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Abstract 

 

  Supporting physically disabled society with severe motor disabilities is very 

challenging as their needs differ depending on the severity of the impairment incurred. 

As an attempt to support them, a BCI for wheelchair navigation is developed to help 

them regain some mobility. In this study, a hybrid BCI that combine inputs from EEG 

and EOG signals for a more effective interface is proposed. Specifically, one EEG 

signal at O2 and two EOG artifacts embedded in EEG signals at C3 and C4 are used as 

inputs to an asynchronous wheelchair navigation system. Cz is taken as reference and 

the signals are all recorded using g.mobilab amplifier from 20 participants. The alpha 

rhythm extracted from O2 signal is related to eyelid position that determines whether 

the eyes are closed or open, while the delta rhythms extracted from C3 and C4 signals 

are related to horizontal eyeball movement used to infer the gaze direction. A sliding 

window is utilized to position important cues in the EEG signals at the center of the 

window to extract consistent features for accurate classification. The features from the 

O2 signal are variance, 2nd order difference plot and area. They are classified by 

thresholding and CTM. The delta rhythm data can be used directly as inputs to an LDA 

or K-Means classifier. Otherwise, a feature like area can be extracted from the delta 

signal and classified by thresholding. The system is modeled as a finite state machine 

with two modes, each containing three states. The transition between states is 

determined by fuzzy logic. This is to allow the wheelchair to move FORWARD and 

BACKWARD in six different directions with minimum error. In Online Session, the 

performance of various features and classifiers used are recorded and compared. A 

combination of features and classifier that achieve the highest accuracy is then 

implemented in the Navigation Session which are variance (98%) in alpha rhythm and 

K-Means (98%) in delta rhythms. Then, performance of the system is tested in 
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Navigation Session. Only five participants who obtained the score higher than 98% in 

the Online Session were invited to perform the actual navigation tasks by maneuvering 

the wheelchair along two designated routes. High average performance rates of 98% for 

Route 1 and 96% for Route 2 were recorded and the participants managed to complete 

the tasks without collisions. This experiment also tested the usability of the 

BACKWARD movement when the wheelchair was trapped at tight dead ends with no 

space to make u-turn. The main contribution of this research work is in the right 

selection of the EOG artifacts and EEG signals used, the choice of the model that allows 

FORWARD and BACKWARD wheelchair movement and the fast execution time. 

Finally, the implementation of sliding window helps increase the performance rate.
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Abstrak 

 

 Sebagai usaha untuk membantu masyarakat kurang upaya yang hilang 

keupayaan fisikal, pacuan kerusi roda melalui BCI dibina bagi membantu mereka untuk 

bergerak. Tesis ini mencadangkan gabungan isyarat EEG dan EOG sebagai masukkan 

untuk antara muka yang lebih berkesan. Secara khususnya, satu isyarat EEG di O2 dan 

dua artifak EOG yang tertanam dalam isyarat EEG di C3 dan C4 digunakan sebagai 

masukkan kepada sistem navigasi kerusi roda tak segerak. Cz diambil sebagai rujukan 

dan isyarat semuanya dirakam menggunakan penguat g.mobilab daripada 20 peserta. . 

Isyarat alpha dari O2 yang digunakan untuk menentukan sama ada mata ditutup atau 

dibuka manakala isyarat delta dari C3 dan diperiksa untuk menetukan arah pandangan 

mendatar. Tetingkap gelongsor digunakan di dalam analisis supaya isyarat penting 

dalam EEG dapat diambil bagi pengelasan yang berkesan.  Ciri-ciri dari isyarat O2 

adalah varians, 2nd order difference plot dan keluasan isyarat dan dikelaskan oleh 

pengambangan dan CTM. Data isyarat delta boleh digunakan secara langsung sebagai 

masukkan pada pengelas LDA atau K-Means. Jika tidak, satu ciri seperti keluasan boleh 

diekstrak daripada isyarat delta dan dikelaskan oleh pengambangan. Sistem ini 

dimodelkan sebagai mesin keadaan terhingga dengan sebagai peralihan dengan dua 

mod, masing-masing mengandungi tiga keadaan. Peralihan antara keadaan ditentukan 

oleh logik kabur. Ini bagi membolehkan kerusi roda untuk bergerak hadapan dan ke 

belakang dalam enam arah yang berbeza dengan ralat yang minimum. Dalam Sesi 

Online, prestasi pelbagai ciri-ciri dan pengelas direkodkan dan dibandingkan. Gabungan 

ciri-ciri dan pengelas yang mencapai ketepatan tertinggi kemudiannya dilaksanakan 

dalam Sesi Navigasi iaitu varians (98%) dalam isyarat alpha dan K-Means (98%) dalam 

isyarat delta. Kemudian, prestasi system ini yang diuji dalam Sesi Navigasi. Hanya lima 

peserta yang mendapat markah yang lebih tinggi daripada 98% dalam Sesi Online telah 
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dipilih untuk melaksanakan tugasan navigasi sebenar memacu kerusi roda di sepanjang 

dua laluan yang ditetapkan. Kadar prestasi purata yang tinggi iaitu 98% untuk Laluan 1 

dan 96% untuk Laluan 2 telah direkodkan dan para peserta berjaya menyelesaikan 

tugasan tanpa perlanggaran. Eksperimen ini juga menguji kebolehgunaan pergerakan ke 

belakang apabila kerusi roda yang telah terperangkap di hujung mati ketat dengan tiada 

ruang untuk membuat u-turn. Sumbangan utama penyelidikan ini adalah dalam 

ketepatan pemilihan artifak EOG dan isyarat EEG yang digunakan, pemilihan model 

yang membolehkan pergerakan ke HADAPAN dan ke BELAKANG, dan masa 

pelaksanaan yang cepat. Akhir sekali, pelaksanaan gelongsor tetingkap membantu 

meningkatkan kadar prestasi pemprosesan isyarat. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 Supporting physically disabled society with severe motor disabilities is very 

challenging as their needs differ on the severity of the impairment incurred. Therefore, 

Human Machine Interface (HMI) has been introduced to help them improve their 

quality of life. Various electrophysiological signals such as electroencephalogram 

(EEG), electrooculogram (EOG) and electromyogram (EMG) have been used and tested 

as a control mechanism for HMI. Using these electrophysiological signals, variety of 

assistive applications have been proposed in many studies (Latif, Sherkat, & Lotfi, 

2008; Nguyen & Jo, 2012; Thorsten O. Zander, Matti Gaertner et al., 2010).  

1.2 Motivation and Problem Statement 

 Neurophysiological signals such as P300 wave, mu and beta rhythms and steady 

state visually evoked potential (SSVEP) can be recorded from the scalp using EEG. 

These signals have been utilized by researchers from diverse fields to develop a variety 

of HMI known as a brain computer interface (BCI). However, the presence of cognitive 

impairments in physically disabled can cause difficulties in operating BCI that requires 

a high degree of concentration.  

 Operating BCI can be more effective by reducing the cognitive load by combining 

EEG signals with other physiological signals known as hybrid BCI. Physiological 

signals such as EOG or EMG can provide an efficient channel of interaction for patients 

who are partially lost control over muscular activity. Recently, there have been many 

studies that proposed wheelchair navigation controllers based hybrid BCI (Cao, Li et 
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al., 2014; Long, Li et al., 2012; Wang, Li et al., 2014; Yuanqing, Jiahui et al., 2013; 

Zhijun, Shuangshuang et al., 2013). However, contamination of ocular and muscular 

activities remains a significant problem in the design of hybrid BCI systems 

(Fatourechi, Bashashati et al., 2007; Yong, Fatourechi et al., 2012). It is no surprise the 

hybrid BCI system that relies on eye movements as input is more contaminated with 

ocular artifacts compared to a pure BCI system. 

  Since EEG signals have always been contaminated by ocular artifacts, we employ 

these artifacts as inputs into our system. Therefore, in this study we utilized alpha 

rhythm and EOG artifacts in EEG as inputs to the hybrid BCI. Both inputs are fast, 

stable and easy to generate that are suitable for physically disabled with cognitive 

impairments. Due to constant eye movement, it is difficult to keep the EOG artifacts in 

idling state or to avoid the Midas touch problem (Baihan, Lo, & Shi, 2013). 

Furthermore, only a limited number of gaze directions can be realized from eye 

movement. Therefore, outputs from the hybrid BCI will be translated into commands to 

steer the wheelchair that is modeled as a finite state machine. Using finite state machine, 

the Midas touch problem can be avoided and the wheelchair can be commanded to 

move in a different direction from a limited number of gaze. 

1.3 Objective 

 The primary objective of this work is to develop a navigation controller for a 

motorized wheelchair using a hybrid of EEG and EOG artifacts in EEG signals and 

finite state machine technique. The sub-objectives include: 

1) Investigating the best techniques to process the signals and extract suitable 

features for detecting EOG artifacts in EEG signals. 

2) Developing a finite state model with the correct modes and states. 
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1.4 Scope 

 This work focuses on developing the controller of an asynchronous wheelchair 

navigation that utilizes EEG and EOG artifacts embedded in EEG signals. The system 

should allow the wheelchair to move FORWARD and BACKWARD in three different 

directions namely LEFT, RIGHT and STRAIGHT. The wheelchair should also be able 

to STOP when instructed. In short, the system takes input signals from the user and 

transforms them into a command executed by the wheelchair. A graphical user interface 

(GUI) that provides system information like state, mode and remaining battery life must 

be provided. The proposed system must be tested in real-time experiments by healthy 

participants. 

1.5 Thesis Organization 

 This thesis is organized as follows. In Chapter 2, the EEG acquisition system, the 

characteristics of main EEG rhythms and its artifacts are introduced. Then, existing 

works related to EEG and EOG based HMI are reviewed. Also, related works to 

wheelchair navigation and its current trend are discussed. Finally, the key techniques in 

signal processing for BCI controlled mobile robots are explained.  

 Chapter 3 describes the flow of the research process, the participants, the 

acquisition system and the protocols during the experimental sessions. Then, processing 

techniques for eyelid position and the horizontal gaze detection used in this study are 

described. Also, the implementation of sliding window is explained. Towards the end of 

this chapter, the proposed system that model as a finite state machine and fuzzy state 

transition are explained. This is followed by the hardware implementation in this study.  

 Subsequently, Chapter 4 discusses the findings obtained during experimental 

sessions and examples of signal analysis for each classification techniques will be 
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presented. The discussion will include the characteristics, property and uncontrolled 

factors contribute to performance in this study. 

 Finally, Chapter 5 concludes the study by presenting the contribution of this work, 

limitation and the implications of the work for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

  In this chapter, a survey of the literature related to BCI is presented. First, a 

general overview of electrode placement, acquisition system, main frequency rhythms 

and artifacts in the EEG are defined. Then, the characteristics of EOG signals acquired 

from outer canthi will be described. Also, the existing studies that used EEG and EOG 

as a control input to HMI are reviewed. This is followed by the current trends of 

research in mobile robot application. Finally, the approaches in EEG signal processing 

are presented. 

2.2 Electroencephalography 

 EEG signal is an electrical signal caused by the flow of the neurons during 

synaptic excitations in the brain. Acquiring a non-invasive EEG signal requires 

electrodes that placed on the scalp and acquisition system. The characteristics of the 

EEG signal can be defined according to their frequencies and position on the scalp. 

2.2.1 Electrodes Placement 

 The electrode placement using International 10–20 system as shown in Figure 2.1 

is the most common system used to acquire EEG signals. This system has two reference 

points at the middle in between two eyes (nasion) and at the base of the skull (inion). 
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The intervals of 10% and 20% are marked over the scalp based on these two reference 

points to determine the electrode positions.  

 

 

A: Ear lobe 
C: Central region 
Pg: Nasopharyngeal 
P: Parietal 
F: Frontal 
Fp: Frontal polar 
O: Occipital area 

 

Figure 2.1: Electrodes placement based on the International 10–20 system for 75 
electrodes (S. Sanei & Chambers, 2007). The letters that correspond to specific 

brain regions are described in the lower right of the figure. 

 In the EEG measurement, the signals can be recorded using two types of montage 

known as monopolar and bipolar (P. F. Diez, Mut et al., 2010). The monopolar montage 

recorded the EEG signals by comparing it with a common reference as depicted in 

Figure 2.2 (a). Typically, the reference is placed at Cz or earlobe that has minimal 

cerebral activity. This montage allows a valid comparison of the EEG signals recorded 

from various electrode placements. In the bipolar montage, two interest channels are 

compared and their difference is recorded as shown in Figure 2.2 (b). Each of these 

montages has its own advantages and disadvantages as outlined in Table 2.1. 
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Figure 1.9 A diagrammatic representation of 10–20 electrode settings for 75 electrodes including
the reference electrodes: (a) and (b) represent the three-dimensional measures, and (c) indicates a
two-dimensional view of the electrode setup configuration

In many applications such as brain–computer interfacing (BCI) and study of mental
activity, often a small number of electrodes around the movement-related regions are
selected and used from the 10–20 setting system. Figure 1.10 illustrates a typical set of
EEG signals during approximately seven seconds of normal adult brain activity.
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(a) (b) 

Figure 2.2: The EEG signals can be recorded using two types of montage known as 
(a) monopolar and (b) bipolar. 

 

Table 2.1: The descriptions and comparison between monopolar and bipolar 
montage. 

Montage Advantage Disadvantage 
Monopolar The EEG signal reflects the 

cerebral activity. 
No ideal site for common reference. 

• Cz reference Equal distances between 
electrodes. 

This channel contaminated with sleep 
potentials when the subject is asleep.  

• Ear reference A little cancelation and the 
signal appear higher in 
amplitude make it easier for 
detection. 

Contaminate with ECG signals. 

   
Bipolar Typically use to record low to 

medium amplitude signals that 
are highly localized. 

A flat line signal occurs due to equal 
potential between two channels. 

• Longitudinal  Gold standard in EEG 
monitoring. 

 

• Transverse Easy comparison of EEG signal 
between left and right, anterior 
and posterior head. 

 

   

Amplifier EEG 

Reference 

Amplifier EEG 
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2.2.2 EEG Acquisition System 

 The EEG acquisition system consists of an analog circuit and digital system to 

amplify the EEG signal in microvolt then transmit the data. For the past two decades, 

the advancement of the EEG acquisition system has improved the quality of signal 

recording and transmission mode. Basically, the system with a sampling rate up to 

38.4kHz is available for consumer and research use from various manufacturers. The 

system with wired transmission mode offered higher signal quality compared to the 

wireless system. However, the wired systems are heavier with shorter operation time 

using batteries. The comparison of the acquisition system that powered from batteries is 

summarized in Table 2.2.  

Table 2.2: Comparison of EEG acquisition system available for consumer and 
research usage that powered by batteries in Malaysia (Ramli, Mokhtar et al., 

2009). 

Specifications g.USBamp g.Mobilab Trackit ActiveTwo 

Manufacturer g.tec g.tec Lifelines Biosemi 
Input channels 8 channels 4 channels 24 channels 16 channels. 

Digitalization 24 bit 16 bit 16 bit 24 bit 

Sampling rate Up to 38.4kHz 256Hz Up to 256Hz Up to 16.384 kHz 

Weight 1.55kg 360g  500g 1.1kg 

Driver (LabVIEW) Yes Yes No Yes 

PC transmission Wired (USB) Wired (USB) 
Bluetooth 

Wired (USB) 
Bluetooth 

Wired (USB) 

Power source Rechargeable 
battery pack AA batteries 9V batteries Rechargeable 

battery pack 
Operation time 10 hours 100 hours 96 hours >5 hours 
Price rank 1st (Most expensive) 3rd  4th  2nd  
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 In the research field, several scientific articles have been published in wireless 

EEG acquisition system for the last few years as listed in Table 2.3. The specifications 

of the proposed wireless systems are optimized to target their specific application such 

as workload observation, drowsiness detection and game control. In the listed studies, 

the highest sampling rate is offered by Brown et al. (Brown, van de Molengraft et al., 

2010) while Matthews et al. (Matthews, Turner et al., 2008) recorded the longest 

operation time powered by batteries. 

Table 2.3: Comparison of wireless EEG acquisition system in published papers 
(Lee, Shin et al., 2013). 

Specifications (Matthews et 
al., 2008) 

(Brown et al., 
2010) 

(Lin, Chang 
et al., 2010) 

(Liao, Chen et 
al., 2012) 

(Dias, Carmo 
et al., 2012) 

Input channels 7 channels 8 channels 3 channels 3 channels 5 channels 
Digitalization 16 bit 11 bit 12 bit 12 bit 16 bit 

Sampling rate 240Hz 256-1024Hz 512 Hz 256Hz 1kHz 

Interface unit PC Not mentioned Embedded 
processor 

PC PC 

Power source AAA batteries 3.7v 140mAh 
Li- Ion battery 

3.7v 1.1Ah Li-
Ion battery 

3.7v 750mAh 
Li- ion battery 

AA batteries 

Operation time 80 hours 30 hours 33 hours 23 hours 25 hours 

Design Helmet Headset Headband Headset Brain cap 

Application Workload 
observation 

Not mentioned Drowsiness 
detection 

Game control Not mentioned 

 

2.2.3 EEG Rhythms 

The EEG signal consists of five main frequency rhythms known as Delta (𝜃), 

Theta (𝜃), Alpha (𝛼), Beta (𝛽) and Gamma (𝛾). These frequencies can be defined 

according to their placement over the scalp or biological significance. The examples of 
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the signals are shown in Table 2.4. The relevant characteristics of these frequencies are 

described as follows. 

Table 2.4: Comparison of signal pattern in five main EEG rhythms. 

