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ABSTRACT 

 

Dry reforming of methane has drawn increased attention as it utilizes inexpensive, local 

source of energy; landfill gas, containing considerable amounts of methane and carbon 

dioxide produced by anaerobic decomposition of municipal solid waste. In this study, 

microemulsion synthesis approach was adopted to synthesize Ni-based catalysts 

supported on MgO and CeO2. The investigation on the various synthesis parameters 

effecting Ni metal surface area such as: water-to-surfactant ratio (0.33, 0.5 and 0.66), 

aging time (0.5 to 24 h), calcination temperature (450 to 1000 oC) and Ni metal molar 

concentration (2 M to 7 M) exhibited that favourable parameters for the achievement of 

higher Ni surface area are the low calcination temperature (450 oC), moderate aging time 

(2 h) and lower Ni metal molar concentration (2 M). Furthermore, at constant water-to-

surfactant ratio, an increase in water content leads to the decrease in surface area due to 

the higher micellar exchange rate favouring the growth of larger particles. 20%Ni/MgO 

catalyst exhibited higher methane (49.93 %) and carbon dioxide (54.80 %) conversion 

compared to pure Ni particles (18.72% CH4 and 21.80% CO2 conversion). Further study 

on the influence of calcination temperatures (450 oC, 600 oC and 800 oC) over 

20%Ni/MgO catalysts indicated that the increase of calcination temperature (from 450 to 

800 oC) leads to the decrease in surface area from 153.22 m2/g to 34.72 m2/g and also 

exhibits lower stability compared to the catalyst calcined at lower calcination temperature 

(450 oC). However, when the influence of calcination temperatures (450 oC, 600 oC and 

800 oC) on the NiO-MgO solid solution formation was investigated with different Ni 

metal content (20, 40 and 80 wt%), it was observed that 80%Ni/MgO catalyst calcined at 

higher temperature (800 oC) exhibited better catalytic activity and stability at a very high 

weight hourly space velocity (WHSV = 1.68 x 105 ml h-1 g-1). This was attributed to the 

presence of higher Nio active sites due to higher Ni content and formation of strong NiO-

MgO solid solution. The application of higher reduction temperature (800 oC) to 
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80%Ni/MgO exhibited severe deactivation compared to the catalyst reduced at lower 

temperature (550 oC). This was attributed to the fact that the catalyst reduced at lower 

temperature was less prone to sintering. Core-shell like structures (Ni@CeO2) were 

synthesized at different Ni content (20% Ni, 40% Ni, and 80%Ni) and investigated at 

reaction temperature of 800 oC and WHSV of 1.2 x 105 ml h-1 g-1. 40% Ni@CeO2 

exhibited higher catalytic activity and better stability compared to 20% Ni@CeO2 and 

80% Ni@CeO2. This leads to the conclusion that proper balance between Ni active sites 

and CeO2 content played a critical role in the achievement of higher stability and in the 

suppression of carbon deposition. Fresh and spent catalysts were characterized by BET, 

XRD, TPR-H2, TPD-CO2, FESEM and TEM. 
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ABSTRAK 

 

Pembaharuan kering metana telah mendapat perhatian berikutan kos yang diperlukan 

adalah rendah dan penggunaan sumber tenaga tempatan iaitu; gas di tapak pelupusan 

sampah, yang mengandungi sejumlah besar metana dan karbon dioksida yang terhasil 

daripada sisa pepejal perbandaran melalui penguraian secara anaerobik. Dalam kajian ini, 

pendekatan sintesis mikroemulsi telah digunakan untuk mensintesis pemangkin 

berasaskan Ni yang disokong pada MgO dan CeO2. Penyiasatan terhadap kepelbagaian 

parameter sintesis yang mempengaruhi permukaan logam Ni adalah seperti: nisbah air 

kepada surfaktan (0.33, 0.5 dan 0.66), masa penuaan (0.5-24 jam), suhu pengkalsinan 

(450-1000 oC) dan kepekatan larutan molar logam Ni (2 M hingga 7 M) telah 

menunjukkan bahawa parameter yang sesuai untuk pencapaian kawasan permukaan Ni 

yang lebih tinggi adalah pada suhu pengkalsinan yang rendah (450 oC), masa penuaan 

yang sederhana (2 j) dan kepekatan larutan molar logam Ni yang rendah (2 M). Tambahan 

pula, pada nisbah air kepada surfaktan yang malar, peningkatan dalam kandungan air 

menyasarkan kepada penurunan kawasan permukaan disebabkan oleh kadar pertukaran 

miceller yang lebih tinggi berpihak kepada pertumbuhan zarah yang lebih besar. 

