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ABSTRACT

Heart failure is a serious health problem that could potentially be life threatening

as the inflicted heart lacks the ability to supply sufficient oxygen rich blood to the rest

of the body. This spurred the emergence of implantable rotary blood pump (IRBP) that

is designed to provide an alternative route for blood flow as opposed to the native route

that may be obstructed or problematic due to different circumstances. In particular, much

interest has been garnered on the subject of pump state detection due to the potential

deleterious outcomes that is associated with over-pumping. The full unloading of the

left ventricle (LV) over long period of time in a pump state known as aortic valve non-

opening (ANO) may cause aortic valve fusion and thrombosis. Excessive pumping in a

pump state known as ventricular suction may induce several complications such as ar-

rhythmia induction, shift of septum, tricuspidal anastomosis and dislodging of thrombi.

In this study, over-pumping states such as ANO and ventricular suction are investigated

by employing the pump speed signal that is acquired noninvasively from four greyhounds

that consists of different levels of systemic vascular resistance (SVR) and total blood vol-

ume. A nested classification strategy is applied in two stages, with the first one involves

the detection of ventricular suction whereas the second stage was focused on distinguish-

ing ANO state from the normal ventricular ejection (VE) state. The classification task

is implemented by evaluating newly introduced indices (Ran2, Ran3, Sta1, Rms1, Rms3,

Rmr1, Rmr2, Rmr3) in addition to the existing indices for the different pump states. Four

types of classification algorithms, namely linear discriminant analysis (LDA), logistic re-

gression (LR) , back propagation neural network (BPNN) and k-nearest neighbor (KNN)

are applied to the computed indices to assess their performance in identification of the

different pump states. From the study it is observed that ventricular suction detection

achieved accuracy of 94% when implemented individually using the duration index. The
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performance for combination of indices was noted to have improved up to 99.5% (five

indices). As for ANO pump states, combination of root mean square and standard devia-

tion has successfully performed the detection with accuracy of 93%. Further addition of

indices of (five indices) will produce accuracy of 94.6%.
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ABSTRAK

Kegagalan jantung merupakan masalah kesihatan serius yang mengancam nyawa dise-

babkan jantung kehilangan kebolehan untuk membekalkan oksigen yang secukupnya me-

lalui aliran darah ke seluruh badan. Ini mendorong ciptaan implan pam darah putaran

(IRBP) untuk menyediakan laluan alternatif untuk pengaliran darah dari laluan asal yang

tersumbat atau bermasalah. Khususnya, subjek pengesanan keadaan pam telah banyak

menarik minat atas sebab risiko kesan buruk yang dikaitkan dengan pengempaman yang

keterlaluan. ’Unloading’ yang sepenuhnya dalam ventrikel kiri pesakit untuk tempoh

masa yang panjang dalam keadaan injap aortik yang bertutup (ANO) akan mendorong

gabungan injap aortik dan trombosis. Pengepaman secara berlebihan dalam keadaan pam

yang dikenal sebagai penyedutan ventrikel akan menyebabkan komplikasi seperti aritmia,

pengalihan septum, anastomosis dalam injap trikuspid dan pengasingan trombus. Dalam

kajian ini, keadaan pam yang keterlaluan seperti ANO dan penyedutan ventrikel telah

diselidik dengan menggunakan isyarat kelajuan pam yang diperoleh dengan cara bukan

invasif dari haiwan ’greyhound’ yang mengadungi pelbagai tahap rintangan sistem vasku-

lar (SVR) and jumlah isipadu darah. Klasifikasi berperingkat telah digunakan dalam dua

tahap, tahap pertama melibatkan keadaan penyedutan ventrikel manakala tahap kedua me-

numpukan perhatian kepada perbezaan keadaan ANO daripada keadaan penolakan ventri-

kel (VE) yang normal. Tugas klasifikasi telah dilaksanakan dengan penilaian indeks baru

(Ran2, Ran3, Sta1, Rms1, Rms3, Rmr1, Rmr2, Rmr3) selain indeks yang sedia ada untuk

keadaan pam yang berbeza. Empat jenis algoritma klasifikasi, iaitu analisis diskriminan

linear (LDA), regresi logistik (LR), rangkaian neural perambatan balik (BPNN) dan k jir-

an terdekat (KNN) telah digunakan pada untuk penilaian prestasi indeks teresebut dalam

pengenalpastian keadaan pam. Pemerhatian dari kajian menunjukkan bahawa pengesanan

keadaan ventrikel penyedutan mencapai ketepatan sebanyak 94% apabila indeks tempoh
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digunakan secara individu, prestasi kombinasi indeks diperhatikan telah meningkat kepa-

da 99.5% (lima indeks). Bagi keadaan ANO, kombinasi punca min kuasa dua dan sisihan

piawai telah berjaya melaksanakan pengesanan dengan ketepatan 93%. Penambahan in-

deks seterusnya dalam kombinasi (lima indeks) dapat meningkatkan ketepatan sehingga

94.6%.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The heart supports life by providing sufficient oxygen supply and nutrients to the

rest of the cells in the body for sustenance. It takes place via a predefined route of circula-

tion through blood flow continuously and the process critically influences the biological

mechanism of virtually every living thing. Without the supplements of oxygen-rich blood,

organs in the body will fail to meet the required metabolic demand, thereby causing po-

tential deterioration in the functions of the body. Hence, failure and impairment of this

vital organ will often lead to complications of varying degree and subsequently compro-

mising the overall health of the individual.

In fact, heart disease has one of the highest mortality rate in the world by claiming

an average of 17 million lives each year (Mackay, Mensah, Mendis, Greenlund, & Orga-

nization, 2004). Based on the statistics and trend, it is estimated that 23.6 million lives

worldwide may be lost due to heart diseases by the year 2030 (Mendis et al., 2011). Due

to the severity of risks posed by heart diseases, various methods have been implemented

over the years for patient recovery as well as improving their quality of life. While there

are observed improvements in terms of surgical approaches from medical perspective over

the years of research, the optimal option for those inflicted with end-stage heart diseases

remains to be heart transplantation (AlOmari et al., 2013). However, scarcity of donor

organs has not been able to fully meet the demand of the ever rising cases of patients

in need, causing only a minority of them are able to benefit from such procedure (Barr

et al., 2005). Hence, this spurs the development of ventricular assist device (VAD) that
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performs pumping action to aid the native heart.

Figure 1.1: An example of LVAD that connects left ventricle with aorta (The Alfred

Intensive Care Unit, 2011).

VAD is essentially a mechanical circulatory system that is used to augment the

cardiac output of patients with heart failure. Specifically, left ventricular assist device

(LVAD) is designed to support the failing left ventricle (AlOmari et al., 2013) that is re-

sponsible for the circulation of oxygenated blood. Particularly, implantable rotary blood

pump (IRBP) is a type of VAD with continuous flow that works with smaller size, lighter

weight and minimal blood trauma, therefore being the popular choice these days (AlO-

mari et al., 2013). Generally, VAD is a promising option due to its potential to provide

either temporary solution for recovery (Andrade, Al-Saloos, Jeewa, Sandor, & Cheung,

2010; Farrar et al., 2002), bridge to transplant (Matoba, Okubo, & Nosé, 2004; Navia

et al., 2002; Nosé, Yoshikawa, Murabayashi, & Takano, 2000) or as destination therapy

(Lietz et al., 2007; Long et al., 2005; S. J. Park et al., 2005) in instances where heart trans-

plantation is not viable (Boston, Simaan, Antaki, Yu, & Choi, 1998). As shown in Figure

1.1, the device is positioned to the left ventricle and the aorta, creating an alternative path

for the blow flow that may be hindered in the native heart due to patient conditions. Im-

plantation of VAD enables patients with heart diseases to continue with their lives instead

of being bound to the hospital, hence it is imperative that research efforts are made on
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improving the control design on the device. It can be seen that popularity of IRBP has

soared with the increasing types of such device being introduced for different clinical

applications in recent years (Kumpati, McCarthy, & Hoercher, 2001; Nosé et al., 2000,

2010).

Ultimately, the long term goal of LVAD is to provide intrinsic adaptation and sensi-

tivity with respect to changes in the venous return and cardiac conditions. Ideally, auto-

matic adjustment is desired on the pump output to reduce dependence on clinical observa-

tion (AlOmari et al., 2013). However, in practice, the current main constraints of LVAD

lies in its limited durability and risk of complications such as bleeding, thromboembolism

and infections (Kamdar et al., 2009).

1.2 Problem Statement

Non-pulsatile IRBP such as axial pump and centrifugal pump continuously draw the

blood out from the ventricle and supply it to aorta via the pump outlet. Control strategies

in LVAD are imperative as it will greatly affect its performance on the patients. Successful

implantation in the long term should allow minimal physician monitoring, with effective

control system that avoid occurrence of potentially abnormal pump states. Due to the

lack of the overall sensitivity and unphysiolgical responses to changes in the preloads and

afterloads (Salamonsen, Mason, & Ayre, 2011), the concern spurs the need to achieve

pump state detections that prevent harmful consequences such as ventricular suction state

(Karantonis, Lovell, et al., 2006; Ferreira, Boston, & Antaki, 2007; Choi, 2003; Mason,

Hilton, & Salamonsen, 2008; Voigt, Benkowski, & Morello, 2005; Ng, Lim, Mason, Avo-

lio, & Lovell, 2013; Wang & Simaan, 2013; Tzallas et al., 2012), ANOstate (Granegger,

Moscato, Mahr, Wieselthaler, & Schima, 2011; Granegger, Schima, Zimpfer, & Moscato,

2013; Bishop et al., 2010) and regurgitation state (Karantonis, Lovell, et al., 2006).
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1.3 Research Scope

In this study, the scope is focused on investigation of abnormal pump states resulted

from over-pumping occurrences. Specifically, detection of ventricular suction and ANO

from a wide range of operating conditions will be studied based on the noninvasively

acquired pump speed signal.

1.4 Research Objective

With the research motivation highlighted, the current study aims to achieve the fol-

lowing two objectives.

• To noninvasively detect ANO occurrence for different cardiac conditions.

• To noninvasively detect ventricular suction for different cardiac conditions.

1.5 Dissertation Outline

The dissertation entitled Noninvasive Detection of Physiologically Significant Pump-

ing States in an Implantable Rotary Blood Pump is essentially organized into six chapters.

Chapter 1 gives a brief overview on the background of the LVAD and highlights the

motivation of study. Problem statements, research scope and objectives for the study as

well as dissertation outline are included as well.

Meanwhile, Chapter 2 reviews the previous literature that has been conducted on the

subject of LVAD. Emphasis is given on the different pump states during the implantation

of the device, especially on over-pumping states.

Next, Chapter 3 discusses the techniques and implemented approaches that was ap-

plied to the scope of the study. Overall workflow of the study and reasoning in experimen-

tation process are documented in an organized manner to give reader an understanding to

the applied methods.
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Chapter 4 documents the implementation of ventricular suction detection. Results

of the employed methods with appropriate settings are presented and supported with ad-

equate comparative analysis.

For Chapter 5, a detailed elaboration is given to classification among the non-suction

states. Findings and observations on the implementation of ANO detection are detailed

and relevant analysis is conferred to discuss the evaluation results.

Last but not least, Chapter 6 concludes the dissertation with summary and conclusive

remark from conducting this study. Suggestion and recommendations are proposed for

possible future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter is divided into several sections. Section 2.2 chronicles different types

of rotary blood pump with regards to their strength and weakness in applications. Sec-

tion 2.3 delves deeper into the complications encountered for these devices encountered

and their effects from the physiological perspective. Next, different pump states are dis-

cussed in details with respect to rotary blood pump to explain the different categorization

that previous researchers have used in their work in Section 2.4. Meanwhile, Section

2.5 explains the significance of noninvasive approach in the study. Section 2.6 covers all

the previous work that has been proposed to solve the occurrence of ventricular collapse

during blood pump implementation. On the other hand, Section 2.7 details the literature

that has been used on ANO events for rotary blood pump support. Limitations and con-

straints of current literature are discussed in Section 2.8. Lastly, Section 2.9 presents a

brief summary of the chapter and subsequently research motivations.

2.2 History of Rotary Blood Pump

Pulsatility was at first believed to be the most optimal approach for the device and

hence most first generation LVADs (Allen, Murray, & Olsen, 1996; Borovetz, Kormos,

Griffith, & Hung, 1988; Dixon & Farris, 1991) operate the pumping in pulsatile manner,

offering effective mechanical unloading of failing heart (Nosé et al., 2000). Such de-

vices are usually used in a limited, critical care mode with close monitoring from health

specialists to perform the required manual adjustment to prescribe appropriate settings

(Boston, Antaki, & Simaan, 2003). Due to the bearings and moving parts, these pulsatile
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LVADs have limited durability and faced issues for long term use.

This eventually led to increasing use of continuous flow devices that allow wider

applications due to its small size and more durable characteristics. The second generation

LVADs do not require extensive dissection and hence lowering the incidence of post-

operative bleeding and device-related infections (Kamdar et al., 2009). In order to ensure

sufficient perfusion for end-organ function in human body, continuous flow centrifugal

pump is introduced for further improvements.

Supported by ceramic bearings, MicroMed DeBakey is a continuous axial flow pump

that has previously been used in the study of cardiac contractility (Naiyanetr et al., 2010),suc-

tion events (Voigt et al., 2005; Vollkron, Voitl, Ta, Wieselthaler, & Schima, 2007) and

fixed pulmonary hypertension in cardiac implantation (Zimpfer et al., 2007).

Meanwhile, the implantable, magnetically accentuated axial flow pump Incor (Berlin

Heart AG, Germany) (Schmid et al., 2005) was previously proposed for use in studying

control strategy of rotary blood pump on different modes of operations (Arndt, Nüsser,

Graichen, Müller, & Lampe, 2008; Arndt, Nüsser, & Lampe, 2010).

VentrAssist (VentraCor, Sdyney) is a third generation centrifugal pump with hydro-

dynamically suspended impeller used in several studies on ventricular collapse (Ayre et

al., 2001; Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al., 2006; Karantonis,

Lovell, Ayre, Mason, & Cloherty, 2007; Karantonis, Mason, et al., 2007; Karantonis et

al., 2008) .

Other LVADs that have been utilized in similar studies are centrifugal pump (Ky-

ocera Corp, Kyoto, Japan) (Yuhki et al., 1999), Gyro P1710 pumps (Baylor college of

Medicine) (Tanaka et al., 2006), Taita T-LVAD (Lin, Chou, Chen, & Jan, 2001), Nim-

bus/UoP axial flow blood pump (Choi, 2003) and Heartmate (Boston et al., 2003).
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2.3 Complications of LVAD with Cadiovascular Physiology

Different levels of cardiac output are required for patients with varying physiolog-

ical demands, which depend on contractility, preload and afterload. Contractility is the

intrinsic ability of heart muscle to contract while preload is the end diastolic pressure that

stretches the filled ventricle to its maximum. As such, the level of contractility of heart

is often related to the preload and venous return, where the blood returns to the heart

(Boston et al., 2003). Due to the structure of the heart, greater contraction force is gen-

erated with increasing amount of stretching during filling to pump more blood from its

chamber into the aorta, as concurred by the Frank-Sterling mechanism (Guyton & Hall,

2006). The afterload is the tension developed in the artery leading from the wall of the left

ventricle during ejection (Guyton & Hall, 2006), usually it is estimated by the systemic

vascular resistance (SVR). In response to afterload, the heart will produce higher pressure

and less volume to ensure constant total work per beat is performed by the heart (Boston

et al., 2003).

With the advances of technologies LVADs with smaller size, more efficient and more

reliable non-pulsatile pumps were developed, however careful pump speed control is still

required due to its poor sensitivity to ventricular preload (venous return) and high sensi-

tivity to ventricular afterload (Baloa, Liu, Boston, Simaan, & Antaki, 2000; Boston et al.,

1998; Choi, Boston, & Antaki, 2007; Choi, 2003). Difficulties may arise to determine the

appropriate set point for pump speed as it depends on preload and afterload that varies

with time (Boston et al., 2000).

Some existing LVAD applies pulsatility indices on the measurement of pump pres-

sure head for pump speed regulation (Arndt et al., 2010). Hence, occurrence of ventricular

collapse can be avoided as long as the venous return does not decrease suddenly. In order

to promote better washout of the left ventricle and opening of the aortic valve, the motor
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speed is reduced periodically to allow temporary regurgitation of the blood flow inside

the pump (Arndt et al., 2010).

Excessive pumping from devices will lead to myocardial suction that causes arrhyth-

mia induction, shift of septum, tricuspidal anastomosis and dislodging of thrombi, among

other complications. To avoid suction occurrence, manual speed adjustment is often in-

cluded in the setting that accommodate the expected lowest venous return (Arndt et al.,

2010). However, the performance of the pump is compromised as a result (Arndt et al.,

2010). Despite offering such auxiliary features, there is still room for improvement in

emerging technologies that continuously seek improvement for the implementation of

IRBP in the long term.

Being an inherently preload insensitive device, the lack of reliable implantable pres-

sure sensors has spurred the rising needs for alternative measures to control LVAD and

detect pump states that are detrimental to heart conditions of patient (Mason et al., 2008).

In order to make sure that LVAD does not hinder the their daily activities, it is imperative

that wider variation in demand for cardiac output can be met by adjusting the pump speed

(Ferreira, Boston, & Antaki, 2009). The lack of available pressure sensors for preload

condition detection indicates that efforts for adaptation to venous return changes in exist-

ing control approaches still left much to be desired (Ferreira, Simaan, Boston, & Antaki,

2006). Hence, adjustment of pump flow for accommodating the required physiological

demands of patients via pump speed remains a challenge today (Ferreira, Simaan, et al.,

2006).

It is suffice to say that the speed of LVAD needs to be sufficiently high to prevent

regurgitation or backflow, where the blood from aorta return to the left ventricle through

the pump (Ferreira, Chen, Simaan, Boston, & Antaki, 2006). On the other hand, there is

a limitation of high speed that can be applied as suction may occur if the pump attempts

to drive more blood such that it exceeds the available volume, resulting in ventricular col-
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lapse that may lead to cardiac tissue damage (Ferreira, Chen, et al., 2006). Also known

as anatomic collapse of the ventricle, this condition may also develop due to contact be-

tween the cannula tip and left ventricular wall besides over-pumping of LVAD (Boston

et al., 2003). Having pump speed that is excessively high will cause most or all of the

blood entering the left ventricle (LV) to exit through the inflow conduit of LVAD, leaving

no blood volume flowing in its native route across aortic valve. With the decreased blood

pressure or volume in the native heart, there is insufficient pressure for LV to open up aor-

tic valve, leading to deleterious neurologic events such as thrombus formation. Prolonged

closure of aortic valve may eventually lead to fusion, resulting in stenosis or regurgitation

that further disturb blood flow (Bishop et al., 2010). At low speed, there is no proper

cardiac output with sufficient perfusion pressure. Hence, it is imperative that pump speed

is increased adequately to allow maximized pump flow without inducing suction.

2.4 Types of Pump States

Figure 2.1: Events of cardiac cycle under normal condition for left ventricular function

(Guyton & Hall, 2006).
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In each heartbeat, cardiac events take place with a period of relaxation (diastole)

and followed by a period of contraction (systole) (Guyton & Hall, 2006) in Figure 2.1

to ensure successful blood pumping. During this recurring occurrence of diastole and

systole, several physiological states may take place.

As portrayed in Figure 2.1, VE is the ideal state, in which net positive flow is present

to satisfy physiological needs. This pump state can be interpreted from several signals

in Figure 2.2. Pressurization of the right and left ventricles begin with cardiac cycle,

blood flows through the ascending aorta as the rising left ventricular pressure (LVP) opens

the tricuspid valve (Ayre et al., 2001). Pressure across the pump decreases the instant

aortic valves open, causing the continued increase in pump flow throughout systole. End

pressurization of left ventricle triggered the abrupt decrease in flow across aorta (Ayre et

al., 2001).

Partial collapse of ventricle may occur at high pump speeds, involving obstruction of

the pump inlet cannula as the ventricle walls suck together (Karantonis, Cloherty, et al.,

2006). Aortic pressure drops to a level that is close to zero at end-systole and the aortic

valve remained close. In some cases, suction of the ventricle walls takes place several

times for a cardiac cycle, due to the increased stress that was placed on the native heart

(Karantonis, Lovell, et al., 2006). The oscillatory nature of pump flow is driven by the

transient preload, causing volume loading of an over-pumped left ventricle while the arte-

rial pressure is only supported by pump flow. Partial Ventricular Collapse Intermittently

(PVC-I) is caused by the respiration on cardiac behavior, hence it occurs only over a frac-

tion of the respiratory cycle instead of every heartbeat (Karantonis, Lovell, et al., 2006).

The aortic pressure is of zero pulsatility and aortic valves are closed for the remainder of

the respiratory cycle. On the contrary, Partial Ventricular Collapse Continuously (PVC-C)

is the pump state where suction event occurs for each cardiac cycle (Karantonis, Cloherty,

et al., 2006).
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Figure 2.2: Example of pump differential pressure (pump dP), arterial pressure (AoP), left

ventricular pressure (LVP), pump flow (Qp), proximal aortic flow (Qa) and pump speed

waveforms during VE (Ayre et al., 2001).

ANO is the pump state in which aortic valves remain closed throughout the entire

cardiac cycle with zero or slightly negative aortic flow due to insufficient LVP (Ayre

et al., 2001). Instead of showing the ideal waveform in Figure 2.2, the reduced LVP

was lower than aortic pressure such that it was unable to open the aortic valves. This

is caused by decreased myocardial contractility, increased power pump or a decrease in

blood returning from the left atrium (Ayre et al., 2001), as indicated in Figure 2.3. In

the long term, the prolonged closure of aortic valves has adverse effects such as stenosis,

regurgitation or even fusion (Rose, Park, Bank, & Miller, 2000) that further disrupt blood

flow. Compared to VE, the level of native heart modulation on the speed signal in ANO

pump state is generally lower (Karantonis, Cloherty, et al., 2006). Due to larger influence

by the respiratory system, it is subjected to greater variation in mean value (Karantonis,
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Cloherty, et al., 2006). In the events when aortic valves do not open, thrombogenesis is

likely to develop, leading to deleterious neurologic events (Bishop et al., 2010).

Figure 2.3: Example of pump differential pressure (pump dP), arterial pressure (AoP), left

ventricular pressure (LVP), pump flow (Qp), proximal aortic flow (Qa) and pump speed

waveforns showing ANO (Ayre et al., 2001).

Due to the lower pressure in open aortic valves as compared to that of LVAD cannula,

more blood is preferably directed through the aortic valve (Salamonsen et al., 2012).

Since the sensitivity of pump pulsatility for further increase of left ventricular stroke

work falls off once the aortic valves are open (Salamonsen et al., 2012), it is imperative

to detect the state of the aortic valve.

Figure 2.4 illustrates the transition of the different described pump states as the pump

speed of LVAD changes. High speed will result in over-pumping causing potential ANO

or ventricular suction state to occur whereas maintaining excessively low speed does not

aid pumping action of the heart due to the backward flow.
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Figure 2.4: Figurative summary of different pump states for rotary blood pump (Karan-

tonis, 2008).

