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ABSTRACT 

In the past, the growth of human knowledge was slow and limited. For instance, 

when an innovation was created in the 18
th

 century in the UK, it took several months or 

even years for the news to reach other parts of the globe. The advent of more modern 

technology and the current educational structure has accelerated this growth. Today, 

human knowledge grows every hour, and it is more accessible than ever before. This 

speed of knowledge growth highlights the role of scientific manuscripts in spreading 

this valuable knowledge around the world. We can trust that articles published in 

scientific journals concentrate on the cutting edge of knowledge. Presently, most of 

these journals are published in the English language, but many scientists are not 

proficient in English. This leads to a high rejection rate for publications and the loss of 

good research and talent due to the use of inappropriate terms or syntactical style. 

Reviewing scientific articles for high-quality journals is time-consuming (some cases 

take up to a year). Furthermore, many inexperienced authors do not follow the scientific 

writing style of high-quality journals (ISI journals) and get rejected after waiting several 

months. Having a tool that advises authors whether their writing style is following ISI 

journal standards can be helpful and save time.  In this research study, I proposed an 

automated system for detecting the similarity of an article with well-written academic 

writing by noticing various term forms. I chose to advance a novel classification 

technique to recognize the existing academic patterns. However, it was first necessary to 

be confident that the classification technique could handle this job. Moreover, the result 

of this section was essential for me as a benchmark. After ensuring that the 

classification technique was able to accomplish this work, Hybrid Genetic Random 

Forests (HGRF) was introduced as a new ensemble classifier based on a Random Forest 

algorithm, but altered slightly with some innovations. In order to measure performance 

of the proposed algorithm, evaluation was done by several independent UCI datasets 
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and the results were compared with RF and some individual classifiers. In the final 

stage, it was tested by creating datasets for ISI and non-ISI papers and the result was 

promising. In most cases, HGRF successfully distinguished ISI articles from non-ISI 

articles. 
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ABSTRAK 

Sebelum ini pertumbuhan pengetahuan manusia adalah perlahan dan terhad. Sebagai 

contoh, apabila inovasi yang telah diwujudkan pada 18 abad di UK, ia mengambil masa 

beberapa bulan atau tahun untuk mencapai beritanya ke bahagian lain di dunia. 

Kemunculan teknologi dan struktur pendidikan benar, mempercepatkan irama ini. Pada 

masa kini, pengetahuan manusia semakin meningkat setiap jam. Kelajuan ini 

menekankan peranan manuskrip saintifik untuk menyebarkan pengetahuan ini di 

seluruh dunia. Pertumbuhan pesat ini menarik kita dalam jumlah yang sangat besar 

manuskrip saintifik. Berikut adalah tempat yang berkualiti tinggi jurnal saintifik 

berguna. Kita boleh percaya bahawa artikel yang diterbitkan dalam jurnal itu, memberi 

tumpuan di pinggir pengetahuan. Masalahnya ialah bahawa kebanyakan jurnal-jurnal ini 

menyiarkan dalam bahasa Inggeris dan ramai saintis tidak profesional dalam bahasa 

Inggeris. Ini menyebabkan kadar penolakan yang tinggi untuk penerbitan dan 

kehilangan beberapa kajian yang baik dan bakat kerana menggunakan istilah yang tidak 

sesuai dan bentuk sintaksis kata-kata. Memproses artikel ISI memakan masa (beberapa 

kes sampai ke setahun). Ramai penulis tidak berpengalaman tidak mengikuti gaya 

penulisan saintifik jurnal ISI dan mendapatkan penolakan selepas menunggu beberapa 

bulan. Sedia ada alat yang menasihati penulis sama ada gaya penulisan yang mengikuti 

kepada jurnal ISI boleh membantu dan menjimatkan masa mereka. Dalam kajian ini, 

saya cuba untuk mencadangkan sistem automatik untuk mengesan persamaan artikel 

baru dengan perasan bentuk jangka berbeza artikel ISI sebagai salah satu jurnal diindeks 

terkemuka dan popular di dunia saintifik.Ia memutuskan untuk memajukan teknik 

pengelasan novel untuk mengiktiraf corak akademik yang sedia ada. Walau 

bagaimanapun, ia adalah perlu untuk menjadi yakin bahawa teknik pengelasan boleh 

mengendalikan kerja ini. Selain itu, hasil daripada seksyen ini adalah penting bagi saya 
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sebagai penanda aras. Selepas memberi jaminan bahawa teknik klasifikasi mampu 

menyelesaikan pekerjaan ini, Hybrid Genetic Random Forest (HGRF) diperkenalkan 

sebagai pengelas itere baru berdasarkan algoritma Forest rawak tetapi dengan beberapa 

inovasi. Ia memutuskan untuk memajukan teknik pengelasan novel untuk mengiktiraf 

corak akademik yang sedia ada. Walau bagaimanapun, ia adalah perlu untuk menjadi 

yakin bahawa teknik pengelasan boleh mengendalikan kerja ini. Selain itu, hasil 

daripada seksyen ini adalah penting bagi saya sebagai penanda aras. Selepas memberi 

jaminan bahawa teknik klasifikasi mampu menyelesaikan pekerjaan ini, Hybrid Genetic 

Random Forest (HGRF) diperkenalkan sebagai pengelas itere baru berdasarkan 

algoritma Forest rawak tetapi dengan beberapa inovasi. Dalam usaha untuk mengukur 

prestasi algoritma dicadangkan, ia dinilai oleh beberapa dataset UCI bebas dan hasilnya 

berbanding RF dan beberapa penjodoh bilangan individu. Di peringkat akhir, ia diuji 

dengan mewujudkan dataset untuk ISI dan kertas bukan ISI dan hasilnya adalah 

memberangsangkan. Dalam kebanyakan kes, HGRF dibezakan ISI dari artikel bukan 

ISI jayanya. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

There is no debate that writing is an essential skill for everyone, irrespective of one’s 

position in society. People who are active in science should not only be knowledgeable 

in basic writing, but must also be proficient in academic or scientific writing. The goal 

of scientific writing is to convey discoveries and information that were previously 

unknown to readers. According to Lindsay (2011), scientific writing should be precise, 

clear and brief. Nevertheless, writing in a scientific manner is not easy for many people, 

especially for those whose English is still developing. Proof of this is found in the 

research of Santos (1988), who conducted research to record the opinions of 

experienced professors about the writing of non-English speaking students (mostly 

Chinese and Korean students). It was found that 178 professors believed that the writing 

of these students suffered from serious lexical errors, and, based on their experience, 

was not publishable. 

With the prevalence of computers and the Internet around the globe, academic 

writing has also found its way into the virtual world. Scientific journals now publish 

online and authors no longer need to worry about the long process of submission that 

was previously prevalent. A turning point occurred when computer science was able to 

help analyze digital content and, consequently, text analysis was born. Montes-y-Gómez 

et al. (2002) defined text analysis as “knowledge discovery in large text collections”. 

Due to the importance of analyzing digital content, text analysis has experienced rapid 

growth in comparison to the past, when scripts were not digital. The scientific world has 
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also benefited greatly from text analysis; for instance, the detection of plagiarism, 

grammar checking and many other applications are the result of this innovation. 

Text analysis constitutes a broad domain, and includes Machine Learning (defined as 

a process by which a machine gains the capability to solve a problem by examining 

examples or data (Michalski 1983)) and Natural Language Processing.
1
 In this study, we 

chose to concentrate on the Machine Learning (ML) aspect by focusing on the 

classification
2
 methods and their application in scientific text analysis. Text 

classification aims to assign classes to textual documents, in which the classes must be 

pre-defined (Finzen, Kintz & Kaufmann 2012; Ko and Seo 2009a; Lin and Hong 2011; 

Sudhamathy and Jothi Venkateswaran 2012; Thorleuchter, den Poel, and Prinzie 2010). 

The classification task belongs to the supervised learning category in ML. 

The Institute for Scientific Information (ISI) was founded by Eugene Garfield in 

1960. It was acquired by Thomson Scientific & Healthcare in 1992, (Thomson 

Corporation acquired ISI in 1991) and became known as Thomson ISI. It is now a part 

of the Intellectual Property & Science business of Thomson Reuters. ISI Journal 

Citation Reports on the Web (JCR Web) provides a systematic and objective means to 

critically evaluate the world's leading research journals. JCR Web citation data is drawn 

from approximately 7,000 journals covered by ISI, representing over 1,400 publishers 

worldwide in over 200 disciplines. Due to the meticulous and trusted process of 

selecting high-quality journals, publishing in ISI-indexed journals is honorable and a 

                                                 

1
 Short for natural language processing, a branch of artificial intelligence that deals with analyzing, 

understanding and generating the languages that humans use naturally in order to interface with 

computers in both written and spoken contexts using natural human languages, instead of computer 

languages. 

2
 A classification is a structure imposed on the space of automata that groups cellular automata with 

related properties (Gutowitz 1990) 
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clear sign of proficiency in that scientific domain. Proof of this is the annual report of 

Academic Ranking World Universities, which is published by Shanghai Jiao Tong 

University. In this ranking, having researchers that publish ISI highly cited papers is one 

of the main metrics in ranking universities (Ranking Criteria and Weights, 2013). 

This study is conducted with the aim of proposing a new classification technique for 

identifying ISI and non-ISI indexed papers. The methodology and system design are 

discussed in the related chapters. In the remainder of this chapter, we explain the 

problem statement and the objectives of this study. Finally, we mention the research 

methodology and respective research questions.  

1.2 Motivation 

Currently, the number of published ISI-indexed articles plays an important role in 

university ranking (Ranking Criteria and Weights, 2013). On the other hand, getting 

one's work published, especially in an ISI-indexed journal, is a prestigious but 

somewhat complex endeavor. A novel methodology and solid findings are mandatory 

for the acceptance of a paper. However, other aspects are also important, including the 

style of writing. The writing style needs to be clear, concise and comprehensible to the 

reader. It has been demonstrated that using an inappropriate writing style is the most 

common reason for rejection in scientific journals, as it creates conceptual barriers in 

the transmission of the authors’ intentions (Bornmann, Weymuth & Daniel 2009). We 

believe that text mining can provide the ability to distinguish ISI from non-ISI articles.   

1.3 Problem Statement 

Publishing a scientific paper in high-ranking journals has never been an easy task for 

young scholars. One aspect of this achievement is the excellent research quality that 

these journals expect from authors. However, another aspect that many inexperienced 

Univ
ers

ity
 of

 M
ala

ya



4 

 

researchers underestimate is the importance of language and their lexical vocabulary in 

such journals. According to Meneghini and Packer (2007), the most common reason for 

rejection in scientific journals is conceptual barriers in transmitting an author’s 

intentions. The growth of information technology in recent years resulted in new tools 

and techniques to help novice researchers, for instance, grammar-checking software, 

reference manager tools and editorial platforms. However, these endeavors are still not 

enough to assist an inexperienced writer who wants to create a scientific article for high-

quality journals. 

To elaborate this problem, I try to highlight the key aspects of the discussed issue. It 

will help us to know the problem better before proposing an appropriate solution for it. 

PS1. Existing Differences in the lexical domain of scientific scripts:  Susan 

Conrad (1996) conducted research comparing two different academic scripts. She chose 

common composition textbooks in the field of ecology and articles from ecology-related 

scientific journals. She found that each of these texts was different from the other. For 

example, scientific articles had a lower rate of type/token ratio than textbooks, but 

higher level information can be transmitted to reader. She noted that these kinds of 

differences in various scientific scripts would be a barrier for students’ skill in scientific 

writing (Conrad, 1996). It is well known that the texture of different scientific scripts is 

different. However, it is not clear whether such a difference helps computers to 

differentiate them. 

PS2  Application of classification techniques in discovering patterns 

among scientific scripts: Using Machine Learning and, more specifically, supervised 

learning in text analysis is not a new idea. However, analyzing academic text is only a 

small subset of text mining, which is why has received less attention (Coxhead, 2012). 
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Gaizauskas et al  (2000) applied a data-extraction technique on biological scientific 

journals in order to extract information about enzymes and proteins from scientific 

papers. They extracted information about enzymes, metabolic pathways and protein 

structure. In another study, Szarvas (2008) used a classification technique for hedge 

categorization in biomedical articles. He argued that since facts or statements in a hedge 

or negated context typically appear as false positives, the proper handling of these 

language phenomena is highly important in biomedical text mining. Donaldson et al. 

(2003) used an SVM trained on the words for MEDLINE abstracts to identify abstracts  

containing information on protein–protein interactions, prior to curating this information 

into their BIND database.  

Despite the existence of related research on the use of classification in the scientific 

domain, few of them focused on using classification for investigating the quality of 

scientific writing. One of the objectives of this study is to determine whether 

classification is an appropriate technique for distinguishing quality of scientific 

writings? 

PS3.  Competition between classifiers for better performance and 

precision: Naïve Bayesian is one of the oldest classification algorithms that still 

performs well (Wu & Vipin, 2009). Two decades after the creation of the Naïve 

Bayesian classifier and the evolution of various kinds of classifiers with different 

techniques, this area remains interesting for researchers and scientists who are active in 

machine learning. Why do we not use the best classifiers to finish the best classifier 

competition? The best answer to this question is given by Wolpert and Macready (1997) 

in the form of the No Free Lunch Theorem (NFLT). According to NFLT, universal 

optimization is impossible. In other words, you cannot acquire knowledge "for free" just 

by looking at training instances. Why not? Well, the fact is that the only things you 
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know about data is what you have seen as training data. Therefore, each dataset has 

special characteristics, making it impossible for all techniques to work well on the data. 

For example, a certain kind of basic neural network, the perceptron, is biased towards 

learning only linear functions and does not work properly if the data has a linear pattern 

(Ho & Pepyne, 2002). Therefore, different classifiers work for certain datasets and trial 

and error is usually the process by which the right sort of classifiers is discovered for the 

appropriate dataset. 

For this reason, proposing a new classification algorithm that performs well with 

high accuracy for scientific text is possible. This is one of the problems that requires an 

answer, and this research seeks to accomplish that. 

PS4. Existing various syntactical forms in different text: Eggins (1994) 

suggested a metric for gauging the lexicon densities of documents. According to his 

definition, lexical density is measured by dividing the number of content words (nouns, 

base verbs, adjectives and adverbs) by the running words (prepositions, congestion, 

auxiliary verbs, pronouns and determinants). Eggins (1994) stated that lexical density in 

academic manuscripts is higher than in other scripts. In another study, Halliday and his 

colleagues alleged that lexical density in every clause of an academic manuscript is two 

or three times greater than that of a normal manuscript (Halliday, Michael Alexander 

Kirkwood & Martin, 1993) . 

Thus, firstly, it is important to understand if there is any clue to show the difference 

between using terms in high- and low-quality scientific articles. Secondly, we are 

curious to determine whether supervised learning can help us differentiate those writing 

samples from each other. Lastly, if classification is able to perform the classification 

task successfully, we seek to design a classification algorithm with higher performance 
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for distinguishing between high- and low-quality articles. Finally, we aim to discover 

which forms of the lexicon are more common in various types of writing.  

1.4 Research Objectives 

In this research, in order to propose a solution for the discussed problems, I have 

chosen to use supervised learning. The reason for choosing supervised learning is due to 

the successful background of classification techniques in the application of text analysis 

and scientific writing. This background is discussed extensively in Chapter 2.  

For each step of this research, an objective is defined. These objectives are: 

 To collect and create a reliable dataset for ISI and non-ISI index articles 

 To investigate the ability of pattern discovery through machine-learning 

techniques for ISI articles  

 To investigate the prevalent syntactical terms’ forms in ISI and non-ISI 

articles. 

 To develop a novel classification algorithm for distinguishing ISI 

articles from non-ISI papers with high accuracy 

 To evaluate the performance of the improved algorithm 

1.5 Research Methodology: 

In the first step, to identify the research problem, it was necessary to conduct a 

comprehensive literature review. As Figure 1.1 depicted, the scope of this research was 

a subset of different research domains, such as machine learning, academic writing and 

text analysis.  
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Figure 1.1: Research Domain 

 

After this step, the problem statement became clear, leading to the definition of 

objectives of the research, which are presented in section 1.4. To begin the research, it 

was necessary to have a dataset on which to implement and test the machine-learning 

techniques. Chapter 3 has clarified this step and explains how it was done. Having the 

dataset in place paved the way to test some of the classic and standard algorithms. 