Pemangkin 20% Ni/MgO telah menghasilkan penukaran metana (49.93%) dan karbon 

dioksida (54.80%) yang lebih tinggi berbanding zarah Ni tulen (penukaran 18.72% CH4 

dan 21.80% CO2). Kajian lanjut terhadap pengaruh suhu pengkalsinan (450 oC, 600 oC 

dan 800 oC) pada pemangkin 20% Ni/MgO telah menunjukkan bahawa peningkatan suhu 

pengkalsinan (daripada 450 kepada 800 oC) membawa kepada penurunan kawasan 

permukaan daripada 153.22 m2/g kepada 34.72 m2/g dan menyebabkan kestabilan yang 

lebih rendah berbanding pemangkin yang telah dikalsin pada suhu pengkalsinan yang 

lebih rendah (450 oC).  Walau bagaimanapun, apabila pengaruh suhu pengkalsinan (450 

oC, 600 oC dan 800 oC) pada pembentukan larutan pepejal NiO-MgO dikaji pada 
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perbezaan kandungan logam Ni (20, 40 dan 80% wt%), hasil kajian menunjukkan bahawa 

pemangkin 80% Ni/MgO yang telah dikalsin pada suhu yang lebih tinggi (800 oC) 

mempamerkan aktiviti pemangkinan yang lebih baik dan kestabilan yang tinggi pada 

berat setiap jam pada ruang halaju (WHSV = 1.68 x 105 ml h-1 g-1). Hal ini disebabkan 

oleh kehadiran tapak aktif Nio  yang lebih tinggi pada kandungan Ni yang lebih tinggi dan 

pembentukan larutan pepejal NiO-MgO yang kuat. Penggunaan suhu reduksi yang lebih 

tinggi (800 oC) pada pemangkin 80% Ni/MgO mempamerkan penyahaktifan yang serius 

berbanding pemangkin yang direduksi pada suhu yang lebih rendah (550 oC). Ini 

disebabkan oleh fakta bahawa pemangkin yang direduksi pada suhu yang lebih rendah 

adalah kurang terdedah kepada proses pensinteran. Struktur seperti kelompang teras 

(Ni@CeO2) telah disintesis pada kandungan Ni yang berbeza (20% Ni@CeO2, 40% 

Ni@CeO2, 80% Ni@CeO2) dan telah dikaji  pada suhu tindak balas iaitu 800 oC dan pada 

WHSV iaitu 1.2 x 105 ml h-1 g-1. 40% Ni@CeO2  menunjukkan aktiviti pemangkinan 

yang lebih tinggi dan lebih stabil berbanding dengan 20% Ni@CeO2 dan 80% Ni@CeO2. 

Ini membawa kepada kesimpulan bahawa gabungan keseimbangan yang sesuai antara 

tapak aktif Ni dan kandungan CeO2 memainkan peranan yang penting dalam mencapai 

kestabilan yang lebih tinggi dan dalam penyingkiran pemendapan karbon. Pemangkin 

baru dan yang telah digunakan telah dianalisis menggunakan BET, XRD, TPR-H2, TPD-

CO2, FESEM dan TEM. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Research background 

Malaysia has a total land area of 328,550 km2 and a population of approximately 

27 million. The increase in population, industrialization and urbanization has led to the 

increase in municipal solid waste (MSW) considerably during the years. An increase of 

2.4 million tons was reported in 2010 (8 Million ton) from the previously recorded 5.6 

million tons in 1997 and it was estimated that it will increase to 9 million tons of MSW 

in 2020 (Noor et al., 2013). The analysis of the Malaysian MSW composition indicates 

that it contained huge amount (37.43%) of biodegradable components (food waste and 

paper), which creates a favourable environment for the generation of biogas or landfill 

gas (Johari et al., 2012). 

Anaerobic decomposition of organic content in MSW leads to the generation of 

landfill gas consisting of methane (50-55%) and carbon dioxide (40-45%) (Johari et al., 

2012). Methane and carbon dioxide constitute a major part of greenhouse gases (GHG) 

and are considered to have the key contribution in climate-change. In this present 

scenario, methane and carbon dioxide (GHG) produced by the decomposition of MSW 

can be utilized in a process known as dry reforming of methane (equation 1.1).  

CH4 + CO2 → 2H2 + 2CO  ∆H298K
o  = 247 kJ/mol              (1.1) 

Dry reforming of methane leads to the generation of synthesis gas (H2/CO), which 

is a major building block for many hydrocarbons, liquid fuels and oxygenated chemicals. 

Moreover, hydrogen (H2) can separated from syn-gas and utilized in the fuel cells to 

produce energy (Usman et al., 2015). The major challenge in the industrial application of 

this environmentally beneficial reaction is the occurrence of coke formation by routes of 

Boudouard reaction or methane decomposition (Al–Fatish et al., 2009; Guczi et al., 2010; 

Long Xu et al., 2014; M. Yu et al., 2014). 
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Dry reforming of methane has been investigated with noble (Rh, Ru, Pd and Pt) 

and non-noble metal (Ni, Co and Fe) catalysts (Y. J. Asencios et al., 2011; D. Liu, Quek, 

et al., 2009). Noble metal catalysts have drawn attention for their superior coking 

resistance, higher stability and activity especially for higher temperature applications (> 

750 oC) (Djinović et al., 2011). However, noble metals with their superior carbon 

deposition resistance cannot be applied at the industrial scale due to their high-cost 

(Crisafulli et al., 2002).In this scenario, non-noble metal (Ni, Co, Fe) catalysts become a 

suitable alternative for industrial application due to low cost, however, these catalysts are 

more prone to carbon deposition due to the higher affinity of carbon to catalyst surface 

(Y. J. O. Asencios & Assaf, 2013; Helveg et al., 2011; D. Liu, Quek, et al., 2009). 