Investigation by (Boston et al., 1998) only focused on suction state and non-suction

states in the classification of optimal operating speeds in animal experiments. Meanwhile,

(Lin et al., 2001) proposed the use of four stages (time of mitral valve close, time of aortic

valve open, time of aortic valve close, time of mitral valve open) to determine the pump

states. Mean pump flow was calculated for each stage to establish the relationship be-

tween pump voltage and the derived flow index. On the other hand, three pump states

were categorized in the study by (Choi, 2003), namely ‘before suction’, ‘imminent suc-

tion’ and ‘suction’ for the proposed four-input data fusion system. In the subsequent stud-

ies (Choi, Boston, & Antaki, 2005; Choi et al., 2007) from the same author, two pump

operating conditions, namely normal and suction status were characterized. Similarly,

(Ferreira et al., 2007, 2009; Ferreira, Chen, et al., 2006) named ‘no suction’, ‘moderate

suction’ and ‘severe suction’ as the three studied pump status in the suction identification

work. These categories were further improvised by predefined expert classification class

of ‘No suction’, ‘Moderate suction’, ‘Severe Suction’, ‘Not Classified’ and ‘Not useful’

on a different study using frequency and time-frequency based indices (Ferreira, Simaan,

et al., 2006). In a study by (Voigt et al., 2005), the physiological states are classified as

five different classes, namely ‘certainly no suction’, ‘most probably no suction’, ‘not de-
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cidable’, ‘most probably suction’ and ‘suction’. Meanwhile, (Vollkron et al., 2007, 2005)

uses five states, namely ‘suction’, ’most probably no suction’, ’not decidable’, ‘most

probably suction’ and ‘suction’ in the development of suction detection system based on

the beat-to-beat analysis of pump flow signal. In the study by (Yuhki et al., 1999), three

different states have been identified, namely regurgitation , normal and suction during the

development of control algorithm for pump state classification. A suction study by (Ma-

son et al., 2008) had categorized its patient data into ‘normal’, ‘pre-suction’ and ‘suction’,

this help identifying the different pump states occurring at the time of experimentation.

In the work of (Karantonis, Cloherty, et al., 2006), initially a total of five pump states

was identified, namely regurgitant pump flow, VE, ANO, PVC-I and PVC-C. However,

the proposed classification result had categorized the five states into only ‘suction’ and

‘non-suction’.

2.5 Noninvasive Signals

Conventional explicit control based on flow set point would require invasive acquisi-

tion of venous flow signal and pump flow signal (Baloa et al., 2000). However, due to the

limited reliability of the transducers in the long term implantation and the complications

caused, it should be avoided whenever possible (Ayre et al., 2001). Study on noninvasive

signals is advocated by others as well (Baloa et al., 2000; Choi, 2003; Choi et al., 2005,

2007). It is observed that invasive signals are used in addition to noninvasive signals for

aiding the verification of state determination in recent trends, as illustrated in Figure 2.5.

2.6 Ventricular Suction

In the study by (Boston et al., 1998), control system is integrated with four heuris-

tic indices, namely flow pulstility index, diminishing return index, minimum flow index

and harmonic magnitude ratio index. Combination of a number of techniques, such as

Bayesian methods, fuzzy logic or Dempster-Shafer based fusion approach were used to
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Figure 2.5: Waveforms of noninvasive signals (speed and current) and invasive signals

(aortic pressure (AoP), left ventricular pressure (LVP), pump inlet pressure (Pin), aortic

flow (Qa) and pump flow (Qp)) for different pumping states (Karantonis, Lovell, et al.,

2006).

provide overall decision regarding the presence of suction occurrence. It was found from

the study that fuzzy logic method achieved the highest classification rate, albeit resulting

in some uncertain classification.

Suction detection scheme based on power spectral density analysis was applied by

(Yuhki et al., 1999) through obtaining the waveform deformation index (WDI) . The pro-

posed method did not require any external flow or pressure sensors and the experiment

was conducted on goats as subjects. With the assumption that undistorted motor current

waveform can be represented as a pure sine wave, various waveforms were synthesized

including the one that highly resembled the distorted motor current waveform obtained

from mock loop study. As shown in Figure 2.6, patterns of different pump states were

identified from the relationship of signals. From the pump speed adjustment based on

the WDI algorithm, the risk of regurgitation and suction events have been successfully

reduced. To detect suction occurrence in VAD, three indices, namely pulsatility index,
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diminishing return index and harmonic index were proposed in an experimental study on

calves (Baloa et al., 2000). Multiple hemodynamic variables were taken into considera-

tion during the development of multi-objective optimization scheme (Baloa et al., 2000).

The pulsatility index was set to hold speed slightly below the suction-inducing speed, and

the difference between the reference and actual pulsatility is opted as control signal (Baloa

et al., 2000). The dimishing return index measured the flow rate changes with respect to

speed transition by assuming that the flow-speed relationship are the same throughout

computation time of the control system (Baloa et al., 2000). Meanwhile, the harmonic

index described loss of power in the first harmonic of the pump current waveform (Baloa

et al., 2000).

Figure 2.6: Patterns of different states (regurgitation, normal and suction) from deriving

the relationship between bypass flow and motor current waveforms (Yuhki et al., 1999).

Data fusion with neural fuzzy logic was proposed by (Choi, 2003) in suction detec-

tion study to handle ambiguous signals. Half of the data from animal experiments was

used for training the system to adjust the membership function by computing the mean

pulsatility index, change in mean pulsatility index, mean value and change in mean value

of the load coefficient (Choi, 2003). The resulting pump flow and load coefficient of pump

derived from changes in pump speed from the study is shown in Figure 2.7. The findings

from the work have been extended for regulation of pump speed (Choi et al., 2005) of an
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axial flow blood pump for LVAD. By employing a model of cardiovascular system with

implanted LVAD, reference control index of pulsatility controller was investigated with

inclusion of changes in SVR (Choi et al., 2005). However, relationship between ventric-

ular unloading and stroke volume is presumed by pulsatility-based controller. There were

instances of such controllers failing to meet physiological demands of patients with vari-

ous conditions due to the misleading reference pulsatility index that does not account for

changes caused by altered contractility from sympathetic response or ventricular recovery

(Choi et al., 2007). Hence, in order to solve this problem, pulsatility ratio of the pump

flow and pressure difference (Choi et al., 2007) was suggested as a control index. Several

different physiological disturbances involving afterload through SVR, preload through

pulmonary vascular impedance (PVI), contractility of left heart and threshold pressure of

suction resistor are taken into account during the simulation.

Figure 2.7: Resulting signal waveforms due to change in pump speed (a) pump flow

(left), pulsatility index(center), and mean value of the pump flow (right) (b) load coeffi-

cient (left), pulsatility index of the load coefficient (center) and mean value of the load

coefficient (right) (Choi, 2003).

Mock loop as well as in vitro experiments were used in the study by (Voigt et al.,

2005) to identify suction events. Reliable detection algorithm with optimized parameters

was found for solid suction detection under non-pulsatile conditions. However, due to the
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overlapping boundaries at the working point of the proposed system, the algorithm lost its

steadiness in the pulsatile states. Nevertheless, most suction occurrence happens shortly

after the implantation of LVAD where the volume is not balanced due to hypovolemia.

In many cases, the blood flow is non-pulsatile when there is rapid change in ventricular

filling, which demanded pump speed adjustments (Voigt et al., 2005).

A control method to alleviate inflow suction by increasing right pump flow in biven-

tricular bypass configuration was proposed by (Tanaka et al., 2006) for implementation

between the ventricles and arteries. Particularly during the first few days after operation,

the circulatory system of patients may be slightly unstable. This approach allows the

circulatory control to be maintained while maximizing the flow rate simultaneously.

A discriminant analysis model was proposed by (Ferreira, Chen, et al., 2006) in a

suction detection study with pump flow signal. The model combined several indices from

the frequency domain, time domain and time-frequency domain. Frequency indices were

used for sensing indirect changes in the harmonic and subharmonic energy content of

the investigated signal during suction events. Based on a beat-to-beat analysis and first

derivative of pump flow, the time domain indices identified the changes in pulsatility.

Meanwhile, time-frequency indices were used to find the standard deviation variations

of the instantaneous frequency of pump flow signal. Some of the identified indices with

potential were extended to the subsequent work that focused on frequency indices supple-

mented by time-frequency indices via feature extraction algorithm (Ferreira, Simaan, et

al., 2006). The acquired information was combined into a weighted decision system and

preliminary analysis was shown to be rather positive. This work was further extended to

the design of a rule-based controller for LVAD (Ferreira et al., 2007). With a lumped pa-

rameter model of the circulatory system coupled with LVAD, several levels of activity and

contractility were tested on the system. By Mandani’s approach (Mamdani, 1974), the de-

sign of the said controller required membership sets for the input and output variables as
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well as construction of rule-base and selection of defuzzification method (Ferreira et al.,

2007). Fuzzy associative memory bank was used to organize the rule base, associating

the input variables with output variables (Ferreira et al., 2009). Hemodynamic analysis

was performed to verify the proposed method by computation of cardiac output and mean

arterial pressure under all test conditions.

Based on beat-to-beat analysis of the pump flow signal, (Vollkron et al., 2005) devel-

oped a reliable suction system with optimization on different algorithms. The six resulting

suction indicators were asymmetry criteria, plateau criteria, slew rate criteria, low-flow

criteria, mean-min-max criteria, and saddle criteria. The proposed approach achieved

specificity of 85% to 95% for certain suction state and possible suction state (Voigt et

al., 2005). Clinical experiments was conducted to further improve the automatic suction

detection system (Vollkron et al., 2007). Additional criterion derived from existing indi-

cators was used and numerically optimized nonlinear characteristic curve dependent on

heart rate was applied to substitute threshold in previous study (Vollkron et al., 2005). In

(Vollkron et al., 2007), arrhythmia events was included for the investigation to gauge its

effectiveness in practical applications. Ventricular arrhythmia is the change of the heart

contraction from its normal rate, possibly reducing cardiac output and increasing heart

work rate, hence requiring more oxygen than usual. It may occur as a transient effect dur-

ing partial or full ventricular collapse with periods of reduced venous return due to exces-

sive unloading of continuous left ventricular support, and was reported to vanish within

five minutes after suction (Vollkron et al., 2007). Different types of arrhythmia such as

ventricular extrasystolic, monomorphic ventricular tachycardia, polymorphic ventricular

tachycardia and ventricular fibrillation were taken into consideration to accommodate the

varying physiological conditions on patients.

Compared to previous studies that only include normal and suction state, (Karanto-

nis, Cloherty, et al., 2006) initially considered a large variation of pump state. A non-
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Figure 2.8: Waveforms of indices based on pump speed to determine different pump

states with porcine data (Karantonis, Cloherty, et al., 2006).

invasive strategy involving the use of seven indices was proposed as shown in Figure 2.8.

Porcine experiments were carried out with LVAD from VentrAssist, employing classifica-

tion and regression tree (CART) for detection of different states via pruning of classifica-

tion tree. The indices used were speed pulsatility, change in speed pulsatility, difference

in consecutive change in speed pulsatility, speed amplitude symmetry, change in speed

amplitude symmetry, number of samples between successive crossings of filtered and

averaged signal as well as second derivative of the speed signal. Initially, the detection

performance was evaluated for each and every states tested. Rather than individual states,

the identification result is observed to be improved when the states were grouped. VE

and ANO states were categorized as non-suction state whereas both PVC-I and PVC-C
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Figure 2.9: Waveforms of indices based on pump speed to determine normal and suction

states on human data (Karantonis, Mason, et al., 2007).

fall under suction state. This proposed method was extended to data obtained from heart

patients in intensive care unit (Karantonis, Mason, et al., 2007), as shown by the pump

speed index waveforms in Figure 2.9. It was observed that inter-patient and intra-patient

variability posed a significant challenge for the automated state detection algorithms. It

is noted from the patient trials (Karantonis, Lovell, et al., 2006; Karantonis, Mason, et

al., 2007) that the wide variation in cardiac conditions of the study had cause a lower per-

formance than the previous study (Karantonis, Cloherty, et al., 2006) that achieved 100%

accuracy. In order to account for more cardiac rhythm disturbances, a study (Karantonis,

Lovell, et al., 2007) included arrhythmia occurrence with the same approach. Arrhythmic

occurrence is a result of disturbance of normal electrical conduction system of the heart

and may cause suction at left ventricular myocardium. While non-arrhythmic suction is
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due to excessive withdrawal of blood from left ventricle by the pump, suction induced

by arrhythmia originates naturally in the native heart itself and appeared as interspersed

brief periods of suction in lower speed (Karantonis, Lovell, et al., 2007). Nevertheless,

these two were categorized as the same state due to suction characteristics (Karantonis,

Lovell, et al., 2007). With the additional suction from arrhythmia to be included in the

training set, good results were obtained for the suction classification algorithm. To further

extend the suction detection approach, artificial neural network (Karantonis et al., 2008)

was used for evaluating the indices due to the classifier’s ability to adaptively learn and

self-organize training information. As with previous studies, the five different states were

classified into ‘suction’ and ‘normal’ clusters with high sensitivity and specificity.

A study by (Mason et al., 2008) regarding suction detection conducted on human

patients had proposed a combination of multiple indices. The presented work used in-

dices such as minimum change in slope, maximum increase in successive maxima within

snapshots, maximum slope, waveform deformation, waveform amplitude, number of high

data samples relative to the snapshot mean and difference between maximum and mean

(Mason et al., 2008). Each of the seven indices was assigned a threshold value for suction

classification. All possible paired combinations were considered to increase sensitivity.

Beat to beat variation in flow was identified and obtained via echocardiography while

systolic notching at the arterial pressure waveform was used to aid the identification of

suction events. Fixed threshold method was applied for both single index and combination

of indices for evaluation purposes. The study concluded that combination of maximum

increase in successive maxima within snapshots index and number of high data samples

relative to the snapshot mean index cover suction onset as well as both early and late

forms of ventricular collapse (Mason et al., 2008).

(Arndt et al., 2010) proposed the use of a pulsatility based preload-sensitive control

algorithm with self-adapting pulsatility reference for implantable LVAD. The pulsatility

23

Univ
ers

ity
 of

 M
ala

ya



index was calculated as the mean absolute deviation from the mean pressure difference.

The fast response provided by the pulsatility index to accommodate the pump output to

venous return (Arndt et al., 2010).

By considering the complex relationship between heart rate, blood assistant index

(BAI) and pump speed, the model-free adaptive control was proposed for the design of

anti-suction controller (Gao, Gu, Zeng, & Chang, 2012). BAI is defined as the ratio

of external work from ventricular assist device to the input power of the cardiovascular

system, and act as an indicator to show occurrence of left ventricular suction under several

physiological conditions. BAI signal implies the function of the native heart whereas

heart rate signal reflects the blood demand of circulatory system. From the study it was

observed that when the rotational speed of device increase leading to the decrease of

LVP, the BAI increase correspondingly. On the other hands, when suction occurs, BAI

exceeds 100%. The demonstrated positive correlation of the proposed index with respect

to suction occurrence had prompted its incorporation with previous work involving heart

rate (Gao, Nie, Chang, & Zeng, 2011) to propose the control algorithm.

In attempting to detect occurrence of ventricular suction, Gaussian Mixture Model

(GMM) with constrained parameters was applied by (Tzallas et al., 2012) to model the

reduction of pump flow signals baseline. The proposed methodological steps involve sig-

nal windowing, GMM classification and GMM adaptation (Tzallas et al., 2012). With

the aim of tracking the signal baseline and rapid baseline degradation that is caused by

suction occurrence (Tzallas et al., 2012), the approach was said to be simple for imple-

mentation and can be operated in real time. Performance of the method was quantified by

using receiver operating condition with overall accuracy of 93% (Tzallas et al., 2012).

In the work of (Wang, Faragallah, Divo, & Simaan, 2011; Wang & Simaan, 2013),

suction detection was identified by using Lagrangian support vector machine. A total of

three pump states (no suction, approaching suction and suction) were identified via a two-
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step classification. In the first step, discrimination was performed between suction state

and non-suction state (no suction and approaching suction). Classification among ‘no

suction’ state and ‘approaching suction’ state was implemented in the second step. In the

study, both centrifugal pump and axial pump were used in calves data for comparisons.

Different types of suction and non-suction events was studied (Ng et al., 2013) with

indices deriving from amplitude, duration, gradient and frequency of pump speed signal

based on their irregularity. The suction events considered in the study included PVC-I as

well as PVC-C with and without arrhythmia occurrences. It was found from the study

that combination of two amplitude based indices, namely the maximum gradient change

in positive slope and standard deviation of maximum amplitude for a cycle achieved sen-

sitivity of 98.9% and specificity of 99.7% (Ng et al., 2013).

2.7 Aortic Valve Non-opening

Operating on the basis of bio-impedance changes to applied alternating current,

impedance cardiography (DeMarzo & Lang, 1996) was used in the detection of aortic

valve opening. However, the ambiguity due to variation of the signal impeded accurate

identification on onset of VE.

In the study of different pumping states of LVAD, (Ayre et al., 2001) had proposed

a state transition index (STI) in ovine experiments. In order to investigate the different

pump states induced by the changes in the pump speed point of Figure 2.10 for hyperten-

sive, normovolemic and hypovolemic physiological intervention, invasive measurements

such as aortic pressure (AoP), LVP and aortic flow (AoQ) were taken as reference for

determining the index of pump speed. Derived from the maximum instantaneous speed

and the root mean square (rms) of the instantaneous speed (Ayre et al., 2001), the STI is

low or negative when there is no state change. However, the STI value was significantly

larger and positive during presence of state change.
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Figure 2.10: Transition of pump state from VE to ANO during the increase of pump speed

(Ayre et al., 2001).

In (Lin et al., 2001), the cardiac cycle was divided into four stages according to the

status of aortic valve and mitral valve. Optimal pump control index from computation of

pump voltage was proposed for suction and backflow reduction purposes. It was found

from the study that the proposed index (total time between mitral valve close to aortic

valve open divided by total time between aortic valve close to mitral valve open) is a

good indicator for controlling LVAD (Lin et al., 2001).

Optimal adjustment of operating point was investigated by using a control method

(Arndt et al., 2008) that performs both full assist (FA) and partial assist (PA) with simu-

lation model. FA provides maximum support with closed aortic valve but avoid suction

occurrence by having adequate safety margin. Meanwhile, PA allows moderate tran-

sitioning support between the opening of aortic valve and a permanently closed aortic

valve with better LV washout, moderate LV loading and near physiological LV volume
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(Arndt et al., 2008). Pulsatility index was applied on the rotational speed signal to design

a cascaded control loop transitioning from mode FA to PA.

In a study by (Bishop et al., 2010), it was hyphothesed that electrical current wave-

forms would indicate the state of aortic valve due to the pressure change in the left ven-

tricular. Data from six patients are collected and Fast Fouriér transform analysis was

performed. Karhunen-Loève, also known as principal component analysis was applied to

project the pump electrical current signal, trend between aortic valve opening and current

usage of LVAD (Bishop et al., 2010). By indicating shared signal behaviors, the eigenvec-

tors can be used to determine the opening ratio of aortic valve without echocardiograms

for minimal aortic valve regurgitation (Bishop et al., 2010). Despite achieving statisti-

cally significant results, prior calibration was required and patient-specific nature of the

proposed approach is an undesirable factor that does not allow inter-patient variation dur-

ing larger scale validation.

Skewness, kurtosis and crestfactor were proposed by (Granegger et al., 2011, 2013)

for identification of aortic valve opening by employing nearest neighbor classifier. It was

observed that partial support occurs during systole where the aortic valve open and the

pump flow shows a flat plateau. On the contrary, sharper peak is displayed during full

support, in which the aortic valve closes. From the validation on numerical model as well

as animal experiments, the study reported accuracy of 95% for animal data and 99% for

simulated numerical model. This approach allows pump speed adjustment for frequent

opening of the aortic valve and thus avoids the adverse effect of ANO.

2.8 Current Limitations

The proposed pulsitility index (Arndt et al., 2008, 2010) has limited effectiveness

in clinical study. Apparent pulsitility induced by suction is not highly distinguishable

from the actual pulsitility from ventricular contraction and the vague selection criteria for
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pulsatility index value poses feasibility issues for practical application.

While the work of (Yuhki et al., 1999) was able to establish suction event or re-

gurgitation using WDI, this was actually done visually with reference to graph of WDI

against speed. Meanwhile, (Endo et al., 2001) was able to detect the transition between

partial and total assist of the native heart as well as the transition between total assist and

suction. However, a coefficient peculiar to each individual would be needed and this hin-

ders automated large scale implementation. Despite single index based suction detection

mechanism was proposed by (Tanaka et al., 2006), there was no discussion made con-

cerning inter-animal variation that requires a more robust algorithm. Since no automated

process was involved and no statistical assessment was given for the said approach, there

was no statistical basis that can be made regarding these works.

In the works of (Vollkron et al., 2005, 2007), analysis of pump flow signal was

performed with inclusion of flow probe. Despite achieving high sensitivity and specificity,

these methods are not preferable as such invasive sensors tend to reduce system reliability

and increases costs.

Despite the inclusion of ANO state in previous suction study (Karantonis, Cloherty,

et al., 2006) had achieved accuracy of 100%, it was suggested that the data available

was highly limited. As mentioned in his later study (Karantonis, Mason, et al., 2007)

involving human patients, the wide variation in cardiac conditions and dynamics was not

taken into consideration in the previous study (Karantonis, Cloherty, et al., 2006). State

identification involving arrhythmia events was later explored in the effort to validate the

proposed algorithm in a more robust environment, in this instance the ANO data was

omitted due to insufficient data.

While the work of (Tzallas et al., 2012) on suction detection has achieved accuracy of

93%, the implemented GMM approach lacks the robustness to outliers. The classification

was performed under assumption that the signals in the suction state behave in Gaussian
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distribution.

2.9 Summary

Due to the increasing usage of LVAD, it is imperative for these devices to have ad-

equate perfusion for end-organ function. Ventricular collapse and ANO occurrence are

some of the deleterious pump states that need to be rectified to avoid inducing compli-

cations during implementation of the IRBP. Despite the previous efforts on the subjects,

there are very few automated algorithm that emphasized on studying their effectiveness

with varying levels of preloads and afterloads. In this study, the detection of ventricular

suction and ANO are conducted with consideration of a variety of physiological condi-

tions for a more robust investigation.
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CHAPTER 3

METHODS

3.1 Overview

The chapter focuses primarily on the techniques and details on the implementation

workflow performed on the study. Section 3.2 elaborates the acquisition process of the

signals of interests for the classification task. Meanwhile, Section 3.3 gives explana-

tion on the signal processing steps operated on the obtained signals in greater details by

describing the overall workflow, cycle estimation as well as indices computation. The

following section describes the various classification algorithms that are evaluated in the

study. Next, validation approaches of the classification are presented in Section 3.5 on the

related classifiers. Section 3.6 functions as a platform for detailing the selection methods

of the extracted indices for optimal classification performance and improvement of com-

bination set of indices. Section 3.7 includes the evaluative measures taken for the tested

approaches in the study. Lastly, Section 3.8 gives the summarized remark for the chapter.

