trigonometry and geometry contain 

essential concepts required in the building of mathematical skills before embarking into 

any calculus or derivative courses. However, Habre (2006) discovered that 87% of his 

pre-university students performed errors when solving inequality questions or when 

sketching graphs as the solution sets. About 71% of the students produced incorrect 

answers when they were asked to find the equation of line having slope of -2 and passes 

through the point (-1,2). This basic equation of line is important and largely used in 

finding the equations of tangents and their normals. When they were asked questions on 

the definition of some basic trigonometric ratios, as preamble to understanding 

derivatives, only 24% of the students provided complete answers. Given that these are 

simple skills required in all concepts and applications of calculus, the figures are 

alarming.            

In her doctoral study, Biza (2008) focused on 182 Greek’s first year university 

students’ understanding on the properties of tangent lines that they had learned at pre-

university level a few months back. Her study aimed for the students with graphs given 

to them, to be able to detect directly the properties, that may not generally valid and to 

create new (again, may not valid) properties out of the information provided 

graphically. The students were assigned tasks where they had to describe the tangent 

line in their own words. The correctness of students’ solutions were analysed 

quantitatively. Results show that the solution methods were largely influence by the 

properties of circle tangent of Deductive Geometry.       

Engineering and advanced level mathematics students require higher levels of 

concepts in derivatives for a smooth learning path throughout their undergraduate study. 

In 2012, Tokgoz observed that the undergraduate and graduate mathematics and 
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engineering students had better understanding in conceptual knowledge of derivatives. 

He interviewed 17 students after they had completed 15 tasks on the first and second 

derivatives of composite and quotient functions. The students’ works were evaluated 

based on Piaget and Garcia’s (1989) scheme development model. Results revealed that 

students tend to form wrong concept images in their mind and consequently caused 

misconceptions in the understanding of the concepts in derivative.         

One of the difficult concepts in derivative that students faced was the idea of rate 

of change. This could due to their pre-existing concepts of derivative captured 

previously. Herbert and Pierce (2008) conducted a phenomena-graphic analysis on pre-

calculus students in Australia. Eight conceptual understanding of rate of change 

emerged from the students’ responses: 1) rate as quantity, 2) rate as speed, 3) rate 

related to numbers as single quantity, 4) rate related to numbers as two quantities, 5) 

rate  related to formula as single quantity,  6) rate related to formula as two quantities, 

7) rate related to quantity as single quantity and 8) rate related to quantity as two 

quantities. These conceptions were able to explicitly exhibit the difficulties students 

encountered. They were also discovered to be attached to their prior basic knowledge 

which indirectly barred them from accepting new concepts and ideas, especially those 

related to the real life situations.             

Recently in Turkey, Sahin, Aydogan Yenmez and Erbas (2015) employed 

Skemp’s definition of relational and instrumental understanding to investigate students’ 

understanding and awareness of the relationships among the concepts of derivative. The 

modeling tasks were in the form of model-exploration activities to inspire students to 

construct and reflect ideas on derivatives. Results of the study indicated that students 

were inclined to instrumental understanding where students knew the rules or formulae 

without justification or not making sense of the meaning of the concepts and the 

relationships     
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Doerr and O’ Neill (2012) examined 33 pre-university students’ development in 

creating and interpreting models of rate of changes. Using a motion detector of their 

own bodily motion, students were instructed to create graphs and to compare and 

analyze them based on the changing of speeds and directions. The Rate of Change 

Concept Inventory used consisted of items representing four categories: algebraic 

expression, symbolic and graphical interpretation, and was purely contextual. They 

worked individually on the model exploration tasks but were then encouraged to discuss 

in groups of three or four students. After six weeks, the results of the post-tests showed 

a significant improvement in the students’ understanding of the concept of rate of 

change as compared to the results of the pre-test. Some of the students were able to 

reason when comparing the data and provided meaningful interpretation of the graphs.  

In 2006, Habre and Abboud conducted two experiments carried out during two 

consecutive semesters to identify how students viewed their understanding on the 

concepts of functions and their derivatives. Diagnostic tests were distributed to 89 

students at the beginning of the first semester. It was found that the students were very 

lack of pre-calculus conceptual knowledge. A total of 56 students remain to continue to 

the second semester and unfortunately 12 of them failed the course. Students’ 

progresses and performances were followed through very closely: the students’ personal 

notes on their thinking after class sessions and copies of exam papers were collected, 

and two sets of interviews were conducted. Results of the experiment indicated that the 

approach of the traditional teaching method was not suitable for the majority of the 

weak students but rewarding for those with better mathematical skills. At the same time, 

it was also determined that procedural method and algebraic representations were still 

dominating the students’ mind and thinking. 

Among the greatest invention in mathematics, the history of derivative began in 

the 1600s and continued to be the base of analysis. Grabnier (1983), a mathematician, 
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examined the process of derivative historically as: ‘the derivative was first used; it was 

then discovered; and it was finally defined’. Consequently, in the mid-17th century, 

Fermat and others treated the derivative as a tangent followed by the discovery by 

Newton and Leibniz towards the end of the century. The notion was rapidly developed 

and explored during the 18th century and finally defined in the 19th century. In 1790, 

Lagrange defined derivative algebraically, followed by Cauchy (1820) who defined 

derivative from the notions of limits and infinitesimals and later, in 1870, Weierstrass 

introduced the concepts of epsilon and delta.  

The concepts of derivatives are complex and multi-faceted. It is complicated to 

determine the degree to which a student understands the concepts. Researchers and 

mathematicians use the terms such as scheme, structure, connections and relations to 

describe the understanding of the concepts of derivative while Hiebert and Carpenter 

(1992) described the understanding of concepts as depending on the way the 

information is represented. The degree of understanding depends on the link and 

connections between facts, procedures or ideas and their visual representations. Tall and 

Vinner (1981) described concept image as the ‘total cognitive structure that is 

associated with a concept’. Therefore we have to investigate how students relate 

concepts to their visual representations graphically in order to describe their 

understanding of derivatives. 

There are broad and important concepts within derivative and calculus that equip 

students to higher levels of understanding and explorations in mathematics and other 

disciplines such as engineering, sciences and social sciences. The central concepts of 

derivative are limits, tangent, properties of functions and graphs (Haese & Haese, 2010). 

Similarly, the SACE (2015) curriculum identifies the central topics for the 

Mathematical Studies to be functions and graphs, limit, tangent and normal, the 

properties of functions and their derivatives, and the applications of differentiation. 
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Understanding the concepts of derivative demands the knowing and making sense of 

their relationships together with being able to ‘put’ them on graphs. For example, a 

student who understands that slopes of chord lines approximate the slope of tangent, 

must be able to distinguish how the two lines are situated when drawn on the graphs of 

functions as shown in Figure 2.1, or in another example, the locations of the coordinates 

of stationary points and inflection points when relating them to the graphs of functions 

or the graphs of their first or second derivatives. 

 

 

Figure 2.1: The concepts of chord and tangent. Adopted from Haese & Haese 

(2010). Mathematical Studies for Year 12. Adelaide, Australia: Haese & Haese 

Publications 

 

A derivative is an assessment of how a function changes as its variables change. 

Lightly speaking, a derivative can be reasoned as how much one dependent quantity is 

changing with regards to the changes in the independent quantity. For example, the 

derivative of the position (s) of a moving object with respect to time (t), given 

algebraically as 
dt

ds
 is the object's instantaneous velocity (v). The derivative can be 

geometrically interpreted as the slope of a curve of a function or the slope of the tangent 

at a particular point and physically as a rate of change of the vertical distance with 

respect to the horizontal distance. Understanding variability and change is essential to 
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the concepts of derivatives that help students making sense of mathematics to the real 

world. The teaching of the pre-university calculus needs to shift from the focus on the 

procedural by simplifying algebraic expressions and solving equations towards 

emphasizing the applications of concepts. Through observing graphs that are 

representing the real life situations, students are able to learn how to read, describe, 

interpret, extend and predict patterns depicted by the graphs of the functions.   

Textbooks for matriculation or pre-university levels introduce slope as the ratio 

of vertical change to horizontal change or ‘rise over run’ as shown in Figure 2.2. 

Students practice calculating this ratio by taking the difference of the two ordered pairs 

of the y-value and x-value, i.e. using the formula 
12

12

xx

yy
m




 . Although most students 

are able to calculate the ratio correctly, through memorizing and applying formula, they 

may not grasp the concepts of slope computed in order to represent the rate of change 

and hence derivative without seeing how they are related graphically. 

 

 

Figure 2.2: The concept of slope represented visually. Adopted from Haese & 

Haese (2010). Mathematical Studies for Year 12. Adelaide, Australia: Haese & Haese 

Publications 
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2.2.2.1 The derivative function  

The derivative function, denoted algebraically by  xf   or  
dx

dy
 is defined as the slope 

of the tangent line to the graph or the slope of the function at any point on the graph. It 

is also a function itself. Demonstrating and estimating the derivative at any point on the 

graph can be done by placing a straight line to represent the tangent line as shown in 

Figure 2.3. It is important to notice that every point on the graph of the function will 

have its own derivative value or the slope of the tangent at that particular point.  

 

 

Figure 2.3: Illustration of the idea of tangent. Adopted from Haese & Haese 

(2010). Mathematical Studies for Year 12. Adelaide, Australia: Haese & Haese 

Publications 

 

The derivative functions, both the first (  xf   or 
dx

dy
) and the second derivatives 

(  xf   or  
2

2

dx

yd
), are further used to identify the properties of graphs. The signs of the 

derivative function tell when the graph of the function is increasing, decreasing or 

stationary. The magnitude of the value of the derivative of the function indicates the 

steepness of the tangent line to the graph of the function. Where the function is 
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increasing, the tangent line is sloping up and therefore the value of the derivative 

function is positive. Similarly, where the function is decreasing, the tangent line is 

sloping down, and therefore the value of the derivative function is negative. The zero 

value of the derivative function represents the stationary or turning point of the graph of 

the function (Figure 2.4) or specifically the maximum, minimum or the inflection point 

of the graph of the function.    

 

 

Figure 2.4: Illustration on the properties of graphs. Adopted from Haese & 

Haese (2010). Mathematical Studies for Year 12. Adelaide, Australia: Haese & Haese 

Publications 

 

The second derivative is derived algebraically from the differentiation process of 

the first derivative or graphically, the slope of the tangent line of the graphs of the first 

derivatives. Since the first derivative of a function indicates whether the function is 

increasing or decreasing of the function, the second derivative in turn, will indicate the 

increasing or decreasing of the first derivative or the slope of the tangent to the graph of 

the first derivative and results in the concavity (Figure 2.5) and the inflection points of 

the of the graph of the functions.  
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Figure 2.5: Illustration on the changes in the values of the first derivative. 

Adopted from Haese & Haese (2010). Mathematical Studies for Year 12. Adelaide, 

Australia: Haese & Haese Publications 

 

Graphically, the first derivative is the gradient of the function while the second 

derivative is the gradient of the first derivative. Consequently, the second derivative 

indicates how the gradient of the function changes along the x-axis. For a function with 

non-constant gradients, the second derivative indicates the shape or curvature of the 

graph. Applying the same concepts as the relationship between a function and it 

derivative, the positive values of the second derivative indicate the increasing of the first 

derivative. In other word, the gradient of the tangent line of the function is increasing as 

x increases. Graphically, the curve of the graph is said to concave up or open upwards. 

Likewise, the negative values of the second derivative indicate the decreasing of the 

first derivative. In other word, the gradient of the tangent line of the function is 

decreasing as x decreases. Graphically, the curve of the graph is said to concave down 
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or open downwards. When the value of the second derivative is zero, the graph can be 

either concave up or concave down, or it may at the changing situation from concave up 

to concave down or vice versa.  

The second derivative is also used to determine the nature of any stationary 

point, a local maximum or local minimum. As mentioned earlier, the first derivative is 

zero for any stationary point of a graph. The positive values of the second derivative 

indicate that the first derivative is increasing and the graph is concave up. Therefore the 

stationary point is a local minimum. Likewise, the negative values of the second 

derivative indicate that the first derivative is decreasing and the graph is concave down. 

Therefore the stationary point is a local maximum. On another note, the zero value of 

the second derivative indicates that the graph has an inflection point and the graph is 

changing from concave up to concave down and vice versa.    

 

2.2.2.2 The Concepts of Limits  

Understanding the idea of limit is the fundamental and critical in understanding what is 

going on in differential calculus. In the study of calculus, it is important to know what 

happens to the function or the dependent variable at the vicinity of a particular point or 

as the independent variable get closer and very close to a particular value. Students 

faced difficulty in understanding the idea of limits. They used the formulae  

( ) ( )

h

xfhxf

h

+

0→

lim
  or  

( ) ( )

ax

afxf

ax→

lim
  to calculate the derivative function 

or the derivative of the function at a particular point. Figure 2.6 demonstrates the 

situation. The derivative or the slope of the tangent at the point A is found by moving 

the point B along the graph of the function towards the point A. The chord or secant line 

AB will later become the tangent at A and subsequently, the slope of the chord or secant 
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line AB, 
   

h

xfhxf 
 or 

   
ax

afxf




, will become the slope of the tangent at A. The 

idea of limit can be clearly seen and understood through the use of graph. 

 

 

Figure 2.6: Illustration of the idea of limits. Adopted from Haese & Haese 

(2010). Mathematical Studies for Year 12. Adelaide, Australia: Haese & Haese 

Publications 

 

2.2.2.3 The Application of Derivative - Rate of Change  

The three ideas of rate of change are the constant rate of change, the instantaneous rate 

of change and the average rate of change. The concepts of rate of change are best 

explained using the real life situation and by the use of graphs. A common distance-time 

graph illustrating a car traveling at 60 km/hour as shown in Figure 2.7 helps to 

emphasize understanding the idea of constant rate of change. Students are able to see 

that from the start of the journey, the distance is increasing at a constant rate of 60 km 

every hour and therefore the car will travel a total of 300 km after 5 hours. The slopes of 

the line are always 60
5

300
  for the whole graph and represent the constant rate of 

change of the distance with respect to the time.  
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Figure 2.7: Graph of distance-time car traveling at constant velocity. Adopted 

from Haese & Haese (2010). Mathematical Studies for Year 12. Adelaide, Australia: 

Haese & Haese Publications 

 

Other real life examples to illustrate the constant rate of change include : 

• A candle with its length decreasing at a constant rate of 4 cm per hour  

• Water is flowing out from a tap at a constant volume of 3 litres per minute  

• A block of ice left to melt at a rate of 5 cm2 per hour  

 

The average rate of change and the instantaneous rate of change are best 

illustrated using graph of functions to represent specific quantity. For example, in 

Figure 2.8, the graph of the function depicts the volume of soil V cubic metre dug by a 

team of labourers. If the total amount of soil dug was 500 cubic metre in 100 minutes, 

the average rate of the soil dug is 500/100 = 5 cubic metre per minute. Of course, this 

does not mean that the labourers dug exactly 5 cubic metre per minute. It can also be 

seen from the diagram, the instantaneous rate of change at which the labourers were 

digging at the count of every 20 minutes were different, shown by the slope of the 

tangents to the graph of function at points B through D.      
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Figure 2.8: Illustration on the average and instantaneous rate of change 

 

2.2.3 Defining Graphs 

Data analysis refers to the visual displays of quantitative data through the use of 

graphical representations such as Cartesian graphs. Graphs are typically used to portray 

mathematical functions and display data from the aspects of science or social. It is 

among the essential part in the elementary mathematics curriculum and therefore 

students should be able to read, understand and utilize the information to solve 

mathematical problems. Earlier, Fry (1984) provided a more generic definition of graph 

as information transferred by the location of the point, line or curve, or area between 

lines or curves, on a two-dimensional set of axes.  

Chein, Mugnier and Croitoru (2010) defined the graph based approach on the 

idea of graph theory. They elaborated it as a structure made up of a set of points and 

connections among the points.  In their proposed graph-based approach, they shared 
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some benefits upon using graphs to represent knowledge: graphs are basic mathematical 

objects consist of points, line or curves and relations that can be visualized, graphs are 

rich assemble of well-organized algorithms, and graphs are equipped with logical 

semantics. Operations with graphs, either as a sequence of operations or as an overall 

operation, can be easily demonstrated to students due to their visual in nature.     

In classroom context, graphs are used in most subjects such as Mathematics, 

Sciences, Economics and even English. Reading and constructing graphs are regarded 

as inter-disciplinary skills (Dhakulkar & Nagarjuna, 2006). Graphs serve two purposes 

in the science subjects: to present data in meaningful and comprehensive manners and 

to show relationships between two quantities (Baker, 2012; Ferrini-Mundy, & Gucler, 

2009). In economics or other social science subjects, graphs are used to mainly display 

statistical data (Belenky & Schalk, 2014; Booth & Koedinger, 2012). In mathematics, 

Cartesian graphs are mostly dedicated to functions and non-functions such as circles. 

Students used the combined set of functions and graphs as symbolic system to 

understand algebraic expression of the function and patterns of data (Van de Walle, 

2007; Wall & Benson, 2009).  

 All Cartesian graphs share similar structural components (Friel et al, 2001). The 

framework of a graph consists of the axes and scales to provide information on the data 

to be measured and the types of measurements being used. The framework is of an L- 

shape, with one leg as the horizontal or the x-axis for the independent data while the 

other leg of the vertical or the y-axis provides information about the measurements 

being used. The specifiers are used to represent data values. These are the lines or 

curves that denote the relations among the data represented within the framework. The 

labels for each leg of the framework named the type of measurements being made. This 

includes the title of the graph itself. The background of a graph may include colours, the 
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grid, or images superimposed on the graph, but may not be so distinguished or 

important in the Cartesian graph system.  

 

2.2.3.1 Making Sense of Graphs 

The National Council of Teachers of Mathematics (NCTM, 1989) has exclaimed for 

more emphasis on the students to reason from graphs, and to describe and represent 

relationships among graphs and functions. NCTM had also strongly encouraged for the 

use of computer-based graphing utilities to enhance on understanding and reasoning 

from graphs instead of using the traditional paper and pencil to learn the technicality of 

plotting graphs. The National Mathematics Advisory Panel (2008) had also made 

recommendations for research to investigate on particular use of technologies, 

specifically graphing calculator, and their effects on students’ conceptual understanding 

and computational skills, and solving mathematical problems.    

As literacy is the ability to read texts, graphicacy, on the other hand, is the 

ability to read, understand and present representations such as graphs, diagrams, 

sketches, charts etc. Dhakulkar and Nagarjuna (2006) analysed 28 school textbooks 

from grade 5 to grade 10 which were approved by the Indian National Curriculum 

Framework 2005 (NCERT, 2005) to get a trend on the graphs used. The textbooks 

catered for all subjects except languages, and being grouped into major areas: 

mathematics, sciences and social sciences. They detailed the analysis on the different 

types of graphs used and their frequencies of occurrence and the preference of one 

subject as compared to the other in using graphs. The results of the analysis showed that 

the presence of graphs in the science textbooks was the least although the reading, 

understanding and sketching of graphs are of utmost important in chemistry, physics 

and biology.      
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In graph comprehension, the processes of perception and conception are 

compulsory for decoding information from graphs. In 2008, Ratwani, Trafton and 

Boehm-Davis put forward a new framework to incorporate the visual and cognitive in 

the process of extracting and integrating information from graphs. Ten undergraduate 

students studying psychology were assigned with four groups of three to ten graphs. 

The first experiment sought to find the pattern of the processes through verbal protocol 

on the extraction of information. This was followed by the integration part to uncover 

the multiple processing cycles (Carpenter & Shah, 1998) and the forming and 

interpreting of the visual clusters formed by the students. In the second experiment, they 

additionally gathered the eye movements as the students answered the questions in order 

to understand the visual and cognitive integration as they tried to decode information 

from graphs. Experiment 3 concentrated on the integration part solely to examine for 

stronger evidence on the cognitive integration of the process. Outcomes of the study 

revealed that the visual clusters created by the students during the visual integration 

helped to reason about the graphs in the cognitive integration. It was also noticed that as 

the complexity in reading the graph increases, the number of visual clusters formed also 

increased and be used to compare and make meaning of information in the graphs 

(Uesaka & Manalo, 2007).                

 In the previous study, Paoletti (2004) had found that students frequently ignored 

graphics when reading texts even when they were warned to analyse or summarize the 

materials. Paoletti (2006) then conducted a study on 100 undergraduate students 

studying psychology at the Trieste University in Italy, to ascertain the degree to which 

students make use of the information embedded in the graphs incorporated into texts. 

The study aimed to acquire in detailed the students’ inclinations to read the required 

materials and at the same time to focus on the quantitative information within the text-

graph relationships. They were provided with a three-page-long text accompanied by 
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two graphs. They were then asked to go through the text thoroughly and examine the 

graphs for any related information. Several text-graph inconsistencies were also inserted 

to enhance indicators. The students were tested individually and their behaviours video-

taped.  Results discovered that most of the students need at least two trials in examining 

the text-graph tasks. Most of them did look at the graph during their first reading, but 

tend to ignore or gave insufficient responds to it. Only when they attended to the graph 

later and understood it, were they able to perform the integration.                   

Due to the fact that appropriate use of representations will facilitate the process 

of learning (Vekiri, 2002), research were carried out to examine the effective use of 

graphs to present quantitative data in various subjects and disciplines (Lowrie & 

Diezmann, 2009). In responding to the claims, Ozcelik and Tekman (2010) conducted a 

study to examine the guidelines needed for research in using graphs for educational 

purposes. They explored how graph comprehension was affected by the types of graphs 

used to display information, the conceptual understanding of the subject domain and the 

perception on the information organizational system. Forty-two undergraduate students 

in Turkey were given eight different types of graphs to describe. Results of the analysis 

revealed that students reasoning using graphs were influenced mostly by how they 

perceived information in clusters as compared to the types of graphs. They faced 

difficulties when the unfamiliar settings of the graphs were presented to them. The 

results indicated that the students worked in separated or smaller parts rather than the 

whole and they tend to memorize the format of the typical graphs.               

 Kalchman and Koedinger (2005) introduced the term ungrounded competence to 

describe students who were able to carry out the procedural knowledge and processes, 

and quantitative skills efficiently in certain areas or contexts but unfortunately 

performed errors or faced difficulty in other areas or contexts. This indicates the lack of 

conceptual or qualitative understanding. In their study to overcome the problems, they 

Univ
ers

ity
 of

 M
ala

ya



53 
  

proposed three teaching approaches with the aim to develop meaningful understanding 

on graphs of functions: first, teaching should start with contexts that are familiar to the 

students to allow them to recall on their prior knowledge. Second, teaching should start 

with simple contents and concepts to allow students to grab the essence of the big ideas 

and at the same time avoiding the pre-perceptions on difficulties in understanding and 

applying concepts. Third, teaching should allow students to express their thinking and 

understanding of concepts using their own invented terminologies and natural 

languages.  

  Friel, Bright and Curcio (2001) analysed students’ understanding of graphs and 

recognized six category of behaviours that are related to making sense of graphs and at 

the same time suited with one of the Curcio’s three levels of data :1) recognizing the 

parts of graphs and speaking the language of graphs as reading the data, 2) 

understanding the relationships among the parts of graph and analysing while 

maintaining the objective stance as reading between the data, and 3) interpreting the 

information in the graph to predict and extrapolate its context as reading beyond the 

data.  

Monterio and Ainley (2004) described that the interpretation of graphs as a 

complicated process that involved specifically three main interrelated elements: 

cognitive, affective and contextual. The cognitive aspects incorporated informal 

knowledge related to intuitions and can be connected to beliefs and some of the 

affective elements. They explored 118 school student teachers’ critical sense in 

graphing. They responded to two tasks based on media context and conducted interview 

session prior to enrolling into a data handling curriculum methods course in primary 

school mathematics.    
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2.2.4 Empirical support for graphs as visual tools in functions and derivatives 

Taking into account the extensive utilization of graphs in various contexts, curriculum 

developer around the world incorporated graphing as one of the main topic in all levels 

of mathematics education. These inclusions are for students to be able to use graphs as 

visual tools to understand objects, concepts and processes in mathematics (Riveria, 

2011).  

To make sense and understand the concepts of derivative involve the conceptual 

and subject knowledge of various mathematical areas and their relationships, among 

others: geometry, functions, limit, tangent, slope and rate of change (Bingolbali, 2008). 

Kulfur et al, 2011) identified that rich conceptual visual representations such as graphs 

are able to overcome learning difficulties of pre-service teachers in understanding 

graphs of functions and derivatives. It was discovered that they were lack of 

fundamental and geometric interpretation of derivatives and consequently attempted to 

memorize formulae.  

Graphs incorporated in model eliciting activities are able to challenge students to 

explain, describe and predict meaningful situations. Doer and O’Neill (2012) let 

students created and described the rate of change based on their exploration on motion 

detector of their own body motion. The students were able to: 1) correctly justify about 

the velocity or the average rate of change for the whole motion based on the features of 

the graph, and 2) correctly reasoned the position of the two cars based on the graphs 

representing their velocities.  

Visualizers can be defined as individuals who are prone to use visual method 

when solving tasks which may be attempted by both, the visual and the non-visual ways 

(Presmeg, 2006). In response to calls for changes in instructional methods, Habre and 

Abboud (2006) studied the understanding of function and its derivative with university 

students in Lebanon. They compared the students’ understanding and reasoning 
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between the traditional approach using the algebraic and symbolic representation to 

after the experimental session. Due to its visualization capabilities, technology was 

introduced to assist in reflecting, analysing and modifying their thinking. Students, 

especially for those with high mathematical ability exhibited a higher level of 

understanding and were positive to the new method of teaching.          

Monteiro & Ainley (2010) discussed some features of the socio-historical graphs 

and the different context in the use of the graphs. In school context, the interpretation of 

graphs developed specific characteristics that were different from the enquiry context or 

the reading context. The use of graphs in classroom situations is generally related to the 

intentional purpose of the subjects being taught.            

Zazkis (2013, 2014) was interested in problem solving strategy and conducted 

in-class activities using the Geometer Sketchpad as visual tools to examine students’ 

difficulties in relating the graphs of functions and their derivatives. The students 

exhibited various strategies in sketching the graph of a function from the graph of its 

derivative that was not accompanied by any formula. The students integrated both the 

algebraic reasoning and the graphical reasoning in their thinking and were able to 

switch from one representation to another.        

  Ratwani, Trafton and Boehm-Davies (2008) proposed a framework that 

employed the combination of visual integration and cognitive integration. Visual 

integration involved the process of pattern recognition to form visual groups of 

information which were then being utilized in the cognitive integration part to reason on 

the information embedded in the given graphs. The process incorporated the verbal 

protocol and eye movement data. Results showed that as the complexity of extracting 

information from the graph increases, the integrative processes also scaled up.   

 Biza (2011a, 2011b, 2010 & 2008) conducted a numerous studies on students’ 

conceptions about derivative specifically on the notion of tangent line. She identified 
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five factors influencing students’ perception and thinking about the tangent line with 

regards to how they were perceived graphically. Students were presented with various 

situations of lines and curves and asked to justify for tangents. Additionally, they were 

requested to construct tangent lines for some different graphs and reasoned on their 

drawings. Students’ supports on their thinking can be mainly categorized as based on 

their prior knowledge on the circle properties. Other studies on students’ understanding 

of the functions and derivatives had drove many researchers to check into students’ 

ability to read and sketch, and to read and interpret derivative functions (Aspinwall, 

Shaw, Edwards, & Graham, 2002; Chappell & Kilpatrick, 2003; Hallett, 2001; Roddick, 

2001; Ubuz et al., 2000).     

   

2.2.5 Visual Reasoning Models 

Visual Reasoning Model by Park and Kim (2007) was originally designed as a mean to 

assess the types of visual reasoning and the related cognitive activities among 

architectural students when sketching their designs. Tversky (1999) proposed two ways 

to go beyond the visual information; one is to transform to visual information according 

to the predetermined rules and second, to make deduction and conclusion on the visual 

information. When students solve the given tasks, their visual reasoning can be 

summarized in terms of three broad categories consisting of eight interrelated types: 

perception, analysis, and interpretation in the seeing, generation, transformation, and 

maintenance in the imagining, and internal representation and external representation in 

the drawing as illustrated in Figure 2.9.    

In the seeing process, the activities of visual perception, analysis, and 

interpretation occur. During the perception activity, basic properties of the visual 

information and their combinations are recognized and identified. The image of the 

object is attained as and when it is observed. This is a very selective process and this 
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selectivity is accountable for the qualitative value in the subsequent visual images to be 

produced. The difference contexts and purposes in which the visual are perceived and 

generated play important role in creating the final visual images. During the analysis 

activity, the observation on the relationships among the properties and the exploration 

about the characteristics of the visual information occur. During the interpretation 

activity, the naming, categorization, and giving new meaning to the perceived visual 

information occur. These activities in the seeing process bring about the extraction of 

characteristics as required for new visual generation and transformation. 
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SCHEMA 

Figure 2.9: The Visual Reasoning Model (Park & Kim, 2007) 

The imagining process enables the synthesizing of conceptual information for 

the new visual representation. Imagining process can be classified into the generation, 

transformation, and maintenance activities. In an earlier study conducted by Kavakli & 

Gero (2002), they proved that the generation and transformation activities were very 

critical in creating visual information. Visual generation occurs in two ways: the first is 
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from the perceptual input during the seeing process while the other one emerged from 

the activated knowledge and schema that were stored in the long-term memory 

(Kosslyn, 1994). Visual transformation can be differentiated into two types: congruent 

transformation and pattern change transformation (Park & Kim, 2007). Kosslyn (1994) 

defined congruent transformation as equivalent to the actual perception such as the 

mental rotation or the resize of visual objects. On the other hand, Oxman (2002) 

suggested for the pattern change transformation to involve the developing or evolving of 

visual objects. Following the visual transformation, the maintenance activity takes place 

to store the internal representations. 

The drawing process enables visual objects to be represented through both the 

internalization and externalization. In internal representation, the transformed visuals 

are to be confirmed. This drawing process occurs through interactions with imagining 

and seeing processes. In addition, the external representation serves as external memory, 

in which ideas are settled as visual tokens, and to be revisited later for inspection, if 

necessary (Suwa, Purcell, & Gero, 1998). The process of generating the imagined 

objects might also occur during the process of converting from internal representation to 

external representation. As a result, the drawing process is important in visual 

reasoning. In addition, the drawing process also make possible for the visual 

information to be manipulated and transformed.  

Knowledge and schema are engaged in the interaction within the visual 

reasoning activities. A schema is a collection of objects, processes and actions and other 

previously constructed schemas that are coordinated and synthesized by the individual 

to form structures utilized in problems situations (Sabella & Redish, 2005).  The 

retrieval of visual knowledge from long term memory becomes a cue to match between 

visual input and visual memory for visual perception in seeing process. The visual 

schema retrieved from the long term memory becomes a rule for the extraction of the 
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characteristics of the visual information. The iterative process of seeing and imagining 

make it possible to reorganize, transform and modify the existing visual input in 

imagining process. Oxman (2002) highlighted the importance on how to transform and 

to access schema of basic structure in reformulating visuals, since the order and pattern 

of visuals can cause different types of reasoning. The schema, therefore, plays a critical 

role to link between the conceptual and perceptual processes in drawing process. As a 

result, diverse manipulation or interpretation of images can be generated. In the visual 

reasoning process, seeing, imagining, and drawing processes do not occur 

independently but interactively with knowledge and schema, together with interaction 

between perceptual and conceptual knowledge.  

 Costa (2010) finalized a model to understand four different modes of the visual-

spatial thinking: from perception, from mental manipulation of images, from the mental 

construction of relationships among images and from the exteriorization of thinking. 

The visual-spatial thinking that resulted from perception used visual information that 

are represented based on movement. It involved different individual perceptions 

referred to as concrete images and memory images when images of experiences were 

recalled. The thinking processes engaged in the process were intuitive inference, visual 

recognition, construction of visual, recalled visual representation, evaluation of images, 

identifying of objects and images, recognition of abstraction and concepts generation. 

Among the mental processes that took place in the visual-spatial thinking that resulted 

from mental manipulation of images were the secondary and anticipatory stages of 

intuitions which involved a stable cognitive attitude on understanding reasoning on 

more common situations. Other processes were mental transformation, constructive and 

synthesizing, coordinating spatial structure and visual construction.  

The visual-spatial thinking that resulted from the mental construction of 

relationships among images involved the mental construction of how visuals were 

Univ
ers

ity
 of

 M
ala

ya



60 
  

related and comparing the models, ideas and concepts. The thinking processes involved 

include the searching for relationships among images, facts and properties, and 

continuous evaluation along the process of solving a problem. Lastly, the visual-spatial 

thinking that resulted from the exteriorization of thinking involved the mental processes 

of translation, describing the mental dynamics through verbalization and gestures and 

using the analogies. 

The abstract mathematical objects, concepts and processes can best be 

experienced by students through the use of visual representations. Therefore, there is a 

need of clear meaning on how visual processing can help to solve mathematical 

problems. Gorgorio and Jones (1996) described three distinctive components of 

visualization process that resulted from the ability to mentally manipulate, influence and 

transform visual images and visual representations. Starting with crude visualization 

where students are able to draw diagrams with either pencil or pen, or with the help of 

technological software, visuals were used to represent mathematical objects, concepts, 

of processes and subsequently to use them to understand and help in the solving of 

mathematical problems by interpreting the technical rules or mathematical formula. 

This was then followed by the visualization be regarded as the activity to read the visual 

information where the interpretation of the relationships among the properties of the 

visual representations. The final part of visual processing involved the ability to 

manipulate and transform the visual images and visual representations mentally and 

conceptually.         

Due to the increase in the number of tools that are able to help users interact 

with mathematical visualization, Sedig (2009) presented three frameworks describing 

the interaction design of mathematical visualization; the micro-level interaction 

framework, the micro-level interactivity framework and the macro interaction 

framework. The micro-level interaction framework characterizes the interaction in the 

Univ
ers

ity
 of

 M
ala

ya



61 
  

context of exhibiting low-level cognitive tasks and epistemic behaviours. The 

interaction framework organized the user activities into basic (conversing, 

manipulating, and navigating) and task-based (animating, cutting, filtering, rearranging 

and scoping). The second level of micro-level interactivity framework organized the 

user activities into factors such as cognitive offloading, constraints, flexibility, focus, 

scaffolding and transition. Lastly, the third macro-level interaction framework listed the 

design space into four categories ; access-, annotation- , construction- and combination-

based.  

    

2.3 Conceptual Framework  

According to Lowrie et al. (2011), visual representations and hence visual reasoning fell 

under two non-separated processes, the encoding and decoding processes. Their 

relationships involved the ability to transform mathematical information into graphics 

during the encoding process and to extract mathematical information from graphics 

during the decoding process. Students develop visual sense gradually as a result of 

creating graphics and using already designed graphics in a variety of contexts that 

require them to make sense of the data embedded in the graphics (Friel, Curcio & 

Bright, 2001).  