Chapter 4 details how this step was completed and presents the results. Analyzing and 

comparing syntactical forms of ISI and non-ISI is also included in Chapter 4 to 

highlight the differences between these two sets. 

The promising results of Chapter 4 encouraged me to further improve the result and 

for this goal, the Hybrid Genetic Random Forest was introduced as a new classifier. 

Chapter 5 is dedicated to HGRF and its evaluation. Finally, Chapter 6 summarizes this 
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research, highlights the findings, and suggests future works. Figure 1.2 summarizes 

these steps and visually presents the phases of this research. 

 

Figure 1.2: Research Methodology 
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1.6 Research Questions 

 How should one collect and create a reliable dataset for ISI and non-ISI 

index articles? 

 How is the classification performance for distinguishing ISI and non-ISI 

index articles? 

 What is a novel and reliable classification algorithm with better 

performance for distinguishing ISI articles from non-ISI articles? 

 What is the precision of the proposed algorithm? 

 What are the common syntactical differences between ISI and non-ISI 

index papers? 

 

1.7 Thesis Overview 

Chapter 1 is an introduction to the thesis. First, the research motivation states why 

this research was interesting to pursue. The problem statement answers why it was 

necessary to accomplish this work. In the next stage, a brief background and the 

research objectives are presented. Following this, the research methodology summarizes 

the required steps of the research from beginning to end. Finally, we discuss the 

questions that we are seeking to answer. 

In Chapter 2, the background of the research topic is explored in detail. We start with 

the history of supervised learning and introduce some base-line algorithms, such as K-

nearest neighbor (KNN), Linear Regression, Logistic Regression, Support Vector 

Machine (SVM) and Decision Trees. Later, we move to Ensemble classifiers and 

introduce Bagging, Boosting, AdaBoost and Random Forest. One sub-section is 

assigned to the Genetic Algorithm, which is also used in the proposed Ensemble 
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classifier. Following this, text mining history and related techniques are covered and 

narrowed down to their application in academic scripts. 

  Chapter 3 demonstrates different elements of the proposed solution step by step. 

This makes it possible for other scholars to understand how this research was done and 

provides an outline for conducting similar research. 

In Chapter 4, we run the experiment with classical classification techniques, such as 

KNN, Naïve Bayesian and SVM, to prove that a classification technique is an 

appropriate method for differentiating ISI and non-ISI articles. 

 

Chapter 5 introduces Hybrid Genetic Random Forests (HGRF) as a novel 

classification algorithm and we investigate the performance of HGRF on standard UCI 

datasets. Finally, HGRF is tested on ISI and non-ISI data and its results are evaluated. 

Chapter 6 summarizes the major contributions made in the thesis, followed by 

suggestions for future work. 
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CHAPTER 2: MACHINE LEARNING AND TEXT MINING 

 

2.1 Introduction 

In this chapter, some of the key topics related to this study are reviewed. The domain 

of this research is interdisciplinary and encompasses Text Mining and Machine 

Learning (ML). If we look at the whole picture, we can consider text mining as one of 

the subsets of ML. Mainly, there are two different, but related, topics within ML; 

supervised learning and unsupervised learning. In supervised learning, we assume that 

we have some existing data that has been labeled and attempt to discover the hidden 

pattern in the data and assign the un-labeled data to existing labeled categories. On the 

other hand, in unsupervised learning, there is no labeled data and researchers must 

discover similarities or dissimilarities from the nature of existing data and assign them 

to different groups or clusters (Ko & Seo, 2009b). This research focuses on Supervised 

Learning, as it is believed that we have enough ISI articles online to use as labeled 

samples. Later, we talk about supervised learning application in text, and link it to the 

text analysis problem. Some of the essential methods of text analysis, which are used in 

this research, are also explained. 

2.2 Machine Learning 

Machine learning (ML) refers to algorithms that build analytical models from data. 

ML is one of the subsets of Artificial Intelligence. Machine learning has its roots in 

computational statistics, a discipline that also focuses on prediction-making through the 

use of computers. It also has a strong relationship with mathematical optimization, 

which delivers methods, theory and application domains to the field. Machine learning 

has different and various applications, such as spam detection, computer vision and 
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many others. We can break down ML techniques into two main parts: Unsupervised 

learning (2.3) and Supervised learning (2.4) (Aggarwal & Zhai, 2012). 

2.3 Unsupervised Learning 

Unsupervised learning, or Clustering, organizes data instances into similar groups, 

called clusters, such that the data instances in the same cluster are similar to each other 

and data instances in different clusters are different from each other.  Clustering is often 

called unsupervised learning, because unlike supervised learning, class values denoting 

an a priori partition or grouping of the data are not given (B. Liu, 2007).  

2.4 Supervised Learning 

Supervised learning, or classification, in machine learning is analogous to how 

humans learn in ordinary life, as it is a form of learning based on previous experience to 

acquire knowledge (Manning et al., 2008). Similarly, computers learn from data to gain 

new knowledge. In contrast to unsupervised learning, supervised learning uses labeled 

data. Generally, in supervised learning, a dataset is separated into two sets – training 

and test – in which the first is used for training the system, while the second is used for 

evaluating the accuracy of the generated trained model.  

Machine learning is the process of learning a set of rules from instances (cases in a 

training set), or, informally, the responsibility of the classifier is to detect the class of 

new cases. In classification (supervised learning), the first step is to build the dataset. If 

an expert is available, they can advise which attributes or features should be considered. 

Otherwise, the simplest method is called “brute-force”, which means considering all the 

existing features in the hope that the most informative and relevant attributes can be 

isolated.  However, in most cases, the created dataset is not suitable for direct use in the 

machine learning process, as it usually includes noise and missing attribute values, and 
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therefore requires significant pre-processing (S. Zhang et al., 2002). Some of the 

common problems that cause the data to become impure include:  

 Difficulty in detecting some of the noise  

 Existing missing values  

 Digressive input attributes are present in the data at hand  

Detecting noise is one of the first activities that should be done in the pre-processing 

phase (Biau, 2012). Hodge and Austin (2004) presented contemporary methods for 

outlier (noise) detection. The issue of impure data is an unavoidable problem when  

dealing  with  most  real-world  data sources.  In most cases, certain important issues 

need to be considered when processing unknown attribute values.  One of the critical 

problems is known as the source of “unknown-ness”, in which (a) a value is missing 

because it was forgotten or lost, (b) a certain feature is not applicable for a given 

instance (e.g., it does not exist for a given instance), or (c) for a given observation, the 

designer of a training set does not care about the value of a certain feature (so-called 

“don’t-care values”). Based on the source of the unknown-ness, researchers have a 

number of techniques to handle missing data, such as ignoring missing data, imputing 

missing data with a replacement value, imputing the missing data and accounting for the 

fact that these were imputed with uncertainty, and using statistical models to allow for 

missing data, making assumptions about their relationships with the available data 

(Batista & Monard, 2003). For example, KNN imputation considers K neighbors of the 

missing value and uses their average amount as a substitution (de Souto, Jaskowiak & 

Costa, 2015).  

Supervised learning can be categorized in different ways; for instance, it can be 

based on the techniques being used, such as regression-based classifiers or probabilistic 
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classifiers. However, for simplicity, the classifiers are placed according to two 

categories that are more general – individual and ensemble classifiers – each of which is 

described with examples in the following sections (Meinshausen, 2006). 

2.5 Individual Classifiers 

By individual classifier, we mean the classifiers that perform the classification task 

without helping other existing classifiers. The method could have originated from 

probabilistic models, such as Naïve Bayesian, or pure mathematical models, such as 

logistic regression and Support Vector Machine. In this section, we introduce some of 

the most well-known individual classifiers (Rodríguez, Kuncheva & Alonso, 2006). 

2.5.1 K-Nearest Neighbors (K-NN) 

The K-NN method follows a straightforward and effective idea in classification by 

testing each sample in a given vector space with the majority class of its K-nearest 

neighbors. K, as the only parameter of this classification method, can have various 

values. The nature of K-NN is based on this greedy fact that the new sample should be 

similar to its neighbors. K-NN measures similarity by the Euclidean or Cosine distance 

between different vectors. The decision boundary in K-NN is defined by Voronoi 

tessellation, which is a set of Voronoi cells (Figure 2.1). Voronoi cells are the polygon 

space around each training sample that consists of all the points close to it, while the 

decision boundary is formed by concatenating tiles that belong to the same classes. The 

border between the two different classes is called the decision boundary. The points on 

the decision boundary have the same distance from both training examples. K-NN is 

simple and flexible at the same time. The decision boundary can be shaped in very 

complex forms. However, the drawback of K-NN is its intrinsic sensitivity to outliers. 

To solve this problem, K-NN typically uses more than one neighbor (K>1) and the class 
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that has more cases in that particular area is selected for the new sample in the test set 

(Wu et al., 2007). 

 

Figure 2.1: Voronoi cells in KNN algorithm 

The role of the K value is very important, and, when changed, can lead to different 

results. Choosing too large of a value can include all the neighbors, which changes the 

K-NN to a poor classifier, while a small K makes the K-NN very sensitive to outliers, 

which causes overfitting of the training data. The best method to determine which K is 

most suitable for solving the problem is cross-validation (2.8). 

The main advantage of the K-NN algorithm is its ease of implementation; it does not 

assume anything about the data and usually has acceptable performance. For example, 

Kwon and Lee (2003) reported acceptable results for K-NN concerning the 

classification of Korean websites. However, the drawback is that K-NN is 

computationally expensive. The time required to calculate the distance between 

different samples is O (ND); n is the number of cases in the training set and d represents 

the dimensions of the samples.  

To make K-NN clearer, I explain it through a numerical example. Consider that some 

data has been collected in a survey from some people to determine their opinion about a 
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special type of paper tissue (Table 2-1). Two features have been measured: Acid 

Durability and Strength. All samples belong to two classes (Good and Bad quality). 

Table 2.1: Paper tissue survey data 

X1= Acid Durability X2= Strength Y= Class 

7 7 Bad 

7 4 Bad 

3 4 Good 

1 4 Good 

 

Assume that we get another result (X1=3, X2=7) without any label and decide to 

classify it as Good or Bad. KNN tries to find the distance of the new case with the older 

data, as described in Table 2.2. This example finds the distance between two cases with 

the Euclidian distance formula (√                 ).  

Table 2.2: Calculating square distance of new case to other examples 

X1= Acid Durability X2= Strength Square distance to query 

instance 

7 7              =16 

7 4                  

3 4                 

1 4                  

 

If we suppose that K=3 and sort the existing values according to their distance from 

the new sample, by considering the 3 nearest cases and majority voting, we can assign 

the new case to one of the classes. Finally, KNN classifies the new case as Good 

(Table 2.3).  
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Table 2.3: KNN results on paper tissue data 

X1= Acid 

Durability 

X2= 

Strength 

Square distance to query 

instance 

Rank Included in 3 

neighbors 

Class 

7 7              =16 3 Yes Bad 

7 4                  4 NO - 

3 4                 1 Yes Good 

1 4                  2 Yes Good 

 

2.5.2 Naïve Bayesian 

The Naïve Bayesian (NB) classifier is a probabilistic learning algorithm that is derived 

from Bayesian decision theory (Mitchell 1997). The probability of a message d being in 

class c, P (c | d), is computed as: 

 
   |       ∏    |  

 

   

 (2.1) 

 

where     |   is the conditional probability of feature    occurring in a message of 

class c, and P (c) is the prior probability of a message occurring in class c. 

    |   can be used to measure how much evidence    contributes that c is the correct 

class (Manning et al., 2008). In email classification, the class of a message is determined 

by finding the most likely or maximum a posteriori (MAP) class     , defined by 

Equation 2.2. 

 
                       |                      ∏    |  

 

   

 (2.2) 
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 Since Equation 2.2 involves the multiplication of many conditional probabilities, one 

for each feature, the computation can result in a floating point underflow. 

In practice, the multiplication of probabilities is often converted to an addition of 

logarithms of probabilities and, therefore, the maximization of the equation is 

alternatively performed by Equation 2.3 

 
                    [         ∑           

 

   

] (2.3) 

 

All model parameters, i.e., class priors and feature probability distributions, can be 

estimated with relative frequencies from the training set D. Note that when the class and 

message features do not occur together in the training set, the corresponding frequency-

based probability estimate will be zero, which would make the right-hand side of 

Equation 2.3 undefined. This problem can be mitigated by incorporating some method 

of correction, such as Laplace smoothing, in all probability estimates. NB is a simple 

probability-learning model and can be implemented very efficiently with a linear 

complexity. It applies a simplistic or naive assumption that the presence or absence of a 

 feature in a class is completely independent of any other features (Wu et al., 2007). 

Despite the fact that this oversimplified assumption is often inaccurate (in particular for 

text domain problems), NB is one of the most widely used classifiers and possesses 

several properties (Zhang, 2004) that make it surprisingly useful and accurate. 

2.5.3 Linear Regression 

Linear regression is a very common method for prediction and forecasting in 

statistics (James et al., 2013). In this model, as always, we have training data, such as 
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   {          }  and we try to determine any trends with a linear function that is 

called the learning function. Parameters    are coeffients of X in the equation (e.g., 

              ), for which the complete form would be in Equation 2.4. 

 
     ∑    

 

   

 (2.4) 

 

   is named bias. If we assume that    is equal to Constant 1, we can rewrite the 

above formula with numeric algebraic symbols in a compact form (Equation 2.5): 

       (2.5) 

 

Y is m×1 vector,    is the transposed matrix with m×(n+1) dimensions and   is 

(n+1)×1. 

The question concerns how we measure the accuracy of the estimated learning 

function. In other words, how do we fit the model? There are different techniques to 

determine this, but one of the most popular is the least squares error (Equation 2.6).  

 
     ∑      

    

 

   

 (2.6) 

 

The goal is to have a small     .      shows the error rate of the learning function 

with respect to the real output. The best learning function produces the least squares 

error.      is a quadratic function and a minimum exists for it.  
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Figure 2.2: Least square error 

If we rewrite Equation 2.6 in numeric form, we have:  

                    (2.7) 

 

After obtaining the derivation with respect to    the equation becomes: 

            (2.8) 

 

Solving this equation leads us to: 

                (2.9) 
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This result is only accurate if     is not a singular matrix. In the classification 

context, linear regression works by defining a threshold. For instance, if we assume that 

the learning function is identified, we will have the membership function: 

 
  {

           
            

 (2.10) 

 

Generally, the threshold is calculated by minimizing the sum of the root square error 

(James et al., 2013). In this example, the threshold is 0.5. If the result of the learning 

function is larger than 0.5, it belongs to class “1”; otherwise, it belongs to class “0”. The 

sample of linear regression is shown graphically in Figure 2.3. The points above the line 

belong to one class, while those below belong to another (James et al., 2013). 

 

Figure 2.3: Linear Regression 

2.5.4 Logistic Regression 

Although linear regression is a prevalent tool in the world of statistics, it is not strong 

enough in classification applications. For this reason, the evolved form of this 
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algorithm, logistic regression, is used.  In binary classification, we want to predict to 

which group the new case belongs (labeled with 0 or 1). However, in linear regression, 

the output span is unlimited (James et al., 2013).  To limit g(x) between 0 and 1, the 

Sigmoid or Logistic function is used, as defined in Equation (2.11): 

 
     

 

     
 (2.11) 

 

The range of this function lies between 0 and 1, as presented in Figure 2.4: 

   

 

Figure 2.4: Shape of g(z) function 

 

By replacing power z with the equation of linear regression             the 

equation becomes  
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 (2.12) 

 

If           and equivalently      , y would belong to class “1” 

If           and equivalently      , y would belong to class “0” 

For example, if                          
      

   and   

              for class y=1, the prediction formula converts to    
    

    

(Figure 2.5). 

 

 

Figure 2.5: Logistic Regression prediction for nonlinear area 
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To fit the logistic regression, we use the cost function. The cost function will let us 

figure out how to fit the best possible straight line to our data. 

 
      

 

 
 ∑            (  )  (    )               

 

   

 (2.13) 

 

2.5.5 Support Vector Machine (SVM) 

Vapnik & Lerner (1963) introduced the SVM method as a subset of the linear 

supervised learning classification method. Since that time, many researchers have 

tested, implemented and developed this algorithm in different applications (Liu et al., 

2011; Orrù et al., 2012; K. Kim & Lee, 2014). This method tries to classify sample 

cases in each training set by calculating the optimal hyperplane between two different 

classes. The best hyperplane is one that has the biggest distance between two samples. 