3.2 Signal Acquisition

In this study, different pump states are investigated for data taken from four grey-

hounds. These healthy, anesthetized and open-chest animals were acutely implanted with

IRBP from VentrAssistTM (Ventracor Ltd, Sydney, Australia) with mechanical ventila-

tion (Lim, 2010). With apico-aortic configuration, the IRBP was integrated with third-

generation centrifugal pump and novel hydrodynamic bearing that gives a characteristi-

cally flat pump-head versus pump-flow curve (Lim, 2010). The pump speed of the IRBP

was controlled by a proportional integral controller with time constant of about 3.5ms,

allowing the pump speed to be modulated by cardiac cycle (Lim, 2010).
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3.2.1 Acquisition of Non-invasive Pump Speed Signal

In the IRBP, there is an impeller with four blades, each of them were included with

permanent magnet that works with stator coils for impeller rotation (Ayre, Mason, &

Karantonis, 2007). Each stator coil set is fitted in pump housing on either side of the

impeller (Ayre et al., 2007). While being rotated, the impeller is suspended by hydrody-

namic thrust bearing provided by the pump (Ayre et al., 2007). A brushless DC motor

formed from the stator coils and the magnets within the impeller will send six back elec-

tromotive force (emf) pulses per full revolution back to the controller, correlating with

the different magnet positions as the stator coils are passed (Ayre et al., 2007). The in-

stantaneous speed is thereby calculated from the detected back emf signal generated from

the motor (Ayre et al., 2007). The experiment on the subjects under healthy condition

started with a speed ramp from 1600 rpm, with increment of 100 rpm at each set point

(Lim, 2010). Once all variables have reached steady state, perturbations on the cardiac

contractility, afterload and preload are induced for different specified levels, that is, low,

medium and high (Lim, 2010). Figure 3.1 is an example of speed ramp that transitions

from VE state to ANO state.
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Figure 3.1: Snapshot of a speed ramp signal taken from greyhound data (Ooi et al., 2013).
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3.2.2 Acquisition of Invasive Signals as Reference Signals

In the experiment, the subjects were instrumented with indwelling catheters and dis-

posable Tru Wave pressure transducer (Edwards Life Sciences, Pty Ltd, Sydney, Aus-

tralia) for readings of AoP, LVP, left atrial pressure (LAP), central venous pressure

(CVP), pulmonary arterial pressure (PAP), inlet pressure (INP) and outlet pressure (OUP)

(Lim, 2010). In order to record AoQ and pump flow rate, ultrasonic flow probe (Transcon-

ics perivascular and tubing flow sensors) were connected with T106 flowmeter (Transonic

systems Inc, NY,USA)(Lim, 2010). While the initial acquisition system was set at sam-

pling rate of 4 kHz, it was down-sampled to 200 Hz in accordance with most previous

studies (Karantonis, Lovell, et al., 2006; Voigt et al., 2005; Vollkron et al., 2007; Ferreira

et al., 2007; Mason et al., 2008).

3.3 Cardiac Signal Processing

Appropriate approaches are applied to the signal for the pre-processing steps as well

as the actual realization of the indices extraction, forming an indispensable portion of

the study. Two types of classification workflow are implemented in the study, namely

multiclass classification and binary classification.

Multiclass classification approach is performed in order to differentiate all the avail-

able different pump states at one go. It is recommended for highly evident characteristics

that are exclusively different for each pump state. As depicted in Figure 3.2, the data is

classified into three different pump states, namely VE, ANO and suction. This method

was previously applied in (Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al.,

2006, 2007; Ferreira, Chen, et al., 2006; Voigt et al., 2005; Choi, 2003) for determining

different pump states with varying degree of success.

Another approach of performing the study is through nested binary classification.

The study on over-pumping states is implemented in two stages. The data is first dis-
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Data

ANOVE Suction

Figure 3.2: Multiclass classification strategy for overall classification of all pump states

criminated into two groups, namely suction state and non-suction states. In the second

step, the resultant non-suction states are further classified into VE state and ANO state

as shown in Figure 3.3. This strategy has been applied in a number of previous studies

on suction detection (Karantonis, Mason, et al., 2007; Wang & Simaan, 2013) as well as

ANO detection (Granegger et al., 2011, 2013; Ooi et al., 2014).

Data

Non-

Suction

Suction

VEANO

Figure 3.3: Nested binary classification strategy for overall classification of all pump

states

Overall workflow of undertaken tasks involving the two stages for the study is il-

lustrated in Figure 3.4. Initially, different pump states are appropriately categorized by

using reference signals from gold standards established from existing knowledge (Ayre et

al., 2001; Lim et al., 2012). This is imperative to ensure that no equivocal pump state or

debatable case that may compromise the reliability or correctness of result are allowed in

the study. This is followed by the process of estimating cycles from the signals that will be

discussed in greater details. This pre-processing step allows different morphology-based

indices to be computed on the respective cycles. Different characteristics of signals are

expected to be extracted with regards to the identified cycles and proceed to the testing

phase with various classification algorithms. Finally through repetitive testing and exper-

imenting with the relevant parameters, the results from the classifiers will be optimized
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for higher performance.

Start

Pump States Confirmation

Cycle Estimation

Index Computation

Classification Implementation

Algorithm Optimization

End

Figure 3.4: Flowchart of overall pump state classification
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Figure 3.5: Implementation of pump speed waveform during cardiac cycle estimation for

indices extraction.

Indices for the classification task are computed by deriving the data points from the

estimated cycle. After filtering the signal with a low pass filter of 10 Hz cutoff frequency

to remove noise, a moving average filter is applied to the signal. Intersection between a
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filtered signal and moving average of the filtered signal is used to indicate the said cycles,

which is identified from one crossing point to the successive alternate crossing point from

the superimposition, as shown in Figure 3.5.

In the determination of cardiac cycles, different values for moving average size rang-

ing from 0.25s to 4s are tested. When the moving average size is exceedingly small, over

estimation of cycle may occur as shown in Figure 3.6(a) where there is a shift in baseline

when the pump speed is ramped up. On the contrary in Figure 3.6(b), under estimation

may occur from moving average size that is too large. An imperfect and irregular peak in

the speed waveform may be mistakenly identified as multiple cycles, causing the incorrect

derivation of indices.
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Figure 3.6: Effects of different moving average size on cycle estimation.(a) shows moving

average of 0.5s has under-estimated the number of cycles and (b) shows moving average

of 2s has over-estimated the number of cycles (Ooi et al., 2014).

Hence, finding suitable size of moving average is imperative in determining the cycle

for future cycle extraction. In this study, the moving average size is set at 1s which is

equivalent to 200 data points.
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3.3.0 (a) Multiple Cycle Based Index Computation

Index computation from multiple cycles is attempted to compute indices from several

cycles instead of only taking computation from each cycle. The approach is implemented

when the featured characteristic of different states lies in between cycle. From Figure

3.7, it can be seen that a single segment comprises of several cycles that each compute

different values for pump state index. These are combined to give an overall represen-

tation that describe the morphology of the segment. Such procedure is performed by

taking the maximum, minimum, mean and standard deviation of all computed indices in

the segment, which represented a single data in classification task. This is applied during

the differentiation between suction state and non-suction state in the first step. A seg-

ment with duration of five seconds will be taken out and evaluated as a single data for the

classification task.
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Figure 3.7: Single data represented by segment that consists of multiple cycles for indices

computation.

3.3.0 (b) Single Cycle Based Index Computation

Single cycle based index computation is suitable for signals that display distinct

shapes and morphology in each cycle. This approach allows different characteristic ex-
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hibited to be taken into consideration, including the slight variation among the same state.

As shown in Figure 3.8, indices are computed from every cycle. The indices computed

from each of the estimated cycles (cycle 1, cycle 2 etc) are taken as separate data for dis-

tinguishing between different states. This method is used in the second stage to classify

among ANO state and VE state.
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Figure 3.8: Five data represented by five individual cycles in single cycle index computa-

tion

3.4 Classification Algorithms

Classifiers are data mining tools applied to make automatic prediction of member-

ship group for data instances (Qin, Xia, & Li, 2009). These techniques can be applied in a

wide range of applications from astronomy (Folkes, Lahav, & Maddox, 1996) to fields of

minuscule scale involving microorganisms (Beck & Foster, 2014). In this context, clas-

sifiers are implemented to distinguish between different states that take place throughout

the course of implantation of rotary blood pump. Classifiers should be able to represent

even the most complicated problem when supplied with sufficient data in order to make

the appropriate decision (Michie, Spiegelhalter, & Taylor, 1994). Generally, supervised

classifications are categorized into parametric and non-parametric classifiers. The former
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class A
class B

Figure 3.9: An example of LDA implementation on two classes that considers the

between-class variance and within class variance.

is implemented with prior assumption on the data distribution whereas the latter does not

rely on such assumption. In this study, both will be employed to the pump state classifica-

tion for comparison. Linear Discriminant Analysis (LDA) and Logistic Regression (LR)

are examples of parametric classifiers whereas both Back Propagation Neural Network

(BPNN) and K-Nearest Neighbor (KNN) are categorized as non-parametric classifiers.

3.4.1 Linear Discriminant Analysis

LDA is one of the oldest classification procedures and the most commonly imple-

mented (Michie et al., 1994). It works by searching for a set of weights to produce a linear

discriminant boundary line by considering between-class variance as well as within-class

variance. The objective is to develop an alternate subspace with lower dimension from

statistical measure of mean value and variance so that the data points become separable

(Xanthopoulos, Pardalos, & Trafalis, 2012). The separation is achieved from obtaining a

boundary line that bisects the joining line between centers of the classes (Michie et al.,

1994). Direction of the said line is affected by the shape of the clusters of points (Michie

et al., 1994). As shown in Figure 3.9, the two types of data points are separated by clas-

sifier boundary line determined from distribution of data in the different classes. This is

achieved by taking into consideration the cluster size and distribution of the two classes.

LDA solution can be acquired from a generalized eigenvalue system so fast and mas-
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sive processing of data samples can be performed (Xanthopoulos et al., 2012). However,

LDA was developed for use in normally distributed explanatory variables, hence good

results may only be obtained when normality assumptions are fulfilled (Pohar, Blas, &

Turk, 2004).

3.4.2 Logistic Regression

Logistic regression estimates the probability of occurrence of a particular event based

on the dependent variable that is dichotomous, discrete or categorical (Antonogeorgos,

Panagiotakos, Priftis, & Tzonou, 2009). Classes are labelled as ‘1’ for positive event and

‘0’ for negative event. Logistic function, also known as sigmoid function (Dreiseitl &

Ohno-Machado, 2002) is applied to map the probability decision into the interval between

[0;1], as shown in Figure 3.10. When the value of the sigmoid function falls above 0.5,

the class is represented by ‘1’, yielding positive event. On the contrary, value of sigmoid

function that exceeds 0.5 will cause the class to be counted as ‘0’, leading it to be classified

as negative event.

−6 −4 −2 0 2 4 6

0

0.5

1

Figure 3.10: Plot of sigmoid function for the classification implementation

Overall flexibility of the classifier boundary is enhanced via its ability to obtain non-

linear models. The main disadvantage of LR lies in its assumption of data following

the logistic distribution and errors being binomially distributed (Hosmer & Lemeshow,

2004). This may not be the case for every practical application. Also, whenever faced
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with large data set, there is a great chance of LR having overfitting problem (Geng, 1992).

LR is said to be sensitive to outliers too (S. Y. Park & Liu, 2011).

3.4.3 Back Propagation Neural Network

In BPNN, the ability to learn relationship between a series of input variables and

the corresponding variables is achieved from the training of network (Tu, 1996). Internal

weights within the network are adjusted (Tu, 1996) in accordance to the mathematical

relationship between the inputs and outputs of a data set, as mapped in Fig 3.11. It is

a model free estimator that does not depend on assumption of the tested data (Chang &

Islam, 2000).

Input

layer

Hidden

layer

Output

layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 3.11: An example of a neural network model

The back propagation scheme comprises of forward activation and backward error

flows (Moustafa, Alqadi, & Shahroury, 2011). Initiated by the random assignment of

weights for symmetry breaking, the input patterns are fed to the network and output pat-

terns are produced from the forward activation flow (Moustafa et al., 2011). Errors from

the generated output are computed with respect to the desired output (Moustafa et al.,
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2011). The errors are then summed over the complete set of training data to modify the

weights in the hidden layer (Moustafa et al., 2011). The error in the form of cost function

is gauged by the deviation of predicted classes from actual classes in supervised learning.

Lower cost function would imply lower errors, where the predicted classes highly resem-

ble actual classes with high accuracy. Gradient descent is applied to consecutively take

the required steps in reaching the zero gradient which corresponds to a local minimum

(Riedmiller & Braun, 1993). Learning rate that is too small will result in slow conver-

gence during the search. On the contrary, excessively large learning rate may prevent the

cost function from converging. In this classifier, less formal statistical training is required

for this approach and implicit detection of complex non-linear relationship between in-

put and output can be achieved (Tu, 1996). However, it is often seen as the black box

testing due to its limited capability of performing explicit identification of possible causal

relationship (Tu, 1996).

3.4.4 K-Nearest Neighbor

KNN predicts the state classification by referring to the majority votes of neighbor-

ing data points. Based on the assignment of label on predominance of a class in the

neighborhood, the classifier finds a group of k objects in the training set that achieve the

highest proximity with the test data. Similarity function is implemented to estimate the

likeliness of the particular data point under test with regards to the decided cluster of

training points by distance calculation. In this classification approach, there is no need

for explicit training and the process only start taking place when testing data is available.

In this classifier, the key elements are (i) types of distance metrics for similarity function

(ii) the value of k, which determined the size of the number of nearest neighbor as well as

(iii) the number class to be classified into.

When the value of parameter k is set at five as depicted in Figure 3.12, five nearest

41

Univ
ers

ity
 of

 M
ala

ya



 

class A
class B

Point 1

Point 2

Figure 3.12: An example of nearest distance computation for KNN classification.

points from the neighboring region will be taken into consideration to determine the class

of the tested data point. Point 1, for instance, is surrounded by four points from class A

and one point from class B. Hence it will be predicted as class A based on the consid-

ered neighboring points. Meanwhile, Point 2 is close to three points from class B and

two points from class A, as a result it is identified as class B due to the majority votes.

This classification approach is easy to implement and debug due to its simplicity and

transparency. However, the classifier suffers from poor run time when the training set is

extremely large. The drawback of this classification method is the required intermediate

distance calculation that may cause long computation time, especially when the size of

data is large.

3.5 Validation of Classification

When the exact data is used for both training and testing, good classification rate is

expected. However, this may not reflect the true performance of classification methods

or robustness of the indices in providing indication of different pump states. Ideally an

efficient and accurate classification algorithm is expected to perform well on unseen test

data (Refaeilzadeh, Tang, & Liu, 2009). Application on the same data in this manner will

result in serious over-fitting (Refaeilzadeh et al., 2009), where the classifier parameters

are too sensitive to the training data such that it becomes unstable (Shakhnarovich, El-
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Yaniv, & Baram, 2001). The fit will change significantly when part of the training data

is removed (Shakhnarovich et al., 2001). In order to measure the true error rate of the

classifier performance on the entire population, there are several validation methods that

can be applied to avoid this problem.

In these validation approaches, the data is split into training set and testing set. Train-

ing set is a portion of the data that is used in adjustment of classifier parameters in repet-

itive manner to give a better fit during the test. Meanwhile, testing set is used to evaluate

how well the classifiers perform with the adjusted parameters with respect to the presented

indices. In some instances, there is an additional validation set that is neither applied to

training or testing process. Prior to implementation on the testing set, experimentation

with validation set prunes the parameters by repetitive evaluation until the optimal values

are found.

By assuming that the training set and testing set are homogenous with same charac-

teristics despite being separate entities of their own, ideally the classifier should be able

to give good performance on the testing data based on the learning process on the training

data. This process is imperative to generally gauge the ability of classification algorithm

and for comparing performance of different classifiers. In order to ensure fairness for

classifier implementation to give realistically good result, there are several approaches

that can be used to apply the procedure, such as random subsampling, k fold cross vali-

dation and leave one out validation.

In hold out approach, the complete data is categorized into training set and testing set

respectively for the purpose of classifier-independent learning and testing. The procedure

is only performed once and no repetition is involved. However, setting aside a testing set

from the training process in such way in practice may give misleading error rate during

single training testing experiment, particularly when there is disparity on the distribution

of data in the different sets. The results from the process can be influenced by the selected
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training testing split and available data that is not fully utilized (Refaeilzadeh et al., 2009).

As a result, the classifier may adjust the relevant parameters in favor of the training data

excessively, causing possible over-fitting on the training set. When the holdout portion

for the testing data is set too small, the test is susceptible to change (Shakhnarovich et

al., 2001). On the other hand, having a too large testing data will cause it to be overly

pessimistic due to limited training (Shakhnarovich et al., 2001).

For random subsampling, the testing set is randomly extracted from the original raw

data without replacement. The process is repeated for k times so that the result is not

biased to a single fold. Hence, the testing set and training set will be different for each

fold and the inherent variability from the separate fold will contribute to a more reliable

result for the classification task.

In order to ensure the validity and fairness of classification result, k fold cross vali-

dation is performed by dividing the data into different subsets. In each fold, some subsets

will act as training set whereas the rest will function as testing set. The successive round

of implementation has the different subsets taking turns to be the testing set. This allows

all data points to have the equal opportunity of being included in training set as well as

testing set and thus each data point is validated by others (Refaeilzadeh et al., 2009). The

final performance measures are taken by averaging result from all calculated folds. As

shown in the Figure 3.13, the original data is first allocated into three subsets of equal size.

Among them, one of the subset is used as a testing set whereas the others are used as a

training set. The term ‘k-fold’ indicates that the classification procedure will be repeated

for k times, each with different training set and testing set.

Similarly to k fold cross validation, leave one out cross validation operates by using

different folds. However, in this case, the process of training and testing is repeated for

k times where k is the total number of data in the study. In each iteration, each data

point take turns to be testing set while the rest of the data function as the training set
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Figure 3.13: Working steps of k fold cross validation (k=3).

(Refaeilzadeh et al., 2009). This extreme approach is known to have high variance which

could have caused unreliable estimate (Efron, 1983). It is usually used in applications

where data are limited (Refaeilzadeh et al., 2009).

Overall, for validation approaches with iteration, the number of folds involved will

affect the overall performance of the classification as well. Small number of fold will

induce small variance and thus leading to large bias which are either conservative or

higher than the true error rate. On the contrary, accuracy for repetition of larger number

of folds will be higher due to the small bias on the classifiers. Due to the number of

iteration taken, the overall computation time will be comparatively longer.

3.6 Feature Selection

In order to find the optimal set of combination of indices for the pump state classifica-

tion without compromising the performance (Pudil, Novovičová, & Kittler, 1994), feature

selection is a process of repetitive evaluation applied on the pump states study. Procedures

that are more computationally feasible are applied in place of exhaustive search approach

to save computation time and prevent redundancy. The purpose of this process is to se-

lect only a few indices that are meaningful and effective for the final implementation as

computation involving a large number of indices is expensive. By applying appropri-

ate feature selection on the index combinations, better performance can be obtained with

reduced complexity and run time.
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Sequential Forward Selection (SFS) starts from an empty set where indices are added

sequentially during the search for the next best index. Since it is initialized from an empty

set, a wide range of combination is potentially evaluated. As it works towards the full

set, the region evaluated will be narrowed since most of the tested indices were already

selected into the combination set. However, SFS is unable to remove indices that are

rendered obsolete upon inclusion of newly found indices. It is best applied when the

optimal subset is relatively small.

Meanwhile, Sequential Backward Selection (SBS) initiates its operation from the

full set by sequentially removing the least significant index in the subset that potentially

worsens the overall performance of the index combination. This approach is suitable for

applying in cases when the optimal index subset is large. However, its drawback lies in

its inability of reevaluation of a particular index upon removal. Since it originates from

full set and mainly deals with large subsets, more computation is required compared to

SFS.

Due to the nesting problem demonstrated by both SFS and SBS, alternative methods

are proposed (Pudil et al., 1994) by combining them. Two such examples are Sequential

Floating Forward Selection (SFFS) and Sequential Floating Backward Selection (SFBS).

These methods are proposed in application of index combination in order to achieve op-

timal pairings that gives the best performance in the most efficient and least computa-

tionally expensive way. As shown in Figure 3.14, SFFS commences from an empty set,

where each forward step to include new index is followed by removal of indices in a back-

ward direction whenever certain conditions are not fulfilled (Pudil et al., 1994). The said

conditions are having a minimum of two indices in the combination set as well as produc-

ing combination set that can achieve higher accuracy than the known existing index set

thus far (Pudil et al., 1994). On the contrary, SFBS starts operating from a full set, each

backward step of index removal will incur forward steps in succession, in an analogous
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Figure 3.14: Workflow of SFFS in finding the optimal set of indices for the final imple-

mentation in pump state detection.
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fashion as SFFS. During the search for the optimal combination, the dimensionality of

the subset is floating up and down as it goes through the process of addition and removal

of indices.

3.7 Assessment and Evaluation

In order to assess the effectiveness of the classifiers with regards to all the tested

indices on the task of differentiating pump states, several evaluative criteria are used.

Table 3.1 shows the confusion matrix that summarizes all the possible outcomes with

regards to actual condition in classification.

Table 3.1: Confusion matrix of all possible classification outcomes.

Actual Condition

Condition positive Condition negative

Predicted Outcome
Test positive outcome TP FP

Test negative outcome FN TN

As presented in Table 3.1, true positive (TP) is the case where the positive condition

is predicted positive as it is. When negative condition is mistakenly predicted as positive

condition, false positive (FP) occurs. On the contrary, false negative (FN) happens when

positive condition is wrongly identified as negative condition. As implied by its name,

true negative (TN) is the case where negative condition is correctly predicted as negative

in the test outcome.

Accuracy quantifies the level of correctness when comparing the actual condition

with respect to predicted condition in a classification test, as shown in Eq 3.1.

Accuracy =
T P+T N

T P+T N +FP+FN
×100% (3.1)

Sensitivity is a measure of possibility of detecting positive outcome when the actual

condition is indeed positive, as indicated by Eq 3.2. In the context of this study, it illus-
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trates how likely the indices are going to perform correct identification of over-pumping

states with the help of classifier.

Sensitivity =
T P

T P+FN
×100% (3.2)

As denoted by Eq 3.3, specificity defines the possibility of identifying negative out-

come from a group of negative condition. In this study, it basically gauges the ability of

correct identification of normal pumping states.

