Table of Contents

Abstract
Acknowledgements
Contents
List of Figures
Glossary of Terms

1.0 INTRODUCTION

1.1 Introduction
1.2 Thesis objectives
1.3 Thesis structure

2.0 LITERATURE REVIEW

2.1 Introduction
2.2 Dielectrophoresis
 2.2.1 Theory
 2.2.2 Biophysical properties
 2.2.3 Polarisability
2.3 Biological and K562 Cell
2.4 Imaging Techniques in DEP Data Analysis Algorithm
 2.4.1 Histogram Equalization

3.0 METHODOLOGY

3.1 Introduction
3.2 DEP System Design
3.3 Data Acquisition
3.4 Analysis Data Algorithm

4.0 RESULTS AND DISCUSSION

4.1 Introduction
4.2 Positive and Negative DEP of K562 Cells
4.3 Result on Analysis Data

5.0 CONCLUSION

5.1 Conclusion
5.2 Future Recommendation

REFERENCES
APPENDIX A
Glossary of Terms

AC Alternating current
CM Clausius–Mossotti
DEP Dielectrophoresis
DC Direct current
HE Histogram Equalization
K562 Myelogenous leukaemia cell line
KCl Potassium chloride
List of Figures

Figure 2.1 Dielectrophoresis in uniform and non-uniform electric field
Figure 2.2 Dielectrophoretic manipulation
Figure 2.3 Shell model
Figure 2.4 Schematic representation a nucleated cell can progressively be simplified
Figure 2.5 Direction of Particle Movement Depending on DEP Response
Figure 2.6 Schematic diagram of the polarisation
Figure 2.7 Typical shape of the DEP spectrum based on the single shell model
Figure 2.8 Mammalian Cell
Figure 2.9 Plasma Membrane
Figure 3.1 Overview of the system design
Figure 3.2 Example of collection data on images captured for K562 cells
Figure 3.3 Step of data analysis
Figure 4.1 Captured DEP images data
Figure 4.2 Pattern of collected cells with experienced negative DEP
Figure 4.3 Pattern of collected cells with experienced positive DEP
Figure 4.4 Distribution of intensity grey level
Figure 4.5 Intensity of gray level for 2 images captured
Figure 4.6 Step of analysis
Figure 4.7 Segmentation of circular dots
Figure 4.8 Histogram Equalization on segmented dots
Figure 4.9 Relative Polarisabality