In Figure 2.6, two different hyperplanes are shown. The one with a wider margin would 

be the choice of SVM. The cases on the border of the margin are called support vectors. 
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Figure 2.6: Comparison between different margins in SVM 

 

Binary SVM has two classes (y=1 and y=-1). After finding the decision boundary on 

the best hyperplane (        
   ), if       , x belongs to class y=1 and if 

       , it belongs to class y=-1. The value of w is a function of  ⃗⃗  ∑       
 
    

with the condition of ∑        
   . 

As an example for simple data set ({(1,1), (2,3)}) with given  ⃗⃗        which is 

illustrated in Figure 2.7,  The optimal decision surface is between these two points with 

this equation: 
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Figure 2.7: Simple SVM example 

 

To find the optimal w, we know that  ⃗⃗          therefore, it should work in this 

equation     (    ⃗⃗ 
      )    with the given points. Therefore, we will have: 

          

          

Therefore, a=2/5 and b=-11/5, so the optimal  ⃗⃗   
 

 
 
 

 
  and   

   

 
. 

 In 1992, Vapnik proposed a non-linear SVM model (Boser, Guyon & Vapnik 1992), 

and, subsequently, a SVM model using a soft margin algorithm (Vapnik & Cortes 

1995). Based on Meyer’s work, the SVM model has demonstrated acceptable 

performance in comparison to other methods, especially when used for classification 

(Meyer, Leisch & Hornik 2003). 
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2.5.6 Decision Tree 

The decision tree is similar to the human decision system. Most people can 

understand and interpret it very easily (James et al., 2013). This technique has 

applications in both classification and regression problems. The state space of the 

problem is divided into rectangular regions in the training set, based on certain 

conditions concerning the selected features. The tree grows in this way until we obtain 

the terminal nodes or leaves, which determine the class probability. Figure 2.8 is a 

visualized decision tree for text classification (Apté et al., 1994).  

 

Figure 2.8: Decision tree application for text classification 

In the text-mining area, internal nodes show the terms that have appeared in the 

document, while the leaves represent the class of the document. In creating the tree, the 

priority for selecting a given feature is important and can make the tree longer or 

shorter. For solving this problem and detecting the priority of expanding which node, 

the Gini index and Information Gain are commonly used. Equation 2.14 describes the 

Gini index.     is the probability that class k has appeared in leaf m.  
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    ∑    
 

 

   

 (2.14) 

Equation 2.15 shows Information Gain, which is another technique for deciding 

which feature is more informative for further processing. 

 

   ∑           

 

   

 (2.15) 

Figure 2.9 depicted another application of the decision tree approach for the 

classification of different kinds of Iris according to different specifications of collected 

samples. Decision trees are ideal for visualization because they are similar to the human 

decision-making process. Figure 2.10 shows how the decision tree breaks down the Iris 

dataset to classify different samples into five different classes and simplify this process 

based on some simple rules (James et al., 2013). 

 

Figure 2.9: Dividing the space of the Iris database using a decision tree 
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Despite the flexibility of the decision tree, it suffers from various problems. The most 

serious one is overfitting. Overfitting is defined as following the noise (James et al., 

2013). In other words, the algorithm tries to become too specific and becomes 

dependent on the data of the dataset, instead of real existing patterns. In decision trees, 

overfitting can occur if we do not reduces the size of decision trees by removing 

sections of the tree that provide little power to classify instances (It is called Prunning). 

The estimation of uncertainty is difficult and the results can be variable based on the 

data and features that are selected. That is why most scholars prefer using other types of 

classification methods that are created based on the tree, such as random forest and 

boosting. 

 

 

 

Figure 2.10: Decision tree rules for the Iris dataset 
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2.6 Ensemble classifiers 

“Unity is strength” is the fundamental concept for ensemble classifiers. The main 

idea of ensemble classifiers is to combine a few weak classifiers and make a strong one.  

Schapire (1990), who is considered the father of ensemble classifiers, proved that 

combining various weak classifiers through boosting makes a strong classifier. Since 

their introduction, ensemble classifiers have received considerable attention from 

different researchers. Ensemble classifiers are referred to by various names, such as 

Multiple Classifier System (MSC), consensus aggregation, and committees of 

classifiers, etc. One of the reasons for the popularity of ensemble classifiers is that they 

have the potential to work with either a large or small amount of data. In the case of 

data scarcity, bagging and bootstrapping can also be useful, whereas when there is a 

large volume of data, ensemble classifiers can partition the data and merge the decision 

for each partition at the end. Moreover, it has been proven analytically that ensemble 

classifiers can outperform individual classifiers under certain conditions (Tumer & 

Ghosh, 1996).  

Various types of ensemble classifiers have been created by concentrating on at least 

one of the following issues: the way that individual classifiers can interconnect with 

each other (system topology), the method for choosing the most valuable classifier 

(Ensemble design) and how to combine the result of the selected classifiers to obtain the 

best outcome (Fuser design) (Woźniak, Graña & Corchado, 2014). According to Polikar 

(2006), the main approach for creating an ensemble classifier is to bring more diversity 

to the selected classifiers. The following introduces some of most common ensemble 

classifiers. 
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2.6.1 Bagging 

Bagging stands for bootstrap aggregating. Bagging is one of the most primitive 

ensemble-based algorithms. However, it is very intuitive and simple to implement. At 

the same time, surprisingly, it also performs well. Diversity in bagging is gained by 

using bootstrapped replicas of the training data: various training data subsets are 

randomly drawn – with replacements – from the entirety of the training data. Each 

training data subset is applied to train a different classifier of the same type. Finally, 

individual classifiers are then mixed by taking a majority vote of their decisions. For 

any new instance, the predicted class chosen by the majority of classifiers is the 

ensemble decision. Bagging is especially successful when the available data has a 

limited size. To ensure that there are adequate training samples in each subset, relatively 

large chunks of the cases (75% to 100%) are drawn into each subset. This leads 

individual training subsets to overlap automatically, with many of the similar instances 

appearing in most subsets, and some instances occurring multiple times in a given 

subset. In order to ensure diversity under this procedure, an approximately unstable 

model is used, so that adequately different decision boundaries can be retrieved for 

small disturbances in various training datasets. As stated before, neural networks and 

decision trees are good options to achieve this goal, as their uncertainty can be 

controlled by the selection of their free parameters. Algorithm 1 shows how bagging 

works. 

Algorithm 1: Bagging 

Training phase 

1. Initialize the parameters 

    , the ensemble. 

  , The number of classifiers 
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2. For k=1,…,L 

 Take bootstrap sample    from Z. 

 Build a classifier    using    as the trainer set. 

 Add the classifier to the current ensemble,        

3. Return D. 

Classification Phase 

4. Run             on the input x. 

5. The class with the maximum number of votes is the label for x 

 

2.6.2 Boosting 

Schapire (1990) proved that a weak learner, an algorithm that produces classifiers 

that barely work better than random guessing, can be converted into a strong learner that 

creates a classifier that is able to correctly classify all but a randomly small fraction of 

the instances. Boosting is one of the most important developments in the recent history 

of machine learning. Similar to bagging, boosting also produces an ensemble of 

classifiers by resampling the data, which is then incorporated by majority voting. 

However, the similarity ends here. In boosting, resampling is conducted to provide the 

most informative training data for each successive classifier. In essence, boosting 

combines three weak classifiers: the first classifier C1 is trained with a random subset of 

the existing training data. The training data subset for the second classifier C2 is chosen 

as the most informative subset given by C1. That is, C2 is trained on training data for 

which only half is correctly classified by C1, while the other half is misclassified. The 

third classifier, C3, is trained with instances in which C1 and C2 disagree. The three 

classifiers are incorporated through a three-way majority vote. The algorithm is shown 

in detail in the following code (Algorithm 2). Schapire (1990) proved that the error of 

this three-classifier ensemble above is limited, and that it is less than the error of the 
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best classifier in the ensemble, based on each classifier having an error rate of less than 

0.5. For a two-class problem, an error rate of 0.5 is the least one can expect from a 

classifier, as an error of 0.5 amounts to random guessing. Hence, a stronger classifier is 

generated from three weaker classifiers. A strong classifier in the strict PAC learning 

sense can then be created by recursive applications of boosting. 

Algorithm 2: Boosting 

Input: 

 Training data S of size N with correct label      {     } 

 Weak learning algorithm 

Training 

1. Select      patterns without replacement from S to create data subset    

2. Call weak learner and train with    to create classifier    

3. Create dataset   as the most informative dataset, given   , such that half of    is correctly classified 

by   , and the other half is misclassified. So: 

 Flip a coin. If Heads, select samples from S and present them to   until the first 

instance is misclassified. Add this instance to   . 

 If Tails, select samples from S and present them to   until the first one is correctly 

classified. Add this instance to   . 

 Continue flipping the coin until no new pattern can be added to    

4. Train the second Classifier   with    

5. Create    by selecting those instances that    and    disagree on. Train the third classifier    on the 

   dataset. 

Test, given the test instances X 

1. Classify X with   ,   . If they agree on the result, this is the final result. 

2. Otherwise, classify X with    and consider it to be the final result 
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2.6.3 AdaBoost 

AdaBoost was introduced by Schapire and Freund in 1997 (Freund & Schapire, 

1997). We can consider AdaBoost as the general version of the Boosting algorithm. 

Since it was first introduced, different versions of AdaBoost have been proposed for 

dealing with multiple classification and regression problems, such as AdaBoost.M1 and 

AdaBoost.R.  In this section, we discuss the AdaBoost.M1 mechanism, because it is less 

complicated and attaches equal importance to each training example (Cameron-Jones, 

2001). Adaboost combines weak classifiers through weighted majority voting. At the 

beginning of the process, all of the instances have an equal chance for selection. The 

distribution is updated during the iteration in order to ensure that misclassified cases 

have a higher chance of being reselected as the training case of the next iteration. In this 

way, AdaBoost focuses on difficult cases. The algorithm of AdaBoost is depicted in 

Algorithm 3. As shown, in the initial stage, all the instances have an equal chance for 

selection. However, in each iteration, the error is calculated based on the summation of 

the misclassified cases. If this rate exceeds 0.5, the classification fails. Otherwise, the 

normalized error (    is calculated according to Algorithm 3. In the next step, and with 

the help of the normalized error, the distribution weight is recalculated and AdaBoost 

prepares for cases that are more difficult. This process repeats until the assigned 

iteration number (T) finishes. In contrast to bagging or boosting, AdaBoost uses a 

weighted voting system. The idea is simple, the classifier with better performance 

during the training gains more weight. Schapire and Freund (1997) chose      as the 

measurement. Because this number could be a large number, they decided to apply 

       . Figure 2.11 depicts how AdaBoost works (R. Polikar 2006). 
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During years, varieties of AdaBoost techniques have been created. For instance, 

AdaBoost.M2 which is proposed by Freund and Schapire (1997), does not limit the 

algorithm to maintain a weighted error less than half, while AdaBoost.R extends the 

boosting approach to regression-type problems. 

. 

There are more heuristic varieties that change either the distribution update rule or 

the combination rule of the classifiers. For instance, AveBoost averages the distribution 

weights to make the errors of each hypothesis as uncorrelated as possible with those of 

the previous ones (Dietterich 2000), whereas Learn++ makes the distribution update 

rule contingent on the ensemble error (instead of the previous hypothesis’ error), to 

allow for efficient incremental learning of new data that may introduce new classes 

(Polikar et al., 2001). 

Algorithm 3: AdaBoost.M1 

Initialize       
 

 
, i=1,…,N 

Do for t=1,2,…,T: 

1. Select a training data subset   , drawn from the distribution    

2. Train WeakLearn with   , receive hypothesis    

Calculate the error of 

  

       ∑      

           

 

If    
 

 
, Abort 

 

 

Set              
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3. Update distribution 

            
     

  

 {
                

           
 

Where    ∑        is a normalization constant chosen so that     becomes a proper distribution 

function. 

 

 

Test- Weighted Majority Voting, given an unlabeled instance x, 

4. Obtain total vote received by each class 

   ∑    
 

  
          

          

5. Choose the class that receives the highest total vote as the final classification. 
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Figure 2.11: AdaBoost 

2.6.4 Random Forests 

When speaking about Random Forest, practically, we should categorize it as a 

special kind of Bagging algorithm. The main idea behind Bagging as an ensemble 

classifier is the way in which it brings more diversity to the classification. The 

fundamental feature of the forest is the dissimilarity of the trees used therein. This de-

correlation among different trees improves the robustness of the forest. Breiman (1996) 

achieved this goal by sampling with a replacement (Bootstrapping), training a weak 

classifier with this random data and making the prediction by aggregating the results. 

He discovered that decision trees could bring even more diversity to the bagging. For 

this purpose, in each tree node random numbers of the attributes were selected (usually 

√  or log(F)+1 number of the features in each node). He implemented the Random 

Forest with Classification and Regression Trees (CART) for solving both classification 
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and regression problems (refer to section 2.5.3). To find the splitting point among 

attributes, he used the Gini Index (Breiman, 2001). The mechanism of the Random 

Forest is shown in Algorithm 4. 

Algorithm 4: Random Forest 

1. For b=1 to B: 

a. Draw a Bootstrap sample Z of size N from the training data 

b. Grow a random forest tree    to the bootstrap data, by recursively repeating the 

following steps for each terminal node of the tree, until the minimum node size 

    is reached. 

I. Select m variable at random from the p variable 

II. Pick the best variable/split-point among the m 

III. Split the node into two daughter nodes. 

2. Output the ensemble of Trees {  } 
  

 

B is the number of the different weak learners (Trees). N is the training data and Z is 

the random subset of this data in each weak learner; p is the number of the features and 

m is the random number of the features. 

In Figure 2.12, a Random Forest with three random trees is depicted. The new case v, 

as shown, has a different probability for being a member of the red, green or blue 

classes in each tree. The Random Forest, instead of looking at one of them, considers all 

of them together and averages the different probabilities according to the following 

formula: 

 
   |   

 

 
∑     |  

 

   
 2.16 
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Figure 2.12: Random Forests 

 

The Random Forest model also has some parameters and aspects that can affect the 

accuracy of the algorithm, such as: 

 Depth of the trees 

 The amount of randomness  

 The size of the forest 

 The weak learner type 

Figure 2.13 shows the effect of the depth of the trees. Three different random forests 

test the same data with equal forest size (T=200); the only difference is the depth of the 

Random Forest. As shown, when D=3, the classifier does not assign many cases to 

correct classes that causes underfitting, and, with too much depth (D=15), the 

overfitting problem arises. D=6 is a reasonable depth in this example. 
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Figure 2.13: Depth of the tree 

Larger randomness produces more rounded decision boundaries; on the one hand, it 

decreases the confidence on the other cases. Figure 2.14 has low randomness, while, in 

contrast, the randomness is high in Figure 2.15. 

 

Figure 2.14: Random Forest with p=500 
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Figure 2.15: Random Forest with p=5 

In Figure 2.16, the effect of the Forest’s size (T) is depicted on the stamps with a 

shallow depth (D=2). The Weak learner is an axis-based separator. Each generated tree 

is slightly different from the others. Therefore, when the size of the forest increases, the 

confidence about the decision also increases. As shown in   , which only uses one tree, 

the decision does not have that much flexibility and, by only moving one inch, the 

detected class will change. However, as the number of stamps increases, we obtain 

better and more reasonable knowledge about the data and, finally, with 200 different 

trees in   , we obtain a realistic view from the data. 
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Figure 2.16:  Effect of the Forest's size 

The type of the Weak learner also affects the classification quality in the Random 

Forest. In Figure 2-17, three Random Forests are applied on the same dataset (a) with 

various weak classifiers that are slightly stronger than a random classifier (Weak 

learners). Axis-aligned separators are used as the Weak learner in (b), the oriented line 

is used in (c), and the conic section in (d). The size of the forests and their depth are 

kept equal to remove any side effects (D=3, T=200). The answer to which of these 

Weak learners is superior depends on the application. For instance, in the axis-aligned 

Weak learner, the corner of the shape has high confidence. However, in the conic Weak 

learner, the same corner has lower confidence.  Univ
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Figure 2.17: Type of WeakLearner effect 

 

It has been more than a decade since Breiman (2001) introduced the Random Forest 

as a successful ensemble classifier. Since then, a number of researchers have 

endeavored to improve the random forest approach with respect to different aspects and 

applications. For instance, Robnik-Sikonja (2004) conducted a research study to 

improve Random Forests, in which he conducted two experiments to validate his two 

hypotheses. He argued that the Gini Index, which was used by Breiman, might not be 

the best option, as it cannot detect strong conditional dependencies among the features. 