Speci f icity =
T N

T N +FP
×100% (3.3)

In instances where the different classes constitute equal proportion in the data dis-

tribution, accuracy is capable of displaying the percentage of correctness from the clas-

sification by comparing the predicted class with regards to the actual class for all test

data points. However, in some cases due to imbalanced distribution of data from different

class, accuracy may not be sufficient to truly reflect the performance of the classification

implementation. In situation where data points from class A (positive condition) far out-

weighing class B (negative condition), there is a possibility of misclassifying most of the

points as class A instead of differentiating class B as it is. The computed accuracy may

be very high but the predicted class is not able to give the actual representation of the dis-

tribution. The resultant sensitivity is extremely high but at the expense of specificity. On

the contrary, when the data points from class B (negative condition) present in far greater

amount than that of class A (positive condition), it will cause very high specificity and

low sensitivity. Hence, ideally for correct classification, besides having high percentage

of accuracy, it is desirable to have equally balanced sensitivity and specificity so that the

overall accuracy is not biased by the uneven distribution of tested data.
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3.8 Summary

The chapter organizes the workflow of the study in a systematic manner with the

overall methodological steps shown with adequate explanations. Acquisition of signals

is described with the required justification and substantial reasoning is provided for the

application of classification algorithms. Different types of classifiers such as LDA, LR,

BPNN and KNN are explored so as to provide greater understanding on the operations of

the said classification algorithms. In addition, validation of the task and optimization of

the index subsets are presented to ensure better and more reliable performance is achieved.

Methods of evaluation on the study are given to assess the performance of the employed

approaches. The framework of implementation of the study is documented and detailed

for applications in the following chapters.
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CHAPTER 4

VENTRICULAR SUCTION DETECTION

4.1 Overview

This chapter revolves around the detection of the ventricular suction pump state.

Section 4.2 reveals the standard approach of checking this particular pump state to ensure

that state determination is properly performed. Section 4.3 details the portrayal of suction

state in pump speed waveform to achieve successful characterization. As for Section 4.4,

all the evaluated indices that are employed on the suction classification tasks are elabo-

rated in details. This leads to Section 4.5 that documents the observations and results for

the pump state detection. The following discussion section gives an insight to the findings

of the study with the required justifications. Finally Section 4.7 gives a conclusive remark

regarding the identification of suction state from non-suction state.

4.2 Suction State Determination

Being a critically risky pump state, ventricular suction is one of the most undesirable

pump state during the implantation of rotary blood pump (Boston et al., 2003). It is vital

that this pump state is properly confirmed with the established standard before proceeding

with the classification task. Table 4.1 illustrates the differences of waveform found in

suction state and non-suction state by observing the signal taken from LVP distal.

Suction state exhibits negative spike whereas non-suction state does not show such

occurrence. Excessive unloading (Yi, 2007) of suction event had emptied the ventricle

and caused the ventricular walls to be forced into the inflow cannula. Such phenomenon

is illustrated in the unusual presence of negative spike of LVP distal signal.
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Figure 4.1: Reference signal used for distinguishing suction state and non-suction state.

4.3 Suction State in Pump Speed Waveform

Based on the extracted suction pump state examples, presence of saddles can be

observed frequently. The overall speed waveform comprising of peaks and troughs are

highly irregular or even erratic as shown in Figure 4.2.
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Figure 4.2: Examples of identified ventricular suction instances obtained from pump

speed signal.

4.4 Suction Indices

A number of indices from eight categories are evaluated to test their ability to distin-

guish between suction state and non-suction state, as shown in Table 4.1. Computation of

these indices are performed in respective multiple cycles in the data segment. These com-

puted values will subsequently be taken by statistical measures (maximum, minimum,

mean and standard deviation) as a representation of the particular data.
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Table 4.1: Descriptions of all features used in the present study.

Indices Descriptions Formula

Bas1 Maximum max(x)
Bas2 Minimum min(x)
Bas3 Mean mean(x)
Ran1 Range Bas1 −Bas2

Ran2 Lower range Bas3 −Bas2

Ran3 Upper range Bas1 −Bas3

Dir1 Lower range/range Ran2/Ran1

Dir2 Range/mean Ran2/Bas3

Dir3 Lower range/upper range Ran2/Ran3

Sta1 Standard deviation
√

(∑(x−Bas3)2/n

Sta2 Skewness ∑(x−Bas3)
3/(n−1)Sta3

1

Sta3 Kurtosis ∑(x−Bas3)
4/(n−1)Sta4

1

Rms1 Root mean square
√

mean(x2)
Rms2 Maximum/root mean square Bas1/Rms1

Rms3 Minimum/root mean square Bas2/Rms1

Rmr1 Root mean and range
√

Bas3 ∗Ran1

Rmr2 Maximum/root mean and range Bas1/Rmr1

Rmr3 Minimum/root mean and range Bas2/Rmr1

Dur1 Duration of a cycle Num(x)
Dur2 Duration of half cycle Num(xhal f )
Dur3 Duration above min-max threshold Num(x > (Bas1 +Bas2)/2)
Dur4 Duration above mean -max threshold Num(x > (Bas1 +Bas3)/2)
Gra1 Gradient x(i+1)− x(i)
Gra2 Maximum gradient max(x(i+1)− x(i))
Gra3 Minimum gradient min(x(i+1)− x(i))
Gra4 Absolute gradient difference abs(Gra2−abs(Gra3)
Gra5 Gradient difference Gra2 −Gra3

Gra6 Maximum gradient change in negative slope max((xnhal f (i+1)− xnhal f (i))− (xnhal f (i)− xnhal f (i−1)))
Gra7 Maximum gradient change in positive slope max((xphal f (i+1)− xphal f (i))− (xphal f (i)− xphal f (i−1)))

5
3

Univ
ers

ity
 of

 M
ala

ya



Bas indices are applied in this study to investigate their potential in reflecting the

changes from non-suction states to suction states by means of statistical measures on

the pump speed waveform. The statistical values are expected to give indications on the

detected pump states and were previously applied in the works of (Karantonis, Cloherty,

et al., 2006; Karantonis, Lovell, et al., 2006, 2007; Karantonis, Mason, et al., 2007;

Karantonis et al., 2008; Mason et al., 2008; Ng et al., 2013). Indices from Ran group are

tested due to the characteristic changes of pump speed amplitude among suction state and

non-suction state. The gradual changes in the pump speed waveform may be detected

by observing the changes, as discussed in (Karantonis, Cloherty, et al., 2006; Karantonis,

Lovell, et al., 2006, 2007; Karantonis, Mason, et al., 2007; Karantonis et al., 2008; Mason

et al., 2008; Ng et al., 2013; Baloa et al., 2000).

Dir indices take into consideration of ranges from the changes in amplitude with

respect to the statistical measures so as to better capture the trend between suction state

and non-suction state. It is also proposed for distinguishing between ANO state and

VE state (Vollkron et al., 2007; Yuhki et al., 1999; Vollkron et al., 2007). Meanwhile,

Sta indices that were previously proposed in (Granegger et al., 2011, 2013; Ooi et al.,

2014) for ANO detection are also applied in the classification task due to its potential in

detecting the irregularities present in the suction state. Prior to this, Rms2 (crestfactor)

was previously introduced for classifying ANO states (Granegger et al., 2011, 2013; Ooi

et al., 2014). By integrating rms with statistical measures, Rms indices are therefore

included in the study for analysis of suction identification. Rmr indices (Ooi et al., 2014)

are essentially derivation and permutation from Rms indices counterparts. Attempts were

made to replicate its structure with alternative components for capturing the differences

between suction state and non-suction states. For Dur indices, estimation of the duration

of cycle is gauged in each tested data for detecting suction state based on the observed

trend. It is previously applied in (Karantonis, Cloherty, et al., 2006; Karantonis, Lovell,
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et al., 2006, 2007; Karantonis, Mason, et al., 2007; Karantonis et al., 2008; Mason et al.,

2008; Ng et al., 2013). By adjusting the threshold for the Dur indices such as Dur3 and

Dur4, presence of saddles may be detected for the classification task. Gradient from the

pump speed waveforms are approximated in order to distinguish between the different

states. Gra indices are proposed by (Ng et al., 2013; Vollkron et al., 2007; Ferreira, Chen,

et al., 2006) to observe the different gradient as well as maximum change of gradient in

positive and negative slope. This index group is intended to differentiate between suction

state and non-suction via estimation of saddles in the waveform.

4.5 Results

4.5.1 Classification Strategy

In order to classify all available pump states in the study, multi class classification is

applied to the greyhound data to detect VE state, ANO state and suction state.

Table 4.2: Statistical performance of index mean of Dur3 for multi-class classification.

Sensitivity, specificity and accuracy are denoted as P1, P2 and P3 respectively.

Indices
VE ANO Suction

P1 P2 P3 P1 P2 P3 P1 P2 P3

mean of Dur3 43.8 79.1 66.9 55.5 75.1 68.5 93.7 91.5 92.2

Table 4.2 shows example of indices performance applied on all pump states via multi

class classification. It can be observed that while index mean of Dur3 performs well for

detecting suction state with accuracy of 92.2%, it has some problems in differentiating

VE state and ANO state by reaching accuracy of only 66.9% and 68.5% respectively. The

full list of statistical performance in terms of sensitivity, specificity and accuracy for all

tested indices to detect all states can be found in the Appendix A.

Some indices are more effective in distinguishing suction state whereas others may

perform optimally for other pump state. Results from this study found that there is no

particular index that achieves the highest accuracy for all pump states. It can be seen

that some indices are more effective in detecting suction states whereas others are more
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prone to classifying between ANO state and VE state. Hence the following effort on the

study will be focused in nested binary classification approach that makes advantage of the

potential indices for successful pump state detections.

4.5.2 Individual Index

The different individual suction indices are evaluated by using different classifiers

from binary classification, as combined in Table 4.3. The full result for each of the dif-

ferent classifiers can be found at the Appendix B. The performance with respect to the

different statistical measures (max, min, mean and std) in terms of accuracy is illustrated

in Figure 4.3.

Bas indices generally give accuracy that ranges from 71.2% to 84.5%. Standard

deviation of these groups generally gives poorer performance than the rest. Meanwhile,

Ran indices focused on finding the periodical changes observed in the pump speed am-

plitude, yielding accuracy from 70.6% to 85.3%. For Dir indices, accuracy falls between

72.9% and 91.9%, which are achieved by taking into consideration the division of dif-

ferent range and statistical components. Sta indices are able to produce accuracy from

62.2% to 91.9% by categorizing the different pump states based on the statistical dis-

tribution of pump speed amplitude. By taking into account square roots and division

operation among the statistical measures, Rms indices manage to obtain accuracy that

ranges between 68.2% and 87.7%. Rmr indices, which comprise of mean and range of

pump speed amplitude, indicate the change of different pump states with accuracy from

75% to 83.5%. Computation of duration of cycles forms Dur indices, which distinguish

the different pump states with regards to the duration and computed duration with respect

to certain threshold. The resultant accuracy is between 69.4% and 94.%. Mean value

taken from the different cycles of these indices are quite effective as all computed accu-

racies for this category exceed 90%. Gra indices evaluate different gradient permutations
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Table 4.3: Statistical performance of binary classification of different indices on grey-

hound data from taken from compared classifiers. Results are arranged as sensitivi-

tiy/specificity(accuracy)

max min mean std

Bas1 76.2 / 85.9 ( 82.7 ) 81.9 / 87.4 ( 85.5 ) 78.3 / 87.2 ( 84.2 ) 57.5 / 82.5 ( 74.5 )

Bas2 76.2 / 84.4 ( 81.7 ) 76.6 / 84.0 ( 81.5 ) 82.1 / 85.7 ( 84.5 ) 55.4 / 78.9 ( 71.2 )

Bas3 75.5 / 86.7 ( 83.1 ) 68.4 / 85.8 ( 80.1 ) 67.5 / 84.8 ( 79.1 ) 56.6 / 81.0 ( 73.0 )

Ran1 62.5 / 84.5 ( 77.2 ) 69.7 / 86.6 ( 81.1 ) 69.0 / 87.4 ( 81.3 ) 51.0 / 80.4 ( 70.8 )

Ran2 57.4 / 84.8 ( 75.8 ) 65.2 / 83.7 ( 77.7 ) 61.7 / 85.6 ( 77.8 ) 51.4 / 79.9 ( 70.6 )

Ran3 66.5 / 86.4 ( 79.9 ) 79.6 / 88.0 ( 85.3 ) 72.2 / 88.4 ( 83.1 ) 48.5 / 78.3 ( 68.6 )

Dir1 51.5 / 83.2 ( 72.9 ) 82.4 / 95.5 ( 91.3 ) 84.3 / 95.6 ( 91.9 ) 71.0 / 78.8 ( 76.3 )

Dir2 74.0 / 86.6 ( 82.5 ) 74.0 / 86.6 ( 82.5 ) 74.0 / 86.6 ( 82.5 ) 51.0 / 98.0 ( 82.7 )

Dir3 69.0 / 88.0 ( 81.9 ) 70.5 / 80.7 ( 77.3 ) 87.7 / 91.6 ( 90.3 ) 40.8 / 79.9 ( 67.2 )

Sta1 60.9 / 85.4 ( 77.4 ) 72.5 / 84.7 ( 80.7 ) 70.8 / 87.1 ( 81.8 ) 53.6 / 79.1 ( 70.8 )

Sta2 78.3 / 93.3 ( 88.4 ) 48.7 / 81.5 ( 70.8 ) 85.7 / 94.6 ( 91.7 ) 74.5 / 81.6 ( 79.2 )

Sta3 65.3 / 78.9 ( 74.4 ) 51.5 / 84.2 ( 73.6 ) 62.2 / 79.8 ( 74.0 ) 67.3 / 79.8 ( 75.7 )

Rms1 76.7 / 85.4 ( 82.5 ) 70.0 / 85.7 ( 80.5 ) 69.3 / 85.0 ( 79.8 ) 54.7 / 79.7 ( 71.5 )

Rms2 61.3 / 84.4 ( 76.9 ) 73.2 / 83.2 ( 79.9 ) 68.3 / 84.0 ( 78.9 ) 49.5 / 77.8 ( 68.6 )

Rms3 86.5 / 88.3 ( 87.7 ) 70.2 / 87.1 ( 81.6 ) 80.7 / 88.5 ( 86.0 ) 51.1 / 76.4 ( 68.2 )

Rmr1 62.3 / 84.5 ( 77.2 ) 63.6 / 87.7 ( 79.9 ) 64.2 / 86.2 ( 79.0 ) 63.9 / 80.6 ( 75.0 )

Rmr2 75.3 / 87.4 ( 83.4 ) 69.2 / 85.3 ( 80.0 ) 75.9 / 86.7 ( 83.2 ) 70.5 / 83.8 ( 79.3 )

Rmr3 75.0 / 87.1 ( 83.1 ) 67.2 / 85.8 ( 79.7 ) 75.0 / 86.7 ( 82.9 ) 72.6 / 85.0 ( 81.0 )

Dur1 42.2 / 98.8 ( 80.4 ) 7.7 / 98.3 ( 68.8 ) 86.9 / 92.8 ( 90.8 ) 73.0 / 88.6 ( 83.5 )

Dur2 28.5 / 99.4 ( 76.3 ) 21.6 / 99.2 ( 74.0 ) 86.0 / 93.4 ( 90.9 ) 47.2 / 80.2 ( 69.4 )

Dur3 51.1 / 98.8 ( 83.3 ) 4.4 / 99.3 ( 68.5 ) 89.5 / 96.6 ( 94.2 ) 73.7 / 86.7 ( 82.4 )

Dur4 53.9 / 99.1 ( 84.5 ) 0.0 / 100.0 ( 67.5 ) 89.2 / 95.1 ( 93.1 ) 70.7 / 86.4 ( 81.2 )

Gra1 50.4 / 85.7 ( 74.2 ) 58.4 / 83.6 ( 75.4 ) 59.2 / 79.8 ( 73.1 ) 56.2 / 84.6 ( 75.3 )

Gra2 59.6 / 86.5 ( 77.7 ) 74.6 / 81.1 ( 79.0 ) 60.4 / 86.2 ( 77.8 ) 60.0 / 81.2 ( 74.3 )

Gra3 79.2 / 90.1 ( 86.4 ) 60.1 / 84.8 ( 76.7 ) 65.0 / 87.6 ( 80.2 ) 47.3 / 81.4 ( 70.2 )

Gra4 90.6 / 87.5 ( 88.5 ) 53.3 / 81.1 ( 72.0 ) 79.7 / 90.5 ( 87.0 ) 52.9 / 81.2 ( 72.0 )

Gra5 55.6 / 85.1 ( 75.5 ) 85.5 / 90.4 ( 88.8 ) 67.5 / 86.1 ( 80.0 ) 52.3 / 82.2 ( 72.5 )

Gra6 57.0 / 86.4 ( 76.7 ) 71.5 / 84.3 ( 80.1 ) 59.6 / 87.5 ( 78.4 ) 52.2 / 82.0 ( 72.3 )

Gra7 80.6 / 94.2 ( 89.8 ) 52.6 / 84.6 ( 74.2 ) 58.6 / 86.1 ( 77.1 ) 59.3 / 86.7 ( 77.7 )

from series of differentiation of neighboring points from the pump speed signal, achieving

accuracy between 70% and 90.2%

4.5.3 Optimization of Classifiers

In order to ensure that the tested classifiers are operating optimally for best perfor-

mance, some parameters for the algorithm settings are tested and compared.

For classification involving LR, regularization parameters are introduced to prevent

over-fitting from occurring in order to obtain good generalization performance (Lee, Lee,
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Figure 4.3: Accuracy of suction classification for all tested indices for greyhound data.

Abbeel, & Ng, 2006). Different regularization parameters ranging from 0.001 to 0.3 are

tested in the implementation of LR in suction detection. As shown in Table 4.4, there is
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Table 4.4: Comparison of statistical performance for different regularization under LR.

Regularization parameter Sensitivity Specificity Accuracy

0.001 90.3 95.7 94.0

0.003 90.4 95.8 94.0

0.01 90.4 95.8 94.0

0.03 90.3 95.7 94.0

0.1 90.3 95.8 94.0

0.3 90.5 95.7 94.0

not much difference for the sensitivity and specificity, resulting in accuracy of 94% for

all the tested values. Thus, in this study the regularization parameter for LR is set at 0.01.

During BPNN classification, learning rate of different values ranging from 0.001 to

0.3 are compared. It is observed in Table 4.5 that low learning rate resulted in slightly

inferior performance. Meanwhile, high value of learning rate is observed to cause the

overall result to deteriorate marginally. Thus, the learning rate for BPNN is set at 0.01

throughout the rest of the study.

Table 4.5: Comparison of statistical performance for different learning rate under BPNN.

Learning rate Sensitivity Specificity Accuracy

0.001 80.1 97.3 91.7

0.003 88.5 97.1 94.3

0.01 88.7 97.0 94.3

0.03 88.5 97.1 94.3

0.1 88.8 96.9 94.2

0.3 88.8 96.8 94.2

In the algorithm, gradient descent is applied for the iterative reduction of cost func-

tion. Higher learning rate will enable the local minimum in the cost function to be reached

sooner by taking larger iterative steps in finding the said minimum point but at the expense

of possible cases of missing convergence. On the contrary, lower learning rate takes small

gradual step at reaching the minimum gradient such that it may cause the computation

time to be unnecessarily long.

In addition, different values of the maximum number of iteration are attempted dur-

ing BPNN application. Higher iteration will lead to larger processing time and thus be
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Table 4.6: Comparison of statistical performance for different number of iteration under

BPNN.

Maximum number of iteration Sensitivity Specificity Accuracy

50 79.2 97.3 91.3

200 88.7 97.0 94.3

500 88.7 97.0 94.2

1000 88.7 97.0 94.3

1500 80.3 97.3 91.7

2000 88.7 97.0 94.3

5000 88.7 97.0 94.3

more computationally expensive. An optimized solution is achieved when sufficiently

good classification result can be obtained with minimal iteration. Hence, it is vital to

ensure the threshold that set the appropriate number of iteration works well. From the

study observation as shown in Table 4.6, variation of the maximum number of iteration

does not alter much the overall performance of the classification. It can be observed that

all the compared maximum number of allowed iteration produces similar results.

Table 4.7: Comparison of statistical performance for different hidden under BPNN.

Hidden nodes Sensitivity Specificity Accuracy

1 88.4 97.0 94.2

2 88.7 97.0 94.3

3 88.7 97.0 94.3

4 88.7 97.0 94.3

5 88.7 97.0 94.3

6 88.6 97.0 94.3

7 88.7 97.0 94.3

8 88.5 97.0 94.2

9 88.6 97.0 94.3

10 88.6 97.0 94.3

For BPNN, the suitable combination of weights will substantially aid the classifi-

cation. Minimal computational effort that does not compromise the performance of the

classification task is intended. Hence, different number of hidden nodes are tested and

compared during the implementation of suction detection with BPNN. As observed in

Table 4.7, pump state detection with hidden node from 1 and 10 has yielded accuracy

that fluctuates between 94.2% and 94.3%. Due to the similar result produced from the

different number of hidden nodes, computation of BPNN will apply one hidden node
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throughout the study.

In KNN, Euclidean distance is applied in the computation of distance between the

different data points. Different k parameters in odd numbers ranging from 1 to 19 are

heuristically evaluated as displayed in Table 4.8. Since it is binary classification with two

known classes, odd number is necessary to ensure that classification decision can be made

effectively without complications. It is observed that similar results are given from all the

tested k parameters.

Table 4.8: Comparison of statistical performance for different values of k parameter under

KNN.

k parameter Sensitivity Specificity Accuracy

1 91.0 97.8 95.6

3 94.1 96.1 95.4

5 90.2 95.4 93.7

7 91.5 96.8 95.1

9 89.6 96.3 94.1

11 88.3 96.4 93.7

13 89.0 97.0 94.4

15 88.9 96.7 94.2

17 88.3 97.1 94.2

19 88.6 97.4 94.5

4.5.4 Comparison of Different Classifiers

For binary classification of individual performance, all the tested classifiers give sim-

ilar trend. There is not much variation in terms of sensitivity, specificity and accuracy

despite non-parametric classifiers such as BPNN and KNN are noted to produce slightly

higher percentage as shown in Figure 4.4.

When combinations of several indices are implemented in the study, small gradual

improvements are observed in terms of sensitivity, specificity and accuracy as indicated

in Table 4.9. Among the four classifiers, the increase in accuracy in KNN is the most

prominent as shown in Figure 4.5.
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Figure 4.4: Comparison of different classifiers in terms of sensitivity, specificity and

accuracy for individual index implementation.

Table 4.9: Statistical Performance of multiple indices for suction detection. Sensitivity,

specificity and accuracy are denoted as P1, P2 and P3 respectively.