 

2.3.1 The Visual Reasoning Constructs 

The study conducted by Lowrie et al. (2011) was the researcher’s attempt elaborate on 

the processes of visual reasoning that support the learning outcomes of mathematics 

education. The two learning outcomes of the SACE curriculum (2015) were for the 

students to be competent on the literacy and numeracy skills. The literacy skills in 

mathematics education deliberate the ability to shift between verbal, graphical, 

numerical and symbolic forms of representations in order to understand concepts, solve 
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mathematical problems and communicate information. On the other hand, the numeracy 

skills expect the students to be able to understand, analyse, reason and use 

mathematical knowledge and skills to apply in ranges of contexts such as : 1) gathering, 

representing, interpreting and analysing data, 2) using spatial sense and geometric 

reasoning, and 3) working with graphical and algebraic representations and other 

mathematical models. In particular, the SACE curriculum for topic Working with 

Function and Graphs using Calculus described teaching and learning strategies that 

covers specific key areas of learning. Some samples of the key ideas and the teaching 

and learning strategies are as listed in Table 2.1.  

 

Table 2.1: Samples of Key Ideas and Teaching and Learning Strategies extracted from 

the SACE Mathematical Studies  

Key Questions and Key Ideas Considerations for Developing Teaching and 

Learning Strategies 

How will functions arise? 

What makes one model more 

appropriate than another? 

• Students need to be able to discuss the 

appropriateness of the model on the 

basis of its features and the structure 

of the problem or context  

Maxima, minima, limiting behaviour 

(horizontal asymptotes), points of 

inflection, points of discontinuity 

(vertical asymptotes) 

 

Students can be reminded of the work that they have 

done on modelling, and can re-examine models and 

their construction in contexts that require numerical, 

algebraic, and graphical approaches. This could be 

done in a number of ways: 

• numerical data  graphical representation  

algebraic model 

• algebraic model  numerical data  graphical 

representation 

 

What is a rate of change?  

How can a constant rate of change be 

identified? 

 

 

• Numerically, in a table with a constant adder 

• Algebraically, as a property of a linear function 

• graphically (and geometrically) by considering 

gradients of chords across graphs of curves 

(graphics calculators, interactive geometry, and 

graphing software provide invaluable visual 

support, immediacy, and relevance for this 

concept). 
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The   visual reasoning construct is built upon two processes, namely the 

encoding process and decoding process, that are used to describe the students’ ability to 

construct and interpret respectively, graphs in terms of conceptual knowledge and 

performance standard.  

 

2.3.2 The Encoding Process 

The encoding process helps students to use graphs to explain the verbal or written 

information. Studies that investigated students encoding skills make use of graphs to 

communicate their understanding of concepts and their solution tasks. Earlier, Simon 

(1986a) conducted interviews with the pre-university students who needed to undergo 

remedial classes due to their lack of foundation understanding on functions. His 

findings proposed a set of skills displayed by the students when drawing diagrams to 

solve mathematical problems, as listed in Table 2.2. The skills described the levels of 

ability to sketch or draw diagrams effectively. Later, Diezmann (1999), employed the 

levels of sub-skills in his experimental study, as external control measures, to guide the 

students’ works. He discovered that those students who were in the treatment group 

appreciated the suggestions on the criteria for effective drawing and had actually 

sketched a higher quality and complete diagrams as compared to those in the controlled 

group.    

Table 2.2: Simon’s (1986) Diagram Drawing Sub-skills 

Sub-skill Description 

Sub-skill 1 representing all relevant information 

Sub-skill 2 
creating an integrated diagram that are critical to the conceptualisation 

of the problem 

Sub-skill 3 labelling completely 

Sub-skill 4 checking the accuracy of the diagram 

Sub-skill 5 drawing multiple representations are not critical 

Sub-skill 6 verbalising what is represented and what needs to be represented 
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In 1998, Carlson undertook a study on undergraduate students to solve co-

variational tasks that required them to interpret and represent functional situations. She 

identified five mental actions that categorized the activities that students performed 

when sketching diagrams as shown in Table 2.3. The mental actions provided a way to 

classify each student based on the overall images that he/she produced to support 

various types of thinking when in context with the tasks.     

 

Table 2.3: Carlson’s (1998) Mental Actions of the Co-variation Framework 

Mental Action Description  Actions  

Mental Action 1 

(MA1) 

 

Coordinating the value of 

one variable with changes 

in the other 

 

•labelling the axes with verbal  

indications of coordinating the two 

variables (e.g., y changes with 

changes in x) 

Mental Action 2 

(MA2) 

 

Coordinating the direction 

of change of one variable 

with changes in the other 

variable 

 

•constructing an increasing straight 

line 

•verbalizing an awareness of the 

direction of change of the output 

while considering changes in the 

input 

Mental Action 3 

(MA3) 

 

Coordinating the amount 

of change of one variable 

with changes in the other 

variable 

 

•plotting points/constructing secant 

lines 

•verbalizing an awareness of the 

amount of change of the output 

while considering changes in the 

input 

Mental Action 4 

(MA4) 

 

Coordinating the average 

rate-of- change 

of the function with 

uniform increments 

of change in the input 

variable. 

 

•constructing contiguous secant 

lines for the domain 

•verbalizing an awareness of the rate 

of change of the output (with 

respect to the input) while considering 

uniform increments of 

the input 

Mental Action 5 

(MA5) 

 

Coordinating the 

instantaneous rate of 

change 

of the function with 

continuous 

changes in the independent 

variable for 

the entire domain of the 

function 

 

•constructing a smooth curve with 

clear indications of concavity 

changes 

•verbalizing an awareness of the 

instantaneous changes in the rate of 

change for the entire domain of 

the function (direction of 

concavities and inflection points 

are correct) 
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The advantage of constructing a diagram relates to how problems are 

conceptualised (Rivera, 2011; Uesaka & Manalo, 2007, 2011; Van de Walle, 2007).  

Therefore, the content of an instructional material should emphasize on the sketching of 

diagrams to enhance understanding. Hergaty and Kozhevnikov (1999) introduced the 

term mathematical visuality to describe an individual’s preference in using diagrams 

when solving mathematical problems. Prior to that, Krutetskii (1976) classified the 

students’ visual ability into three broad categories as shown in Table 2.4.  

 

Table 2.4: Krutetskii’ s (1976) categories of visual ability 

Category of  preference  Description  

Analytical type  
Individuals who prefer verbal-logical rather than imagery 

modes when attempting to solve problems   

Geometric type  
Individuals who prefer to use diagrams or images rather 

than the verbal modes when attempting to solve problems 

Harmonic type  
Individuals who have o tendency to any one of the type in 

particular.  

  

2.3.3 The Decoding Process 

The decoding process allows the students to read, interpret and make sense of the visual 

information embedded in diagrams. Studies that investigated students’ decoding process 

and skills took into account the extent to which students interpreted and made sense of 

data and information in various graphics of different structures and purposes. The 

ability to read and reason on how one quantity varies depending on another related 

quantity is of utmost importance.  

The study conducted by Friel, Curcio and Bright (2001) was the researchers’ 

attempt to identify students’ levels of interpreting graphs in school context. Their study 

was an enhancement of the study conducted by Curcio (1987) earlier on how fourth and 

seventh grades students strategized to understand graphs. Curcio also detected that 

students’ prior knowledge on the properties and structures of graph played the main 
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factor in influencing their ability to understand the mathematical relationships 

embedded in graphs. In 1998, Friel and Bright detailed the study on data exploration, 

data comparison and data prediction. Their finding indicated that besides the fact that 

students had encountered or had been exposed to many types of graphs in and/or out of 

school context, they were still lack of competency in tackling tasks that require higher 

order thinking skills. Later in 2001, building on their series of previous works, Friel, 

Curcio and Bright listed six behaviours that they presumed to be essential in 

understanding graphs. The lists of both findings are as tabulated in Table 2.5.  

 

 

Table 2.5: Levels of graph comprehension by Friel, Curcio & Bright (2001) 

Level  Behaviour  Description  

Read  Recognising components of graphs  ‘lifting’ information to answer 

explicit questions for which the 

obvious answer is right there in 

the graph 

Describe  Speaking the language of graphs  

Interpret  
Understanding relationships among 

tables, graphs and data 
interpolating and finding 

relationships in the data 

presented in a graph Analyze  

Making sense of graph but avoiding 

personalization and maintaining an 

objective stance while reading the 

graphs 

Predict  
Interpreting information in a graph 

and answering questions about it 
extrapolating, predicting, or 

inferring from the representation 

to answer implicit questions Extrapolate  
Recognising appropriate graphs for 

a given data set and its context 

  

 

In the same year, based on his research on pre-service teachers reasoning when 

solving mathematical problems, Yumus (2001) established four levels of reasoning as 

shown in Table 2.6.            
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Table 2.6: Yumus’s (2001) levels of reasoning 

Level  Description  

Level 1 Unable to produce any reasoning  

Level 2 Aware of models, known facts, properties and relationships used as basis 

of reasoning, but cannot produce any arguments 

Level 3 Able to provide reasons although arguments are weak  

Level 4 Able to provide strong arguments to support reasoning  

 

Students should pay more attention and try to understand the data displayed in 

graphical form. Sharma (2013) conducted a meta-analysis on studies that investigated 

students’ thinking and interpreting graphs (and tables). She discovered a wide range of 

responses, from those who exhibited no or very little characteristics of visual thinking 

related to mathematical concepts, to overly considering the mathematical concepts and 

visual thinking. She described a five-stage framework to establish students’ ability in 

reading and interpreting graphs (and tables) as shown in Table 2.7.     

  

Table 2.7: Sharma’s (2013) framework for interpreting graph. 

Stage  Description  Behaviours  

Stage 0 Informal/idiosyncratic Students at this stage are exhibiting 

characteristics of pre-structural thinking  

Stage 1 Consistent non-critical  Students at this stage are exhibiting  

characteristics of pre-structural thinking or at 

most uni-structural thinking  

Stage 2 Consistent non-critical  

 

Students at this stage are exhibiting 

characteristics of uni-structural and multi-

structural thinking 

Stage 3 Early critical  

 

Students at this stage are beginning to exhibit 

characteristics of relational thinking. Students at 

this stage can attend to more than one relevant 

aspects of the data and are beginning to integrate 

the aspects  

Stage 4 Advanced critical  

 

Students at this stage are integrating statistical 

and contextual knowledge that exhibits extended 

abstract thinking   
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2.3.4 Knowledge and Scheme 

2.3.4.1 Making sense of graphs 

Alacaci, Lewis, O’Brien and Jiang (2011) established for graphs to compose of four 

structural components; 1) the framework of a graph that refers to the elements related to 

the measurements such as axes and scales, 2) the specifiers which represent the data 

such as the point, line or curve, 3) the labels to indicate the variables representing the 

quantities and the relationships between them, and 4) the background that add to the 

aesthetical value of the structure in order to enhance the visual presentation of the 

system of axes such as the colours or shading.    

A Cartesian graph is used to transmit information through its spatial 

characteristics such as the location of a point that is represented by paired values or the 

lines or curves to represent the related quantities.  Graphs sketched by students during 

the problem solving process play important and multiple roles for both the students and 

the solution process (Friel et al, 2001; Hodges & Conner, 2011; Mesa, 2007; Tang, 

2004). They serve as external memory to complement the limitation of human cognitive 

abilities (Goldin & Kaput, 1996). Graphs also act as a medium that students used to 

communicate and enable them to reason on the problem. The kinds of perception and 

their functions (Carney, 2002; Elia & Philippou, 2004; Dorler, 1991) in the solving 

process and the relationship between perceptions and the appreciative system are related 

to the functional references attached to the graphs themselves. The inappropriate 

dichotomy between analytic and synthetic thinking process emphasizes that 

mathematical visual reasoning was not equivalent to vision but a production of thought 

via visual imagery (Canham & Hegarty, 2010; Enns, 2004; Wang, 2012). Problem 

solving was therefore considered essential as the interplay between two types of 

knowledge - conceptual and perceptual, which are linked by the cognitive process 
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known as visual reasoning (Long, 2005; Siyepu, 2013a; Stylianides & Stylianides, 

2007; Wittmann, 2006). 

The elementary phase of investigating graphs, reading the graph, focuses on the 

extracting data directly as how they are seen on the graphs (Persmeg, 1986, 1991, 

2006). Students are to find, locate and translate information based on the specific rules 

or conditions (Moore, Paoletti & Musgrave, 2013; Ubuz, 2007). Translation requires a 

change in the form of a communication. In order to translate between words and graphs, 

students need to describe the specific structures of the graphs (Adu-Gyamfi, Bose & 

Stiff, 2012). In reading between the graph, the intermediate phase of interpreting graphs 

focuses on interpolating and finding connection in the data shown on the graphs. 

Students are to integrate or pull together two or more pieces of information (Chapman, 

2013), make comparisons and to observe relationships among the specifiers or between 

the specifiers and the labelled axes. To interpret, students need to rearrange and 

prioritize information in the order of their importance (Stayridou & Kakana, 2008). The 

phase of reading beyond the graph or the advance phase of applying graphs focuses on 

extrapolating information and analysing the relationships implicitly out of the data 

shown in the graphs. Students are to generate, predict and make inferences. To 

extrapolate, students need to extend the interpreting phase by stating not only the 

essence of the communication but to identify some of the consequences through noting 

the trend perceived by the data or specifying implications based on personal background 

knowledge (Tiwari, 2007). The hierarchical levels of decoding skills can be viewed and 

regarded as being built from the previous level and as the progression of levels of 

understanding the functions and derivatives.   
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2.3.4.2 Performance standard 

Based on SACE Curriculum Statement (2014), mathematics is not only a 

collection of concepts and skills but a technique  to evolve into new tasks and 

challenges by exploring, displaying, reasoning, visualising, and solving, with the goal 

to communicate the relationships exhibited and the solved  problems. The Mathematical 

Studies Performance Standard (Appendix A) of the SACE Curriculum Statement 

(2014), outlines three main areas of measure or criteria as guide on how the students are 

progressing in their learning: 1) Mathematical Knowledge and Skills and Their 

Application (MKSA), 2) Mathematical Modeling and Problem Solving (MMP) and 3) 

Communication of Mathematical Information (CMI). For the MKSA, students are 

expected to demonstrate their knowledge of content and understanding of mathematical 

concepts and relationships. They are expected to use mathematical algorithms and 

techniques to find solutions to routine and complex problems, application of knowledge 

and skills to solve problems in different contexts, selection and the use of technology.  

MMP requires the development of mathematical models that lead to mathematical 

results, development of mathematical results for problems set in familiar and unfamiliar 

contexts, interpretation of mathematical results in the context of the problem, 

understanding of the reasonableness and possible limitations of the interpreted results, 

and recognition of assumptions made and possible new mathematical questions to be 

investigated. CMI focuses on the communications of mathematical ideas and reasoning 

to develop logical arguments, use of appropriate mathematical notation, representation 

and terminology.   

When setting tasks to test students on their skills and applications proficiency, 

teachers should prepare the questions or information in both the written and 

diagrammatic form including graphs. These are to allow the students to demonstrate 

their understanding on relationships among ideas and concepts. Students are also able to 
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make choices on the appropriate techniques or methods based on the nature of the tasks 

(Hegarty & Kozhevnikov, 1999), be it a routine, interpretive or analytical, that maybe 

set in personal or global context. Students are also strongly encouraged to support their 

solution and steps taken by arguments and explanation through the use of appropriate or 

correct terminologies, notations and representations. They are also advised to make use 

of the technology, graphics calculators in this study, to aid and enhance their 

understanding and supports to solution process.       

 

2.3.4.3 Conceptual knowledge  

Haapasalo and Kadijevich (2000) explained conceptual knowledge as an action of 

‘using the knowledge’ instead of a mere ‘knowledge of’ which is best to describe the 

procedural knowledge. Therefore, students’ conceptual knowledge can be determined 

through their use of this knowledge to solve any mathematical problems. While 

procedural knowledge requires only the use of visual representations, conceptual 

knowledge, on the other hand, demands the making of connections among the visual 

representations and texts or other types of representations. For example, in relating the 

properties of functions and their derivatives graphically, the reading of the value of the 

function or making comparison of the values of functions at several points through the 

vertical height from the x-axis of each position means ‘knowledge of’. The conceptual 

knowledge refers to the students making connections between the sign of the slopes of 

the chord lines and the increasing and decreasing of the functions or the existence of the 

stationary points and their natures, being the specific local maxima, local minima or 

stationary inflection.         
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2.3.4.4 Perceptual knowledge  

Hoffer (1977, p.85) defines visual perception as ‘the ability to see and interpret’ 

which include the perceiving ability such as to perceive figure-ground and spatial 

relationships, and the processing of visual information such as to distinguish and 

memorize visuals. Individuals are very dependent on visuals as compared to other forms 

of information, in which Sinnett, Spence and Soto-Faraco (2007) referred to as ‘visual 

dominance effect’. Initially, concentration on graphs tends to be objects rather than 

processes. The focus interest is placed largely on the figural properties, i.e. the figure 

and shape of graphs as perceived through the senses and interpreted by mental reflection 

(Goldin, 2001; Liu, 2010). Visual perception processing involves mental representation 

in the mind which varies significantly among individuals in term of their visual images 

and their use in solving mathematical problems (Presmeg, 2006).  Visual processing, on 

the other hand, involves ‘visualization and the translation of abstract relationships and 

non-figural information into visual terms that includes the manipulation and 

transformation of visual representations and visual imagery’ (Bishop, 1983, p.184). 

Unfortunately, difficulties and errors may result in making mathematical generalization 

due to inappropriate thoughts and/or knowledge that students had pinned to graphs.              

Graph perception refers to ‘the part played by visual perception in analyzing 

graphs’ (Legge, Gu, & Luebker, 1989, p. 365). Similarly they outlined that to 

understand graph perceptual processes, one must identify mental processes that: (a) 

affect early vision and establish a mental representation, (b) operate on the graph to 

enable one to identify or to make inferences about non-obvious properties, and (c) 

integrate one’s understanding of context with the mental representation to generate a 

task-appropriate response. They firstly addressed the syntax of graph perception (i.e., 

visual decoding) and secondly acknowledged the importance of operations that involve 
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the use of the syntactic properties of graphs (i.e., judgment tasks). Lastly, they took into 

account the semantic content of a graph (i.e., context). 

Knowledge about graphs contains a variety of attributes and their relationships, 

and attributes of the situations in which they are used (Diezmann, Lowrie & Kozak, 

2007; Roth, & Jin Lee, 2004). Consider a derivative for example. Knowledge of this 

derivative includes information about the properties of graphs, non-visual features such 

as the rate of change and situational information such as real life situations associated 

with the use of derivatives. It is the student’s knowledge on graph comprehension that is 

hoped to influence in some way with visualization and visual reasoning. For example, 

making certain processes visually explicit may facilitate students’ ability to make new 

links between concepts in their knowledge, understand new uses and application of the 

graphs. 

 

2.3.5 Framework for assessing visual reasoning in this study 

In this study, the structure of responses that refers to the worked solutions and reasoning 

of the students can be traced out from the encoding and decoding processes. The 

processes are ordered in terms of various ways to extract information embedded in the 

graph from as simple as spotting to exploring and to extracting and interpreting the 

related concepts.  

 The pre-university students are assumed to be able to exhibit the encoding and 

decoding processes to making sense of the graphs. The conceptual framework, as shown 

in Figure 2.10, had been developed along with the expected students’ visual reasoning 

ability across the processes for the content domains of functions and derivatives.  

This study suggested that the visual reasoning ability can be assessed based on these 

activities. Five derivatives problems were to be assigned to the students letting them to 

demonstrate such activities. The nature of the problems represents five content domains 
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of derivatives: slope, tangent, properties of graphs, graphs of functions and their 

derivatives and applications of derivatives, which are based on the SACE syllabus. 

Performing the standards set by the curriculum based on the three main areas; 

Mathematical Knowledge and Skills and Their Application, Mathematical Modelling 

and Problem Solving, and Communication of Mathematical Information through correct 

responses of the parts of the problems are indicator of them to use graphs as visual 

reasoning tools. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Conceptual framework of the study 

 

 

2.4 Summary  

The main reason for using the visual reasoning framework for the present study rested 

on the premise the use of visual reasoning strategy to promote the abilities to read and 

Content domain : 

1. Slope/Rate of Change  

2. Limit & Tangent  

3. Properties of functions & graphs  

4. Graphs of function and its derivative  

5. Application of derivatives  

Encoding & Decoding 

Processes  

Knowledge  

& Scheme  

Problem  

Solution    

Types of Visual Reasoning    
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interpret could improve the metacognition (Kultur, Ozdemir & Konyalioglu, 2011; Lim 

& Noraini, 2007) and achievement among pre-university students. The focus of the 

study required a practical model that could facilitate between instructor and learning 

outcomes. To this end, the making sense of graphs provided a pedagogical 

recommendation of reasoning instructional to help students making meaningful 

connections among learning, understanding and reasoning, and achievements (Leung & 

Cheng, 2004).      

 In the context of the present study, this method of reasoning meant assisting 

learning strategies that would foster understanding of relations among the concepts of 

derivative via the active utilization of the encoding and decoding processes. The scope 

of the study was thus confined to designing tasks to enhance understanding of functions 

and derivatives and visual reasoning, predicted from the encoding and decoding 

processes. There was no intention to examine the physical actions and development 

aspects such as those involving body gestures such as eye or hand movements.         
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CHAPTER 3: METHODOLOGY 

 

3.1 Introduction 

The main purpose of this study is to develop a framework that can be used to assess the 

visual reasoning ability of the pre-university students when they are using graphs to 

solve problems on functions and derivatives. The foci of the study are to examine the 

students’ usage level of graphs (and diagrams) during their daily learning of mathematic 

inside and outside of the classroom contexts, their preference method and their graph 

reasoning ability that they adopted when using Cartesian graphs to solve tasks involving 

functions and derivatives. This study also proceeded to investigate the correlations 

among the students’ usage levels in using graphs (or diagrams), their preference method 

and their graph reasoning ability when solving problems on functions and derivatives. 

The study then investigated the difficulties and misconceptions that the students faced 

when constructing and reading or interpreting graphs. Data were gathered using 

document analysis on theories and models on related visual reasoning for the 

development of the framework. The data on the visual reasoning ability of the students 

were collected using a questionnaire and two sets of the mathematical tasks on functions 

and derivatives. Quantitative data analysis was conducted using Excel and Statistical 

Package for the Social Science (SPSS).  

This chapter presents the methodology of this study in five main sections 

comprising of : a) the research design, b) participants, c) instrumentation, d) data 

collection, and e) data analysis. 
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3.2 Research Design 

A research design is the complete layout or plan to answer the research questions of the 

study in order to support and strengthen the prospect of representing the real situation 

(Noraini, 2010). It strategizes to handle and overcome complexities encountered in 

conducting the research processes (Polit & Beck, 2009) that could impede the validity 

and reliability of the research findings (Burn & Grove, 2003). This study employed the 

quantitative approach in order to explain the precise measurement and quantification of 

the single variable, namely visual reasoning, that the pre-university students exhibited 

when solving graph-related problems on functions and derivatives.  

 

Phase 1 

 Investigate the current theories & models on 

visual reasoning 

Identify  

• the characteristics &  properties of 

Cartesian graph  

• the characteristics of the visual 

reasoning ability 

 Framework to 

Assess Visual 

Reasoning 

   

 Develop & validate framework  

     

     

Phase 2 

 Identify the content domain of function & 

derivative 
 

Validation of 

Constructs    

 Develop & validate instruments  

     

     

Phase 3 

 Assess :  
Visual 

Reasoning 

Ability 

 • students’ visual reasoning ability  

 • correlation among  instruments  

 • difficulties & misconception  

Figure 3.1:  Flowchart of the phases in the research design 

 

The overall structure of the research design is demonstrated by the flowchart in 

Figure 3.1. In general, this study can be divided into three phases. Phase 1 of the study 

was the investigation on the related theories, models and frameworks in order to prepare 
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the required frameworks to assess the visual reasoning ability. It engages a three-stage 

process. Stage 1 involved the document analysis on the literature describing the current 

trends and practices on using graphs or other visual tools in the teaching and learning of 

mathematics, and the literature to identify the characteristics of visual reasoning ability 

and visual reasoning process. The study employed Turner’s method (1990, 1991, 1998) 

of theory synthesis which involves drawing together existing theories, models and 

frameworks to extract and integrate key ideas to generate a meaningful framework that 

has relevance to practicality and methodological of the visual reasoning ability. The 

search of the theories, models and frameworks started with both hand-search and 

electronic search on mathematics educational journals, articles and books. The study 

excluded the large body of research into lay experiments and perceptions of 

visualizations and visual reasoning, although empirical papers covering related theories 

were included. Instead of using an official definition of theory, the study adhered to 

proposal by Sutton and Staw (1995) that theory is about answering the why questions 

and about the relationships among trends and phenomena. Turner’s method includes 

three steps: 1) planning of synthesis where the existing theories, models and 

frameworks were clarified and relevant, plausible and useful related information were 

extracted, 2) synthesis where theories, models and frameworks were itemized and 

classified to compare points of convergence and 3) refining the synthesis where the 

products from Stage 2 were further analysed including examination on fundamental 

processes in order to generate further theoretical agreements and a more robust 

framework.     

Stage 2 involved the refinement of the initial framework identified in Stage 1 

through the individual social psychology perspective type  of focus group (Belzile & 

Oberg, 2012; Farnsworth & Boon, 2010; Kamberelis & Dimitriadis, 2013). The ideas 

offered by the participants through the individualistic social psychological perspective 
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are characterized as stable individual reasoning and thinking expressed (Eagly & 

Chaikan, 2007; Fazio, 2007; Markova, Linell, Grossen & Orvig, 2007) and elaborated 

promptly in the focus group setting (Belzie & Oberg, 2012). The setting of the focus 

group was designed to facilitate thought-provoking and interaction among each other. 

The interactions among the participants were organized to encourage verbal exchanges 

of ideas (Farnsworth & Boon, 2010; Lezaun, 2007). The initial framework was then 

refined. Stage 3 proceeded to a further refinement and finalizing the framework using 3-

round Delphi method. The refined framework from Stage 2 was sent to 50 local and 

international experts in the areas of visual reasoning, mathematical contents (functions 

and derivatives), Cartesian graphs, and mathematics education. The final framework 

was then sent to an international expert for the final validation.    

 

 

Stage 1 

 Initial development of the framework  

• Investigate the current theories & 

models on visual reasoning 

• Identify the characteristics of the visual 

reasoning ability 

 
Initial 

framework 

     

     

Stage 2 

 Refinement of framework   

• Focus group discussion : social 

psychology perspective    

 
Refined 

framework  

     

     

Stage 3 
 Refining final framework   Final 

framework   • Focus group discussion : Delphi method   

Figure 3.2: Flowchart of the development of framework for assessing visual reasoning 

in Phase 1 
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Phase 2 involves the setting of the content domain of functions and derivatives 

and the development of the three instruments and their validations. The detail 

description of Phase 2 will be explained in the section 3.4. 

Phase 3 involves the use of the instruments to assess the students’ usage levels 

of graphs, their preference method and graph reasoning ability together with the 

correlations among the results and finally the difficulties and misconceptions faced by 

the students. These involved the process of data collection and data analysis. Cross-

sectional survey design with direct administration of paper-and-pencil task items was 

used to describe the variable in the study due to each set of the data being collected at 

one point in time and involved a large group of students. The term survey is designated 

as any research activity in which the investigator gathers quantitative data from 

participants for the purpose of examining the characteristics, opinion or intentions of 

those participants (Noraini, 2010; Polit & Beck, 2009). A quantitative research rest 

upon numbers aggregated into statistics, to enable researchers to interpret the obtained 

data and reach conclusions (Moru, 2006; Spinato, 2011) and therefore be fairly 

structured to enhance objectivity. Quantitative data can be transposed into numbers or 

coding in a formal, systematic process to obtain information and to describe variables 

and their relationships (Moru, 2006; Noraini, 2010; Spinato, 2011). The study utilised 

structured questionnaires which enabled me to quantify the responses and to conduct 

statistical analysis and maintained objectivity through structured data collection. The 

study described: 1) the usage levels of the students with regards to graphs or diagrams 

when learning mathematics, 2) their preferred method when solving mathematical tasks, 

3) the types of visual reasoning that they adopted when using graphs to extract 

information, 4) the correlation among the results of the three instruments, and 5) the 

errors they performed, in order to solve problems on functions and derivatives.  The 

research setting refers to the place where the data collection is taking place (Noraini, 
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2010). In this study, data were collected in a classroom environment where the students 

were having their daily learning so as to provide a natural and familiar setting for them 

to perform the tasks. Within the context of this study, the visual reasoning adopted by 

Malaysian students, at any levels, has yet to be documented.   

 

3.3 Participants 

Noraini (2010) defines participants as the entire aggregation of the cases that meet the 

criteria to participate in a study and about which the researcher is interested to make 

description of. The participants of the focus group discussion were seven experts in the 

areas of functions and derivatives and are attached to both the public and private higher 

institutions in Selangor. They have been in the teaching profession for more than six 

years. All of them had been teaching calculus at pre-university level and are very well-

versed in using Cartesian graphs to solve mathematical problems. The study assumed 

that the experts participated in the focus group had their own ideas about the methods of 

solving mathematical problems and the use of graphs in solving problems on functions 

and derivatives. This focus group was set at one of the private colleges in Selangor and 

within easy reach by all experts. All of the participants gave their consent that their 

participations will be strictly confidential and their opinions and views will be used only 

for the academic and research purposes. They were also reminded that the purpose of 

the discussion was to seek their ideas on the matters discussed and there was no right or 

wrong answers in the discussion.             

The participants to respond to the instruments were 194 pre-university students 

enrolled to study the South Australian Matriculation (SAM) Programme at one of the 

colleges in Selangor. Most of the students were selected excellent academic performers 

in the national examination, Sijil Pelajran Malaysia (SPM) nationwide including Sabah 

and Sarawak. They were mostly sponsored by the Jabatan Perkhidmatan Awam (JPA) 
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and other semi-government authorities such as Majlis Amanah Rakyat (MARA), 

PETRONAS, Yayasan Tenaga Nasional (YTN) and some state governments. The South 

Australian Matriculation (SAM) programme adhered to the syllabus of the South 

Australian Certificate of Education (SACE), which is based in Adelaide, South 

Australia.  Upon completing the 18-month pre-university or matriculation programme 

with satisfactory university entry points together with their sponsors’ cut-off point 

requirements, they will pursue to the tertiary level of education majoring in various 

disciplines such as Engineering, Sciences or Commerce, at top-ranked universities in 

Australia and New Zealand. The distribution of students by gender, majors and races is 

as in Table 3.1. For the purposes of the analysis, the participants were not distinguished 

among their majors, classes and academic achievements. Their ages ranged from 18 to 

19 years old.   

 

Table 3.1: Distribution of students’ demographic details 

Characteristics  Number of students 

Gender 
Male  101 

Female  93 

Race  

Malay  158 

Chinese  21 

Indian  9 

Others  6 

Major  

Engineering  72 

Science  58 

Social Science  64 

SPM Mathematics  
A+  187 

A  7 

SPM Additional Mathematics  

A+ 102 

A 37 

A-  30 

B+ 19 

Not taken  6 
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All students studying at the SAM programme are required to take Mathematical 

Studies as one of the subjects for the South Australian Certificate of Education 

examination, regardless their intended major at the university. The syllabus is based on 

the curriculum statement and the subject outline set by the SACE board (SACE, 2014). 

Despite being offered a ticket to study abroad on the basis of very competitive SPM 

results, and the fact that the students had been exposed to the notions of function and 

derivative since the upper secondary levels, they showed various capabilities with 

regards to their mathematical ability and in understanding in the related concepts. At the 

time of the study, the participants had already completed the syllabus of the SACE and 

were in the revision months for the final external examination. They, therefore, had 

been working with tasks on conceptual and application of functions and derivative and 

were fully readied with the knowledge and understanding of the topics. They were 

expected to draw upon those experiences and knowledge to complete the questionnaire 

and tasks. The reasons for including the entire batch (for the pilot study and actual 

study) were that it was a manageable size and the data were collected at a localised 

setting. The response rate for the students was 100% and very satisfactory.  This 

resulted from the fact that the researcher monitored the setting herself and oversaw the 

processes of completing the questionnaires and tasks.  

The students were from the same background and eligibility criteria. Eligibility 

criteria defined as the set of measures that specify the characteristics of the subjects in 

the population must possess in order to take part in the study. The eligibility criteria of 

the students to be included in this study are that they : 1) must have finished their SPM 

examination, 2) must be a student enrolled to the SAM programme and is familiar with 

the SACE curriculum and syllabus content, and 3) must have been exposed to the 

concepts of function and derivative. 
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3.4 Instrumentation 

Three main instruments: (a) the Visual Representation Usage Levels  (VRUL), (b) the 

Mathematical Visuality Test (MVT) and (c) the Graph Reasoning Test (GRT) were 

employed to collect the data of the study.  

 

3.4.1 Visual Representation Usage Level (VRUL) 

3.4.1.1 Description of VRUL 

The VRUL (Appendix B) consisted of two sections. The first, Section A: The General 

Information about Respondent, required students to complete their demographic data: 

gender, race, major, and the grades that they had obtained for the Mathematics and 

Additional Mathematics at the SPM level. The distribution of students and their 

demographic data are as displayed in Table 3.1.    

In the second section, Section B: The Visual Representation Usage Level, the 

students were asked for their views on the use of graphs and diagrams in their daily 

learning of mathematics. This section is used to address research question 2(i). The 

instrument consists of 17-Likert scale items that fall under four different constructs :  

1) five items on the students’ usage levels of graphs or diagrams in their daily 

learning behaviour,  

2) three items on the usefulness of graphs or diagrams in solving mathematical 

problems,  

3) four items on the students’ difficulty in using graphs or diagrams in solving 

mathematical problems,  

4) five items on the teacher’s behaviours in using graphs or diagrams in 

teaching mathematics.  
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In the first category of the students’ usage of graphs or diagrams in their daily 

learning behaviour, students were asked about their usage of graphs or diagrams and 

those graphs or diagrams used by their teachers and the textbooks in helping them to 

solve mathematical problems. An example of the items in the first category is Do you 

usually use graphs or diagrams in solving mathematical problems?. The second set of 

items in the second category on the usefulness of graphs or diagrams in solving 

mathematical problems sought on the students’ efficiency in using graphs or diagrams 

to assist them in solving mathematical word problems. An example of the items in the 

second category is Do you think the use of graphs or diagrams is helpful in efficiently 

solving mathematical word problems?.  

  The third category of the students’ difficulty of the use of graphs or diagrams in 

solving mathematical problems looked on the ease of the students to construct graphs or 

diagrams to help them solving mathematical word problems. An example of the items in 

the third category is In general, do you know how to construct graphs or diagrams for 

solving mathematical word problems?. Lastly, the fourth set of items of students’ view 

on teacher’s behaviours in using graphs or diagrams in teaching mathematics searched 

for the students’ views on their teachers’ usage and encouragement on the use of graphs 

or diagrams in solving mathematical word problems. An example of the items in the 

fourth category is Do your mathematics teachers use graphs or diagrams to explain 

how to solve mathematical word problems?.  