Rhythm Frequency Signal Pattern 
   

Delta 0.5 - 4Hz 

 

Theta 4 - 8Hz 

 

Alpha 8 - 14Hz 

 

Mu 8-13Hz 

 

Beta 14 - 30Hz 

 

Gamma 30-100Hz 
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a) Delta rhythm 

 The frequency range of delta rhythm is below 4Hz. It can be observed during slow 

wave sleep in adult and normally seen in babies. The signal appears to be the slowest 

but highest in amplitude. It occurs most prominently in the frontal region for adults and 

the posterior region for babies. Individuals that suffer from neurological diseases show a 

large amount of delta activity during awake (Kübler, Kotchoubey et al., 2001). 

b) Theta rhythm 

 The frequency of the theta rhythm range between 4Hz to 7Hz and normally found 

in young children, during drowsiness or arousal and meditation in adults (Aftanas & 

Golocheikine, 2001). This rhythm is generally associated with creativity and intuition. 

The lower range of this rhythm presents during the states of calm, composed and drift 

between waking and sleep, while the higher range presents when the brain engaging 

with a complex and focused on problem solving (Fernández, Harmony et al., 1995). 

Excessive theta rhythm during awake indicates problems with attention, head injuries, 

and learning disorders. 

c) Alpha rhythm 

 Alpha rhythm occurs in the frequency range between 7Hz to 14Hz during 

relaxation or idle state. The signal is dominant in the posterior region (Pineda, 2005) 

when the eyes are closed and attenuates when the eyes are open. However, if excessive 

alpha activity is found in the frontal region, it is linked to depression and attention 

deficit disorder (ADD) in adults.  
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 In addition, there is mu rhythm (8-13Hz) that partly overlaps to the normal alpha 

rhythm. It reflects the activity of motor neurons and dominant in the sensory and motor 

cortex area (G Pfurtscheller, Brunner et al., 2006). 

d) Beta rhythm 

 Beta rhythm is most evident in the frontal region and ranges between 15Hz to 

30Hz. Generally, this rhythm is associated with intellectual activity and outward focus 

such as problem solving, processing information and feeling anxious (Schutter & Van 

Honk, 2005). Furthermore, this rhythm can be associated with the motor movement or 

imagery. During the motor activities, the rhythms are desynchronized and symmetrical 

distributions of the rhythms are altered.  

e) Gamma rhythm 

 Gamma rhythm belongs to frequency range from 30Hz to 100Hz and the fastest 

brainwave. It is most evident in the somatosensory cortex during cross modal sensory 

processing that combines two different senses such as sound and sight (Müller, Keil et 

al., 1999). A high gamma rhythm can be observed in individual with superior 

intelligence, enhanced memory and compassion. Contrarily, the deficiency of this 

rhythm is related to the learning difficulties, cognitive decline and diminished 

perceptual processing (Saeid Sanei & Chambers, 2008). 

2.2.4 Artifacts in EEG 

The EEG is highly susceptible to various artifacts that are non-cerebral origin. 

Technical artifacts are caused by equipment or environment and mainly attributed to 
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power-line noises (50/60Hz artifacts), cable movements or changes in electrode 

impedances. Also, interference of high frequency transmitted from other electronic 

devices can overload the EEG amplifiers. These technical artifacts can be prevented by 

proper electrode setup and shielding the amplifier. 

Physiological artifacts that originate from the ocular, muscle and heart activity 

can introduce significant alterations in brain signals and ultimately affect the 

neurological phenomenon. For example, blinking generates high amplitude pattern in 

the brain signal that is larger in the frontal and decrease rapidly towards the posterior 

areas (Lins, Picton et al., 1993) as shown in Figure 2.3. EOG activity is most prominent 

over the anterior regions and frequency below 4Hz (McFarland, Sarnacki et al., 2005). 

Movement of the head, body or jaw can result in a substantial distortion in the 

EEG signal and high in amplitude as the intensity of the movement is increased 

(Waterink & Van Boxtel, 1994). Finally, ECG artifacts present in the EEG signal due to 

heartbeats or respiration. 
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Figure 2.3: Contamination of vertical EOG (VEOG) and horizontal EOG (HEOG) 
in EEG signals are depicted in red color (Klados, Papadelis et al., 2011).  

2.3 Electrooculography 

The EOG signal is an electrical signal generated by eye movement from the 

potential difference between the cornea and retina. Its amplitude is relatively high in the 

EOG signals recorded from the outer canthi ranging between 15-3500𝜇V and easy to 

detect. Bandwidth of VEOG and HEOG recorded from the outer canthi was located in 

the range of 0.5–35 Hz. The EOG signal corresponding to gaze right, left, blink and 

closed eye is presented in Figure 2.4. In VEOG, natural blink and intentional blink can 

be distinguished by the strength and duration of the signal. A closed eye is formed by 

two pulses as a positive and negative pulse representing the moment of the eyelid is 

M.A. Klados et al. / Biomedical Signal Processing and Control 6 (2011) 291– 300 293

Fig. 1. Contamination procedure – pre-contaminated (free of artifacts) (blue) and contaminated (red) EEG signals are depicted in scalp electrode positions. Contamination
coefficients, as proposed by [17] for both VEOG and HEOG activity are provided at each electrode site. On the top part, HEOG and VEOG signals are illustrated alongside with
scalp  distributions of their associated contamination factors. As it can be clearly noted, anterior sites are more contaminated in contrast to posterior ones for VEOG, while
the  HEOG activity is most troublesome in lateral electrode positions.

Section 2.1.2 and to generate the artificially contaminated EEG data
(see Section 2.1.4).

2.1.4. Artificially contaminated EEG data
In order to generate the “artificially contaminated EEG signals”

(used for evaluating the performance of REG-ICA), we  have used
the Elbert’s contamination model [9]:

CEEGi,j = PEEGi,j + ajVEOG + bjHEOG (1)

where CEEG are the artificially contaminated EEG signals and PEEG
are the signals described in Section 2.1.2. The VEOG and HEOG are
the EOG signals obtained from the eyes-opened session (see Sec-
tion 2.1.3). Vectors aj, bj denote the contamination coefficients for
VEOG and HEOG, respectively, initialized according to [17]. Finally
index i indicates the subject’s number, while j denotes the electrode
(Fig. 1).

2.2. Blind Source Separation

A BSS model assumes that a set of recordings of p random vari-
ables u(t) = [u1(t), . . .,  up(t)]T is linear mixtures of q independent
source signals:

u(t) = A · s(t) + n(t) (2)

where A is a [p × q] matrix and n(t) denotes an additive vector of
white noise. A BSS method finds the ICs without a priori knowledge
of the mixing process or the source signals, provided that (i) the
number of source signals is less than or equal to the number of
recordings and (ii) the mixing matrix, A, is full column-ranked.

2.3. Regression analysis

Each regression-based artifact rejection technique, uses the lin-
ear model of Eq. (3) to calculate the relationship between the
observed EOG and EEG signals and then tries to approximate the
“real” EEG by subtracting the EOG signals from the observed EEG
(Eq. (4)):

OBSi = EEGi + aiVEOG + biHEOG (3)

EÊGi = OBSi − âiVEOG − b̂iHEOG (4)

where OBSi and EEGi are the observed and the real EEG signals in
the ith electrode. VEOG and HEOG are the vertical and horizontal
EOG signals respectively. The contamination coefficients in the ith
electrode are denoted with ai and bi, and the indicator îndicates
approximated variables.

Adaptive filters are based on regression analysis. Their goal is
to adapt the filter coefficients (âi, b̂i) and adjust them as closely as
possible to the real contamination coefficients (ai, bi) (Fig. 2).
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closed and open. From Figure 2.4 (a) and (b), it can be observed that the HEOG is 

lateralized ipsilateral to the eyeball movement and also reflected in EEG signals. 

Therefore, the same characteristics of horizontal gaze are registered in HEOG and EEG. 

 

 

Figure 2.4: The EOG signal in the range of 0.5–35 Hz. (a) The electrode placement. 
(b), (c) HEOG is lateralized ipsilateral to eyeball direction. (d) A closed eye is 

represented by two pulses in VEOG during eyelid closed and open. (e) Distinction 
between natural and intentional blink in VEOG. 

2.4 Human Machine Interface 

Many alternative strategies of HMI using non-biosignal and electrophysiological 

signal have been proposed to operate assistive device (Latif et al., 2008; Nguyen & Jo, 

2012; Thorsten O. Zander et al., 2010). The assistive device that operates from non-

biosignal is normally received the hands free signals in the form of sip and puff 

(Mougharbel, El-Hajj et al., 2013), eye tracking control (Nguyen & Jo, 2012), tongue 
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control (Kim, Park et al., 2013), head gesture (Halawani, ur Réhman et al., 2012) and 

chin control. These strategies are easy to execute, accurate and require less training. 

However, sufficient ability to move part of the body is required to control them, which 

are not in the case of severe motor disabilities. 

 In situations where the user with locked-in syndrome, approaches using 

electrophysiological signals that demand lesser control of the body functions are more 

suitable. Access to the device can be made by means of EMG (Xu, Zhang et al., 2013), 

EOG and EEG (Kaufmann, Herweg, & Kubler, 2014).  

2.4.1 Brain Computer Interface 

 EEG based HMI is also known as BCI, can translate the user’s intention into 

computer commands. Various neurophysiological signals, such as, P300 wave, 

sensorimotor rhythms (mu and beta rhythms) and SSVEP can be recorded from the 

scalp using electrical brain signals or EEG. Many applications have been developed 

using P300, mu and beta rhythms and SSVEP as control signals such as character 

selection (Townsend, LaPallo et al., 2010), virtual object movement (Piccione, Giorgi et 

al., 2006), controlling robotic arm (Blasco, Ianez et al., 2012), cursor control (Yu, Li et 

al., 2012), word speller (Hwang, Lim et al., 2012), wheelchair navigation (P. F. Diez, 

Mut et al., 2011; Huang, Qian et al., 2012; I. Iturrate, J. M. Antelis et al., 2009; Kus, 

Valbuena et al., 2012; Parini, Maggi et al., 2009; B. Rebsamen, C. T. Guan et al., 2010) 

and cursor movement (Lederman & Tabrikian, 2012) to assist physically challenged 

patients. 

 Compared to other neurophysiological signal to control BCI, SSVEP based BCI 

has the advantage of higher information transfer rate (ITR) with short training time. A 
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general comparison of different neurophysiological signal to drive BCI is summarized 

in Table 2.5.  

Table 2.5: Comparison of the common neurophysiological signals used to drive 
BCI. 

Brain 
Signals 

Stimulus Concentration Training 
Time 

Command 
Interval 

ITR 
(bits/min) 

No. of 
choices 

SSVEP Flickering 
lights High Short  

(Minutes) 
Short 
(2–4s) 60–100  High 

P300 Oddball 
paradigm High Short 

(Minutes) 
Long 
(10–20s) 20–25  High 

Sensorimotor 
rhythms None High Long 

(Weeks) 
Short 
(0.5–4s) 3–35  Low 

 

a) SSVEP 

 SSVEP is a response to visual stimulation at specific frequencies observed in the 

occipital region as shown in Figure 2.5. SSVEP based BCI allow users to select a target 

by visually fixes attention on a flickering light with frequency above 4Hz and a higher 

ITR up to 100bits/min can be achieved with a little training. The SSVEP response 

differs between stimulus properties such as light, graphic and pattern (Zhu, Bieger et al., 

2010). Increasing the number of available frequencies will increase the number of 

targets, however, the accuracy and speed will be affected.  

 The advantage of SSVEP based BCI is high ITR and requires no significant 

training to operate. However, the flickering stimulus can be annoying for certain 

individuals and produces fatigue. A higher frequency stimulus has been utilized to 

reduce these issues, but makes the SSVEP harder to detect. 
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Figure 2.5: SSVEP decoding approach (A) Subject focus on Target 1, stimulus 
flickering at frequency f1 (B) EEG is processed to obtain its power spectral density 

(C) The salient peak at f1 imply that Target 1 as the selection (Chumerin, 
Manyakov et al., 2013). 

b) P300 

 The P300 wave is an event related potential (ERP) elicited by visual stimuli as a 

reaction to oddball paradigm. The largest P300 amplitude occurs when desired items are 

flashed in front of the participants (Polich, Ellerson, & Cohen, 1996) as the signal is 

related to individuals’ motivation (Kleih, Nijboer et al., 2010). The P300 is effective for 

both able (Minett, Zheng et al., 2012) and disabled (Mak, McFarland et al., 2012) 

bodies as no training is required and has been shown to have a relatively robust 

performance.  

 Many studies have been conducted to improve the interface paradigm (Jin, Allison 

et al., 2012; Park & Kim, 2012) and signal processing techniques (Jin, Sellers, & Wang, 

2012; Speier, Arnold et al., 2012) for the analysis of P300 signal. For instance, the 



 

 

 

19 

checkerboard interface paradigm is reported to be superior to the standard row or 

column paradigm in terms of accuracy and speed (Townsend et al., 2010) as shown in 

Figure 2.6.  

  

  
(a) (b) 

Figure 2.6: P300 paradigms containing 72 items presented in 8x9 matrix (a) 
checkerboard paradigm (b) row–column paradigm (Townsend et al., 2010). 

c) Sensorimotor rhythms 

 Another neurophysiological signal used to control BCI is sensorimotor rhythm 

(mu rhythm), which can be generated by sensory stimulation, motor behavior and 

mental imagery. It is a known fact that imagination of actual movement can generate 

sensorimotor rhythms without the actual movement taking place (B. Blankertz, Sannelli 

et al., 2010). The capacity of motor imagery varies between individuals with most 

individuals find it difficult (McAvinue & Robertson, 2008). Therefore, training needs to 

be implemented to extend the individuals’ ability to imagine the actual movement (J. H. 

Li & Zhang, 2012). However, the effectiveness of mental training depends on the 
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presence or absence of disturbances of proprioception (Dettmers, Benz et al., 2012) and 

physical fatigue (Di Rienzo, Collet et al., 2012).  

2.4.2 EOG based HMI 

 Due to advancement in technology, the acquisition of EOG signal can be 

simplified by the used of wearable EOG goggles (Bulling, Roggen, & Troster, 2009). 

The linearity between EOG and eye movements are stable in patients suffering from 

neurological disorders such as amyotrophy lateral sclerosis (ALS) (Ball, Nordness et al., 

2010) and muscular dystrophy (Kaminski, Al-Hakim et al., 1992) with the exception of 

cerebral palsy (Woo, Ahn et al., 2011) and multiple sclerosis (Prasad & Galetta, 2010), 

has attracted much attention as a source of information to control assistive devices. 

From directional eye movements, these signals can be used as an input platform for 

HMI devices such as remote control TV (Deng, Hsu et al., 2010), virtual keyboard 

(Usakli & Gurkan, 2010) and robotic arm (Ianez, Ubeda et al., 2012; Postelnicu, 

Barbuceanu et al., 2012) to provide support to disabled person. 

2.5 HMI Controlled Mobile Robots 

 HMI controlled mobile robots can serve as a powerful assistive device to help 

severely disabled people to gain mobility. Details of well-known wheelchair navigation 

systems using EEG, EOG and their hybrid are listed in Table 2.7. In the early systems 

of wheelchair navigation using these signals, the wheelchair could only be steered in 

forward direction (Cao et al., 2014; B. Choi & Jo, 2013; K. Choi & Cichocki, 2008; 

Pablo F. Diez, Torres Müller et al., 2013; Galan, Nuttin et al., 2008; Hai, Van Trung, & 

Van Toi, 2013; I. Iturrate et al., 2009; Kaufmann et al., 2014; Khare, Santhosh et al., 
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2011; Lamti, Ben Khelifa et al., 2013; A. C. Lopes, Pires, & Nunes, 2013; Ning, Li et 

al., 2012; B. Rebsamen et al., 2010; Scherer, Lee et al., 2008; C. S. L. Tsui, Gan, & Hu, 

2011; Wang et al., 2014). Later, the movement in the backward direction was 

introduced as an additional feature (Hai et al., 2013; Kaufmann et al., 2014; Khare et 

al., 2011; A. C. Lopes et al., 2013; Ning et al., 2012; Wang et al., 2014).  

Table 2.6: Summary of relevant research works using EEG, EOG and their hybrid 
for wheelchair navigation systems. 

Author(s) System Input Available Command Accuracy 
(%) 

Execution 
Time (s) 

      

(B. Rebsamen et al., 
2010) Asynchronous Imagery, P300 Destination selection 100 15 

      

(Cao et al., 2014)   Synchronous Imagery, 
SSVEP 

Forward, Left, Right, 
Deceleration, Acceleration, 
Constant Speed, Start, Stop 

98.77 – 

      
(Huang et al., 2012) Synchronous Imagery Forward, Left, Right, Stop 98.4 – 
      

(Postelnicu, Girbacia, 
& Talaba, 2012) Asynchronous EOG 

Forward, Backward, Left, 
Hard Left, Right Hard 
Right, Stop 

95.63 – 

      
(Pablo F. Diez et al., 
2013) Synchronous SSVEP Forward, Left, Right, Stop 95 (44.6 

bits/min) 
      
(I. Iturrate et al., 
2009) Synchronous P300 Forward, Left, Right, Stop 94 – 

      

(Hai et al., 2013) Asynchronous EOG Artifacts Forward, Backward, Left, 
Right, Stop 93.5 – 

      

(Zhijun et al., 2013)   Asynchronous Imagery, 
EMG 

Forward, Left, Right, Stop 
 92.5 – 

      

(Long et al., 2012; 
Wang et al., 2014)   Asynchronous 

Imagery, 
P300, Eye 
Blinking 

Forward, Backward, Left, 
Right, Deceleration, 
Acceleration, Stop 

92 2 ~ 5 

      

(A. C. Lopes et al., 
2013) Asynchronous P300 

Forward, Backward, Left 
90o, Left 45o, Right 90o, 
Right 45o, Stop 

88 4.7 

      
(Galan et al., 2008) Asynchronous Imagery Forward, Left, Right, Stop 86.7 – 
      
(Kaufmann et al., 
2014) Synchronous ERP Forward, Backward, Left, 

Right 85.5 28 

      
(Scherer et al., 2008) Asynchronous Imagery Forward, Left, Right, Stop 62 2 
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 Recently, semi-autonomous wheelchair using shared-control between the operator 

and the wheelchair was introduced to provide assistance as well reduce the workload of 

the user (Al-Haddad, Sudirman, & Omar, 2011; Galan et al., 2008; I. Iturrate et al., 

2009; C. Mandel, T. Luth et al., 2009; J. Philips, del R.Millan et al., 2007; B. 