No.
LDA LR BPNN KNN

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

1 92.8 94.1 93.6 90.4 95.8 94.1 87.1 96.0 93.1 89.7 96.4 94.2

2 92.6 97.6 96.0 92.7 97.8 96.1 92.7 97.7 96.1 97.9 97.3 97.5

3 94.1 97.6 96.5 94.7 97.6 96.7 94.8 97.6 96.7 98.7 97.9 98.2

4 94.7 98.0 96.9 94.5 98.0 96.9 95.6 97.6 96.9 98.7 98.1 98.3

5 95.6 97.8 97.1 95.7 98.0 97.2 95.9 97.7 97.1 100.0 99.2 99.5
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Figure 4.5: Comparison of accuracy from different classifiers when implemented with

multiple indices.
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4.5.5 Classification Time

For a total of 3636 segments of data, it comprises of 3273 segments of training

data and 363 segments of testing data in accordance to train-test ratio of 9:1 in cross

validation. Overall, the implementation of classification involving two indices are slightly

greater than that of single index as shown in Table 4.10. The total duration taken varies

depending on different type of classification method. LDA requires a total of 3.9×10−2s

for single index and 4.1 × 10−2s for two indices. For LR classifier, 5.7× 10−2s and

4.4× 10−1s are taken for single index and two indices respectively. A total of 4.5s is

taken by BPNN for single index and 5.6s is used for combination of two indices. KNN,

meanwhile, appears to require longer time with 1.4×101s for single index and 1.9×101s

for paired indices. Parametric classifiers such as LDA and LR are observed to give shorter

time for completing the task whereas non-parametric classifiers like BPNN and KNN are

expected to require more time. Due to the nature of KNN classifier, only testing time

is available for the classification where intermediate distances are computed between the

training data and testing data to decide the class of the tested state.

Table 4.10: Comparison of computation time for all classifiers during the implementation

of suction indices.

Training (3273

segments)

Testing (363

segments)

Total (3636

segments)

Classifier 1 index 2 indices 1 index 2 indices 1 index 2 indices

LDA 1.3×10−3 1.7×10−3 3.8×10−2 3.9×10−2 3.9×10−2 4.1×10−2

LR 3.3×10−2 4.1×10−1 2.4×10−2 2.4×10−2 5.7×10−2 4.4×10−1

BPNN 4.4 5.6 2.5×10−2 2.8×10−2 4.5 5.6
KNN NA NA 1.4×101 1.91×101 1.4×10−3 1.91×101

4.6 Discussion

As with other muscles in the body, the cardiac muscles are subjected to the produc-

tion of contractions that forms the series of rhythmic contractions and relaxation. During

the evaluation of its contractile properties, preload is used to denote the degree of muscu-

lar stretched tension when the contraction is initiated (Guyton & Hall, 2006) during the
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diastole phase. The preload level is often associated with level of venous return because

the higher volume of blood return to the heart during diastole, the higher is the preload

level. It is commonly implied as the end diastolic pressure on the filled ventricle (Guyton

& Hall, 2006). Afterload, meanwhile, is the applied tension on the wall of ventricle during

ejection. It is often referred as the end load against which blood ejection occurred from

the heart contraction. Since the levels for the afterloads and preloads varies throughout

the course of normal beating of the heart, this study emphasizes inclusion of such varia-

tion in order to give a more robust representation of pump state detection without limiting

to any particular cardiac condition. Although there are a number of works (Karantonis,

Cloherty, et al., 2006; Mason et al., 2008; Ferreira et al., 2007; Voigt et al., 2005; Vollkron

et al., 2007) presented previously on the topic of pump state detections on LVAD, most

of them do not include these different perturbations.

Among the different pump states encountered in rotary blood pump, ventricular suc-

tion is perhaps one of the most hazardous pump states (Boston et al., 2003) that will have

serious consequence in health condition of the heart. Hence, it is imperative that detection

of such pump state is effectively performed and rectified as soon as possible.

Cross validation is applied during the application of the various classification algo-

rithms to ensure that the distribution of the training and testing data do not affect the final

result of the classification. Such repetition of fold implementation is necessary to ensure

that the true performance comparison of the different indices is executed fairly in evalua-

tion of inter-subject robustness without bias. Ten-fold cross validation is naturally chosen

in this case as it is a popular rule of thumb and was previously applied in the work of

(Karantonis, Lovell, et al., 2006; Karantonis, Cloherty, et al., 2006; Karantonis, Mason,

et al., 2007). Setting the number of fold at 10 will stratify the cross validation during

large experimentation (Kohavi et al., 1995).

Additionally, SFFS is applied in the study to find the optimal set for the index com-

64

Univ
ers

ity
 of

 M
ala

ya



bination. This searching algorithm combines the advantage of inclusion of new indices

as well as exclusion of existing indices in the set to make the searching process more

efficient and optimal. In terms of indices evaluation, Bas indices do not perform out-

standingly with none of them producing accuracy that exceeds 90%. These indices are

previously applied by (Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al., 2006,

2007; Karantonis, Mason, et al., 2007; Karantonis et al., 2008; Ng et al., 2013; Ferreira

et al., 2007). While Bas1 was reported among the indices proposed by (Karantonis, Clo-

herty, et al., 2006; Karantonis, Lovell, et al., 2006, 2007; Karantonis, Mason, et al., 2007;

Karantonis et al., 2008), it was unclear whether the good performance achieved was solely

or partly contributed by this index. The exact role played by this index in the acquiring

of perfect classification rate is not explicitly stated. Similarly, Bas2 is among one of the

few proposed indices proposed by (Ferreira, Chen, et al., 2006) without clear indication

of performance for each indices. Meanwhile, Bas3 was tested in (Ng et al., 2013) and

performed mediocrely.

As for Ran indices, overall the indices does not give promising performance in iden-

tifying suction states from non-suction states despite being used in a number of previous

work (Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al., 2006, 2007; Karan-

tonis, Mason, et al., 2007; Karantonis et al., 2008; Mason et al., 2008; Ng et al., 2013).

Ran1 was applied in the work of (Karantonis, Cloherty, et al., 2006; Karantonis, Lovell,

et al., 2006, 2007; Karantonis, Mason, et al., 2007; Karantonis et al., 2008; Ng et al.,

2013; Ferreira et al., 2007) as it is believed to be able to characterize the suction state

based on the amplitude change of the pump speed signal. Ran2 was proposed by (Mason

et al., 2008) in similar fashion and tested in (Ng et al., 2013) as well but neither studies

indicated exceptional performance. Ran3 was evaluated in (Ng et al., 2013) and performs

poorly in that study.

Meanwhile the Dir indices operates on the basic indices but with a different mode of
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operation: division. In the present study, both minimum of Dir1 and mean of Dir1 are able

to achieve detection with high accuracy of 92%. Prior to this, a number of suction works

(Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al., 2006, 2007; Karantonis,

Mason, et al., 2007; Karantonis et al., 2008; Ng et al., 2013; Ferreira et al., 2007; Tanaka

et al., 2006) have applied Dir1 in their investigation with varying degree of success. The

index gauges the deformation of waveform upon state transition to ventricular suction

and performs reasonably well among other tested indices in (Mason et al., 2008). As

demonstrated in (Tanaka et al., 2006), it has the potential of performing suction detection

whilst maintaining the circulatory control. However, individual performance of this index

was not specifically stated in (Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al.,

2006, 2007; Karantonis, Mason, et al., 2007; Karantonis et al., 2008) despite being one

of the tested indices in the investigation that concludes with high accuracy. Performance

of Dir2 index in the present study does not give much competition compared to the rest of

the test indices despite being proposed in a study (Endo et al., 2001) to acquire a flexible

control method based on the index. Nevertheless, the index is reported to perform poorly

in evaluation conducted by (Ng et al., 2013).

Sta indices, meanwhile, have been proposed for identifying ANO state from nor-

mal ventricular states in the works by (Granegger et al., 2011, 2013; Ooi et al., 2014) .

While these indices may be effective in performing such detection, their application in

classifying suction data from non-suction ones does not yield satisfactory result.

Rms indices have primarily been applied in pump state detection involving the detec-

tion of ANO state (Granegger et al., 2011, 2013; Ooi et al., 2014) due to its characteristic

morphology. However, there is no observed good performance when implemented to dif-

ferentiate between suction state and non-suction state. Adopting similar characteristics

of Rms, Rmr indices (Ooi et al., 2014) generally do not show promising classification

accuracy in the suction detection of the present study. While the described indices above
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show the tendency to capture the waveform erraticism observed in the suction data, sim-

ilar characteristics are also exhibited in non-uniformities found in ANO state. Confusion

arising from these two pump states may have caused the indices to perform poorer than

expected when implemented to distinguish ventricular suction state from others.

The accuracy for mean of Dur1 is moderately high in present study but is observed

to give subpar results in the reported evaluation by (Ng et al., 2013). The same trend

is observed for Dur2. Dur2 was implemented a number of previous studies (Karantonis,

Cloherty, et al., 2006; Karantonis, Lovell, et al., 2006, 2007; Karantonis, Mason, et al.,

2007; Karantonis et al., 2008; Ng et al., 2013) on suction state. This index is applied to

test the changing pulsatility on pump speed signal. While it is part of the contributing

index that resulting in perfect result attained in the said study (Karantonis, Lovell, et al.,

2006), it was implicitly implemented in such a way that it has become difficult to compare

and gauge the effectiveness of this particular index separately.

As for Dur indices, the mean of Dur3 appears to be the index that gives the highest

accuracy (94%) with sensitivity of 89% and specificity of 97%. Similar to Dur4, it applies

computation of duration and compare with determined threshold in order to spot unusual

ripples found in the peaks of speed signals. In this study, the good performance of the

index is largely contributed by the presence of saddles in the suction data as opposed to

non-suction data. Such threshold method was previously applied in the work of (Mason

et al., 2008) with excellent result. It was also tested in (Ng et al., 2013), albeit with

suboptimal performance and did not stand out from other tested indices. This may be

caused by the different data distribution under test, as pointed out by (Ng et al., 2013) that

data containing arrhythmia may not work very well under this index. While the tested data

in the study is noted to have combined normal and arrhythmia data, (Karantonis, Lovell,

et al., 2006; Karantonis, Cloherty, et al., 2006; Karantonis, Lovell, et al., 2007; Ng et al.,

2013), the porcine data size was still very limited.
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Gra indices were proposed by (Ng et al., 2013) to identify suction data by searching

for irregularities such as presence of saddles. Unfortunately, this group of indices does

not give exceptional classification performance in present study.

Generally it can be observed that the mean of the evaluated indices show greater po-

tential as an indicator in extracting the indices for effective classification of pump states.

This statistical measure gives good representation of all the participating cycles so that

indices that reflect closely the overall segment is produced. On the other hand, standard

deviation for the indices appears to the poorest indicators of all. Computation of the

dispersion of the obtained indices for all the data cycles in segments is performed and

from observation this does not seem to be a good measure to categorize suction data and

non-suction data.

From the tested indices on greyhound data, it can be observed that accuracy is in-

creased when indices are added. In fact the improvement can be observed to reach accu-

racy of approximately 99.5% when five indices are combined to check for suction state.

4.7 Summary

Due to the possible health risks involved, ventricular suction is a critical pump state

caused by over-pumping that should not be overlooked. In this study, a number of meth-

ods have been applied to investigate suction detection in greyhound data. By implement-

ing direct statistical computation on the different computed indices in the pump speed

waveform amplitude, changes from suction states to non-suction states may be detected

with varying degree of success. Different types of indices are evaluated in conjunction

with parametric classifiers and non-parametric classifiers to test their effectiveness at dis-

tinguishing suction data from non-suction data. Generally, it was observed that mean is

the better indicator at extracting the information presented from the multiple cycles in the

data segment. From the pump speed signal, presence of saddles was identified in suction

68

Univ
ers

ity
 of

 M
ala

ya



data by application of single index with accuracy of 94.3%. Combination of indices with

up to five components will further increase the classification rate to 99.5%.
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CHAPTER 5

ANO DETECTION

5.1 Overview

This chapter centers on identification of ANO pump state. The common approach

of determining this pump state is discussed in details in Section 5.2. This is followed by

Section 5.3 that explains the morphology of pump speed waveform with respect to the

pump states. On the other hand, Section 5.4 describes the investigation of ANO state

from the perspective of indices evaluation, supported by results and discussion. Lastly,

Section 5.5 summarizes the gist of the chapter with the main findings presented.

5.2 ANO State Determination

As defined in Chapter 2, ANO can be attributed to the over-pumping of LVAD that

causes blood flow to completely neglect the native route of the heart. Due to the lack of

activity of aortic valve, there are risks of several complications such as aortic stenosis,

aortic regurgitation (Granegger et al., 2011) or even the aortic fusion (Rose et al., 2000)

that critically endangered the lives of patients if left untreated. There are several standard

requirements for determining the pump state of the signals. In ANO state as shown in

Figure 5.1, the AoP is greater than the maximum LVP (Ayre et al., 2001). This is in con-

trast from VE state where the maximum LVP exceeds AoP, driving the rhythmic opening

and closing of aortic valve in the cycle. Due to obstruction of blood flow in the prolonged

closure of aortic valve in ANO state, the net aortic flow is almost zero as compared to the

normal positive flow in the VE state (Ayre et al., 2001). In VE state, there is a dip and

a transient rise due to elastic recoil against the valve cusps before the gradual decline of

aortic pressure, causing dicrotic notch in the signal (Boron & Boulpaep, 2008). On the
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contrary, there is no such notch during ANO state (Lim et al., 2012).

Signals ANO state VE state

Maximum LVP

*LVP denoted by solid

line whereas AoP

denoted by dotted line

Max LVP < AoP Max LVP > AoP

1 2 3
0

30

60

90

120

Time (s)

P
re

ss
ur

e 
(m

m
H

g)

1 2 3
0

30

60

90

120

Time (s)

P
re

ss
ur

e 
(m

m
H

g)

Aortic flow

(AoQ)
≈ 0 Positive

0 1 2 3
−10

10

30

50

Time (s)

F
lo

w
 r

at
e 

(l/
m

in
)

0 1 2 3
−10

10

30

50

Time (s)

F
lo

w
 r

at
e 

(l/
m

in
)

Pressure of

dicrotic notch in

aortic pressure

(AoP)

No Yes, as shown by the circle

0 1 2 3
60

80

100

120

Time (s)

P
re

ss
ur

e 
(m

m
H

g)

0 1 2 3
60

80

100

120

Time (s)

P
re

ss
ur

e 
(m

m
H

g)

Figure 5.1: Reference signal criteria between ANO and VE state

5.3 ANO Pump State in Pump Speed Waveform

In this study, pump speed signal is investigated for applications on different classi-

fication algorithms. This noninvasive signal originated from a reliable method of acqui-

sition from the detected back emf signal from the motor of the IRBP controller (Ayre et

al., 2007), so that there are no complications that could compromise the stability of signal

reading in the long term. This is in contrast with invasive signals that involve the use of

external flow probes or transducers.

Due the variation of levels of preloads and afterloads found in the greyhound data,

pump speed signals exhibit variation of different changes throughout the transition. Fig-
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Figure 5.2: Transition from VE state to ANO state for pump speed waveform (Ooi et al.,

2014).

ure 5.2 shows the transition of VE state from lower speed range to ANO state in higher

pump speed range (Ooi et al., 2014). As the pump speed transitions from low to high as

shown in Figure 5.2, there is a gradual change in the morphology of the waveform of the

signal. The initial stages of early ANO state is showing a rather even shape, with some

peaks slightly flatten while remaining its original shape in the troughs. The irregularities

continue to become more obvious with the presence of dual peak formation. Saddle-like

features are observed in the peaks of pump speed signal in some instances. Figure 5.3
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Figure 5.3: Examples of identified ANO instances obtained from pump speed signal (Ooi

et al., 2014).

shows several variation of pump speed waveform found in the greyhound data. Some of

them shows flat plateau with sharp trough whereas others display dual peaks and slight

saddles in the peak (Ooi et al., 2014).
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Table 5.1: List of evaluated ANO indices with respective description and formula (Ooi et

al., 2014).

Indices Descriptions Formula

Ran1 range max(x)−min(x)
Ran2 lower range mean(x)−min(x)
Ran3 upper range max(x)−mean(x)
Dir1 range / mean Ran1/mean(x)
Dir2 lower range / range Ran2/Ran1

Sta1 standard deviation

√

(∑(x−mean(x))2

n

Sta2 skewness
∑(x−mean(x))3

(n−1)Sta3
1

Sta3 kurtosis
∑(x−mean(x))4

(n−1)Sta4
1

Rms1 root mean square
√

mean(x2)
Rms2 maximum / rms max(x)/Rms1

Rms3 minimum / rms min(x)/Rms1

Rmr1 root mean and range
√

mean(x)∗Ran1

Rmr2 maximum / rmr max(x)/Rmr1

Rmr3 minimum / rmr min(x)Rmr1

5.4 ANO Indices

In this study, ANO indices are computed to distinguish between ANO state and

VE state. The indices, categorized in different groups, are motivated by the different

morphology exhibited in the different states for the classification. A total of 10321 cycles

of ANO data and 9976 cycles of VE data are pooled together for the detection.

Ran indices are tested in this study as ANO state was previously observed to ex-

hibit smaller amplitude comparatively as demonstrated by Ran1 (Karantonis et al., 2008;

Karantonis, Mason, et al., 2007; Karantonis, Lovell, et al., 2007, 2006; Karantonis, Clo-

herty, et al., 2006) and Ran3 (Endo et al., 2001). Ran2 is added to the group to test its

potential in the pump state recognition. The calculated range is expected to reflect the

dissimilarity between the two different pump states. Dir indices are included as these

indices are previously proposed in literature to reflect the differences in amplitude change

among the pump states. By describing the statistical properties from the morphology

of speed waveforms, Sta indices have the potential of performing effective separation be-
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tween ANO and VE states. Sta2 and Sta3 indices were previously proposed in (Granegger

et al., 2013, 2011) for ANO study whereas Sta1 index is newly introduced in this study.

Indices from Rms type includes crestfactor (Rms2) that was proposed by (Granegger et

al., 2013, 2011) and its similar permutations (Rms3). By modifying the indices of the

Rms type, Rmr indices are derived by replacing the square root of multiplication from the

mean and the range. By taking into consideration the mean and range component in the

data point of the speed cycle, ANO state may be distinguished from the VE state. Table

5.1 shows a complete list of the ANO indices and their respective equations.

5.5 Results

5.5.1 Individual Index

Table 5.2 shows the statistical performance of the individually tested ANO indices

in terms of sensitivity, specificity and accuracy when different classifiers are applied.

Table 5.2: Statistical performance of individual ANO indices during implementation in

greyhound data. Sensitivity, specificity and accuracy are denoted as P1, P2 and P3 re-

spectively.

LDA LR BPNN KNN

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

Ran1 68.0 50.3 59.3 67.6 51.1 59.5 47.9 97.2 72.1 60.1 86.5 73.0

Ran2 66.4 54.7 60.6 66.2 55.4 60.9 47.3 96.4 71.5 56.0 86.5 71.0

Ran3 68.6 47.2 58.1 68.3 48.3 58.5 49.3 95.1 71.8 61.4 85.0 73.0

Dir1 73.4 62.6 68.1 72.7 64.1 68.5 56.5 95.5 75.7 60.5 90.1 75.1

Dir2 62.5 54.8 58.7 62.6 54.6 58.7 51.1 65.6 58.2 57.3 56.1 56.7

Sta1 68.7 50.5 59.7 68.0 51.5 59.9 50.8 97.1 73.5 62.6 86.2 74.2

Sta2 63.4 50.8 57.2 63.3 50.8 57.2 51.1 64.8 57.9 58.2 57.0 57.6

Sta3 58.2 68.9 63.5 60.4 66.8 63.6 66.5 60.5 63.5 66.0 58.6 62.4

Rms1 55.9 93.1 74.2 56.8 91.1 73.3 61.2 82.4 71.5 63.4 85.8 74.4

Rms2 0.0 100.0 49.1 70.6 67.0 68.8 58.1 90.6 74.1 58.7 89.6 73.9

Rms3 0.0 100.0 49.1 73.1 61.4 67.4 57.5 93.6 75.3 61.3 88.6 74.7

Rmr1 63.3 44.1 53.9 63.3 44.4 54.0 44.9 95.6 69.8 67.7 82.4 74.9

Rmr2 58.8 91.7 75.0 65.7 76.5 71.0 54.8 97.5 75.8 60.4 90.5 75.2

Rmr3 59.3 90.7 74.7 65.8 76.2 70.9 54.8 97.5 75.8 60.3 90.1 75.0

For greyhound data, accuracy of Ran indices generally falls between 58% and 73%,

with sensitivity higher than specificity. As indicated by Table 5.2, the individual indices
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show only slight difference in terms of overall index values in the different states. For

Dir indices, Dir1 index reaches the higher accuracy compared to Dir2 index. The higher

sensitivity values indicate that these two are more incline to detect the ANO state based

on the range permutation from the pump speed amplitude. Overall the accuracy ranges

from 57% to 75%. Sta indices oversee the different pump states with accuracy that ranges

from 60% to 74%. Despite the good result reported in previous work (Granegger et al.,

2011, 2013), there is very little improvement in differentiating the two different pump

states in the greyhound data of varying levels of preloads and afterloads. Meanwhile, the

Rms indices are observed to be the ones with the better classification result with accu-

racy ranging from 72% to 75% for non-parametric classifiers. Classification result from

parametric classifier, however, does not perform that well as it falls in the range of 50%

to 69%. Similarly, Rmr indices give classification accuracy that lies between 54% and

75% and is one of the better index group overall. By taken into consideration on the

performance of indices that exceed 70% accuracy, both BPNN and KNN deliver ten such

indices whereas parametric classifiers such as LDA and LR only produce three each.

5.5.2 Combination of Indices

In order to further improve the result of the classification task, different pairings of

the individual indices are combined for the testing. Table 5.3 shows the accuracy of index

pairings from all index groups.

It can be seen from the Table 5.3 that when the individual indices are paired for

comparisons, Rms indices and Rmr indices stand out as the most frequent component in

combinations that achieve accuracy of more than 90%. Particularly, when paired with

Rms1 index, ten of such combinations are able to achieve high accuracy. This is followed

by Rmr1 and Sta1 that show high potential in distinguishing ANO states from VE states.
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Table 5.3: The highest classification accuracy among the compared classifiers for each combination is displayed (Ooi et al., 2014). The last row indicates

the number of combination set that exceed 90% accuracy.

Index Ran1 Ran2 Ran3 Dir1 Dir2 Sta1 Sta2 Sta3 Rms1 Rms2 Rms3 Rmr1 Rmr2 Rmr3

Ran1 - 76.4 76.2 91.2 76.6 76.9 77.4 76.8 92.0 87.4 87.9 91.2 91.0 91.0

Ran2 76.4 - 76.5 86.9 76.7 77.2 77.3 75.3 90.8 90.0 83.1 87.9 86.6 86.7

Ran3 76.2 76.5 - 89.1 76.8 77.4 77.6 77.3 92.0 85.5 91.1 87.6 89.3 89.4

Dir1 91.2 86.9 89.1 - 77.5 91.8 78.2 78.2 92.1 77.5 77.7 91.5 76.2 76.2

Dir2 76.6 76.7 76.8 77.5 - 77.6 63.2 66.0 78.5 77.7 77.7 78.0 77.3 77.3

Sta1 76.9 77.2 77.4 91.8 77.6 - 78.3 77.1 92.8 87.9 89.2 91.6 91.6 91.6

Sta2 77.4 77.3 77.6 78.2 63.2 78.3 - 67.0 78.7 78.0 78.4 79.0 78.2 78.1

Sta3 76.8 75.3 77.3 78.2 66.0 77.1 67.0 - 80.0 76.2 78.5 80.0 78.2 78.4

Rms1 92.0 90.8 92.0 92.1 78.5 92.8 78.7 80.0 - 90.7 91.8 92.1 92.1 92.1

Rms2 87.4 90.0 85.5 77.5 77.7 87.9 78.0 76.2 90.7 - 77.8 90.2 77.7 77.8

Rms3 87.9 83.1 91.1 77.7 77.7 89.2 78.4 78.5 91.8 77.8 - 90.2 77.7 77.8

Rmr1 91.2 87.9 87.6 91.5 78.0 91.6 79.0 80.0 92.1 90.2 90.2 - 91.4 91.4

Rmr2 91.0 86.6 89.3 76.2 77.3 91.6 78.2 78.2 92.1 77.7 77.7 91.4 - 75.8

Rmr3 91.0 86.7 89.4 76.2 77.3 91.6 78.1 78.4 92.1 77.8 77.8 91.4 75.8 -

> 90% 5 1 2 4 0 5 0 0 10 2 3 8 4 4
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Table 5.4: Combinations of indices performs well in terms of overall accuracy from the different classifiers (Ooi et al., 2014). Number of indices is stated

in the second row. X denotes the presence of the specified index in the combination sets with respect to each classifier. The last row shows the accuracy

obtained from the corresponding index combination sets as indicated in each column.