 Therefore, number of studies were conducted to optimize the process and also to 

search for new catalysts with improved catalyst performance in order to eliminate or 

attenuate carbon deposition. The research is mainly focused on the nature of support, 

preparation methods, conditions of pretreatment and also the application of different 

promoters in the catalyst to have better catalytic activities with lower carbon deposition 

(Castro Luna & Iriarte, 2008; Zhu et al., 2012). The literature suggests that the structure 

and surface properties of the support play an important role in the enhancement of 

catalytic activity (Santos et al., 2005). Previous study suggested that the issue of carbon 

deposition can be tackled by the application of basic metal oxides (MgO,  CaO, and BaO) 

as support materials, because the application of acidic supports (Al2O3) (Tsipouriari et 

al., 1996) favor the occurrence of carbon deposition (Hu & Ruckenstein, 2002).  

The basic nature of MgO employed for dry reforming assisted in the gasification 

of carbon species by enhancing CO2 chemisorption due to its acidic nature, which resulted 

in the suppression of carbon deposition without adding extra cost (Hu & Ruckenstein, 

2002; Lucrédio et al., 2011; Özdemir, Öksüzömer, & Ali Gürkaynak, 2010; Zanganeh et 

al., 2013). Moreover, MgO has been considered a suitable support material due to its low 
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cost, high stability and high basicity (Hu & Ruckenstein, 2002). Among all these basic 

metal oxides (MgO, CaO, and BaO), only MgO has the same lattice parameters as NiO, 

therefore, both of these metal oxides will form solid solution at any molar ratio, however, 

the formation of solid solution strongly depends on the calcination temperature, 

preparation history and weight percentage of Ni. The formation of NiO-MgO solid 

solution has a considerable influence over the size control and on the formation of Nio 

particles (Hu & Ruckenstein, 2002; Y. Li et al., 2014).  

Furthermore, bifunctionality of ceria (CeO2) was reported for metal 

nanocrystalline doped CeZrO2 oxides (Bobin et al., 2013). The study suggested that the 

dissociation of CO2 occur on reduce oxide support and methane activation occurs on 

metal active sites. The main attraction in the application of ceria as support material is its 

higher oxygen storage capacity, which assists in the oxidation of coke (Abasaeed et al., 

2015; A Kambolis et al., 2010). The unique redox properties of CeO2 imparted by quick 

reduction creates oxygen vacancies on CeO2 metal oxide, which provides additional 

driving force for conversion of CO2 to CO under reducing atmosphere (Ay & Üner, 2015; 

de Leitenburg et al., 1997). The basic nature of CeO2 will assist in the enhancement of 

CO2 adsorption, thus CO2 can be reduced easily due to the oxygen vacancies on CeO2 

support (Tada et al., 2012). Previous studies suggested that the following reactions are 

possible between reactants and support as described in equation 1.2 (Abasaeed et al., 

2015; Khajenoori et al., 2014; M. Rezaei et al., 2009) 

Ce2O3 + CO2 → 2CeO2 + CO   (1.2) 

Moreover, the coke formed via the route of methane decomposition can be oxidize 

by CeO2 as it provides lattice oxygen during the reforming reaction described below in 

equation 1.3 (Khajenoori et al., 2014): 

2CeO2 + C → Ce2O3 + CO   (1.3) 
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Thus, it would be interesting to develop Ni-based catalysts encapsulated in a non-

silica metal oxide such as CeO2 to exhibit bifunctional mechanism, as previous studies 

were mostly on the synthesis of Ni nanoparticles encapsulation in SiO2 having 

monofunctional mechanism (both methane and carbon dioxide activated by metal alone) 

(Theofanidis et al., 2015). Another important feature of CeO2 is its high stability, low cost 

and its ability to provide active oxygen due to its unique electronic configuration (S. Song 

et al., 2015). However, the role and behavior of widely discussed NiO-MgO solid solution 

and also the synthesis of Ni@CeO2 catalyst is not yet investigated for the catalyst 

prepared by microemulsion synthesis approach.  

Water-in-oil (W/O) microemulsion is considered as a system in which nanosize 

water droplets (dispersed phase) are present in continuous phase (oil) and stabilized by 

surfactant molecules. Transparent nature and thermodynamic stability are salient features 

of microemulsion system, a microenvironment is created by this unique type of surfactant 

covered water droplets, which inhibit the agglomeration of synthesized nanoparticles (D.-

H. Chen & Wu, 2000; Eriksson et al., 2004). The advantages of microemulsion synthesis 

approach over precipitation method, sol-gel process, hydrothermal method are its superior 

control over the morphology of the nanoparticles (Chandradass & Bae, 2008; Shiraz et 

al., 2016) and also the synthesis of nanoparticles at room temperature is a very attractive 

feature of this approach (Eriksson et al., 2004). Furthermore, the application of 

precipitation method for the synthesis of metal oxides suffer from its complexity and also 

requires longer aging time, sol-gel process uses metal alkoxides as raw materials, which 

are expensive and also demands long gelation time, while, hydrothermal method requires 

high temperature and pressure (Chandradass & Bae, 2008). 