  

3.4.1.2 Validity and reliability of the VRUL 

For the purposes of this study, the content validity of the VRUL was defined as the 

extent to which the measures or scales, ‘Not at all’, ‘Slightly’, ‘Moderately’, ‘Very 

much’ and ‘Definitely’, accurately reflected students view on the usage level of graphs 

and diagrams in the teaching and learning of mathematics. In this study, five 
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mathematics experts, with at least six years of teaching experiences were consulted on 

the contexts, language and terminologies that were used in the questionnaire so that 

students are able to understand and respond to them correctly.  

Based on their comments and feedbacks, adjustments were made to suit the 

students’ understanding on the terminologies. Three feedbacks and actions were taken:  

1) The original instrument (permission was requested as in Appendix C) required 

for the  students to rate each item on a five-point Likert scale, with only end 

points scales with labelled 1 for ‘Not at all’ and 5 for ‘Definitely’. This caused 

confusion to the students in estimating their answers. Therefore, specific terms 

of levels were assigned to the instruments. The levels are; 1 for ‘Not at all’, 2 for 

‘Slightly’, 3 for ‘Moderately’, 4 for ‘Very much’ and 5 for ‘Definitely’. These 

were more familiar and ‘clearer’ terms to the students in ensuring that their 

responses are more accurate.  

2) The word ‘image’ brings too vague or too broad meaning. It may take, for 

example, the form of maps that are very unlikely to be used in the teaching and 

learning of derivatives. Therefore, since the study focused on the use of graphs, 

the word ‘image’ in the original instruments was replaced by the word ‘graph’.  

3) The two words, ‘difficulty’ and ‘troublesome’ in two of the items triggered the 

same meaning to the students, and be regarded as repetitive. The items are ‘How 

difficult is it for you to make diagrams by yourself for solving mathematical 

word problems?’ and ‘How troublesome is it for you to use diagrams / graphs in 

solving mathematical word problems?’. As a result, one of the items, ‘How 

troublesome is it for you to use diagrams / graphs in solving mathematical word 

problems?’ was removed due to the fact that students may have the idea that it is 

seeking for the same concept as the other item. In addition, the word ‘difficulty’, 
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in the item was replaced with the word ‘easy’ so as to bring consistency on the 

positivity of the views in the items.  

 

The VRUL was reported to be a reliable instrument to assess the students’ usage 

levels of diagrams in solving mathematical problems (Uesaka, Manalo, & Ichikawa, 

2007). The adapted version of the VRUL was pilot-tested on 50 students to determine 

the reliability of the VRUL for this study. The students were studying the same 

programme and with the same education backgrounds, in terms of their academic 

performance, but not included as participants in the actual study. Table 3.2 shows the 

reliability estimates as measured by Cronbach Alpha for the overall VRUL and its four 

main categories. The coefficients ranged from 0.64 to 0.89 for the categories and 0.87 

for the overall reliability.       

 

Table 3.2: Reliability coefficients of the VRUL and its categories  

Category Alpha Cronbach coefficients 

Overall VRUL 0.87 

 

The usage of graphs or diagrams in their daily 

learning behaviour. 

 

 

0.74 

The usefulness of graphs or diagrams in solving 

mathematical problems 

 

0.81 

The students’ difficulty on the use of graphs or 

diagrams in solving mathematical problems 

 

0.64 

The teacher’s behaviours in using graphs or diagrams 

in solving mathematical problems. 

0.89 
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3.4.2 Mathematical Visuality Test (MVT) 

3.4.2.1 Description of MVT 

This instrument (Appendix D) was designed to investigate encoding process of 

the students specifically on the method that they prefer or spontaneously adopted when 

solving word problems on functions and derivatives. The instrument elaborates on a 

construct called mathematical visuality that is useful in addressing research question 

2(ii). The mathematical visuality clarifies productive ways of different methods of 

preference students employed to assist them when solving mathematical word problems. 

Three levels of mathematical visuality: visual, partially visual and non-visual, clarify 

important difference among the students’ choice of method of solving mathematical 

word problems. In detailing the three categories, the study drew categories of 

mathematical visuality from prior studies over the past four decades (Kang, 2012; 

Krutetskii, 1976; Presmeg 1986, 1993, 2006).    

 The MVT consists of word problems that can be solved either graphically or 

algebraically, which indirectly acquire for the students’ understanding on the concepts 

of functions and derivatives. It was a paper-and-pencil test with an open-ended format. 

The items were constructed based on the SACE curriculum with some being adapted 

from the main textbook for Mathematical Studies (Haese & Haese, 2010). SACE final 

examination questions are designed to inter-relate other areas in the syllabus such as 

integration, trigonometry and statistics. Therefore, it was not appropriate to adopt the 

questions for it offers little content validity to the domain of functions and derivatives 

that are covered in the study and testing objectives (Roweton, 2003). At present, there is 

no standardised test available, specifically in Malaysia, to test on students’ method of 

preference when answering word problems on functions and derivatives. Other studies 

globally concentrate on general mathematical word problems focusing on other aspects 

such as basic understanding of the concepts of functions (Dubinsky & Wilson, 2013), 
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functions to categorize students’ ways of thinking  (Moore & Thompson, 2015) and 

students’ co-variational and quantitative reasoning (Moore, 2014; Weber, 2012).     

The final instrument comprised of 5 items with each item to have a few follow-

up parts. All items were word problems and were set such that students should be able 

to solve them either by using the algebraic method or by sketching graphs to represent 

and explain solutions. Each item represented one content-domain : rate of change, slope 

and limits, properties of function and its derivatives and applications of derivatives. The 

descriptions of the items are as follows: 

 

Item 1 : Rate of change 

The task in item 1 assessed students’ understanding on the concepts of different types of 

rates of change; the constant rate of change, the average rate of change and the 

instantaneous rate of change. The problem required students to explain each of the types 

in relation to the graphs of functions. Students were supplied with the word ‘graph’ as a 

hint for them to use or sketch/draw graphs as a method of explaining or describing the 

rates of change. An example of the item is as shown in Figure 3.3.  

 

Explain how are the following related to graphs of function?  

(a) Constant rate of change  

Figure 3.3: An example of item on rate of change in the MVT 

 

The study anticipated that students would illustrate the explanation using graphs 

of straight lines with, either sloping up or sloping down, to represent the constant rate of 

change. For both of the other two, the average rate of change and the instantaneous rate 

of change, it was expected that students sketch curved graphs of functions and 

consequently use the concepts of chord between two points and tangent at a particular 
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point to illustrate and described the average and instantaneous rates of change 

respectively. They may also enhance their explanation through the use of right-angled 

triangle to show the increment in both the horizontal and vertical directions.     

 

Item 2 : Limit and tangent  

The task in item 2 assessed students’ understanding on the concepts of limits and 

tangent. Students were presented with the formula of slope between two points and the 

formula for limit. The problem required the students to justify their understanding on 

the relationships between the ideas of limit and the concepts of tangent. An example of 

the item is as shown in Figure 3.4.  

    

Explain what you understand of the formula  

(a) 
   

ax

afxf




 

Figure 3.4: An example of item on slope and limits in the MVT 

 

The study anticipated that students would illustrate the explanation using the 

chord between any two points and consequently illustrate the situation when the 

horizontal distance between the two points is getting smaller and eventually 

approaching zero, relate it to the graph of curved  to represent the idea of limits and 

hence the tangent of the function at a particular point.    

 

Item 3 : Properties of functions and graphs  

The task in item 3 assessed students’ understanding on the concepts of functions and 

graphs and their properties. Students were presented with an algebraic expression of 

logistic function and follow-up parts that requested them to look for the basic properties 
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of functions such as the domain and range, the x-intercept and y-intercept, the vertical 

and horizontal asymptotes and the behaviour of the function as the variable x get very 

small (-∞) and very big (+∞) values. The item continued with tasks for the students to 

analyse some properties of the first and second derivatives.  An example of the items is 

as shown in Figure 3.5. 

As mentioned earlier, the students have indeed been using the graphic calculator 

during most of their daily learning of mathematics. They in fact should be very well-

versed with its use. Therefore, the study anticipated that students would make use of 

their graphic calculator to sketch the graph of the function and hence to read out most of 

the information from it. They should also be able to extract information required on the 

first derivative and need to further draw the graph of the first derivative or the second 

derivative in order to extract information related to the second derivative of the 

function. They should be able or use the ‘zoom-in’ or ‘zoom-out’ function keys to 

adjust the screen in order to view those patterns or trends of the graphs as required by 

the questions such as the domain and range.  

 

Consider the function      
xe

xf



32

50
      

(a) State the domain of the function  

(c) Find the x-intercept(s). 

(f) Discuss  xf   as  x      

Figure 3.5: An example of item on properties of graph in the MVT 

 

If the students were to sketch the graph of y = f’(x), they should be able to 

reason the sign of the derivative function based on the location of the graphs either 

above or below the x-axis. Subsequently, to interpret the function y = f (x), based on the 
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sign of y = f’(x), would require the basic knowledge on the relationship between both 

functions. In looking for the point of inflection, students may use the graphic calculator 

to sketch the graph of y = f’’(x), and read-off its zero(s).      

 

Item 4 : Graphs of functions and its derivative  

The task in item 4 assessed students’ understanding on the concepts of function and its 

derivative. The item required students to describe the original function based on the 

given conditions of its first and second derivatives. Students were presented with 

information on the initial value of unemployed people, u, to be 800,000. The first 

derivative and the second derivatives were set to be negative and positive respectively. 

An example of the item is as shown in Figure 3.6.  

 

The number of unemployed people u at time t was studied over a period of time. At the 

start of this period, the number of unemployed was 800 000. 

Throughout the period, it is observed that 
dt

du
< 0 and 

td

ud
2

2

> 0. 

Describe the number of unemployed people over time.  

Figure 3.6: An example of item on graph of function and its derivative in the MVT 

 

The study hope for the students to use the conditions set for the first and second 

derivative to sketch the graph for the unemployed people y = u(t). The students should 

know that the negativity of the first derivative implies that the number of unemployed 

people is decreasing while the positivity of the second derivative indicate the shape of 

the graph of unemployed people to curve up (or convex as referred to the mathematical 

terminology). The study also expect the students to set the y-intercept of the graph at 

800,000 indicating the initial number of unemployed people and not to sketch their 
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graph to the left of the y-axis, or towards the negative values of the horizontal variable, 

the time, t. They should also realize that the number of people will always be positive 

and therefore they cannot extend the graph to below the horizontal axis.       

Item 5 : Applications of derivatives 

The task in item 5 assessed students’ understanding on the concepts of function and 

derivative when applied to the real life situation. Students were given an algebraic 

expression representing the number of students logged into an educational website over 

a five-hour period and were asked to find information such as the interval of time when 

the students and the rate of change of the students logged onto the website is increasing. 

An example of the item is as shown in Figure 3.7. 

  

The number  tA  of students logged onto an educational website at any time t, over a 

five-hour period is approximated by the formula   4218175 tttA   , 50  t .  

Find : 

(a) the rate of change of the number of students logged onto the website after 2 

hours  

 Figure 3.7: An example of item on applications of derivatives in the MVT 

 

The study anticipated the students to draw the graph of the function using their 

graphic calculator and read off the data from it in order to answer the follow-up 

questions.  Students must be able to recall the relationships among the properties of 

functions and derivatives that represent the real life situations. Students should also be 

alert on the limits imposed for the situation, which is over the first five hours only.  

 

3.4.2.2 Validity and reliability of the MVT 

The items were written in English as the medium of instruction in the classroom was 

English. I have been teaching the pre-university programme for at least 25 years and 
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therefore am proficient in the language to be able to construct the items.  The initial 

instruments comprised of five questions. For its content validity, the instrument was 

sent to three experts in the area : 2 locals and 1 international (Appendix E) for their 

relevance and concordance with the content-domain and syllabus. Adjustments were 

made based on the feedbacks from the experts : 

1) The title of the survey was proposed to be more specific instead of ‘Cross 

Sectional Survey 1’. Therefore it was change to Mathematical Visuality Test 

since the purpose of the instrument is to look for the students’ mathematical 

visuality when answering the mathematical word problems.  

2) The words and terminologies used in the instruction section are to be as 

simple as possible so as to make sure that students were able to understand 

and abide to.  

3) Item 2 and 3 of the original instrument were advised to be replaced since 

students were still able to solve for the answers using the information given 

and without to sketch any graph. 

4) In item 5 of the original instrument, the instruction to find  
dt

dA
 was 

proposed to be excluded since it would indirectly lead students to solve it 

using algebraic manipulation.     

 

The instrument was pilot-tested with the same 50 students for the VRUL test. 

The worked solutions by the students were marked based on the final rubric to increase 

consistency of scoring (Moskal & Leydens, 2000). The rubric was based on the 

categories listed under the encoding process of the framework for assessing the visual 

reasoning.  

The scoring procedure began with the allocation of points to each of the 

category in the encoding process as listed in the framework for assessing visual 
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reasoning, as shown in Table 3.3. The students’ works were then checked and points 

were assigned based on the respective category. Frequencies, percentage, mean and 

standard deviation were then calculated for all parts of the items. As a measure of 

precaution to refine the rubric, 5 students’ works were selected as ‘anchor papers’, sets 

of scored solutions which reflect a variety of different solutions to the items and 

different aspects of the rubric. Minor adjustments were made based on the ‘anchor 

papers’.   

 

Table 3.3: The rubric for the MVT 

Point Code Description 

6 CGCS Correct graph with correct solution  

- Produces correct graph to explain and represent the 

solutions and managed to arrive to the correct solution  

5 CGIS Correct  graph with incorrect solution  

- Produces correct graph to explain and represent the 

solutions but did not manage to arrive to the correct 

solution   

4 IGCS Incorrect graph with correct solution   

- Produces incorrect graph to explain and represent the 

solutions and managed to arrive to the correct solution 

based on the wrong graphs. Solutions may differ from 

the original solutions set.  

3 IGIS Incorrect graph with incorrect solution  

- Produces incorrect graph to explain and represent the 

solutions and did not manage to arrive to the correct 

solution 

2 NGCS No graph with correct solution   

- Produces no graph to explain and represent the 

solutions and managed to arrive to the correct solution 

1 NGIS No graph with incorrect solution 

- Produces no graph at all to explain and represent the 

solutions and did not manage to arrive to the correct 

solution  

0 NA No answer / Not attempted  

- Left the item un-attempted – no graphs or any algebraic 

solutions.  

 

 

Reliability is achieved when any other one student of similar characteristics is 

able to obtain the same score regardless of when the student completed the test and 
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when it is being marked and who marked the test (Noraini, 2010). Two local experts in 

the area and subject were assigned to mark the worked solutions by the students and 

subject to inter-rater reliability analysis. Inter-rater reliability is defined by Noraini 

(2010) as when scores by two independent experts or raters are consistent due to a well-

constructed rubric and scoring criteria for each level or criteria. The overall reliability of 

0.94 measured with Cohen’s Kappa of the MVT was based on the inter-rater reliability 

score of the two experts and indicates that the MVT was reasonably reliable for the 

study. Although scoring rubrics may not eliminate variations that occur among the 

raters completely, they do reduce the occurrence of discrepancies. The main objective is 

for the raters to come to the same score for the same student.  

An item analysis was performed on the results of the pilot test. Those items that 

were outside the ranges of 0.2 and 0.8 (Singh, 2012) for both the difficulty index and 

discriminant index, respectively, were modified. Difficulty index indicates the total 

number of students who were able to correctly solve each item. These values would be 

able to identify the vagueness or complexity of each item for the majority of the 

students (Kaplan & Saccuzzo, 2005). Discriminant index determines if one student had 

done well in one part or item will also performed well in the whole set of item. These 

values would be able to differentiate students with varying ability in terms of the subject 

content. Items that caused confusion to the students were re-worded or reviewed for 

clarity (Ghadi, Abu Bakar & Alwi, 2013). The final instrument had appropriate levels of 

difficulty ranged from 0.6 to 0.97 and levels of discriminant ranged from 0.66 to 0.89.       

 

3.4.3 Graph Reasoning Test (GRT) 

3.4.3.1 Description of GRT 

This instrument (Appendix F) was designed to investigate the decoding process of the 

students and   how students use graphs to solve problems on functions and derivatives 
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and to measure aspects of acquiring the understanding on the concepts of functions and 

derivatives. The instrument elaborates on a construct called graph reasoning that is 

useful in addressing research question 2(iii). The graph reasoning clarifies how students 

make use of the visual information depicted on graphs when solving problems on 

functions and derivatives. Three levels of decoding or graph reasoning ability: reading 

the graph, reading between the graph and reading beyond the graph clarify important 

difference among students’ ability to read, extract and interpret data or information 

embedded in graphs. In determining the three levels of decoding process, the study drew 

categories of visual reasoning from prior studies over the past three decades (Friel et al, 

2001).   

The GRT consists of problems that are accompanied by Cartesian graphs which 

require the students to look for answers through reading and interpreting them. The 

tasks indirectly acquire for the students’ understanding on the concepts of functions and 

derivatives visually. As with the MVT, it was a paper-and-pencil test with an open-

ended format. The items were also constructed based on the SACE curriculum with 

some being adapted from the main textbook for Mathematical Studies (Haese & Haese, 

2006). SACE final examination questions are designed to inter-relate other areas in the 

syllabus such as integration, trigonometry and statistics. Therefore, it was not 

appropriate to adopt the questions for it offers little content validity to the domain of 

functions and derivative that are covered in the study and testing objectives (Roweton, 

2003). The framework for the GRT, based on the content domain and the decoding level 

is as illustrated in Table 3.4.  
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Table 3.4: Framework for the Graph Reasoning Ability  

 Reading the graph  Reading between the 

graph  

Reading beyond the 

graph  

Slope   • Identify the y-

coordinate of a 

given point  

• Identify as the 

increment in one 

variable with 

respect to another 

related  variable  

• Making comparison 

of the slopes 

• Make relationships 

between 

instantaneous and 

average slope   

Tangent  • Identify the 

coordinate of a 

point on the graph 

and line as the 

point of contact 

• The location / 

position of graphs 

of functions (one 

above the other) 

• Calculating the 

slope of the tangent 

at the point of 

contact 

• Relationship of the 

two functions in 

terms of the 

distance between 

them 

 

• Notice the 

relationship of the 

slope of the 

tangents at 

particular points or 

particular 

conditions  

Properties of 

graphs  
• Identify the 

coordinates of 

zeros  

• Read off the 

vertical asymptote 

and the horizontal 

asymptote  

 

• Identify the 

equation of the 

vertical asymptote 

• Making connection 

of the zeros of  

y=f ’(x) as the 

stationary points of 

y=f(x) 

• Make decision on 

the nature of 

stationary points 

through the signs of 

y=f’(x) 

• Make connection of 

the visible shape of 

the graph with the 

signs of y=f’(x) and 

y=f’’(x)  

Graphs of 

functions 

and their 

derivatives  

• Identify the 

increasing and 

decreasing parts 

of the graph 

• Identify the shapes 

of the graph 

• Evaluating y=f(x) 

as x positive 

negative infinity  

• Make connections 

of the graphs and 

their derivatives 

Application 

of 

derivatives   

• Comparing the 

real life situations 

verbally and the 

graphs of the 

situation  

• Describing the 

slope of the graphs 

as rate of change 

• Identify the 

properties of the 

second derivative 

from the graph of 

y=f(x) 

• Relating important 

points and 

properties of the 

graphs to the real 

life situation 
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At present, there is no standardised test available, specifically in Malaysia, to 

test on students’ ability to read and interpret Cartesian graphs when solving problems on 

functions and derivatives. Other studies globally that had concentrated on general 

mathematical problems focusing on other mathematical areas such as geometry 

(Bardelle, 2010; Clements & Sarama, 2012) which is very visual in nature, statistics 

(Lee, Khng, Ng & Ng, 2013) which make us of more types of graphs to represent the 

data and other areas that used other types of visual information such as diagrams (Booth 

& Koedinger, 2012; Fathulla & Hameed, 2009) and representations (Koedinger, Alibali 

& Nathan, 2008).  

The GRT comprised of three scales that make up the constructs of the decoding 

processes in graph reasoning (Friel et al, 2001; Lowrie et al., 2011, Sharma, 2013) : 1) 

reading the graph, 2) reading between the graph and 3) reading beyond the graph. 

Reading the graph measured students’ ability to extract information directly from the 

graph. In reading between the graph, students need to be able to understand the 

relationships among the information shown in the graph and reading beyond the graph 

required students to interpret the information displayed in the graph. Table 3.5 list the 

distribution of each part of the items to the scales describing the decoding ability.  

 

Table 3.5: Scales of the decoding process for the items in GRT 

Decoding scale Item 

Reading the graph  

1(a)(i), 1(b)(i), 2(a)(i) 

3(b)(i)(1), 3(b)(i)(2), 3(b)(i)(3), 3(b)(ii)(1) 

4(a)(i), 4(a)(ii), 5(b)(ii)     

  

Reading between the graph  

1(a)(ii), 1(b)(ii), 1(b)(iii), 1(c)(i), 1(d)  

2(a)(ii), 2(b)(i), 3(b)(ii)(2)  

4(b), 5(a), 5(b)(i)     

Reading beyond the graph  

1(c)(ii), 1(e), 2(b)(ii) 

3(a), 4(c),    

5(b)(iii), 5(b)(iv) 
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The final instrument comprised of 5 items with each item to have follow-up 

parts. All items were graph-accompanied problems on functions and derivatives and 

were set such that students need to refer to graphs for solutions, or in other words, the 

information are in the graphs. Each of the item may contain one or a mixture of content-

domains : slope, tangent, properties of functions, graphs of functions and its derivatives 

and applications of derivatives.  

The descriptions of the items based on the content domain and the decoding scales are 

as follows: 

 

a) Descriptions on items based on content domain and their graphical 

representations  

Item 1 : Properties of functions and graphs   

The tasks in item 1 assessed students understanding on the basic properties of functions 

and graphs. No specific expression of the function is given in order to avoid from the 

students manipulating it algebraically. The problem was accompanied by a Cartesian 

graph and it required students to relate the algebraic expression of the properties of the 

function to their visual representation on graph. Grids were added in the background of 

the axes system in order to help students with the spatial relationship among the 

properties. An example of the item is as shown in Figure 3.8.   

    Conceptually, it is anticipated that students are able to relate the algebraic 

expression  4f and  
   

13

1f3f





 
onto their visual representations as point and gradient 

respectively, on graph. Part (b) of the item tested the students reasoning ability to decide 

the larger values of the pairs of expressions. Students need to compare visually the 

vertical position of the points, the steepness or slanting of the chords and the tangent 

lines. Part (c) of the item required students to associate the algebraic expression to the 

positivity or negativity or the directions of the slopes of the tangent and chord and 
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subsequently to illustrate them on the graph and to recall the relationship between them.  

Part (d) of the item tested the students on the visual representations of both the chord 

and the tangent while part (e) of the item required the students to visualize the 

relationship between them.        

 

 

(b) For each of the following, decide which is larger.  

 (i)  2f   or  4f   

(ii) 
   

12

1f2f




  or   

   
34

3f4f





 

Figure 3.8: An example of item on slope in the GRT 

 

     Visually, the students were provided with basic graph of a function and gridded 

background, therefore, they were expected to be able to visualize the information by 

reading the data directly from the shape of the graph. The positions of   2f  and  4f  

are easily read-off from the grid while some thinking might need to be imposed in 

locating the gradient of a few pairs of points. Students should also be able to reason the 

decision for the gradients of chords and gradients of tangents in part (b)s by the shape of 

the curve which is an increasing function but decreasing in the rate of change. Part (c) 

of the item required the students to reason their answer by referring to the direction or 

the increasing pattern of the curve. Part (d) and part (e) needed for the students relate 

some concepts of the derivatives and to go beyond what were illustrated in the graphs.         
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Item 2 : Limit & tangent    

The tasks in item 2(a) assessed students understanding on the concepts of limit and 

tangent. No specific expression was given for neither the function nor the tangent line in 

order to avoid from the students manipulating them algebraically. The problem was 

accompanied by part of a Cartesian graph and it required for the students to relate the 

coordinates of the point of contact on the graph to another point on the tangent line. An 

example of the item is as shown in Figure 3.9.  

 

  

 

(i) g  ( __ )      = _____ 

 

(ii)        g  ( __ )     =     _____ 

Figure 3.9: An example of item on tangent in the GRT 

 

 Conceptually, the study anticipated that students are able to relate the gradient of 

the tangent line to the gradient of the curve at point B, which is also represented 

algebraically by  xg . By checking the coordinates of both points, students should be 

able to realize the small difference in both the horizontal and vertical directions which is 

the basic idea of limit. Part (b) of the item required the students to understand the 

relationship between the two functions in terms of their vertical location or vertical 

distances.  

    Visually, the students were provided with part of the graph showing a graph of a 

function and its tangent. Two set of coordinates for two specific points on the tangent 

(1.95,5.02) 
B 

(2,5) 

Tangent line 

g(x) 
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line were given, one was the point of contact and the other one was any point that is 

very near to the point of contact, with a horizontal difference of 0.05 and a vertical 

difference of 0.02. Part (i) of the item just needed the students to read directly from the 

graph while part (ii) required them to notice that the gradient of the curve at point B is 

also the gradient of the tangent line. Part (b) of the item needed the students to express 

the higher function minus the lower function in order to get the correct positive value of 

any distance. Part (ii) required them to go beyond what were illustrated and evaluate the 

relationship of the derivative of both functions at specific point, x= c.      

 

Item 3 : Properties of function and its derivative    

The task in item 3(a) assessed the students understanding on the properties of the 

function through the information given on the graph of its derivative. Students were 

given the graph of the derivative and students needed to look for the minimum value of 

the function. Conceptually, the students were expected to know the relationship between 

function and its derivative. Students are to understand that the positive and negative 

values of the derivative would indicate the decreasing and increasing of the function and 

hence the minimum or maximum of the functions. Visually, it was expected for the 

students to relate that the position of the derivative graph to be above or below the x-

axis would indicate the increasing or decreasing respectively, of the function and hence 

the position of the maximum or minimum of the function. Students may alternatively 

draw the sign diagram of the derivative function and determine the nature of the 

stationary point out of it.   

The tasks in item 3(b) assessed students’ knowledge on the properties of the 

function specifically on the asymptotes and second derivative of the function. 

Conceptually, the study expected the students to realize that the graph represented a 

rational function and therefore they would break and that asymptotes are among the 
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main features. The students should also understand that the properties of the function for 

various values of the first and second derivatives of the function. Visually, the students 

were expected to know that the vertical or horizontal dotted lines represent vertical and 

horizontal asymptotes.  On the same note, students should also realize that both axes 

may also be the asymptotes but students may ignore them due to the missing dotted line. 

These can actually be analysed by inspecting the shapes of the graphs when 

discontinuity happens and as the horizontal variable gets bigger in both directions, 

which is usually indicated by an arrow at the end of the graph. Students should also 

recognize that the values of the first and second derivative, as requested by the tasks, 

can be gathered from the direction of the graph of the function, either increasing or 

decreasing, and the shape of the graph of the function, either convex or concave.  An 

example of the item is as shown in Figure 3.10.  

 

(a) The diagram shows the graph of the gradient function of the curve  xfy   .  

For what value of x does  xf  have a local minimum? Justify your answer. 

 

 

Figure 3.10: An example of item on properties of functions in the GRT 
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Item 4 : Properties of functions and its derivative  

Similar to the tasks in item 3, item 4 assessed the relationship between the function and 

its derivative with an additional that students need to draw the graph of the derivative 

function of the given graph of the function. Conceptually, students were again tested on 

some properties of the function and its derivative such as the increasing, concavity and 

the extreme ends of the graph of the function. Visually, for the last part of the item, it 

was expected for the students to be able to relate the increasing and decreasing part of 

the graph to the positivity and negativity of the derivative function and hence its 

location to be above or below the horizontal axis. Students should also understand that 

the maximum point on the graph of the function is where the graph of the derivative 

should cut the horizontal axis. Lastly, students must be able to recognize that the part of 

the graph that tend to go flat towards the right of the horizontal axis indicates that the 

derivative is approaching the zero value and therefore its graph should be approaching 

the horizontal axis. An example of the item is as shown in Figure 3.11. 

 

The diagram below shows the graph of  xfy  . Give reason for each of your answer.  

 

 (a) State the values of x  for which: 

 (i)  xf   is negative  

 (ii)   0 xf  

Figure 3.11: An example of item on graphs of functions and their derivatives in the 

GRT 
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Item 5 : Rate of change & application of derivative    

The tasks in item 5(a) assessed the students’ visual reasoning on the application of rate 

of change. Students were given three graphs and three descriptions of motion to match. 

Conceptually, the study expects the students to have the knowledge on the types of rate 

of change, constant rate of change in this case.  Visually, the study anticipated that the 

students were able to relate the graphs of various straight lines and combinations of 

straight lines to the idea of motion and speed undertook by the vehicles. Students 

needed to look beyond the graphs provided in order to match with the real-life 

descriptions.      

 The tasks in item 5(b) portray another problem on real-life situation. It required 

the students to explore the growing trend of a population in a confined area, in terms of 

its rate of change, and thus subjected to some restrictions. Students were given a logistic 

curve to represent a growing population. Conceptually, the students were expected to 

relate the idea of rate of change to how the population was increasing and the 

relationship between the function and its second derivative. Visually, the students were 

expected to describe the rate of change of how the population is increasing by 

examining the changes in the gradient of the graph of the function. They should also 

recognize that the inflection point is to represent the maximum rate of change due to the 

steepness of the gradient and horizontal asymptote is to indicate the maximum capacity 

of the confined area. Finally, it was expected that the students were able to relate the 

shape or concavity of the graph of the function to the characteristics of the second 

derivative of the function. An example of the item is as shown in Figure 3.12. 
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 (b) A population, P, growing in a confined environment often follows a 

logistic growth curve, as shown in the diagram below. Give reason for your answers.  

 

(i) Describe how the rate at which the population is increasing 

changes over time.  

 

Figure 3.12: An example of item on applications of gradient of derivative in the GRT 

 

b) Description on items based on decoding scales   

The decoding process demonstrates three scales on how students may extract 

information embedded in graphs. All scales are incorporated in all items in the GRT, as 

listed in Table 3.4 and Table 3.5.   

 

Reading the graph  

The decoding process of reading the graph required the students to extract the 

information on the properties of functions and their derivatives directly from what they 

can see directly or as shown on the graph. In item 1(a)(i) and 2(a)(i), the students were 

expected to be able to locate the position of particular points directly based on the grid 

provided. Items 1(b)(i) required the students to decide on the larger between the two 

values based on the their vertical positions. Items 3(b)(i)(1), 3(b)(i)(2), 3(b)(i)(3), and 

3(b)(ii)(1) needed the students to be able to read off the properties of the functions, such 

as the asymptotes, the concavity or the shape of the graph and the stationary points, 

P 

t* 

t 

L 
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directly from the graph. Items 4(a)(i) sought the students’ knowledge on the decreasing 

part of the graph to relate to the negativity of the derivative function while item 4(a)(ii) 

needed the students to associate the positivity of the second derivative to the concavity 

of the graph of the function. Item 5(b)(ii) required the students to describe the rate of the 

population increasing by looking at the gradient of the graph of the function.   

     

Reading between the graph  

The decoding process of reading between graph required the students to interpolate and 

look for relationships among the data presented visually on a graph with regards to the 

properties of functions and their derivatives. Item 1(a)(ii) and 1(b)(ii) required the 

students to interpret the expression for the slope of chords and check their steepness in 

order to determine which is the larger in value. Similarly, item 1(b)(iii) required the 

students to make comparisons on the steepness of the tangent lines in order to determine 

the larger of the given two expressions representing the gradients of the tangent lines. 

On the other hand, item 1(c)(i) needed for the students’ knowledge to interpret the 

expression f’(1) and relate to the tangent line being slanting to the right or to the left in 

order to determine the sign of the value. Item 1(d) needed for the students to illustrate 

the difference between the chord and the tangent line.  

Item 2(a)(ii) needed for the students to realize that the gradient of the line 

between two points represents the gradient of the tangent line and further to transfer the 

interpretation into the symbolic form. In item 2(b)(i), students should be able to realize 

that the expression for the vertical distance between the two graphs is obtained by 

subtracting the lower function from the higher function. Item 3(b)(ii)(2) needed the 

students to identify the intervals for the function to be above the horizontal axis and at 

the same time to relate to the portion of the graph of the function being decreasing. Item 

4(b) needed for the students to interpret the part of the graph to the right of the 
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horizontal axis which is flatten to horizontal. Students are expected to relate this to the 

first derivative of the function and explain it in terms of the gradients instead of the 

function itself.  

Students were provided with three descriptions to match with the three sets of 

graphs in item 5(a). The graphs of time against distance displayed three different 

situation or motion of a vehicle between two towns. Students were expected to be able 

to interpret the motion in terms of the speed which is described through the changes of 

gradients throughout the journey. Item 5(b)(i) tested the students’ ability to relate the 

pattern on how the graph is increasing to the rate of change of the population in the 

problem.      

 

Reading beyond the graph 

The decoding process of reading beyond graph required the students to extrapolate, 

predict, or infer based on what were shown on the graphs to answer implicit questions. 

Items 1(c)(ii) required students to make decision on various position of new points in 

relation to the fixed point x=1 and to decide the sign of the algebraic value of the 

gradient based on the patterns of the slant directions of the lines. Item 1(e) continued to 

let the students display the situations (together with item 1(c)(i)) graphically. Students 

were expected to sketch a few chords to describe the formation of tangent line from the 

chord in terms of the concepts of limits. Item 2(b)(ii) is the extension to item 2(b)(i). 

Graphs, although were drawn to scale as in many cases, exhibited that the point in 

question (point x=c) is where the distance is the largest and therefore students should be 

able to relate the idea of optimization or maxima/minima points. Item 3(a) required the 

students to relate the location of the graph of the derivative function to the sign of the 

derivative function and subsequently identify the minimum point of the function 

through the changing from decreasing to increasing portion of the graph of the function. 
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Students may also add a sign diagram of the derivative function to help with the 

solution. Item 4(c) required the students to sketch the graph of the derivative function of 

the graph provided that does have a specific algebraic function. Students were expected 

to base their judgement on their knowledge of the increasing and decreasing portion and 

the concavity of the shape of the graph. Items 5(b)(iii) and 5(b)(iv) involved into the 

further interpretation by requiring the students to relate some characteristics of the graph 

to represent some real life situations. 

 

3.4.3.2 Validity and reliability of the GRT 

As with the instrument for MVT, the items were also written in English. The initial 

instrument comprised of eight questions and was sent to the same three experts assigned 

for the instrument MVT to check for their relevance and concordance with the content-

domain and syllabus. Adjustments were made based on the feedbacks from the experts.   