He applied ReliefF instead of the Gini Index in his experiment. Another innovation that 

he made was upgrading the voting part, which slightly improved the precision of 

Random Forest.  

Rodríguez, Kuncheva and Alonso (2006) invented a new method for creating 

ensemble classifiers. They chose the Random Forest because it was more sensitive to 
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rotation of the feature axis. They broke the n number of features into K random subsets, 

for which the eigenvector was calculated through Principal Component Analysis. PCA 

is a technique that reduces an data to its most important components by removing 

correlated characteristics (Islam, 2014). With these eigenvectors, they created the 

coefficient rotation matrix. A scalar λ is called an eigenvalue of the n × n matrix A. 

There is a nontrivial solution x of Ax= λ. Such an x is called an eigenvector 

corresponding to the eigenvalue λ. They sorted this matrix according to the order of the 

original features in the main dataset. Finally, by multiplying the dataset by this 

coefficient rotation matrix, they calculate the Random Forest training set. They tested 

their method on 33 different datasets and, for most, the Rotation Forest was 

significantly better than C4.5, Bagging C4.5 and Boosting C4.5. 

 

Do et al. (2010) focused on improving the learning function of the Random Forest. 

Their intention was to increase the performance of the Random Forest for high-

dimensional datasets, such as text. Instead of using the Gini Index of the original 

Random Forest, they used the Support Vector Machine (SVM) as an oblique learning 

function to select the best split in each subset of the selected random attributes. Their 

proposed technique worked well on the 25 selected datasets. Ye et al. (2013) also tried 

to adopt Random Forests for high-dimensional data, in which they divided the features 

into strong informative and weak informative groups. The subfeatures were chosen 

proportionally from each group in the process of creating the random trees. 

2.7 Genetic Algorithm 

Genetic Algorithm (GA) is an important optimization technique that simulates the 

evolution theory. In Genetic Algorithm, each generation consists of a population of 
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character strings that are analogous to the chromosomes that we see in our DNA. Each 

individual represents a point in a search space, as well as a possible solution. The 

individuals in the population are then made to go through a process of evolution.  

GA is based on an analogy to the genetic structure and behavior of chromosomes 

within a population of individuals using the following foundations: 

 Individuals in a population compete for resources and mates. 

 Successful individuals in each “competition” will produce more offspring 

than those individuals that perform poorly. 

 Genes from “good” individuals propagate throughout the population so 

that two good parents will sometimes produce offspring that are better than 

either parent. 

 Thus, each successive generation will become more suited to their 

environment. 

A population of individuals is maintained within a search space for a GA, each 

representing a possible solution to a given problem. Each individual is coded as a finite 

length vector of components, or variables. To continue the genetic analogy, these 

individuals are likened to chromosomes, while the variables are analogous to genes. 

Thus, a chromosome (solution) is composed of several genes (variables). A fitness score 

is assigned to each solution, representing the abilities of an individual to compete. The 

individual with the optimal (ornear optimal) fitness score is sought. The GA aims to use 

selective “breeding” of the solutions to produce better “offspring” than the parents by 

combining information from the “chromosomes”. 
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The GA maintains a population of n chromosomes (solutions) with associated fitness 

values. Parents are selected to mate on the basis of their fitness, producing offspring via 

a reproductive plan. Consequently, highly fit solutions are given more opportunities to 

reproduce, so that offspring inherit characteristics from each parent. As parents mate 

and produce offspring, room must be made for the new arrivals, since the population is 

kept at a static size. Individuals in the population die and are replaced by new solutions; 

eventually, this creates a new generation once all the mating opportunities in the old 

population have been exhausted. In this way, it is hoped that over successive 

generations, better solutions will thrive, while the least fit solutions die out. 

New generations of solutions are produced containing, on average, better genes than 

a typical solution in the previous generation. Each successive generation will contain 

better “partial solutions” than previous generations. Eventually, once the population has 

converged and is not producing offspring that is noticeably different from those in 

previous generations, the algorithm itself is said to have converged on a set of solutions 

for the problem at hand. 

After an initial population is randomly generated, the algorithm evolves through three 

operators:  

1. Selection:  This operator selects chromosomes in the population for 

reproduction. The fitter the chromosome, the more times it is likely to be 

selected to reproduce. 

2. Crossover: This operator randomly chooses a locus and exchanges the 

subsequences before and after the locus between two chromosomes to create two 

offspring. For example, this string 10000100 and 11111111 could be crossed 

over after the third locus in each to produce two offspring: 10011111and 
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11100100. The crossover operator roughly mimics biological recombination 

between two single-chromosome (haploid) organisms.  

3. Mutation: This operator randomly flips some of the bits in chromosomes. For 

example, the string 00000100 might be mutated in its second position to yield 

01000100. Mutation can occur at each bit position in a string with some 

probability, usually very small (e.g., 0.001).  

 

Figure 2.18: Mutation and Crossover (Jade, 2016) 

Figure 2.18 depicts how mutation and crossover is doing in GA. Chapter 5 explains 

in detail how this research uses Genetic Algorithm.  

2.8 Cross-validation 

As discussed earlier, in supervised learning, the dataset is divided into training and 

test sets. To measure the error rate, the predictor is applied on the test dataset. However, 

there is a concern that the predictor attunes itself with the test dataset and does not show 
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the correct error rate. Cross-validation is the technique for solving this problem. Cross-

validation focuses on splitting the training data into a new test and training data. 

Different types of validation techniques are discussed in the following subsections 

(Panik, 2005). 

 

2.8.1 K-fold Validation 

K is the number of folds. For instance, if we select k=3, we keep one of the folds of 

the training set as the test set. This action is repeated k times, and each time, the learning 

function is applied to the selected test set, so finally, the error rate can be estimated. We 

should consider that with a bigger K, the bias would decrease, while the variance would 

increase, and vice versa (Panik, 2005).  

 

Figure 2.19: K-fold cross-validation 
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2.8.2 Random validation 

In random validation, the testing set is randomly selected from the training set. This 

process can be repeated several times with or without a replacement (Bootstrap). A 

random estimate with replacement or Bootstrapping causes an underestimate in the error 

rate. To solve this issue, scholars usually use 0.632 Bootstrap algorithms, as this 

technique helps that training data contain approximately 63 percent of the instances 

(Panik, 2005). Figure 2.20 describes the random validation process.  

 

Figure 2.20: Random cross-validation 

2.8.3 Leave one out 

In this method, we leave one sample out each time, and make the prediction on the 

rest of the training set, and predict the sample with the learning function (Panik, 2005). 

Figure 2.21 shows how this method works. 
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Figure 2.21:  Leave one out 

 

2.9 Text Mining 

In recent years, a tremendous amount of information has been produced and spread 

over the Internet. According to Eric Schmidt, Google’s CEO, we create as much 

information as human beings created from the dawn of civilization up until 2003, in 

only two days (Siegler, 2010). Each minute, users produce 100,000 tweets, post 684,478 

pieces of content and send more than 2 million emails around the globe (Tepper, 2012). 

This ocean of information enables us to conduct different types of research on a wide 

range of issues, such as how people feel, how they describe themselves, what their 

political views are, what the different opinions from different countries are on a 

common issue etc..  
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The required tool to discover and extract knowledge from the text is called Text 

Mining or Text Analysis. According to Montes-y-Gómez et al. (2002), text mining is 

knowledge discovery in large text collections. Text mining has an interdisciplinary 

nature, as it uses different techniques depending on the field where it’s being applied, 

such as information retrieval, information extraction, Natural Language Processing 

(NLP), machine learning, data mining and statistics.  

 

2.9.1 Text Encoding 

In order to analyze plain text in a simpler way, it is necessary to put it in a structured 

data format. There are several main approaches, such as the vector space model, the 

probabilistic model and the logical model. The primitive text analysis approach uses the 

absence or presence of the word in the context. Using the Bag-of-Words (BoW) or the 

collection of unordered words is also a very simple and straightforward method. For 

each word, a value is assigned. This value could be the frequency of the word, a weight 

(tf-IDF refer 3.4), a Boolean value or a normalized frequency value (Hu et al., 2009). 

Predominantly, researchers employ the BoW and vector space model together 

(Aggarwal & Zhai, 2012; Aphinyanaphongs et al., 2014; Corney, 2003;  Kim et al., 

2006; Sebastiani, 2002; L. Zhang, 2012). In the following section, we discuss various 

other related techniques to make a text file ready for more processing. 

 

2.10 Text preprocessing 

The first phase in most text-mining approaches is text preprocessing. This step is 

essential for two reasons; firstly, proper text pre-processing minimizes the size of the 
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term-frequency matrix, which models various terms in our documents; and secondly, it 

is important because the quality of the result depends on the input terms. 

2.10.1 Tokenizing 

The first step for processing text and scripts is tokenization (Gries & Schneider, 

2010). Tokenizing is the process of converting the stream of text into split words. 

During this process, punctuation and superfluous symbols are removed. One of the 

common problems in text mining is the size reduction of the term matrix. There are 

various other preprocessing techniques, such as the removal stopwords, stemming, 

filtering and lemmatization, all of which are explained in the following subsections. In 

this research, tokenizing is done and then followed by stopword removal and stemming. 

2.10.2 Stopword removal 

According to Liu (2006), stopwords are “frequent words occurring in any context 

which do not represent any content”, such as articles, conjunctions, prepositions, 

pronouns, etc. Typically, the writing style is affected by the proportion of these 

stopwords to the total number of words. A writer who writes in a very wordy style 

commonly uses more stopwords than one who is more succinct (Judd & Kalita, 2013). 

Furthermore, one way to assess the writing style of writers is to use the existence or 

frequency of stopwords as a gauge. Appendix A consists lists all the words that are 

considered as stopwords in this research and has removed from tokens. 

2.10.3 Stemming 

The removal of stopwords is usually followed by stemming, in order to convert words 

(usually verbs) into their stems (root forms). In many languages, there are many 

different forms of the root form for various grammatical uses. For instance, in English, 

different word shapes are created by the verb root, plural or singular nouns, adjectives 
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or adverbs. Even verbs come in different forms, such as gerunds, past and past 

participle. For example, consider “succeed” as both the verb and the root. Other forms 

of this root are succession (noun), successive (adj.), successful (adj.) and successfully 

(adv.). Stemming is achieved by removing the suffix of the words in English. One of the 

most popular stemming algorithms for the English language is the Porter algorithm 

(Porter, 1980), which is also used in this research.   

2.10.4 Filtering 

Filtering refers to discarding unwanted tokens and symbols. Usually, digits are 

removed in text mining, unless it is decided to use them in a specific application. 

Regarding the hyphen, there are two strategies: removing the hyphen or replacing it 

with a white space. For instance, based on each of the above methods, “state-of-the-art”, 

can be converted to “state of the art” or “thestateoftheart”. For solving the case letter 

problem, all the words are usually converted to either lower- or uppercase. Filtering and 

the removal of stopwords are applied together in this research. 

2.11 Scientific Writing and text analysis 

The style of scientific writing is very different from ordinary English, as it uses 

particular structures, lexicons and semantics that are devised for developing and 

creating scientific knowledge, such as planning research, making hypotheses, analyzing 

data, interpreting diagrams, and forming scientific conclusions (Fang, 2005). A recent 

study involved the application of text mining on scientific texts dealing with 

technologies by proposing a set of knowledge-based and semantic text-mining 

parameters (Thorleuchter & den Poel, 2013a). Based on these parameters, scientific 

texts are assigned to technological areas (Thorleuchter & den Poel, 2013c), the 

espionage risk of technological texts can be estimated (Thorleuchter & den Poel, 

2013b), and textual patterns representing technological weak signals from the Internet 
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are identified (Thorleuchter & den Poel, 2013d). Braam et al. (1991) mixed co-citation 

and word analysis together to enhance the accuracy of co-citation analysis. It was 

revealed that this method leads to more precise results in comparison with pure co-

citation analysis tools. In 2007, Tseng (2007) successfully applied text-mining 

techniques in his research with the aim of creating an automated patent analysis system. 

Ahlgren and Colliander (2009) conducted a study to determine the similarities between 

43 papers from the journal ‘Information Retrieval’. They implemented five different 

approaches, of which two were text-based and the others used bibliographic coupling or 

a combination of both. They found that the first-order similarity of a mixed/hybrid 

approach was better than the other approaches, while the second-order similarity of a 

pure text-based approach obtained the best performance (Ahlgren & Colliander, 2009). 

Argamon et al. (2008) tried to identify the possible variations of the linguistic styles of 

various journals in different fields using machine-learning techniques. To achieve this 

goal, they applied classification techniques on six fields of experimental and historical 

science. Their results showed that the writing styles in historical science and 

experimental science are clearly different. 

In 2012, North (2012) demonstrated by means of an experiment how classification 

techniques can successfully and efficiently detect, and classify the writing of three 

American authors based on their writing structure and vocabulary usage (North, 2012b). 

In the same year, another research study was conducted pertaining to fraud detection 

through machine-learning techniques; the results were above 96% precision for 

detecting fraudulent documents from regular documents (Afroz, Brennan & Greenstadt, 

2012). 
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 In 1988, Santos (1988) conducted a study to determine the feedback concerning the 

writing of skilled professors of non-English speaking students (namely Chinese and 

Korean Students). According to the views of 178 different professors who examined the 

students’ papers, and based on the quality of content and language, it was reported that 

the writing suffered from broad lexical mistakes and was considered to be academically 

un-publishable. 

Eggins (1994) suggested a metric for gauging the lexicon density of documents. 

According to his definition, lexical density is measured by dividing the number of 

content words (nouns, base verbs, adjectives and adverbs) by the running words 

(prepositions, congestion, auxiliary verbs, pronouns and determinants). Based on Eggins 

(1994), lexical density in academic manuscripts is significantly higher than in other 

scripts. In another study, Halliday and his colleagues alleged that lexical density in 

every clause of an academic manuscript is two or three times greater than the density of 

a normal manuscript (Halliday, Michael Alexander Kirkwood & Martin, 1993).  

Ghanem et al. (2002) conducted research on automated scientific classification and 

ranking. They used a feature selection technique with Bag-of-Word and lexical pattern 

approaches. For classification, they chose SVM. Their results reached up to 80% 

accuracy (Ghanem et al., 2002). 

Due to name abbreviations, similar names, and name misspellings in publications or 

bibliographies (citations), an author may have multiple names and multiple authors may 

share the same name. Such name ambiguity affects the performance of document 

retrieval, Web searches and database integration. To solve this problem, two different 

classifiers were used (SVM and KNN). Features that were selected for this classification 
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were co-author names, journal name and article title. This study reported that Naïve 

Bayesian (73%) outperformed SVM (65%) (Han et al., 2004). 

 Detecting the reason for citing scientific papers by authors is also important. Some 

of the citation is done to demonstrate friendship or show respect. Several categories 

were detected manually, such as weak (weakness of cited approach) and CoCoGM, by 

Teufel and his colleagues (Table 2-4). 

 

Table 2.4: Teufel's categories for citation reasons 

 

 Teufel proposed a new method to solve this problem. Later authors focused on 

features for classification. Cue phrases were identified by adding notes to the text 

(annotation), as well as some other features, such as verb tense. The term cue phrase 

refers to meta-discourse, the set of expressions that talk about the act of presenting 

research in a paper, rather than the research itself. In the classification phase, a Vector 

Space Model is built over 116 scientific papers with 2829 citations. In the next phase, 
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10-fold cross-validation was applied with the IBK algorithm (k=3). Weak citation was 

recognized with 80% accuracy (Teufel, Siddharthan & Tidhar, 2006). 

  Existing uncertainty is a major issue in scientific scripts. Szarvas (2008) tried to 

propose a solution for this problem through a classification technique, using biomedical 

data in his research (radiology records and gene extraction information). A Vector 

Space Model was created for both corpora. Two- and three-neighbor chunks of tokens 

were also considered, which are called bi-grams and tri-grams, respectively. He applied 

the Maximum Entropy as a classifier. In the second phase of the research, feature 

reductions were used separately to improve the result. Maximum Entropy yielded an F-

score=76.61 for biomedical reports, while adding feature reduction improved the results 

to 78.95. For the medical report, he achieved an F-score=64.4 without feature reduction 

and an F-score=79.73 with feature reduction. In both cases, using bi-grams and tri-

grams improved the final results’ accuracy. 