Rebsamen, E. Burdet et al., 2006; Vanacker, del R Millán et al., 2007). However, 

wrongly interpreted commands may instruct the semi-autonomous wheelchair to 

perform unwanted moves. 

2.5.1 BCI Controlled Mobile Robots 

 The first BCI developed for wheelchair navigation system or mobile robots was 

proposed by Millan et al. in 2004 (Millan, Renkens et al., 2004). Since then, many 

researchers have contributed their efforts in developing and improving the brain-

controlled wheelchair. In early studies, the wheelchair navigation was introduced in 

forward direction (B. Rebsamen, Burdet et al., 2007; B. Rebsamen et al., 2006) until 

recently the backward direction was introduced as an important feature in brain-

controlled wheelchair (Khare et al., 2011; Ning et al., 2012; Wang et al., 2014). Brain-

controlled wheelchair requires higher safety aspect compared to other assistive device 

since they are used to transport disabled people. Therefore, high accuracy with fast 

computational time is preferable in translating the brain signals in this BCI.  

Using shared-control approach, an autonomous system, which drives the 

wheelchair to the desired locations, can filter out the possible erroneous mental 

commands acquired by analyzing brain signals. The experimental results show the 

possibility of the shared control system being able to improve the overall driving 
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performance (Galan et al., 2008; C. Mandel et al., 2009; Vanacker et al., 2007). This 

intelligent controller can be utilized to drive the wheelchair in predefined locations (B. 

Rebsamen et al., 2006) or unknown environment (I. Iturrate et al., 2009). However, the 

overall performance of these brain controlled wheelchair are mainly depends on the 

performance of the noninvasive BCIs, which are currently slow and uncertain. In 

addition, artifacts caused by eye movements or EOG are undesired signals in brain-

controlled wheelchair that can introduce significant changes in brain signals and 

ultimately affect the performance of the BCI. 

2.5.2 EOG Controlled Mobile Robots 

One of the applications demonstrating the potential of the EOG signal for control 

is to navigate a wheelchair through eye movements (Barea, Boquete et al., 2002b; 

Hashimoto, Takahashi, & Shimada, 2009; Postelnicu, Girbacia, et al., 2012). In the 

early development of EOG controlled wheelchair, eye blink was detected to control 

robots (Kong & Wilson, 1998). Later, the direction of the eyeball was utilized to operate 

and change the direction of wheelchair accordingly (Barea et al., 2002b; Ki-Hong, KIM, 

& Soo-Young, 2006). The direction of eye movement can be realized in four directional 

eye movements (left, right, up and down) including diagonal directions. However, it is 

difficult for the user to execute the diagonal eye movement. Therefore, from horizontal 

and vertical eye movements, finite state machine can be used to increase the number of 

signals to control a device (Gandhi, Trikha et al., 2010; Trikha, Gandhi et al., 2007). 

It is a known fact that the performance of EOG controlled wheelchair is fast and 

high in accuracy compared with EEG as a control mechanism. An automatic navigation 

method with shared control can reduce the human efforts as well as to avoid obstacles in 
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the path to the desired destination (Al-Haddad et al., 2011). However, the occurrence of 

constant eye movement will result in Midas touch problem and difficult to keep the 

system in idling state. 

2.5.3 Hybrid BCI Controlled Mobile Robots 

The BCI systems that rely on only one type of brain signals to translate user 

intentions into commands does not work for all users (B. Z. Allison, Wolpaw, & 

Wolpaw, 2007; Benjamin Blankertz, Losch et al., 2008; Nijholt & Tan, 2008). Certain 

user finds it difficult to modulate brain signals in a way to control the BCI systems. 

Therefore, to broaden the user coverage and improve the performance of the brain-

controlled wheelchair, hybrid BCI systems are proposed. 

 Hybrid BCI combines brain signal with one or more additional signal from EEG 

or other physiological sources such as EOG or EMG for real world applications (B Z 

Allison, Brunner et al., 2010; Gert Pfurtscheller, Allison et al., 2010). This strategy can 

improve the BCI performance, as the false positive from two sources would be needed 

for misclassification to occur. The hybrid BCI is typically processed simultaneously 

(Figure 2.7 (a), (b)) or operate two systems sequentially (Figure 2.7 (c), (d)), with the 

first system can act as either a “brain switch” or as “selector”. 

Multiple inputs into the interface can provide multiple commands for multi 

control direction for wheelchair navigation system (Cao et al., 2014; Yuanqing et al., 

2013). Moreover, multi inputs allowed the user to control speed during navigating 

wheelchair in the open area or in narrow places (Long et al., 2012). In a familiar 

environment, implementation of motion guidance or shared control will provide driving 

assistance as well reducing the workload of the user (B. Rebsamen et al., 2010). 
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However, wrongly detected or executed commands will instruct the autonomous 

controller to unwanted moves. 

 

SIMULTANEOUS PROCESSING  SEQUENTIAL PROCESSING 
   

 

 

 

(a)  (c) 
   

 

 

 
(b)  (d) 

Figure 2.7: Examples of hybrid BCIs with at least one of the input signals must be 
a signal recorded directly from the brain. (a), (b): Simultaneous processing. (c), 

(d): Sequential processing.  

Thus, an effective brain-controlled wheelchair is able to stop the wheelchair as 

fast as possible once the user gives the instruction. Therefore, several studies have 

contributed significantly to improve the response time of this command. In Rebsamen et 

al. (B. Rebsamen et al., 2010) an average response time of 5.9s and 5.5s are achieved 

for fast P300 and mu/beta rhythm respectively. Then, Li et al. (Yuanqing et al., 2013) 

proposing to combine P300 and SSVEP for the stop command and achieved an average 

response time of 5.28s. Blinking proposed in (Wang et al., 2014) achieved a faster 

average response time of 2s to activate the stop command. 

ERD$
BCI$

SSVEP$
BCI$

+
Motor$
Imagery$

EEG$

EEG$Visual$
Attention$

CONTROL'

ERD$
BCI$

SSVEP$
BCI$

Motor$
Imagery$

EEG$

EEG$Visual$
Attention$

SWITCH' CONTROL'

ERD$
BCI$

EOG$
HMI$

+
Motor$
Imagery$

EEG$

EOG$Eye$
Movement$

CONTROL'

ERD$
BCI$

EOG$
HMI$

Motor$
Imagery$

EEG$

EOG$Eye$
Movement$

SWITCH' CONTROL'



 

 

 

26 

2.6 Signal Processing in BCI 

 After the EEG signals have been acquired, the artifacts from the power line and 

other unwanted signals can be removed in pre-processing. Then, the features can be 

extracted from the clean signals. Finally, these features can be classified accordingly 

and used as inputs to external devices.  

2.6.1 Pre-processing 

 In the pre-processing, filtering technique using lowpass, highpass, bandpass and 

notch filtering is the most frequent technique used to remove frequency specific artifacts 

from power line and non-cerebral origin signals. However, this filtering technique only 

suitable to remove artifacts those are in the different frequency range as the component 

of interest in EEG signals. In most analyses, mixture of artifacts and signals is 

inevitable.  

 Therefore, independent component analysis (ICA) has been introduced to remove 

the artifacts that in the same frequency range as component of interest and have 

demonstrated its efficacy in several studies (K. Choi & Cichocki, 2008; James & 

Gibson, 2003; Lin, Ko et al., 2006). However, this technique requires high 

computational complexity compared to filtering. Thus, ICA is unsuitable to eliminate 

artifacts in BCI for external devices that demand a fast response time such as 

wheelchair. 
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2.6.2 Feature Extraction 

 Once the EEG signals have been cleaned, the significant features can be extracted 

in time or frequency domain. Typically, the domain is selected with regards to the 

neurophysiological signals used in the BCI. For example, the P300 (Pires, Castelo-

Branco, & Nunes, 2008) based BCI employed temporal features while event related 

desynchronization (ERD) (B. Z. Allison, Brunner et al., 2012) and SSVEP (Sanchez, 

Diez et al., 2011) based BCI use frequency features. Other features that had been 

utilized in designing BCI systems were time-frequency features (Yamawaki, Wilke et 

al., 2006) and autoregressive parameters (Schlögl, Lugger, & Pfurtscheller, 1997). 

2.6.3 Classification 

 In a BCI system, feature vector that has distinctive brain activity of user’s 

intention can be classified accordingly. A variety of classifiers have been proposed to 

translate the features and generally it can be categorized into linear and non-linear 

classifiers as listed in Table 2.7. 

 Linear classifier such as LDA and SVM normally categorizes the features into 

two classes. In mobile robot applications, LDA has been adopted by numerous studies 

as a translation algorithm in their BCI system. The extended multiclass version exists 

with improved algorithms of linear classifier. This classifier is simple and has low 

computational complexity with acceptable accuracy. However, this classifier is 

susceptible to the presence of strong noise, thus, requires regularization. 
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Table 2.7: Classifiers used in BCI research. 

Linear Non Linear 
  
Linear Discriminant Analysis (LDA) Radial Basis Function SVM (RBF-SVM) 

Fisher’s LDA  (FLDA) Multi Layer Perceptron (MLP) 

Regularized FLDA (RFLDA) Bayesian logistic regression neural network (BLR NN) 

Linear-Support Vector Machine (Linear-SVM) Time-Delay Neural Network (TDNN) 

Perceptron Finite Impulse Response Neural Network (FIRNN) 

 Gamma Dynamic Neural Network (GDNN) 

 Gaussian Neural Network 

 Vector Quantization Neural Network (VQ NN) 

 
Probability Estimating Guarded Neural Classifier 

(PeGNC) 

 Fuzzy 
 Hidden Markov Model ���(HMM) 
 Input–output HMM (IOHMM) 
 Bayes Quadratic 
 Bayes Graphical 
 K Nearest Neighbors (kNN) 
 Mahalanobis Distance 

  

 Nonlinear classifier such as artificial neural network (ANN) and k-NN produce 

nonlinear decision boundaries in the training data. This classifier is generative and 

outperforms the linear classifier in rejection of uncertain samples. Furthermore, this 

classifier is efficient with low dimensional feature vectors, but very sensitive to the 

dimensionality of the feature vectors.  

 The performance of nonlinear classifiers applied to EEG signals produces only 

slightly better classification results over linear classifiers (Garrett, Peterson et al., 2003). 

However, utilizing linear classifier can result in fast computational time, which is 

favorable in designing BCI system for a mobile robot application. The typical classifiers 
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that are applied in the study of brain controlled mobile robots are summarized in Table 

2.8. 

Table 2.8: Typical classifiers applied in P300, ERD/ERS and SSVEP-based BCI for 
controlled mobile robots (Bi, Fan, & Liu, 2013). 

Classifier Author (s) 
P300-based 
LDA (Escolano, Antelis, & Minguez, 2009; Escolano, Murguialday et al., 

2010; Iturrate, Antelis, & Minguez, 2009; Iñaki Iturrate, Javier Mauricio 
Antelis et al., 2009) 

  
SVM (Bell, Shenoy et al., 2008; Guan, Teo, & Zeng, 2007; Brice Rebsamen, 

Etienne Burdet et al., 2006; B. Rebsamen, C. Guan et al., 2010; Brice 
Rebsamen, Teo et al., 2007; Shin, Kim, & Jo, 2010) 

  
Statistical 
Classifiers 

(Ana C Lopes, Pires et al., 2011; Pires et al., 2008; Zhang, Guan, & 
Wang, 2008) 

  
ERD/ERS-based 
LDA (Chae, Jo, & Jeong, 2011; Fan, Ng et al., 2008; Geng, Dyson et al., 2007; 

Geng, Gan, & Hu, 2010; Guan et al., 2007; Leeb, Friedman et al., 2007; 
Brice Rebsamen et al., 2006; Brice Rebsamen et al., 2010; Brice 
Rebsamen et al., 2007; Ron-Angevin, Velasco-Alvarez et al., 2011; Chun 
Sing Louis Tsui & Gan, 2007; Chun Sing Louis Tsui, Gan, & Roberts, 
2009; Velasco-Álvarez, Ron-Angevin et al., 2011) 

  
SVM (K. Choi, 2012; K. Choi & Cichocki, 2008; André Ferreira, Bastos-Filho 

et al., 2010; Gomez-Rodriguez, Grosse-Wentrup et al., 2011) 
  
Statistical 
Classifiers 

(Galán, Nuttin et al., 2008; Millán, Galán et al., 2009; Millan et al., 2004; 
Johan Philips, del R Millan et al., 2007; Vanacker et al., 2007) 

  
ANN (Barbosa, Achanccaray, & Meggiolaro, 2010; Craig & Nguyen, 2007; C. 

Hema, Paulraj et al., 2010; C. R. Hema & Paulraj, 2011; A. Satti, D. 
Coyle, & G. Prasad, 2011; Stamps & Hamam, 2010) 

  
SSVEP-based 
LDA (Christian Mandel, Thorsten Luth et al., 2009; Ortner, Guger et al., 2010; 

Prueckl & Guger, 2009, 2010) 
  
SVM (Dasgupta, Fanton et al., 2010) 
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2.6.4 Finite State Machine 

 A finite state machine is an abstraction representation of mathematics that used in 

computer programs. Briefly, a finite state machine is a set of states which are connected 

by transitions. Transitions represented by arrows are the detection of BCI for state 

selection and this state can only be activated one at a time, called the current state. The 

finite state machine changes its state according to rules that specify the action when a 

new input is arrived. Figure 2.8 shows an example of a finite state machine in a diagram 

consists of two states and two inputs. Basically, the diagram of a finite state machine 

always accompanies by truth table that record the information of the state transition as 

presented in  

Table 2.9. 

 

 

Figure 2.8: Example of a finite state machine. States are represented by bubbles 
while the transitions by arrows. 
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Table 2.9: The truth table for the state transition in Figure 2.8. 

Current State Input Next State 
Output 

A B 

STATE 1 0 STATE 1 1 0 

STATE 1 1 STATE 2 1 0 

STATE 2 1 STATE 2 0 1 

STATE 2 0 STATE 1 0 1 
 

 

 One benefit of finite state machine is the number of instructions to the machine 

can be maximized with a limited number of commands from BCI. In mobile robot 

applications, the state is associated with motion instructions to the wheelchair such as 

turn left, turn right, going forward or stop. Figure 2.9 shows an example of finite state 

machine in mobile robot application presented in (Teymourian, Lüth et al., 2008). Two 

input signals from SSVEP are used as transition between states resulting in four types of 

instructions to the wheelchair, which are STRAIGHT, LEFT, RIGHT, and STOP.  
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Figure 2.9: Example of finite state machine implemented in mobile robot 
application (Teymourian et al., 2008).  

 

Other published work that applied finite state machine technique in mobile robot 

application are listed in Table 2.10.  

 

Table 2.10: Studies related to mobile robot application that implemented finite 
state machine in their work. 

BCI Author(s) 
P300 (Escolano, Antelis, & Minguez, 2012) (I. Iturrate et al., 2009) 

(Gentiletti, Gebhart et al., 2009) 
  
SSVEP (Pablo F. Diez et al., 2013; Teymourian et al., 2008) 
  
Imagery (A. R. Satti, D. Coyle, & G. Prasad, 2011) 
  
ERD/ERS (Cheein, De La Cruz et al., 2009) 
  
Hybrid BCI (Andre Ferreira, Celeste et al., 2008) 
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 Another used of finite state machine is to overcome the Midas touch problem.  

This problem commonly occurs in the studies that involving eye control (Abe, Ohi, & 

Ohyama, 2013). For example in EOG signals, the same patterns of signals are recorded 

during looking around the environment and invoking the action to command a 

wheelchair. If the HMI is unable to distinguish between natural and intentional eye 

movement, the signals will be translated as intent to move the wheelchair. This 

unwanted movement would upset the user as well as endangering their safety. 

Distinguishing two nearly identical signals will require a complex algorithm thus, high 

computation time. 

 Conversely, implementation of finite state machine as secondary control can 

overcome the Midas touch problem by applying a set of simple rules in state transition 

(Barea, Boquete et al., 2002a). For instance, if a transition between the current state to 

the next can be made by a closed eye, any eye movement such as look left, right or blink 

performed by the user will not trigger the transition. Therefore, any unintentional 

command can be prevented.  

2.7 Summary 

 Various neurophysiological signals can be recorded in EEG signals such as P300 

wave, mu and beta rhythms and SSVEP. These signals can be used as control 

mechanism for physically disabled individuals to operate assistive device. However, 

controlling these signals require a high degree of concentration and unsuitable for 

individual with presence of cognitive impairments.  



 

 

 

34 

 Therefore, hybrid BCI is introduced to provide an efficient channel for interaction 

for patients who are partially lost control over muscular activity. This type of BCI 

combines EEG signals with other physiological signals such as EOG, EMG or ECG 

(Gert Pfurtscheller et al., 2010). Moreover, hybrid BCI can be utilized to combines 

multiple neurophysiological signals sequentially or simultaneously for various 

applications. However, it remains a challenge to design a fast and high-efficiency hybrid 

BCI for wheelchair navigation system. 