1) The title of the survey was proposed to be more specific instead of ‘Cross 

Sectional Survey 1’. Therefore it was change to Graph Reasoning Test since 

the purpose of the instrument is to look for the students’ reasoning when 

employing graphs to answer the mathematical problems on functions and 

derivatives.   

2) The words and terminologies used in the instruction are to be as simple as 

possible so as to make sure that students were able to understand and abide 

to.  

3) Item 8 of the original instrument were advised to be eliminated or placed in 

the MVT since it was a word problem and suited the nature of the MVT.  

4) Six items (items 1, 3,5 6, and 9) of the original instrument were proposed to 

be removed or amended.      
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New items were replaced and submitted to the experts for approval. A pilot test 

was conducted on the instrument using the same 50 students for the VRUL and the 

MVT test. The worked solutions of the students in the pilot test were marked based on 

the final rubric to increase consistency of scoring (Moskal & Leydens, 2000). The 

rubric was based on the categories listed under the decoding process of the framework 

for assessing the students’ visual reasoning.   

The scoring procedure began with the allocation of points to each of the 

category in the decoding process as listed in the framework for assessing visual 

reasoning, as shown in Table 3.6. The students’ works were checked and points were 

assigned based on the respective category. Frequencies, percentage, mean and standard 

deviation were calculated for all parts of the items. As a measure of precaution to refine 

the rubric, 5 students’ works were selected as ‘anchor papers’, sets of scored solutions 

which reflect a variety of different solutions to the items and different aspects of the 

rubric. Minor adjustments were made based on the ‘anchor papers’.   

 

Table 3.6: The descriptions of the final rubric for the GRT 

Point Category Description  

4 

Correct solution with  

valid reason 

Produces correct solution based on the graph and 

managed to provide valid reason(s) to arrive to the 

correct solution 

3 

Correct solution with  

invalid reason 

Produces correct solution based on the graph but 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

2 

Correct solution with  

no reason 

Produces correct solution based on the graph but 

did not manage to provide any valid reason(s) to 

arrive to the correct solution 

1 

Incorrect solution 

with  

invalid reason / no 

reason 

Produces incorrect solution based on the graph and 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

0 
No answer / Not 

attempted 

Left the item un-attempted. 
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Two local experts in the area and in the subject were assigned to mark the 

worked solutions by the students and subject to inter-rater reliability analysis. The 

overall reliability of 0.91 measured with Cohen’s Kappa of the GRT was based on the 

inter-rater reliability score of the two experts and indicates that the GRT was reasonably 

reliable for the study. The average variation between their scores was between 3.5% and 

5.5%. 

An item analysis was performed on the results of the pilot test. Those items that 

were outside the ranges of 0.2 and 0.8 (Singh, 2012) for both the difficulty index and 

discriminant index, respectively, were modified. Items that caused confusion to the 

students were re-worded or reviewed for clarity (Ghadi, Abu Bakar & Alwi, 2013). The 

final instrument had appropriate levels of difficulty ranged from 0.69 to 0.95 and levels 

of discriminant ranged from 0.71 to 0.93. On the overall, the summary of the 

instruments is as shown in Table 3.7.  

  

Table 3.7: Divisions and nature of the instruments 

Instrument 
Number 

of items 

Level of 

measurement 
Aspect covered 

Visual Representation 

Usage Levels  (VRUL)  

Section A 

5 Nominal 

Demographic data  

Visual Representation 

Usage Levels  (VRUL)  

Section B  

17 Ordinal 

Students usage level on the use of 

visual (graphs or diagrams) in 

their learning of mathematics  

Mathematical Visuality 

Test (MVT)   
5 Ordinal 

Students preference on the visual 

(graph) or algebraic method in 

solving mathematical problems 

(functions and derivatives) 

Graph Reasoning Test 

(GRT)  
5 Ordinal 

Students ability to use visual 

(graph)  reasoning to solve 

mathematical problems 

(functions and derivatives) 
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3.5 Data Collection 

This study employed document analysis and scoping focus group in the data collection 

process to facilitate the development of the criteria in the framework to assess students’ 

visual reasoning ability when solving problems on functions and derivatives. The 

purpose of the scoping focus group was to generate potential responses regarding how 

students would employ graphs when solving problems on functions and derivatives, 

both, when given only word problems and when graphs are supplied in the contexts of 

problems. The criteria selected for the first part of the framework were to explore the 

preference methods that students would prefer to use when they were given word 

problems which can be solved both by the algebraic method or by the used of graphs. 

The second part of the framework outlined the criteria for students to have to make use 

of graphs to find data or information in order to solve the tasks. Besides the important 

findings of the students’ usage of graphs, both parts of the framework took into 

consideration the conceptual knowledge on functions and derivatives.  

The study used standardized questions and probes to strengthen replicability. 

The discussion began by explanation on the purpose of the study and explanations on 

some of the theories, models and frameworks on visual reasoning and the use of graphs 

and other visual representations in mathematics and in solving mathematical problems. 

The proposed framework and the proposed instruments to be used in the study were 

distributed and 20 minutes were allowed for the experts to go through them 

individually. The initial instructions were standard questions to encourage interactions 

among the experts and not prompt by me, as the moderator. When necessary, the 

researcher interrupted the conversations to ensure that all the experts’ views were heard 

and offered probes to stimulate additional perspectives or to explore potential and 

promising consistencies. The questions and probes are as listed in Appendix G.             
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This study used three instruments, a questionnaire and two sets of paper-and-

pencil task items. All three instruments were distributed to the students in the pilot test 

as well as the actual study. The series of instruments took over six-month period before 

they sat for their trial examination. This was to ensure that the students had covered all 

the required topics and syllabi and that they were well-equipped with the conceptual 

knowledge on functions and derivatives. Prior to carrying out the study, consents were 

granted from the top management of the college and the students were sought 

permission on their participations. They were informed about the study and its purposes, 

and that their participations were voluntary and will not affect the performance or 

results of their internal assessment. The students were also asked to write their names on 

the questionnaire and the tasks sets to make sure that data were not mixed-up among the 

three instruments. Therefore, the students were granted confidentiality and permissions 

were obtained from them to use the data collected for academic purposes only. The 

researcher handled the monitoring of the questionnaire and both instruments herself. 

The sessions were set outside the class lecture hours so as not to interrupt with the 

students’ time and be carried out at their normal classroom setting so as to provide a 

familiar and relaxing environment.    

The first instrument, VRUL, was distributed about six months before their trial 

examinations. The students were given flexible time to complete the questionnaire. All 

of them managed to complete them between 30 – 60 minutes. The researcher was there 

for the whole duration to prepare for any queries or misunderstood of the questions or 

terminologies.     

The second instrument, MVT, and the third instruments, GRT, were distributed 

to the students about three and two months, respectively, before they sat for their trial 

examination. This is to ensure that the students had completed their learning on 

functions and derivatives. Students were allowed to use their graphic calculators when 
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answering both instruments in order to help them answering the questions. Since the 

purpose of the study was to gather information on how the students make use of graphs 

to solve problem on functions and derivatives, they were not subjected to any time-

constrained. Each of the student worked individually and they were given ample time to 

complete both of the instruments. Most of the students completed the MVT within 1 

hour and the GRT within 1 – 2 hours.  

   

  

  

Visual 

Representation 

Usage Level 

↔ 
To identify students’ usage 

level of graphs (and diagrams) 

  ↓   

Misconceptions 

& 

difficulties 

← 
Mathematical 

Visuality Test 
↔ 

To identify students’ 

preference method  

 ↓   

← 
Graph Reasoning 

Test 
 

To identify graph reasoning 

ability  
 

Figure 3.13: The framework of the instrumentation 

 

The instrument MVT was used to assess students’ method of solving either 

algebraically or graphically. They were provided with mathematical word problems on 

functions and derivatives and students had the choice whether to use any of the methods 

to answer them. On the other hand, the instrument GRT was used to assess students’ use 

of graphs to answer problems on functions and derivatives. They were provided with 

graph-accompanied questions on functions and derivatives where they had to use the 

information embedded in the graphs in order to solve for the tasks. The students were 

encouraged to show in detail all steps of solutions required to arrive to the answer. They 

were also requested to elaborate them in order to capture their thinking and reasoning. 

The students’ misconceptions and difficulties in sketching graphs and in reading or 

Univ
ers

ity
 of

 M
ala

ya



116 
  

interpreting the given graphs were also extracted from their worked solutions for both 

the instruments, MVT and GRT respectively. The framework of the instruments is as 

shown in Figure 3.12.     

 

3.6 Data Analysis 

The study employed a quantitative approach to analyse the data collected. Descriptive 

statistics were calculated to summarize the students’ responses to all items. Descriptive 

statistics enable researchers to reduce, summarize and describe quantitative data 

obtained from empirical evidence (Noraini, 2010). For the first questionnaire, 

frequencies and percentages were used to describe the demographics data of the 

participants while the students’ responses to each item in the VRUL were described 

through their frequencies, percentages, mean and standard deviations.  

The findings of the focus group discussion are not generalizable, the researcher 

followed a standardised protocol with structured questions in order to maintain 

objective stance. The data analysis focused predominantly on verbal content. No 

attention was paid into analysing the interactions among the experts or how the 

information or criteria were socially expressed or constructed (Belzile & Oberg, 2012). 

Although they mostly agreed on the categories and criteria set in the framework, there 

were still minor disagreements in the expert’s opinions on the arrangement of the 

categories. However, the differences of ideas appeared to reflect the experts’ teaching 

experience more than their personal perspectives. Similar patterns of disagreement were 

identified across the categories in the framework which assess the preference methods 

and the use of graphs in solving mathematical problems involving functions and 

derivatives. The final framework was then sent to an international expert in visual 

reasoning for its content validity.  
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Rubrics, based on the framework designed to evaluate the students’ visual 

reasoning ability, were prepared to assess the mathematical visuality and visual 

reasoning ability of the students. For instrument MVT, the students’ worked solutions 

were assigned to one of the seven categories listed as the students’ preference to use 

graph or not when responding to the word problems in functions and derivatives, and at 

the same time checking for their conceptual understanding of the concepts of functions 

and derivatives. On the other hand, for the instrument GRT, the students’ worked 

solutions were assigned to one of five listed categories of the students’ visual reasoning 

ability in terms of the reading or interpreting the three levels of information embedded 

in the graph, and at the same time checking their conceptual understanding on the 

concepts of functions and derivatives. The mean scores for individual students were also 

recorded so as to find the correlations among their responses in the questionnaire and 

instruments. The errors that the students performed in their worked solutions for the 

MVT were calculated based on the incorrect graph drawn and incorrect solution 

performed while for the GRT, the errors were calculated based on the incorrect 

solutions and invalid reason provided when solving the mathematical problems on 

functions and derivatives.  
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CHAPTER 4: ANALYSIS OF RESULTS 

 

4.1 Introduction 

This study purports to develop a framework and subsequently to assess the visual 

reasoning adopted by Malaysian pre-university students in solving problems on 

functions and derivative graphically. Data were collected quantitatively using a 

questionnaire, the Visual Representation Usage Level, and two sets of task-based 

instruments, the Mathematical Visuality Test and the Graph Reasoning Test. The 

participants of the study were students from one of the higher institutions in the state of 

Selangor. Specifically, the study aim to answer the following research questions: 

1. What is an effective framework for assessing levels of pre-university 

students’ visual reasoning when using graphs in solving mathematical 

problems on functions and their derivatives?  

2. What are the pre-university students’  

i. usage levels of graphs when solving mathematical problems on 

functions and graphs?  

ii. preference when solving mathematical problems on functions and 

derivatives? 

iii. graph reasoning ability when solving mathematical problems on 

functions and derivatives.    

3. What is the correlation between the pre-university students’ : 

i. usage levels of graphs and their preference in using graphs when 

solving mathematical problems on functions and their derivatives 

ii. usage levels of graphs and graph reasoning ability when solving 

mathematical problems on functions and their derivatives 
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iii. preference in using graph and their graph reasoning ability when 

solving mathematical problems on functions and their derivatives. 

4. What are the misconceptions and difficulties encountered by pre-university 

students when using graphs in solving mathematical problems on functions 

and their derivatives.  

 

This chapter presents the results of analysis and is organized into five main 

sections. Firstly, the framework for assessing students’ visual reasoning is developed. 

The second part reports the descriptive analysis of the students’ responses on their usage 

levels of graphs and diagrams, their method of preference and their graph reasoning 

ability in using graphs to solve mathematical problems on functions and derivatives. 

These are followed by the analysis on the correlation among the three characteristics 

and the profile of errors performed by the students which subsequently led to the 

identification of the misconceptions and difficulties encountered by pre-university 

students when sketching and using graphs to solve mathematical problems on functions 

and their derivatives. A summary of the chapter is provided in the last section.  

 

4.2 Phase 1 : Development of the framework to assess visual reasoning 

The framework for assessing the pre-university students’ visual reasoning in this study 

was developed in three stages as outlined in chapter three.  

 

4.2.1 Stage 1: Initial development of the framework   

Stage 1 of the initial development of the framework consisted of three steps of locating 

and synthesizing related theories, models and frameworks. 
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4.2.1.1 Step 1: Planning of synthesis  

The document analysis on the articles and books through hand-search and electronic-

search resulted in one hundred and twenty one articles and books were ascertained for 

full examination. The details of the search strategy are as shown in Figure 4.1. Out of 

these, twenty nine were considered relevant. The references from the one hundred and 

twenty one articles and books were further scrutinized and produced a further twenty 

four promising articles and books. In addition, another two articles and a book were 

detected by chance and which gave a total of fifty six relevant articles and books that 

are associated to twenty one different theories, models and frameworks, as shown in 

Table 4.1. Eight of these theories, models and frameworks (or for some, only parts of 

them) were related to visual reasoning and visualization to some aspects on the use of 

graphs and diagrams and therefore were selected as the materials for the synthesis.   

 The theories, models and frameworks span over forty decades with various 

epistemological backgrounds and were analysing visual reasoning and visualization in 

distinctively different techniques. All the theories, models and frameworks were 

developed by mathematicians, mathematics educators and mathematics researchers. The 

theories, models and frameworks are relevant to all ages of pupils and students although 

most were developed on the basis of working with secondary and pre-university 

students. The types of visual reasoning activities considered by the eight theories, 

models and frameworks are varied and inclusive of cognitive domains.        Univ
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Figure 4.1 
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Table 4.1: Theories identified for synthesis 

 Theory/Models/framework 

approach  

References (abbreviated)  

1 Theories on representations Lowrie et al. (2011), Goldin (1992), 

Gravemeijer, Bowers, & Stephan (2003), 

Ainsworth (2006)  

2 Visual reasoning model  Park & Kim (2007), Gattis & Holyoak (1996), 

Metros (2008) 

3 Diagram drawing sub-skills  Simon (1986b)  

4 Mental actions of the co-

variation  

Carlson (1998), Liu (2010), Goldin (2001) 

5 Characteristics of visualisers  Alcock & Simpson (2004), Krutetskii (1976) 

6 Understanding of tables and 

graph  

Sharma (2013), Peebles & Cheng (2003) 

7 Levels of reasoning  Yumus (2001) 

8 Levels of graph 

comprehension  

Friel, Curcio & Bright (2001), Curcio (1987), 

Friel & Bright (1998), Shaughnessy (2007), 

Watson & Callingham (2003) 

9 Visual-spatial thinking  Costa, Matos & e Silva (2010), Hulmann e al 

(2011), Gutierrez (1996), Ball & Ball (2007)  

10 Mathematical inscriptions  Gagatsis & Elia (2003) 

11 Functions of picture  Carney (2002), Elia & Philippou (2004), 

Diezmann & Lowrie (2008)  

12 Types of image schemata  Dorfler (1991), Hegarty & Kozhevnikov 

(1999), Blackwell & Engelhardt (2002)  

13 Types of visual imagery Presmeg (1986, 1992, 2006) 

14 Elements of visualization 

process  

Gorgorio & Jones (1996), Gray & Tall (2001), 

Jones (1998)  

15 Interactive visualization  Sedig (2009), Meyer (1998), Pike (2007), 

Kabaca (2013), Stern, Aprea, & Ebner (2003) 

16 Scalable visual reasoning  Pike etal (2007) 

17 Graph based reasoning  Peebles & Cheng (1999), Lohse (1997) 

18 Connections between 

representations  

Zandieh (2000), Roorda (2007), Cox & 

Grawemeyer (2003), Huang (2013) 

19 Concept image  Gagatsis et al. (2006), Likwambe & 

Christiansen (2008), Ubuz (2001), Lambertus 

(2007) 

20 Spatial visualization  Van Garderen (2004) ,  

21 Visualization - semiotic Kazunz & Strasser (2004)  

 Total theories = 21  Total articles = 56  

Note : Synthesized theories, models and frameworks are those in bold.  

 

Univ
ers

ity
 of

 M
ala

ya



123 
  

4.2.1.2 Step 2: Synthesis  

Synthesis involves the process of extracting, clarifying and summarising those ideas and 

aspects of the theories, models and frameworks to suit the nature of this study. 

Following are the theories, models and frameworks and their main thoughts that had 

been taken into consideration for the synthesis.  

 

(a) Theory on representations 

Lowrie et al. (2011), partly on the basis that the use of visual and graphic are 

increasingly taking placed to influence how students make sense of their mathematical 

concepts, developed a theory to explain how the process of thinking that shapes the 

students’ mind when dealing with mathematics and mathematical ideas. He alerted on 

the drastic shift of how mathematical ideas and concepts are being presented and 

communicated in the last decade although the curriculum had not change much. His 

theory described the encoding and decoding processes to explain how students 

composed their own representations based on the textual descriptions and the technique 

used to employ diagrams provided in order to make sense of situations respectively. He 

argued that the encoding process was a support system to help students apprehend the 

reality of problem solving. He decomposed the decoding process into three levels of 

elementary, intermediate and advanced levels to describe how information is extracted 

or interpreted from the data in the graphics. He argued against the current practice of 

providing graphics for the students as compared to letting the students to construct them 

which will enhanced their thinking skills and understanding. Word problems incline to 

provide platform for students to practice the encoding techniques in order to understand 

the mathematical concepts and ideas. On the other hand, various skills of decoding are 

also required due to different graphics are composed of different elements and 

structures.           
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(b) Visual reasoning model  

Park and Kim (2007) defined visual reasoning as to progress further than the visual 

information displayed in two different paths: one is to transform the information based 

on their conceptual rules or formulae and the other one is to make deductions or 

implications. The overall process of visual reasoning involved the visual analysis 

through seeing, the synthesis through imagining and the modelling process through the 

drawing process. Three activities of visual perception, analysis and interpretation 

occurred during the seeing process, while another three activities of generation, 

transformation and maintenance took place during the imagining process. The drawing 

process involved the evaluation of the internal and external representations. These 

physical actions take place in the interaction with the conceptual knowledge and 

perceptual activities. They identified that the visual reasoning activities engaged the 

visual knowledge to complement the perceived visual and the memory system to 

produce the visual information. The visual schema from the memory system guides the 

transformation and reorganization of the visual perception. The arrangement and 

relationships in the visual displayed may cause different types of activities during the 

visual reasoning process based on the complexity of the structure of the visuals. They 

concluded that visual reasoning process is an essential cognitive activity that has 

specific relation to any visual process and therefore, students ought to be trained on the 

reasoning activities through well-constructed and well-structured visual systems.                      

 

(c) Characteristics of visualisers  

By the use of grounded theory methods, Alcock and Simpson (2004) developed a theory 

to assess students mathematical performance that resulted from their tendency to 

visualize or not to visualize, and their self-belief about themselves and their roles as 

mathematics learners. The results exhibited three major indicators to describe the 
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students’ pattern to visualize: 1) introduced and made use of diagrams when solving 

problems, 2) used gesture when explaining solutions or arguing on concepts, 3) prefer to 

think in diagrams rather than algebraic expressions. Subsequently, those students who 

were categorized as visualisers were more focused on the mathematical concepts as 

objects, quick-thinking for drawing initial conclusions and were more confident in their 

own solutions and decisions. The study led to the awareness on how students’ 

understandings on mathematical concepts were influenced by their learning 

environment. Only patterns (1) and (3) were considered in the present study.      

 

(d) Diagram drawing sub-skills  

Due to the importance of diagram drawing as heuristic strategy in solving mathematical 

problems, Simon (1986b) identified a set of six sub-skills that described how pre-

calculus students attempted to use diagrams to solve mathematical problems: 1) 

represent all relevant information, 2) creating an integrated diagram that are critical to 

the conceptualisation of the problem, 3) labelling completely, 4) checking the accuracy 

of the diagram, 5) drawing multiple representations that are not critical, and 6) 

verbalising what is represented and what needs to be represented. He had also 

discovered five factors that contributed to whether students may or may not opt for 

diagrams to help them search for solutions: 1) their understanding on the mathematical 

concepts and arithmetic related to the problems, 2) their previous knowledge and skills 

to drawing diagrams, 3) their understanding of mathematical concepts, 4) their self-

concept in mathematics, and 5) their motivation to correctly solve the mathematical 

problems. Feedback given to students resulted in them providing higher quality 

diagrams which indicate that it is a necessity for them to gain some metacognitive skills 

to successfully draw diagrams in their mathematical learning.         
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(e) Mental actions of the co-variation  

Carlson’s (1998) co-variation framework incorporated five groups of mental actions that 

were observed when students reasoned in representing and interpreting graphical model 

of live operating event on concepts of rate of change. The mental actions include; 1) 

visualizing two variables that change simultaneously, 2) visualizing weak relationship 

of two variables that changes with respect to each other such as the increasing and 

decreasing functions, 3) visualizing specific change in one variable with respect to a 

specific change in the other variable, 4) visualizing continuous changes of the function 

over the domain, and 5) visualizing changes of rates over the domain of the function. 

The framework was based on multiple refinements and analysis of the co-variational 

reasoning can be detected to a finer degree. It can also assist to guide the structuring of 

teaching and learning activities.    

 

(f) Understanding of tables and graph 

Sharma (2013), on the basis of meta-analysis on various research investigating the 

students’ thinking claimed that students ought to start probing worry questions and able 

to justify their opinions on any graphical representations or relationships to data values 

in tables and algebraic expressions. Her study identified a broad range of ability, from 

no to over considerations on the contexts of mathematical education. One of her 

findings was that teaching students to extract information from graphs and tables was 

much easier as compared to assist them to mature in their questioning with how and why 

the need to gather and compare within and between categories and to further thinking 

about the data in the specific contexts.  She finally provided a conceptual framework 

that can be used to assess information that is displayed in data representations and guide 

teachers and curriculum developers with firm pedagogical teaching and learning of 

mathematical concepts. Her framework outlined five stages of behaviours when 
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students dealt with graphs to solve statistical problems. The five stages were informal or 

idiosyncratic, consistent non-critical, consistent non-critical, consistent, early critical 

and advanced critical. For each of the behaviour, students were revealing the 

characteristics of their thinking starting from pre-structural thinking, uni-structural 

thinking, multi-structural thinking, relational thinking to extended abstract thinking.      

 

(g) Level of reasoning  

Yumus’s (2001) level of reasoning emphasized on the importance of transforming 

students’ instrumental understanding of the basics mathematical rules and concepts 

without referring to reasons, to more relational understanding that involved the detailed 

of how rules and concepts worked. The first part of the levels deals with the what and 

how while the latter involved the why for the what and how. The levels of reasoning 

include: 1) unable to produce any reasoning, 2) aware of models, known facts, 

properties and relationships used as basis of reasoning, but cannot produce any 

arguments, 3) able to provide reasons although arguments are weak, and 4) able to 

provide strong arguments to support reasoning.  

 

(h) Levels of graph comprehension 

The six behaviours of reading, describing, interpreting, analysing, predicting and 

extrapolating data stated by Friel, Curcio and Bright (2001) were based on the follow-up 

of two main findings. One of the findings was the results of the research carried out by 

Curcio (1987) on fourth and seventh grades student where she identified three levels of 

graph comprehension and the other one was determined by Friel and Bright (1998) on 

how students make sense of information on graphs. Curcio argued students’ prior 

knowledge on structural components of graphs do affect their ability to read and 

understand the mathematical information and relationships shown on graphs. It was also 
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identified that they struggled in responding to tasks that need higher order thinking 

skills, for example, when the information is not displayed on the graphs. The 

researchers noted that the students tended to manipulate or to interpret that proved their 

inconsistent understanding on the concepts. They concluded that the process of dealing 

with a massive data and the structural components of  the graphs contribute to the 

ability to read and interpret  graphs.   

     

4.2.1.3 Step 3: Refinement of synthesis  

The theories, models and frameworks were evaluated, compared and linked with each 

other for the points of convergence as illustrated in Table 4.2  for the visual reasoning, 

Table 4.3   for the encoding process and Table 4.4 for the decoding process. To enable 

these comparisons, the theories, models and frameworks were described and broken 

down into respective aspects of each category. 

 

(a) Comparison of theories/models/frameworks on visual reasoning  

The three theories, models and frameworks considered for the overall visual 

reasoning were developed to understand the phenomena and to improve understanding 

on how students use representations in their daily learning through open-based tasks. 

Lowrie et al.’s theory on encoding and decoding was based on his empirical findings 

(Diezmann, Lowrie & Kozak, 2007) and others in the same discipline (Goldin & 

Shteingold, 2001; Kosslyn, 1989; Logan & Greenlees, 2008; Presmeg, 1986). Alcock 

and Simpson’s characteristics of visualisers were developed based on the cognitive 

activities of the students to identify their mathematical behaviour and their self-

perception as learners. Park and Kim (2007) developed their visual reasoning theory 

based on how architecture students performed their sketches. The encoding and 
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decoding processes were incorporated in the three main processes of seeing, imagining 

and drawing outlined by Park and Kim (2007).         

 

Table 4.2: Comparison of theories/models/frameworks on visual reasoning for 

points of convergence 

 Lowrie et al. (2011) Alcock & Simpson 

(2004)  

Park & Kim (2007) 

Name  Theory on representation  Characteristics of 

visualisers  

Visual reasoning 

model  

Main 

purpose  

Improved understanding  Improved understanding  Understanding 

phenomena  

Research 

framework  

Theoretical  Conceptual – a set of 

local theories  

Conceptual  

Approach  Empirical  Cognitive  Empirical  

Process/ 

Concept  

Encoding & decoding 

process 

Mathematical behaviour 

& perception as learner 

Visual analysis 

(seeing) 

Synthesis (imaging)  

Modelling (drawing ) 

Method Open-based tasks  Open-based tasks  

Semi-structured interview  

Open-based tasks  

Evidence  Content analysis  Interview protocols  Content analysis  

Conclusion  Graphic representations 

greatly impact students’ 

understanding and  

teaching practices  

Theory on how students’ 

own beliefs on learning 

relate to their tendency to 

visualize  

The characteristics of 

tasks are related to 

the components of 

visual reasoning   

 

 

(b) Taxonomy of skills on encoding and decoding process among theories/ 

models/ frameworks  

The three theories, models and frameworks taken into consideration for the 

encoding process were analysed to understand the phenomena when students need to 

introduce diagrams, graphs or any visual representations to assist them explaining or 

solving mathematical problems (Table 4.3). The theories, models or frameworks were 

broken into analytic, geometric and harmonic types. The analytic type refers to students 

who favour the algebraic or logical modes as compared to visual modes while the 

geometric type indicates students who choose to use visual such as diagrams or graphs 
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rather than the algebraic expressions or calculations to explain solutions. The harmonic 

type denotes those students who have the flexibility to swap from one mode to the other.       

The three theories, models and frameworks referred to for the decoding process 

were conceptualised to understand how individuals make use of visual tools such as 

graphs or diagrams to help them solving mathematical problems (Table 4.4). The 

theories, models and frameworks were broken into elementary, intermediate and 

advance levels of ability to read and interpret graphs, diagrams or other visual 

representations together with their reasoning. These are to indicate their understanding 

on the relationships between the rules and concepts and their graphical or   visual 

representations.  

In summary the encoding process is able to determine the students’ 

mathematical visuality or their preference in the method that they adopt when need to 

solve mathematical word problems while the decoding process can be used to described 

the students’ graph-based reasoning or how they make use of the graphs, diagrams or 

visual representations provided for them in order to solve mathematical problems.    

The initial framework was prepared based on the document analysis on the 

selected theories, models and frameworks which involved the 3-stage processes of 

planning of synthesis, synthesis and refinement of synthesis. For the encoding process, 

students were expected to either draw graph in order to represent their solution to the 

problems or they may end up with an algebraic methods through the use and 

manipulation of formulae. On the other hand, for the decoding process where they have 

to make use of the graphs provided for solving the tasks in the items, the students were 

expected to present either correct or incorrect solution based on their reading the graphs 

and extracting or interpreting correct information from the graphs.    
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Table 4.4 
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Table 4.5: The initial framework for assessing visual reasoning 

Visual 

reasoning 

process 

Category Description 

E
n
co

d
in

g
 

Draw correct graph  Correct graph to solve and represent the solutions 

  

Draw incorrect graph  

 

Incorrect graph to solve and represent the 

solutions  

Algebraic method    Algebraic manipulation to solve the problems  

 

No answer / Not 

attempted  

Left the item un-attempted – no graphs or any 

algebraic solutions.  

D
ec

o
d
in

g
 

Correct solution  Correct solution based on the graph  

 

Incorrect solution  Incorrect solution based on the graph  

 

No answer / Not 

attempted 

Left the item un-attempted. 

 

 

4.2.2 Stage 2 : Refining the framework  

The content validity of the framework was determined by a panel of seven experts 

through a focus group discussion. The experts were from various areas : 

• 2 on mathematical content (functions and derivative) (MC1, MC2) 

• 2 on visual reasoning (VR1, VR2) 

• 2 on Cartesian graph (CG1, CG2) 

• 1 on mathematics educations (problem solving) (ME) 

 

The experts did not only examined and confirmed each category of both the 

encoding and decoding processes, but they had also systematically scrutinised the 

framework in parallel with the proposed instruments to ensure that it fully reflects the 

potential solution methods by the students.  The technique of assessing, through both 

the encoding and decoding processes, the conceptual ideas on functions and derivatives, 

how the concepts come together and how they are used and understood were taken into 
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consideration in order to structure a visual setting of reasoning. Questions were set to 

guide the experts on the topics of discussion (Appendix G). The summary of their 

responses are as listed in Table 4.6.  

The first question requested for some ideas on visual reasoning related to 

mathematics. Four of the experts referred visual in mathematics to be tasks or 

information on non-word problems while the other three of the experts treated them as 

those tasks or questions that are posted in other forms than algebraic expressions or 

numbers. All of them categorised visual in mathematics to be other than both texts and 

numbers, such as graphs, diagrams, images, pictures or any 2-dmensional or 3-

dimensional geometrical figures. In terms of how they employed visual to reason their 

mathematical understanding, four of them made use of the information provided in the 

graphs while the other three would draw, or at least sketch, graphs related to the 

problems in the contexts.  

The second question sought the experts’ opinions on the use of Cartesian graphs 

in the learning of functions and derivatives. Three of the experts admitted that students 

did not make use or draw graphs as their solution or parts of the method in solving 

mathematical word problems while the others stated that students would refer to graphs 

if only they have strong understanding on the graphs or the relationships between the 

algebraic and graphical representations. Six of the experts asserted that students would 

relate the mathematical concepts to their graph representations through the properties of 

graphs and functions. Six of the experts agreed that it is possible for the students to 

achieve the correct solutions when employing graphs although most of them would 

struggle throughout.    
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Table 4.6: Responses from the experts in the focus group discussion 

Question Responses  Expert No. (%) 

1(a) 

Not word problems  MC2, VR1, VR2, ME 4 (57) 

Other than algebraic expressions / 

numbers  
MC1, CG1, CG2 3 (43) 

1(b) 

Graphs (all types) MC2, VR1, CG1, CG2 4 (57) 

Diagrams / images / pictures   MC1, ME 2 (29) 

Geometry  VR2 1 (14) 

1(c) Use information in graphs / diagrams  MC1, VR1, VR2, CG1 4 (57) 

 Draw related graphs / diagrams  MC2, CG2, ME 3 (43) 

2(a) No, need more exposure  VR2, CG2, ME 3 (43) 

 Yes, if understand graphs VR1, CG1 2 (29) 

 
Maybe, depending on understanding 

the relationship  
MC1, MC2 2 (29) 

2(b) Understand properties of graphs  VR1, VR2, CG1 3 (43) 

 Understand properties of functions  MC1, CG2, ME 3 (43) 

 Knowledge on slope MC2 1 (14) 

2(c) Yes, but mostly with struggle  
MC2, VR1, VR2, CG1, 

CG2, ME 
6 (86) 

 
Yes if strong basic knowledge on 

functions and derivatives  
MC1 1 (14) 

3(a) 
Understand the relationships between 

algebraic/symbolic & graph  

MC2, VR1, VR2, CG1, 

CG2 
5 (71) 

 
Understand the relationship between 

variables 
MC1, ME 2 (29) 

3(b) 
Strong understanding on relationships 

between functions/derivatives & graphs  

MC1, MC2, VR1, VR2, 

CG2, ME 
6 (86) 

 
With help from algebraic expressions 

or equations (if given) 
CG1 1 (14) 

3(c) Looking at patterns of graphs  MC1, MC2, VR1, ME 4 (57) 

 
Understand properties of graph of 

functions  
VR2, CG1, CG2 3 (43)  
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The third question needed for the experts to analyse on how the students would 

read and interpret data or information that are embedded in graphs. All of them (except 

one) agreed that students need to comprehend the relationships between the algebraic 

expressions and their graphical representations or between the independent and 

dependent variables in order to be able to read and interpret graphs efficiently. When 

extracting information that are not shown on graphs and when interpolating or 

extrapolating the graphs for hidden information or specific patterns of the characteristics 

on the functions, again, almost all of them highlighted that students must have very 

strong knowledge on the relationships between the functions and their derivatives and 

between the algebraic expressions and graphical representations.                 

Comments based on Question 4 to refine the framework were gathered for 

improvement : 

1) Encoding :  

a. The addition of with correct solution and with incorrect solution to each of 

the categories Draw correct graph, Draw incorrect graph and Algebraic 

solution.   

b. Elaboration on the No answer/Not attempted to indicate the possible skills 

and knowledge of the students  

c. The use of consistent terminologies among Draw correct graph/Draw 

incorrect graph and Algebraic method to Correct/Incorrect and No graph 

since students may produce any other method than algebraic manipulations.  

d. Further elaborations on the descriptions for all categories  

2) Decoding :   

a. The inclusion of with valid reason, with invalid reason and with no reason 

to the category of Correct solution  
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b. The inclusion of invalid reason and no reason to the category Incorrect 

solution.  

c. Elaboration on the No answer/Not attempted to indicate the possible skills 

and knowledge of the students  

d. The elaborations on the descriptions for all categories  

 

The refined framework is as shown in Table 4.7.  