In another endeavor, researchers tried to discover similarities among scientific 

articles. For solving the problem, a new approach was proposed – Keyword extraction. 

In their study, they considered abstracts, keywords and the body of articles. They found 

that their proposed method worked better than the link-based approach, which finds 

similarities between certain features, such as Bibliographic coupling and Co-citation 

(Yoon et al., 2011). 

 Uccelli et al. (2012) analyzed 51 scientific essays from high school students in the 

northeastern United States. They determined that the quality of academic writing 

depends significantly on the ways that terms and grammar are used.  

Akritidis and Bozanis (2013) conducted research on automatically assigning 

scientific papers into one or two fields. They used various features of scientific articles, 
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such as keywords, authors, co-authorship and publishing journals for the classification 

process. For the classification algorithm, AdaBoost.MH, SVM and the new proposed 

algorithm were applied to 1.5 million of scientific articles. As a result, they proved that 

the proposed classifier outperformed the other classic classifiers. 

Giannakopoulos et al. (2015) tried to classify figures of scientific papers. To achieve 

this aim, they focused on image features, such as Color, Edges, Lines, Histogram of 

oriented gradient, local binary pattern, Face-related attributes and Text-related 

attributes. They detected five categories (intro chart, diagram, geometric shapes, maps 

and continuous 2D representation, and Photoshop) for scientific figures that they 

classified manually among 1500 figures. Three algorithms were tested on their dataset 

KNN, SVM and Deep Belief Network. F-score was used for result assessment (3.8.1). 

They discovered that Deep Belief Network is the best. 

There are millions of biological articles and knowledge discovery from them can be 

very tough for researchers. Zheng and Blake (2015) proposed the text extraction 

technique. In their research, they used supervised learning to extract sub-cellular 

localization information. The goal of their research was to identify a knowledge base 

system that contains target relations, detect and preprocess a large collection of full-text 

articles, identify candidate sentences by aligning the knowledge base with the text 

corpus, extract features from the candidate sentences, build an SVM classifier based on 

the features extracted during the research, and apply the classifier on unseen text from 

the previous step. 

In another study done by Al-Daihani and Abrahams (2016), the researchers tried to 

investigate how academic libraries use social media. They collected tweets from 10 

public universities in the US to answer these questions: 
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• How often do academic libraries use Twitter? 

• What type of content is posted by academic libraries on Twitter? 

• What are the themes associated with academic libraries' tweets? 

In the preprocessing of the tweets, they removed stepwords, abbreviations, 

punctuation, numbers and user names. Using SVM as the classification technique for 

tweets, they achieved the detection of various classes with 0.85 percent accuracy. 

2.12 Summary 

In this chapter, we reviewed supervised learning, which was divided into two main 

sections: individual and ensemble classifiers. For each part, some of the most popular 

algorithms were introduced. In addition, text mining was explained and some of the 

preliminary processes for text analysis were described. Finally, some of the previous 

studies about text analysis and scientific writing were reviewed. Table 2.5 sums up 

how scientific scripts can benefit from supervised learning. 

Table 2.5: Supervised learning applications in scientific area 

Author Goal Applied Algorithm 

Argamon et al. 

(2008) 

Identify possible variations of the 

linguistic styles of various journals in 

different fields using machine-learning 

techniques 

SVM 

Afroz, Brennan & 

Greenstadt (2012) 

Fraud detection in academic script SVM 

North (2012) Author detection Naïve Bayesian 

Ghanem et al. 

(2002) 

Automated scientific classification and 

ranking 

SVM 

Han et al. (2004) Solving name ambiguity effect KNN and SVM 

Teufel, 

Siddharthan, and 

Tidhar (2006) 

Detecting the reason for citing scientific 

papers 

Instance Base KNN 

(IBK) 

Szarvas (2008) Detecting hedgeing in scientific text Maximum Entropy 

Akritidis & Paper classification AdaBoost.MH, SVM and 
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Bozanis (2013) a New approach was 

suggested 

Giannakopoulos et 

al. (2015) 

Classifying figures of scientific articles KNN, SVM and Deep 

Belief Network 

Zheng & Blake 

(2015) 

Text extraction from biological articles SVM 

Al-Daihani & 

Abrahams (2016) 

Studying the usage of social media by 

academic institute libraries  

SVM 

 

As Table 2.5 depicts, supervised learning is widely used in academic and scientific 

writings. Some research studies only applied one classifier in order to conduct 

categorization; however, researchers who are interested in investigating the accuracy 

of classifiers or aim to improve the accuracy of the classification experiment usually 

compare their proposed methods with classic classifiers that are widely used, known 

about and considered reliable by other researchers, such as SVM, Naïve Bayesian, 

etc.   
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CHAPTER 3: RESEARCH DESIGN 

 

3.1 Introduction 

The goal of this section is to discuss the multiple steps that have been taken in this 

research to achieve the final results. Research design contains the plan, structure and 

strategy of investigation that are conceived to obtain answers to research questions or 

problems. The plan is the complete scheme or program of the research (Kerlinger, 

1986). According to Selltiz et al. (1962), “a research design is the arrangement of 

conditions for collection and analysis of data in a manner that aims to combine 

relevance to the research purpose with economy in procedure”. Research design or 

methodology is a process to systematically solve the research problem; in other words, 

it is the science of studying how research is done scientifically. Figure 3.1 explains 

various ways to get to the final results. In the first phase, one formulates research 

problems and objectives. Required datasets are created in the second phase and it is 

proven that classification techniques are an appropriate method to differentiate ISI and 

non-ISI articles from each other.  Also, syntactical analysis between ISI and non-ISI 

articles is done in this phase. Finally, in the final step, a new classification method is 

proposed for improving classification accuracy amongst the ISI and non-ISI datasets. 
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Figure 3.1: Research Methodology 
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3.2 Data Collection 

Accessing data is an essential and primary requirement for studying the 

categorization of scientific scripts. Various terms were used in the Google search engine 

to find related datasets in 2012 (Table 3.1). 

Table 3.1: Various terms used for finding related datasets 

high quality scientific papers dataset 

high quality scientific articles dataset 

high quality academic articles dataset 

high quality academic papers dataset 

ISI articles dataset 

ISI papers dataset 

 

 However, a proper dataset was not available at that date. Therefore, it was necessary 

to create a unique dataset for this research. It is challenging to decide which scientific 

texts contain high-quality writing. For more than 300 years, scientific journals have 

been using a peer-review technique for determining the quality of scientific articles 

(Elsevier, 2016). It is assumed that prominent scientific journals use meticulous and 

sophisticated examiners for peer review. Therefore, we decided to use the quality of the 

scientific journals as a metric for detecting the quality of scientific writings. As 

mentioned earlier (Chapter 1), the Institute for Scientific Information (ISI) indexes high-

quality journals and annually publishes a ranking list of academic journals based on 

their influence in their related fields.  
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Due to the credibility of these journals and the belief in the precise monitoring 

process of the Institute for Scientific Information concerning academic journals, ISI-

indexed articles are selected as samples of high-quality academic writing. 

On the other hand, we needed papers that were believed to have lower quality than 

ISI-indexed articles in terms of writing style. Some less popular conferences seemed 

like a good option for this goal, due to the low standards of conference organizers. 

However, the difference between the two types of articles became too great, so it was 

not possible to generalize the result. Therefore, we decided to choose from journals that 

are indexed in a reliable scientific database, but without ISI-indexed metrics.  

To reduce the possible divergences among collected articles and to have a 

homogenous dataset, all of the articles were collected from the same discipline 

(computer science). Moreover, articles with similar subjects were chosen because the 

field of computer science has a broad scope, so it could not be guaranteed that articles in 

that discipline shared  a common vocabulary domain. Nevertheless, using particular 

keywords isolated papers from a small technological area and decreased bias. It is 

assumed that the lexical domain within a limited area of the scientific world is identical. 

Therefore, allocating a paper to the ISI-indexed journal class or to the non-ISI-indexed 

journal class only considers the various vocabulary usages, rather than the writing style 

of the technological area. These papers were chosen through the random keyword 

“wireless network”. 

To authenticate the accuracy of the model and decrease the chance of independency 

of the data, another dataset was designed from a very different scientific domain 

(business). Each data group included 100 articles, including both ISI and non-ISI 

papers, which were selected based on a random sampling from scientific databases (50 
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cases each). For business articles, the chosen articles were selected by using the random 

term “ERP implementation”.  

All the ISI papers were chosen from the Web of Science database, whereas the non-

ISI papers were extracted from the Emerald database. Table 3.1 shows the source of the 

chosen articles for each category in the Computer Science and Business domains. Due 

to the strict security policy of these scientific databases, the use of crawlers and robots 

to download the articles was not possible, so the entire data collection process was done 

manually. 

Table 3.2: ISI and non-ISI indexed selected journals 

 ISI papers Non-ISI papers 

C
o
m

p
u

te
r 

S
ci

en
ce

 

Journals Journals 
Ad Hoc Networks 

Annals of telecommunications 

Applied Soft Computing 

Computer Networks 

Expert Systems and Applications 

Internet Research 

Journal of Network and Computer 

Applications 

Journal of Network and Systems 

Management 

Journal of Signal Processing Systems 

Kybernetes 

Mobile Networks and Applications 

Telematics and Informatics 

Campus-Wide Information Systems 

Info 

International Journal of Intelligent 

Computing and Cybernetics 

International Journal of Pervasive 

Computing and Communications 

B
u

si
n

es
s 

Journals Journals 

Information And Organization 

International Journal Of Production 

Research 

Information Technology And 

Management 

Scandinavian Journal Of Management 

Industrial Management & Data Systems 

International Journal Of Operations & 

Production Management 

Decision Support Systems 

Journal Of The Chinese Institute Of 

Engineers 

Expert Systems With Applications 

Management Decision 

Production Planning & Control 

Service Industries Journal 

Total Quality Management & Business 

Excellence 

Journal of Enterprise Information 

Management 

Benchmarking: An International Journal 

Information Technology & People 

Business Process Management Journal 

Journal of Manufacturing Technology 

Management 

Journal of Management in Medicine 

International Journal of Managing 

Projects in Business 

Information Management & Computer 

Security 

Logistics Information Management 

Journal of Information, Communication 

and Ethics in Society 

International Journal of Physical 

Distribution & Logistics Management 

Management Research Review 
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Information & Management 

IEEE Transactions On Engineering 

Management 

International Journal Of Production 

Economics 

International Journal Of Human-

Computer Studies 

Public Management Review Service 

Business 

Business Strategy Series 

 

3.3 Preprocessing 

As mentioned in Chapter 2, preprocessing is the first step of text processing and most 

data mining projects. Several steps are necessary before any further processing can 

occur. These steps are discussed in this section. Collected data is not pure and has been 

polluted with HTML and Java Script codes. Moreover, all parts of scientific articles are 

not useful for analysis, such as figures, tables and article references. All of this 

redundant data is removed in the first step of preprocessing. 

Tokenizing becomes essential here to break down the sentences into split words. 

During this process, punctuation and superfluous symbols are removed. The next phase 

in preprocessing is the removal of stopwords, a basic technique in preprocessing, as 

discussed in Chapter 2. According to Liu (2006), stopwords are frequent words that 

occur in any context that do not represent any content. However, this research is trying 

to quantify the authors’ scientific writing style, so the removal of stopwords was 

necessary. The chosen stopword list was collected from the Rank L website (Rank NL, 

2015).  

The stopword removal is usually followed by stemming to convert words (usually 

verbs) into their stems (root forms). However, in this research, it was chosen not to 

apply stemming, because applying the different syntactical forms of words can change 

the writing quality and, in the English language, every term has different syntactical 
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forms based on its role and usage in various contexts. For instance, the use of noun 

phrases is more common in scientific manuscripts than in others (Biber & Gray, 2010; 

Cortes, 2004; Fang, 2005). Because applying stemming on a scientific text affects the 

perceived scientific writing style, stemming was not implemented in order to keep the 

original forms of words in both datasets. 

Table 3.3 describes how tokenizing and stopword removal works through the use of 

an example. 

 

Table 3.3: Tokenizing and stopword removal example 

Original text 

The automated categorization (or classification) of texts into predefined categories has 

witnessed a booming interest in the last ten years, due to the increased availability of 

documents in digital form and the ensuing need to organize them 

Tokenized text 

'The', 'automated', 'categorization', 'or', 'classification', 'of', 'texts', 'into', 'predefined', 

'categories', 'has', 'witnessed', 'a', 'booming', 'interest', 'in', 'the', 'last', 'ten', 'years,', 'due', 

'to', 'the', 'increased', 'availability', 'of', 'documents', 'in', 'digital', 'form', 'and', 'the', 

'ensuing', 'need', 'to', 'organize', 'them' 

Removing stopwords 

'automated', 'categorization', 'classification', 'texts', 'predefined', 'categories', 'witnessed', 

'booming', 'interest', 'last', 'ten', 'years,', 'due', 'increased', 'availability', 'documents', 

'digital', 'ensuing', 'need', 'organize' 

 

 

3.4 Term-document matrix 

The next step after preprocessing is to build a term vector based on the vector space 

model. To build a term vector for each paper, we used the Term Frequency-Inverse 

Document Frequency (TF-IDF) weighting scheme, which is defined in Formula 3-1 

(Ahlgren & Colliander, 2009).  
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 3-1 

 

       represents the term frequency of term t in document d, and N shows the total 

number of documents, while     represents the number of documents that contain term 

t. The benefit of using TF-IDF is that it harmonizes moderate frequency terms that are 

repeated in many papers by assigning them an acceptable score, while assigning a 

higher score to those terms with large frequencies in a few papers (Manning, Raghavan 

& Schütze, 2008). The term vectors can then be used for creating a term-document 

matrix. The rows and columns represent terms and papers, respectively, and each 

element of the matrix is described by the weighted frequency of terms in the papers, as 

calculated by TF-IDF. 

Consider a document containing 100 words, wherein the word technology appears 7 

times. The term frequency (i.e., tf) for technology is then (7 / 100) = 0.07. Now, assume 

we have 1000 documents and the word technology appears in 600 of them. Then, the 

inverse document frequency (i.e., idf) is calculated as log(1,000 / 600) = 1.66. Thus, the 

Tf-idf weight is the product of these quantities: 0.07 * 1.66 = 0.116. 

3.5 Applying Basedline Classifiers 

This stage of the research clarifies how practical it would be to use a classification 

technique to distinguish ISI articles from non-ISI articles.  For this purpose, the output 

of the preprocessing step is used for classification in the term-document matrix format. 

As mentioned in section 3.2, two datasets are available. For each of them, data labeling 

is done for ISI and non-ISI indexed articles.  
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To validate this model and discover how well the created model functions, it was 

necessary to divide the dataset into training and test sets. However, due to the manual 

process of collecting data, our dataset was not very large and the size of the test and 

training sets could be unsatisfactory. The solution to this problem was to use cross-

validation, which was introduced in Section 2.8. 10-fold cross-validation is used in this 

research. Cross-validation divides data into 10 equal parts and chooses one part as the 

test set and the rest as training data each time.  If you have a single holdout set, where 

90% of the data is used for training and 10% is used for testing, the test set is very 

small, so there will be a lot of variation in the performance estimate for different 

samples of data, or for the various partitions of the data to form the training and test 

sets. 10-fold validation reduces this variance by averaging more than 10 different 

partitions, so the performance estimate is less sensitive to the partitioning of the data. 

As basedline classifier, three popular machine-learning algorithms were chosen: 

Naïve Bayesian, K-nearest neighbor and Support Vector Machine. The reason for 

choosing these algorithms was their popularity among researchers (Aggarwal & Zhai, 

2012). For text classification, the threshold used to classify a document into ISI versus 

non-ISI is a 50% probability in the case of Naïve Bayesian. In the case of k-NN, k as the 

number of neighbors is set to three, after experimenting various numbers of k , it 

concluded that the best result belongs to three neighbours. In SVM, the calculated 

distance of each document to the hyperplane is transformed to a class probability using 

Platt’s method (Platt, 1999). Eventually, the documents are assigned to a class based on 

a 50% threshold.  