To the best of my knowledge, none of the previous studies reported the 

preparation of Ni/MgO and Ni@CeO2 catalyst by microemulsion system (water/ 

IgepalCO-520/cyclohexane) and specifically applied for dry reforming of methane. The 
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main purpose of this study is to investigate Ni-based catalysts supported on basic metal 

oxide (MgO) and oxygen storage capacity metal oxide (CeO2) for dry reforming reaction 

synthesized by microemulsion synthesis approach. Therefore, in this study, we will 

investigate in detail the influence of water/surfactant ratio, aging time, calcination 

temperature and Ni metal concentration on the preparation of pure NiO nanoparticles by 

microemulsion synthesis approach. Thereafter, the study focuses on the synthesis of 

Ni/MgO and Ni@CeO2 catalysts in the non-anionic W/O microemulsion system of 

water/IgepalCO-520/cyclohexane at different Ni metal content, calcination temperature 

and reduction temperature. 

 

1.2 Scope of work 

 Dry reforming of methane has been considered a suitable option for the utilization 

of landfill gas. However, the catalytic activity of dry reforming of methane is hampered 

by the catalytic deactivation raised from the coke deposition. In this study, Ni-based 

catalysts supported on MgO and CeO2 are synthesized by water-in-oil microemulsion 

approach and applied to dry reforming of methane. The activity of catalysts with respect 

to temperature were investigated in the range of 550 to 850 oC. The long-term stability of 

catalysts was also investigated at three different temperatures (750, 800 and 850 oC). In 

this study, fresh and spent catalysts were characterized by various characterization 

techniques and also the influence of different Ni metal content on activity was also 

investigated. Furthermore, the influence of water/surfactant ratio, aging time, calcination 

temperature, Ni metal concentration was investigated to optimize Ni metal surface area.  

 

1.3 Aim of study 

Synthesis of Ni-based catalysts supported on MgO and CeO2 by microemulsion 

synthesis approach with the aim of attenuating carbon deposition.  
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1.4 Research objectives 

The objectives of this project are to first optimize the synthesis parameters for the 

preparation of Ni nanoparticles and later on the preparation of Ni/MgO and Ni@CeO2 

catalysts. The major objectives of this project are listed down:  

❖ To synthesize pure Ni nanoparticles by microemulsion synthesis approach at 

different composition of microemulsion system (water, oil and surfactant), aging 

time (0.5 to 24 h), calcination temperature (450 to 1000 oC) and Ni metal molar 

concertation (2M, 3M, 5M and 7M). 

❖ To synthesize Ni/MgO catalyst at different weight percentage of Ni (20%, 40%, 

and 80 wt%), and investigate the influence of calcination temperature (450 oC, 

600 oC and 800 oC) and reduction temperature (550 oC and 800 oC) on catalyst 

structure and also characterization of fresh Ni/MgO catalyst by various 

techniques.  

❖ To investigate the synthesis of Ni@CeO2 catalyst at different weight percentage 

of Ni content (20%, 40%, and 80 wt%) and their characterization studies by 

various techniques.  

❖ Inspecting the catalyst performance of pure Ni, Ni/MgO and Ni@CeO2 catalysts 

at different reaction temperatures (550 oC to 850 oC) and also investigating the 

catalyst stability in the temperature range of 750 oC to 850 oC.  

 

1.5 Organization of the thesis 

 

1. Introduction introduces the current status of municipal solid waste (MSW), 

methane and carbon dioxide emissions and the application of dry reforming 

of methane to utilize these gases. This chapter also briefly discusses the 

microemuslion synthesis approach and also the application of basic metal 
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oxides as support materials. Moreover, research objectives, scope of work and 

aim of study are also described in this chapter. 

 

2. Literature review This chapter reviews and summarizes the landfill sites, 

MSW generation, estimated methane emission, significance of dry reforming 

of methane and also describes the microemulsion synthesis approach in 

details. Furthermore, reaction chemistry, types of deposited carbon, design of 

catalysts and influence of different parameters on catalytic activity were 

discussed.  

 

3. Materials and methods list down all the reagents, solvents and gases used 

during the catalyst preparation and catalytic activity experiments. Moreover, 

details of the characterization techniques employed, procedure and equipment 

being used are discussed in detail.  

 

4. Results and discussion This chapter represents all the characterization results 

regarding the synthesis of Ni nanoparticles and also the supported catalysts. 

Furthermore, catalytic activity and stability of the synthesized catalysts are 

discussed in detail along with the description of the deposited carbon. 

 

5.  Conclusions and recommendations for future work This chapter includes 

conclusion and future recommendations based on the findings during the 

study. 
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1.6 Summary 

This study focuses on the utilization of two major greenhouse gases (methane and 

carbon dioxide) produced by the anaerobic decomposition of MSW in the landfill sites. 