 

4.2.3 Stage 3 : Development of the final framework   

The development of the final framework employed a Delphi method of 3-round 

emailing to experts for comments and feedbacks. The experts were 50 lecturers from 

various public and private institutions who have at least five years of experience in 

teaching differential calculus at pre-university and university levels. 40 of them were 

from local institutions while the other 10 were from international institutions. The 

questionnaire that was emailed to the experts consisted of 10 items (Likert scale) and an 

open-ended question intending to seek clarity on the categories, their flow and logical 

sequence together with the grammatical and spelling errors, if any. The measurement on 

the Likert scale were defined as Unsatisfactory, Poor, Satisfactory, Good and 

Outstanding (Appendix  H ). 

The details of the numbers of experts responding to the questionnaire in the 3-

round emailing are as shown in Table 4.8. In the first round, two locals and one 

international expert did not respond to the request, giving a 94% rate of return. After the 

analysis of the responses from 47 experts, another three of them were dismissed due to 

their responses being outliers, one of them was responding almost all Poor while the 

other two of them assigned almost all Outstanding. In Round 2 of the emails, 42 experts 

returned their feedbacks resulting in 95% rate of return. One of the experts was treated 
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Table 4.7: The refined framework for assessing visual reasoning 

Visual 

reasoning 

process 

Category Description 

E
n
co

d
in

g
 

Correct graph with 

correct solution  

Produces correct graph to solve and represent the 

solutions and managed to arrive to the correct 

solution  

Correct  graph with 

incorrect solution  

Produces correct graph to solve and represent the 

solutions but did not manage to arrive to the correct 

solution   

Incorrect graph with 

correct solution   

 

Produces incorrect graph to solve and represent the 

solutions and managed to arrive to the correct 

solution based on the wrong graphs.  

Incorrect graph with 

incorrect solution 

Produces incorrect graph to solve and represent the 

solutions and did not manage to arrive to the 

correct solution 

No graph with correct 

solution   

Produces no graph to solve and represent the 

solutions and managed to arrive to the correct 

solution 

No graph with 

incorrect solution 

Produces no graph at all to solve and represent the 

solutions and did not manage to arrive to the 

correct solution  

No answer / Not 

attempted  

Left the item un-attempted – no graphs or any 

algebraic solutions.  

D
ec

o
d
in

g
 

Correct solution with 

valid reason 

Produces correct solution based on the graph and 

managed to provide valid reason(s) to arrive to the 

correct solution 

Correct solution with 

invalid reason 

Produces correct solution based on the graph but 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

Correct solution with 

no reason 

Produces correct solution based on the graph but 

did not manage to provide any reason(s) to arrive 

to the correct solution 

Incorrect solution 

with invalid reason / 

no reason 

Produces incorrect solution based on the graph and 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

No answer / Not 

attempted 

Left the item un-attempted. 

 

 

as outlier and being dismissed for assigning all items as Outstanding.  In Round 3, three 

of the experts did not return the feedbacks resulting in an 86% rate of return. The details 

of the responses to each item in the questionnaire throughout all the three round of 

emailing are as displayed in Table 4.9, Table 4.10 and Table 4.11.     
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On the overall, as can be seen in Table 4.9, at least 90% of the experts agreed with 

Satisfactory and Good for all items describing the clarity on the framework. Minor 

adjustments were made based on the proposal from the open-ended questions : 

1) The term solution in the Description column for the Encoding process was 

proposed to be replaced by explain or describe   

2) The additional description of Solutions may differ from the original 

solutions set for the Incorrect graph with correct solution to enhance 

explanation.  

3) The spelling of unattempted was re-spelled as un-attempted.  

4) The inclusion of s for possible pluralism in the word reason.   

 

The analysis for Round 2 is as shown in Table 4.10.  All experts were at least 

satisfied with the refined framework although one of them answered all Outstanding. It 

was assumed that he/she did not really evaluate the framework thoroughly or he/she 

might had assumed that the framework was totally refined.    

The analysis for Round 3 is as displayed in Table 4.11. The responses were 

fairly distributed between the Satisfactory and Good. All of them did not find any 

spelling or grammatical error in the framework.     

Based on the final feedbacks from the experts and the final refinement process, 

the final framework that can be used to assess the visual reasoning ability of pre-

university students is as shown in Table 4.12.  
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Table 4.8  
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Table 4.9  
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Table 4.10   
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Table 4.11   
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Table 4.12: The final framework for assessing visual reasoning 

Visual 

reasoning 

process 

Category Description 

E
n
co

d
in

g
 

Correct graph with 

correct solution  

Produces correct graph to explain and represent the 

solutions and managed to arrive to the correct 

solution  

Correct  graph with 

incorrect solution  

Produces correct graph to explain and represent the 

solutions but did not manage to arrive to the correct 

solution   

Incorrect graph with 

correct solution   

 

Produces incorrect graph to explain and represent 

the solutions and managed to arrive to the correct 

solution based on the wrong graphs. Solutions may 

differ from the original solutions set.  

Incorrect graph with 

incorrect solution 

Produces incorrect graph to explain and represent 

the solutions and did not manage to arrive to the 

correct solution 

No graph with correct 

solution   

Produces no graph to explain and represent the 

solutions and managed to arrive to the correct 

solution 

No graph with 

incorrect solution 

Produces no graph at all to explain and represent 

the solutions and did not manage to arrive to he 

correct solution  

No answer / Not 

attempted  

Left the item un-attempted – no graphs or any 

algebraic solutions.  

D
ec

o
d
in

g
 

Correct solution with 

valid reason 

Produces correct solution based on the graph and 

managed to provide valid reason(s) to arrive to the 

correct solution 

Correct solution with 

invalid reason 

Produces correct solution based on the graph but 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

Correct solution with 

no reason 

Produces correct solution based on the graph but 

did not manage to provide any valid reason(s) to 

arrive to the correct solution 

Incorrect solution 

with invalid reason / 

no reason 

Produces incorrect solution based on the graph and 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

No answer / Not 

attempted 

Left the item un-attempted. 

 

 

The final framework was then sent to an expert, an international professor, for 

final validation (Appendix I). It is named Visual Reasoning over Graph (VR-G), an in-

depth assessment of how graphs of functions and derivatives and their concepts must be 

constructed and interpreted for the students to use within the contexts in the curriculum. 
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It is principally used in categorising students’ encoding and decoding ability. In this 

study, constructs for students’ visual reasoning ability when using graph to solve 

mathematical problems on functions and derivatives were extracted from the above-

mentioned frameworks. The items in the instruments are conceptualized based on the 

content domain but enhanced according to the knowledge and scheme.   

 The term ‘correct graph’ refers to the students being able to produce a complete 

and effective graphs that are characterized by labelling of the axes, scales and 

function(s). The complete graphs that are constructed accurately and neatly reflects 

understanding on the conceptual knowledge and the relationship between symbolic or 

algebraic representations and their visual representations on the graphs. The term 

‘incorrect graph’ refers to students demonstrating limited understanding of graphing and 

some understanding on the relationship between symbolic or algebraic representations 

and their visual representation on the graphs.  

 The term ‘valid reason’ refers to the students being able to infer on the 

relationships between the properties of functions or/and derivatives, being able to 

integrate contextual knowledge, and understand the purpose of the information 

displayed in the graphs. On the other hand, ‘no valid reason’ refers to students that has 

no or appropriate engagement with the context where he/she may understand the single 

or basic elements of graph reading, at the same time serves as an indicator of employing 

memorization techniques or procedural knowledge.      

 

4.3 Usage levels of visual representations 

4.3.1 Frequencies and percentages  

The instrument Visual Representation Usage Level (VRUL) was a Likert type test 

consisting of 17 questions with four different categories to measure :  
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1) the students’ usage levels on using graphs or diagrams in their daily learning 

behaviour 

2) the students’ view on the usefulness of graphs or diagrams in solving 

mathematical problems 

3) the students’ difficulty of the use of graphs and diagrams in solving mathematical 

problems 

4) the teacher’s behaviours in using graphs or diagrams in solving mathematical 

problems.  

 

The usage levels of visual representations were judged based on 5-point scales 

(1=Not at all, 2=Slightly, 3=Moderately, 4=Very much and 5=Definitely). The analysis 

on the items in each category was rearranged based on the descending order of their 

mean scores.  

 

4.3.1.1 Analysis on the usage levels on using graphs or diagrams in their daily 

learning behaviour 

The results of the survey on the students’ usage levels on graphs or diagrams in 

their daily learning behaviour are as shown in Table 4.13. The items received mean 

scores that range between 3.40 and 4.16. The findings show that the rate of students 

who answered Definitely or Very much to pay attention to the use of graphs or diagrams 

for solving mathematical word problems that their teachers shows on the board during 

class was about 84%. Less than 4% either Slightly or Not at all paid attention to the use 

of graphs or diagrams that their teachers showed on the board during class. About 

54.12% of the students were Definitely or Very much tried to copy the way their teacher 

uses graphs or diagrams to solve mathematical word problems. The total rate of students 

who responded Definitely and Very much for trying to use the kinds of graphs or    
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Table 4.13 
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diagrams shown in the textbooks or by their teachers was almost 55%. Almost 68% of 

the students were Definitely and Very much to solve other similar mathematical 

problems were almost 54.12% and 67.22% respectively while 41.75% of the students 

gave similar answers for using graphs or diagrams in solving mathematical problems. 

For all items, less than 20% of the students responded as Slightly or Not at all indicating 

their massive use of graphs or diagrams when solving mathematical problems. Figure 

4.2 depicts graphically the responses from the students on their usage levels in using 

graphs or diagrams in their daily learning behaviour. 

 

 

Figure 4.2: The usage levels in using graphs or diagrams in daily learning 

behaviour 

 

4.3.1.2 Analysis on the usefulness of graphs or diagrams in solving mathematical 

problems 

Table 4.14 displays the results of the survey on the students’ views on the 

usefulness of graphs or diagrams in solving mathematical problems. The mean scores 

for all items range between 4.12 and 3.96, indicating positive views on the benefit of 

using graphs or diagrams to assist them in solving mathematical problems. The finding  
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also identified that about 78% of the students said that the use of graphs or diagrams 

Definitely or Very much helpful to efficiently solving mathematical problems. Similarly, 

about 71% of the students admitted that they were Definitely or Very much confident 

that is was good to use graphs or diagrams to solve mathematical problems. About 71% 

of them admitted that graphs and diagrams were Definitely or Very much help them 

figuring out how to solve the mathematical problems respectively. On the other hand, 

less than 7% responded either Not at all or Slightly for all items in this category. These 

indicate that students do treat graphs or diagrams as being very useful tools in guiding 

them to solve mathematical problems. Figure 4.3 depicts graphically the responses from 

the students of their views on the usefulness of graphs or diagrams in solving 

mathematical problems.  

 

 

Figure 4.3: The usefulness on using graphs or diagrams in solving mathematical 

problems  
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4.3.1.3 Analysis on the difficulty on the use of graphs or diagrams in solving 

mathematical problems 

The results of the survey on the students’ difficulties when using graphs or 

diagrams in solving mathematical problems are as shown in Table 4.15. The mean 

scores for all items ranged from 2.99 to 3.37. The overall finding shows that less than 

45% of the students in all items in this category responded to Definitely or Very much. 

Only about 43% of the students admitted that they knew how to construct graphs or 

diagrams for solving mathematical word problems while about 10% said that they were 

Slightly or Not at all knew how to construct them. About 40% of the students found that 

it was easy to use graphs or diagram to solve mathematical word problems and only 

about 12% did not find that it easy to do so. Similarly, only about 31% actually knew 

the kinds of graphs or diagrams that were helpful in solving different kinds of 

mathematical word problems while about 55% of the students found that it was 

Moderately easy to draw graphs or diagrams by themselves for solving mathematical 

word problems. The rest of about 14% of the students were either Slightly or Not at all 

knew which kinds of graphs or diagrams to suit different mathematical word problems. 

A smaller portion of about 21% of the students was confident to easily draw the graphs 

or diagrams by themselves and about 24% of the students were Slightly or Not at all 

found it easy to sketch or draw them. For all the items in this category, approximately 

half of the students responded as Moderately. These percentages indicate that students 

did face various types of difficulties when using, constructing or even identifying 

different graphs or diagrams for different mathematical problems. Figure 4.4 depicts 

graphically the responses from the students on the difficulties in dealing with graphs or 

diagrams in solving mathematical problems.  
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Figure 4.4: The difficulty in using graphs or diagrams in solving mathematical 

problems   

 

4.3.1.4 Analysis on the teacher’s behaviours in using graphs or diagrams in solving 

mathematical problems  

The results of the survey on the teachers’ behaviour in using graphs or diagrams in 

solving mathematical word problems are as shown in Table 4.16. The mean scores of 

the items ranged from 3.88 to 4.22. It can be seen that the majorities of the students 

were in the Definitely or Very much levels. About 80% of the students regarded their 

teachers as Definitely or Very much used the graphs or diagrams to efficiently solve 

mathematical problems. About 77% of the students agreed that their teachers use graphs 

or diagrams to explain on how to solve mathematical word problems. About 74% of the 

students agreed that the graphs or diagrams that their teachers used to show on how to 

solve mathematical problems Definitely or Very much helped them to understand how 

those problems can be solved and consequently approximately 71% of the students said 

that their teachers actually taught them how to use graphs or diagram to solve 

mathematical word problems. Lastly, about 67% of the students said that they were 
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Definitely or Very much told and encouraged by their teachers to use graphs or diagrams 

in solving mathematical words problems. On the overall, less than 10% responded either 

Not at all or Slightly for all items in this category. These indicate that the teachers were 

making positive use of graphs or diagrams in their teaching in order to assist the 

students to understand mathematical concepts and solve mathematical word problems. 

Figure 4.5 depicts graphically the responses from the students of their perception on 

their teacher’s behaviours in using graphs or diagrams in solving mathematical 

problems.  

 

 

Figure 4.5: The teachers’ behaviour in using graphs or diagrams in solving 

mathematical problems   
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4.3.2 Analysis on VRUL based on gender, race and major   

The detail analysis on the mean and standard deviation for each category for the gender, race 

and major are as given in Appendix J. The male students have higher mean values as compared 

to the female students while the Chinese outperformed the other races with higher mean values 

in almost all items. The Engineering students had also shown higher means values in almost all 

items indicating their positivity in the usage level of graphs and diagrams in their daily learning 

and solving of mathematical problems.      

 

4.3.3 Correlations among the categories in VRUL  

The purpose of the correlation analysis for the categories in VRUL was to investigate if 

students’ usage level of graphs or diagrams for one category is correlated to the other 

category. The relationships among the categories, are as presented in Table 4.17.   

 

Table 4.17: Correlation among the overall VRUL and the categories in VRUL 

Category 1 2 3 4 5 Mean SD 

1 Overall VRUL  -       

2 Daily behaviour .85* -    3.67 0.96 

3 Usefulness .71** .54** -   4.04 0.86 

4 Difficulty .78** .60** .49** -  3.22 0.84 

5 
Teachers’ 

behaviour 
.79** .50** .34 .47** - 4.06 0.89 

Note. N = 190; VRUL = Visual Representative Usage Level ;  

*p < .05, **p < .01 

 

 Positive and strong Pearson correlation values between 0.71 and 0.85 were 

observed between the VRUL and all its categories. These indicate that the students with 

high usage level of graphs or diagrams in the overall teaching and learning of 

mathematics had also made use of graphs or diagrams in their learning behaviour, were 

positive on their usefulness, faced less difficulties and positive usage of graphs or 

diagrams by their teachers in the teaching of mathematical problem solving. The 
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Pearson correlations values of between 0.34 and 0.60 among the categories are also 

positive, although they exhibited weaker relationships. All relationships are also 

statistically significant to each other except for the relationship between the students’ 

view on the usefulness of the graphs and diagrams in solving mathematical problems 

and their teacher’s usage level of graphs and diagrams in their teaching of mathematical 

problem solving (r = 0.38, N = 194, p = 0.74).  

 

4.4 Mathematical Visuality Test (MVT) 

4.4.1 Frequencies and percentages  

This section describes the descriptive analysis on the responses by the students in the 

Mathematical Visuality Test (MVT). The test consisted of five sentential or non-graph 

tasks. To examine the distribution of the responses from the students, the frequencies 

and percentages were computed for each part of all the items for their mathematical 

visuality. Students are categorised as visual if they introduced or make used of graphs, 

regardless whether they managed to draw the correct graphs or not, to help them 

explaining and solving the problems. The categories of encoding process that were 

listed under visual are Correct graph with correct solution (CGCS), Correct graph with 

incorrect solution (CGIS), Incorrect graph with correct solution (IGCS) and Incorrect 

graph with incorrect solution (IGIS). On the other hand, the categories of encoding that 

were listed under non-visual are No graph with correct solution (NGCS) and No graph 

with incorrect solution (NGIS). Those students who did not attempt or answer the tasks 

were calculated separately. The sample of student’s work solution that was assigned 

with IGIS is as in Figure 4.6. The student drew incorrect graph to represent the average 

rate of change and provided a wrong description of rate of change.  
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Figure 4.6: Sample of student’s work that was assigned to IGIS  

 

Figure 4.7, shows the sample of student’s work solution that was assigned with IGCS. 

The student did not manage to draw the correct graph to explain the idea of the 

relationship among limit, chord and tangent but had provided a correct wrong 

description of the concepts.  

  

 
 

Figure 4.7: Sample of student’s work that was assigned to IGCS  

 

4.4.1.1 Analysis on the mathematical visuality for item 1  

Table 4.18  displays the distribution of visual and non-visual category for item 1 and 

Figure 4.8 illustrates the detail distribution on the encoding process for all parts of item 

1. The distribution shows that, for all the three parts, less than 34% of the students 

employed graphs to express their solutions, regardless whether they managed to come to 

the correct solutions or not. Only a small portion of at most 13% of the students 
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managed to sketch the correct graphs and consequently obtained the correct solutions. 

Less than 15% of the students sketched incorrect graphs. Majority, between 53% to 

72%, of the students did not employ graphs to solve the problems but approximately 

24% to 44% of them were able to come to the correct answers. Approximately 11% to 

14% of the students did not attempt to solve the problems.    

 

Table 4.18: The analysis on the Mathematical Visuality for item 1 

Item Visual Non-visual 
Not answered / 

attempted 

Mean  Standard  

deviation  

1a 24.2 63.9 11.9 2.11 1.69 

1b 33.6 52.5 13.9 2.37 1.93 

1c 16.5 71.6 11.9 1.92 1.43 

Note : The figures represent the percentages of the distribution  

 

 

 

Figure 4.8: Distribution of the encoding process for item 1 of the MVT 
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4.4.1.2 Analysis on the mathematical visuality for item 2 

Table 4.19 displays the distribution of visual and non-visual category for item 2 and 

Figure 4.9 illustrates the detail distribution on the encoding process for all parts in item 

2. The distribution shows that, for both parts of the visual and non-visual, less than 22% 

of the students employed graphs to express their solutions, regardless whether they 

managed to come to the correct solutions or not. Only a small portion of at most 10% of 

the students managed to sketch the correct and consequently obtained the correct 

solutions. Between 50% to 64% of the students did not turn to graphs as the solution 

method with some portions of approximately 28% of them had abled to arrive to the 

correct answers. About 20% of the students did not attempt to solve both problems in 

item 2.     

 

Table 4.19: The analysis on the Mathematical Visuality for item 2 

Item Visual Non-visual 
Not answered / 

attempted 

Mean  Standard  

deviation  

2a 14.9 64.0 21.1 1.64 1.53 

2b 31.0 50.5 18.6 2.15 1.83 

Note : The figures represent the percentages of the distribution  

 

 

 

Figure 4.9: Distribution of the encoding process for item 2 of the MVT 
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4.4.1.3 Analysis on the mathematical visuality for item 3 

 

Table 4.20: The analysis on the Mathematical Visuality for item 3 

Item Visual Non-visual 
Not answered / 

attempted 

Mean  Standard  

deviation  

3a 31.4 60.3 8.3 2.80 1.95 

3b 31.4 60.3 8.3 2.77 1.97 

3c 24.2 75.8 0.0 2.88 1.60 

3d 31.4 66.0 2.6 2.97 1.79 

3e 31.5 59.3 9.3 2.75 2.02 

3f 31.4 54.2 14.4 2.64 2.07 

3g 34.9 57.8 11.3 2.59 2.00 

3h(i) 46.4 49.7 4.1 3.30 2.01 

3h(ii) 30.9 54.7 14.4 2.55 2.06 

3i 37.2 49.5 13.4 2.88 2.06 

Note : The figures represent the percentages of the distribution  

 

 

 

Figure 4.10: Distribution of the encoding process for item 3 of the MVT 

 

Table 4.20 displays the distribution of visual and non-visual category for item 3 and 

Figure 4.10 illustrates the detail distribution on the encoding process for all parts in item 

3. Besides item 3(h)(i) that had received the highest means score (M = 3.30, SD = 2.01), 
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the rest of the items scored means of between 2.00 and 3.00. The distribution also shows 

that, except for item 3(h)(i) with approximately 46% and item 3(i) with approximately 

37%, all the other items received approximately 24% to 32% of the students tried to 

employ graphs to express their solutions regardless whether they managed to come to 

the correct solutions or not. Only a portion of less than 23% sketched the correct graphs 

and consequently obtained the correct solutions. On the other hand, all items had less 

than 10% of the students who sketched incorrect graphs. At least 50% of the students 

did not turn to graphs as the solution method although between 33% and 76% of the 

students managed to come to the correct answers. Less than 15% of the students did not 

attempt to solve the problems.  

 

4.4.1.4 Analysis on the mathematical visuality for item 4 

Table 4.21 displays the distribution of visual and non-visual category for item 4 and 

Figure 4.11 illustrates the detail distribution on the encoding process for all parts in item 

4. The mean score for item 4 was 2.51 with the standard deviation of 1.62. The 

distribution shows that about 30% of the students employed graphs to express their 

solutions but only a small portion of approximately 12% of the students managed to 

sketch the correct graphs of the situation together with the correct description. About 

18% of the students sketched incorrect graphs. The other of approximately 62% of the 

students did not turn to graphs as the solution method but approximately 52% of the 

students were still able to come to the correct answers. A small portion of about 8% of 

the students did not attempt to solve the problems.    
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Table 4.21: The analysis on the Mathematical Visuality for item 4 

Item Visual Non-visual 
Not answered / 

attempted 

Mean  Standard  

deviation  

4 29.9 62.4 7.7 2.51 1.62 

Note : The figures represent the percentages of the distribution  

 

 

 

Figure 4.11: Distribution of the encoding process for item 4 of the MVT 

 

4.4.1.5 Analysis on the mathematical visuality for item 5 

Table 4.22 displays the distribution of visual and non-visual category for item 5 and 

Figure 4.12 illustrates the detail distribution on the encoding process for all parts in item 

5. Surprisingly, the distribution shows that none of the students made used of graphs, in 

all the tasks, to solve the problems. Besides approximately 8% of the students who did 

not attempt questions 5(b) and 5(c), the rest of the students employed algebraic 

manipulations to solve the tasks. For question 5(a), approximately 98% of the students 

did not make use of graphs to solve the problem.          
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Table 4.22: The analysis on the Mathematical Visuality for item 5 

Item Visual Non-visual 
Not answered / 

attempted 

Mean  Standard  

deviation  

5a 0 97.9 2.1 1.81 0.44 

5b 0 92.8 7.2 1.71 0.59 

5c 0 92.8  7.2 1.38 0.62 

Note : The figures represent the percentages of the distribution  

 

 

 

Figure 4.12: Distribution of the encoding process for item 5 of the MVT 
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the students are in the non-visual category which indicate that they prefer to use the 

algebraic method in solving problems on functions and derivatives. Smaller portions of 

approximately 27% of the students showed their preference in using graphs as tools to 

solve problems. Another of approximately 17% of the students were categorised as 

partially visual. They exhibited a mixture modes of visual and non-visual. Some of the 

students came out with both visual and non-visual methods which indicate their in-

confidence in using the graphical methods.      

 

Table 4.23: Distribution of mathematical visuality measure for the MVT 

Visuality measure Category Visuality Score Percentage (%) 

Visual 

CGCS 

CGIS 

IGCS 

IGIS 

57 – 114 26.8 

 

Partially visual 

 

- 39 – 56 16.5 

Non-visual 

NGCS 

NGIS 

NA 

0 – 38 56.7 

 

Further analysis using the Chi Square test was done to compare the significance on the 

proportions of the categories of measures; Visual, Partially visual and Non-visual.  The 

visuality measure was found to be statistically significantly,  ( )2
2χ  = 50.15 > 5.991, p < 

0.05. Therefore, there is a difference among the percentage of students in the 

mathematical visuality measures.  

 

4.4.3 Analysis on visuality measure based on gender, race and major   

The detail analysis on the percentages for each category of the visuality measures for the 

gender, race and major are as given in Appendix J. The majority of the students, regardless their 

gender, race and major, were in the non-visual category. This indicate that most of the students 
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were still adopting the procedural or memorization techniques and were very comfortable with 

the algebraic manipulation.  

 

4.5 Graph Reasoning Test (GRT) 

4.5.1 Frequencies and percentages  

This section describes the descriptive analysis of the responses by the students in the 

Graph Reasoning Test (GRT). The test consists of five graph-accompanied tasks. 

Students must make use of the graphs in order to solve the tasks assigned to them. In 

other words, they need to look for or interpret the information displayed on the graphs 

or search for the information that were hidden in between the graphs. To examine the 

distribution of the responses from the students, the frequencies and percentages were 

computed for each part of all the items for their graph reasoning ability. Analysis were 

based on the three scales of decoding process: read the graph, read between the graph 

and read beyond the graph. Frequencies and percentages were calculated for the Correct 

and Incorrect solutions for each decoding scale that indicate their capability to read and 

interpret graphs as visual tools. The categories of the decoding process that were listed 

under Correct are : Correct solution with valid reason (CSVR), Correct solution with 

invalid reason (CSIR), Correct solution with no reason (CSNR) while Incorrect solution 

with invalid reason or no reason (ISINR) was categorised under Incorrect. Those 

students who did not attempt or answer the tasks were calculated separately. The sample 

of student’s work solution that was assigned with CSIR is as in Figure 4.13. The student 

managed to interpret the gradient of the tangent to equal to zero but had produced 

incorrect concepts to reason it. Figure 4.14 illustrate the work solution of a student that 

was assigned ISINR, where the student didi not managed to obtained the correct answer 

and had also produced an inccorect reason to justify it.  
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  Figure 4.13: Sample of student’s work that was assigned to ICSIR 

 

 

 

 

  Figure 4.14: Sample of student’s work that was assigned to ISINR 

 

 

4.5.1.1 Read the graph  

Reading the graph required the students to directly see the information on the graphs 

without doing any calculation or interpretation. As shown in Table 4.24, the mean 

scores for all the items range between 2.12 and 3.87. At least 67% of the students 

managed to get the correct answers regardless whether they had provided valid or 

invalid reasons or failed to provide any reasons to support the solutions. All of the 

students managed to get the correct answers for items 1(a)(i) and 1(b)(i). Approximately 

64% and 88% of the students managed to provide valid reasons for their solutions. This 

indicates that students were very good in reading the information shown in the graphs. 

On the overall, less than 10% of the students did not attempt the tasks.   
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Table 4.24: The analysis on the items for the decoding scale : Read the graph 

Item Correct  Incorrect  
Not answered / 

attempted 

Mean  Standard  

deviation  

1(a)(i) 100.00 0 0 3.29 0.96 

1(b)(i) 100.00 0 0 3.87 0.38 

2(a)(i) 86.60 10.31 3.09 3.35 1.19 

3(b)(i)(1) 67.63 29.38 3.09 2.14 1.17 

3(b)(i)(2) 86.60 10.31 3.09 2.52 1.13 

3(b)(i)(3) 75.26 15.46 9.28 3.07 1.48 

3(b)(ii)(1) 93.81 4.64 1.55 3.52 0.91 

4(a)(i) 89.69 10.31 0 3.16 1.09 

4(a)(ii) 81.44 13.92 4.64 2.86 1.30 

5(b)(ii)  73.72 21.13 5.15 2.12 1.09 

Note : The figures represent the percentages of the distribution  

 

 

4.5.1.2 Read between the graph  

Reading between the graph required the students to make some relationships among the 

information shown in the graphs in order to arrive to another meaning of the solutions. 

As shown in Table 4.25, the mean scores for all the items range between 1.72 and 3.52. 

Except for three items, 2(a)(ii), 2(b)(i) and 5(b)(i), that scored correctly between 39% to 

57%, the rest of the items were correctly managed by a range of 79% to 97% of the 

students. All of the students managed to answer item 1(d)(i) correctly with about 72% 

of them managed to provide valid reason that shows their understanding. The results of 

the analysis indicate that the students had quite a strong foundation in functions and 

derivatives. Most of them managed to make use of the information displayed in the 

graphs in order to interpret or calculate related information. On the overall, less than 

15% of the students did not attempt the tasks.   
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Table 4.25: The analysis on the items for the decoding scale: Read between the graph 

Item Correct  Incorrect  
Not answered / 

attempted 

Mean  Standard  

deviation  

1(a)(ii) 85.05 7.22 7.73 3.03 1.32 

1(b)(ii) 81.44 9.28 9.28 2.76 1.37 

1(b)(iii) 96.91 3.09 0 3.48 0.89 

1(c)(i) 93.30 3.61 3.09 3.49 1.04 

1(d)(i) 90.21 0 9.79 3.27 1.30 

1(d)(ii) 83.51 2.06 14.43 1.74 0.77 

2(a)(ii) 43.82 49.48 6.70 2.04 1.43 

2(b)(i) 56.70 36.60 6.70 1.77 1.04 

3(b)(ii)(2) 78.35 17.01 4.64 2.15 0.98 

4(b) 85.05 8.76 6.19 2.87 1.31 

5(a)     93.30 6.70 0 3.52 0.96 

5(b)(i) 38.66 55.67 5.67 1.97 1.40 

Note : The figures represent the percentages of the distribution  

 

 

4.5.1.3 Read beyond the graph  

Reading beyond the graph required the students to interpolate or extrapolate the graphs 

to see the shape or patterns of the graphs. Students are required to possess a strong 

knowledge on functions and derivatives in order to read beyond the graphs. As shown in 

Table 4.26, the mean scores for all the items range between 1.18 and 3.09. A mixture of 

percentages that range of between 30% and 76% of the students managed to get the 

correct answers regardless whether they had provided valid or invalid reasons or failed 

to provide any reasons to support the solutions. Subsequently, a lower range of 9% to 

43% of the students produced incorrect solutions. At most 27% of the students did not 

try out the questions. The results of the analysis indicate that as the reading of hidden 

information are getting more complex, less percentage students were able to arrive to 

the correct answers and these indicate a lower ability of their visual reasoning skill.  
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Table 4.26: The analysis on the items for the decoding scale : Read beyond the graph 

Item Correct  Incorrect  
Not answered / 

attempted 

Mean  Standard  

deviation  

1(c)(ii) 71.65 9.79 18.56 2.38 1.55 

1(e) 43.30 31.44 25.26 1.18 0.81 

2(b)(ii) 59.79 19.59 20.62 1.77 1.30 

3(a) 76.29 21.13 2.58 3.09 1.34 

4(c) 74.23 22.16 3.61 2.14 1.10 

5(b)(iii)     30.93 42.78 26.29 1.45 1.34 

5(b)(iv) 63.92 9.79 26.29 2.34 1.72 

Note : The figures represent the percentages of the distribution  

 

 

4.5.2 Correlations among the overall GRT and the decoding scales   

The GRT comprised of three scales that make up the constructs of the decoding 

processes in visual reasoning, i.e. reading the graph, reading between the graph, and 

reading beyond the graph. The correlation analysis based on the scales in GRT was to 

investigate if students’ abilities in the decoding process or extracting information from 

the given graphs in the overall GRT is correlated to each of the scales and also if one 

scale is correlated to the other scale. The relationships between the overall GRT and 

each of the scale and also among the scales are as presented in Table 4.27.   

 

Table 4.27: Correlation among the overall GRT and the decoding scales  

Category 1 2 3 4 Mean SD 

1. Overall GRT -    2.63 0.92 

2. Reading the graph  .98 -   2.99 1.23 

3. Reading between graph  .99 .96 -  2.67 1.35 

4. Reading beyond graph  .99 .91 .92 - 2.05 1.46 

Note. N = 190; GRT = Graph Reasoning Test; p < .01 
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 Very strong and positive correlations with values of at least 0.98 were observed 

between the overall GRT and the scales and also among the scales. These indicate that 

the students who are able to decode the graphs by just reading the information from the 

graphs would also be able to read between and beyond the graphs in order to solve the 

tasks on functions and derivatives. The relationships among the scales are also positive, 

and they exhibited very strong relationships with values of at least 0.91. All 

relationships are also statistically significant to each other as observed from p < .01 

values. 

 

Further analysis using the Chi Square test was done to compare the significance on the 

proportions of the decoding level; Reading the graph, Reading between graph and 

Reading beyond graph. The decoding levels were found to be statistically significantly,  

( )2
2χ  = 13.1 > 5.991, p < 0.05. Therefore, there are differences among the percentage of 

students in their ability to decode information displayed or hidden in the graphs.   

 

4.5.3 Analysis on visual reasoning ability based on gender, race and major   

The detail analysis on the percentages for each category of the visual reasoning ability for the 

gender, race and major are as given in Appendix J. The majority of the students, regardless their 

gender, race and major, performed very well when they need to just read out the information 

straight from the graph. Smaller percentages of students were able to read and interpret the 

relationships among the information given for the functions and their derivative while only very 

small portions, in each category, were able to further interpolate or forecast on the hidden 

information not displayed in the graph.  
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4.6 Correlation among the results of the instruments 

Scatterplot was used to illustrate the relationships among the students’ responses to the 

three instruments, the VRUL, the MVT and the GRT. Three main characteristics are 

used to explain the correlations between any two variables: the shape, the direction and 

the magnitude of the scatterplot. Correlation coefficient refers to the covariant statistical 

measure between any two variables that indicates the strength and direction of their 

linear relationship, while the trend of the relationship can be seen from the distribution 

of the scattered points. The shape of the scatterplot depicts the trend of the relationships. 

The magnitude refers to the strength of the relationship of the variables and it is 

represented by the number 0 to 1.00. A ‘0’ indicates no relationship exist between the 

two variables while the value ‘1’ denotes a perfect linear relationship. The nearer a 

value towards ‘0’ or ‘1’, indicates the weaker or stronger respectively, the relationship 

between the two variables.     

Figure 4.15 illustrate the relationship between the means for VRUL and the 

means of MVT. Three patterns of positive correlations are observed. The regions with 

higher VRUL (> 4.5) tend to have higher MVT than the regions with lower VRUL. 