For SVM, a linear discriminant function was used (linear kernel). We are aware that 

non-linear functions possibly perform better, but the linear kernel was chosen for two 

reasons: first, the use of a linear kernel avoids the higher complexity of a non-linear 
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kernel and makes the results more transparent; second, according to experiments that 

were done with the collected datasets, K-NN and NB, the linear kernel works fine.  

Figure 3.2 explained the classification process from preprocessing to the application 

of the baseline algorithms. 

 

Figure 3.2: Classification Framework 

 

3.6 Proposing a novel classifier 

In order to improve the accuracy of the existing classifiers, we developed a hybrid 

classifier by upgrading one of the existing ensemble classifiers (Random Forest) and 

optimizing it with Genetic Algorithm. The reason for choosing ensemble classifiers was 

for their acceptable performance and we chose Random Forest for its high accuracy in 

different situations (Verikas, Gelzinis & Bacauskiene, 2011). We called this novel 

algorithm Hybrid Genetic Random Forests (HGRF). Chapter 5 introduces HGRF in 

greater detail. To ensure that HGRF is a stable and reliable algorithm, we applied it on 

20 different UCI datasets. The UCI Machine Learning Repository is a collection of 
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databases, domain theories and data generators that are used by the machine learning 

community for the empirical analysis of machine-learning algorithms. This archive was 

created in 1987 by David Aha and his fellow graduate students at UC Irvine. Since then, 

it has been widely used by students, educators and researchers all over the world as a 

primary source of machine-learning datasets (Lichman, 2013).  

In the following, HGRF is tested on the ISI and non-ISI indexed article dataset. The 

evaluation section in Chapter 5 compares the results of HGRF and its competitors. 

3.7 Discovering common syntactical forms 

Based on the classification models created using the three algorithms, the scientific 

vocabulary is analyzed by the algorithms to distinguish between ISI-indexed journals 

and non-ISI-indexed journals. A part-of-speech (POS) tagger is applied to identify the 

different syntactical forms of words in the document collection. This research uses the 

Pen Threebank POS (Pennsylvania, 1999).  

Table 3.4: POS tagging example 

They refuse to permit us to obtain the refuse permit 

('They', 'PRP'), ('refuse', 'VBP'), ('to', 'TO'), ('permit', 'VB'), ('us', 'PRP'), ('to', 'TO'), 

('obtain', 'VB'), ('the', 'DT'), ('refuse', 'NN'), ('permit', 'NN') 

CC  Coordinating conjunction  

PRP  Personal pronoun  

VBP  Verb, non-3rd person singular present  

VB  Verb, base form  

DT  Determiner 

NN  Noun, singular or mass 
 

 

We selected these words in a specific syntactical form and for which the 

corresponding term weights were above a specific threshold. A sensitivity analysis 

based on the three basedline classification models was conducted to identify the impact 
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of the selected words on the classification decision. The result of this analysis is 

reported in Chapter 4. 

3.8 Evaluation 

In supervised learning, we measure the accuracy of the error rate. In classification, 

we encounter two types of errors: in sample and out sample. In-sample errors refer to 

the misclassified samples in the dataset on which the predictor is built. Out-sample 

errors (Generalization) refer to the errors that happen when we apply the predictor on 

new data. The out-sample error rate is higher than the in-sample error rate. Because the 

learning function attunes itself with the training data (overfitting), it decreases the 

sample error. On the other hand, the performance of the learning function on unseen 

data is lower (James et al., 2013). 

In this research, the accuracy of the classification technique is calculated. To 

understand the concept of accuracy, it is necessary to be familiar with the confusion 

matrix.  

3.8.1 Confusion matrix 

If we consider that we are doing binary classification, we can categorize our 

predictions into four different sets: True positive, False positive, True negative and 

False negative.  

True positive refers to the cases that are predicted positive, and are actually positive 

in the dataset. 

False positive refers to the cases that are mistakenly predicted as positive, but do not 

actually belong to the positive set. 

True negative refers to cases that are predicted negative and are actually negative. 
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False negative refers to cases that are positive in the real world, but the predictor 

categorizes them as negative. 

These four different sets form a Confusion Matrix (Figure 3.3). Using a confusion 

matrix is a very common way to measure the accuracy of classification. 
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Figure 3.3: Confusion Matrix 

 

Based on the information in the confusion matrix, some other useful measurements 

can be calculated. 

Sensitivity (recall) is the probability that a case will be predicted positive. For 

example, the probability of being predicted sick when you are genuinely sick. This item 

is calculated based on the formula: 
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Specificity is the probability that a case will be predicted negative when it is actually 

negative.  

          
  

     
 

Positive predicted value (precision) is defined as: 

                         
  

     
 

Negative predicated value is defined as 

                          
  

     
 

And the Accuracy, which is the probability of predicted correctly, is defined as 

         
     

           
 

F-score (F1-Score) is the harmonic mean of precision and recall.  In many research 

studies, this number is reported to show the accuracy of the prediction. 

          
                

                
 

 

3.9 Summary 

To summarize, this chapter is a road map of this research study and it explained how 

the study was conducted and how we managed to answer the research questions and 
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meet the objectives. We will elaborate on the results of applying the baseline classifier 

in Chapter 4 and will discuss the prevalent syntactical terms in ISI and non-ISI articles. 

Later, the HGRF will be introduced in Chapter 5. Chapter 5 also advances some 

evidence of why HGRF is such a successful method.  
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CHAPTER 4: CLASSIFICATION FOR DISTINGUISHING ISI AND NON-ISI 

ARTICLES 

4.1 Introduction 

This chapter attempts to answer the question of whether machine learning and 

specifically supervised learning is a proper method for distinguishing high-quality 

scientific articles from low-quality ones. To answer this question, some of the classic 

and popular classification algorithms have been chosen to apply on ISI and non-ISI 

article datasets. These datasets were introduced in Chapter 3. Chapter 4 presents the 

results of these classification algorithms on ISI and non-ISI datasets. Moreover, it 

discusses common grammatical syntax and compares the results between these two 

groups.   

4.2 Classification Experiment 

To find out whether classification is an appropriate technique for the determination 

of the quality of academic writing, three basic and popular classic classifiers were 

chosen. As explained in Chapter 2, preprocessing removes redundant data, such as 

stopwords, tables, figures and punctuation symbols. TF-IDF also converts the tokenized 

text into a matrix, where each row represents a document and each column represents a 

token of scientific articles. Figure 4.1 is a snapshot of a TF-IDF matrix (3.4). 
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Figure 4.1: TF-IDF matrix 

 

In the next step, the target column will be added to this matrix as a classification label 

for each sample. As described in Chapter 2, a supervised learning algorithm needs some 

data to learn from. Labeling helps the classification algorithm assign an existing pattern 

in the data to one of the classes and predict the unseen data (test set) with the help of a 

learning function that is created during training.  

One of the common dilemmas in supervised learning is the problem of overfitting. 

Overfitting refers to learning from incorrect or fake patterns in the data. In this way, the 

learning function cannot detect real patterns. One of the solutions to overfitting is cross-

validation. Cross-validation can be used to simply estimate the generalization error of a 

given model, or it can be used for model selection by choosing one of several models 

that has the smallest estimated generalization error. For example, you might use cross-

validation to choose the number of hidden units, or you could use cross-validation to 

choose a subset of the inputs (subset selection). A subset that contains all relevant inputs 

will be called a "good" subset, while the subset that contains all relevant inputs but no 

relevant input will be called the "best" subset. Note that subsets are "good" and "best" in 
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an asymptotic sense (as the number of training cases extends to infinity). With a small 

training set, it is possible that a subset that is smaller than the "best" subset may provide 

a better generalization error.  

To determine which cross-validation method works better with the collected data, an 

experiment is run to choose the best method. In this research, we tried three different 

cross-validation settings. One leave out, k-fold cross-validation with testing k=5 and 

k=10, which are called 5-fold and 10-fold cross-validation, respectively. The One leave 

out case trains itself with 99 cases and keeps one as a test to evaluate the performance 

with the test. This process will repeat over the 100 cases and an average of the outcome 

will be reached. In 5-fold cross-validation, 20 cases are kept for training and 80 cases 

for training and this process repeats four more times. The rest of the process is similar to 

One leave out. 10-fold cross-validation is just like 5-fold, but it breaks down the data 

into 10 pieces and the process repeats 10 times, rather than 5. 

In this research, KNN classifier, Naïve Bayesian and SVM were chosen. The three 

trained classification models are applied on the selected test documents. The results are 

an assignment probability to a class (in the case of Naïve Bayesian), an assignment 

function to a class that depends on the number of K (in the case of KNN), and a distance 

to the hyperplane (in the case of SVM). In a manual process, the selected documents are 

modified by adding words at randomly selected positions or by changing the syntactical 

forms of words. Then, the three classification models are applied to the modified 

documents. Changes in the assignment probability (Naïve Bayesian), the assignment 

function (KNN) and the distance (SVM) are used to estimate the impact of the 

document changes on the classification decision. 
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4.3 Cross-validation experiment over KNN 

KNN follows a straightforward and effective idea in classification by testing each 

sample in a given vector space with the majority class of its K-nearest neighbors.  The 

number of neighbors can play an important role in the accuracy of the KNN algorithm. 

Usually, the number of neighbors is calculated by a number of features. As a rule of 

thumb, K sets to √  of features. However, in a high-dimensional dataset, using such a 

rule is not useful. Hence, it is decided to use trial and error instead. Here, several 

different numbers of K (between 1 and 7) are tested over the dataset to confirm which 

one has the best outcome. These numbers are chosen because many researchers have 

used this amount for their experiments (Guo, Shao & Hua 2010; Tseng, Lin & Lin, 

2007; Woods, Kegelmeyer & Bowyer 1997; Zhu et al., 2010).  

The experiment is repeated for 10-fold, 5-fold and one leave out cross-validation for 

both computer and business datasets. In each experiment, for each K, precision, recall 

and accuracy are calculated. Table 4.1 depicts the result for 10-fold cross-validation and 

its respective precision and recall for both Business and Computer Science articles. P 

and R stand for Precision and Recall, respectively. 
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Table 4.1: Computer and Business precision and recall results for KNN 

algorithm with 10-fold cross-validation 

 Business Computer 

  ISI Non-ISI  ISI Non-ISI 

K=1 P 62.11 62.71 R 58 68.9 

R 55 74 P 72.09 66.67 

K=2 P 65.75 74.36 R 82 54 

R 63.4 58 P 85.29 68.18 

K=3 P 68.29 62.71 R 58 90 

R 56 65.4 P 77.2 80.43 

K=4 P 66.7 66.4 R 74.8 74 

R 63.8 72 P 72.4 75.41 

K=5 P 85.71 69.23 R 72.6 67.6 

R 60 90 P 66.1 74.9 

k=6 P 65.9 72.41 R 60.2 84 

R 68 66.1 P 76.9 73 

K=7 P 63.5 66.67 R 69.1 94 

R 56 65.7 P 62.9 68.18 

 

Figure 4.2 presents the accuracy of different numbers of neighbors in 10-fold cross-

validation. As Figure 4.2 shows, in both of the cases, k=3 gives the best result for 10-

fold cross-validation. However, it is necessary to repeat the experiment for 5-fold and 

one leave out cross-validation. 
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Figure 4.2: KNN accuracy with 10-fold cross-validations for computer and 

business datasets 

The experiment is also implemented for 5-fold cross-validation. Table 4.2 shows the 

precision and recall data for the Business dataset. 

Table 4.2: 5-fold cross-validation KNN Business and Computer dataset 

 Business Computer 

  ISI Non-ISI ISI Non-ISI 

K=1 P 60.1 61 74 68.18 

R 63.24 57.6 66.2 60.8 

K=2 P 63.11 74.36 72.09 66.67 

R 66.6 58 70.7 54 

K=3 P 64.32 62.71 72.8 65.1 

R 57.54 65.7 73.4 74.9 

K=4 P 67.1 67.5 76.5 80.43 

R 63.8 72 71.9 71.4 

K=5 P 70.26 69.23 64 68.5 

R 62.8 90 63.8 66.4 

k=6 P 60.3 72.41 63.8 66.5 

R 63.7 62.9 67.6 69.8 

K=7 P 63.2 64.5 62.8 69.1 

R 66.6 67.3 77.7 68.5 
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Figure 4.3 presents the accuracy of the business and computer science datasets with 

5-fold cross-validation. For business articles, k=5 has the best result and for computer 

science articles, k=3 has the best. 

 

Figure 4.3: 5-fold KNN Business and Computer dataset 

 

Finally, the experiment is done for one leave out cross-validation for the computer 

science and business datasets. Table 4.3 shows the precision and recall for the business 

data set and Figure 4.4 depicts the accuracy diagram. K=3 is the best number for this 

configuration for either business or computer science.  
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Table 4.3: Business and Computer one leave out KNN 

 Business Computer 

  ISI Non-ISI ISI Non-ISI 

K=1 P 61.6 60.9 63 68.5 

R 61.2 62.6 61.5 62.5 

K=2 P 60.6 61.6 61.6 75.2 

R 62.7 60 70.1 76.8 

K=3 P 68.29 62.71 85.29 68.18 

R 56 65.7 58 90 

K=4 P 65.3 66 61.5 74.7 

R 60.7 65.2 70.9 72.1 

K=5 P 65.3 64.3 66.6 75.8 

R 67.2 66.4 71 70.5 

k=6 P 62.6 61.1 61.2 66.7 

R 62.2 65.1 66.6 71.4 

K=7 P 62.5 62 75.4 69.3 

R 60.6 64.9 63.3 72.4 

 

 

Figure 4.4: One leave out KNN Business and Computer datasets 
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4.4 Cross-validation experiment over Naïve Bayesian 

The idea behind a Bayesian classifier is that, if an agent knows the class, it can 

predict the values of the other features. If it does not know the class, Bayesian' rule can 

be used to predict the class, given some of the feature values. In a Bayesian classifier, 

the learning agent builds a probabilistic model of the features and uses that model to 

predict the classification of a new example. 

This section presents the result of applying a naïve Bayesian classifier for the 

business and computer science datasets with various settings for cross-validation. 

Table 4.4 shows the precision and recall for naïve Bayesian for both datasets with three 

different cross-validation settings. 

Table 4.4: Precision and recall for Naïve Bayesian classifier 

  5-fold 10-fold one leave out 

  ISI Non ISI ISI non ISI ISI Non ISI 

Business P 67.19 67.98 73.33 69.09 67.19 68.97 

R 64 80 66 76 64 80 

Computer P 73.18 66.1 71.43 65.52 71.88 88.89 

R 60 78 60 76 92 64 

 

Table 4.4 shows the final accuracy for each of the datasets under different settings. In 

the business dataset, the weakest result belonged to 5-fold cross-validation and in the 

computer dataset, 10-fold cross-validation had the best record.  

Table 4.5: Accuracy for Naïve Bayesian classifier 

 5-fold 10-fold one leave out 

Business 71 72 72 

Computer 69 68 62 

 

Univ
ers

ity
 of

 M
ala

ya



86 

 

4.5 Cross-validation experiment over Support Vector Machine 

Support Vector Machines are based on the concept of decision planes that define 

decision boundaries. A decision plane is one that separates a set of objects with different 

class memberships (Chapter 2). To determine which kind of cross-validation is more 

consistent with the existing dataset while running SVM, an experiment is done with a 

different cross-validation with SVM. Table 4.6 documents the precision and recall of 

the business and computer science datasets with SVM. 

Table 4.6: SVM results 

  5-fold 10-fold one leave out 

  ISI Non ISI ISI non ISI ISI Non ISI 

Business P 57.14 87.5 58.02 84.21 55.56 73.68 

R 96 28 94 32 90 28 

Computer P 82.86 67.69 81.08 68.02 85.29 67.69 

R 58 87 60 86 58 88 

 

Table 4.7 presents the result of the same experiment, this time with calculating the 

accuracy of SVM over our dataset.  The results also showed that 10-fold cross-

validation is more promising, as compared to 5-fold and one leave out methods.  

Table 4.7: SVM accuracy 

 5-fold 10-fold one leave out 

Business 63.01 63.03 59.14 

Computer 73.33 73.21 74.11 

 

4.6 Dataset Size effect 

It is challenging to know how much data is enough to run an experiment related to 

machine learning. In this sense, during the data collection process, the basic classifiers 
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are applied over different sizes of datasets to discover how much data is enough for this 

research.  