Classifier LDA LR BPNN KNN

Indices 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Ran1 X X X X X X

Ran2 X X

Ran3

Dir1 X X X X

Dir2

Sta1 X X X X X X X X X X X

Sta2 X

Sta3 X X X X X X

Rms1 X X X X X X X X X X X X X

Rms2 X X X

Rms3 X X X X X X X X

Rmr1 X X X

Rmr2 X X

Rmr3 X

Accuracy 75.0 88.2 89.7 90.0 90.1 73.7 89.8 89.9 90.0 90.2 75.8 90.8 90.8 90.7 90.8 75.2 92.8 93.8 94.3 94.6
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Figure 5.4: Percentage of statistical performance during implementation of combination

of multiple ANO indices for (a) LDA, (b) LR, (c) BPNN and (d) KNN

Table 5.4 displays the accuracy and its respective component indices in combination

when tested with different classifiers. Though there are slight variations among the differ-

ent classification methods, it can be seen that indices from the Rms group and Sta1 play a

role in improving its classification performance for most classifiers.

Figure 5.4 shows the comparison of accuracy of different classifiers when combina-

tions of multiple indices are tested. For both parametric classifiers and non-parametric

classifiers, combinations of different indices are observed to give improvement in classi-

fication performance. While the exact improvement varies, significant increase in accu-

racy is observed when two indices are combined for all classifiers as displayed in Figure

5.4. On the other hand, subsequent increments of indices only give minimal improve-

ment. Performance of different classifiers varies when experimented on the greyhound
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data, due to their own characteristic way of implementation. Overall it is observed that

non-parametric classifiers such as BPNN and KNN yield higher accuracy for the state

classification task. As indicated in Figure 5.5, the plotted boundary lines for these clas-

sification methods are curvature and more flexible to give a better and optimized fit to

the distribution to the computed index combination. On the contrary, parametric classi-

fiers such as LDA and LR have the tendency to produce more rigid straight lines in the

boundary between the different pump states. While the general trend is consistent for all

classification methods, accuracy of KNN has particularly stand out among them by pro-

ducing the highest rate of correct classification as the number of indices in the pairings

increased.
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Figure 5.5: Decision boundaries of evaluated classification algorithms for ANO detection

(Ooi et al., 2014). Distribution of data with VE state is represented by darker dots whereas

distribution of data with ANO state is denoted by dots with lighter color.
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5.5.3 Computation Time

From a total of 20297 cycles of data, it is split into 18268 cycles as training data and

2029 cycles as testing data according to train-test ratio of 9:1 in cross validation. Training

time is the required duration for parameters in the different classifiers to adapt according

to the presented training set. Testing time is the time when classifiers make discrimination

decisions on the test data based on the adapted parameters. The total implementation time

includes the training time on the 18268 cycles of data as well as 2029 cycles of testing

data.

Table 5.5: Comparison of computation time for all classifiers during the implementation

of ANO indices.

Training (18268

data)

Testing (2029

data)

Total (20297 data)

Classifier 1 index 2 indices 1 index 2 indices 1 index 2 indices

LDA 3.4×10−3 3.1×10−3 2.1×10−2 2.2×10−2 2.1×10−2 2.2×10−2

LR 5.2×10−2 5.9×10−2 5.2×10−2 1.1×10−1 1.0×10−1 7.1×10−1

BPNN 3.0×101 3.1×101 1.3×10−1 1.3×10−1 3.0×101 3.1×101

KNN NA NA 8.9×102 1.0×103 8.9×103 1.0×103

For LDA, LR and BPNN, total implementation time consists of training time and

testing time as indicated in Table 5.5. There is no explicit training in KNN so its imple-

mentation only consists of the testing stage where intermediate computations of the test-

ing data points are made with regards to the training data points during the classification

process. For single index classification, LDA takes 3.4×10−3s of training time and test-

ing time of 2.1×10−1s, hence the total implementation time is 2.1×10−1s. LR requires

5.2×10−2s for both training and testing leading to total time taken of 1.0×10−1s. BPNN

classifier takes 3.02× 101s of training and 1.3× 10−1s of testing, resulting in a total of

3.0×101 s for complete implementation. Comparatively, testing of KNN takes more time,

which is 8.9×102s, leading to the longest implementation among all tested classifiers in

the study. All the classifiers show the trend of increasing total implementation time when

two indices are used instead of single index. For LDA classifier, the required training time
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of 3.1×10−3s and testing time of 2.1×10−1s contribute to total implementation time of

2.2×10−1s. Training time of 5.9×10−1s and testing time of 1.1×10−1s are observed in

LR, resulting in complete implementation that takes 7.1×10−1s. BPNN requires training

time of 3.1× 101s and testing time of 1.4× 10−1s, leading to 3.1× 101s of total imple-

mentation time. KNN uses up the most testing time at 1.0×103s and requires the largest

implementation time overall. Overall, it can be observed that implementation time for

non-parametric classifiers (BPNN and KNN) is greater than parametric classifiers (LDA

and LR).

5.6 Discussion

IRBP functions by directing blood out of ventricle into an alternative route to the

aorta to supply oxygen to all the living cells in the body through circulation. Despite

the advances of IRBP, the device still lacks the intrinsic ability to automatically adapt to

variation of preload levels and changes in venous. Therefore, there is an ongoing effort

in control strategy of IRBP to perform reliable and accurate detection of pumping states

that may be detrimental to patient well-being.

In this study, a total of 14 indices originated from five different groups are tested and

compared using greyhound data that comprises of various operating conditions, namely

different levels of preloads and afterloads (low, medium, high) respectively (Ooi et al.,

2014) . Variation in afterload is achieved by altering the SVR whereas variation in preload

is attained by changing the total blood volume.

Among the tested indices, Rms group shows great potential numerous time in dif-

ferent classifiers when testing is performed to find the best performing pairings. This is

possibly due to its ability to reflect the amplitude of the pump speed signal as it transitions

from one pump state to another.

In the field of pumping state detection of IRBP, only a number of research works
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have concentrated on ANO state despite its consequence and potential risk to patients

health. The study by (Ayre et al., 2001) is among the few earliest works on ANO state ap-

plied on three acute ovine models by proposing the use of STI. The proposed indicator is

defined as the ratio of difference between maximum and rms value to difference of mean

speed between two successive cycles. Meanwhile, detection of transition point between

PA and FA previously proposed by (Endo et al., 2001) is the ratio of the current amplitude

to the mean current, which is the equivalent of Dir1 index in this study. While it performs

reasonably well in this study, the performance is not outstanding with accuracy of 75.7%.

Due to its dependency on cardiac contractibility and afterload of its absolute value (Endo

et al., 2001), inter-subject and cardiac conditions robustness may be compromised. De-

spite their potential for further study, these works are limited due to the lack of automated

system for the classification and thus prevented statistical based comparison (Yuhki et al.,

1999; Endo et al., 2001).

Combinations of several indices were proposed by (Karantonis, Cloherty, et al.,

2006; Karantonis, Lovell, et al., 2006, 2007; Karantonis, Mason, et al., 2007; Karan-

tonis et al., 2008) and (Granegger et al., 2011, 2013) to accommodate the large varia-

tions found in the waveform patterns of the tested pump signal. While implementation

of CART on six ex vivo porcine experiments reported 100% accuracy, the experimen-

tal measurements were obtained from healthy pigs with limited variability. On the other

hand, the greyhound data in the present study comprises of subjects with induced heart

failure of different levels of preloads and afterloads. This explains the result discrepan-

cies when testing the Ran1 and Dir2 indices, which yielded lower accuracy of 73.2% and

58.7% respectively. It can be deduced that the proposed indices for ANO from (Karanto-

nis, Cloherty, et al., 2006; Karantonis, Lovell, et al., 2006, 2007; Karantonis, Mason, et

al., 2007; Karantonis et al., 2008) and (Granegger et al., 2011, 2013) were influenced by

the different physiological conditions. In order to ensure the robustness of indices in per-
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forming efficient and accurate detection of pump states, different levels of perturbations

should not be overlooked.

The work of (Granegger et al., 2011, 2013) has proposed the use of skewness (Sta2),

kurtosis (Sta3) and crest factor (Rms2) on both numerical model and animal experiments

with reported accuracy of 95%. When the proposed indices are implemented in the cur-

rent study’s pump speed signal, accuracy of 84.3% is obtained. The different accuracy

of the same indices in different data sets could be due to the type of waveforms as pump

flow signal was used in (Granegger et al., 2011, 2013). Different types of pump models

could be the possible contributors as the present study uses centrifugal pump whereas

axial pump was used in (Granegger et al., 2011, 2013). The proposed Rms2 index may be

more suitable for use in pump flow signal as it is more sensitive to changes in waveforms

that are in higher proximity to the x-axis, as opposed to waveforms of higher magnitudes

such as pump speed signal.

Among tested classification algorithms in this study, parametric classifiers such as

LDA and LR are noted to obtain lower accuracy than non-parametric classifiers such as

BPNN and KNN. This may be contributed by the assumption of parametric classifiers

that the data is normally distributed, which may not be true for all practical applications.

Longer implementation time is observed to achieve higher classification accuracy, as

illustrated by the fact that non-parametric classifiers generally require more computation

time to complete the pump state detection task.

It can be observed that KNN gives the highest accuracy in this application, espe-

cially when the number of indices involved is increased. Similarly, previous work from

(Granegger et al., 2011, 2013) has also reported that KNN came out as the best performing

classifier when their ANO study is conducted in different data involving ovine animals.

With the suitable indices that characterize the different pump states effectively, the

testing points from the indices will be distributed in such a way that makes it distinguish-
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able from one pump state to another. Due to KNN classifier tendency to associate classes

from the proximity of the neighboring training points, reliable prediction was performed

on the tested data that achieved good classification results. Thus it can be deduced that

KNN is a suitable classification algorithm for implementation of pump state classification.

Comparatively, the total time taken for execution of KNN classifier is slightly longer

than the others, with 892 seconds for entire population of 20297 data. While the overall

computation time of KNN may be slightly longer than the other classifiers, it still works

sufficiently well to differentiate the distinction between normal VE state and ANO state.

Although ideally shorter time is preferred for any application in real time, common med-

ical experience with human subjects assisted by IRBP indicates that an estimate of valve

opening at every five to ten heart beats is sufficient (Dr. Robert Salamonsen) (Ooi et al.,

2014).

Previous clinical study involving four patients implanted with VAD has revealed

that formation of partial aortic valve fusion takes about 26 days to 689 days (Rose et al.,

2000). In another unaffiliated study (Connelly, Abrams, Klima, Vaughn, & Frazier, 2003)

conducted on 17 patients, presence of commissural fusion of aortic valves of various

severities is found in implantation duration that ranges from four days to 787 days. This

implies that formation of aortic fusion itself takes time and close monitoring on the dif-

ferent pump states will be able to prevent such undesirable occurrence. From experience,

clinical experts surmised that ability to estimate valve opening at every five to ten heart

beats is adequately effective for prevention of life threatening consequences in patients.

5.7 Summary

Investigation on ANO detection has been employed with the aid of various classifi-

cation algorithms performance by testing different indices. Combination of two indices

(Rms1 and Sta1) is capable of reaching accuracy of 93% during the classification between
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ANO state and VE state. Further addition of indices to five will even lead to accuracy of

95%. This is due to the ability of the index combination to characterize the morphology

of the pump speed signal for ANO state. It can be seen that non-parametric classifier, in

particular KNN, is able to perform the detection with high classification rate compared to

the rest of the tested classifiers, despite the slightly longer computation time.
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CHAPTER 6

CONCLUSION

6.1 Overview

Despite the significance of LVAD as treatment for patients facing heart problems,

automatic detection of different states remains one of the aims that researchers all over

the world have been keen in achieving. The problem of over-pumping states has long

been a dilemma that hinders the implementation of fully automation of the device without

intervention from physicians. In this study, detection of two over-pumping states, namely

ventricular suction and ANO that encompassed varying levels of operating conditions are

investigated as an effort to seek potential approaches that can further improve the status

quo of LVAD control system.

For suction identification, the pump state is characterized by the emergence of sad-

dles and erraticism in morphology of pump speed signals. Presence of such features is

successfully detected by the mean of Dur3. Other indices that fall under Dur types show

prospective capabilities on classifying suction occurrence as well. It can be observed that

employment of the index individually produces accuracy of 94%. Further improvement

in accuracy of up to 99.5% can be achieved when combination of five indices are applied.

The task of ANO detection is implemented in similar fashion as ventricular suction.

Classification is successfully performed between ANO and VE upon evaluation of differ-

ent indices. However, unlike ventricular suction, at least two indices (Rms1 and Sta1) are

required for the detection in order to achieve accuracy that is acceptable (93%). Being

the intermediate transition stage between VE and ventricular suction, ANO state is easy

to be mistakenly taken as either of them, especially for early stage ANO and end stage
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ANO occurrence. Increase of accuracy to up to 95% can be observed when five indices

are combined for the classification.

Evaluation of various classification algorithms in this study has found KNN to be

the best performing classifier for both ventricular suction and ANO. This approach is

simple to implement and it was relatively easy to visualize the way the different state are

distinguished based on the distribution of the indices implemented.

Aside from IRBP, these indices may be implemented on temporary heart assist de-

vices or artificial hearts. Additionally, the life support system that plays major role in sup-

porting functions of heart and lung during surgeries may benefit from the findings from

the present study. These indices could be helpful in controlling blood flow re-routing

during coronary artery bypass procedure.

In conclusion, the study has successfully achieved the objectives specified are achieved

for both investigated pump states as high accuracy of classification rate are obtained.

6.2 Recommendation for Future Work

While the study has addressed the key objectives, there remains several prospective

directions where further research effort would be valuable and of immense interest.

For future endeavor, the classification study under various operating conditions can

be expanded to include occurrence of under-pumping state as well. Aside from over-

pumping states such as ventricular suction and ANO state investigated in the study, under-

pumping state indicates that the power of the VAD is insufficient to operate normally.

Detection of this pump state in consideration of varying operating conditions will allow

novel approach being proposed to alleviate all the undesired pump states, thus leading to

another breakthrough in the control system.

Inclusion of wider studies on patient trials in these aspects for more clinical data

would be fruitful to identify the true potential of the proposed methods as well as to ver-
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ify their viability in applications concerning heart disease patients. Real time detection

system of the different pump states may even be designed as an extension upon incor-

porating the inputs and findings of these studies in adjusting the appropriate setting for

IRBP.

All in all, there is still room for improvement for the progress made in pump state

detection mechanism of the IRBP. Extended studies can be conducted to overcome the

current constraints that limit the true potential of the device for the sake of mankind.

88

Univ
ers

ity
 of

 M
ala

ya



Appendices

89

Univ
ers

ity
 of

 M
ala

ya



APPENDIX A

COMPLETE LIST OF RESULT FOR SUCTION DETECTION WITH MULTI

CLASS CLASSIFICATION

Table A.1: List of statistical performance for multiclass classficiation. Sensitivity, speci-

ficity and accuracy are denoted as P1, P2 and P3 respectively. Statistical measures from

the first column are used to extract indices computed in the multiple cycle that are found

in second column

VE ANO Suction

P1 P2 P3 P1 P2 P3 P1 P2 P3

max Bas1 92.5 64.7 74.2 16.9 91.0 66.2 63.2 80.7 75.0

Bas2 96.1 65.3 75.8 20.5 92.5 68.5 64.9 83.1 77.2

Bas3 93.0 66.3 75.4 20.2 90.2 66.9 62.9 81.7 75.6

Ran1 54.2 70.6 65.0 16.5 75.6 55.7 68.6 73.2 71.7

Ran2 65.0 69.1 67.7 14.9 80.1 58.2 61.2 71.3 67.8

Ran3 50.2 73.1 65.4 18.3 73.2 54.8 73.7 74.6 74.2

Dir1 44.0 68.1 59.9 29.0 85.7 66.6 49.3 57.5 54.5

Dir2 59.4 82.6 74.7 33.4 69.2 57.2 76.1 82.4 80.3

Dir3 49.6 77.1 67.7 21.5 80.7 60.9 79.4 67.2 71.1

Sta1 53.5 71.7 65.4 16.4 75.3 55.5 70.4 72.9 72.0

Sta2 38.4 70.9 59.8 63.8 72.4 69.5 71.0 92.7 85.6

Sta3 7.9 89.8 61.8 77.2 62.1 67.1 63.3 72.0 69.2

Rms1 93.0 66.2 75.3 20.0 90.1 66.7 62.7 81.6 75.5

Rms2 100.0 0.0 34.1 0.0 100.0 66.6 0.0 100.0 67.5

Rms3 100.0 0.0 34.0 0.0 100.0 66.6 0.0 100.0 67.5

Rmr1 55.2 61.2 59.1 8.2 82.4 57.4 58.2 67.2 64.3

Rmr2 76.0 59.3 64.7 18.8 71.6 53.8 54.0 93.2 80.4

Rmr3 75.0 59.9 64.9 19.6 71.0 53.6 54.2 93.2 80.6

Dur1 58.7 75.6 69.7 46.0 74.4 64.8 64.5 84.4 78.0

Dur2 61.7 58.9 58.7 14.0 87.7 62.2 61.5 71.3 68.2

Dur3 65.7 65.7 65.3 35.3 84.1 67.3 75.5 87.8 83.7

Dur4 55.6 72.2 66.4 36.6 78.0 64.1 73.8 82.4 79.6

Gra1 54.7 66.9 62.7 65.2 49.0 54.0 3.7 96.0 65.6

Gra2 59.5 62.4 61.3 66.9 51.8 56.7 0.2 99.4 67.1

Gra3 53.1 79.6 70.6 25.3 71.8 56.3 85.5 80.0 81.8

Gra4 79.6 49.0 59.2 27.9 90.8 69.4 64.1 95.4 85.3

Gra5 59.8 68.5 65.5 15.3 79.6 58.0 58.2 68.6 65.2

Gra6 53.6 59.8 57.5 60.6 47.5 51.7 0.0 100.0 67.5

Gra7 72.6 76.5 75.1 53.6 84.2 73.9 80.9 92.5 88.7

min Bas1 93.2 64.2 74.1 16.5 91.4 66.4 61.3 80.1 74.0

Bas2 96.4 65.8 76.3 20.6 92.5 68.5 64.5 82.6 76.8

Bas3 93.7 65.6 75.2 20.1 90.8 67.2 62.1 81.8 75.3

Ran1 53.3 75.1 67.6 19.5 89.7 66.1 83.0 62.7 69.3

Ran2 54.0 65.3 61.4 3.9 99.3 67.4 86.7 57.4 67.0

Ran3 53.0 78.5 69.6 22.6 84.9 64.0 90.8 69.4 76.3
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Dir1 43.4 76.0 64.8 63.2 74.3 70.5 82.3 93.3 89.7

Dir2 59.6 82.5 74.7 33.5 69.3 57.2 76.1 82.4 80.3

Dir3 13.3 57.5 42.5 62.1 75.6 71.1 43.7 75.9 65.4

Sta1 54.0 72.9 66.4 16.2 96.3 69.4 90.6 60.8 70.5

Sta2 44.9 73.9 64.0 61.1 50.5 52.9 14.5 86.0 61.5

Sta3 30.6 78.7 62.3 60.0 69.7 66.5 55.9 74.8 68.7

Rms1 93.6 65.6 75.1 20.0 90.8 67.1 62.5 81.8 75.5

Rms2 100.0 0.0 34.1 0.0 100.0 66.6 0.0 100.0 67.5

Rms3 100.0 0.0 34.1 0.0 100.0 66.6 0.0 100.0 67.5

Rmr1 56.8 58.6 57.9 14.1 93.7 67.1 70.8 68.2 69.0

Rmr2 93.8 64.9 74.7 33.3 83.6 66.7 49.9 90.3 77.1

Rmr3 92.7 65.3 74.6 33.8 83.1 66.6 50.3 90.1 77.2

Dur1 2.6 95.9 64.1 71.9 71.0 71.3 91.6 65.5 74.0

Dur2 0.2 94.0 61.9 72.6 70.9 71.4 84.5 63.3 70.2

Dur3 21.3 88.3 65.3 67.0 73.8 71.5 92.3 77.4 82.3

Dur4 17.0 91.3 66.0 67.8 73.2 71.4 93.2 73.9 80.2

Gra1 48.3 72.4 64.2 15.5 82.4 59.9 70.6 62.2 64.8

Gra2 10.5 80.4 56.2 35.8 75.6 62.0 95.3 63.6 73.9

Gra3 58.8 73.1 68.2 18.7 76.1 56.9 69.9 74.4 72.8

Gra4 50.3 73.9 65.8 76.4 40.7 52.5 0.7 99.4 67.2

Gra5 49.9 77.9 68.3 25.4 80.9 62.4 93.6 75.0 81.0

Gra6 13.4 75.0 54.1 49.9 73.0 65.4 71.3 68.8 69.7

Gra7 74.2 63.4 66.9 78.8 64.9 69.5 0.5 99.0 66.9

mean Bas1 92.7 64.7 74.3 16.7 90.9 66.1 62.5 80.4 74.5

Bas2 96.5 65.9 76.4 20.8 92.3 68.4 64.8 82.9 77.0

Bas3 93.5 66.2 75.5 20.1 90.0 66.6 62.2 81.9 75.5

Ran1 49.2 72.9 64.7 19.6 73.4 55.3 75.0 75.2 75.1

Ran2 55.2 70.8 65.4 18.3 77.4 57.5 71.1 73.6 72.7

Ran3 46.7 79.6 68.3 23.2 67.9 52.9 78.7 76.5 77.2

Dir1 58.8 76.2 70.2 50.7 77.5 68.4 86.9 93.8 91.6

Dir2 59.7 82.7 74.8 33.4 69.3 57.3 76.2 82.4 80.3

Dir3 54.3 72.7 66.3 31.4 83.4 66.0 94.1 83.1 86.7

Sta1 48.8 75.3 66.2 21.0 72.4 55.2 76.2 75.0 75.5

Sta2 88.5 53.6 65.1 4.6 93.2 63.5 87.6 92.9 91.2

Sta3 12.3 83.4 59.1 76.9 58.5 64.6 50.8 77.7 69.0

Rms1 93.3 66.1 75.4 20.1 89.9 66.6 62.2 82.0 75.5

Rms2 100.0 0.0 34.1 0.0 100.0 66.6 0.0 100.0 67.5

Rms3 100.0 0.0 34.1 0.0 100.0 66.6 0.0 100.0 67.5

Rmr1 52.5 65.6 61.0 12.6 75.7 54.5 64.6 73.2 70.4

Rmr2 88.3 67.3 74.4 38.4 78.9 65.3 54.7 94.4 81.5

Rmr3 87.1 68.0 74.4 38.8 78.2 64.8 55.1 94.3 81.5

Dur1 36.8 78.2 64.2 54.1 74.1 67.3 90.9 87.8 88.9

Dur2 37.5 77.6 63.7 52.4 73.8 66.5 91.7 88.5 89.5

Dur3 43.8 79.1 66.9 55.5 75.1 68.5 93.7 91.5 92.2

Dur4 43.1 75.9 64.6 48.1 76.2 66.7 94.4 89.8 91.2

Gra1 80.6 13.7 36.0 11.9 86.5 61.1 1.2 96.8 65.7

Gra2 51.5 71.3 64.4 15.7 78.0 57.1 68.9 68.3 68.5

Gra3 56.6 77.0 70.1 22.1 71.6 55.0 74.9 78.0 77.0

Gra4 52.7 79.5 70.3 28.1 79.5 62.3 88.2 75.0 79.3

Gra5 53.8 74.2 67.3 20.9 73.1 55.7 70.9 75.2 73.7
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Gra6 49.2 65.4 59.8 10.0 89.5 62.8 69.8 59.4 62.8