 In this thesis, alpha rhythm and EOG artifacts in the EEG are utilized as inputs to 

the hybrid BCI. These signals are fast, stable and easy to generate that are suitable for 

physically disabled with cognitive impairments. Nevertheless, the Midas touch problem 

always associated with the application that relies on eye control as input. Furthermore, 

only a limited number of eye movements can be realized to control the wheelchair. To 

overcome these limitations, finite state machine is employed in this work. A finite state 

machine is a representation of mathematical abstraction applied in computer 

programming. In this work, states in the finite state machine are representing the action 

of the wheelchair while the transitions are the outcome from the hybrid BCI.  

 Currently, there are limited studies that employing alpha and delta rhythm as input 

to BCI, thus, limited information on their signal processing. Therefore, the processing 

techniques employed in this work are based on the previous work that using different 

neurophysiological signals. As this work will be tested in actual navigation task, any 

selected processing technique must result in high accuracy rate as well as fast 

computational time. Therefore, the selection of processing techniques is based on 

following general requirements, ability to analyze in time series domain, linear classifier 

and low computational complexity. This result in selection of variance (Ahn, Ahn et al., 
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2013), 2nd order difference plot and central tendency measurement (CTM) 

(Thuraisingham, Tran et al., 2007), and area under the signal (Luck, 2004) for alpha 

rhythm analysis. For delta rhythm, LDA (Aloise, Schettini et al., 2012), K-Means 

(Kaur, Soni, & Rafiq, 2014), and area under the signal are selected.    
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CHAPTER 3 

METHODOLOGY 

 

3.1 Introduction 

 The research work begins by collecting data from healthy participants during 

Recording Session to study the properties of the alpha rhythm and EOG artifacts in EEG 

signals. Then, the collected data are processed and classified accordingly in Offline 

Session. The performances of the processing techniques are compared in Online Session 

with real-time experiment without actual wheelchair movement. The processing 

techniques with the highest score are used as input into the navigation system. The 

system is designed as a finite state machine and used fuzzy rules for the state transition. 

This is followed by the implementation of the proposed navigation system to the 

wheelchair. Finally, the system is tested and evaluated with actual navigation 

experiment in Navigation Session. The process of research work can be summarized as 

in Figure 3.1. 
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Figure 3.1: Process of developing navigation system in this work.  

3.2 Data Collection 

3.2.1 Participants 

 A total of 20 healthy participants (12 females, 8 males) between 23 to 27 years old 

(Mean = 25.15, SD = 1.69) with no prior experience with EEG recording were selected 

in this study. The selection of the participants is made based on young adult group age 

from 20 to 30 years old to avoid the age effect on alpha rhythm responses in EEG 

(Kolev, Yordanova et al., 2002; Nombela, Nombela et al., 2014). All participants are 

students and colleagues from the University of Malaya, who had normal or corrected to 

normal vision. The participants are briefed on the purpose and nature of the study and 

asked to sign a consent form before the EEG recording began. 
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NAVIGATION SYSTEM DESIGN 
•  Finite State Machine 
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3.2.2 EEG Signal Acquisition System 

 The EEG signals are acquired using wireless g.Mobilab from Guger Technologies 

at a sampling rate of 256Hz. The gold electrodes of monopolar montage are placed at 

C3, C4, O2 with reference connected to Cz and the ground attached to the forehead 

(FPz). The electrode arrangement followed the International 10-20 system and the 

impedance is measured before, during and after the experiment to maintain below 10Ω. 

Since the experiment is conducted in unshielded room, the laptop is powered by the 

batteries to minimize electrical interferenced in the EEG data. The EEG signals are 

acquired and then analyzed using LabVIEW software from National Instrument. 

3.2.3 Recording Session 

 The objectives of this session are to record the EEG signals and study the 

characteristics of eyelid position and horizontal gaze in alpha and delta rhythm 

respectively. During the Recording Session, the visual stimulus is given to participants 

as shown in Figure 3.2. 

 Each trial is recorded in 10 seconds duration and the tasks are issued in pairs as 

shown in Figure 3.3. The participants are instructed to open their eyes for the first half 

of the trial, and performed four possible tasks of blink, closed eye, left or right gaze that 

were randomly assigned in the second half of the trial. Each task is repeated for five 

times and evenly issued in 20 trials for every subject. 
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Figure 3.2: Graphical user interface of visual stimuli during Recording Session. 

 In each trial, the participant is expected to respond within 2 seconds after the onset 

of instruction and 15 seconds rest is given between trials. Their performances are 

manually validated during the session and if any of the instructions are wrongly 

executed, the instruction pair is repeated. At the end of the session, a total of 400 trials 

of EEG signals were collected from 20 participants.  

 The blink recorded in this session is in the form of quick closed eye or hard blink 

that performed for approximately 0.5s. In opposite, the closed eye is performed for 1 

second or longer. Throughout the session, natural blink is allowed and the participants 

are asked to stay still by minimizing any muscle movement. 
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Figure 3.3: Instructions in a trial are issued in pair with time allocated for each 
task is only 5 seconds during the Recording Session. 

3.2.4 Signal Properties 

 The EEG signals related to eyelid position and horizontal gaze are recorded 

during Recording Session. These signals can be described as follows. 

a) Eyelid Position in EEG 

The common amplitude of the alpha rhythm is around 5 – 10uV when the eyes are 

open and it increases to 20 – 50µV when they are closed as shown in Figure 3.4. These 

signal patterns are most obvious in the occipital region, thus, signal acquired from 

channel O2 is used to determine the eyelid position. Since the blink is a formed of 

closed eye, the same fluctuation of alpha rhythm is observed during blink and closed 

eye with regard to their duration. Furthermore, the presence of EOG artifacts such as 

natural blink and horizontal gazes in alpha rhythm are negligible with an exception in 

the frontal region (Hagemann & Naumann, 2001).  
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    (a)      (b) 

Figure 3.4: Alpha rhythm signals observed in channel O2 at the occipital during 
(a) closed eye and (b) blink. 

b) Vertical and Horizontal Gaze in EEG 

EOG artifacts are caused by ocular activity such as blinking and eye movements. 

EOG activity is most prominent over the anterior regions and in frequency below 4Hz 

(McFarland et al., 2005). Both vertical and horizontal gaze generate substantial activity 

in the delta rhythm that is larger in the frontal and decrease rapidly towards the posterior 

region (Lins et al., 1993). Further, vertical gaze and natural blink has minimal effect 

laterally, while horizontal gaze is lateralized ipsilateral to eyeball direction (Klados et 

al., 2011). The delta rhythm signals from channel C3 and C4 contained less 

contamination of vertical gaze compared to the frontal region but preserved significant 

artifacts of horizontal gaze. For this reason, these channels are selected to determine the 

horizontal gaze in this work. 

The artifact of horizontal gazes appears in the delta rhythm as a pulse that 

localized in time. The gaze from the center to the left will induce a strong positive pulse 

at C3 and weaker negative pulse at C4. In opposite, when the gaze is moved from the 

center to the right, a strong positive pulse at C4 and weaker negative pulse at C3 are 

observed. The gaze from left to center will register a positive pulse at C4 and a negative 
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pulse at C3 same as gaze from the center to the right. The same principle can be 

observed for the gaze from right to center with gaze from the center to the left. 

However, these pulses between gaze to the corner and from corner to center are not 

identical that differ in strength and duration. Generally, the gaze to left or right 

produced a strong pulse for 0.5s while the gaze from left or right to center produced a 

weaker pulse for 1.5s as shown in Figure 3.5.  

  
    (a)      (b) 

Figure 3.5: EEG signals at channel C3 and C4 of delta rhythm during (a) left gaze 
and (b) right gaze. 

3.3 Signal Processing (Offline Session) 

 The Offline Session involves analyzing the recorded EEG signals in Recording 

Session and calculating parameters in processing technique for each participant. The 

flow of data processing and classification for eyelid position and horizontal gaze 

detection is summarized in Figure 3.6. First, the alpha signal is examined to determine 

whether the eyes are open or closed. If the eyes are open, the delta signal is used to 

monitor the eye gaze movement to the left and right.  
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3.3.1 Filtering 

 After acquiring the EEG signals, they are filtered to remove noise. For the alpha 

rhythm, a Butterworth bandpass filter is used to capture the information within 8-13Hz 

since this frequency range contains information related to the open or closed eye 

condition. For the delta rhythm, a Butterworth lowpass filter with a cutoff frequency of 

3Hz is utilized. For each signal, a sliding window containing 128 samples is analyzed 

consecutively. 

 

Figure 3.6: The flow of signal processing for detection of eyelid position in alpha 
rhythm and horizontal gazes in delta rhythm. This architecture will be 

implemented in Online Session. 

3.3.2 Sliding Window 

 A conventional and overlapping window is rigidly positioned that may split 

important cues in signals. In contrast, a sliding window is able to adjust its position so 

that the cue will be captured entirely within it. In this study, when a blink or gaze 

movement is performed, a short accompanying cue is registered in alpha and delta 
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signals. For example, while analyzing the alpha signal, the conventional and 

overlapping window frame might capture an interval when the eyes are just about to 

open or closed. During this short period, the signal is in transition from low amplitude 

to high or vice versa. In this case, the samples in the window will be a mixture of those 

with low and high amplitudes as shown in Figure 3.7 (a), (b). 

 

CONVENTIONAL  OVERLAPPING  SLIDING 
     

 

 

 

 

 
     (a)        (b)          (c) 

     

 

 

 

 

 
           (d)               (e)                (f) 

Figure 3.7: (a), (b), (d), (e) The conventional and overlapping window will lose part 
of the crucial features in signal. Insufficient information in a window, will lead to 
misclassification. (b), (d) Sliding window will automatically adjust its position so 

that the full cue is captured within its interval. 

 

Next 
Window 

Current 
Window 

Current 
Window 

Next 
Window 

Next 
Window 

Current 
Window 

Next 
Window 

Current 
Window 

Current 
Window 

Next 
Window 

Next 
Window 

Current 
Window 



 

 

 

45 

 In the analysis of the alpha signal, the position of the sliding window is adjusted 

as follows. First, the absolute values of the samples in the window are divided into eight 

adjoining subintervals where each subinterval contains 16 samples. Then the average of 

samples in each subinterval is calculated and the averages of the first and last 

subinterval are compared. If the absolute difference of the two averages is more than a 

specified threshold (called threshold_alpha), the window is shifted to the right by 16 

samples. The process of calculating and comparing the averages of the first and last 

subinterval is repeated until their difference is less than the threshold_alpha. In our 

experiment, the threshold_alpha was set at half of the mean absolute values of closed 

eye samples of the user. Once this condition is met, the window position is fixed and the 

features can be extracted. The procedure to adjust the window position is illustrated in 

Figure 3.8.  

 For capturing important cues in the delta signals of C3 and C4, the position of the 

window is also adjusted to find the best location where that cue is fully captured by the 

window as shown in Figure 3.7 (d). First, the samples in the window are divided into 

eight non-overlapping subintervals where each subinterval contains 16 samples like 

before. Then the average values of the subintervals are calculated and compared to a 

threshold (called threshold_delta). If all of them are below the threshold_delta then it is 

assumed that no gaze shift occurs and the position of the window is maintained. 

Otherwise, the position of the window is adjusted so that the subinterval that records the 

highest average is placed at the center of the window. Since the peak of the pulse is 

associated with the highest average, it should be positioned either in the 4th or 5th 

subinterval, whichever position that incurs the least shift in the new window position. 
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 This step is necessary to obtain high classification accuracy if the data in the 

window are used as inputs. Here, the threshold_delta is taken as the midpoint of the 

average amplitude of the peaks recorded during horizontal gaze. In open eye condition, 

once the window in the C3 and C4 delta signal is adjusted, the one in alpha signal will 

obey accordingly. 
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Figure 3.8: The process to reposition the sliding window during Online and 
Navigation Session. 

3.3.3  Eyelid Position Analysis 

 The filtered alpha rhythm signal in channel O2 exhibits relatively higher 

amplitude of fluctuation when the eyes are closed than when they are open. Features can 
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be extracted from the alpha signal and classified to determine the eyelid position of 

blink, closed and open eye. In eyelid position analysis, three types of features are 

studied, there are variance, 2nd order difference plot and area. Then, these features will 

be classified by thresholding and CTM. 

a) Variance and Thresholding 

 Variance (σ2) is a measurement of variability of data set from their mean or 

expected value. The variance of alpha signal in O2 can be computed as in equation (3.1) 

taking account of mean of 128 samples in a window (µ), number of sample in a window 

(N = 128) and value of each sample (𝑥(𝑡)). 

𝜎! =
1
𝑁 𝑥(𝑡)− 𝜇 !

!!!

!!!

 (3.1) 

 In this study, a mean variance of alpha signal during open eye (called 

threshold_variance) was computed over open eye trials from the recorded data. The 

alpha signals from a particular window in O2 will be classified as an open eye if the 

calculated variance was equal or smaller than the threshold_variance, while larger 

variance will be classified as blink or closed eye with regard to the duration of closed 

eye. 

b) 2nd Order Differential Plot and Central Tendency Measurement 

 In this approach, the 128 samples of alpha signal in a O2 window are plotted as 

second-order difference plot to display the successive rates of variability against each 

other as in equation (3.2). 

 



 

 

 

49 

𝑥 𝑛 + 1 − 𝑥 𝑛  is plotted against 𝑥 𝑛 + 2 − 𝑥 𝑛 + 1  (3.2)  

 

 Where, 𝑥(𝑛) is denoted as sample value of alpha signal at discrete time 𝑛. The 

examples of second-order difference plotted for five EEG rhythms are shown in 

APPENDIX B. 

 Then, the CTM is used to measure the variability in the second-order difference 

plot by counting points (𝑥) that fall within the radius (𝑟) and divide by the total samples 

in a window (𝑛 = 128) as describe below in equation (3.3) and (3.4): 

CTM =
𝛿 𝑑!!!!

!!!

𝑛 − 2  (3.3)  

𝛿 𝑑! = 1    𝑖𝑓     𝑥 𝑖 + 2 − 𝑥 𝑖 + 1 2 + 𝑥 𝑖 + 1 − 𝑥 𝑖 2 0.5   < 𝑟

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (3.4)  

The CTM value represents the fraction of the total points lie within the radius without 

distinguishes between sign. In this study, the optimum radius was chosen when CTM 

reaches a value of 0.90 to avoid spurious high frequency noisy components at larger 

radius value as suggested in (Thuraisingham et al., 2007). Then, the radius difference 

(𝑟!) between the radius of the current window 𝑟 0.90, 𝑒𝑦𝑒  and mean radius of open 

eye 𝑟!"#$ 0.90  𝑜𝑝𝑒𝑛  when CTM reached 0.90 can be defined as follows: 

 

𝑟! = 𝑟 0.90, 𝑒𝑦𝑒 − 𝑟!"#$ 0.90  𝑜𝑝𝑒𝑛  (3.5)  

 

The mean radius of open eye, 𝑟!"#$ 0.90  𝑜𝑝𝑒𝑛  for each participant are calculated over 

collected data.  

 The classification of open and closed eye was based on the sign of 𝑟! value from 

the equation (3.5). The alpha signal of the closed eye contains higher variability 
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compared to the open eye, thus, the positive value of 𝑟! will yield closed eye condition 

while a negative value yield open eye condition. Again, the distinction between blink 

and closed eye are made with regard to their duration. 

c) Area in Alpha Rhythm and Thresholding 

 This technique used the concept of area calculation and threshold to classify alpha 

signal in O2 into closed, blink and open eye. First, the absolute value of the sample 

( 𝑥! ) is calculated between the envelope and the x-axis at 0μV. Then, the area 

(𝐴𝑟𝑒𝑎!!) in a single window frame is represented by summing the absolute values of 

all 128 samples (𝑁 = 128 samples) as in equation (3.6): 

𝐴𝑟𝑒𝑎!! =    𝑥!
!

!!!
 (3.6) 

  
This value will be compared with a mean area of open eye (called threshold_areaO2) 

that determined from individual’s trial. Exceeding the threshold_areaO2 will denote as 

blink and closed eye due to higher fluctuation of alpha rhythm, while low 𝐴𝑟𝑒𝑎!! value 

will denote as the open eye. 

3.3.4 Horizontal Gaze Analysis 

 The horizontal gaze direction can be inferred from the delta rhythm signals in 

channels C3 and C4. In this analysis, feature such as the area is extracted from the C3 

and C4 signals and used to determine the change in gaze direction by thresholding. 

Otherwise, the delta rhythm contained in the windows of C3 and C4 signals can be 

directly used as inputs to K-Means and LDA.  
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a) Linear Discriminant Analysis 

 LDA is a supervised learning that required data assigned to the respective group at 

the beginning of the analysis as a model. Three groups of data; left gaze, right gaze and 

stationary were assigned to LDAs to create the predetermined model that unique for 

each subject.  A total of 15 signals for each participant are assigned into these groups 

evenly. Then, the global mean (𝜇) and group mean (𝜇!) vector of delta signals in C3 

and C4 window are computed. In this analysis, the vector represents by 𝑋(!,!) are the 

combination of delta rhythm samples from C3 on the 𝑦-axis and C4 on 𝑥-axis. Details 

algorithm of LDA is presented in APPENDIX C. 