The utilization of landfill gas via dry reforming of methane attains a great attention of 

researchers as it has the potential to utilize these gases to produce valuable syn-gas 

(H2/CO). The preparation of Ni/MgO and Ni@CeO2 catalysts via microemulsion 

synthesis approach will also enhance the understanding of the structural behaviour of 

these catalysts at different synthesis parameters.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Municipal solid waste and landfill gas 

 Rapid population growth has resulted in the increased rate of waste generation 

and improper handling of waste created environmental issues. Municipal solid waste 

(MSW) has been a major challenge for Malaysia (Saeed et al., 2009) with an enormous 

increasing rate of 0.5-0.8 to 1.7 kg/person/day and generated around 17,000 tonnes per 

day of MSW in 2002 (6.2 million tonnes/year) (Hussain et al., 2006; Manaf et al., 2009). 

Bases on the previous data available between 1998 and 2000, it was estimated that in 

2010, 2015 and 2020 peninsular Malaysia will generate around 8,196,000 tonnes, 

9,111,000 and 9,820,000 tonnes, respectively. Figure 2.1 shows the detailed trend of 

estimated MSW generation until 2020 based on average generation rate of 2.14% 

recorded between 1998 and 2000. (Johari et al., 2012).  

 

 

Figure 2.1: Municipal solid waste generation in Malaysia 
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The interesting feature of Malaysian MSW is the higher organic content (37.43%) 

present in the MSW as shown in Figure 2.2, which is deemed suitable for anaerobic 

digestion (Abd Kadir et al., 2013; Johari et al., 2012; Kathirvale et al., 2004; Noor et al., 

2013).  

 

Figure 2.2: Composition of Malaysian municipal solid waste. 

 

Disposal of MSW in the landfill sites leads to the generation of landfill gas 

(methane and carbon dioxide) by anaerobic degradation of the organic content in the 

waste as shown in equation 2.1 (Abushammala et al., 2011).  

C6H10O4 + 1.5H2O → 3.25CH4 + 2.75CO2  (2.1) 

 Landfill gas consists of 40-45% methane and 55-60% carbon dioxide by volume 

(Raco et al., 2010), while some predicted 50-60% and 30-40% by volume of methane and 

carbon dioxide, respectively (Wang-Yao et al., 2006). The methane emission based on 

MSW landfill in peninsular Malaysia was calculated by using the Intergovernmental 

Panel on Climate Change (IPCC) methodology. MSW generation as expressed in Figure 

2.1 were used to estimate the methane emission for the respective years. Furthermore, to 

calculate the equivalent CO2 emissions, methane emission was multiplied by 21 as the 

methane has 21 times more global warming potential than CO2 (Shin et al., 2005). For 
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example, in 2010, 8,196,000 tonnes of MSW generated will produce around 310,220 

tonnes per year of methane emission with equivalent CO2 emission of 6514.2 tonnes per 

year. Both methane and carbon dioxide emissions for respective years are shown in Figure 

2.3 (Johari et al., 2012).  

 

Figure 2.3:  Estimated methane and carbon dioxide emissions (thousand tonnes/year) 

by MSW. 

 

Methane and carbon dioxide constitute a major part of GHG and have key 

contributions in climate-change (Noor et al., 2013), forecasted in terms of greater 

incidence and magnitude of hurricanes, floods, and droughts (McCarthy et al., 2001), 

affecting productivity, natural ecosystems, agriculture, rangelands, forestry and society 

(Montagnini & Nair, 2004; Parry, 2007). An increase of 0.8 oC in global surface 

temperature occurred in the 20th century and further increase (1.4-5.8 oC) has been 

anticipated in twenty-first century (McCarthy et al., 2001; Parry, 2007).  

There are different opinions to utilize this valuable local source of renewable 

energy and one of them is the energy production by incineration of MSW, despite of its 

advantages it is not yet to be considered as a carbon neutral process. It is estimated that 1 

ton of MSW incineration leads to the generation of 1 ton of CO2 (Abd Kadir et al., 2013), 

moreover; the higher moisture content in the Malaysian MSW leads to the disruption of 

the incineration operation and requires additional costs to pretreat the feedstock to remove 

moisture. Furthermore, the higher CO2 content in landfill gas limits its use for energy 
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generation as it decreases the heating value and flame stability of the gas mixture. Due to 

the aforementioned issues, the combustion of landfill gas in an engine, turbine or boiler 

leads to the increase in concentrations of CO, NOx and unburned hydrocarbons compared 

to pure CH4 or natural gas (Kohn et al., 2011). Another option is to separate CO2 from 

landfill gas stream to produce pure CH4 and use it as a natural gas replacement or further 

process it to compressed natural gas (CNG) or liquefied natural gas (LNG), which can be 

used as a transportation fuel. The separation of CO2 is executed by membrane separation, 

pressure swing absorption (PSA) or amine scrubbing. To obtain CNG and LNG, methane 

is then compressed to 3000 Psi to produce CNG and then cooled further until methane 

liquefies to produce LNG. However, the process is expensive due to the higher 

compression and cryogenic temperature requirements and only economical feasible for 

the higher CH4/CO2 flows (Tchobanoglous et al., 1993). Therefore, for these reasons 

landfill gas is often burned or flared on site and leads to the emissions of CO2 and H2O 

without utilizing the latent chemical energy of landfill gas. Landfill gas is a significant 

source of renewable energy to be utilized, and the development and commercialization of 

a reforming technology would serve to vastly improve the efficiency of landfill gas 

utilization. Therefore, it will beneficial to utilize these problematic GHGs (CH4 and CO2) 

in an efficient manner to attenuate their effects and also combat with the issues of energy 

shortage. In this scenario, catalytic reforming of landfill gas is an attractive option that 

has the potential of fully utilizing the latent chemical energy in the landfill gas. 