Gra7 72.5 69.8 70.7 64.6 56.3 58.9 2.4 94.2 64.2

std Bas1 72.1 45.7 53.9 29.5 85.8 66.0 43.5 90.4 75.2

Bas2 11.3 83.9 59.1 78.0 49.1 58.7 27.9 75.5 59.8

Bas3 20.9 88.0 65.1 81.7 53.6 62.9 40.1 79.7 66.8

Ran1 47.4 73.7 64.7 81.2 42.9 55.6 2.4 99.2 67.6

Ran2 46.3 79.6 68.2 84.9 42.7 56.8 9.5 98.3 69.3

Ran3 50.0 67.8 61.7 76.7 45.7 56.0 0.0 100.0 67.5

Dir1 9.4 82.4 57.5 75.3 67.4 70.1 63.1 73.7 70.3

Dir2 50.3 69.9 63.2 69.0 39.9 49.6 0.0 100.0 67.5

Dir3 47.9 77.1 67.1 87.7 43.8 58.5 2.7 98.6 67.3

Sta1 47.1 75.0 65.4 81.7 41.3 54.7 1.8 99.5 67.6

Sta2 6.4 82.6 56.5 76.5 62.5 67.1 50.2 71.3 64.4

Sta3 6.6 87.1 59.6 77.7 60.6 66.3 55.0 71.6 66.2

Rms1 21.5 87.8 65.2 81.8 53.7 63.1 39.9 80.0 66.9

Rms2 46.7 82.3 70.1 83.3 40.9 55.0 9.1 96.5 68.0

Rms3 48.8 77.1 67.4 78.8 41.6 54.0 4.4 97.6 67.2

Rmr1 1.2 78.2 51.9 70.1 57.5 61.7 40.6 70.0 60.4

Rmr2 72.1 47.9 55.8 8.3 77.4 53.9 53.9 91.5 79.3

Rmr3 72.8 46.9 55.3 6.8 78.2 54.0 54.4 91.4 79.4

Dur1 38.4 56.9 50.6 72.6 55.1 60.9 1.8 94.4 64.1

Dur2 55.2 56.4 55.8 9.2 93.9 65.4 50.8 57.2 55.0

Dur3 1.7 81.0 53.9 72.1 58.3 62.8 36.4 65.6 56.1

Dur4 7.2 72.1 49.8 70.2 56.2 60.9 20.1 70.3 53.9

Gra1 58.2 69.4 65.5 14.5 79.5 57.7 64.5 69.6 67.9

Gra2 11.8 84.6 59.7 84.0 55.5 65.0 42.2 78.5 66.6

Gra3 50.2 78.2 68.4 65.4 61.3 62.5 31.5 84.3 67.1

Gra4 19.6 85.2 62.8 80.6 54.3 63.1 38.4 79.8 66.3

Gra5 22.9 85.4 64.0 83.4 57.9 66.4 44.3 81.6 69.3

Gra6 13.2 86.4 61.4 83.4 52.2 62.5 35.3 77.3 63.6

Gra7 47.8 80.9 69.6 81.7 66.1 71.3 46.7 91.0 76.6
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APPENDIX B

COMPLETE LIST OF RESULT FOR SUCTION DETECTION WITH ALL

EVALUATED CLASSIFIERS

Table B.1: Statistical performance of the evaluation of the individual suction indices using

LDA. The results are shown as sensitivity / specificity (overall accuracy).

max min mean std

Bas1 52.6 / 86.3 ( 75.4 ) 49.7 / 86.0 ( 74.2 ) 51.1 / 86.2 ( 74.8 ) 31.3 / 95.5 ( 74.7 )

Bas2 60.6 / 87.1 ( 78.5 ) 60.0 / 85.9 ( 77.4 ) 61.0 / 86.3 ( 78.0 ) 7.8 / 96.0 ( 67.3 )

Bas3 54.6 / 86.1 ( 75.9 ) 52.0 / 86.3 ( 75.2 ) 54.0 / 86.3 ( 75.8 ) 25.3 / 92.3 ( 70.6 )

Ran1 44.4 / 92.3 ( 76.7 ) 64.5 / 89.5 ( 81.4 ) 59.8 / 88.9 ( 79.4 ) 0.0 / 100.0 ( 67.5 )

Ran2 22.2 / 98.8 ( 73.9 ) 48.8 / 91.0 ( 77.2 ) 51.6 / 89.8 ( 77.4 ) 0.0 / 100.0 ( 67.5 )

Ran3 51.9 / 91.5 ( 78.7 ) 74.4 / 89.0 ( 84.2 ) 68.1 / 89.9 ( 82.8 ) 0.2 / 99.9 ( 67.5 )

Dir1 0.0 / 100.0 ( 67.5 ) 80.0 / 96.5 ( 91.2 ) 82.6 / 96.4 ( 91.9 ) 39.7 / 81.5 ( 67.9 )

Dir2 74.1 / 86.0 ( 82.1 ) 74.1 / 86.0 ( 82.1 ) 74.1 / 86.0 ( 82.1 ) 0.0 / 100.0 ( 67.5 )

Dir3 54.3 / 94.4 ( 81.3 ) 29.7 / 89.0 ( 69.7 ) 63.5 / 95.5 ( 85.1 ) 0.0 / 100.0 ( 67.5 )

Sta1 39.5 / 93.8 ( 76.1 ) 62.5 / 89.6 ( 80.8 ) 63.4 / 89.4 ( 80.9 ) 0.0 / 100.0 ( 67.5 )

Sta2 67.7 / 97.8 ( 88.0 ) 0.0 / 100.0 ( 67.5 ) 83.2 / 96.1 ( 91.9 ) 21.6 / 83.5 ( 63.3 )

Sta3 37.3 / 84.6 ( 69.2 ) 36.3 / 92.4 ( 74.1 ) 26.9 / 88.2 ( 68.2 ) 30.2 / 85.8 ( 67.7 )

Rms1 54.6 / 86.2 ( 75.9 ) 52.0 / 86.3 ( 75.2 ) 53.9 / 86.3 ( 75.8 ) 25.7 / 92.3 ( 70.7 )

Rms2 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 )

Rms3 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 )

Rmr1 29.7 / 97.7 ( 75.6 ) 56.9 / 90.4 ( 79.5 ) 50.2 / 92.4 ( 78.7 ) 14.3 / 92.2 ( 66.9 )

Rmr2 42.6 / 96.9 ( 79.2 ) 42.7 / 95.5 ( 78.3 ) 44.7 / 96.5 ( 79.6 ) 37.7 / 96.1 ( 77.1 )

Rmr3 43.0 / 96.8 ( 79.3 ) 43.1 / 95.4 ( 78.4 ) 45.4 / 96.3 ( 79.8 ) 37.7 / 96.0 ( 77.1 )

Dur1 49.5 / 97.1 ( 81.7 ) 69.2 / 71.1 ( 70.5 ) 89.0 / 90.7 ( 90.2 ) 0.0 / 99.9 ( 67.4 )

Dur2 39.7 / 97.7 ( 78.8 ) 56.9 / 67.4 ( 63.9 ) 89.9 / 90.9 ( 90.6 ) 0.0 / 100.0 ( 67.5 )

Dur3 64.9 / 97.1 ( 86.6 ) 86.7 / 89.0 ( 88.2 ) 92.6 / 94.1 ( 93.6 ) 3.8 / 95.5 ( 65.7 )

Dur4 62.2 / 97.5 ( 86.1 ) 83.9 / 77.1 ( 79.4 ) 92.9 / 92.5 ( 92.6 ) 1.9 / 99.3 ( 67.6 )

Gra1 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 ) 0.0 / 100.0 ( 67.5 ) 39.5 / 92.5 ( 75.3 )

Gra2 0.0 / 100.0 ( 67.5 ) 66.7 / 74.0 ( 71.3 ) 44.4 / 92.9 ( 77.1 ) 26.8 / 93.2 ( 71.6 )

Gra3 81.2 / 87.9 ( 85.7 ) 50.2 / 88.1 ( 75.7 ) 63.7 / 86.4 ( 79.0 ) 11.5 / 98.6 ( 70.2 )

Gra4 48.3 / 97.1 ( 81.2 ) 0.0 / 100.0 ( 67.5 ) 69.4 / 94.8 ( 86.5 ) 23.3 / 93.8 ( 70.9 )

Gra5 16.0 / 99.8 ( 72.5 ) 85.1 / 90.8 ( 89.0 ) 56.4 / 88.6 ( 78.2 ) 28.5 / 94.2 ( 72.8 )

Gra6 0.0 / 100.0 ( 67.5 ) 23.9 / 85.0 ( 65.1 ) 42.7 / 96.3 ( 78.8 ) 21.4 / 94.0 ( 70.4 )

Gra7 75.4 / 96.5 ( 89.7 ) 9.9 / 100.0 ( 70.7 ) 0.0 / 100.0 ( 67.5 ) 37.4 / 96.7 ( 77.5 )
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Table B.2: Statistical performance of the evaluation of the individual suction indices using

LR. The results are shown as sensitivity / specificity (overall accuracy).

max min mean std

Bas1 48.8 / 86.8 ( 74.5 ) 42.2 / 86.9 ( 72.4 ) 45.3 / 86.8 ( 73.3 ) 33.1 / 95.1 ( 75.0 )

Bas2 54.4 / 87.9 ( 77.1 ) 56.4 / 87.3 ( 77.2 ) 58.4 / 87.6 ( 78.1 ) 6.6 / 96.3 ( 67.2 )

Bas3 54.2 / 86.6 ( 76.1 ) 50.9 / 86.5 ( 74.9 ) 52.3 / 86.5 ( 75.4 ) 24.8 / 92.6 ( 70.7 )

Ran1 45.8 / 91.5 ( 76.6 ) 67.4 / 88.3 ( 81.5 ) 60.3 / 88.5 ( 79.3 ) 0.0 / 100.0 ( 67.5 )

Ran2 26.9 / 98.1 ( 74.9 ) 55.9 / 87.3 ( 77.0 ) 51.7 / 89.6 ( 77.2 ) 0.0 / 100.0 ( 67.5 )

Ran3 53.3 / 89.8 ( 77.9 ) 75.8 / 88.9 ( 84.6 ) 68.8 / 89.4 ( 82.7 ) 0.1 / 100.0 ( 67.5 )

Dir1 0.0 / 100.0 ( 67.5 ) 79.9 / 96.5 ( 91.1 ) 84.0 / 95.6 ( 91.8 ) 35.1 / 82.9 ( 67.3 )

Dir2 73.2 / 87.3 ( 82.7 ) 73.2 / 87.3 ( 82.7 ) 73.2 / 87.3 ( 82.7 ) 0.0 / 100.0 ( 67.5 )

Dir3 63.5 / 92.2 ( 82.8 ) 31.3 / 87.7 ( 69.3 ) 88.5 / 91.2 ( 90.3 ) 0.0 / 100.0 ( 67.5 )

Sta1 43.4 / 92.5 ( 76.4 ) 66.5 / 86.1 ( 79.7 ) 64.6 / 88.8 ( 80.9 ) 0.0 / 100.0 ( 67.5 )

Sta2 69.2 / 96.2 ( 87.3 ) 0.0 / 100.0 ( 67.5 ) 86.0 / 94.3 ( 91.6 ) 19.9 / 84.8 ( 63.6 )

Sta3 34.9 / 85.9 ( 69.3 ) 36.6 / 92.4 ( 74.2 ) 25.6 / 89.1 ( 68.4 ) 27.3 / 87.1 ( 67.6 )

Rms1 54.2 / 86.5 ( 76.0 ) 50.6 / 86.5 ( 74.8 ) 52.2 / 86.5 ( 75.4 ) 25.1 / 92.6 ( 70.7 )

Rms2 48.9 / 87.1 ( 74.7 ) 59.6 / 88.1 ( 78.8 ) 59.6 / 86.7 ( 77.9 ) 0.0 / 100.0 ( 67.5 )

Rms3 82.1 / 89.0 ( 86.7 ) 67.3 / 87.7 ( 81.0 ) 74.8 / 89.0 ( 84.4 ) 0.0 / 100.0 ( 67.5 )

Rmr1 30.5 / 97.5 ( 75.7 ) 56.6 / 90.4 ( 79.4 ) 50.7 / 92.4 ( 78.8 ) 12.2 / 93.3 ( 66.9 )

Rmr2 55.6 / 92.9 ( 80.7 ) 47.4 / 91.7 ( 77.2 ) 57.6 / 93.8 ( 82.0 ) 49.9 / 93.4 ( 79.2 )

Rmr3 55.9 / 92.9 ( 80.8 ) 47.6 / 91.5 ( 77.2 ) 57.6 / 93.7 ( 81.9 ) 49.8 / 93.4 ( 79.2 )

Dur1 51.3 / 96.3 ( 81.7 ) 60.7 / 74.0 ( 69.6 ) 84.2 / 93.3 ( 90.3 ) 0.0 / 100.0 ( 67.5 )

Dur2 41.7 / 96.2 ( 78.5 ) 50.5 / 69.4 ( 63.3 ) 84.0 / 93.4 ( 90.3 ) 0.0 / 100.0 ( 67.5 )

Dur3 67.2 / 96.4 ( 86.9 ) 81.2 / 93.4 ( 89.4 ) 90.4 / 95.8 ( 94.0 ) 3.4 / 96.0 ( 65.9 )

Dur4 64.5 / 96.8 ( 86.3 ) 83.1 / 78.5 ( 79.9 ) 89.8 / 95.0 ( 93.3 ) 1.4 / 99.5 ( 67.7 )

Gra1 0.0 / 100.0 ( 67.5 ) 25.7 / 99.1 ( 75.2 ) 0.0 / 100.0 ( 67.5 ) 40.4 / 92.3 ( 75.4 )

Gra2 0.0 / 100.0 ( 67.5 ) 91.5 / 66.1 ( 74.2 ) 46.0 / 92.2 ( 77.1 ) 26.6 / 93.4 ( 71.7 )

Gra3 79.5 / 89.2 ( 86.0 ) 51.7 / 87.7 ( 75.9 ) 63.8 / 86.5 ( 79.0 ) 11.4 / 98.5 ( 70.2 )

Gra4 66.6 / 94.6 ( 85.6 ) 0.0 / 100.0 ( 67.5 ) 76.4 / 91.7 ( 86.7 ) 22.7 / 94.2 ( 71.0 )

Gra5 18.6 / 99.7 ( 73.3 ) 83.5 / 91.4 ( 88.8 ) 57.2 / 88.2 ( 78.0 ) 28.4 / 94.0 ( 72.7 )

Gra6 0.0 / 100.0 ( 67.5 ) 24.1 / 85.0 ( 65.2 ) 43.3 / 96.1 ( 78.9 ) 19.3 / 97.2 ( 71.8 )

Gra7 74.6 / 96.5 ( 89.3 ) 7.8 / 100.0 ( 70.0 ) 0.0 / 100.0 ( 67.5 ) 35.9 / 96.8 ( 77.1 )
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Table B.3: Statistical performance of the evaluation of the individual suction indices using

BPNN. The results are shown as sensitivity / specificity (overall accuracy).

max min mean std

Bas1 37.1 / 90.0 ( 72.9 ) 46.2 / 86.0 ( 72.8 ) 45.2 / 87.4 ( 73.6 ) 42.9 / 90.9 ( 75.3 )

Bas2 56.4 / 86.4 ( 76.6 ) 51.5 / 86.4 ( 74.9 ) 58.8 / 84.2 ( 75.9 ) 0.0 / 100.0 ( 67.5 )

Bas3 54.9 / 85.7 ( 75.7 ) 53.1 / 84.7 ( 74.4 ) 57.8 / 84.6 ( 75.8 ) 0.0 / 100.0 ( 67.5 )

Ran1 41.9 / 93.0 ( 76.3 ) 63.3 / 90.1 ( 81.3 ) 55.1 / 92.9 ( 80.6 ) 0.0 / 100.0 ( 67.5 )

Ran2 35.3 / 94.0 ( 74.8 ) 54.2 / 88.1 ( 77.1 ) 45.6 / 93.0 ( 77.5 ) 0.0 / 100.0 ( 67.5 )

Ran3 49.1 / 92.8 ( 78.5 ) 71.8 / 89.6 ( 83.8 ) 62.2 / 92.6 ( 82.7 ) 3.6 / 99.0 ( 67.9 )

Dir1 13.0 / 97.1 ( 69.8 ) 78.4 / 97.3 ( 91.1 ) 81.5 / 96.7 ( 91.8 ) 81.9 / 68.3 ( 72.7 )

Dir2 72.2 / 87.9 ( 82.8 ) 72.2 / 87.9 ( 82.8 ) 72.2 / 87.9 ( 82.8 ) 0.0 / 100.0 ( 67.5 )

Dir3 64.0 / 92.0 ( 82.8 ) 88.8 / 61.0 ( 70.1 ) 88.7 / 91.3 ( 90.5 ) 0.0 / 100.0 ( 67.5 )

Sta1 43.3 / 92.7 ( 76.6 ) 64.2 / 88.6 ( 80.6 ) 56.9 / 92.6 ( 81.0 ) 1.3 / 99.6 ( 67.6 )

Sta2 68.4 / 96.6 ( 87.4 ) 14.4 / 95.9 ( 69.4 ) 83.7 / 95.8 ( 91.9 ) 89.4 / 62.7 ( 71.4 )

Sta3 89.8 / 63.4 ( 72.0 ) 33.6 / 93.8 ( 74.2 ) 79.6 / 64.9 ( 69.6 ) 87.6 / 63.3 ( 71.2 )

Rms1 54.6 / 85.8 ( 75.6 ) 53.1 / 84.4 ( 74.2 ) 57.4 / 85.2 ( 76.1 ) 0.0 / 100.0 ( 67.5 )

Rms2 47.5 / 88.5 ( 75.1 ) 62.3 / 86.4 ( 78.5 ) 58.2 / 87.3 ( 77.8 ) 0.0 / 100.0 ( 67.5 )

Rms3 79.2 / 89.6 ( 86.2 ) 63.6 / 89.5 ( 81.0 ) 75.1 / 89.4 ( 84.7 ) 0.0 / 100.0 ( 67.5 )

Rmr1 32.0 / 95.9 ( 74.9 ) 50.8 / 92.5 ( 78.9 ) 40.9 / 95.6 ( 77.8 ) 0.0 / 100.0 ( 67.5 )

Rmr2 68.2 / 90.0 ( 82.9 ) 49.6 / 90.4 ( 77.1 ) 69.8 / 90.1 ( 83.5 ) 88.7 / 63.5 ( 71.7 )

Rmr3 68.1 / 90.0 ( 82.9 ) 49.6 / 90.3 ( 77.0 ) 69.5 / 90.1 ( 83.4 ) 91.9 / 60.9 ( 71.0 )

Dur1 41.1 / 97.1 ( 78.9 ) 95.9 / 63.1 ( 73.7 ) 81.9 / 94.2 ( 90.2 ) 72.4 / 64.4 ( 66.9 )

Dur2 41.1 / 96.4 ( 78.4 ) 96.0 / 62.8 ( 73.6 ) 82.6 / 94.3 ( 90.5 ) 0.0 / 100.0 ( 67.5 )

Dur3 59.8 / 97.0 ( 84.9 ) 78.8 / 94.6 ( 89.5 ) 88.6 / 97.0 ( 94.3 ) 64.0 / 68.9 ( 66.7 )

Dur4 62.5 / 97.5 ( 86.1 ) 81.9 / 79.2 ( 80.1 ) 87.1 / 95.9 ( 93.1 ) 0.0 / 100.0 ( 67.5 )

Gra1 24.3 / 96.8 ( 73.1 ) 40.7 / 93.0 ( 75.9 ) 0.0 / 100.0 ( 67.5 ) 36.1 / 94.9 ( 75.7 )

Gra2 17.6 / 97.2 ( 71.3 ) 58.2 / 76.6 ( 70.7 ) 42.6 / 94.6 ( 77.6 ) 5.6 / 98.9 ( 68.5 )

Gra3 74.3 / 90.8 ( 85.4 ) 43.0 / 91.3 ( 75.5 ) 58.2 / 90.3 ( 79.8 ) 11.8 / 98.4 ( 70.2 )

Gra4 82.4 / 88.5 ( 86.6 ) 22.9 / 95.0 ( 71.5 ) 75.1 / 93.2 ( 87.3 ) 19.7 / 96.9 ( 71.8 )

Gra5 32.7 / 96.4 ( 75.6 ) 80.6 / 91.8 ( 88.2 ) 47.9 / 92.7 ( 78.0 ) 25.4 / 95.3 ( 72.6 )

Gra6 33.7 / 95.6 ( 75.4 ) 38.0 / 75.6 ( 63.4 ) 44.8 / 94.3 ( 78.2 ) 19.5 / 96.8 ( 71.7 )

Gra7 77.5 / 96.3 ( 90.2 ) 18.6 / 98.5 ( 72.5 ) 38.7 / 92.8 ( 75.1 ) 43.3 / 95.4 ( 78.5 )
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Table B.4: Statistical performance of the evaluation of the individual suction indices using

KNN. The results are shown as sensitivity / specificity (overall accuracy).

max min mean std

Bas1 76.2 / 85.9 ( 82.7 ) 81.9 / 87.4 ( 85.5 ) 78.3 / 87.2 ( 84.2 ) 57.5 / 82.5 ( 74.5 )