Among the regions with lower VRUL (between 4.5 and 5), a small difference in VRUL 

reflects a significant different increase in the MVT. On the other hand, in the regions 

with the lowest VRUL (< 4.5) a difference in VRUL produces relatively small increase 

in the MVT.  
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Figure 4.15: Means for VRUL against means for MVT 

 

Figure 4.16 illustrate the relationship between the means for VRUL and the 

means of GRT. Three patterns of positive correlations are also observed. The regions 

with higher VRUL (> 4.3) tend to have higher GRT than the regions with lower VRUL 

Among the regions with lower VRUL (between 3 and 4.3), a small difference in VRUL 

reflects a significant different increase in the GRT. On the other hand, in the regions 

with the lowest VRUL (< 3) a difference in VRUL produces relatively small increase in 

the MVT. 

 

 

Figure 4.16: Means for VRUL against means for GRT 
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 Figure 4.17 illustrate the relationship between the means for MVT and the 

means of GRT. Two distinct patterns of positive correlations are observed. The upper 

regions with higher VMT (between 2.5 and 5.5) tend to have higher MVT than the 

regions with lower VRUL and increases slowly, i.e. a difference in VRUL resulted in a 

small different increase in the GRT. On the other hand, in the regions with the lower 

VMT (< 2.5) the increment looks more proportionate, a different in the MVT produces 

approximately an equal increase in the GRT.     

 

 

Figure 4.17: Means for MVT against means for GRT 
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In each of the equation, for example, in the equation 87.521.2  xy , the value 

2.21 indicates that for every additional point in the VRUL as independent variable, it is 

expected that the dependent variable to increase by an average of 2.21. The straight line, 

if to be drawn in each scatterplots, shows the same information. Moving to the left or to 

the right along the x-axis by an amount that represents one unit change in the VRUL, 

the fitted line rises (or falls) by 2.21 unit points. However, these VRUL and MVT 

values were obtained from the pre-university students at one college. Therefore, the 

relationship is only valid within these intervals of the data range. No prediction is to be 

made outside the data range.   

 

Table 4.28: The linear regression and correlation coefficients among the VRUL, MVT 

and GRT 

Variable 
Linear regression 

Coefficient of  

Correlation (r) Independent Dependent 

VRUL  MVT 87.521.2  xy  0.803 

VRUL  GRT 31.155.0  xy  0.897 

MVT GRT  46.36321.1  xy  0.838 

 

Another statistical measure, r2, the coefficient of determination, takes the values 

between 0 and 1.00, measures how close the data are to the fitted regression line. It is 

possible to have a low, r2 due to two reasons. Firstly, this study attempted to predict 

human behaviour. Typical value of r2 is less than 0.5. Humans are just harder to predict 

as compared to the physical process. Secondly, low r2 values are only problematic when 

we need to do precise prediction. Another matter to note is that the intercepts do not 

make sense in the real world situations. For example, it is not reasonable for the 

students’ mathematical ability to be a 0 or negative when their usage level is 0.          
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4.7 Analysis on misconceptions and difficulties 

4.7.1 Mathematical Visuality   

This section describes the errors performed by the students when solving tasks in 

assessing their mathematical visuality. Since the aim of the tasks is to seek students’ 

preference in using graphs, this section will focus on the ‘incorrect’ graphs constructed 

and the conceptual knowledge applied by the students. Therefore, the errors carried out 

by the students were extracted and analysed based on the graphs sketched, mathematical 

reasons and worked solutions provided in the ‘Incorrect Graph Correct Solution 

(IGCS)’ and ‘Incorrect Graph Incorrect Solution (IGIS)’.  

Table 4.29 illustrates the analysis on the errors performed by the students in 

solving problems in the MVT. About approximately 8% - 15% of the students drew 

wrong graphs or wrong straight lines for various parts of item 1 while approximately 

34% to 41% of the students performed incorrect solutions when solving tasks in item 1. 

Their reasons such as ‘the gradient of the graphs is the same at any point of the graph’, 

‘directly proportional’, ‘the gradient of the graph at particular point’ show that the 

students were able to visualize the situations on gradients of functions but they had 

expressed them in algebraic forms. Those with vague or lack of understanding on the 

concepts of derivatives defined constant rate of change as ‘horizontal line ’ or ‘gradient 

= 0’, average rate of change as ‘overall gradient of the graph’ or ‘total rate of change 

divided by total time’ and instantaneous rate of change as ‘remain constant without 

moving’ or ‘when time equal to zero’.  
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Table 4.29: Distribution of errors for the Mathematical Visuality Test 

Item 
Incorrect graphs Incorrect solutions 

f (%) f (%) 

1(a) 27 (13.91) 66 (34.02) 

1(b) 28 (14.44) 79 (40.72) 

1(c) 16 (8.25) 66 (34.02) 

2(a) 6  (3.09) 91 (46.91) 

2(b) 36 (18.56) 67 (34.54) 

3(a) 9 (4.64) 38 (19.59) 

3(b) 9 (4.64) 44 (22.64) 

3(c) 9 (4.64) 0 (0.00) 

3(d) 9 (4.64) 27 (13.92) 

3(e) 9 (4.64) 49 (25.26) 

3(f) 9 (4.64) 46 (23.71) 

3(g) 8 (4.13) 65 (33.51) 

3(h)(i) 13 (6.70) 65 (33.51) 

3(h)(ii) 8 (4.12) 62 (31.96) 

3(i) 12 (6.19) 41 (21.14) 

4 34 (17.52) 35 (18.04) 

5(a) 0 (0.00) 28 (14.43) 

5(b) 0 (0.00) 28 (14.43) 

5(c) 0 (0.00) 93 (47.94) 
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About 3% of the students drew wrong straight lines while about 47% of them 

performed incorrect solutions for item 2(a). A portion of 18.56% of the students 

constructed wrong graphs while some 34.54% of the students gave incorrect solutions 

for item 2(b). As with the results in item 1, analysis for Item 2 shows that the majority 

of the students again opted to describe their solutions in written form instead of 

sketching graphs. Those who chose to draw graphs for the formula 
   

ax

afxf




 sketched 

straight lines which pass through the origin to illustrate the slope of the function 

between two points as in Figure 4.18. The sketching indicates that students know what 

the formula represent but confined their definition of function to straight lines only. 

More than 80% of the students who drew graphs for the formula 
( ) ( )

ax

afxf

ax→

lim
 

understood what the formula represents but again failed to illustrate the accurate 

situation of chord becoming tangent as the coordinate of x approaches the coordinate a.    

 

 

Figure  4.18: Sample of wrong graph sketched and wrong definition and explanation 

provided by students for item 1 of MVT. 

 

 

Students who did not sketched any graph for the solution but managed to 

produce correct definition of the formula indicate some knowledge on understanding the 

relationships between the chords to tangent and the slopes of chords to the slopes of 
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tangents but they were reluctant to turn to graphs to express their workings. Their 

solutions such as ‘the slope of chord between 2 points which are ‘   xfx,
 
and 

  afa, ’ and ‘the rate of change of a chord’ for 
   

ax

afxf




 and ‘gradient of the 

tangent at   afa,  when x approaching a’ and ‘the instantaneous rate of change’ for 

( ) ( )

ax

afxf

ax→

lim
 indicate their ability to visualize the concepts. Those with vague or 

lack of understanding on the concepts of chords, limits and tangents defined both 

formulae as ‘the gradient at certain point’, ‘the difference in the function  xf  at ‘

1xx   and ax  ’ or  ‘it involves two rate of changes’ followed by ‘the rate of change 

approaches infinity’, ‘replace ax  , 
   

0




aa

afxf
 ’ or ‘under the limit of x until a, 

  00 xf , therefore a is the root’.    

     

 
 

Figure 4.19: Sample of wrong graph sketched but with correct description and 

explanation provided by students for item 2 of MVT 
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(a) (b) 

Figure 4.20: Samples of solutions provided by students for item 3(h)(ii) of the MVT 

 

Approximately between 4% to 7% of the students produced wrong graphs and 

less than 34% of the students performed incorrect solutions for various parts of items 3. 

Some of them analysed the graph of the function while some use the ‘Y=’, and ‘ZOOM’ 

or ‘WINDOW’ functions of the graphic calculator to sketch and adjust respectively the 

graph of the first derivative function in order to obtain the sign of the derivative 

function and further made decision on the behaviour of the function. About the same 

number of students use graphics calculator to sketch the graphs of  xfy '  and use the 

‘TRACE’ function in the graphic calculator to identify the zero of the graph for the 

inflection point while the majority still solve the algebraic equation   0''  xfy  for 

the point of inflexion as shown in Figure 4.20. 

For those who sketched wrong graphs, had actually made mistakes in keying in 

the function which had resulted in   xexf  3
2

50
  instead of  

xe
xf




32

50
 which 

in turn resulted in decreasing exponential function. They, however, managed to arrive to 
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the correct respective answers based on their wrongly sketched graphs.  Students who 

did not sketch any graph for the solution but managed to produce correct solutions 

indicate that they did understand the basic properties and characteristics of graphs. Their 

‘starting’ solutions such as ‘for xe , x can take any real number’ and ‘ 0xe  for all x’ 

for the domain and range respectively, ‘x = 0’ and ‘y = 0’ for the y-intercept and x-

intercept respectively , ‘ 032  x ’, and substituting x  for analysis of vertical 

asymptote, suggest that they are familiar with the ‘conditions’ for the particular 

situations. The expression such as ‘f(x) is increasing’ does indicate that students did 

visualize the situations but were expressing them in written form. Those with vague or 

lack of understanding of the properties and characteristics of graphs produced ‘the 

exponential graph will not pass through the origin as it has a horizontal asymptote y = 

0’, ‘gradient of f(x)’ ‘because f(x) is a logistic function’ and ‘the value of y=f(x) is 

always increasing until it reach vertical asymptote’ for various parts of the question.   

A total of about 18% of the students made errors in sketching graphs to help the 

solution processes while approximately 18% of the students performed incorrect 

solutions when solving item 4. Some of the students who sketched correct graph for 

item 4 seem to take both conditions, 
dt

du
< 0 and 

td

ud
2

2

> 0 separately. They seem to be 

very well-versed with 
dx

dy
< 0  or  

dx

dy
> 0 for the function to be decreasing or increasing 

respectively while 
td

ud
2

2

> 0 or 
td

ud
2

2

< 0 for the function to be convex or concave 

respectively.  Students who did not sketch any graph for the solution but managed to 

produce correct definition and explanation indicate that they did understand the basic 

ideas and relationship of the first and the second derivative to their functions. Their 

solutions such as ‘decreasing’, ‘decreasing at increasing rate’, ‘convex shape’ or ‘has a 

minimum point’ show that the students visualize the situations but were expressing 
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them in written form. Those with vague or lack of understanding on the concepts of 

derivatives explained the stated conditions as ‘the rate of change of unemployed people 

is decreasing’, ‘there will be a minimum point as the shape of the graph will be convex’, 

‘the number of unemployed is decreasing at increasing rate’ or ‘shape of graph is > 0, 

positive function ’.  

The analysis shows that the majority of the students prefer to describe the 

situation in words rather than to illustrate them in graphical form. From the students’ 

work, it can be seen that they are still either confused or did not understand the 

relationship among the function, the first derivative and the second derivative. Those 

who drew correct graphs made wrong interpretation of the rate of change while some 

that drew incorrect graphs continued to misinterpret the situation wrongly as shown in 

Figure 4.21. 

    

(a) 

 

(b) 

Figure 4.21: Samples of wrong graphs sketched and wrong definition and explanation 

provided by students for item 4 of the MVT. 
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None of the students performed any errors in sketching the graphs since no one 

actually use graph to help them solve the problem for item 5. About 14% to 48% of the 

students made errors in their worked solutions. The analysis shows that all of the 

students who attempted the problem were reluctant to use graphs in solving this real-life 

situation. This shows that they are very convenient with differentiating and solving the 

function algebraically since the majority of them managed to arrive to the correct 

solutions. By the way, some of the students did draw the sign diagrams of  tA  and 

 tA   for Item 5(b) and 5(c) to determine the required intervals as shown in Figure 4.22.  

 

 

Figure 4.22: Sample of sign diagram drawn by students for item 5 of the MVT. 

 

4.7.2 Graph Reasoning  

This section describes the errors performed by the students when solving tasks in the 

Graph Reasoning Test. Since the aim of the tasks is to assess students’ used of graphs to 

solve derivative problems, this section focused on the ‘invalid’ reasons provided by the 

students and also the ‘incorrect’ conceptual knowledge applied by the students. 

Therefore, the errors carried out by the students were extracted and analysed based on 

the mathematical reasons and worked solutions provided in the ‘Correct Solution 

Invalid Reason (CSIR)’ and ‘Incorrect Solution Invalid or No Reason (ISINR)’.  

Table 4.30 illustrates the analysis on the errors performed by the students for 

items in GRT. Less than 11% of the students provided invalid reasons for their worked 

Univ
ers

ity
 of

 M
ala

ya



184 
  

solutions and, except for item 1(e) with about 31%, less than 10% of the students 

performed incorrect solution for various parts of item 1. The analysis shows that 

students have were able to relate some of the basic and simple functional or symbolic 

notation to the graphical forms. Most of the students faced no problem in locating the 

symbol f(4) as the y-coordinate of the graphs but some struggled with the meaning of 

   
13

1f3f




.  They drew tangent lines at points between x=1 and x=3 instead (Figure 

4.23). Most of the students managed to see that the function is an increasing function 

and therefore able to analyse the required comparisons of the position of the points, the 

steepness of the slopes of the chords and tangents. Some with no reasons made sketches    

of the lines while others must have done some visualization on the respective lines in 

order to arrive to the correct solutions and with reasons such as ‘the higher location’, 

‘value of y is higher’, ‘f(x) is increasing in value’, ‘positive slope’, ‘slope of the tangent 

decrease’, ‘tangent is steeper’. Many students were very familiar with the functional 

notation representing ‘tangent’ and therefore had no problem in illustrating   1f   on the 

graph but quite a number of them cannot represent 
   

1

1





x

fxf
 on the graph. Quite a 

majority of the student were unable to write the relationship between  1f   and 

   
1

1





x

fxf
indicating their weakness in understanding the basic formulation of the 

derivatives.  

 

Figure 4.23: Sample of wrong chord drawn by student for item 1 of the GRT. 
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Table 4.30: Distribution of errors for the Visual Reasoning 

Item 
Invalid reasons Incorrect solutions 

f (%) f (%) 

1(a)(i) 0 (0.00) 0 (0.00) 

1(a)(ii) 20 (10.31) 14 (7.22) 

1(b)(i) 20 (10.31) 0 (0.00) 

1(b)(ii) 20 (10.31) 18 (9.28) 

1(b)(iii) 12 (6.19) 6 (3.09) 

1(c)(i) 6 (3.09) 7 (3.61) 

1(c)(ii) 2 (1.03) 19 (9.79) 

1(d)(i) 4 (2.06) 0 (0.00) 

1(d)(ii) 10 (5.15) 4 (2.06) 

1(e) 0 (0.00) 61 (31.44) 

2(a)(i) 5 (2.58) 20 (10.31) 

2(a)(ii) 9 (4.64) 96 (49.48) 

2(b)(i) 11 (5.67) 71 (36.60) 

2(b)(ii) 7 (3.61) 38 (19.59) 

3(a) 7 (3.61) 41 (21.13) 

3(b)(i)(1) 7 (3.61) 57 (29.38) 

3(b)(i)(2) 11 (5.67) 20 (10.31) 

3(b)(i)(3) 2 (1.03) 30 (15.46) 

3(b)(ii)(1) 34 (17.53) 9 (4.64) 

3(b)(ii)(2) 38 (19.59) 33 (17.01) 

4(a)(i) 21 (10.82) 20 (10.31) 

4(a)(ii) 18 (9.28) 27 (13.92) 

4(b) 6 (3.09) 17 (8.76) 

4(c) 2 (1.03) 43 (22.16) 

5(a) 6 (3.09) 13 (6.70) 

5(b)(i) 20 (10.31) 108 (55.67) 

5(b)(ii) 17 (8.76) 41 (21.13) 

5(b)(iii) 36 (18.56) 83 (42.78) 

5(b)(iv) 3 (1.55) 19 (9.79) 
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About 3% to 6% of the students provided invalid reasons for their worked 

solutions and about 10% - 50% of the students performed incorrect solution for all four 

parts of item 2. The analysis shows that the majority of the students were able to read 

the coordinate of the point on the graph and rewrote them in functional form although a 

few of the students misread the coordinates as g(B) = 5, indicating that the students 

understood the concept but had mistook the x-coordinate. Some others misread g(1.95) 

= 5.02 which indicate that the students knew how to read the coordinate but did not 

realize/know the location of the required point to be either on the graph of the function 

or on the tangent line. On the other hand, only a small amount of the students managed 

to relate the symbolic form of g (x) as the derivative or the instantaneous rate of change 

at a point and relate it to the slope of the tangent line.  Those students with incorrect 

answers came out with g’(1.95) = 5.02 and g’(2) = 5 indicating their misreading the 

data. Other types of unacceptable solutions are such as g’(2) = 5.02, g’(2) = 0 and 

g’(1.95) = 5. These indicate their weak basic knowledge in the concepts of derivatives 

and tangent and lead to not able to relate to the ideas graphically. Some invalid reasons 

provided by the students were ‘points are on the tangent’, ‘stationary points’ and 

negative slope indicating their weakness in the conceptual understanding of derivatives 

graphically.  

 In the analysis for the second part of item 2, those who managed to obtained 

correct solutions failed to reason correctly by defining the vertical distance as vaguely 

as ‘the difference between the two functions’ and very unacceptable ‘functions are equal 

at x=a and x=b ’, ‘functions intersect at two points’, ‘local maxima or minima’ and 

‘maximum gradient’. This shows that the students who managed to read the information 

displayed on the graphs made errors when needed to go beyond what were displayed. 

Some samples of incorrect solutions produced by the students were ‘g(x) = f (x)’, ‘g(b) - 

f(a)’, ‘g(x) – f(x)’, ‘maximum gradient at x=c’ and ‘tangent is zero’. Some of the 
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students reasoned the solutions to be related to the ‘area between the curves’ indicating 

their assumptions that when functions bounded a region, then tasks must relate to area 

between the curves.  

 

 

(a) Correct solution with invalid reason 

 

 

(b) Incorrect solution with incorrect reason / no reason 

Figure 4.24: Samples of solutions by students for item 2 of the GRT 

 

About 1% to 20% of the students provided invalid reasons for their worked 

solutions and between 5% to 30% of the students performed incorrect solutions for 

various parts of item 3, as explained in the next paragraphs.   

The analysis shows that errors performed by the students in reasoning were 

mainly on them assuming that the graph is a quadratic or the shape is a convex (Figure 

4.25). Nevertheless they gave the correct reasons from the visual point of argument.  

Other errors include ‘local minimum at f(x) = 0’ which indicate their memorization of 

the standard formula or condition.  Some drew wrong sign diagram to represent the 

signs of the gradient of the functions reflecting their lack of ability to read between the 
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data, at the same time exhibiting a weak understanding on the concepts of gradients of 

functions graphically.  

In the second part of item 3, students made errors in assuming that vertical and 

horizontal asymptotes were only indicated by ‘dotted lines’. They therefore missed the 

line x=0 as the other vertical asymptote. They reasoned that ‘the graph did not touch the 

x-axis’ for choosing y= 0 as the horizontal axis which is ‘seen’ from the graph but 

unfortunately it was not an acceptable answer.  Some confused themselves between the 

horizontal and the vertical asymptotes. The reasons such as ‘decreasing function’, 

‘approaching zero’, ‘negative infinity’ and ‘decreasing with increasing/decreasing rate’ 

that bring no meaning to the solutions indicated that most of the students memorized the 

‘standard’ or common terminologies with regards to the topic derivatives without 

understanding them conceptually.      

 

 

Figure 4.25: Sample of incorrect solution with incorrect reason by students for item 3 

of the GRT 

 

Less than 11% of the students provided invalid reasons for their worked 

solutions and between 10% to 23% of the students performed incorrect solution for all 

for parts of item 4.  

 The errors performed by the students, through the analysis on the reasons they 

provided such as ‘below the x-axis’, ‘f’(x) is decreasing’ and ‘f(x) is approaching -3 / 

horizontal asymptote’ indicated their ability to read of data and described the properties 

and behaviours of the function graphically but with lack of conceptual understanding on 

the topic of derivatives.  For item 4(b), those who managed to get the correct solutions 
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did struggle with providing invalid reasons for their actions such as ‘decreasing’, ‘above 

the horizontal asymptote’ and ‘convex’.  In part 4(c), students performed various errors 

when sketching the graph of the derivative of the function given. Those who managed 

to obtain the correct graph were still unable to support their solutions with valid reasons. 

Theirs were a simple and brief as ‘increasing and decreasing of graph’ and ‘behaviour 

of graph’. Some of the other students carried out various types of errors in their 

sketching such as ‘graph passing through the points (0,0) and (4,0) ’ and ‘x is greater 

than or equal to negative infinity and y is greater than or equal to -3’ which indicated 

their unable to read the properties of the derivatives from the graph of the function.  

Samples of students’ worked solutions are as shown in Figure 4.26.      

Between 1% to 19% of the students provided invalid reasons for their worked 

solutions and between 6% to 56% of the students performed incorrect solutions for all 

the five parts of item 5. Item 5 consisted of tasks on the applications onto real-life 

situations. The analysis on item 5(a) shows that students who, although provide correct 

answers for the situations, still performed errors in the reasons to accompany their 

decisions. Various simple explanations were ‘straight line’, ‘different slopes’, 

‘horizontal lines’, ‘shape of graph’ and ‘starting at the origin’, again reflects their 

memorizing of the terms instead of grasping the concepts. Item 5(b) exhibits how 

students argued their correct descriptions of the ‘rate’ through the shape and hence the 

specific functions such as the ‘logistics’ or ‘surge’ functions. Some described their 

reason as simple as ‘shape of the graph’. Other various incorrect descriptions include 

‘increasing continuously without bound’ and ‘increase then decrease’. When drawing 

the sign diagram, some of the students either appointed wrong critical points or drew the 

sign diagrams of the first derivative instead of for the second derivative.  Reading 

beyond the graph as requested by item 5(b)(iii) to interpret the inflection point to the 
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population growth seemed to fetch more errors as compared to item 5(b)(iv) that needed 

the students to relate the horizontal asymptote to the growth pattern (Figure 4.27).    

 

 

(a) Incorrect solution with incorrect reason / no reason 

 

(b) Incorrect solution with incorrect reason / no reason 

 

(c) Incorrect solution with incorrect reason / no reason 

 

(d) Incorrect solution with incorrect reason / no reason 

Figure 4.26: Samples of various solutions by students for item 4 of the GRT. 
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(a) Correct solution with partial or invalid  reason 

 

(b) Incorrect solution with invalid reason / no reason 

Figure 4.27: Samples of solutions by students for item 5 of the GRT 

  

4.8 Summary  

This chapter reports the results on the development of a framework to assess the visual 

reasoning ability and the quantitative analysis of the visual reasoning ability of pre-

university students when dealing with Cartesian graphs to solve problems on functions 

and derivatives. Using the document analysis on theories, models and frameworks 

related to visual representation, properties and characteristics of graphs and conceptual 

knowledge on functions and derivatives, a framework consisted of encoding and 

decoding processes has been established. The encoding part includes the categories to 

determine the students’ preference in the method that they employ when dealing with 

tasks that allow them to work either algebraically or graphically. The decoding part 

encompasses categories that students utilize when they are using graphs as their visual 

tools to solve mathematical problems.  

The descriptive statistics of the students’ usage level of visual representation 

showed that the majority of the students were positive on the usage of graphs and 
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diagrams for all the four categories : in their daily learning behaviour, on the usefulness 

and difficulty in solving mathematical problems, and on their teacher’s behaviours 

during the teaching of mathematics. Positive correlations were also identified among the 

categories. This was followed by the descriptive analysis on the mathematical visuality 

through the encoding process and the visual reasoning ability through the decoding 

process. The students can be grouped into three categories of mathematical visuality: 

visual, partially visual and non-visual. On the other hand, through the analysis of their 

decoding process, very strong and positive correlation were also observed among the 

scales that indicate their ability to read the information from the graph directly and to 

interpret the displayed graph into information.  

The correlations among the results of the three instruments were then analysed. 

It was identified that the three results were positively correlated to each other with 

coefficient of correlation, r, between 0.803 and 0.897. This is followed by the analysis 

on the errors performed by the students on both sets of instruments and consequently the 

identification of their difficulties and misconceptions when dealing with graphs to solve 

mathematical problems on functions and derivatives. Students were found to perform 

fundamental, operational and systematic errors. They had also some misconceptions on 

the use of graphs and faced generic and idiosyncratic types of difficulties. The findings 

reported in this chapter are further discussed in the next chapter.       

  Univ
ers

ity
 of

 M
ala

ya



193 
  

CHAPTER 5: MAIN FINDINGS, DISCUSSION AND CONCLUSION 

 

5.1 Introduction 

This study investigated the visual form of reasoning through the use of Cartesian graphs 

in the context of learning and solving problems on functions and derivatives. It was 

driven in parts by the promise of integrating graphs as visual tools for reasoning and in 

part propelled by the need to increase understanding in calculus, specifically functions 

and derivatives, and mathematics among the  Malaysian students. The primary purpose 

was to develop a framework to assess the pre-university students’ visual reasoning when 

solving functions and derivative tasks through the use of Cartesian graphs.  The 

subsequently purposes were to examine their preference to employ graphs, their 

reasoning ability and the difficulties faced when solving problems on functions and 

derivative.  

The study adopted a descriptive design that collected quantitative data to assess 

the students’ ability to reason visually. The participants were pre-university students 

who, at the time of data collection, had completed the learning of functions and 

derivatives and were about to sit for their trial examination and later the final external 

examination. Three tests, Visual Representation Usage Level, Mathematical Visuality 

Test and the Graph Reasoning tests were employed to collect data on students.   

 

5.2 Main findings of the study 

5.2.1 Development of the framework  

A framework to assess the visual reasoning ability of pre-university students when 

solving mathematical problems on functions and derivatives using Cartesian graphs is 

as shown in Table 4.12 (reproduced from section 4.2.3). The framework was named  
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Table 4.12: The final framework for assessing visual reasoning 

Visual 

reasoning 

process 

Category Description 

E
n
co

d
in

g
 

Correct graph with 

correct solution  

Produces correct graph to explain and represent the 

solutions and managed to arrive to the correct 

solution  

Correct  graph with 

incorrect solution  

Produces correct graph to explain and represent the 

solutions but did not manage to arrive to the correct 

solution   

Incorrect graph with 

correct solution   

 

Produces incorrect graph to explain and represent 

the solutions and managed to arrive to the correct 

solution based on the wrong graphs. Solutions may 

differ from the original solutions set.  

Incorrect graph with 

incorrect solution 

Produces incorrect graph to explain and represent 

the solutions and did not manage to arrive to the 

correct solution 

No graph with correct 

solution   

Produces no graph to explain and represent the 

solutions and managed to arrive to the correct 

solution 

No graph with 

incorrect solution 

Produces no graph at all to explain and represent 

the solutions and did not manage to arrive to he 

correct solution  

No answer / Not 

attempted  

Left the item un-attempted – no graphs or any 

algebraic solutions.  

D
ec

o
d
in

g
 

Correct solution with 

valid reason 

Produces correct solution based on the graph and 

managed to provide valid reason(s) to arrive to the 

correct solution 

Correct solution with 

invalid reason 

Produces correct solution based on the graph but 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

Correct solution with 

no reason 

Produces correct solution based on the graph but 

did not manage to provide any reason(s) to arrive 

to the correct solution 

Incorrect solution 

with invalid reason / 

no reason 

Produces incorrect solution based on the graph and 

did not manage to provide valid reason(s) to arrive 

to the correct solution 

No answer / Not 

attempted 

Left the item un-attempted. 

 

Visual Reasoning over Graph (VR-G) and is able to run a thorough assessment of how 

students construct and interpret Cartesian graphs of functions and derivatives and their 

concepts.  It is primarily used to categorise students based on their encoding and 

decoding abilities. The encoding process consists of seven categories on how students 

choose to respond to the mathematical word problems and their competence to produce 
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the correct graphs. The categories for the encoding process are :  Correct graph with 

correct solution, Correct  graph with incorrect solution, Incorrect graph with correct 

solution, Incorrect graph with incorrect solution, No graph with correct solution,  No 

graph with incorrect solution, and No answer / Not attempted. The decoding process 

consists of five categories that describe categories on how students read and interpret 

the information displayed on the Cartesian graphs provided in the problems in order to 

look for solutions. The categories for the decoding process are : Correct solution with 

valid reason, Correct solution with invalid reason, Correct solution with no reason, 

Incorrect solution with invalid reason / no reason, and No answer / Not attempted.  

 

5.2.2 Usage levels of graphs   

The usage levels of graphs refer to how students employed graphs or diagrams in 

their daily learning of mathematics and solving mathematical problems. At least 41% of 

the students responded to ‘Very much’ and ‘Definitely’ for all items for their preference 

levels in using graphs or diagrams in their daily learning behaviour. The mean scores 

for the items ranged between 3.40 and 4.16. These show that the students did employ 

graphs or diagrams when solving mathematical problems. They admitted that they paid 

attention and even tried to use or to copy the graphs or diagrams shown by their teachers 

or those used in the textbooks in solving mathematical problems. These indicate that the 

use of graphs or diagrams (or any visual representations in general) by the teachers in 

the classrooms or in the textbooks do affect how the students strategies their methods 

when encountered with similar problems. Less than 4% of the students did not make use 

of graphs or diagrams either by themselves or those by their teachers or textbooks in 

their solving mathematical problems.  

More than 70.62% of the students responded to ‘Very much’ and ‘Definitely’ for 

items in the category on the usefulness of the graphs or diagrams in solving 
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mathematical problems. The mean scores for the items ranged between 3.96 and 4.12. 

These percentages show that the students are positive and mostly assured that the use of 

graphs and diagrams are beneficial in helping them to solve mathematical problems. 

Less than 2% of the students of the students did not find the use of graphs or diagrams 

actually help them to solve mathematical problems.    

For the students’ difficulty on the use of graphs or diagrams in solving 

mathematical problems, about 21% to 44% of the students responded to ‘Very much’ 

and ‘Definitely’ in all four items. The mean scores for the items ranged between 2.99 

and 3.37. These percentages show that the students faced difficulties in either to 

construct graphs or diagrams by themselves or to identify different and suitable graphs 

or diagrams to help them in solving mathematical word problems. Less than 5% of the 

students admitted that they did not know at all how to construct or use the graphs or 

diagrams in order to assist them to solve mathematical problems.    

About 67% to  80% of the students responded to ‘Very much’ and ‘Definitely’ for 

the category the students’ perceptions on their teachers’ behaviours in using graphs or 

diagrams in solving mathematical problems. The mean scores for the items ranged 

between 3.88 and 4.22. These percentages portray that teachers make use of graphs or 

diagrams in their teaching for effective learning. They in fact promote and coach their 

students on the appropriate and correct ways to utilize graphs and diagrams in solving 

mathematical problems. Less than 2% of the students did not find that their teachers did 

teach or guide them to use graphs or diagrams to help them in solving mathematical 

problems. Positive correlations of values between 0.34 and 0.85 were found for the 

overall questionnaire and the categories and also among the categories of the items.  
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5.2.3 Mathematical Visuality    

The analysis on the results of the MVT shows that the percentages of students who 

managed to arrive to the correct solutions without sketching any graphs are in the range 

of 24% to 84%. The students were mostly reluctant to use graphs in solving, defining or 

explaining the mathematical concepts of functions and derivatives although guides or 

hints were included for them to sketch graph, for example the word ‘graph’ was 

mentioned in item 1 to indirectly guide students for the solution method. Smaller range 

of about 8% to 40% of the students managed to sketch correct graph although some 

proportions of them did not come to the correct solutions.   

Based on the thorough analysis of the students’ worked solutions, it was 

determined that the students can be categorized into three groups of mathematical 

visuality: non-visual, partially-visual and visual. The descriptions of the three categories 

are as shown in Table 5.1. 

   

Table 5.1: Descriptions of the categories for mathematical visuality 

Category  Descriptions Visuality 

score 

% of 

students 

Visual  Produces effective Cartesian graphs  

• Complete labelling of axes, scales and function(s) 

• Graphs reflect the main concepts of the functions 

• Include all important data or properties of functions 

in details  

57–114 26.8 

Partially-

Visual 

Produces incomplete or complete Cartesian graphs  

followed by algebraic methods  

• A mixture of graphical and algebraic solutions 

• Does not exhibit confidence in the use of graphs 

• Partial or incomplete labelling  of axes, scales and 

function(s) 

• Graphs reflect none to basic concepts of the 

function or representations 

• Include some data or properties of functions and 

derivatives  

• Apply rules and procedures inappropriately 

39–56 16.5 

Non-

visual 

Not producing any line graphs  

• Solutions are based on algebraic methods  
0–38 56.7 
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5.2.4 Visual Reasoning     

The analysis on the results of the GRT shows that at least 30% of the students managed 

to arrive to the correct solutions regardless of them providing valid, invalid or no 

reasons for their solutions methods and steps. This indicates a mixture of students’ 

ability to read, extract and interpret information embedded in graphs. Results also show 

that as the tasks were getting tougher, where more cognitive loads are needed, the 

smaller the number of students who were able to accomplish the solutions.    

Positive correlations and strong relationships of values between 0.91 and 0.98 

were obtained for the overall GRT and the scales and also among the scales of the 

decoding process. Based on the analysis on the students’ worked solutions, it was 

determined that the students’ responses due to their decoding scales can be further 

detailed as described in Table 5.2. 

 

Table 5.2: Descriptions of the categories for visual reasoning 

Category of 

levels  

Descriptions 
% correct 

Read the 

graph  

• Appropriate engagement with the context  

• Able to recognize the properties of functions and 

derivatives – understanding of single/basic element 

and direct graph reading  

• Employ memorization or procedural knowledge  

• Appropriate use of mathematical terminologies    

67.63 

– 

100.00 

Read 

between the 

graph  

  

• Able to recognize the relationships between the 

properties of functions and derivatives  

• Able to attend to and integrate more than one relevant 

features and aspects of the displayed information 

• Correct use of mathematical terminologies  

38.66 

– 

96.91 

Read 

beyond the 

graph   

• Able to infer on the relationship between the 

properties of functions and derivatives 

• Able to integrate contextual knowledge and 

understand the purpose of information displayed  

• Advanced visual and mathematical skills   

• Accurate use of mathematical terminologies and able 

to interpret subtle aspects of languages  

30.93 

– 

76.29 
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The percentages for students who managed to arrive to the correct solutions out-

numbered the percentages of students who did not manage to get the correct solutions in 

both MVT and GRT. This indicates that students know and understand the properties of 

derivatives and how to solve the problems regardless the method that they used.  