 

2.2 Dry reforming of methane 

Various technologies are available to produce synthesis gas (syn-gas) from the 

sources having high content of methane (D. Li et al., 2011), as syn-gas is a building block 

for valuable liquid fuels and chemicals such as Fischer-Tropsch oil, methanol and 

dimethyl ether (Lunsford, 2000; Pena et al., 1996; Rostrup-Nielsen, 1993). The three 
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processes that draw industrial attention are steam reforming of methane (equation 2.2), 

partial oxidation of methane with oxygen or air (equation 2.3) and dry reforming of 

methane with carbon dioxide (equation 2.4) (Y. J. O. Asencios & Assaf, 2013). 

 

CH4 + H2O → CO + 3H2              ∆H298K
o = 225.4 kJ mol⁄  (2.2) 

CH4 + 1 2⁄ O2 → CO + 2H2          ∆H298K
o = −22.6 kJ mol⁄  (2.3) 

 CH4 + CO2 → 2H2 + 2CO  ∆H298K
o  = 247 kJ/mol  (2.4) 

 

Reforming of methane through steam or partial oxidation of methane with oxygen 

or air are well-established technologies with the advantages and disadvantages (Djinović, 

Osojnik Črnivec, et al., 2012; Wilhelm et al., 2001). Steam reforming of methane 

produces a higher ratio of syn-gas (H2/CO = 3) (Gangadharan et al., 2012) compared to 

that required for Fischer-Tropsch or methanol synthesis (H2/CO = 2) (Olah et al., 2012; 

Oyama et al., 2012). The process is energy intensive due to the endothermic nature and 

requires high investments of capital (Nieva et al., 2014). A higher H2O/CH4 ratio is 

required to produce higher yields of hydrogen, which makes steam reforming of methane 

energetically unfavourable leading to the deactivation of the catalyst (Carvalho et al., 

2009). Moreover, steam reforming faces corrosion issues and requires a desulphurization 

unit (Djinović, Osojnik Črnivec, et al., 2012; Wilhelm et al., 2001). Partial oxidation of 

methane is suitable for the production of heavier hydrocarbons and naphtha (Djinović, 

Osojnik Črnivec, et al., 2012; Larimi & Alavi, 2012). The advantages of this process are 

high conversion rates, high selectivity and very short residence time (Eli Ruckenstein & 

Hang Hu, 1999). The exothermic nature of reaction induces hot spots on catalyst arising 

from poor heat removal rate and makes operation difficult to control (Y. J. O. Asencios 

& Assaf, 2013; Wilhelm et al., 2001). Desulphurization unit is not required in the partial 

oxidation of methane (Wilhelm et al., 2001), but a cryogenic unit is necessary for the 

separation of oxygen from air (Djinović, Osojnik Črnivec, et al., 2012). 
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The utilization of landfill gas in dry reforming of methane will result in the 

efficient utilization of the energy content of methane trapped inside organic matter and 

efficient management of MSW resulting in reduced greenhouse emission. Dry reforming 

of methane offers valuable environmental benefits such as: landfill gas utilization (Kohn 

et al., 2014; Lucredio et al., 2012), removal of GHG (methane and carbon dioxide) and 

conversion of NG with a high carbon dioxide content to valuable syn-gas (M. C. J. 

Bradford & Vannice, 1999; Lunsford, 2000). Simplified block diagram for the dry 

reforming process is shown in Figure 2.4. Dry reforming of methane yielded a lower syn-

gas ratio (H2/CO = 1), which is suitable for the synthesis of oxygenated chemicals 

(Wurzel et al., 2000) and hydrocarbons from Fischer-Tropsch synthesis (Oyama et al., 

2012). Syn-gas from dry reforming has also been considered for storage of solar or 

nuclear energy (Chubb, 1980; Fraenkel et al., 1986; Levy et al., 1992) through the 

chemical energy transmission system (CETS). Solar energy can convert feed gases 

(methane and carbon dioxide) to syn-gas that can be exported to places where energy 

sources are scarce. The energy stored in syn-gas is liberated by the backward reaction and 

utilized as an energy source (Fraenkel et al., 1986).  

 

 

Figure 2.4: Simplified block diagram for dry reforming of methane. 
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2.3 Reaction chemistry and carbon deposition  

The major obstacle in the industrial application of this environmentally beneficial 

reaction is the occurrence of coke formation by routes of methane decomposition 

(equation 2.5) and Boudouard reaction (equation 2.6) (Al–Fatish et al., 2009; Guczi et al., 

2010; Long Xu et al., 2014). Moreover, it has been suggested that dry reforming of 

methane has more tendency to form carbon deposits due to the absence of H2O and lower 

H/C ratio in the reactant feed (D. Liu, Lau, et al., 2009).  