Bas2 76.2 / 84.4 ( 81.7 ) 76.6 / 84.0 ( 81.5 ) 82.1 / 85.7 ( 84.5 ) 55.4 / 78.9 ( 71.2 )

Bas3 75.5 / 86.7 ( 83.1 ) 68.4 / 85.8 ( 80.1 ) 67.5 / 84.8 ( 79.1 ) 56.6 / 81.0 ( 73.0 )

Ran1 62.5 / 84.5 ( 77.2 ) 69.7 / 86.6 ( 81.1 ) 69.0 / 87.4 ( 81.3 ) 51.0 / 80.4 ( 70.8 )

Ran2 57.4 / 84.8 ( 75.8 ) 65.2 / 83.7 ( 77.7 ) 61.7 / 85.6 ( 77.8 ) 51.4 / 79.9 ( 70.6 )

Ran3 66.5 / 86.4 ( 79.9 ) 79.6 / 88.0 ( 85.3 ) 72.2 / 88.4 ( 83.1 ) 48.5 / 78.3 ( 68.6 )

Dir1 51.5 / 83.2 ( 72.9 ) 82.4 / 95.5 ( 91.3 ) 84.3 / 95.6 ( 91.9 ) 71.0 / 78.8 ( 76.3 )

Dir2 74.0 / 86.6 ( 82.5 ) 74.0 / 86.6 ( 82.5 ) 74.0 / 86.6 ( 82.5 ) 51.0 / 98.0 ( 82.7 )

Dir3 69.0 / 88.0 ( 81.9 ) 70.5 / 80.7 ( 77.3 ) 87.7 / 91.6 ( 90.3 ) 40.8 / 79.9 ( 67.2 )

Sta1 60.9 / 85.4 ( 77.4 ) 72.5 / 84.7 ( 80.7 ) 70.8 / 87.1 ( 81.8 ) 53.6 / 79.1 ( 70.8 )

Sta2 78.3 / 93.3 ( 88.4 ) 48.7 / 81.5 ( 70.8 ) 85.7 / 94.6 ( 91.7 ) 74.5 / 81.6 ( 79.2 )

Sta3 65.3 / 78.9 ( 74.4 ) 51.5 / 84.2 ( 73.6 ) 62.2 / 79.8 ( 74.0 ) 67.3 / 79.8 ( 75.7 )

Rms1 76.7 / 85.4 ( 82.5 ) 70.0 / 85.7 ( 80.5 ) 69.3 / 85.0 ( 79.8 ) 54.7 / 79.7 ( 71.5 )

Rms2 61.3 / 84.4 ( 76.9 ) 73.2 / 83.2 ( 79.9 ) 68.3 / 84.0 ( 78.9 ) 49.5 / 77.8 ( 68.6 )

Rms3 86.5 / 88.3 ( 87.7 ) 70.2 / 87.1 ( 81.6 ) 80.7 / 88.5 ( 86.0 ) 51.1 / 76.4 ( 68.2 )

Rmr1 62.3 / 84.5 ( 77.2 ) 63.6 / 87.7 ( 79.9 ) 64.2 / 86.2 ( 79.0 ) 63.9 / 80.6 ( 75.0 )

Rmr2 75.3 / 87.4 ( 83.4 ) 69.2 / 85.3 ( 80.0 ) 75.9 / 86.7 ( 83.2 ) 70.5 / 83.8 ( 79.3 )

Rmr3 75.0 / 87.1 ( 83.1 ) 67.2 / 85.8 ( 79.7 ) 75.0 / 86.7 ( 82.9 ) 72.6 / 85.0 ( 81.0 )

Dur1 42.2 / 98.8 ( 80.4 ) 7.7 / 98.3 ( 68.8 ) 86.9 / 92.8 ( 90.8 ) 73.0 / 88.6 ( 83.5 )

Dur2 28.5 / 99.4 ( 76.3 ) 21.6 / 99.2 ( 74.0 ) 86.0 / 93.4 ( 90.9 ) 47.2 / 80.2 ( 69.4 )

Dur3 51.1 / 98.8 ( 83.3 ) 4.4 / 99.3 ( 68.5 ) 89.5 / 96.6 ( 94.2 ) 73.7 / 86.7 ( 82.4 )

Dur4 53.9 / 99.1 ( 84.5 ) 0.0 / 100.0 ( 67.5 ) 89.2 / 95.1 ( 93.1 ) 70.7 / 86.4 ( 81.2 )

Gra1 50.4 / 85.7 ( 74.2 ) 58.4 / 83.6 ( 75.4 ) 59.2 / 79.8 ( 73.1 ) 56.2 / 84.6 ( 75.3 )

Gra2 59.6 / 86.5 ( 77.7 ) 74.6 / 81.1 ( 79.0 ) 60.4 / 86.2 ( 77.8 ) 60.0 / 81.2 ( 74.3 )

Gra3 79.2 / 90.1 ( 86.4 ) 60.1 / 84.8 ( 76.7 ) 65.0 / 87.6 ( 80.2 ) 47.3 / 81.4 ( 70.2 )

Gra4 90.6 / 87.5 ( 88.5 ) 53.3 / 81.1 ( 72.0 ) 79.7 / 90.5 ( 87.0 ) 52.9 / 81.2 ( 72.0 )

Gra5 55.6 / 85.1 ( 75.5 ) 85.5 / 90.4 ( 88.8 ) 67.5 / 86.1 ( 80.0 ) 52.3 / 82.2 ( 72.5 )

Gra6 57.0 / 86.4 ( 76.7 ) 71.5 / 84.3 ( 80.1 ) 59.6 / 87.5 ( 78.4 ) 52.2 / 82.0 ( 72.3 )

Gra7 80.6 / 94.2 ( 89.8 ) 52.6 / 84.6 ( 74.2 ) 58.6 / 86.1 ( 77.1 ) 59.3 / 86.7 ( 77.7 )

96

Univ
ers

ity
 of

 M
ala

ya



LIST OF PUBLICATIONS AND PAPERS PRESENTED

• Ooi, H.-L., Ng, S.-C., Lim, E. (2013) ”ANO detection with k-nearest neighbor

using Minkowski distance.” In International Conference of Signal Processing Sys-

tems (ICSPS) (Vol.1, pp. 208-211).

• Ooi, H.-L., Ng, S.-C., Lim, E., Salamonsen, R.F., Avolio, A.P. and Lovell, N.H.

(2014) ”Robust aortic valve non-opening detection for different cardiac condition,”

Artifical Organs, 38(3), E57-E67.

97

Univ
ers

ity
 of

 M
ala

ya



REFERENCES

Allen, G. S., Murray, K. D., & Olsen, D. B. (1996). Control of the artificial heart. ASAIO Journal, 42(6),

932–937.

AlOmari, A.-H. H., Savkin, A. V., Stevens, M., Mason, D. G., Timms, D. L., Salamonsen, R. F., & Lovell,

N. H. (2013). Developments in control systems for rotary left ventricular assist devices for heart

failure patients: a review. Physiological Measurement, 34(1).

Andrade, J. G., Al-Saloos, H., Jeewa, A., Sandor, G. G., & Cheung, A. (2010). Facilitated cardiac recovery

in fulminant myocarditis: pediatric use of the Impella LP 5.0 pump. The Journal of Heart and Lung

Transplantation, 29(1), 96–97.

Antonogeorgos, G., Panagiotakos, D. B., Priftis, K. N., & Tzonou, A. (2009). Logistic regression and

linear discriminant analyses in evaluating factors associated with asthma prevalence among 10-to 12-

years-old children: divergence and similarity of the two statistical methods. International Journal of

Pediatrics.

Arndt, A., Nüsser, P., Graichen, K., Müller, J., & Lampe, B. (2008). Physiological control of a rotary blood

pump with selectable therapeutic options: control of pulsatility gradient. Artificial Organs, 32(10),

761–771.

Arndt, A., Nüsser, P., & Lampe, B. (2010). Fully autonomous preload-sensitive control of implantable

rotary blood pumps. Artificial Organs, 34(9), 726–735.

Ayre, P., Lovell, N., Morris, R., Wilson, M., & Woodard, J. (2001). Identifying physiologically significant

pumping state transitions in implantable rotary blood pumps used as left ventricular assist devices: an

in-vivo study. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBS) (Vol. 1, pp. 445–448).

Ayre, P., Mason, D., & Karantonis, D. (2007). System and method of controlling a rotary blood pump (No.

EP 1847281 A1).

Baloa, L. A., Liu, D., Boston, J., Simaan, M., & Antaki, J. (2000). Control of rotary heart assist devices.

In Proceedings of the American Control Conference (Vol. 5, pp. 2982–2986).

Barr, M. L., Bourge, R. C., Orens, J. B., McCurry, K. R., Ring, W. S., Hulbert-Shearon, T. E., & Merion,

R. M. (2005). Thoracic organ transplantation in the United States, 1994–2003. American Journal of

Transplantation, 5(4p2), 934–949.

Beck, D., & Foster, J. A. (2014). Machine learning techniques accurately classify microbial communities

by bacterial vaginosis characteristics. PloS One, 9(2), e87830.

Bishop, C. J., Mason, N. O., Kfoury, A. G., Lux, R., Stoker, S., Horton, K., . . . Reid, B. B. (2010).

A novel non-invasive method to assess aortic valve opening in heartmate ii left ventricular assist

device patients using a modified Karhunen-Loève transformation. The Journal of Heart and Lung

Transplantation, 29(1), 27–31.

Boron, W., & Boulpaep, E. (2008). Medical physiology. Elsevier Health Sciences. Retrieved from

http://books.google.com.my/books?id=HlMJRw08ihgC (Accessed: 2014-06-09)

Borovetz, H., Kormos, R., Griffith, B., & Hung, T. (1988). Clinical utilization of the artificial heart. Critical

Reviews in Biomedical Engineering, 17(2), 179–201.

Boston, J., Antaki, J., & Simaan, M. (2003). Hierarchical control of heart-assist devices. IEEE Robotics &

Automation Magazine, 10(1), 54–64.

Boston, J., Baloa, L., Liu, D., Simaan, M., Choi, S., & Antaki, J. F. (2000). Combination of data approaches

to heuristic control and fault detection. In Proceedings of the Control Applications (pp. 98–103).

98

Univ
ers

ity
 of

 M
ala

ya

http://books.google.com.my/books?id=HlMJRw08ihgC


Boston, J., Simaan, M. A., Antaki, J., Yu, Y.-C., & Choi, S. (1998). Intelligent control design for heart

assist devices. In Proceedings of Intelligent Systems and Semiotics (ISAS) (pp. 497–502).

Chang, D.-H., & Islam, S. (2000). Estimation of soil physical properties using remote sensing and artificial

neural network. Remote Sensing of Environment, 74(3), 534–544.

Choi, S. (2003). Suction detection in left ventricular assist system: data fusion approach. International

Journal of Control Automation and Systems, 1(3), 368–375.

Choi, S., Boston, J. R., & Antaki, J. F. (2005). An investigation of the pump operating characteristics as

a novel control index for LVAD control. International Journal of Control, Automation, and Systems,

3(1), 100–108.

Choi, S., Boston, J. R., & Antaki, J. F. (2007). Hemodynamic controller for left ventricular assist device

based on pulsatility ratio. Artificial Organs, 31(2), 114–125.

Connelly, J. H., Abrams, J., Klima, T., Vaughn, W. K., & Frazier, O. (2003). Acquired commissural

fusion of aortic valves in patients with left ventricular assist devices. The Journal of Heart and Lung

Transplantation, 22(12), 1291–1295.

DeMarzo, A. P., & Lang, R. M. (1996). A new algorithm for improved detection of aortic valve opening

by impedance cardiography. In Computers in Cardiology (pp. 373–376).

Dixon, J. F., & Farris, C. D. (1991). The AbioMed BVS 5000 system. AACN Advanced Critical Care, 2(3),

552–561.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification

models: a methodology review. Journal of Biomedical Informatics, 35(5), 352–359.

Efron, B. (1983). Estimating the error rate of a prediction rule: improvement on cross-validation. Journal

of the American Statistical Association, 78(382), 316–331.

Endo, G., Araki, K., Kojima, K., Nakamura, K., Matsuzaki, Y., & Onitsuka, T. (2001). The index of

motor current amplitude has feasibility in control for continuous flow pumps and evaluation of left

ventricular function. Artificial Organs, 25(9), 697–702.

Farrar, D. J., Holman, W. R., McBride, L. R., Kormos, R. L., Icenogle, T. B., Hendry, P. J., . . . Frazier,

H. (2002). Long-term follow-up of thoratec ventricular assist device bridge-to-recovery patients

successfully removed from support after recovery of ventricular function. The Journal of Heart and

Lung Transplantation, 21(5), 516–521.

Ferreira, A., Boston, J. R., & Antaki, J. F. (2007). A rule-based controller based on suction detection

for rotary blood pumps. In Proceedings of the 29th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBS) (pp. 3978–3981).

Ferreira, A., Boston, J. R., & Antaki, J. F. (2009). A control system for rotary blood pumps based on

suction detection. IEEE Transactions on Biomedical Engineering, 56(3), 656–665.

Ferreira, A., Chen, S., Simaan, M. A., Boston, J. R., & Antaki, J. F. (2006). A discriminant-analysis-based

suction detection system for rotary blood pumps. In Proceedings of the 28th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) (pp. 5382–5385).

Ferreira, A., Simaan, M., Boston, J., & Antaki, J. (2006). Frequency and time-frequency based indices

for suction detection in rotary blood pumps. In Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (Vol. 2, pp. II–II).

Folkes, S., Lahav, O., & Maddox, S. (1996). An artificial neural network approach to the classification of

galaxy spectra. Monthly Notices of the Royal Astronomical Society, 283(2), 651–665.

Gao, B., Gu, K., Zeng, Y., & Chang, Y. (2012). An anti-suction control for an intra-aorta pump using blood

assistant index: A numerical simulation. Artificial Organs, 36(3), 275–282.

99

Univ
ers

ity
 of

 M
ala

ya



Gao, B., Nie, L. Y., Chang, Y., & Zeng, Y. (2011). Physiological control of intraaorta pump based on heart

rate. ASAIO Journal, 57(3), 152–157.

Geng, M. (1992). A comparsion of logistic regression to rnadom forests for exploring differences in risk

factors associated with stage at diagnosis between black and white colon cancer patines. Unpublished

doctoral dissertation, The Graduate School of Public Health, University of Pittsburgh, Pennsylvania,

United States.

Granegger, M., Moscato, F., Mahr, S., Wieselthaler, G., & Schima, H. (2011). Assessment of the aortic

valve opening during rotary blood pump support. ASAIO Journal, 57, 75.

Granegger, M., Schima, H., Zimpfer, D., & Moscato, F. (2013). Assessment of aortic valve opening during

rotary blood pump support using pump signals. Artificial Organs, 38(4).

Guyton, A., & Hall, J. (2006). Textbook of medical physiology. Elsevier Saunders. Retrieved from

http://books.google.com.my/books?id=K8-d-KzxvTYC (Accessed: 2014-06-09)

Hosmer, D., & Lemeshow, S. (2004). Applied logistic regression. Wiley. Retrieved from

http://books.google.com.my/books?id=Po0RLQ7USIMC (Accessed: 2014-06-09)

Kamdar, F., Boyle, A., Liao, K., Colvin-adams, M., Joyce, L., & John, R. (2009). Effects of centrifugal,

axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients.

The Journal of Heart and Lung Transplantation, 28(4), 352–359.

Karantonis, D. M. (2008). Control of a rotary blood pump. Unpublished doctoral dissertation, Ph. D. Dis-

sertation, Graduate School of Biomedical Engineering, The University of New South Wales (UNSW),

Sydney, Australia.

Karantonis, D. M., Cloherty, S. L., Lovell, N. H., Mason, D. G., Salamonsen, R. F., & Ayre, P. J. (2008).

Noninvasive detection of suction in an implantable rotary blood pump using neural networks. Inter-

national Journal of Computational Intelligence and Applications, 7(03), 237–247.

Karantonis, D. M., Cloherty, S. L., Mason, D. G., Salamonsen, R. F., Ayre, P. J., & Lovell, N. H. (2006).

Automated non-invasive detection of pumping states in an implantable rotary blood pump. In Pro-

ceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society (EMBS) (pp. 5386–5389).

Karantonis, D. M., Lovell, N. H., Ayre, P. J., Mason, D. G., & Cloherty, S. L. (2006). Identification

and classification of physiologically significant pumping states in an implantable rotary blood pump.

Artificial Organs, 30(9), 671–679.

Karantonis, D. M., Lovell, N. H., Ayre, P. J., Mason, D. G., & Cloherty, S. L. (2007). Classification of

physiologically significant pumping states in an implantable rotary blood pump: effects of cardiac

rhythm disturbances. Artificial Organs, 31(6), 476–479.

Karantonis, D. M., Mason, D. G., Salamonsen, R. F., Ayre, P. J., Cloherty, S. L., & Lovell, N. H. (2007).

Classification of physiologically significant pumping states in an implantable rotary blood pump:

patient trial results. ASAIO Journal, 53(5), 617–622.

Kohavi, R., et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. In International Joint Conference on Artificial Intelligence (IJCAI) (Vol. 14, pp. 1137–

1145).

Kumpati, G. S., McCarthy, P. M., & Hoercher, K. J. (2001). Left ventricular assist device bridge to

recovery: a review of the current status. The Annals of Thoracic Surgery, 71(3), S103–S108.

Lee, S.-I., Lee, H., Abbeel, P., & Ng, A. Y. (2006). Efficient l1 regularized logistic regression. In Proceed-

ings of the National Conference on Artificial Intellignece (Vol. 21, p. 401).

Lietz, K., Long, J. W., Kfoury, A. G., Slaughter, M. S., Silver, M. A., Milano, C. A., . . . Miller, L. W.

(2007). Outcomes of left ventricular assist device implantation as destination therapy in the post-

100

Univ
ers

ity
 of

 M
ala

ya

http://books.google.com.my/books?id=K8-d-KzxvTYC
http://books.google.com.my/books?id=Po0RLQ7USIMC


rematch era implications for patient selection. Circulation, 116(5), 497–505.

Lim, E. (2010). Characterisation of cardiovascular-rotary blood pump interaction. Unpublished doctoral

dissertation, Ph. D. Dissertation, Graduate School of Biomedical Engineering, The University of New

South Wales (UNSW), Sydney, Australia.

Lim, E., Dokos, S., Salamonsen, R. F., Rosenfeldt, F. L., Ayre, P. J., & Lovell, N. H. (2012). Numerical

optimization studies of cardiovascular–rotary blood pump interaction. Artificial Organs, 36(5), E110–

E124.

Lin, Y., Chou, N.-K., Chen, Y.-Y., & Jan, G. (2001). A pump control index for reducing suction and

backflow effect caused by the portable centrifugal blood pump. In Proceedings of the 23rd Annual

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS) (Vol. 1,

pp. 465–466).

Long, J. W., Kfoury, A. G., Slaughter, M. S., Silver, M., Milano, C., Rogers, J., . . . Frazier, O. (2005). Long-

term destination therapy with the heartmate xve left ventricular assist device: Improved outcomes

since the REMATCH study. Congestive Heart Failure, 11(3), 133–138.

Mackay, J., Mensah, G., Mendis, S., Greenlund, K., & Organization, W. H. (2004).

The atlas of heart disease and stroke. World Health Organization. Retrieved from

http://books.google.com.my/books?id=JagK-qIWaZoC (Accessed: 2014-02-25)

Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. In Proceed-

ings of the Institution of Electrical Engineers (Vol. 121, pp. 1585–1588).

Mason, D. G., Hilton, A. K., & Salamonsen, R. F. (2008). Reliable suction detection for patients with

rotary blood pumps. ASAIO Journal, 54(4), 359–366.

Matoba, Y., Okubo, H., & Nosé, Y. (2004). Therapeutic left ventricular assist device and apheresis on

dilated cardiomyopathy. Artificial Organs, 28(2), 171–181.

Mendis, S., Puska, P., Norrving, B., Organization, W. H., Federation, W. H., & Organization, W. S.

(2011). Global atlas on cardiovascular disease prevention and control. World Health Organiza-

tion in collaboration with the World Heart Federation and the World Stroke Organization. Retrieved

from http://books.google.com.my/books?id=ZRbKygAACAAJ (Accessed: 2014-06-10)

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine learning, neural and statistical classifi-

cation. Ellis Horwood.

Moustafa, A. A., Alqadi, Z. A., & Shahroury, E. A. (2011). Performance evaluation of artificial neural

networks for spatial data analysis. Contemporary Engineering Sciences, 4(4), 149–163.

Naiyanetr, P., Moscato, F., Vollkron, M., Zimpfer, D., Wieselthaler, G., & Schima, H. (2010). Continuous

assessment of cardiac function during rotary blood pump support: A contractility index derived from

pump flow. The Journal of Heart and Lung Transplantation, 29(1), 37–44.

Navia, J. L., McCarthy, P. M., Hoercher, K. J., Smedira, N. G., Banbury, M. K., & Blackstone, E. H. (2002).

Do left ventricular assist device (LVAD) bridge-to-transplantation outcomes predict the results of

permanent lvad implantation? The Annals of Thoracic Surgery, 74(6), 2051–2063.

Ng, S.-C., Lim, E., Mason, D. G., Avolio, A. P., & Lovell, N. H. (2013). Evaluation of suction detection

during different pumping states in an implantable rotary blood pump. Artificial Organs, 37(8), E145–

E154.

Nosé, Y., Motomura, T., Miyamoto, H., Ohta, K., Takaba, J., & Sugita, Y. (2010). The need to change

our objective for artificial heart development: from totally implantable permanent ventricular assist

devices to wearable therapeutic ventricular assist devices. Artificial Organs, 34(12), 1069–1076.

Nosé, Y., Yoshikawa, M., Murabayashi, S., & Takano, T. (2000). Development of rotary blood pump

technology: past, present, and future. Artificial Organs, 24(6), 412–420.

101

Univ
ers

ity
 of

 M
ala

ya

http://books.google.com.my/books?id=JagK-qIWaZoC
http://books.google.com.my/books?id=ZRbKygAACAAJ


Ooi, H.-L., Ng, S.-C., & Lim, E. (2013). ANO detection with k-nearest neighbor using Minkowski distance.

International Journal of Signal Processing Systems (IJSPS), 1(2), 208–211.

Ooi, H.-L., Ng, S.-C., Lim, E., Salamonsen, R. F., Avolio, A. P., & Lovell, N. H. (2014). Robust aortic

valve non-opening detection for different cardiac conditions. Artificial Organs, 38(3), E57–E67.

Park, S. J., Tector, A., Piccioni, W., Raines, E., Gelijns, A., Moskowitz, A., . . . others (2005). Left

ventricular assist devices as destination therapy: a new look at survival. The Journal of Thoracic and

Cardiovascular Surgery, 129(1), 9–17.

Park, S. Y., & Liu, Y. (2011). Robust penalized logistic regression with truncated loss functions. Canadian

Journal of Statistics, 39(2), 300–323.

Pohar, M., Blas, M., & Turk, S. (2004). Comparison of logistic regression and linear discriminant analysis:

a simulation study. Metodolski Zvezki, 1(1), 143–161.
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