 In this work, two LDA classifiers are used to classify the changes of eyeball 

direction. The first LDA decides whether the eyeballs move to the left or remain 

stationary while the second LDA decides whether the eyeballs move to the right or 

remain stationary. The combination of these outputs from two LDAs will determine the 

current gaze as shown in Figure 3.9.  
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Figure 3.9: The gaze shifts were determined using two LDA classifiers. 

b) K-Means 

 A K-Means is a clustering algorithm that assigns k-dimensional data into a 

number of groups. The dimension of the data, k, is equal to the number of samples in the 

window which is 128.  It is possible to use only one of the signals (C3 or C4) as they 

both display pulses of opposite amplitudes when the eyes move in the opposite 

directions from the middle. Another alternative is to combine the signals to form a 

longer signal and use it with a single K-Means. However, a better classification result is 

obtained when they are used separately with two K-Means to determine the centroid of 

horizontal gaze signals. In this case, the number of output groups is two for each K-

Means. The first K-Means takes C3 signal as input and cluster it into left gaze (L) and 

no movement (NM). Likewise, the second K-Means assigns C4 signal into right gaze 

(R) and no movement (NM).  

C3,$C4$
Signals$

LDA$

LEFT$GAZE$

STATIONARY$

LDA$

STATIONARY$

RIGHT$GAZE$

STATIONARY$

LEFT GAZE 

RIGHT GAZE 

FINAL OUTPUT 



 

 

 

53 

  Prior to Online Session, the group centroids for particular horizontal gaze are 

determined from trials collected in Recording Session. These centroids are unique for 

each individual. During real-time classification in Online Session, the Euclidean 

distance is used to determine the minimum distance between the data in a window (128 

samples) to the predetermined group centroids and assigned the data to the respective 

group. The Euclidean distance from channel C3 and C4 are combined to reach the final 

classification as listed in Table 3.1.  

Table 3.1: Classification outputs of Euclidean distance. 

EUCLIDEAN 1 
C3 

EUCLIDEAN 2 
C4 FINAL CLASSIFICATION 

L R Error 
L NM Left 

NM R Right 
NM NM No change in gaze or eyeball stationary 

 

c) Area in Delta Rhythm and Thresholding 

 The area in delta rhythm analysis is using the similar area calculation as in alpha 

analysis. However, the delta rhythm has two channels to be analyzed and the area is 

calculated between channel C3 and C4 as follows: 

 

𝐴𝑟𝑒𝑎!!,!! =    𝑥!!,! − 𝑥!!,!
!

!!!
 (3.7) 

 

The value of the difference between samples in C3 (𝑥!!,!) and C4 (𝑥!!,!) in a window of 

128 samples (𝑁 = 128) are summed to get the area lies between signal C3 and C4. This 
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value will be compared to a range of area during eyeball stationary (called 

threshold_areaC3, C4) that predetermined and unique to each individual. The 

threshold_areaC3, C4 is set between half of the mean area during right gaze in the lower 

limit and half of the mean area during left gaze in the upper limit. The calculated area 

will represent the gazes to left, right and stationary as follows. If the calculated area is 

less than the defined threshold_areaC3, C4, then the right gaze is detected, while a higher 

area value will represent a left gaze. An area that in the range of threshold_areaC3, C4 will 

recognize as stationary or no movement of t eyeball. 

3.3.5 Online Session 

 This session is conducted to test the efficiency of the signal processing technique 

in real-time with no actual wheelchair movement is involved. A short training was given 

to 20 participants prior to Online Session to ensure that the interface and data 

acquisition were fully functioning. Once the participants were familiar with the 

experimental protocol, the session is commenced. Throughout the session, the 

instructions are given in visual stimulus as depicted Figure 3.10.  
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Figure 3.10: Graphical user interface of visual stimuli and feedback during Online 
Session. 

 In a trial, five possible tasks of open, blink, closed eye, left gaze and right gaze are 

randomly assigned every 10 seconds continuously for 260 seconds as shown in Figure 

3.11. A total of 500 instructions were issued to the 20 participants in this session. Upon 

the onset of the stimulus, the participant is expected to direct his gaze or move his 

eyelids accordingly. For instance, an open eye instruction will require the participants to 

open their eyes and stay stationary. During the session, natural blink is allowed as it has 

a minimal effect in alpha and delta signal of EEG. An instruction is considered 

successfully executed if the participant responds correctly in less than 2 seconds after 
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the onset of the stimulus. At the end of the session, the best processing techniques that 

recorded the highest score will be used as input to the navigation system and evaluated 

in real navigation task.  

 

 

Figure 3.11: Five instructions of horizontal gaze and eyelid position are assigned 
every 10 seconds during the Online Session.  

3.4 Navigation System Design using Finite State Machine 

 In this section, the navigation system that modeled as a finite state machine is 

described. The overview of the system architecture is illustrated in Figure 3.12. The 

features such as variance and minimum distance are extracted from alpha and delta 

rhythm respectively. Then, these features are fed to the fuzzy state transitions for 

classification to determine the final output of hybrid BCI. Once the eye gaze is 

determined, the navigation controller that modeled as a finite state machine will be 

instructed accordingly and followed by the wheelchair movement.  
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Figure 3.12: Overview of the system architecture for navigation controller.  

3.4.1 Fuzzy State Transitions 

 The implementation of the fuzzy logic technique in the state transition is 

described in three steps: fuzzification, fuzzy inference process and defuzzification. Two 

techniques that recorded the highest score in Online Session will be implemented as 

inputs to fuzzy rules for classification, which are variance for eyelid position and K-

Means for horizontal gaze. 

 The fuzzification process converts two inputs (variance_O2 and 

distance_centroid) and output (gaze_shift) to the associated linguistic variables. The 

variance_O2 input is associated with the calculated variance value in channel O2. The 
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linguistic variables of this input are defined as Small, Medium and Large. The second 

input of the distance_centroid represents the Euclidean distance between the centroid of 

NM class determined by K-Means and the delta rhythm signal from C3 and C4 in a 

window of 128 samples. This input can be described in three linguistic variables; Short, 

Medium and Long. The grade of membership of both inputs in fuzzy sets is defined 

through trapezoidal functions as shown in Figure 3.13 (a) and (b).  

(a) 

 
(b) 

 
(c) 

 

Figure 3.13: Membership function for two inputs (a) area_O2 (b) distance_centroid 
and an output (c) gaze_shift. 

The fuzzy set of the gaze_shift output is defined by the triangle functions consist of six 
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computational efficiency, both triangular and trapezoidal membership function have 

been used in this study. The output represents the eyelid position and gaze direction. 

 Next, the fuzzy inference process combines the membership functions with the 

control rules to derive the control output. These control rules can be characterized using 

IF-THEN statements as follows: 

 

Rule 1 : IF <variance_O2 is small> AND <distance_centroid is short> THEN 
<gaze_shift is Left> 

   
Rule 2 : IF <variance_O2 is small> AND <distance_centroid is medium> THEN 

<gaze_shift is Stationary> 
   
Rule 3 : IF <variance_O2 is small> AND <distance_centroid is long> THEN 

<gaze_shift is Right> 
   
Rule 4 : IF <variance_O2 is medium> AND <distance_centroid is short> THEN 

<gaze_shift is Blink> 
   
Rule 5 : IF <variance_O2 is medium> AND <distance_centroid is medium> THEN 

<gaze_shift is Blink> 
   
Rule 6 : IF <variance_O2 is medium> AND <distance_centroid is long> THEN 

<gaze_shift is Blink> 
   
Rule 7 : IF < variance_O2 is large> AND <distance_centroid is short> THEN 

<gaze_shift is Closed> 
   
Rule 8 : IF < variance_O2 is large> AND <distance_centroid is medium> THEN 

<gaze_shift is Closed> 
   
Rule 9 : IF < variance_O2 is large> AND <distance_centroid is long> THEN 

<gaze_shift is Closed> 
   
 

For example in Rule 2, when the variance calculated in alpha rhythm from O2 is Small 

and the Euclidean distance computed between centroids of NM class and delta rhythm 

from C3 and C4 is Medium, the current eye gaze are determined as stationary. In this 
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case, the AND operator is used to condition two inputs, wherein the minimum 

membership degree will be selected and applied to the output membership function. All 

the gaze_shift outputs triggered by the variance_O2 and distance_centroid are mapped 

in Table 3.2. 

Table 3.2: Fuzzy mapping rules for the fuzzy state transition. The rows and 
columns represent two inputs, area_O2 and distance_centroid. The cross point of 

each row and column represents the output. 

AND distance_centroid 
variance_O2 SHORT MEDIUM LONG 

SMALL Left Stationary Right 
MEDIUM Blink Blink Blink 
LARGE Closed Closed Closed 

 

 Defuzzification converts linguistic variables back to crisp value. This process 

begins by combining all the outputs from all fuzzy rules to obtain one fuzzy output 

distribution using operator OR. Then, the mean of maximum as in equation (3.8) of the 

fuzzy output distribution is computed to obtain one crisp value.  

𝑧 =
𝑧!
𝑘

!

!!!

 (3.8) 

 

The mean of maximum, 𝑧, is an outcome of the point at which the membership function 

is maximum, 𝑧!, over the number of times the output distribution reaches the maximum 

level, 𝑘. 

 The implementation of the fuzzy logic technique in the state transition can be 

simplified as illustrated in Figure 3.14. The output value represents the eyelid position 

and gaze direction. It is worth mentioning that small value of gaze_shift output may 
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indicate the occurrence of fatigue. For instance, the value range for Left in gaze_shift is 

between 20 to 40 with the highest at 30. If the outcome of defuzification shows the Left 

value is 23, this indicates that the user performs the gaze in slower motion as a result of 

fatigue. In this work, if this condition is detected more than three times continously, the 

LED showing fatigue sign will be activated to alert the user. It is important for the user 

to aware of their condition as fatigue may compromise their concentration as well as 

their safety. 
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Figure 3.14: Implementation of the fuzzy inference diagram for the fuzzy state 
transitions. 
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3.4.2 Finite State Machine 

 In this work, the proposed system can be regarded as a finite state machine with 

fuzzy state transitions. Basically, its operation can be divided into two modes, namely 

READY and RUN MODEs. Both modes contain three identical states, which are LEFT, 

MIDDLE and RIGHT as shown in Figure 3.15. By default, the process starts at the 

MIDDLE state of the READY MODE where the EEG signals of the alpha and delta 

rhythm are sampled at 256 samples per second. The READY MODE is intended for the 

user to check the system functionality while the wheelchair is stationary. It also enables 

the user to select either FORWARD or BACKWARD, as the direction the wheelchair 

will go when the system enters RUN MODE. 

 

 

Figure 3.15: The modes and states of the proposed system. The READY MODE is 
intended for the user to check the system functionality while the wheelchair is 

stationary and function as a stop. In RUN MODE, the wheelchair will be executed 
into left, straight and right direction. 
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 In READY MODE, a window containing 128 samples of the alpha signal is 

analyzed to inspect the condition of closed or open eyes and the occurrence of blink. 

Delta signal of the same length is also examined to check the gaze direction of the eyes.  

 From MIDDLE state, if the user gazes to the right or left, the state will follow 

accordingly. If the state is already LEFT, moving the gaze from the center to the left 

will not affect the state anymore. This action is known as a null act. However, if the 

state is LEFT and the user wants to shift it to RIGHT, he will have to move his gaze 

from the center to the right twice so that the state will shift from LEFT to MIDDLE and 

then from MIDDLE to RIGHT. This is to avoid an abrupt change in the direction of the 

wheelchair as sudden change in its direction might topple it over when it is moving. The 

converse is also true if the user wants to shift the state from RIGHT to LEFT. Another 

thing to note in READY MODE is that a blink or closed eye will move the system to 

the MIDDLE state. 

 As stated earlier, in READY MODE no motor movement is executed yet as this 

mode is designed to allow the user to test the system operation before the actual motor 

commands start as shown in Table 3.3. However, once the user is familiar with the 

system, he may want to start moving the wheelchair.  

 The first step is to choose either FORWARD or BACKWARD as the direction the 

wheelchair will go when activated. This is done by shifting the state to the RIGHT or 

LEFT for FORWARD or BACKWARD move direction respectively. Once the user is 

sure of the movement direction and ready to enter the RUN MODE, he should lock the 

chosen move direction by repeating the null act twice. This is done by moving his gaze 

from the center to the chosen direction (left or right) twice in 2 seconds. If he wishes to 

change the locked direction, he should move his gaze in the opposite direction and 
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repeat the null act twice. However, if the user changes his mind and wants to unlock the 

chosen move direction without replacing it with the opposite one, he simply has to close 

his eyes for more than 1 second. This action will return the system to MIDDLE state of 

READY MODE and unlock the move direction. If the user blink his/her eyes, the state 

will go to the MIDDLE but the locked direction will not be affected.  

Table 3.3: State transition of the proposed system. 

CURRENT  INPUT  NEXT WHEELCHAIR 
MOVEMENT MODE STATE  O2 C3, C4  MODE STATE 

READY MIDDLE  Open Straight  READY MIDDLE None 
   Closed Straight/ Left/ Right  READY MIDDLE  
   Blink Straight/ Left/ Right  READY MIDDLE  
   Open Right  READY RIGHT  
   Open Left  READY LEFT  
 LEFT  Open Right  READY MIDDLE None 
   Closed Straight/ Left/ Right  READY MIDDLE  
   Blink Straight/ Left/ Right  READY MIDDLE  
   Open Left (Null Act)  READY LEFT  
   Open Double Left (Double Null 

Act)  LOCKED MIDDLE (Locked 
Backward) 

 RIGHT  Open Left  READY MIDDLE None 
   Closed Straight/ Left /Right  READY MIDDLE  
   Blink Straight/ Left/ Right  READY MIDDLE  
   Open Right (Null Act)  READY RIGHT  
   Open Double Right (Double Null 

Act)  LOCKED MIDDLE (Locked 
Forward) 

RUN MIDDLE  Open Straight  RUN MIDDLE Move straight 
   Open Right  RUN RIGHT Turn Right 
   Open Left  RUN LEFT Turn Left 
   Closed Straight/ Left /Right  LOCKED MIDDLE Stop 

   Blink Straight/ Left/ Right  READY MIDDLE Stop 

 LEFT  Open Right  RUN MIDDLE Move straight 
   Open Left  RUN LEFT Turn Left 
   Closed Straight/ Left /Right  LOCKED MIDDLE Stop 

   Blink Straight/ Left/ Right  READY MIDDLE Stop 

 RIGHT  Open Left  RUN MIDDLE Move straight 
   Open Right  RUN RIGHT Turn Right 
   Closed Straight/ Left /Right  LOCKED MIDDLE Stop 

   Blink Straight/ Left/ Right  READY MIDDLE Stop 
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 Once the move direction is locked, the system is ready to enter RUN MODE. This 

is done by performing a double blink in 2 seconds. After that the system will enter RUN 

MODE immediately. Upon entering the RUN MODE, the system is automatically 

assigned to the MIDDLE state, but the user is given 5 seconds to change his gaze 

direction to the left or right before it is taken as the first command to move the 

wheelchair. In this mode, the state is viewed as an instruction to move the wheelchair. If 

there is no change of gaze direction in the grace period, the wheelchair will move in a 

straight direction forwardly or backwardly according to the locked move direction.  

 While in RUN MODE, the state changes in accordance with the gaze direction, 

and the wheelchair follows the state. Each instruction will be executed for at least 2 

seconds to maintain the stability of the moving wheelchair and avoid confusion caused 

by command overcrowding. Another restriction is that the wheelchair will stop before 

turning or changing direction. And finally, only a gradual change of direction is 

allowed. 

 At all time, the wheelchair is moving at 5km/h, which is an average walking speed 

and turns at 0.4rad/s. If a user wishes to stop the wheelchair, all he has to do is blink or 

closes his eyes.  Once blink or closed eye is detected, the system will terminate 

whatever command it is executing, exit RUN MODE and return to MIDDLE state of 

READY MODE. For a blink, the locked direction is not affected, but for a closed eye it 

will be unlocked and the user has to choose one before returning to READY MODE by 

double blinking. This feature is also useful when an error occurs due to misclassification 

or distraction. For example, while moving straight the user's attention is drawn to 

something in the environment and therefore accidentally delivers an incorrect 

navigation command to turn left. The new state will be displayed on the user interface 
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panel and the user can simply gaze to the opposite direction (right) to shift the state back 

to the MIDDLE. Another solution is to blink so that the wheelchair will stop before 

executing the left turn and the state will move to the MIDDLE of READY MODE. 

Double blinking will send the system back to MIDDLE state of RUN MODE. These 

options show that the system is flexible and forgiving. Finally, in a span of two second, 

only one instruction is kept while the wheelchair is executing the current command. If 

the user generates another instruction, only the latest is kept as the next command to be 

executed. 

3.5 Hardware Implementation 

 Based on the state of the finite state machine, a command to the wheelchair used 

in (Mokhtar, 2012) is identified and issued. The system checks whether it is the same 

command currently being executed. If it is the same ones, the execution of the current 

command is prolonged. If it is different, a new instruction in the form of a digital 

command is sent to a digital to analog module that converts the digital signal to an 

analog voltage level. The module used in our experiment is NI9264 by National 

Instrument. The analog output is then sent to a motor controller that controls the right 

and left motors of the wheelchair as shown in Figure 3.16. The controller will switch on 

the right, left or both motors if the command is turn left, turn right or move forward 

respectively. If a blink or closed eye is detected, both motors will stop and the system 

will exit RUN MODE and enter MIDDLE state in READY MODE.  
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Figure 3.16: Flow of the hardware implementation consists of three main 
components; data acquisition, processing devices and output to wheelchair motor. 

3.6 Navigation Session 

 In this session, the performance of the proposed navigation system is investigated 

in the indoor environment. Participants are required to steer the wheelchair using the 

proposed navigation controller along the designated routes. Since the proposed 

navigation system is untested in real navigation task, their performance is uncertain and 

might risk the safety of the participants. Therefore, only participants that show the best 

competency in performing eyelid position and horizontal gaze tasks in Online Session 

with score higher than 98% will be selected. This result in five participants is selected to 

perform the navigational tests. 