 

5.2.5 Correlations among the instruments 

Positive correlations were obtained among the three relationships : 1) the Visual 

Representation Usage Level and the Mathematical Visuality Test, 2) the Visual 

Representation Usage Level and the Graph Reasoning Test and 3) the Mathematical 

Visuality Test and the Graph Reasoning Test. These indicate that students who made 

use of graphs or diagrams in their daily learning of mathematics will tend to draw 

graphs to represent and explain their solutions and were able to read and interpret the 

information that were displayed or hidden in the graphs. It also indicate that those 

students who made use of graphs as visual tools to represent their solutions were able to 

read and interpret information in the graphs, either those directly shown or those needed 

to interpret.      

 

5.2.6 Difficulties and misconceptions  

Some of the conceptual issues that cause students to make errors and have 

difficulties and misconceptions with tasks related to functions and derivatives and the 

use of graphs are: weak of knowledge on graphing in general, lack of knowledge or 

practice in graphing derivative functions from graphs of functions that has no algebraic 

expressions, difficulty in identifying and relating the stationary points, difficulty 

interpreting critical points from a graphs of derivative functions, focusing primarily on 

procedural knowledge instead of conceptual knowledge, relying on memorized 

procedures, creating a short cut or procedure that is not valid, preference for algebraic 
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approaches to solving problems than graphical approaches and mixing up the attributes 

of the first and second derivatives .  

The students’ errors can be grouped into three categories. The descriptions of the 

three categories are as shown in Table 5.3.  

 

Table 5.3: Descriptions of the categories for errors 

Category  Descriptions % of students   

Fundamental error • Fail to understand or realize the relationship 

between algebraic and graphical 

representation involved in the problems 

19.6 

• Fail to grasp important principles to solve the 

problems 
13.4 

• Confusion among concepts describing 

different attributes of the same situation   
12.7 

Operational error • Fail to carry out procedural and manipulation 

processes although had understood the 

principles engaged  

9.8 

Subjective errors  • Fail to take into consideration the 

constraint(s)  imposed in the question  
25.1 

 • Applying the general rule to a specific case 19.4 

Note. The category ignores errors performed by the students that due to their 

carelessness in performing the basic algorithms.  

 

The students’ difficulties in dealing with functions and derivatives and graphs can 

be categorized into three groups. The descriptions of the three categories are as shown 

in Table 5.4. These categories were developed based on the commonalities among the 

misconceptions  and difficulties faced by the students.  

Students expressed their difficulty in providing written explanation on the steps 

taken or reasons to arrive to the answers. This was caused by their lack of proficiency 

the English language and can be verified (upon request) from their International English 

Language Testing System (IELTS) examination results where most of the students 
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results were in bands 5.5 and 6.0 for the Writing components. They scored higher bands 

for the other three components,  Listening, Speaking and Reading    

 

Table 5.4: Descriptions of the categories for difficulties 

Category   Descriptions % of students  

Non-use of 

graph 
MVT 

• Lack of understanding on the concepts 

of a graph  

• Lack of understanding on the graph as a 

representation   

56.7 

Generic 

difficulties 

MVT 

• Constructing unusable graphs 12.3 

• Incorrect or inaccurate representation of 

quantity  
9.8 

• Misunderstanding or confusing on the 

written symbols 
4.7 

GRT 

• Misinterpret the properties of line graph  19.5 

• Weaknesses in identifying specific 

information from graphs  
8.9 

• Graphs viewed inappropriately 4.9 

Idiosyncratic 

difficulties  

MVT 

• Lack of precision in the graph 9.9 

• Overlooking the constraints imposed in 

the function 
4.7 

• Putting parts together to form a whole 1.9 

GRT 

• Relating the mathematical concepts to 

the real-life situation  
20.3 

• Non-flexible thinking when dealing 

with non-standard graphs (derivative of 

function)  

17.3 

• Connecting algebraic representations of 

derivative to graphical forms 
29.1 

 

 

5.3 Discussion 

5.3.1 Usage Level of Visual Representation  

In educational research, Uesaka and Manalo (2007) identified that the Japanese students 

employed more use of diagrams as compared to the New Zealand cohort when solving 

mathematical problems although their level of appreciation to the use of diagrams in 

their daily learning and classroom context were about the same. In this study on the 
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Malaysian students, the percentages of at least 41.7% of students responded to the ‘Very 

Much’ and ‘Definitely’ for the first category shows that the students have positive 

perceptions on the usage of graphs and diagrams to help them solving mathematical 

word problems. The responses given to the first category suggest that the use of graphs 

or diagrams by their teachers and in their textbooks indicates that visually rich source of 

teaching and learning materials are able to help, and develop students’ interest and 

problem solving skills (Ball & Ball, 2007; Naidoo, 2007). Emphasizing on the use of 

graphs or diagrams in classroom environment would help to create patterns for students 

to employ them when encountered with similar types of tasks. Although the use of 

graphs or diagrams in no way guarantee the students to produce correct solutions, the 

resulted percentages do support the benefits of using graphs or diagrams in solving 

mathematical word problems as concurred by Kissane and Kemp (2011) and Pierce and 

Stacey (2008).  Their studies on enhancing students’ understanding on how functions 

are connected to their derivatives resulted in the implementation of graphic calculator 

and Computer Aided System helped to support the understanding of the concepts of 

functions and derivatives.        

The high percentages of more than 70% of the students responded to ‘Very 

Much’ and ‘Definitely’ for the category on the usefulness of the graphs or diagrams in 

solving mathematical problems indicate that the students perceived that using graphs 

and diagrams is  helping them to efficiently solve the problems and as an alternative and 

a better way of learning as it increased their learning outcomes and success. As agreed 

by Guler and Ciltas (2011) and Uesaka and Manalo (2011) in their findings, visuals and 

the visualization process have significant roles in the preparation of the tasks and 

problems, in guiding the method of solving mathematical problems and at the same time 

affects the students’ cognitive structure (Garderen, 2007).  
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The high percentages of those who responded to ‘Moderately’ in the third 

category indicates that although the students knew that graphs or diagrams do help them 

in the problem solving they found some degree of difficulty in constructing and using 

them on their own. This result seems compatible with the findings by Presmeg (1986, 

2006) and Uesaka (2002). As Hegarty and Kozhevnikov (1999) regarded graphs as 

formal representations as compared to some other informal images or graphical forms, 

they discovered that graphs played more active roles in letting students to focus on 

relevant details. Owolabi and Adaramati (2015)  recently, introduced the Graphic 

Organizer, a visual representation of text concepts, as one of the instructional strategies 

in order to help students organize their graphs , information ans related concepts 

embedded in the graphs.     

Between 67% to 80% of the students agreed ‘Very Much’ and ‘Definitely’ that 

their teachers’ behaviours in using graphs or diagrams do assist them in solving 

mathematical word problems. This indicates that teachers’ preference in the using of 

graphs or diagrams in the teaching and learning processes help students to understand 

the problems better and subsequently able to solve them. This finding is compatible to 

the finding by Sheehan and Nillas (2010). The student-centred education as being 

recommended by almost all curriculum developers globally, had urged for learning to 

be in line with the students’ demands and  needs (Macini & Gagnon, 2006). Given that 

graphs and diagrams are considered as highly attention-grabbing, teachers are 

encouraged to put in efforts and make variations about the layout and arrangement of 

any written presentation to couple with some graphs or diagrams in order to 

communicate concepts to students as proposed by Guler & Ciltas, (2011). According to 

Alcock and Simpson (2009), students may not have any systematic justifications for the 

variations or alternatives but the outcomes for their choices are likely to positively 

influence towards the use of graphs or diagrams. Constructing graphs and diagrams 
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encourages teachers to indirectly expose alternative ways of delivering information 

through visual representations as additional to written format and subsequently allow 

students to access this additional information at their own pace. It was observed that 

students highly appreciated for the teachers to practice, show, coach and encourage the 

use of graphs and diagrams during the learning sessions. The result seems compatible 

with the findings of Alcock and Simpson (2009).   

NCTM (2000) had also proposed that all mathematical tasks require visual 

thinking. As discovered by many researchers, visualization ability and visual reasoning 

skills were positively correlated to mathematical achievements (e.g.  Battista, 1990; 

Clements & Battista, 1992; Diemand-Yauman, Oppenheimer & Vaughan, 2011; Lam et 

al, 2012; Shah & Freedman, 2011; Teodore, 2010) and are essential elements when 

solving problems in other important mathematical topics such as geometry, 

trigonometry and statistics (e.g. Aaron & Herbst, 2015; Cetin, 2015; Grobecker & De 

Lisi, 2000; Noraini, 2008; Sharma, 2013).          

             

5.3.2 Preference on the Use of Graphs    

The overall analysis of the students’ worked solutions observed the majority of the 

students were in the ‘No Graph with Correct Solution’ (NGCS) and ‘No Graph with 

Incorrect Solution’ (NGIS). As concurred by Uesaka et al (2007) and Roskwn (2006), 

given to students a problem where they can solve by both methods, algebraic or visual, 

most would prone to opt for the algebraic manipulations instead of using graphs. Upon 

reading the questions, students tended to revert quickly to algebraic manipulations or 

they appeared to read or interpret graphs in manners that exhibit their lack of 

understanding to the underlying concepts of the content domains as suggested by 

Sharma (2013).   
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The findings of the study also denote that even though the students were very 

positive when their teachers demonstrated the use of graphs in the classroom teaching 

agreeing with the findings by Guler and Ciltas (2011), it was still insufficient to grab 

their interest or confidence to use graphs, especially spontaneously as their tools, as 

concurred by the findings from Uesaka and Manalo (2011), either for solving or 

communicating purposes, when solving problems on functions and derivatives. 

Teachers are encouraged to create interest by providing opportunities for the students to 

use graphs in an interactive environments. Those would indirectly allow students to be 

exposed to more ways of communicating the mathematical ideas and their 

understanding of the mathematical concepts  

Presmeg (2006) proposed that training students to practice visualization or to 

employ visual method to solve most of the mathematical problems would help them 

grasp the concepts without undergoing the procedural or algebraic methods. 

Technological tools such as graphing software or graphing calculators are capable to 

help illustrate various properties and characteristics of functions and their derivatives 

such as the intercepts, asymptotes and differentiability at different points visually. 

Besides the fact that the students owned and had been practising graphic calculator in 

the classroom to make solving problems and calculations simpler and faster, the 

analysis shows that the students were, again, mostly reluctant to use the calculator to 

sketch the graphs in searching for the properties of the function and derivative given 

(Kissane & Kemp, 2006; Pierce & Stacey, 2008). Those who had used graphic 

calculator to get the graphs managed to read-off the information correctly, the properties 

of the graphs such as domain, range, axes intercepts, vertical asymptotes and the 

behaviour of the graph for the smaller and larger values of the independent variable x. 

Some of them analysed the graphs of the functions in order to look for their derivatives 

while some of the students used graphic calculator to sketch the graph of the first 
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derivative function, checked for the sign of the derivative function and further made 

decision on the behaviour of the function. About the same number of students use 

graphics calculator to sketch the graphs of y = f”(x) and ‘trace’ the zero of the graph for 

the inflection point while the majority of them still solve the equation f (x) = 0 

algebraically to calculate for the point of inflexion.   

Base on a thorough analysis on the worked solutions by the students, they can be 

grouped into three categories: the visual, the partially-visual and the non-visual.  The 

visual students can be distinguished from the other two groups based on the accuracy of 

them using the mathematical definitions and terminologies, and on the inclination to 

relate the properties of graphs with the fundamental concepts as discussed by Rivera 

(2011). The methods they employed to solve the problems revealed their perceptions 

regarding the usefulness of graphs or diagrams in solving mathematical problems. The 

way teachings was conducted are not able to clarify the preferences in using or not, 

graphs among students (Uesaka & Manalo, 2007). On the overall, approximately 56.7% 

of the students were categorised as non-visual. The non-visual responses consisted of 

students who did not use graphs, or any other types of diagrams, at all when answering 

the questions that can be solved by either the algebraic or graphical methods. Although 

the number of not using graph outnumbered those who did, the number of success and 

failure to arrive to the solutions were almost equal portraying their understanding on the 

concepts of functions and reasoning in derivative concepts. Therefore, it can be 

concluded that there is no such best method of presentation to all students in general.  

Students’ responses that were categorised as partially-visual exhibited no 

patterns or trend of working solutions. They were mostly a mixture of algebraic and 

graphical methods. Some tended to start with one mode and followed by the other mode 

as a sign of either checking on the correct solutions or not enough confidence on the 
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earlier method. This finding partially supports that of Alcock and Simpson (2005) and 

Ducan (2010).  

  Specifically, these students exhibited hesitance to either refer to graphs or to 

proceed with the algebraic process as their solution method. Some of them started with 

sketching some graphs but added the algebraic calculations either to confirm solution or 

a sign of unsure with the graphical method. One possible explanation for these could 

rose from teachers that did not emphasize on the use of graphs as tools for solving 

problems in the classroom. Obviously, students would usually employ the method 

showed to them in the class. This agree with the study conducted by Likwambe and 

Christiansen (2008) where the level of concept images of the derivative of in-service 

teachers were not in depth and their calculus concepts competencies were mostly at the 

instrumental level which results for their preference to opt for algebraic method (Booth 

& Koedinger, 2012).         

 

5.3.3 Graphs as Communication Tools  

The present study is within the framework of the on-going literature and discussions 

about the role of graphs in the problem solving process involving functions and 

derivatives. Graphs are essential tools for solving most mathematical problems. 

However, the advantages of graphs are strongly related to the students’ knowledge of 

graphs, their properties and characteristics, and the development of their skills to use the 

graphs. Students need also to be aware that graphs are dynamic representations. The 

results of the study suggest that the presence of graphs in the tasks assigned did not 

increase student’s ability in solving the application or non-routine problems. This is 

evidenced by the many students who were still unable to see through the structure of the 

problems from the graphs even though similar types of graphs may have been used for 

similar types of tasks in the classroom practice (e.g. Alacaci et al, 2011; Paoletti, 2004)  
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Students generally did much better on the reading the data visible on the graphs 

than tasks that needed them to do extra thinking or to make inference. For students to 

utilize graphs effectively, they need to go beyond than just reading the graphs. They 

must be able to interpret and analyse, and inter- or extra-polate the data and information 

that are displayed in the graphs. In some situations, students may need to refer to or 

sketch more than one graph as some understanding to solve problems need to evolve 

through the generation of graphs (Ellis & Grinstead, 2008; Leung & Cheng, 2004).  

Common difficulty that students faced when reading beyond the graphs was that they 

were not able to provide answers because information were not there on the graphs. 

Thus harder thinking and more cognitive load are needed as tasks’ complexity 

increases. The results seem compatible with the findings of Uesaka and Manalo (2011), 

Biza, (2008) and Sharma (2013). Given the importance of comprehending the concepts 

of functions and derivatives, tasks in graphical forms should not be avoided just because 

the students found them difficult to answer or difficult for the teachers to teach and 

assess.  

At the end of each task, students were requested to write or elaborate on the 

steps taken to solve the problems and to argue on whether the solutions obtained were 

valid. This is to reflect on their reasoning skills and thinking processes while using 

graphs. The majority of the students were part or half-way in supplying a complete 

explanation of their processes. They were far from detail or being precise. The finding 

seems consistent with finding by Habre and Abboud (2006). Besides teaching the 

students conceptual knowledge of the subjects, teachers need to help and guide their 

students to express what they know and understand about functions and derivatives with 

more calculus terminologies and language. Analysing and comparing the students 

interpretations of tasks would help to identify the patterns of difficulties which then lead 

to identifying factors that contribute to good explanations, attend to missing details and 
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help to develop students’ written and communication skills (Ferguson, 2012; Gal, 

2004). 

Graphic calculators or other technological software emphasize on the graphical 

representations and the ability to be able to interpret them are essential skills. Since 

Malaysian students are of limited exposure to the use of technology such as graphic 

calculator especially at the secondary level, the basic ideas on functions and derivatives 

were typically introduced in the forms of algebraic expressions and through the 

definition of first principles respectively. Some students were able to make sense of the 

approach while others struggled with the symbolic representations.  Graphic calculators, 

in specific, are equipped with the ‘zoom’ or re-scale function which allows the axes to 

display functions accordingly. Both the zooming-in and zooming-out processes serve as 

important activities that lead to the successful of visual reasoning process. ‘Zooming in’ 

displays  parts of graphs in detail and can help to recall prior knowledge while ‘zooming 

out’ exposes the bigger or whole state that is able to stimulate  cognitive conflicts which 

consequently need to be tackled and hence lead to making inferences and conjectures. 

These processes allow students to concentrate on the critical or required features that 

determine the properties and relationships of functions and/or their derivatives. As 

Leung and Cheng’s (2004) findings suggested, two critical features in some graphing 

software that are the catalysts in the visual reasoning processes are : 1) the ability to 

permit students to view the graph of practically all functions  where they do not have to 

sketch but direct the thinking to ‘why’ different graphs looks differently and 2) the 

ability to re-scale the viewing screen allows for graphs to be in different modalities 

which allows students to observe  invariant properties of general graphs.  

  

Univ
ers

ity
 of

 M
ala

ya



210 
  

5.3.4 Ability to employ graphs as visual information  

When the students were asked to sketch the derivative of the given graphical function, 

they seemed to struggle in extending their previous knowledge to the new situations. 

Some of those who were well equipped with conceptual knowledge, as opposed to the 

procedural setting, showed competence when completing the tasks with, maybe, little 

confusion. This situation was observed in studies by Firouzian, (2010), Goerdt, (2007), 

Haciomeroglu, Aspinwall, and Presmeg (2010) and Hattikudor, Prather, Asquith, 

Alibali, and Knuth, (2012). Some of the students describe the process or used particular 

rules to sketch the derivative function but had no idea on how the rules work or their 

implication.   

 One of the most common patterns found in the incorrect sketches of the 

derivative functions was that the derivative curves resembles the original curve for the 

portion that the values of x get bigger and bigger. This finding correlates with those 

findings by Kultur et al (2011), Stahley (2011) and Torres and Alarcon (2011) and 

Yetim (2004). A possible explanation for the students to get most of the answers correct 

regardless whether they sketched the graph or not could be that they had finished the 

syllabus and had done a lot of revision and were fully prepared for the trial examination.  

The way on how students understand and comprehend graphs is very much 

related to how they were able to construct and explain them. Researchers and 

mathematicians recommended presenting data to students using free-response method 

or open-ended graphical method. Set of axes without labels or scales can be provided 

for the students to work with and followed by them explaining their works. These will 

indirectly allow the students to make connections between the data and their visual 

representations.  Another possible way is to provide students with multiple graphs for 

them to run analysis or comparison, and make decision on which graphs to best 

represent particular situation or relationship.  Rather than taking graphs as mere pictures 
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of situations or events, this would be able to help students reinforce the role of graphs as 

visual representations of relationships.  Akin strategy would be to guide students to 

work back and forth between graphs and text accompanying the graphs to enhance the 

ability to interpret and solving problems.    

 In item 3(i), approximately 40% of the students managed to obtain the correct 

answer without drawing any graph. They calculated the condition for inflexion point 

through setting   0 xf instead of sketching the graph of  xfy   or  xfy  . 

This result aligns with that by Ubuz (2007) where her good and average students were 

lack of understanding in inflection points due to their unable to visualize the inflection 

points graphically. These are due to, again, getting used to the procedural method of 

solving most of the mathematical problems which failed them to see the connection of 

the fundamental concepts. Their conceptual knowledge includes very strong algebraic 

skills but very weak graphing skills.  Graphically and conceptually, the students should 

be able to read off the coordinates of any inflection points from both the graphs of the 

first derivatives or second derivatives.     

 Most graphs of derivatives sketched by the students in this study suggested that 

they were somehow unsure if the functions were to be continuous at the vertical 

asymptotes and how will the derivative functions behave as the independent variable x 

increases. Typically they dragged the graphs of the derivatives functions to be nearly 

horizontal elsewhere instead of approaching zero or the x-axis. Some had the graphs to 

continue to negative infinity for larger values of x. Most of the students were aware of 

their mistakes but did not manage to see the otherwise due to their cognitive conflicts.          

One important characteristic of graphs as visual communication tools is graph 

literacy. Graph literacy can be regarded as one of the essential elements needed to 

develop students’ competency to understand mathematical ability. In order to use graphs 

correctly and efficiently, students need to have the capability to encode the word 
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problems or algebraic expressions into graphical representations and be able to decode a 

graph to the given word problems or algebraic functions (Hipkins, 2011; Isenberg, Tang 

& Carpendale, 2008; Lowrie et al., 2011). However, not all students are equipped with 

these talents naturally. They need to be developed instead. No one specific graph has the 

same impact on every student and no one specific graph is compatible to every students’ 

ability to visualize and reason. Therefore, it is very crucial that students are exposed to 

and engaged in, besides the Cartesian graphs and other types of graphs, various types of 

other visual representations in solving mathematical problems. Development of 

students’ graphical literacy may be attained through a well-designed teaching materials 

or instructional activities and employ graphs into effective tools for thinking and 

reasoning.  

 

5.3.5 Misconceptions and difficulty in sketching and employing graphs   

Based on the framework outlined in Chapter 4, the encoding and decoding processes 

can be described in seven and five categories respectively. The descriptive analysis of 

the students’ responses for their encoding processes in the MVT showed that less than 

23% of the students were able to successfully presented correct graphs and arrived to 

the correct solutions. On the other hand, up to 88% of the students showed their 

capability to read out correct information from the given graphs and provided valid 

reasons for their worked solutions.  

In order to explain the above findings, it is best to describe what the students had 

acquired through their learning experiences about functions and derivatives. The notion 

of the functions and derivative appears in stages during both the secondary schooldays 

and their pre-university levels. This reflects how the teachers had presented the concepts 

and their applications in the classroom contexts. At first, in coordinate geometry, 

students learn to calculate the slope from any two points and the slope of a line being 
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constant throughout the domain. An intuitively obvious idea of this slope is that the line 

is either increasing or decreasing all the time. Later, in the topic Introductory to 

Calculus or Calculus, the students are introduced to the concepts of limit and tangent 

through the use of slope of chord. The ideas of derivative then followed and were 

proposed by the CDC (2006) to be illustrated by the use of graphs. The concepts of 

maximum and minimum, rate of change and second derivatives, together with their 

applications to the real life situations were proposed to be explained with the use of 

graphic calculators or technological software with the aim that students are able to 

explore and understand the concepts better.  

Analysing the students’ answers and work solutions, although they had been 

exposed to graphs in the classroom context, they were not extremely successful at 

tackling questions that relate to searching and interpreting  information that are not 

shown in the graphs or that involved application to real life situations and required 

higher order thinking skills. The students were inclined to read and interpret the graphs 

in a way that reflect inconsistency to the clear understanding of the concepts of 

functions and derivative. This suggests that the knowledge on the structure of graphs 

could contribute to the making sense of graphs.  

Although there were less than 11% of errors formed during the direct reading of 

data from the graphs, there were major problems with the understanding of the 

terminologies and interpreting the tasks needed to carry out, and the prediction of the 

contexts in questions. On the other hand, the consistent finding in many studies (e.g. 

Bautista et al, 2015; DeToffoli & Giardino, 2014; Nelsen, 2006; Proux, 2015; Stumpf & 

Eliot, 1999; Tappenden, 2005) anticipated two main cause roots: the lack of the use of 

English language in their daily conversations and in the classroom contexts, and the 

situation where the data or information that was not visible on the graphs.  
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A common difficulty that students experienced was the reading beyond the 

graphs. As mentioned in the errors that they had performed in Chapter 4, again, the 

missing of data or information was the reason for their not able to predict the 

subsequent situations, in general. Based on the analysis on the incorrect solutions 

obtained by the students, as high as 50% of them faced difficulties in describing the 

relationships between functions and derivatives graphically. The findings are consistent 

with those findings by Aksoy (2007), Bingolballi (2008), Durmus (2004), Li (2006), 

Muzangwa and Chifamba (2012), and Shaughnessy and Zawojewski (1999). They 

reported that students performed much better when dealing with literal reading of data 

or values shown on graphs as compared to tasks that needed them to infer on situations. 

In preparing the assessment tasks, Sharma (2013) recommended that specific hints are 

not to be provided for students to search or interpret the data within the graphs. They 

should be worded and designed such that students are encouraged to offer reasoning or 

opinions rather than getting specific solutions or numbers. Due to the tasks designed in 

open-ended mode, appropriate rubric should also be prepared to guide when assessing 

the students point of views and reasoning. Sharma had also advised that the highest 

score of the rubric to contain several criteria such as: response specifically to the data in 

question, using the correct terminologies and offering sensible assumptions in the light 

of the data displayed in the graphs.  

  Up to 42% of the students performed misinterpretation of the data read from 

the graphs that was caused by them trying to look for familiarity or patterns on the 

graphs or they were not able to see those patterns. Students justified these patterns in 

terms of explanations. These appeared even in the instance where attempts to look for 

patterns did not make any conceptual rational. The students tended to be certain that a 

pattern must exist and failed to offer any forecasting or extrapolating due to their unable 

to explore for the pattern. Literature shows that students, even the good ones, struggle 
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with constructing graphs of functions and their derivatives such as from sign diagrams. 

They tend to perform better when being provided with the algebraic expressions.     

 Students’ knowledge and believe affect the way they encode and remember the 

graphs they had seen before either in the classroom by the teachers or those in the 

textbooks. Students may also have some fix expectations about the information that they 

can read and depict in graphs. These could lead to interpretation errors. They typically 

expect the independent variable to be plotted along the horizontal axis and the 

dependent variable to be plotted along the vertical axis and consequently, the steeper 

any line is from another line would be taken for granted to represent a faster change of 

rate. If a graph is to violate from this rule, such that the independent and the dependent 

variables are to interchange axes, students would have problem to assume that steeper 

lines would indicate faster rate of change. On another matter, students may make error 

when interpreting abstract representations of the data in the graphs as symbols to 

represent real life icon, event or situation. Students may interpret the graph of velocity 

against time of a car to imply the position of the car along a road. Therefore it is 

important for the students to be well equipped with knowledge and understanding on the 

mapping between the gradient and rate of change and hence derivative, in order to avoid 

the students making interpretation errors.  

Students with lack of knowledge on graphs may not have the familiarity on how 

to map between the visual features of the graphs and their meanings. Their prior 

knowledge may also play bigger roles in influencing their understanding of graphs, and 

their properties and characteristics. Using texts to highlight and describe the important 

points and concepts could help students in the accurate reading and interpretation of the 

graphs. Segregating categorical information through the use of different colours, for 

example in comparing the graphs of the functions and their first and second derivatives, 

Univ
ers

ity
 of

 M
ala

ya



216 
  

would also help to reduce students’ cognitive load in reading, interpreting and 

understanding the information embedded in graphs.     

 Teachers and authors of textbooks may unintentionally emphasize the students’ 

preference for their perceptive and intuitive ideas and disregard the conceptual 

definitions. Students would opt for the methods that are practical and allow them to 

complete their mathematical tasks and subsequently be able for them to score in the 

tests and examinations. Students tend to regard the conceptual definitions as irrelevant if 

they are able to solve problems using repetitive procedures or formats trained daily in 

the classrooms. Students would search and employ methods that require the minimum 

effort or cognitive load. Since they were able to solve problems just by memorizing the 

methods, they may also under-value the informal conceptual definitions as well.          

 Dissimilarity between algebraic expression and graphs as visual representations 

is an example of a condition when a student may embrace two equal ideas without 

noticing the conflict. When students are working using their intuitive mind, without the 

present of formal or conceptual definitions, they may attend to the same problem 

presented to them in different forms differently and in a contradictory method. For 

example, slope of a line between two points, tangent and a line touching a curve at one 

point as in item 2(a). Apparently, students tend to retain several visualized ideas that 

they will select to use accordingly based on the nature of the problems.       

 Some of the students did express that they have problems understanding or 

comparing some terminologies. They tended to regard the word ‘troublesome’ and 

‘difficult’ to bring the same meaning. My teaching and classroom experience had also 

identified that students faced difficulties when responding to instructions between for 

example ‘explain’ and ‘discuss’. The wordings used in the questions play a crucial role 

for the students to work with graphs, either when they need to construct them or when 

they had to read and interpret them. Students may have different connotations for the 
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words or expressions that teachers consider to be synonymous. Teachers and authors of 

textbooks need to understand and penetrate into students’ intuitive ideas and how they 

expressed these ideas in order to help design instructional materials that are able to help 

students sketch and produce inter-related graphs. Although, teachers tend to think that 

students’ informal ideas on conceptual definitions as one of the obstacle for the students 

to grasp the conceptual understanding, there is some truth in it. No complex or 

complicated concepts were understood and acquired on the spot. Taking positively, 

these obstacles are also the building blocks towards the developing of more complex 

definitions of conceptual ideas. The formal concepts of functions and derivatives 

graphically must be developed through some processes of seeing, generating, 

interpreting, transforming, maintaining, drawing and connecting more algebraic and 

properties and characteristics of graphs. The findings of the visual reasoning process 

appear to concord with those of Kim and Park (2007). Although the study was not in the 

field of mathematics, the studies also found that the students underwent the processes 

outlined in the visual reasoning when using graphs to solve mathematical problems.        

 An understanding of the concepts of functions and derivatives in one type of 

representation will not necessarily indicate the understanding of them in the other 

representations. What important is the ability to be able to encode and decode among 

the various forms and to effectively read and interpret the problem situations. This 

finding is in contrast to the finding by Koedinger & Terao (2002) where he discovered 

that students were more successful in solving algebra problems in in terms of story as 

compared to those in mathematical equations. Students were found to face difficulties 

when dealing with quantitative relationships in the form of mathematical symbols. 

Combining the forms of representations, for example the algebraic, symbolic and the 

visual forms, the resulted assembled information will contribute to a more 
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comprehensive and deeper understanding of the essential and underlying functional 

situations.    

Abbey’s (2008) study on deriving properties of function from the signs of the 

derivatives described how the collective of representations of functions formed the 

foundation of a concept image. Individual student was able to develop various concept 

images, which are able to exist in both complementary and contradictory ways (Sabella 

and Redish, 2005). Therefore, the more closely the representations are connected, the 

more robust and compatible the system of the concept images is. Each representation 

has their own strength and limitations in different contexts. Having one to complement 

the other will benefit and facilitate the flexibility of moving and controlling the form of 

representations in which one needs to work with.      

 Students’ lack of knowledge of the Cartesian graphs raises critical issues in 

mathematics education. Teaching about how two related variables vary with respect to 

each other is an essential learning goal and a significant practice in reasoning (Alacaci 

et al, 2011, Curcio, 1987, Friel et al 2001). In addition, the students’ unfamiliarity with 

Cartesian graphs poses a challenge for their ability to extract and relate important forms 

of analysis in other mathematical areas and different disciplines such as trigonometry 

and economics respectively, where Cartesian graph is an indispensable tool for 

investigations in various fields that embody relations and correlations. Hence, students’ 

limited understanding of Cartesian graphs would severely limit the support they would 

eventually utilize in any educational activities that require extensive use of inquiry for 

instructions or explanations. Study by Alacaci et al (2011) on pre-service teacher’s 

understandings of graphs where they were able to recognize various types of graphs and 

their uses but had limited knowledge on scatterplots and its applications.    

 Why were the students not well-equipped with the understanding and knowledge 

of Cartesian graphs? Three possibilities might contribute to the results. Firstly, it may be 
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that Cartesian graphs require a cognitively more challenging and demanding form of 

reasoning as compared to the other types of graphs such as bar graphs, Pie charts or 

histograms. For example, bar graphs require only numerical comparison which is more 

straightforward form of reasoning than to deduce the types relationships of the variables 

or the shapes of graphs to interpret the characteristics of the functions or their real life 

applications. Students who do not have sound reasoning skills might be able to perform 

well in simpler types of graphs but disappointingly in the others which require the same 

types of visual reasoning skills. 

 Secondly, the students might have insufficient instructional exposure to the 

Cartesian graphs in classroom contexts. This could results from the teaching method 

that emphasized more on the algebraic manipulation to arrive to the answers or 

solutions although the secondary education and the contents of the mathematical 

curriculum and syllabus emphasized on the use of visual and technology to assist 

students in comprehending graphs. This result is consistent with the analysis done by 

Alacaci et al (2011) on pre-service teachers who followed the Competency Based 

Curriculum, a Miami-Dade public school system for secondary level. The system 

specified that the use and understanding of scatterplots as one of the curriculum goals 

but the pre-service teachers had either not taught or had not retained and hence were 

unable to recall the knowledge.          

Third, the Cartesian graphs are not used in daily routines, such as in 

advertisements, magazines or posters as often as how the bar graphs, Pie chart or 

histograms are utilized. Therefore the students might have little exposure to the 

applications of Cartesian graphs in the non-classroom contexts.          

The students faced three categories of difficulties in generating correct and 

effective Cartesian graphs to represent the functions and their derivatives: the non-use 

of graph, the generic difficulties and the idiosyncratic difficulties. Sketching Cartesian 
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graphs is one of the many methods that students may use to solve most of the 

mathematical problems. When students failed to continue working algebraically in 

solving any mathematical problems, they should be encouraged to generate graphs or 

any other representations such as diagrams. However, from the results of the study, it 

can be seen that the students did not regard graphs as able to help them in problem 

solving or have some hesitation and in-confidence in the use of graphs. This can be seen 

when approximately 16% of the students who had worked with graphs were 

subsequently accompanied by algebraic process to either complete or to run a check on 

the solution process. This result is consistent with finding by Diezmann (2000) when 

her students did not regard diagram as an alternative tool to help solving the problem 

when they failed with another strategy. Among the main features of graphs is their 

capacity to make use of scales. Students’ refusal to use Cartesian graphs might also 

stemmed from their competency to read or deal with scales. As can be seen from some 

the students’ worked solutions, quite a number left the axes unlabelled, either the title or 

the scales on the axes.  This indicates that they were not taught of the importance of 

labelling or the information was not retained in their thinking.  

Among the second type of difficulty which was the generic difficulty is when 

students sketched unusable graphs. These include the graphs that they sketched being 

too small in order to accommodate all the relevant information, the position of the 

sketched graphs were such that insufficient surrounding space to extent for 

extrapolation or forecasting, or the sketched graphs are so untidy to be able to see or 

locate embedded information in them. This might cause further serious problem where 

students tended to abandon the work instead of to re-sketch them. Another common 

error performed by the student under the category of generic difficulty is for the 

students to represent the quantities of the variables incorrectly. Although this type of 
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error may be assumed to emerge due to the students’ carelessness, they were undetected 

by the students and eventually led to more complicated process and incorrect solutions.  

Cartesian graphs are useful when describing patterns or trends of changes and 

locating specifics points or intervals. Idiosyncratic difficulties were encountered when 

students were lacked of precision especially in locating the points on the graphs of 

functions. Students sketching graphs were mostly tend to rush and estimate the positions 

of intercepts, critical points and even the shapes of graphs. These could lead to them 

interpreting the steepness of the slopes relatively incorrect. Students always tend to 

overlook the constraints imposed in the problems. In item 4 of the mathematical 

visuality, the graphs that approximately 30% of the students drew to represent the rate 

of change of employee, almost 60% of the students included the negative portion of the 

horizontal axis which represent time in months and therefore stretched the graphs to the 

left of the vertical axis. Some of the others, although a small portion of them, extended 

the number of employees to below the horizontal axis indicating negative number of 

employees. They completed their works without rationalizing the situations.  