CH4     →   C+2H2                  ∆H298K
o  = 75.0 kJ/mol  (2.5) 

2CO →   CO2 + C   ∆H298K
o  = -172.0 kJ/mol (2.6) 

 

The tendency towards carbon deposition can be estimated by the ratio of O/C and 

H/C in the feed gas. The higher tendency towards carbon deposition will be observed in 

lower O/C and H/C ratio (D. Li et al., 2011), which is the case in dry reforming of methane 

(CH4/CO2 = 1/1) having O/C = 1 and H/C = 2. Reverse case was observed for steam 

reforming of methane (CH4/H2O = 1/1) having high O/C = 1 and H/C = 6 (Pena et al., 

1996). Similarly, partial oxidation of methane (CH4/0.5O2) showed a quite higher ratio, 

O/C = 1 and H/C = 4. Considering the aforementioned ratios, it was clear that dry 

reforming of methane has a higher tendency towards carbon deposition compared to 

steam reforming and partial oxidation of methane (J. Edwards & A. Maitra, 1995). The 

production of syn-gas from dry reforming of methane is influenced by the simultaneous 

occurrence of reverse water gas shift (RWGS) reaction (equation 2.7) resulting in a syn-

gas ratio less than unity (M. C. J. Bradford & Vannice, 1999). 

CO2 +  H2  →  CO + H2O                  ∆H298𝐾
𝑜 =  41.0 kJ mol⁄   (2.7) 

Moreover, it has been suggested that deposited coke may have different structure 

order, morphologies and reactivity depending upon the reaction conditions and catalyst 

structure (Guo et al., 2007). It is suggested that the reforming of hydrocarbon on Ni 

catalysts leads to the production of filamentous carbon and encapsulating carbon species. 
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In terms of degree of toxicity, the former is considered to be the less toxic form the point 

of view of deactivation process (D. Chen et al., 2001; Frusteri et al., 2002; Tsang et al., 

1995). Encapsulating (shell-like) carbon causes the deactivation of the catalysts by 

decreasing the total number of active sites. The challenge lies in the synthesis of highly 

stable nanoparticles to prevent from rapid sintering and also the minimization of the coke 

formation or produce active type of carbon that does have little effect on catalyst stability 

and have little toxicity.  

Thermodynamic studies on dry reforming reaction revealed that spontaneous 

reaction cannot be achieved below 640 oC (Tsang et al., 1995) and the side reactions 

(equation 2.5) and (equation 2.6) took place at a significant rate between 633 and 700 oC. 

Therefore, a higher temperature (T > 700 oC) was employed to minimize the effect of side 

reactions, which lead to reactor blockages and reduction in activity (San José-Alonso et 

al., 2013; J. Zhang et al., 2007). Another study reported little higher temperature than the 

previously mentioned (Djinović, Osojnik Črnivec, et al., 2012). They proposed that to 

minimize the effect of RWGS (equation 2.7) and increase H2 yield, a higher temperature 

(> 750 oC) or a higher ratio of CH4/CO2 (> 1) should be used (Djinović, Osojnik Črnivec, 

et al., 2012). However, a higher ratio of CH4/CO2 created operational complexities such 

as an increased amount of carbon deposition (M. C. J. Bradford & Vannice, 1999), and 

the need for a separation system downstream to collect and recycle the surplus methane 

(Djinović, Osojnik Črnivec, et al., 2012). The reforming of methane at 1 atm and 

CO2/CH4 = 1 (Figure 2.5a) assumed that reacting mixture was in equilibrium regarding 

the reactions from equation 2.5 to equation 2.7. The formation of water (< 900 oC) from 

the reaction (equation 2.7) resulted in lower H2 yield compared with CO, while at 900 oC, 

methane conversion reached 97% and production of water becomes negligible after 900 

oC (Fraenkel et al., 1986). The temperature limits for carbon deposition were also 

investigated (Figure 2.5b) with respect to pressure (0.6, 1, 10 atm) and feed gas ratios 
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(CO2/CH4) (Gadalla & Bower, 1988). When the reforming reaction was performed at 1 

atm and CO2/CH4 = 1, carbon deposition was unavoidable at temperatures lower than 870 

oC. The rise of pressure from 1 atm to 10 atm lead to the increased carbon deposition limit 

from 870 oC to 1030 oC, which confirmed that for the same feed ratio, an increase in 

pressure will increase the temperature limit for carbon deposition. Moreover, decreasing 

CO2/CH4 ratios at a constant pressure also increased the temperature limit for carbon 

deposition (Figure 2.5b) (Gadalla & Bower, 1988). 

 

   

Figure 2.5: (a) Equilibrium gas composition of CO2/CH4 (1:1) and 1 atm (Fraenkel 

et al., 1986); (b) Effect of CO2/CH4 feed ratio on carbon deposition limit temperature at 

various pressures (Gadalla & Bower, 1988). 

 

 Different types of carbon were produced during the dry reforming of methane. 