 Prior to Navigation Session, a short training session was commenced to check the 

system functionality and the participant is given 30 minutes to perform as many 

commands as he wishes to obtain more familiarity with the system in READY MODE. 

Two routes are designed with the passage width in the range of 4.5m to 1.8m as shown 

in Figure 3.17.  

 Route 1 has a total optimal path length of 17.7m with three checkpoints of A1, B1 

and C1 while Route 2 has a total optimal path length of 22.7m with four checkpoints of 

A2, B2, C2 and D2. Participants are responsible for maneuvering the wheelchair to pass 
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through these checkpoints starting from the first point back to the same point. However, 

when the participants reach the dead end points of C1 and D2, they are expected to 

reverse the wheelchair backward to exit the tight end and only make a turn at point B1 

and C2 respectively. Each participant is given 3 attempts to repeat the task and at the 

end of the session they are asked to answer a set of questionnaires regarding their 

experience (see APPENDIX E). 

  
(a) (b) 

Figure 3.17: The navigation route with checkpoints (a) Route 1  (b) Route 2. 

 The GUI consists of mode, move direction and current state are all displayed in 

front of the user by LED lights as shown in Figure 3.18 (c). 
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(a) (b) 

Figure 3.18: (a) A participant undergoing the experiment during Navigation 
Session (the participant has given written informed consent for the photograph) 

(b) Print screen of the graphical user interface. 
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CHAPTER 4 

RESULTS & DISCUSSIONS 

 

4.1 Introduction 

 In this chapter, the results obtained during Online Session and Navigation Session 

are presented and discussed. The performance between conventional and sliding 

window are compared during Online Session. The evaluation of navigation system 

during Navigation Session is described in three parts, overall, navigation performance 

and individual performance.  

4.2 Online Session 

 The efficiency of the signal processing techniques are evaluated in Online Session 

with no actual wheelchair movement is involved. In total, 500 commands of eyelid 

position and horizontal gazes were issued continuously every 5 seconds to 20 

participants. Prior to the session, the values of threshold_alpha, threshold_delta, 

threshold_variance, 𝑟!"#$ 0.90  𝑜𝑝𝑒𝑛 , threshold_areaO2, threshold_areaC3, C4 and K-

Means centroids for every participant are determined from the recorded signals. 

4.2.1 Sliding Window 

The filtered alpha and delta signals are examined in 0.5s window containing 128 

samples. During this short period, a sliding window is used to adjust the position of the 

window so that it will contain samples of eye movements exclusively.  
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In the analysis of the alpha signal in O2, the position of the sliding window is 

adjusted until the difference between the averages of the first and last subinterval is less 

than the threshold_alpha. In our experiment, the threshold_alpha is set at half of the 

mean absolute values of closed eye samples. When the difference value is less than 

threshold_alpha, it indicates that the window contains samples of open or closed eye 

exclusively. Then, the window position is fixed and the feature such as variance, 2nd 

order difference plot or area of the samples in the whole window can be calculated. 

Values of threshold_alpha that determined for each participant prior to Online Session 

are listed in Table 4.1. 

Table 4.1: A sliding window in channel O2 is adjusted if the difference between the 
averages of the first and last subinterval is less than the threshold_alpha. The 

threshold_alpha is determined from half of the average absolute values of closed 
eye samples for each participant. 

Participant 1 2 3 4 5 6 7 8 9 10 

threshold_alpha 6.91 7.11 7.03 7.97 7.97 8.98 5.72 7.61 11.22 7.04 

Participant 11 12 13 14 15 16 17 18 19 20 

threshold_alpha 6.61 8.29 10.69 10.64 8.72 9.21 10.48 8.28 11.00 7.26 

 

 For capturing the horizontal gaze in the delta signals of C3 and C4, average values 

of eight subintervals in a window are calculated and compared to threshold_delta. The 

threshold_delta is set at the midpoint of the average amplitude of the peaks recorded 

during left and right gaze for every participant as listed in Table 4.2. Once the values of 

the subintervals are greater than the threshold_delta, the position of the highest 

subinterval is adjusted to the center of the window. Otherwise, the position of the 

window is maintained as no gaze is occurred. Then, the area or the filtered delta signal 



 

 

 

73 

in the whole window can be analyzed by the thresholding, K-Means and LDA for the 

detection of horizontal gaze respectively. 

Table 4.2: A sliding window in channel C3 and C4 is adjusted if the eight 
subintervals in a window are greater than threshold_delta. The threshold_delta is 
determined from the half of the average peaks recorded during horizontal gaze.  

Participant 1 2 3 4 5 6 7 8 9 10 

threshold_delta 7.41 7.93 7.60 6.95 7.84 7.08 6.84 8.32 6.92 6.28 

Participant 11 12 13 14 15 16 17 18 19 20 

threshold_delta 10.54 9.99 9.65 9.36 9.97 7.90 9.62 9.37 9.20 8.18 

 

 

 The positioning of sliding window in channel C3 and C4 are according to O2 at 

all time unless the values of the subintervals in C3 or C4 are greater than 

threshold_delta. In this case, the sliding window in O2 is adjusted according to the one 

in C3 or C4 as summarized in Table 4.3. 

 

Table 4.3: Rules of the sliding window adjustment. 

LESS THAN GREATER THAN WINDOW ADJUSTMENT 
WILL FOLLOWED: threshold_alpha threshold_delta threshold_alpha threshold_delta 

O2 C3 - - O2 
O2 C4 - - O2 
O2 - - C3 C3 
O2 - - C4 C4 
- C3 O2 - O2 
- C4 O2 - O2 
- - O2 C3 O2 
- - O2 C4 O2 
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4.2.2 Eyelid Position Analysis 

 Analysis of eyelid position classified three features extracted from alpha rhythm 

in channel O2 using thresholding and CTM. The features are variance, 2nd order 

differential plot and area. These techniques are evaluated in Online Session and the 

feature recorded the highest classification accuracy will be implemented in the 

Navigation Session.  The confusion matrix presented in Table 4.4 shows the overall 

performance using conventional and sliding window of three techniques in classifying 

300 instructions issued in Online Session for eyelid position analysis. The metrics used 

in the evaluation are described as follows: 

1) Positive Predictive Value (PPV): Rate of correctly identifies a condition. 

2) Negative Predictive Value (NPV): Rate of correctly excludes a condition. 

3) Accuracy: Overall ability to identify and exclude correctly. 

4) Sensitivity: Overall ability to identify correctly. 

5) Processing Time (s): Time taken in second from extracting the feature until the 

output of classification. 

 

It can be observed that, implementation of sliding window improves the accuracy for 

approximately 10% and sensitivity for approximately 9% for all techniques compared to 

the conventional window.  
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Table 4.4: Confusion matrix for eyelid position analysis using conventional and 
sliding window during Online Session. 

 
Task 

Recognized Eyelid Position 
PPV NPV Accuracy Sensitivity Processing 

Time (s)  Open Blink Closed 

C
O

N
V

E
N

T
IO

N
A

L
 W

IN
D

O
W

 Variance & Threshold 
Blink 18 82 0 0.77 0.91 0.84 0.89 0.45 
Closed  0 15 85 0.92 0.93 0.93 0.93 0.45 
Open 84 9 7 0.82 0.92 0.87 0.91 0.45 
Mean    0.84 0.92 0.88 0.91 0.45 
         
2nd order difference plot & CTM 
Blink 27 73 0 0.71 0.86 0.79 0.84 0.62 
Closed  6 18 76 0.92 0.89 0.90 0.89 0.62 
Open 81 12 7 0.71 0.90 0.80 0.87 0.62 
Mean    0.78 0.88 0.83 0.87 0.62 
         
Area & Threshold 
Blink 22 78 0 0.72 0.88 0.80 0.86 0.42 
Closed  0 19 81 0.92 0.91 0.92 0.91 0.42 
Open 81 12 7 0.79 0.90 0.84 0.89 0.42 
Mean    0.81 0.90 0.85 0.89 0.42 

SL
ID

IN
G

 W
IN

D
O

W
 

Variance & Threshold 
Blink 4 95 1 1 0.98 0.98 0.98 0.45 
Closed  0 0 100 0.96 1 0.98 1 0.45 
Open 97 0 3 0.96 0.98 0.97 0.98 0.45 
Mean    0.97 0.99 0.98 0.99 0.45 
         
2nd order difference plot & CTM 
Blink 6 91 3 1 0.96 0.98 0.96 0.62 
Closed  11 0 89 0.94 0.95 0.94 0.95 0.62 
Open 97 0 3 0.85 0.98 0.92 0.98 0.63 
Mean    0.93 0.96 0.95 0.96 0.62 
         
Area & Threshold 
Blink 5 92 3 1 0.96 0.98 0.96 0.42 
Closed  7 0 93 0.94 0.97 0.95 0.96 0.42 
Open 97 0 3 0.89 0.98 0.94 0.98 0.42 
Mean    0.94 0.97 0.96 0.97 0.42 

 

a) Variance & Thresholding  

 The value of variance is bigger when a large scale of fluctuation in alpha rhythm 

is detected as shown in Figure 4.1. Utilizing variance and thresholding in eyelid position 

analysis recorded the highest overall accuracy of 98% with 0.45s of processing time. 
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During the experiment, four blink instructions are wrongly identified as open eye and 

one as closed eye.  

 

 
(a) 

 
(b) 

Figure 4.1: Alpha rhythm in channel O2 recorded from a Participant 4 during 
Online Session (a) The participant executed an open eye (5s – 10s) and closed eye 

(10.5s – 15s) (b) Variance and mean variance of the open eye represented by a 
straight line at 𝒚 = 88.05 parallel to 𝒙-axis. 

 The threshold_variance is computed from the open eye data collected during 

Recording Session and assigned uniquely for each participant as listed in Table 4.5. For 

example, the mean variance of the open eye (threshold_variance) for Participant 4 is 

represented by a straight line at 𝑦 = 88.05 parallel to 𝑥-axis. If the calculated variance in 

the particular O2 window is equal or smaller than the defined threshold_variance at 𝑦 = 

88.05, the signal will be classified as an open eye while larger variance will be 

classified as blink or closed eye with regard to the duration of closed eye. 
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Table 4.5: threshold_variance determined from the open eye data for each 
participant. 

Participant 1 2 3 4 5 6 7 8 9 10 

threshold_variance 48.34 44.45 44.01 88.05 44.85 34.32 46.56 39.41 91.04 41.65 

Participant 11 12 13 14 15 16 17 18 19 20 

threshold_variance 121.39 39.81 46.46 33.69 44.15 74.32 50.27 42.99 124.54 76.13 

 

b) 2nd Order Difference Plot & CTM 

 2nd order difference plot shows the variation of successive rates. The distributions 

of alpha rhythm in a window of 128 samples for open and closed eye display in the 2nd 

order difference plot are shown in Figure 4.2. This variation was measured by CTM 

within an optimum radius (𝑟) that determined once CTM reaches a value of 0.90. 

 For example, the optimum radius obtained for Participant 3 during open eye is 

𝑟(0.90  𝑜𝑝𝑒𝑛) = 2.42 and closed eye is 𝑟(0.90  𝑐𝑙𝑜𝑠𝑒𝑑) = 7.83 as shown Figure 4.3. 

Generally, the closed eye contains higher variability of alpha rhythm and will yield 

larger optimum radius compared to open eye. 

 

 

 

 

 



 

 

 

78 

  
         (a)            (b) 

Figure 4.2: Second-order difference plot during (a) open eye and (b) closed eye in 
alpha rhythm (8-13Hz) in a window of 128 samples. 

  

Figure 4.3: The optimum radius of 𝒓𝒐𝒑𝒆𝒏 = 𝟐.𝟒𝟐 and 𝒓𝒄𝒍𝒐𝒔𝒆𝒅 = 𝟕.𝟖𝟑 at 𝒙-axis is 
determined from open eye radius when the CTM reach 0.90 for Participant 3. 

 The classification of open and closed eye was based on the radius difference (𝑟!) 

between the optimum radius obtained in a window of 128 samples and 

𝑟!"#$ 0.90  𝑜𝑝𝑒𝑛 , a mean value of open eye radius calculated from the recorded data 

as listed in Table 4.6. A closed eye condition is represented by the positive value of 𝑟!, 

while open eye condition is represented by negative value. 

ropen& rclosed&
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Table 4.6: The mean of open eye radius, 𝒓𝒎𝒆𝒂𝒏 𝟎.𝟗𝟎  𝒐𝒑𝒆𝒏  for each subject. 

Participant 1 2 3 4 5 6 7 8 9 10 

𝒓𝒎𝒆𝒂𝒏 𝟎.𝟗𝟎  𝒐𝒑𝒆𝒏  3.43 2.66 2.48 5.47 2.92 1.44 3.29 2.13 5.52 2.27 

Participant 11 12 13 14 15 16 17 18 19 20 

𝒓𝒎𝒆𝒂𝒏 𝟎.𝟗𝟎  𝒐𝒑𝒆𝒏  5.98 2.14 3.07 1.41 2.58 5.36 3.96 2.39 6.18 5.42 

 

 2nd order difference plot and CTM has denoted to low overall accuracy of 95% 

with six blink are recognized as open and three as closed. Also, 11 closed eye signals 

are mistakenly recognized as open while three open eye signals are recognized as 

closed. The analysis of 2nd order difference plot and CTM utilized the time series 

signals from O2 to calculate the radius of its variation without amplification. Therefore, 

in the case when the intensity of the alpha rhythm was low during closed eye, CTM 

might recognized it as open eye due to a slight difference between radiuses of open and 

closed eye. The recorded processing times showed approximately 0.62s was required to 

analyzed a window of 128 samples and the highest among the three techniques tested in 

this analysis. 

c) Area in Alpha Rhythm  

 This feature used the concept of area calculation by summing the absolute value 

of alpha signal samples as shown in Figure 4.3. Then, this area was compared with a 

threshold_areaO2, a mean area of open eye for each participant as listed in Table 4.7. If 

the compared value is less than threshold_areaO2, the area will denote as open eye while 

larger value will denote as blink or closed eye with regard to its duration. 
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    (a)   (b) 

Figure 4.4: (a) Alpha rhythm in channel O2 (b) Area of closed and open eye is 
calculated from the absolute value. 

 Utilizing area in alpha signals as feature for eyelid position analysis has recorded 

overall accuracy of 96%.  Five blink has mistakenly identified as open eye and three as 

closed eye while seven closed eye signals as open. As the rigid threshold is employed, 

the low intensity of alpha rhythm during blink or closed eye might be detected as open. 

The recorded processing times show only fragment of time required for detection with 

approximately 0.42s. 

Table 4.7: The mean of open eye area, threshold_areaO2 for each participant. 

Participant 1 2 3 4 5 6 7 8 9 10 

threshold_areaO2 269 227 425 400 263 513 232 276 411 207 

Participant 11 12 13 14 15 16 17 18 19 20 

threshold_areaO2 888 400 761 480 364 433 759 467 1068 553 

 

d) Uncontrolled Factors 

 The analysis of eyelid position during Online Session was influenced by the 

uncontrolled factors either from the participants or the environment as followed. First, 

Open �

Closed �

Open �

Closed �
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the strength of alpha rhythm during closed eye is weaker when the subjects are excited 

with anticipation and high in alertness. However, the rigid threshold_variance, 

𝑟!"#$ 0.90  𝑜𝑝𝑒𝑛  and threshold_areaO2 level cannot be changed to accommodate the 

change in signal strength. This contributed to misclassification of blink and closed eye 

as open.  

 Second, when the participants are in relaxation, tired and inattentive at the 

beginning of the session, alpha rhythm signal in O2 during open eye increases and 

sometimes its amplitude encroaches the domain of the closed eye signal. In this case, 

three open eye signals are recognized as closed by all methods using sliding window 

due to this condition as shown in Table 4.4. Figure 4.5 shows an example of the alpha 

rhythm recorded during the excited period. 

 Finally, the blink is defined as a form of closed eye, which is less than 1s while 

closed eye with longer than 1s. However, during the experiment when the participants 

are unintentionally blink for a longer than 1s, the blink is mistakenly recognized as 

closed eye. If the blink is too short, the strength of alpha rhythm will be weaker and 

identical as open eye signal.  
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Figure 4.5: High alpha rhythm occurs during open eye due to high anticipation 
and alertness. 

 

4.2.3 Horizontal Gaze Analysis 

 Analysis of horizontal gaze extracted feature such as area in delta signal between 

channel C3 and C4 and classified using tresholding. In LDA and K-Means the delta 

rhythm signals from C3 and C4 are directly fed to classifier. These techniques are 

evaluated in Online Session and the feature recorded the highest classification accuracy 

will be implemented in the Navigation Session.  

 The confusion matrix presented in Table 4.8 shows the overall performance of the 

system in classifying the 300 instructions using conventional and sliding window issued 

in Online Session for horizontal gaze detection. In this analysis, the open eye 

instructions issued in eyelid position analysis are examined and denoted as stationary.  