Table 4.8 presents the experiment that is done for the computer science dataset with 

various classifiers and different data size. As shown in Figure 4.5 and Table 4.5, when 

the size of the computer dataset is 20 (10 ISI and 10 non-ISI articles), all the algorithms 

predict extremely well. This happens because of the small size of the dataset. When the 

dataset size grows, the accuracy drops to the size of 60 cases and then gradually rises 

and stabilizes for 80 and 100 cases. 

Table 4.8: Computer different data set size 

Size 10-10 20-20 30-30 40-40 50-50 

SVM 95 75 73 75 73 

KNN 95 77 63 72 74 

Naïve 

Bayesian 

95 65 60 61.25 68 

 

 

Figure 4.5: Effect of size of dataset on computer articles 10-fold cross-validation 
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The same experiment is repeated for the business dataset, which is presented in 

Table 4.9. For the business dataset, initially, the accuracy for various algorithms is very 

different. This is because of the small size of the dataset. For instance, the high accuracy 

of KNN is due to overfitting. Later, when the size grows, the trend becomes positive 

and stabilized for 80 and 100 cases. 

 

Table 4.9: Business different data set size 

Size 10-10 20-20 30-30 40-40 50-50 

SVM 50 52 61.67 61.25 63 

KNN 73 55 64 62 65 

Naïve 

Bayesian 

40 52.5 66.67 73.75 76 

 

 

Figure 4.6: Effect of size of data set on 10-fold cross-validation Business papers 

At the end, it was decided to stop at 50 cases for each category in both datasets and 

continue the final experiment with this amount of data. 
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4.7 Final Evaluation 

Based on our experiments, which are presented in Sections 4.3 to 4.6, 100 cases were 

chosen for each dataset (50 ISI and 50 non-ISI articles). In the case of the KNN 

algorithm, k=3 is used as the best number of neighbors for the final experiment. The 

evaluation results obtained by applying three different classification algorithms on our 

two datasets are summarized in Table 4.10. The best recall is obtained using the SVM 

algorithm, with a 94% recall for the computer science ISI-indexed journals, and 

interestingly, the lowest recall is obtained by SVM in the classification of non-ISI 

business papers. However, the SVM outcome for the classification of ISI-indexed 

papers in both computer science and business is quite good (above 70% accuracy). 

Surprisingly, the Naïve Bayesian algorithm performs better than the other algorithms in 

the classification of non-ISI papers. It even shows acceptable performance in detecting 

ISI-indexed articles. The KNN algorithm (with three neighbors) also shows moderate 

performance and is able to successfully differentiate between ISI and non-ISI papers. 

The results for Accuracy are also presented in Table 4.10. As Table 4.10 depicts, 

SVM has the best outcome over business articles and KNN for computer science. 

Table 4.10: Performance of SVM, KNN and Naive Bayesian on ISI and non-ISI 

datasets 

Algorit

hms 

Area Precision Recall / 

Sensitivity 

Accur

acy 

SVM Business 58.02 94 71.75 

   

Computer 81.08 60 78.96 

   

KNN Business 68.29 56 61.53 

   

Computer 85.29 58 69.04 

   

Naïve 

Bayes 

Business 73.33 66 69.47 

   

Computer 63.16 72 67.29 
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4.8 Investigating Syntactical role in scientific writings 

The impact of the syntactical form of a word can be illustrated by considering the 

word ‘compromise’, which often occurs in several variations in the document 

collection, especially in computer science journals (see Table 4.11). “Compromise” has 

three syntactical forms, and its impact on the two categories is estimated based on the 

three forms. For each form, term co-occurrences are grouped together. These terms 

often occur together with the syntactical form of the term. As a result, the use of 

“compromise” or “compromises” as a noun in a scientific paper indicates that authors in 

non-ISI journals have more of a tendency to use the noun form of this term, as 

compared to authors who write for ISI journals.  Furthermore, the use of the term as an 

adjective or a verb is more indicative of ISI journals than non-ISI journals.  

Table 4.11: Different forms of “compromise” in the papers considered and 

corresponding data characteristics 

Term Form Frequency Number of 

Documents 

Term 

weight 

Impact 

compromised Adj. 25 5 0.81 ISI journal 

compromise Verb 12 6 0.53 ISI journal 

compromise Noun 6 5 
0.58 

non-ISI 

journal 

compromised Verb 24 9 0.53 ISI journal 

compromises Verb 3 3 0.53 ISI journal 

compromises Noun 2 2 
0.58 

non-ISI 

journal 

compromising Verb 1 1 0.53 ISI journal 

 

Error! Reference source not found. compares the frequencies of different 

grammatical forms that have been repeated at least 10 times in various articles in each 

category (ISI and non-ISI). Our findings show that there are some terms that are more 

commonly used in ISI papers. For instance, the word “complementary” as an adjective 

is used 46 times in 12 ISI articles. As shown in Error! Reference source not found., 
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there is a meaningful discrepancy between ISI and non-ISI papers from using 

grammatical forms. For more information, some of the most popular terms in each of 

the grammatical groups for the collected dataset are presented in Appendix C.  

 

Figure 4.7: Comparing various grammatical forms' frequencies in ISI and non-

ISI (Number of Document>10). 

 

Based on the three classification models, the impact of terms on the two categories is 

estimated. Terms that have the greatest impact on the ISI category are listed in 

Table 4.12. Terms that have the most impact on the non-ISI category are listed in 

Table 4.13. The terms are ordered by their discriminative power from the other 

category. 
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Table 4.12: Terms that are representative of ISI papers 

Term Form Frequ

ency 

Number 

of 

Documents 

Term weight 

attack Noun 180 17 0.56 

threat Noun 70 12 0.68 

round Noun 163 22 0.59 

border Noun 116 16 0.65 

intrusion Noun 68 14 0.65 

integrity Noun 61 11 0.60 

convex Adj. 75 11 0.67 

count Noun 202 23 0.56 

boundary Noun 58 16 0.64 

reactive Adj. 57 14 0.57 

intelligence Noun 28 11 0.61 

validity Noun 40 13 0.60 

engineering Noun 28 11 0.63 

protection Noun 71 11 0.59 

terminal Noun 119 17 0.63 

segment Noun 259 23 0.64 

multicast Noun 645 16 0.68 

competition Noun 108 15 0.57 

mutual Adj. 33 11 0.56 

combined Adj. 41 13 0.60 

surveillance Noun 105 14 0.60 

digital Adj. 121 23 0.62 

angle Noun 46 12 0.59 

shape Noun 56 14 0.63 

pick Verb 36 12 0.57 

population Noun 105 13 0.66 

multihop Noun 70 12 0.58 

immediate Adj. 32 11 0.58 

market Noun 383 25 0.57 

classical Adj. 47 15 0.60 

complementary Adj. 46 12 0.61 

cable Noun 85 11 0.73 

spread Noun 26 11 0.56 

individual Noun 53 13 0.60 

subscriber Noun 179 15 0.59 

replacement Noun 37 11 0.69 

government Noun 51 11 0.63 

broadcasting Adj. 47 12 0.58 

ground Noun 33 12 0.64 

positioning Noun 34 12 0.63 
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penetration Noun 54 11 0.65 

dominant Adj. 40 11 0.58 

regulation Noun 65 11 0.56 

route Noun 268 40 0.34 

tier Noun 23 3 0.90 

protect Verb 74 24 0.41 

 

 

Table 4.13: Terms that are representative of non-ISI papers 

Term Form Frequency Number of 

Document 

Term weight 

content Noun 67 13 0.60 

participant Noun 63 11 0.65 

European Adj. 66 12 0.60 

country Noun 116 11 0.59 

regulation Noun 65 11 0.56 

subscription Noun 223 12 0.75 

industry Noun 79 16 0.57 

organizer Noun 2 2 0.85 

government Noun 51 11 0.63 

penetration Noun 54 11 0.65 

party Noun 64 13 0.64 

privacy Noun 128 15 0.60 

market Noun 383 25 0.57 

competition Noun 108 15 0.57 

subscriber Noun 179 15 0.59 

language Noun 76 13 0.61 

road Noun 33 11 0.59 

person Noun 93 17 0.60 

protection Noun 71 11 0.59 

 

The results show that the word form of characteristic terms for the non-ISI category 

is often a noun. Nouns also have an impact on the ISI category, but adjectives and verbs 

have a large impact on the ISI category, but not on the non-ISI category. This shows 

that different formulations are used in both categories.   
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CHAPTER 5: HYBRID GENETIC RANDOM FORESTS 

 

5.1 Introduction 

This chapter introduces a novel classification technique called Hybrid Genetic 

Random Forests (HGRF). HGRF’s roots are in classic random forests. The next section 

covers how other scientists have tried to evolve the classic random forests algorithm and 

improve it. Section 5.2 and 5.3 explain what HGRF is and how it works. Section 5.5 

evaluates the performance of HGRF in comparison to standard and well-known 

classifiers. Finally, HGRF will be applied on ISI and non-ISI index articles dataset and 

the results will be compared with the baseline algorithms in Chapter 4. 

5.2 Hybrid Random Forest 

In normal Random Forests (refer to Section 2.4.4), there is only one type of random 

tree. Xu et al. proposed a hybrid RF with three different types of decision trees: C4.5, 

CART, and Chi-square Automatic Interaction Detector (CHAID) (Xu, Huang, 

Williams, Li et al. 2012). The biggest difference between these trees is the splitting 

criterion of the features. C4.5 uses normalized information gain, while CART splits 

them based on the attribute value test, and CHAID relies on the Chi-square test. In our 

research, we modify Xu et al.’s method for creating the hybrid tree. Instead of using the 

CHAID tree algorithm, we apply the REPTree algorithm. REPTree is a random tree 

based on the ID3 algorithm. It uses plain information gain for splitting the features in 

the tree. The reason for selecting REPTree is its speed during processing and its 

acceptable accuracy. 

After doing the sampling with replacement, the machine is trained on each of the in-

of-bag samples (samples that are selected with replacement during the bootstrapping 
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process) by three different decision tree classifiers: C4.5, CART and REPTree. As we 

know, RF does not use almost one-third of the data in each bootstrap. This part is called 

out-of-bag, which is used to find errors in classification (Breiman, 1996). For each 

bootstrap, the out-of-bag error is calculated. The classifier with the lowest out-of-bag 

error is selected for that bootstrap. This process is iterated for all bootstrap partitions. 

The procedure is depicted in Figure 5-1. 

 

Figure 5.1: Creating RF by combining three different types of trees 
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5.3 Applying Genetic Algorithm 

Figure 5.2 describes the GA operation on the hybrid RF. Here, the produced hybrid 

RF is used as a pool of genes for the new algorithm (HGRF). The initial population for 

GA is built by selecting a random number of genes (trees) from the hybrid RF to create 

random chromosomes. As depicted in Figure 5.2, GA evolves the initial population in 

several generations. Finally, we select a chromosome with the highest fitness value as 

the best forest. 

 

Figure 5.2: Genetic algorithm operation on the hybrid RF 

 

During the implementation of HGRF, we are not sensitive for selecting repeated 

genes in the chromosome. Therefore, it is possible that the same gene/tree repeats in one 

chromosome. Standard uniform mutation is employed for the mutation process. 
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Randomly, we replace two of the genes in the chromosome with each other. Mutation 

helps GA not to be in local maximum and instead try to find the global maximum. By 

replacing some genes with others, we guarantee that one-point crossover spreads this 

randomness to the next generation. 

In data partitioning, we applied 10-fold cross-validation with a small change. As 

mentioned, HGRF needs a validation set as well. We divided the test set into validation 

and test sets during the cross-validation process. The training set is used for creating the 

hybrid RF in the first phase and validation will be used in the second phase with GA. At 

the end, the accuracy of the algorithm can be calculated with the test set. For comparing 

HGRF with other well-known classifiers, the same process follows without the 

validation set. In this way, we keep the experimental conditions equal among various 

classifiers. 
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i. Algorithm 1. HGRF Algorithm 

{User Settings} 

Input N,                     //number of trees 

M,                     //number of features 

T,                      //number of different types of RandomForests 

S,                      //number of forests/chromosomes 

NG                    //number of generations 

RF[0]=call C45RandomForest(N,M) 

RF[1]=call CARTRandomForest(N,M) 

RF[2]=call RepTreeRandomForest(N,M) 

For i=1->N do 

bestTree= RF[0][i] 

OOB_Err= RF[0][i].out_of_bag() 

For j=1->T do 

If(RF[j][i].out_of_bag()<OOB_Err 

OOB_Err= RF[j][i].out_of_bag() 

bestTree= RF[j][i] 

end if 

pool[j]=bestTree 

End for 

End for 

 

For i=1->S do 

For k=1->n do 

x=Random(1->N) 

Add pool[x] into Forest/Chromosome i and gene number k in P0 

End for 

End for 

Evaluate each forest in the initial population P0 

 

For j=1->NG do 

{Generate a new population by applying GA: operators mutation and crossover} 

Pnew=GAOperators(P) 

Evaluate each forest in P 

bestForest<-copy of the best P 

P=Pnew 

End For 

{output} 

A vector of trees bestForest 
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ii.  

 

GA has some configurations, such as chromosome size, population size, number of 

generations and, more importantly, fitness function. Chromosome size refers to the 

number of the genes (trees here) in each chromosome (forest). The population size is the 

number of chromosomes in each population. The maximum number of generations can 

also be important for us. The core of the GA is the fitness function. It measures how 

well our current generation is and evolves the next generation in the correct direction. In 

our case, we are looking for the best forest or chromosome that classifies the validation 

set with higher accuracy. 

According to our assumption, an instance in the validation set is considered as 

correctly classified if the majority of the genes/trees are correctly assigned. On the other 

hand, the instance is incorrectly classified if the assignment of most of the genes/trees in 

the chromosome categorization fails. There are some cases where the numbers of 

trees/genes that are classified correctly and incorrectly are equal. In this situation, a 

“tie” has occurred. 

For calculating the fitness, we apply the following formula: 

 

iii.  

     ∑      

 

 

 
      

 
 

(5-

2) 
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In formula 5-2, K is the number of instances in the validation set. c(v,i) returns one if 

the instance i with the majority of the genes/trees is classified correctly and it returns 

zero otherwise. t(v,i) indicates if instance i in chromosome v is a tie or not. In the case 

of a tie (when classifiers assign equally to both classes), t(v,i) returns one and otherwise 

it returns zero.   

5.4  HGRF Evaluation 

To be confident that HGRF is working on our dataset, it was necessary to test the 

proposed algorithm with some of the standard datasets and compare the results with 

baseline classifiers. We choose traditional RF, Genetic Algorithm Random Forests 

(GARF) and AdaBoost as the baseline for ensemble classifiers, and C4.5 is chosen as a 

powerful individual classifier. RF is chosen because HGRF was inspired from RF and it 

attempts to improve it. In addition, HGRF is an ensemble classifier; it is interesting to 

compare its results with Adaboost, as a successful ensemble classifier. Although C4.5 is 

an individual classifier, it is newer than other algorithms, very popular in machine 

learning, and is referred to by many researchers (Chang, Lin & Wang, 2009; Puuronen, 

Terziyan & Tsymbal, 1999; Xu, Huang, Williams, Li et al., 2012; Xu, Huang, Williams, 

Wang et al., 2012).  

Weka 3.6 was used for implementing AdaBoost and C4.5 where exists in Weka 

package as J48 algorithm. GARF is implemented in the Java environment, along with 

using some of the Weka classes to make this experience easier. Moreover, for 

simulating the genetic algorithm, the Genetic Algorithm Package (JGAP) is used and 

customized for use in HGRF. However, it was necessary for this experiment to add new 

classes and methods into the basic package. 
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We tested HGRF with various configurations, such as different numbers of 

chromosomes, different numbers of the genes in each chromosome, various 

probabilities of mutation and crossover. These experiments were done on a diabetes 

dataset from UCI. As shown in Figure 5.3, the best probability for mutation was around 

0.7 and for crossover probability, 0.9 provided the best results.  

 

 

Figure 5.3: Impact of Mutation and Crossover probability over accuracy 

 

 

We repeated this test to get the best values for the number of the genes (trees) in 

each chromosome (forest) and the number of generations that GA should optimize 

for the random forest results. Obtaining the best number of the genes happens when 

chromosomes are between 50 and 100. We continued the GA for 50 continuous 

generations. This information is depicted in Figure 5.4. We kept these variables 

during our experiments with other datasets as well. 
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Figure 5.4: Impact of number of the genes, chromosomes and generation over 

accuracy 

 

In this experiment, we used 20 standard datasets of the UCI repository. The UCI 

Machine Learning Repository is a collection of databases, domain theories and data 

generators that are used by the machine-learning community for the empirical analysis 

of machine-learning algorithms. This archive was created in 1987 by David Aha and his 

fellow graduate students at UC Irvine (Lichman, 2013). We selected various ranges of 

datasets with different sizes, target classes, and features. 