Students difficulties and misconceptions in generating Cartesian graphs for 

functions and their derivatives indicate that, despite their potentials, the strategy to 

sketch a graph was not an effective spontaneously problem solving tool for many 

students. While the explanation for all types of difficulties above differ from one student 

to another, their misconceptions and difficulties were basically relate to the lack of 

understanding and knowledge on the usability, capability and even limitations of graphs 

as tools for solving mathematical problems specifically on calculus such as functions 

and derivatives. Clearly, as encouraged by Maharaj (2013), students must be trained on 

the use of graphs as problem solving tools. Students should be alerted on which graphs 

and types of functions are appropriate for different situations, why graphs can be useful 

in solving problems and how to make use of graphs in solving problems.                       
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Additionally, students need to have the expertise to distinguish graphs from 

other types of graphical representations and understand their respective purposes and 

uses. There are massive significant differences between Cartesian graphs and bar 

graphs, pie charts, and histograms (Riveria, 2011). Surface and group details are 

generally important in bar graphs, pie charts and histograms while individual features or 

characteristics and properties of each point are important in Cartesian graphs. Using the 

term graph synonymously for all different types of graphs will fail the students to 

distinguish one from the other and their respective functions and purposes and hence 

lead to misconceptions as the findings by Tishkovskaya and Lancaster (2012) and 

Watson (2006) when dealing with students employing various graphs in statistics 

classroom.  

 Students must also be able to understand the degree of vagueness associated 

with Cartesian graphs. Cartesian graphs by nature are at times vague representations 

where embedded information can be seen, read and interpreted in various ways. 

Nevertheless, what is important is that the organization of the visual information 

embedded in the graphs portrays the details and structure of the problem. While some 

general visual representation in the graphs can be useful as basic reminder about the 

particular points or functions, a focus on representing the details of points or functions 

can distract students from considering the structure of the problem as the findings by 

Mc Culloch (2011), and on affects students when using graphic calculator as visual tool 

to view the properties of functions.       

 Students must also be able to develop awareness that Cartesian graphs are 

relatively dynamics representations. Graphs of functions are tangible working space for 

tracking relationships between interdependent variables of any problem and therefore 

need to be relatively organized and sufficiently big. As understanding on how the 

concepts are applied to problems can develop through the sketching of graphs, it is 
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beneficial to produce some other types of representations to accompany the graphs.  

Learning through multiple representations is an alternative way how students can 

acquire the conceptual knowledge. Students are able to work through multiple 

representations, translate from one representation to another, such as the numerical, 

algebraic and graphics to access information, and hence, allow their mind to evolve 

metacognitive thinking. Well-connected knowledge is much easier to be remembered of 

because there are several routes to access to the solutions. According to Hiebert and 

Carpenter (1992), “the degree of understanding is determined by the number and the 

strength of connections. A mathematical idea, procedure or fact is understood 

thoroughly if it is linked to existing networks with stronger or more numerous 

connections” (p.67).      

 The SACE system, specifically for the mathematical subjects, allows the use of a 

note sheet to be brought along into the examination time. Students are allowed to 

prepare two double-sided A4 size note pages which they think that would help them in 

the examination such as formulae and trigonometric identities. Since the students were 

very heavy-used of the graphics calculator in the classroom context, which there are 

many long steps of process for particular operation, the actual purpose of the note sheet 

was for them to compile the steps needed for the operations on the graphic calculator.  

Unfortunately, upon checking their note sheets, students jotted down their formulae 

even the basic formulae such the area and volume of some geometrical figures and 

objects, sets of steps to solve some of the problems and even specific examples as 

guides, graphs for particular functions, and samples of analysis or conclusions of 

solutions. Those who rely very much on the note sheets were less expected to consider 

alternative methods of solving mathematical problems. For example, they may have the 

necessary skills for solving problems on functions and derivatives but limited ability to 

consider alternative methods such as graphical methods due to their heavy reliance on 
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the note sheets and indirectly from the teachers’ notes and textbooks. This can be 

concluded that the students did have the ideas and concepts of functions and derivatives 

but were not able to retrieve the knowledge when needed to use them to apply 

appropriately.   

 

5.4 Limitations of the study 

The study was limited to differential calculus at the pre-university (or matriculation) 

level. Specifically, this study confined itself to the learning of concepts on functions and 

derivatives, and their applications in the topic of differentiation of the SACE curriculum 

using graphs as visual tools. Although visual reasoning studies suggested encouraging 

and positive results in various domain similar conclusion of this study might not 

generalise to other areas of mathematics teaching and learning.  

The study dealt with mostly excellent post-SPM students nationwide who were 

awarded scholarships to further their studies abroad. It is not clear how the results of the 

study would generalize to average or weak students. Assessing visual reasoning based 

on the structured tasks questionnaire might have limited the accessibility of visual 

reasoning exhibited, as with other technique of assessment on this difficult to measure 

constructs. Although the validity and reliability of all questionnaires were established, 

the instruments might not have been sensitive enough to detect marginal changes in 

thinking, especially those related to broader view of visual reasoning.  

This study was also limited by the method of intervention, where a deeper and 

thorough involvement might minimise possible novelty effects. However, Leung and 

Cheng (2004) in reviewing the effectiveness of visual reasoning considered the 

students’ written works as ample to determine educational significance in such studies. 

Nevertheless, the effect of students’ written work on identifying types of visual 
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reasoning exhibited might be enhanced through the observation of physical gestures or 

interview techniques while solving the mathematical problems.  

 

5.5 Implications for Practice 

The findings show that the pre-university students have inadequate level of visual 

reasoning subsequently inflicts great educational implications especially to the 

mathematics education in Malaysia. Students will need to face greater challenges later 

in their higher or tertiary level of educations. As a results, many will fear and not being 

motivated to learn mathematics especially on derivatives or calculus. They will not be 

able to appreciate the power of calculus and mathematics since their limited level of 

visual reasoning barred them from exploring many other areas of mathematics and other 

disciplines. Therefore, limitation notwithstanding, the findings of this study may serve 

as a guide to the teaching and learning of derivatives using graphs in the classrooms as 

well as to the development of curriculum at the ministry level and assessing techniques 

to employ for the educational context, both in the light of how students learn and the 

learning tools which include technological tools.  

 

5.5.1 Mathematics Teaching and Learning    

One of the important implications of the study is on teachers’ instructional methods. 

Students with inadequate level of visual reasoning may be hindered in their effort to 

develop meaningful understanding on the concepts of functions and derivatives. 

Therefore, teachers should ensure that students are well-equipped with ability to reason 

visually for them to grasp the concepts taught in the class. Teachers should pose the 

students with visual problem setting or reasoning tasks and get them to communicate 

their thinking while solving the problems. By doing this, students are not only trained to 

explain their thinking to support their justifications but be able to reflect upon their 
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reasoning and understanding and communicate their mathematical ideas to others 

(Noraini, 2006).  

 In some countries including Malaysia, despite the official inclusion in the 

national curriculum, the teaching of calculus and mathematical concepts using graphs is 

progressing very slowly. Among the factors associating to this issue is the role of 

teachers. The students’ ability to sketch and interpret graphs are not spontaneous or 

primer actions. Therefore, teachers are to play crucial roles in constructing the teaching 

contexts for students to see that graphing is a meaningful and purposeful process of 

learning. They should be able to guide students through properly directing their 

inquiries, focusing their attention, encouraging specific initiatives and discouraging 

some others, provoking meaningful negotiation, maintaining suitable articulation of 

conceptual matters and activities (Uesaka, & Manalo, 2007; Van de Walle, 2007; 

Yavuz, 2010). Consequently, teachers could possibly set pedagogical context to 

situations in which relevant graphical aspects of the mathematical context such as the 

functions and derivatives are discussed and interrogated, such as queries and issues 

related to critical analysis of data or the need to generate new and useful information 

(Wall & Benson, 2009; White & Mesa, 2014).  

Mason (1992) discovered that although students may understand and be able to 

reconstruct the visuals presented by teachers to them, their conception of the visuals 

may not necessarily match to that of the teachers. Similarly, Bautista et al, (2015) 

ascertain that those intuitive visual ideas and concepts by experienced and skilled 

educators and mathematicians may not necessarily be perceived by inexperienced 

students. In general, students who opted to use visuals in solving mathematical 

problems confronted four particular difficulties;  1) reading and interpreting the visual 

inappropriately, 2) inflexible or rigid thinking and reasoning when handing unfamiliar, 

non-standard or new visuals, 3) set unrelated or uncontrollable visuals, and 4) producing 
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vague or imprecise visuals (Maharaj, 2013; Orhun, 2012). From the study, it is clear that 

effective problem solving, which make use visual to reason, depends on the 

relationships between the graphs and the contexts (the functions and derivatives) and the 

students’ abilities and conceptual knowledge. Therefore, it is important for the teachers 

to select graphs based on the concepts and functions in the mathematical problem 

solving and to also take into attention and consideration on the students’ preference 

method when solving the problems. They need to encourage and train the students to 

develop effective strategies that they are still not competent with implementing. The 

informational content in the graphs and of the graphs for instructional purposes should 

be explained so that students are able to retrieve the embedded information. Through the 

application and employing of visual and visual reasoning theories and frameworks, 

teachers and educators, even those with massive experiences, can become better 

equipped to identify, understand, analyse, foresee and manage students with 

problematic visual misconceptions and difficulties or those with lack of logical didactic 

solutions (Gal, 2005) that tend to resort to their intuitive actions. 

At the early stage of graphs learning, students often do not have the adequate 

graph knowledge to relate between the functions and graphical properties or meaning. 

Their thinking and reasoning are also influenced solely by their prior knowledge. 

Accompanying text to help describing the main point and features or characteristics of 

the graphs will help students in the reading and interpretation of the data embedded the 

graphs. Keeping track of what the displayed information is referring to is a cognitively 

demanding activity. Adding symbols, colours, and labels rather than using legends, will 

help to reduce the cognitive load.  

Learning opportunities and prospects should be broad to boost students’ thinking 

and reasoning and facilitate cognitive transfer. These can be done through the inclusion 

of graphical languages (Lowrie & Diezmann, 2009) that are also used outside the formal 
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classroom and mathematical contexts, such as maps, in addition to those that are 

typically exercised and incorporated into the mathematical curriculum. Similar to what 

is happening in the mathematics classroom, where the understanding of relationship 

between functions and graphs are the main emphasis, is may be helpful to have students 

to explicitly focus on the relationship between the visual representations and their 

meaning in another contexts.          

Students’ misconceptions and difficulties in constructing accurate and effective 

graphs, and reading and interpreting graphs are generally linked to students’ insufficient 

expertise in graph representations. However, the results in this study suggest that 

effective graph representations of functions and derivatives also depends on the 

comprehensive mathematical, specifically the calculus, knowledge base which include 

the sense-making in relation to the real life situations. The graphs that students drew are 

able to provide the teachers an insight of their weaknesses and strength in the 

relationship between their mathematical knowledge and their graphs representations. 

Although graphs are known to support the conceptualization of problems and real life 

situations, they cannot be used to substitute the lack of any mathematical knowledge. 

Thus graphs should be regarded as both the reflection on the students’ mathematical 

conceptual knowledge and the representations that stimulate thinking and reasoning on 

the problem structure. Knowing the students’ errors in constructing and reading and 

interpreting graphs is an important component in guiding instructions for students to 

draw, and read and interpret graphs. 

Therefore, teachers, at all levels of teaching and learning processes, should 

employ and inspire their students to explore and investigate, and generate their own 

visual forms since the visual understanding of concepts, objects or processes are more 

effective and robust and are more inclined to retain in the mind and hence to recall in 

the longer term as compared to a purely algebraic or non-visual forms (Bell, Wilson, 
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Higgins, McCoach, 2010; Cunningham, 1994; Riveria, 2011). The findings of this study 

indicate that students’ visual reasoning is at very critical level. Therefore, students 

should be presented and prepared with various types of graphical exercises in their 

textbooks, such as those that entails authentic components and related to the real life 

situations. By doing the exercises, students are able to ‘see’ that mathematics are part of 

the daily life and be made aware of the usefulness of the graphs to the real life 

situations. Furthermore, teaching and learning functions and derivatives and 

mathematics will be more fun and attractive. 

 

5.5.2 Assessing Techniques 

Assessment is an essential component of mathematics education and part of the on-

going teaching and learning process. One of the possible reasons many students were 

not able to show adequate level of visual reasoning is because many teachers focus their 

assessment tasks on the skills to carry out pen and pencil algorithmic. Uesaka and 

Manalo (2011) and McMillan (2004) proposed for the assessments tasks to take into 

consideration the students’ cognitive progress and motivation in the learning of 

functions and derivatives instead of on what they know and can do. Therefore teachers 

should focus their classroom assessment tasks on assessing students’ conceptual 

understanding and reasoning skills through the use of graphs especially in connecting 

the calculus ideas through solving problems and applications to real life situations. In 

fact, teachers should provide students with performance feedback on the use of graphs, 

from time to time, as this will increase their awareness of their level of visual reasoning 

and the benefits and effectiveness of using graphs.  

 Some concerns were expressed by teachers and educators over the students’ 

responses in solving reasoning questions. One of the concerns was the lack of 

mathematical terminologies and vocabulary for them to thoughtfully reason the solution 
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methods. In some cases, they provided incomplete solutions or steps while in some 

others they misused the terminologies wrongly. Thus, some of the goals of 

mathematical instructions should be designed towards conquering the mathematical 

terminologies and guiding students to effectively communicate the abstract 

mathematical concepts and ideas in visual form. Improving visualization and visual 

reasoning skills in mathematical topics, particularly functions, derivatives and calculus, 

is essential to assist students to gain better understanding of mathematical concepts. 

Students should be encouraged to construct the graphs rather than supporting them with 

lists of algorithms and procedures. The use of graphs in both, the instructions and 

assessments helps students to explore concepts and ideas and consequently improve 

their visual reasoning skills. These will help them to understanding and make meaning 

of mathematics learning. Results of this study indicate that a positive effect of graphs on 

visual reasoning skills seem most improved when graphs are used in instructions as well 

as assessment. Thus, teachers may include graphs in topics related to the applications of 

functions and derivatives especially for students with relatively low visual ability and 

reasoning skills.    

  The significant results, from the two sets of instruments distributed to the 

students namely the MVT and the GRT, in terms of the students’ ability to encode and 

decode data in graphs based on the different settings in which the tasks were presented, 

proposed that the tasks designed are an important issue to making sure that the students 

are able to reason in the targeted ways. They should also be aimed so that the students 

are able to use various forms of arguments when engaged in solving mathematical 

problems to meet the primary goals of mathematics curriculum and educations. The 

Malaysian Curriculum Development and Ministry of Education promote and support the 

introduction of various forms of reasoning including visual reasoning to students 

starting at the primary levels.          
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5.5.3 Curriculum Development  

Three main elements to be considered in any curriculum development in assessing 

educational outcomes and performance are the content of the subject, the target 

recipients and the methods of delivery (Bakker & Gravemeijer, 2004; Stylianides, & 

Stylianides, 2007; Terwel, van Oers, van Dijk, & van den Eeden, 2009). The questions 

and tasks set for the examination for the purpose of evaluating students play a very 

crucial role in conveying the important aspects of teaching and learning for the teachers 

and students respectively. The questions posed will tell the teachers on what to 

emphasize in their teaching. If students are exposed to the types that assess visual 

reasoning, they will begin to realize and begin to develop their visual thinking and 

reasoning instead of to just master the skills in implementing the algorithmic and 

procedural knowledge.    

The introduction of the reading and interpretation of all types of graphs as a 

topics in the mathematics curriculum is important and should be implemented from the 

early years of schooling. Educating students to read and interpret graphs effectively can 

facilitate them to adapt to the demand of the new approach of communicating 

information where various graphs (and graphics) are used to represents respective 

contexts of the daily situations such as in business and engineering. Curriculum 

developers around the globe emphasize that the teaching of graphs and graphing at the 

primary levels to start purport the development of knowledge that qualify students to be 

critical citizens when interpreting graphs of daily situations (Ainley & Monteiro, 2008). 

They are also advised to go beyond the simple reading and interpreting of graphs or 

graphical representations such that to be able to interpolate and extrapolate the patterns 

and use their mathematical knowledge and experience to describe and relate to the real 

life situations. On the other hand, care has to be taken where the reality of the Malaysian 

classrooms’ settings which are still adopting the conventional teaching contexts and 
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emphasizing very few sub-skills such as drawing axes, scaling, labelling and plotting 

points (Stavridou & Kakana, 2008).                      

 Another issue to come to terms with assessment and graphs is related to the use 

of technology in the classroom teaching and curriculum (Kissane & Kemp, 2011) It is 

critical to implement consistent learning and assessment environment. Graphics 

calculators which are rich of graphs, benefit some advantages over computers such as its 

accessibility. At present, the Malaysian education regarded the use of graphic calculator 

as merely an optional extra. The implementation of graphics calculators and 

subsequently the teaching of mathematical concepts through graphs and graphing will 

steer the curriculum developer to see mathematics syllabus and curriculum through new 

and fresh lenses. One potential effect is that graphic calculators are able to seize over 

some longer mathematical procedures. A good example is the identifying the stationary 

points of any functions. Many students learn this as long and complicated steps 

especially differentiating rational, surge or logistics functions to determine the specific 

nature of the stationary points. Students spend a long time and lot of practice to be 

fluent on such procedures. The use of graphic calculators is able to handle and 

compensate the routine long procedure and hence allow educators to better recognise 

aspects of mathematics that are worth attention based on time available in the limited 

time to complete the syllabus.         

 Students were very much influenced by the context in their reading and 

interpreting the information in the graphs. When reading and interpreting graphs in an 

abstract form, students faced difficulties in applying their read and interpreted 

information to the real life context, which due to their perception and expectation of the 

contexts. Therefore by preparing graphs related instructional materials in the context of 

mathematics and real life situations, students are able to realize that graphs are not just 

communication and delivery tools but serve as tools to help them think critically. 

Univ
ers

ity
 of

 M
ala

ya



233 
  

Textbooks and classroom activities that allow students to be able to translate from one 

form of representation to another such as texts, tables and symbols, may improve their 

ability to map or link the visual forms to the quantitative forms and consequently 

enhance their graph reading and interpretation skills.           

Stahley (2011) and Sabella and Redish (2005) proposed that modelling and 

contextualized exploration of relationships among mathematical concepts to be included 

as part of the teaching curriculum. The valuable ideas of understanding teaching 

functions and derivatives are the appreciation for the concepts and the inclusion of their 

applications into other areas within the mathematics itself and other disciplines outside 

of the mathematical fields.  Teachers must be well equipped with these types of 

knowledge and understanding not only as preparation to answer queries from students 

but to stimulate, through the instructional materials, the potentials and powers of 

functions and derivatives. An important feature in comprehending the mathematical 

concepts especially those of functions and derivatives is through students’ observations 

and hence recognition of the changes that take places in the surrounding world and also 

the identification of their relationships to make sense of the concepts.     

 An area of reform that has been long discussed in education system globally is 

the use of technology in the mathematical learning specifically the calculus courses. 

Many topics in mathematics have the characteristics that suggest that technology aided 

learning environment is among the effective tools to support understanding. The visual 

aspects of the functions and derivatives, and most of the other mathematics ideas, can be 

represented and viewed on the graphic calculators and computer screens; the 

transformational aspects for active implementation, the technical computational aspects 

and the connected relationships of different representation of the same concepts.          
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5.6 Recommendations and future directions 

 To generalize the potential of visual reasoning ability, among pre-university 

students in learning functions and derivatives, to more calculus and mathematical 

topics, and different learners necessitates future research. Specifically, research studies 

that cover more types of visual representatives in various mathematical topics and 

students of different achievement levels are recommended.  This study into assessing 

and identifying students’ reasoning in regards to graphs has initiated possibilities and 

potentials for future research at a macro-level on students’ thinking and to develop more 

explicit descriptors for each type of visual reasoning. Detailed understanding on 

students’ reasoning and thinking can be obtained with tasks that allow for evidence on 

students’ use of graphs as tools to solve functions and derivatives related problems. 

Such research would be able to validate the categories of responses outlined above and 

raise more awareness of the level of mathematical visuality and visual reasoning that 

need to be considered when planning curriculum and instruction to further develop 

students’ graph comprehension.   

 This study included only the excellent pre-university students, based on their 

national examination result. However, visual reasoning is an important tool of solving 

mathematical problems and the conceptual knowledge on functions, derivatives and 

calculus are essential at university levels of most of the courses such as engineering and 

economics. A further study could involve the university students of various courses on 

their knowledge of various types of graphs used the effects on their understanding of the 

concepts.  

A future study could include larger sample from various programmes (those 

bound to further their studies in other parts of the world), a mixture of weak, average 

and good students and to include teachers, either those teaching colleges or those at pre-

service institutions.  
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Mathematical anxiety is a critical aspects in the teaching and learning of 

mathematics at all levels. The aspects of mathematical anxiety were not included in the 

study, but may contribute to the students’ preference and misconceptions in using 

graphs as visual tools. A further study may investigate the relationships between 

mathematical anxiety and the success of mathematics or the use of graphs. .              

It is hoped that the findings in this study will generate more interest with respect 

to data representation and visual reasoning ability that students possess and factors that 

may impact their learning.                

 Most cognitive study on specific mathematical areas such as trigonometry and 

statistics focused on the understanding of graphs rather than on the construction or 

drawing graphs. Besides the questions on how students from different levels of graphing 

abilities sketch their graphs and the errors they performed when doing so, it is important 

to identify if they realize the potential of dealing with misleading graphs and what do 

they think on the uses and benefits of graphs, both in the classroom’s context and real 

life’s context. When students are doing their reading and interpreting of graphs, are they 

describing the information read and interpreted from the graphs or are they prone to 

provide explanations.        
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Hand-search & Electronic-search      

 

         

         

 
 

 
 

Articles selected for full 

examination (121) 
 

Articles excluded (92) 

Insufficient theory = 34 

Not directly applicable = 58 

  

 

         

         

 

    
Identified from reference 

lists of selected articles (91) 
 

Excluded (67) 

Insufficient  theory = 18 

Not directly applicable = 49   

 

         

         

 Articles & books found by 

chance (3) 
 Articles included (29)  

Articles & books included 

(24) 
  

 

         

         

  

 
 Grand total of articles & books (56)     

 

         

  

 
 Relating to 21 theories     

 

         

  

 
 8 included in pilot synthesis     

 

         

Figure 4.1: Document analysis to locate the framework to assess visual reasoning 1
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Table 4.3 : Taxonomy of skills on decoding process among theories/models/frameworks for points of convergence 

 

 
Curcio (1987) Yumus (2001)  Sharma (2013)  

Elementary  

Read - recognising components of graphs 

Unable to produce any reasoning  

Informal/idiosyncratic - exhibiting 

characteristics of pre-structural 

thinking 

Describe - speaking the language of graphs 

Consistent non-critical - exhibiting  

characteristics of pre-structural 

thinking or at most uni-structural 

thinking 

 

Intermediate  

Interpret - understanding relationships 

among tables, graphs and data 

 

Aware of models, known facts, properties 

and relationships used as basis of 

reasoning, but cannot produce any 

arguments 

Consistent non-critical - exhibiting 

characteristics of uni-structural and 

multi-structural thinking 

Analyse - making sense of graph but 

avoiding personalization and maintaining 

an objective stance while reading the 

graphs 

Able to provide reasons although 

arguments are weak  

Early critical - beginning to exhibit 

characteristics of relational thinking 

and can attend to more than one 

relevant aspects of the data and are 

beginning to integrate the aspects 

 

Advanced  

Predict - interpreting information in a 

graph and answering questions about it 

 Able to provide strong arguments to 

support reasoning  

Advanced critical - integrating 

contextual knowledge that exhibits 

extended abstract thinking   
Extrapolate - recognising appropriate 

graphs for a given data set and its context 

 

Strength  Case study realistic Transformation from instrumental  
Evidence gained from a variety of 

sources 1
3
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Table 4.4 : Taxonomy of skills on encoding process among theories/models/frameworks for points of convergence 

 Krutetskii (1976)  Simon (1986) Carlson (1998)  

 

 

 
Categories of visual ability  Diagram drawing sub-skills  Mental actions of the co-variation  

Analytical 

type  

Individuals who prefer verbal-logical 

rather than imagery modes when 

attempting to solve problems   

Verbalising what is represented and what 

needs to be represented 

Coordinating the value of one variable 

with changes in the other 

 

Coordinating the amount of change of one 

variable with changes in the other variable, 

 

Geometric 

type   

Individuals who prefer to use diagrams or 

images rather than the verbal modes when 

attempting to solve problems 

Creating an integrated diagram that are 

critical to the conceptualisation of the 

problem 

Coordinating the average rate-of- change 

of the function with uniform increments 

of change in the input variable. 

 

Checking the accuracy of the diagram Coordinating the instantaneous rate of 

change of the function with continuous 

changes in the independent variable for 

the entire domain of the function 

 

Labelling completely 

Harmonic 

type   

Individuals who have o tendency to any 

one of the type in particular. 

Representing all relevant information Coordinating the direction of change of 

one variable with changes in the other 

variable 

 

drawing multiple representations are not 

critical 

Strength  

Case study realistic 

Influential – early model that stimulated 

further research  

Case study realistic  

In-depth information  

Analysis of co-variational reasoning to a 

finer degree 

Guide to enhance structure for teaching 

and learning activities  

 1
3
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Table 4.8 : The distribution of 3-round emailing experts 

Experts  
MC VR CR ME 

Total 
 

Loc. Int. Loc. Int. Loc. Int. Loc. Int.  

Round 1 

Out  11 3 4 3 12 2 13 2 50  
 

 

Not returned  - - 1 - 1 1 - - 3  

In  11 3 3 3 11 1 13 2 47 
 

 

Dismissed  1 - - - - - 2 - 3 
 

 

Round 2 

Out  10 3 3 3 11 1 11 2 44  
 

 

Not returned  - 1 - - 1 - - - 2  

In  10 2 3 3 10 1 11 2 42 
 

 

Dismissed  - - - - - - 1 - 1 
 

 

Round 3 

Out  10 2 3 3 10 1 10 2 41  
 

 

Not returned  1 - - 1 - - 1 - 3  

In  9 2 3 2 10 1 9 2 38 
 

 

Note : MC=Mathematical Content, VR=Visual Reasoning, CR=Cartesian Graph, ME=Mathematic Education, Loc.=Local, Int.=International.  
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Table 4.9 :. Analysis on the refined framework – Round 1 

No. Item 

U
n
sa

ti
sf

ac
to

ry
  

P
o
o
r 

 

S
at

is
fa

ct
o
ry

  

G
o
o
d

 

O
u
ts

ta
n
d
in

g
  
 

1. Describe the information needed - 1 (2) 31 (66) 12 (26) 3 (6) 

2. Easily understood - - 26 (56) 18 (38) 3 (6) 

3. Clear and concise  - 1 (2) 27 (58) 17 (36) 2 (4) 

4. No spelling and grammatical errors  - 3 (6) 2 (4) 40 (86) 2 (4) 

5. Current and valid empirical data - 2 (4) 39 (83) 5 (11) 1 (2) 

6. All outcomes are covered (encoding) - 1 (2) 33 (71) 11 (23) 2 (4) 

7. All outcomes are covered (decoding)  - 1 (2) 33 (71) 11 (23) 2 (4) 

8. Statements are consistent - 1 (2) 37 (79) 6 (13) 3 (6) 

9. The arrangement/flow is logical and clear  - 1 (2) 36 (77) 8 (17) 2 (4) 

10. The framework support visual reasoning ability    - 1 (2) 39 (83) 5 (11) 2 (4) 
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Table 4.10 : Analysis on the refined framework – Round 2 

No. Item 

U
n
sa

ti
sf

ac
to

ry
  

P
o
o
r 

 

S
at

is
fa

ct
o
ry

  

G
o
o
d

 

O
u
ts

ta
n
d
in

g
  
 

1. Describe the information needed - - 23 (52) 20 (45) 1 (2) 

2. Easily understood - - 22 (50) 18 (41) 4 (9) 

3. Clear and concise  - - 25 (57) 15 (34) 4 (9) 

4. No spelling and grammatical errors  - - - -  44 (100) 

5. Current and valid empirical data - - 29 (66) 14 (32) 1 (2) 

6. All outcomes are covered (encoding) - - 26 (59) 17 (39) 1 (2) 

7. All outcomes are covered (decoding)  - - 26 (59) 17 (39) 1 (2) 

8. Statements are consistent - - 24 (55) 16 (36) 4 (9) 

9. The arrangement/flow is logical and clear  - - 26 (59) 15 (34) 3 (7) 

10. The framework support visual reasoning ability    - - 23 (52)  19 (43) 2 (5) 

  1
4

2
 

Univ
ers

ity
 of

 M
ala

ya



 

Table 4.11 : Analysis on the refined framework – Round 3 

No. Item 

U
n
sa

ti
sf

ac
to

ry
  

P
o
o
r 

 

S
at

is
fa

ct
o
ry

  

G
o
o
d

 

O
u
ts

ta
n
d
in

g
  
 

1. Describe the information needed - - 12 (32) 21 (55) 5 (13) 

2. Easily understood - - 9 (24) 23 (61) 6 (16) 

3. Clear and concise  - - 10 (26) 20 (53) 8 (21) 

4. No spelling and grammatical errors  - - - - 38 (100) 

5. Current and valid empirical data - - 25 (66) 13 (34) - 

6. All outcomes are covered (encoding) - - 21 (55) 13 (34) 4 (11) 

7. All outcomes are covered (decoding)  - - 21 (55) 13 (34) 4 (11) 

8. Statements are consistent - - 15 (39) 14 (37) 9 (24) 

9. The arrangement/flow is logical and clear  - - 11 (29) 17 (45) 10 (26) 

10. The framework support visual reasoning ability    - - 16 (42) 16 (42) 6 (16) 

 1
4
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Table 4.13 : The usage levels on using graphs or diagrams in their daily learning behaviour. 

 
 

Item 

Not at all Slightly Moderately Very much Definitely 

Mean SD  

 
f (%) f (%) f (%) f (%) f (%) 

1. Do you pay attention to the use of 

graphs or diagrams for solving 

mathematical word problems that 

your teacher shows on the board 

during class? 

 

2 (1.03) 4 (2.06) 25 (12.89) 93 (47.94) 70 (36.08) 4.16 0.80 

2. Do you try to copy the way your 

teacher uses graphs or diagrams to 

solve mathematical words problems? 

 

4 (2.06) 17 (8.76) 68 (35.06) 66 (34.02) 39 (20.10) 3.61 0.97 

3. Do you try to use the kinds of graphs 

or diagrams shown in your textbooks 

to solve other similar mathematical 

problems? 

 

2 (1.03) 29 (14.95) 58 (29.90) 62 (31.96) 43 (22.16) 3.59 1.03 

4. Do you try to use the kinds of graphs 

or diagrams shown by your teacher 

to solve other similar mathematical 

problems? 

 

6 (3.09) 17 (8.76) 60 (30.93) 80 (41.24) 31 (15.98) 3.58 0.96 

5. Do you usually use graphs or 

diagrams in solving mathematical 

problems? 

2 (1.03) 19 (9.79) 92 (47.43) 62 (31.96) 19 (9.79) 3.40 0.83 

 1
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Table 4.14 : The usefulness of graphs or diagrams in solving mathematical problems. 

 

Item 

Not at all Slightly Moderately Very much Definitely 

Mean SD  

 
f (%) f (%) f (%) f (%) f (%) 

6. Do you think the use of graphs 

or diagrams is helpful in 

efficiently solving mathematical 

word problems?  

 

0 (0) 4 (2.06) 39 (20.10) 81 (41.76) 70 (36.08) 4.12 0.80 

7. Do you think it is good to use 

graphs or diagrams in solving 

mathematical word problems?  

 

2 (1.03) 10 (5.15) 45 (23.20) 60 (30.93) 77 (39.69) 4.03 0.97 

8. Do you think the use of graphs 

or diagrams helps you figure out 

how to solve mathematical word 

problems?  

 

0  (0) 4 (2.06) 52 (26.80) 85 (43.82) 53 (27.32) 3.96 0.79 
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Table 4.15 : The difficulty of the use of graphs or diagrams in solving mathematical problems. 

 

Item 

Not at all Slightly Moderately Very much Definitely 

Mean SD  

 
f (%) f (%) f (%) f (%) f (%) 

9. In general, do you know how to 

construct graphs or diagrams for 

solving mathematical word 

problems?  

 

4 (2.06) 16 (8.25) 90 (46.39) 72 (37.11) 12 (6.19) 3.37 0.81 

10. How easy is it for you to use 

graphs or diagrams in solving 

mathematical word problems?  

 

4 (2.06) 19 (9.79) 95 (48.97) 64 (33.99) 12 (6.19) 3.31 0.81 

11. Do you know what kinds of 

graphs or diagrams are helpful 

in solving different kinds of 

mathematical word problems?  

 

8 (4.12) 19 (9.79) 107 (55.16) 50 (25.78) 10  (5.15) 3.20 0.93 

12. How easy is it for you to draw 

graphs or diagrams by yourself 

for solving mathematical word 

problems?  

 

2 (1.03) 45 (23.20) 106 (54.64) 35 (18.04) 6 (3.09) 2.99 0.76 
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Table 4.16 : The teacher’s behaviours in using graphs or diagrams in solving mathematical problems. 

 

Item 

Not at all Slightly Moderately Very much Definitely 

Mean SD  

 
f (%) f (%) f (%) f (%) f (%) 

13. Do you think your mathematics 

teachers use graphs or diagrams 

to efficiently solve mathematical 

word problems?  

 

2 (1.03) 6 (3.09) 31 (15.98) 64 (32.99) 91 (46.91) 4.22 0.90 

14. Do your mathematics teachers 

use graphs or diagrams to 

explain how to solve 

mathematical word problems?  

 

2 (1.03) 2 (1.03) 41 (21.13) 80 (41.24) 69  (35.57) 4.09 0.83 

15. Do the graphs or diagrams that 

your teachers use to show how 

to solve mathematical word 

problems help you to understand 

how those problems can be 

solved?   

 

0 (0) 2 (1.03) 49 (25.26) 75 (38.66) 68 (35.05) 4.08 0.80 

16. Do your mathematics teachers 

teach your class how to use 

graphs or diagrams in solving 

mathematics word problems?  

 

2 (1.03) 10 (5.15) 45 (23.20) 64 (32.99) 73 (37.63) 4.01 0.95 

17. Are you told or encouraged by 

your mathematic teachers to use 

graphs or diagrams in solving 

mathematics word problems?  

 

0 (0) 17 (8.76) 47 (24.23) 72 (37.11) 58 (29.90) 3.88 0.94 

1
5

5
 

Univ
ers

ity
 of

 M
ala

ya