The implementation of sliding window in horizontal gaze analysis improves the 

accuracy for all techniques for approximately 3% while sensitivity for approximately 

1% compared to conventional window.  
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Table 4.8: Confusion matrix for horizontal gaze analysis using conventional and 
sliding window during Online Session 

 
Task 

Recognized Gaze 
PPV NPV Accuracy Sensitivity Processing 

Time (s)  Stationary Left Right 

C
O

N
V

E
N

T
IO

N
A

L
 W

IN
D

O
W

 LDA 
Stationary 100 0 0 0.68 1 0.84 1 0.49 
Left gaze  26 74 0 1 0.93 0.97 0.94 0.49 
Right gaze 22 0 78 1 0.94 0.97 0.95 0.49 
Mean    0.89 0.96 0.93 0.96 0.49 
         
K-Means 
Stationary 100 0 0 0.78 1 0.89 1 0.48 
Left gaze  12 88 0 1 0.93 0.97 0.94 0.48 
Right gaze 17 0 83 1 0.94 0.97 0.95 0.48 
Mean    0.93 0.96 0.94 0.96 0.48 
         
Area & Threshold 
Stationary 100 0 0 0.68 1 0.84 1 0.42 
Left gaze  26 84 0 1 0.93 0.97 0.94 0.42 
Right gaze 22 0 81 1 0.94 0.97 0.95 0.42 
Mean    0.89 0.96 0.93 0.96 0.42 

SL
ID

IN
G

 W
IN

D
O

W
 

LDA 
Stationary 100 0 0 0.79 1 0.90 1 0.49 
Left gaze  14 86 0 1 0.93 0.97 1 0.49 
Right gaze 12 0 88 1 0.94 0.97 0.95 0.49 
Mean    0.93 0.96 0.95 0.96 0.49 
         
K-Means 
Stationary 100 0 0 0.92 1.00 0.96 1 0.48 
Left gaze  5 95 0 1 0.98 0.99 0.98 0.48 
Right gaze 4 0 96 1 0.98 0.99 0.98 0.48 
Mean    0.97 0.99 0.98 0.99 0.48 
         
Area & Threshold 
Stationary 100 0 0 0.85 1.00 0.93 1 0.42 
Left gaze  11 89 0 1 0.95 0.97 0.95 0.42 
Right gaze 6 0 94 1 0.97 0.99 0.97 0.42 
Mean    0.95 0.97 0.96 0.97 0.42 

 

 It can be observed that the stationary instructions are perfectly executed for all 

three techniques tested in this analysis. This indicates that the anticipation and high in 

alertness during the experiment that altered the alpha rhythm in open eye signal, has a 

minimal effect in delta rhythm. 
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a) Linear Discriminant Analysis (LDA) 

 LDAs has detected 14 left gaze and 12 right gaze as stationary that contributed to 

the overall accuracy of 93%. Moreover, the LDA recorded 0.49s of processing time to 

obtain the final output from two LDA classifiers. Figure 4.6 shows the projection of the 

LDA in 1D subspace during execution of left and right gaze in a window of 128 

samples. In the case where the gaze was not done rapidly by the participant, LDA will 

rule the weak pulses as stationary that contributed to the lowest overall accuracy in the 

horizontal gaze analysis. 

  
  

(a) (b) 

Figure 4.6: Projection of LDA in 1D subspace (a) left gaze (b) right gaze 

b) K-Means & Euclidean Distance 

 Among the three techniques, K-Means and Euclidean distance recorded the 

highest overall accuracy of 98% with five left gaze and four right gaze instructions are 

wrongly executed as stationary. The processing time requires approximately 0.48s to 

obtain the minimum distance between centroid from a window and the predetermined 

centroid of each group. The predetermined centroids that calculated from recording data 
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are presented in the Table 4.9. The minimum distance from centroids in K-Means 1 and 

K-Means 2 are combined to reach the final classification as listed in Table 3.1. 

Table 4.9: K-Means centroids obtained for each participant. 

Participant K-Means 1 K-Means 2 
Left Stationary Stationary Right 

1 8.9024 0.8211 0.3937 11.5058 
2 10.8833 0.4934 1.0186 14.1659 
3 9.9662 0.3318 1.2894 13.8899 
4 9.5955 1.3828 1.5664 11.3481 
5 11.5054 0.5615 -0.1302 11.9542 
6 9.7842 -0.9461 0.3956 11.7507 
7 10.7908 0.7316 0.5986 11.0119 
8 10.8428 -0.1711 1.3422 13.9627 
9 9.66 1.3924 2.4418 11.5321 

10 7.9459 -0.3438 1.8518 11.0432 
11 16.183 1.775 -0.8713 16.5271 
12 16.0006 -0.0202 -0.3665 14.549 
13 16.2557 0.6049 0.2312 14.4966 
14 18.8997 -0.9463 -0.6492 12.7471 
15 16.7951 0.4163 -0.3774 14.7554 
16 15.2134 1.2661 0.1956 11.0271 
17 17.0682 0.9985 0.1529 13.6501 
18 14.6868 0.3342 0.4834 14.7461 
19 14.9007 1.9424 0.2733 13.7922 
20 16.9446 1.2542 0.2124 10.432 

 

c) Area in Delta Rhythm 

 Area is analyzed between delta signal in C3 and C4 as shown in Figure 4.7. Then, 

the area will be compared to threshold_areaC3, C4, a range between half of the mean area 

during right gaze at the lower limit and half of the mean area during left gaze at the 

upper limit. The calculated area will be recognized as right gaze if the area is under the 

lower limit and left gaze if exceeding the upper limit. However, if the area is in the 
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range of threshold_areaC3, C4 in between lower and upper limit, the current window will 

recognize as stationary or no movement of eyeball. 

 

   
(a) Center to Left (b) Center to Right (c) Stationary 

   

Figure 4.7: Area in delta rhythm are calculated between signals in C3 and C4. 

 This technique has recorded overall accuracy of 96% with 11 left gazes and six 

right gazes are mistakenly recognized as stationary. Implementation of area and 

thresholding in Online Session has recorded approximately 0.42s of processing time to 

examine a window of 128 samples. 

Table 4.10: The upper and lower limits of threshold_areaC3, C4 for each participant. 
An area that lies in between lower and upper limit will recognize as stationary. If 
the area is below the lower limit, then the right gaze is detected, while exceeding 

the upper limit will represent a left gaze. 

Participant 1 2 3 4 5 6 7 8 9 10 

Upper Limit 798 932 871 1059 1109 858 1033 966 843 633 

Lower Limit -1234 -1364 -1422 -1268 -1297 -1073 -1296 -1399 -1208 -1224 

Participant 11 12 13 14 15 16 17 18 19 20 

Upper Limit 1407 1337 1436 1709 1561 1336 1361 1248 1417 1404 

Lower Limit -1524 -1392 -1344 -1303 -1361 -1171 -1346 -1424 -1290 -1204 
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d) Uncontrolled Factors 

 Generally, the uncontrolled factor that contributes to the wrongly executed 

horizontal gaze is mainly due to the operator failing to execute the instruction within 2s 

after the command is issued. Another reason is because the shift in gaze is not done 

rapidly. This generates weak pulses in C3 and C4 that are difficult to detect. These 

errors are caused by fatigue, lack of focus and familiarity, disturbance and confusion. 

4.3 Navigation Session 

 In this session, features such as variance and centroids from K-Means are used as 

input to the fuzzy state transition. These two features are selected as they score the 

highest overall accuracy in Online Session. Furthermore, five participants with score 

higher than 98% in Online Session are chosen to perform the navigational tests. 

 This session requires the participants to navigate the wheelchair along two routes 

passing through checkpoints in the same indoor area. Then, the performances of the 

wheelchair system and the participant are evaluated. The evaluation metrics are 

described as follows (I. Iturrate et al., 2009; Montesano, Diaz et al., 2010): 

1) Clearance Min (m): Minimum clearance distances between the wheelchair and 

obstacles during the Navigation Session. 

2) Clearance Mean (m): Average of clearance distances between the wheelchair and 

obstacles at all time. 

3) Collisions: Total number of collisions during the task. 

4) ITR (bits/min): Information transfer rate defined by Wolpaw et. al (Wolpaw, 

Ramoser et al., 1998).   
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5) Mission Time (s): Mean time to perform one mission. 

6) No. Of Missions: Total missions to complete the task. A mission is a navigation 

going straight FORWARD, BACKWARD, TURN LEFT, RIGHT and STOP. A few 

commands or selections would be required to execute a mission such as left, right 

gaze, blink or closed eye. These commands or selections are also known as state 

transitions in the modeled state machine. 

7) Path Length (m): Distance traveled to complete the task.  

8) Path Optimality Ratio: Ratio of the path length to the optimal path (the optimal path 

was 17.7m for Route 1 and 22.7m for Route 2. See Figure 3.17)  

9) Real Accuracy: Ratio of correct selections to the total number of selections. 

10) Task Success: Completion of the navigation task. The task is considered a failure 

for the following reasons: user desertion, wheelchair misoperation or unable to reach 

the finish line.  

11) Time in Motion (s): Total time wheelchair in moving condition during task.  

12) Time Optimality Ratio: Ratio of the time taken to the optimal time to complete the 

task (the optimal time was approximately 17s for Route 1 and 24s for Route 2 based 

on maximum and rotational velocities of 1.39m/s and 0.4rad/s)  

13) Total Errors: Total of incorrect selections during navigation tasks. 

14) Total Time (s): Time taken to complete the task from start to finish line.  

15) Useful Accuracy: Ratio of correct selections and useful error to the total number of 

selections.  

16) Useful Errors: Incorrect selections that the participants decide to use it.  

17) Useless Errors: Incorrect selections that the participants decide not to use.  

18) Velocity (m/s): Total length over the total time taken for a task. 
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4.3.1 Wheelchair System Performance 

The navigation system performance is represented by the overall, signal processing and 

navigation performance as follows.  

a) Overall Performance 

 The criteria used in evaluating the overall performance are shown in Table 4.11. 

All participants managed to complete the navigation task successfully through Route 1 

and 2 without collision. On average, the participants took 76 seconds and 167 seconds 

to navigate Route 1 and 2 respectively. The average distances covered by the 

participants were 18.79m for Route 1 and 26.84m for Route 2. The low path optimality 

ratio of 1.06 for Route 1 and 1.18 for Route 2 indicates that the participants were able to 

travel close to the designated paths. However, the actual time taken to complete the task 

is much higher than the optimal time, with a maximum ratio of 7.76 for Route 1 and 

9.74 times for Route 2. The participants took a longer time to navigate Route 2 as it has 

more turns. The high actual time includes the waiting period during mode changing, 

command selection and computational time. The useful accuracy of the Navigation 

Session is satisfying with a mean of 98% and 96% for Route 1 and Route 2 respectively. 

These performances could be translated into an average ITR of 89.16bits/min for Route 

1 and 83.15% for Route 2. In general, a narrow performance gap observed among the 

participants signifies the system usability and consistency to navigate and maneuver the 

wheelchair in small and indoor spaces. 
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Table 4.11: Metrics to evaluate the overall performance in Navigation Session. 

 Route 1 Route 2 
 min max mean std min max mean std 
Task Success 1 1 1 0 1 1 1 0 
Path Length (m) 17.90 19.55 18.79 0.49 25.80 27.50 26.84 0.52 
Total Time (s) 53 132 76 21 103 173 125 18 
Path Optimality Ratio 1.01 1.10 1.06 0.03 1.14 1.21 1.18 0.02 
Time Optimality Ratio 3.11 7.76 4.47 1.23 4.24 7.11 5.16 0.75 
Collisions 0 0 0 0 0 0 0 0 
Useful Accuracy 0.94 1 0.98 0.02 0.93 1 0.96 0.02 
ITR (bits/min) 78.04 96.55 89.16 2.77 72.05 95.30 81.28 3.97 

b) Signal Processing Performance 

 The performance of the signal processing or fuzzy state transition during 

Navigation Session is outlined in Table 4.12 and described in two groups: real accuracy 

and useful accuracy. The real accuracy is the ratio of correctly recognized command 

according to the participants’ selection to the total recognized command while the 

useful accuracy is the mixture of real accuracy and useful errors. The average real 

accuracy recorded during the session is 93% for Route 1 and 90% for Route 2. 

However, the average useful accuracy recorded, 98% for Route 1 and 96% for Route 2, 

were higher when the useful errors were taken into consideration. 

Table 4.12: Metrics to evaluate the signal processing performance in Navigation 
Session. 

  Route 1 Route 2 
  min max mean std min max mean std 
Real Accuracy 0.86 1 0.93 0.04 0.83 0.97 0.90 0.04 
Useful Accuracy 0.94 1 0.98 0.02 0.93 1 0.96 0.02 
Total Errors 0 4 1 1 1 7 4 2 
Useless Errors 0 1 0.47 0.52 0 3 1.60 0.83 
Useful Errors 0 3 0.93 0.80 1 5 2.27 1.10 
Mission Time (s) 4.50 8 5.89 1.17 3.17 4.41 3.93 0.31 
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 Here, not all errors occur during the experiment were unusable. Some of the errors 

were actually used by the participants to reach the target (Baker, Casey et al., 2004; I. 

Iturrate et al., 2009). For instance, the wheelchair may stop when triggered by false 

closed eye signal caused by high alpha rhythm due to high anticipation and alertness. In 

this case, if the participant used this error to rethink the strategy to reach the target, the 

error is considered useable and counted as a successful command. In contrast, a useless 

error is unusable and only interferes with the wheelchair movement. For instance, when 

the user command the system to turn left by left gaze, the system recognized it as going 

straight instruction as no gaze is detected. This error is counted as useless error.  

 An average time required to accomplish a mission is approximately 5.89 second 

for Route 1 and 3.93 second for Route 2. The lower mission time for Route 2 indicates 

the increasing competency of the participants in maneuvering the wheelchair while the 

distance traversed for each mission was shorter. 

c) Navigation Performance 

 In total, six attempts were given to the participants to accomplish both tasks and 

the participants successfully completed each of the attempts. The metrics to evaluate the 

navigation system is presented in Table 4.13. The participants required an average of 

9.67 missions to travel the 18.79m of Route 1 and an average of 24 missions to travel 

the 26.84m of Route 2. Route 2 was designed with more checkpoints, thus it requires 

more missions than Route 1 such as going straight forwardly, turn left or right to 

complete the route. In total, 501 missions were executed along 684.4m during the 

Navigation Session and in general, the wheelchair traveled 1.37m for every mission 

with a mean velocity of 0.9m/s.  
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Table 4.13: Metrics to evaluate the navigation performance. 

 Route 1 Route 2 
 min max mean std min max mean std 
Task Success 1 1 1 0 1 1 1 0 
No. Of Missions 8 15 9.67 1.63 19 39 24 5.52 
Collisions 0 0 0 0 0 0 0 0 
Path Length (m) 17.90 19.55 18.79 0.49 25.80 27.50 26.84 0.52 
Velocity (m/s) 0.88 1.08 1.06 0.05 0.80 0.84 0.82 0.01 
Time in Motion (s) 17 22 18 1 32 34 33 0 
Clearance Min (m) 0.38 0.74 0.54 0.10 0.43 0.69 0.55 0.08 
Clearance Mean (m) 0.92 1.22 1.10 0.08 0.77 0.93 0.83 0.05 
 

 In this study, we designed all the checkpoints to be close to the obstacles with a 

minimum distance of 0.5m. Under space constraint in indoor environment, it is 

important to have a fast system response to avoid collision. During the Navigation 

Session, the mean of the minimum clearance is approximately 0.54m for Route 1 and 

0.55m for Route 2 while mean clearance is approximately 1.10 and 0.83m for Route 1 

and Route 2 accordingly. Here, the proposed system demonstrates the ability to stop 

responsively as the participants were able to reach the points close to the walls and 

avoid collisions with good safety margins.  

 Also, usability of the backward maneuver was proven when the wheelchair 

reversed from tight checkpoints of C1 and D2 without collisions. Without this ability, the 

wheelchair would be stuck, as there was no space to turn. 

4.3.2 Individual Performance 

 The metrics evaluation shown in Table 4.14 is a summary of the individual 

performance from three attempts performed for each route during the experiment. 

Participant P4 executed the least missions with 8.67 (Route 1) and 20 (Route 2) while 
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the participant P1 executed the most missions with 11.67 (Route 1) and 30 (Route 2). 

Fewer missions executed during the task shows the competency level of the participants 

to control and command the wheelchair effectively. Also, participant P4 travelled the 

shortest path length of 18.10m in Route 1 and 26.49m in Route 2 with path optimality 

length of 1.02 in Route 1 and 1.17 in Route 2. In contrast, participant P1 required a 

longer path length of 19.56m in Route 1 and 27.87m in Route 2. Participant P4 

demonstrated the skill to navigate the wheelchair near the perfect path and in contrary 

participant P1 took the longer path length to reach the finish line. Here, the path length 

reflects the total time taken to finish the tasks with participant P4 the fastest and 

participant P1 the slowest.  

 

Table 4.14: The performance of each participant in Navigation Session. 

 Route 1 Route 2 
 P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 
Task Success 1 1 1 1 1 1 1 1 1 1 
No. Of Missions 11.67 9 9.67 8.67 9.33 30 23.33 24.33 20 21 
Path Length (m) 19.56 18.52 18.97 18.10 18.83 27.87 26.84 27.13 26.49 26.67 
Path Optimality Length 1.11 1.05 1.07 1.02 1.06 1.23 1.18 1.20 1.17 1.17 
Total Time (s) 106 68 79 59 70 150 119 129 114 117 
Useful Accuracy 0.97 0.98 0.97 0.98 0.98 0.94 0.95 0.96 0.97 0.96 
 

 The total time consists of the idle time during which the wheelchair is stationary 

and in-motion time as shown in Figure 4.8. Idle time accounts for the time taken by the 

participants to plan and execute the commands while in-motion time represents the time 

the wheelchair is moving. In both tasks, participant P1 required more time than others to 

plan and execute commands with 87 seconds in Route 1 and 112 second in Route 2. 
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However, all participants managed to complete both navigational tasks without 

collision.   

 

 

Figure 4.8: The total time taken during the navigation task. 