 

The audiology dataset was created at Austin University in that school’s medical 

college. It has 24 classes and 70 attributes. Annealing relates to steel annealing data, 
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with 798 case and 38 features. In Table 5.1, the specifications of each dataset are 

described. A balance-scale is generated to model the psychological experiments with 

three classes and five features over 625 cases. Colic or Horse-colic has collected data 

about the chance of survival among sick horses; 23 elements are measured for each 

case. Diabetes data was provided by the National Institute of Diabetes and Digestive 

and Kidney Diseases to UCI, and was represented by eight different attributes and two 

classes. The Glass dataset consists of six types of glasses’ information based on their 

oxide content. Heart-statlog is a heart disease database with 14 various features. 

Ionosphere is the classification of radar returns from the ionosphere with 35 various 

attributes. Labor dataset was collected from the Collective Bargaining Review. The data 

includes all collective agreements reached in the business and personal services sector 

for locals with at least 500 reviews in Canada. Character image features were collected 

in a letter dataset with 26 classes. Lymph consists of 148 cases of lymphography data, 

provided by University Medical Centre. Targets are categorized into four classes: 

normal find, metastases, malign lymph, fibrosis. The Mushroom dataset includes 

descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms 

in the Agaricus and Lepiota families. Each species is identified as definitely edible, 

definitely poisonous, or of unknown edibility and not recommended. The Vehicle 

dataset includes 3D objects within a 2D image through the application of an ensemble 

of shape feature extractors to the 2D silhouettes of the objects. It has four different 

classes with 18 attributes. The Vote dataset originates from 1984 United Stated 

Congressional Voting Records and classifies candidates into Democrats and 

Republicans.    

The Vowel dataset consists of a three-dimensional array: vowel data [speaker, vowel, 

input]. The speakers are indexed by integers 0-89 (actually, there are fifteen individual 

speakers, each saying each vowel six times). The vowels are indexed by integers 0-10. 
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For each utterance, there are ten floating-point input values, with array indices of 0-9. 

990 cases exist in the Vowel dataset. 

Information on three classes of waves is collected in the Waveform-500 dataset. It 

consists of 5000 instances with 40 various features. The Yeast dataset predicts the 

cellular localization sites of proteins in 10 classes. This data set is introduced by Kenta 

Nakai from the Institute of Molecular and Cellular Biology. Finally, the Zoo dataset 

categorizes seven animals with 18 attributes. Table 5.1 summarizes the information of 

the presented datasets. 

 

Table 5.1: Dataset specification 

Name #Instances #class #attributes 

Anneal 898 6 39 

Audiology 226 24 70 

Balance-scale 625 3 5 

Colic 368 2 23 

Credit-g 1000 2 20 

Diabetes 768 2 8 

Glass 214 6 10 

Heart-statlog 270 2 14 

Ionosphere 351 2 35 

Labor 57 2 17 

Letter 20000 26 16 

Lymph 148 4 18 

Mushroom 8124 23 2 

Soybean 683 19 36 

Vehicle 846 4 18 

Vote 435 2 16 

Vowel 990 11 14 

Waveform-500 5000 3 40 

Yeast 1483 10 9 

Zoo 101 7 18 

 

The results of the experiment are summarized in Table 5.2. Each classifier ran with 10-fold 

cross-validation over UCI data sets. To make it easier to comprehend, Table 5.2 shows the 

average of accuracy of various folds. The standard deviations of each classifier over UCI 

datasets are reported in Appendix B.  In 11 datasets, HGRF was the winner. In two cases, 
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HGRF’s result is similar to the best classifiers, and in seven other cases, HGRF is not as 

successful as the best one. From Table 5.2, we can conclude that in 13 cases, HGRF 

performs better than traditional RF. However, this is not the accurate way for comparing 

two classification algorithms. it should get proven that the difference between the results is 

statistically significant.  

 

 

Table 5.2: Accuracy of different algorithms on various datasets 

Dataset HGRF Random 

Forests 

AdaBoost C4.5 

Anneal 99.17 92.87 84.44 82.77 

Audiology 77.27 72.54 44.54 71.81 

Balance-

scale 

84.83 81.87 73.54 80.64 

Colic 83.73 80.77 84.44 82.77 

Credit-g 76.12 72.8 72.2 72.6 

Diabetes 71.57 70.52 72.89 71.57 

Glass 79.23 70.42 51.72 64.45 

Heart-

statlog 85.34 77.76 79.23 80 

Ionosphere 92.35 93.52 92.35 91.76 

Labor 88.33 80.10 91.66 81.66 

Letter 94.06 94.28 6.51 87.97 

Lymph 86.85 79.03 74.28 77.14 

Mushroom 100 100 96.18 100 

Soybean 87.33 80.56 73.06 84.75 

Vehicle 73.8 70.14 39.04 70 

Vote 96.27 96.27 95.84 96.27 

Vowel 92.87 82.85 11.83 81.02 

Waveform-

500 

83.811 

80.34 67.76 76.52 

    Yeast 59.75 58.13 38.64 57.83 

Zoo 95.32 91.05 60 96 
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Researchers usually compare the results of two classifiers with a paired T-test. 

However, according to Demšar (2006), a T-test needs some conditions to to become 

applicable. For instance, the sample size should be large enough (approximately over 30 

data sets) and the differences between two random variables should distribute normally. 

The alternative method suggested by Demšar is the Wilcoxon signed-ranks test. 

Wilcoxon is a non-parametric test that can  rank the differences of two classifiers 

without noticing their signs. In order to compare HGRF with other tested classifiers, we 

used the Wilcoxon signed-ranks test. We set a null hypothesis that there is no difference 

between the results of the HGRF and RF, and an alternative hypothesis that there is a 

difference between them and that HGRF is superior. The earned p-value is 0.004, which 

is less than a α=0.05 significance level, which assured us that we could reject the null 

hypothesis and that HGRF is superior to RF. After repeating the Wilcoxon test for other 

classifiers, we found the same result, that HGRF works better. 

5.5 Applying HGRF on ISI and non-ISI datasets 

The result of the first experiment assured us that HGRF is an authentic ensemble 

classifier and that it works well on the most commonly selected datasets. Now, it is time 

to apply it on the created ISI and non-ISI datasets (Chapter 4). Similar to the experiment 

in Chapter 4, preprocessing is done on the text to put it in the appropriate format for text 

classification. During preprocessing, the text is tokenized and converted into the text-

document matrix. Furthermore, stopwords are removed from the matrix. The list of 

these stopwords is presented in Appendix A. As before, the 10-fold cross-validation is 

used for data partitioning. The test dataset is divided in two parts: validation and test 

sets. The reason is that after every training, the genetic algorithm needs to practice over 

data to choose the best trees in each chromosome and evolve to reach the optimum 

solution. Nevertheless, using the training set itself can affect the classification accuracy, 
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so it is decided to have a separate set as validationset . This validation part is only used 

in the HGRF algorithm, although the same test set is used for all other algorithms to 

measure them in similar conditions. This process is depicted in Figure 5.5. 

On the other hand, for testing other baseline classifiers, the same structure is kept to 

assist us to compare the final results with each other. 

 

Figure 5.5: Design of the second experiment 
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The result of this experiment is summarized in Table 5.3. As shown, the best 

accuracy is reported in the computer science journals by the proposed HGRF algorithm. 

However, for Business papers, Random Forests performed slightly better in comparison 

with HGRF.  

 

Table 5.3: Final experiment results 

Algorithms Area Specificity Precis

ion 

Recall / 

Sensitivity 

Accura

cy 

SVM 

Business 38.11 59.21 90.43 71.4281

9 

    

Computer 56.23 68.12 94.44 78.9943

3 

    

KNN 

Business 68.75 63.64 56.87 59.5760

6 

    

Computer 54.13 65.15 86.43 74.1369

5 

    

Naïve Bayes 

Business 76.12 73.33 66.33 69.4721

9 

    

Computer 57.55 63.16 72.17 67.2909

1 

 

Random 

Forest 

Business 

 

58.67 68.15 77.87 73.5214

5 

    

Computer 

 

66.22 80.24 79.32 80.1224

7 

HGRF 

Business 

 

60.12 66.52 78.33 72.2387

9 

    

Computer 

 

68.12 74.91 90.26 81.7626

78 

 

Based on the collected results, the HGRF algorithm proved that it can differentiate 

between ISI and non-ISI articles with reliable accuracy. In most cases, HGRF is 

superior to other baseline algorithms. In the computer science dataset, HGRF had the 
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best results for differentiating between two various classes. However, RF worked better 

for business articles (in terms of accuracy measurement). It is not rare in the machine-

learning area that the performance of an algorithm does not always lead to the best 

result.  This can be explained by the No Free Lunch Theory, according to this theory a 

specific classifier is not a solution for every dataset (Wolpert, 2002). The reason for this 

is intrinsic patterns that exist in each dataset that react to each algorithm in a different 

way.  

5.6 Summary 

In this section, the accuracy of the RF algorithm was improved by applying the 

genetic algorithm on hybrid RF. Using different kinds of trees at the same time ensures 

an increased diversity in forests and the genetic algorithm. It brings the highest level of 

diversity through randomness to the RF. By conducting an experiment and comparing 

its learning accuracy with other ensemble classifiers, it has been shown that HGRF can 

be a good alternative for standard Random Forests. In order to evaluate the performance 

of HGRF, the proposed algorithm was tested on 21 different UCI datasets and the 

results were compared with some baseline algorithms, such as RF, AdaBoost and C4.5. 

The Wilcoxon signed-ranks test was used to be sure that the result was statistically 

meaningful. At the end, the final experiment was run and HGRF was applied to the ISI 

and non-ISI datasets. As  expected, the result was promising and HGRF outperformed 

that classification of Computer Science articles by SVM, KNN and Naïve Bayesian 

classifiers. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



110 

 

CHAPTER 6: CONCLUSION 

 

6.1 Introduction 

In this chapter, we try to briefly summarize the main points of this research, 

investigate whether this research has answered the questions of the thesis, and 

determine whether the defined objectives have been satisfied or not. In 

addition, contributions of this research are discussed and limitations of this 

research are examined. Finally, possible future work to complement or 

complete this research will be proposed. 

6.2 Discussion 

The main goal of this research was to propose a method for differentiating ISI and non-

ISI articles from each other and help authors and researchers discover whether their 

style is similar to ISI journals or not. To answer this question, the problem statement 

breaks down into several sub-problems.   

It is understood that lexical domains of scientific writings are different. However, it was 

interesting to determine whether this difference can help us differentiate such scripts 

from each other. Many researchers use classification techniques in the categorization of 

various scientific scripts. However, to the best of our knowledge, it is rarely used for 

investigating the quality of text and scripts. Another question that has come up is that, if 

a classification technique is able to differentiate low- and high-quality academic writing 

from each other, which technique is more accurate? According to the No Free Lunch 

Theory, there is not an absolute answer for such questions. So, we had to try a number 

of experiments to find out.  
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In order to answer the problem statement, a complete literature review was done 

(Chapter 2). After getting some insights from previous research studies, our method was 

proposed in Chapter 3. As discussed earlier (Chapter 3), ISI articles were chosen as 

high-quality samples of scientific writing. 200 articles were selected from two distinct 

domains to increase the randomness and decrease dependency. Non-ISI articles were 

chosen from scientific conferences (Chapter 3). Preprocessing was done for all the data. 

All scripts were tokenized and stopwords were discarded. 

In the next step, three classifiers (KNN, Naïve Bayes and SVM) were tested on the 

dataset. Each of them was run with different configurations to get the best results. The 

KNN algorithm was tested with a different number of neighbors. Cross-validation was 

implemented to make the results more reliable.  The results proved that the 

classification technique was suitable for detecting the quality of scientific writing. In 

order to answer the question, “what difference exists between the lexicon and semantics 

of high-quality or low-quality academic writing?” Section 4.8 investigated the 

syntactical role in scientific writing; ISI and non-ISI styles were compared with each 

other. 

In order to improve the accuracy of classification, Chapter 5 proposed Hybrid Genetic 

Random Forests (HGRF) as a new classification algorithm. After proposing HGRF, it 

was applied to the UCI datasets and compared with some classic ensemble classifiers 

(Random Forests, AdaBoost) and a novel classifier (C4.5) to prove that this proposed 

algorithm is effective. In the final stage, it was implemented on the ISI and non-ISI 

article datasets and the results were compared with baseline algorithms that had been 

tested earlier. The results were promising and the proposed method categorized ISI and 

non-ISI articles with better accuracy. 
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6.3 Contribution 

The first contribution of this research is advancing a novel method for 

identifying ISI articles from non-ISI ones. Previously, other researchers had 

used AI techniques and ML in scientific writing for various reasons, such as 

improving grammar or detecting plagiarism. However, this is the first time that 

classification methods were used to discover whether an article has the ability 

to be published in ISI journals from a writing style point of view. We proved 

that most classification algorithms have the ability to categorize ISI papers 

correctly with the proposed method. 

 

The second contribution was creating the ISI and non-ISI dataset. 

Unfortunately, during this research, we did not find an appropriate dataset in 

the area, so we created a dataset that consists of ISI and non-ISI papers. As we 

mentioned in Chapter 3, in order to decrease the probable bias in this research, 

we built the dataset in two distinct scientific areas. Computer Science and 

Business were selected due to my personal familiarity with both areas.  

 

The third contribution was proposing the new ensemble classifier. In this 

research, we focused on Random Forest as one of the most popular ensemble 

classifiers. Two innovations were made in developing the new algorithm. First, 

as we know, the RF uses Tree as a weak classifier. Different types of RF have 

been created by using various kinds of Trees. For instance, RF based on CART 

or RF based on C4.5. We created three different kinds of Trees for each in-of-

bag part and the best technique was selected by testing on out-of-bag partitions. 
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The result was a forest with a different range of trees. The second innovation 

was when we passed this Forest into the genetic algorithm. Each chromosome 

was a small forest with various kinds of trees. At the end of this stage, the best 

forest was provided by the GA. This algorithm was tested on different standard 

datasets for validity. Finally, as presented in Chapter 5, the algorithm was 

applied to the ISI and non-ISI dataset as well. 

Moreover, the syntactical role of high-quality scientific articles (ISI articles) 

was investigated in Section 4.8, which could be helpful for other researchers in 

future work.  

6.4 Future works 

This research can enable other scientists to predict whether a paper follows the 

ISI journal pattern or otherwise. However, one of the challenges of this study 

was the lack of a standard dataset. We created two datasets, one that contained 

ISI articles and another that contained non-ISI articles by considering two 

distinct scientific areas with a hundred papers from each. Access to most of the 

ISI journals is limited and crawlers cannot access them. Therefore, we had to 

collect the data manually. This process was slow and time-consuming. 

Otherwise, more samples from various areas could have been selected. We 

believe that more samples could lead to a stronger classifier. In addition, this 

study only focused on two scientific domains (Computer Science and Business) 

with random keywords. Expanding this domain could lead to a stronger 

classifier. On the other hand, it would be interesting if this process were 

repeated for certain specific journals to discover whether such journals are 

definable by their patterns.  
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Another important point is that this study focused mainly on the lexicon of 

academic scripts. It is assumed that if the proposed method of this research is 

mixed with grammatical specification of the academic papers, the results 

would be more robust and reliable. There is the room for researchers to work 

on this idea in future work.   

The performance of HGRF was surprisingly good. However, it is suggested 

that future studies apply and use more kinds of decision trees in HGRF to see 

how the results change. For instance, using a chi-square tree, BFTree, ADTree, 

NBTree, etc.  

6.5 Summary 

Creating an automated system for the identification of ISI and non-ISI papers is 

helpful for many students, scholars and scientists that intend to submit 

manuscripts to ISI journals. There are many automated tools for grammar 

checking at present, but providing such a unique service can accelerate the 

publishing process and decrease some of the confusion of novice researchers. 

In addition, this research introduced a new hybrid classification algorithm with 

results showing that it could be very successful in comparison to its ancestors.   
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