 

 Output from the fuzzy state transition will indicate if the participant performed the 

gaze in a slower motion resulting in a weaker signal due to fatigue, lack of focus, 

disturbance or confusion. During the Navigation Session, this fatigue warning was 

recorded in every attempt as outlined in Table 4.15. It can be seen that the number of 

fatigue warning was increased over attempts and higher in Route 2 than in Route 1. 

Also, participant P1 recorded the highest mean of fatigue warning and participant P4 the 

lowest. This also reflects the performance rate of the participants, as this warning can be 

an indication of their concentration.  

0

40

80

120

160

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

8481
93

86

112

53
41

61
50

87

3333363338

1718181819

TIME PERFORMANCE
Se

co
nd

s

ROUTE 1
Motion
Idle ROUTE 2



 

 

 

95 

Table 4.15: Fatigue warning during the navigation experiment. 

 Route 1 Route 2 
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5 

Attempts 1 1 0 1 0 0 3 2 1 1 1 
Attempts 2 2 1 1 0 0 4 2 2 1 1 
Attempts 3 2 1 2 1 1 6 4 2 1 2 

Mean 1.67 0.67 1.33 0.33 0.33 4.33 2.67 1.67 1 1.33 
 

 At the end of the navigational session, the participants were given a set of 

questionnaire (see APPENDIX E) to express their navigational experience in three 

metrics of workload, learnability and confidence as presented in Figure 4.9 for every 

attempt (I. Iturrate et al., 2009). The metrics were measured in scale between 0 to 5 

from the least to the most. The workload metrics denotes the effort to accomplish the 

tasks. All participants agreed that it took a higher workload to complete Route 2 than 

Route 1. Also, all participants verified that the workload decrease over attempts and this 

correlates with the adaptation of the participants to learn. Participant P1 recorded the 

most effort required to operate the wheelchair in both routes. The learnability metrics 

indicates that the participants adapted to control the navigation system based on their 

experience from the previous attempt thus increasing their confidence to perform the 

task. 
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Figure 4.9: The assessment of the participants’ navigational experience. The scale 
of 0–5 (least to the most) was used to express the metrics.  
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4.4 Comparison Study 

 A comparison of similar studies involving HMI for wheelchair navigation is 

presented in Table 4.16. The studies are categorized either BCI, hybrid BCI or other 

HMI. Overall, (B. Rebsamen et al., 2010) recorded the highest classification rate while 

(Cao et al., 2014) recorded the fastest execution time in wheelchair navigation studies. 

However, both studies employed synchronous system, which requires the user to follow 

the system pace. 

 In opposite, asynchronous system received the commands at the user pace 

offering more natural control experience. Utilizing this system, (Parini et al., 2009) 

recorded the highest classification accuracy and the fastest in BCI studies while our 

proposed studies recorded the best performance and the fastest in hybrid BCI studies. 

Compared to all studies, our proposed work is ranked in 4th place for the highest 

accuracy and 2nd place for the fastest execution time. 
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Table 4.16: Comparison between this study and other HMI system used for 
wheelchair navigation. 

Author Input System Feature Classifier Accuracy *Execution 
Time (s) 

BCI       
(B. Rebsamen et al., 
2010) P300 Synchronous Epochs  SVM 99.78% 6 

(Parini et al., 2009) SSVEP Asynchronous CSP LDA 97.5% 2.38 

(I. Iturrate et al., 
2009) P300 Synchronous (Krusienski, Sellers 

et al., 2006) SWLDA 94% 5.40 

(Huang et al., 2012) Imagery Synchronous Power Spectra MLD 84.3% 60.4 

(P. F. Diez et al., 
2011) SSVEP Asynchronous Power Spectra 

Fast Fourier 
Transform 
(FFT) 

81.68% 4.48 

(Kus et al., 2012) Imagery Asynchronous Power Spectra MLD 74.84% 8.81 

       
Hybrid BCI       
       

(Cao et al., 2014) Imagery, 
SSVEP Synchronous CSP RBF-SVM, 

CCA 98.77% 295 bits/min 

Proposed study EEG, EOG 
Artifact Asynchronous Variance, K-Means Fuzzy Logic 97% 0.98 

(85 bits/min) 

(Wang et al., 2014) Imagery, 
P300, EOG Asynchronous CSP SVM 95% 3 

(B. Choi & Jo, 2013) 
Imagery, 
SSVEP, 
P300 

Asynchronous CSP SVM, CCA, 
Bayesian 84.4 – 91% 27.2 

(Thorsten O Zander, 
Matti Gaertner et al., 
2010) 

Imagery, 
EOG Asynchronous SpecCSP  

 LDA 83.3% 5.9 

(Long et al., 2012) Imagery, 
P300 

Asynchronous 
 CSP LDA 83.10% 6 

(Y. Q. Li, Pan et al., 
2013) 

P300, 
SSVEP Asynchronous ERP, Power Spectra SVM, Power 

Ratios 

14.18 true 
positives/

min 
5.28 

       
Other HMI       

(Postelnicu, Girbacia, 
et al., 2012) EOG Asynchronous Maximum Absolute 

Values  Fuzzy Logic 95.63% 2.6 

(Latif et al., 2008) Eye-
Tracking Asynchronous  - 80% - 

*Execution Time = time taken from the command initiated by the user until the execution of the 
wheelchair. 
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4.5 Summary 

 In this chapter, the outcome of experiments carried out during Online and 

Navigation Session is presented. In the Online Session, six methods are evaluated for 

the detection of eyelid position and horizontal gaze. The study of the eyelid position 

detection shows that using variance as feature present the highest overall performance 

with 98%. Also, the fastest processing time recorded during the experimental session is 

approximately 0.42s due to the small window of 128 samples was utilized in windowing 

stage.  

 In the study of the gaze detection, using y K-Means present the highest overall 

performance with 98%. Overall, all of them required approximately less than 0.5s to 

process the data. Same as the eyelid position analysis, a small window frame of 128 

samples was utilized that contributes to faster computational time. For further 

evaluation, both techniques that recorded the highest overall accuracy in Online Session 

are employed as input to fuzzy state transition for navigation system. 

In the Navigation Session, evaluation of the performance for the navigation system 

and individual are presented. The evaluation of the navigation system is categorized into 

overall performance, signal processing and navigation performance. The participants 

took an average of 76 seconds and 167 seconds to navigate Route 1 and 2 respectively. 

The average distances covered by the participants were 18.79m for Route 1 and 26.84m 

for Route 2. All participants agreed that it took a higher workload to complete Route 2 

than Route 1. Also, all participants verified that the workload decrease over attempts 

and this correlates with the adaptation of the subjects to learn. The result shows that all 

the subjects successfully complete all the tasks without collision. This suggests that the 
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proposed strategies are effective. All the metrics evaluation used in this study are 

outlined and explained. 
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CHAPTER 5 

CONCLUSIONS & RECOMMENDATIONS 

 

5.1 Introduction 

 This chapter presents the summary of the work reported in this thesis. 

Contributions made through this work will be highlighted and recommendations to 

improve the work are given. 

5.2 Summary 

 The primary objective of this study to develop a wheelchair navigation system 

using an EEG signal and EOG artifacts related to eyelid position and horizontal eyeball 

movement has been achieved. The system is modeled as a finite state machine whose 

state transition is governed by fuzzy logic. The EOG artifacts obtained from delta 

rhythm at motor cortex are used to infer the gaze direction while the alpha rhythm at 

occipital region is used to imply open or closed eye condition.  

 A sliding window is employed to position important cues in the input signals of 

C3, C4 and O2 at the center of the window. Variance are extracted from the O2 signal 

so that the eye condition can be classified into open, blink and closed eye in real-time. 

The C3 and C4 data are used directly as inputs to two K-means classifiers so that any 

horizontal eyeball movement can be detected and classified as not moving or moving to 
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the left or right. An average accuracy of 98% and an execution time of less than 0.5 

second are registered in the Online Session involving 20 participants. 

 In Navigation Session, five selected participants maneuver the wheelchair along 

two designated routes. Based on the fuzzy state transition, the wheelchair is actuated to 

move FORWARD and BACKWARD in three directions, which are LEFT, RIGHT and 

STRAIGHT. The user can also instruct the wheelchair to STOP when needed. A GUI is 

developed to allow the user to keep track of the states at all time. The participants 

managed to complete the tasks without collisions. This experiment also tested the 

usefulness of the backward movement when the wheelchair was trapped at tight dead 

ends with no space to make u-turn. The high performance of 98% for Route 1 and 96% 

for Route 2 were recorded during the experiment. The results suggest that the proposed 

finite state machine model is effective as a navigation controller for the system. 

5.2.1 Contributions 

 The main contribution of this research work is in the implementation of EEG and 

EOG artifacts in EEG signals as inputs to control a wheelchair. To the best of our 

knowledge, this is the first report that documents the use of EOG traces from channel 

C3 and C4 in the EEG as a control mechanism for asynchronous wheelchair navigation.  

Even though there have been many studies that combine different EEG signals for 

wheelchair navigation, the execution time of these studies have never been less than 2 

seconds. The execution time of the proposed system is only a fraction of the works 

presented in Table 4.16. The extracted features of the delta and alpha rhythm are simple 

enough that a small window of 128 samples is sufficient. This results in a fast execution 

time.   
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 Moreover, the use of a finite state machine to model the process and track the 

gaze direction allows the wheelchair to move FORWARD and BACKWARD in three 

directions from a limited number of distinct horizontal eyeball movements. The system 

is also designed to have an ability to stop as a safety feature.  

 Additionally, the implementation of sliding window contributes to the high 

performance during Online and Navigation Session. The sliding window allows 

important cues to be positioned at the center so that blink, open, closed eye, left and 

right eyeball movements can be detected and recognized. 

 Finally, the use of two simultaneous K-Means for horizontal gaze detection in C3 

and C4 data, and variance feature for eyelid position detection in O2 delivers a more 

consistent result by compensating instability in the signals.  

5.3 Future Work & Recommendation 

 Nevertheless, this system can be further improved to increase its flexibility and 

safety. First, an adaptive fuzzy logic classifier can be used to replace the hard 

thresholding to reposition the sliding window and classify the EEG signal of varying 

strength. Second, dedicated hardware like field-programmable gate array (FPGA) and 

parallel programming can be used to reduce the data acquisition and computational 

time. Third, a shared control can be incorporated to assist the movement of the 

wheelchair in a cluttered and dynamic environment such as when passing through a 

door so that only a minimum number of commands are required from the operator. 

Fourth, the speed of the wheelchair can be varied to improve its efficiency especially 

when going straight. It should be noted that this system has not been tested on patients 

with motor disorder, since it is still in testing and development phase. A test on real 
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patients is important as it provides a true measure of the system capability and ideas to 

improve its operation and user friendliness. 
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APPENDIX A 

CONSENT TO PARTICIPATE IN RESEARCH 
COLLECTING EEG DATA 

 

Please answer the following questions by circling your choice: 

a) Are you currently taking, or have you recently taken, any prescription or over-the-
counter medicine? 

YES NO  

b) Have you ever suffered from epilepsy? 

YES NO  

c) Have you had surgery in which metal items have been placed in your head? 

YES NO 

d) Do you have a heart pacemaker fitted? 

YES NO 

e) Do you smoking? 

YES NO 

f) Do you suffer from nystagmus (fast, uncontrollable movements of the eyes called 
“dancing eyes”)? 

YES NO 

g) Do you suffer from any chronic skin condition (e.g. dermatitis, eczema, psoriasis)? 

YES NO 

h) Have you consumed any alcohol or recreational drug over the last 24 hours? 

YES NO 

i) Do you suffer from any condition impairing blood clotting (e.g. haemophilia)? 

YES NO 
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j) Do you currently have any cuts or abrasions on your head? 

YES NO 

Participant’s declaration 

I give my informed consent to participate in the EEG Recording Session. I am aware 

that my participation is voluntary and that I may withdraw at any time without giving a 

reason. I am well aware of the fact that all information given by me or data recorded 

from me will be handled confidentially. 

Participant signature    ______________________________________ 

Date                             ______________________________________ 

 

Researcher’s declaration 

 

I believe the participant has been completely informed about the EEG recording 

procedure to the level necessary for the giving of informed consent. I have discussed all 

relevant aspects of the procedure with the participant, and answered all questions to 

their satisfaction.  

Researcher signature    ______________________________________ 

Date                             ______________________________________ 

Name                           ______________________________________ 
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APPENDIX B 

2nd ORDER DIFFERENCE PLOT 

 

The second-order difference plot displays the successive rates of variability against each 

other where 𝑥 𝑛 + 1 − 𝑥 𝑛  is plotted on x-axis versus 𝑥 𝑛 + 2 − 𝑥 𝑛 + 1  on y-

axis. Figure B.1 shows the signals of the open eye plotted in second-order difference 

plot at 5 EEG rhythms; delta, theta, alpha, beta and gamma. The distribution of samples 

is spread out with an increase in frequency while smaller and oblongated distribution 

can be found with a decrease in frequency. 

 

Delta (<4Hz) Theta (4-8Hz) Alpha (8-13Hz) 

   
   
Beta (13-30Hz) Gamma (>30Hz)  

  

 

 

Figure B.1: The example of second-order difference plot for five EEG rhythms; 
delta, theta, alpha, beta and gamma during open eye. 



 

 

 

124 

APPENDIX C 

LINEAR DISCRIMINANT ANALYSIS 

 

The global mean (𝜇) is calculated by summing all the data in 𝑋(!,!) and divided by the 

total number of data (𝑛 = 128) from two predetermined groups as in equation (C.1). 

𝜇 =
1
𝑛 𝑋(!,!)!

!

!!!

 (C.1) 

 

Then, group mean (𝜇!) will be calculated from 𝑋 !,!  within the specific group, k: 

 

𝜇! =
1
𝑛!

𝑋 !,! !,!

!!

!!!

 (C.2) 

 

The covariance matrix of the group, 𝑐! , and pooled covariance matrix, 𝐶(𝑟, 𝑠) are 

calculated from mean corrected data (𝑋 !,! !,! − 𝜇) as in equation (C.3) and (C.4). 

 

𝑐! =
𝑋 !,! !,! − 𝜇

!
𝑋 !,! !,! − 𝜇

𝑛!
 (C.3) 

𝐶(𝑟, 𝑠) =
1
𝑛 𝑛! . 𝑐!(𝑟, 𝑠)

!

!!!

 (C.4) 
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The covariance matrix of group 𝑘 was calculated for each row and column of the matrix 

denoted by 𝑟 and 𝑠 respectively. Then, prior probability of group (𝑝!) will calculate as 

total number of data of each group divided by the total number of data: 

 

𝑝! =
𝑛!
𝑛  (C.5) 

 

The prior probability vector in which each row represents the prior probability of group 

𝑘 can be described as follows: 

 

𝑃 =
𝑝!!!
𝑝!

 
(C.6) 

 

Finally, discriminant function  (𝑓!) will assign data to group 𝑘 that has maximum 𝑓!: 

 

𝑓! = 𝜇!𝐶!!(𝑋(!,!)!)! −
1
2 𝜇!𝐶

!!𝜇!! + ln  (𝑝!) (C.7) 

 

LDA will separate two groups linearly with dependable variable is the group, 𝑘 and the 

independent variables are the data, 𝑋 !,! , that might describe the group. 
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APPENDIX D 

K-MEANS 

 

 In the beginning, number of groups will be specified as center of the cluster. Then, 

follow by three steps repeatedly until convergence has been reached; centroid of data, 

distance data to centroids using Euclidean distance and grouping based on minimum 

distance to the group as Figure D.1.  

 

 

Figure D.1: Flow of the K-Means process to determine the group of the data and 
stability is reached once the data stop changing group. 

 The data are represented by 𝑋 and the process of assigning data to the group is 

described as follows. 

STEP 1 : Total number of groups (𝑘) will be assigned as 2 (𝑘 = 2). 

STEP 2 : The centroid (𝐶) will be initialized associated with groups (𝑗).  

STEP 3 : The distance (𝑑) between sample and centroid will be measured using 

START 

Number of 
group 

Centroid of data 

Distance data to 
centroid 

Grouping based on 
minimum distance 

Data 
change 
group? 

END 
NO 

YES 
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Euclidean distance as follow: 

𝑑 = 𝑋! − 𝐶!
!!

!!!
!
!!!    

where, 𝑖 = number of data, 𝑗 = number of groups 

STEP 4  The data will be assigned to the group with the minimum 𝑑 to the 

respective centroid. 

𝑔𝑟𝑜𝑢𝑝!" =
1  𝑖𝑓  𝑗 = 𝑎𝑟𝑔  min

!
𝑋! − 𝐶!

!

0  𝑒𝑙𝑠𝑒
   

 

STEP 5 : A new centroid represented the new member of the group will be 

calculated. 

𝐶! =
!
!!

𝑋!
!!
!!!   

 

where, 𝑚! = number of data assign to group 𝑗 

STEP 3 to STEP 5 will be repeated until convergence has been reached: 

𝑔𝑟𝑜𝑢𝑝!"# = 𝑔𝑟𝑜𝑢𝑝!" !!!   

where, 𝑟 = number of iterations 
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APPENDIX E 

FEEDBACK FORM 

 

1. We are interested in your experience during the Navigation Session. The results of 

this evaluation will be used to improve this study in the future. 

2. Please rate the questions below between 0 to 5 from the least to the most. 

 

Questions 
Attempts 

Route 1 Route 2 
1 2 3 1 2 3 

Workload       
I found the task was difficult.       
I was able to complete the task quickly.       
Learnability       
I thought this system was easy to used.       
I needed a lot of training before get going with the 
system. 

      

Confidence       
I felt very confident using this system.       
I felt comfortable using this system.       
 

Participant signature    ______________________________________ 

Date                             ______________________________________ 
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