Ni/Al2O3 exhibited three types of carbonaceous species denoted as α-C, β-C, and γ-C. It 

was suggested that α-C assisted in the formation of CO, while less active carbon types (β-

C and γ-C) leads to the deactivation of the catalyst (Z. L. Zhang & Verykios, 1994). 

Temperature programmed hydrogenation (TPH) of Ni/MgO (Figure 2.6) exhibited two 

peaks: first peak in the range of 300 to 310 oC was labelled as α-C, while the second peak 

at slightly higher temperature (580 to 600 oC) was denoted as β-C, which exhibited less 

reactivity towards hydrogenation and oxidation than α-C. It was concluded that different 

types of carbonaceous species played different roles in the dry reforming of methane. β-

C being less reactive was referred to as a major contributor in the deactivation of the 
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catalyst. However, α-C was increased with the proceeding of dry reforming reaction. This 

linear relation leads to the conclusion that α-C may serve as reaction intermediate (Y.-G. 

Chen et al., 1997). 

 

Figure 2.6: TPH profiles for 3 mol% Ni/MgO catalyst at different contact times (2 

min, 30 min and 60 min) (Y.-G. Chen et al., 1997). 

 

 

2.4  Design of catalyst 

2.4.1 Setting goals for catalyst design 

In order to prepare a suitable catalyst for dry reforming of methane an effective 

strategy for design of catalyst was proposed (Dowden et al., 1968). The major 

components of that strategy which should be followed are mentioned in Figure 2.7. The 

key points in the catalyst design are (1) to identify the desired catalyst functions; (2) 

suitable catalyst composition; and 3) the selection of active metal and support. In the 

following section, the key reactions in the dry reforming of methane were presented and 

also the influence of different active metal and support materials will be discussed in 

detail. 
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Figure 2.7: Strategy of catalyst design (Dowden et al., 1968) 

 

2.4.2 Target reaction 

The basic reaction in the dry reforming of methane to produce syn-gas (H2/CO = 

1) is shown in equation 2.8  

CH4 + CO2 → 2H2 + 2CO  ∆H298K
o  = 247 kJ/mol         (2.8) 

Previous studies indicate that favourable temperature for the occurrence of dry 

reforming reaction is around 750 oC to decrease the influence of side reaction, which leads 

to the lower syn-gas ratio (Djinović, Osojnik Črnivec, et al., 2012). Therefore, reactions 

involved in dry reforming of methane were studied at 750 oC because this is most 

commonly studied temperature found in the literature (M. C. J. Bradford & Vannice, 

1999). The reaction will be taken under consideration in this study are the one, which can 

proceed spontaneously using simple thermodynamic principle, i.e., reaction with negative 

Gibbs free energy change.  
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2.4.3 Stoichiometric analysis 

 Based on stoichiometry, the reaction which are possible to occur are: i) primary 

reactant reactions, ii) reactant self-interactions, iii) reactant cross-interactions, and iv) 

reactant-product reactions and v) product-product reactions (Richardson, 1989). 

However, the above explained thermodynamic principle will be applied to rule out or 

include reaction at 750 oC (1023 K). The calculation of Gibbs free energy at certain 

reaction temperature (750 oC) is explained in Appendix G.  

 

2.4.4 Primary reactant reaction:  

In this category, the reaction of main reactants (CO2 and CH4) are considered and 

Gibbs free energy change was calculated (Table 2.1). It can be concluded that CH4 

decomposition is the only primary reactant reaction in dry reforming of methane, while 

CO2 molecule does not react at 750 oC. 

 

Table 2.1: Primary reactant reaction in the dry reforming of methane 

Reaction  ∆Grxn,1023 K
o  (kJ) 

CH4 ↔ 2 H2 + C -22 

CO2 showed stability at 750 oC. Not applicable at this 

temperature range. 

 

2.4.5 Reactant self-interaction reactions 

In this category, the self-interaction of two reactant molecules is considered and 

simple principle discussed above was applied to investigate the significance of the 

reactions. As can be seen in Table 2.2, carbon dioxide molecules did not show any 

interaction and for methane self-interaction reactions, it was observed that their existence 

was not possible at 750 oC due to positive Gibbs free energy change. 
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Table 2.2: Reactant self-interaction reactions 

Reaction            ∆Grxn,1023 K
o  (kJ)  

2CH4 ↔ H2 + C2H6 

2CH4 ↔ 2H2 + C2H4 

2CH4 ↔ 3H2 + C2H2 

No interaction between two 

CO2 molecules at 750 oC. 

71 

77 

126 

Not applicable at this 

temperature range. 

 

2.4.6 Reactant cross-interaction reactions 

In this category, the interaction of two different reactants among themselves is 

considered and values are tabulated in Table 2.3. Interestingly, all the reactions in this 

category are thermodynamically favourable (-ve values for Gibbs free energy).  

 

Table 2.3: Reactant cross-interaction reactions 

Reaction  ∆Grxn,1023 K
o  (kJ) 

2CH4+ 3CO2 ↔   4CO + 2H2O 

CH4  + CO2     ↔   2CO  + 2H2 

CH4  +  2CO2 ↔  3CO + H2O + H2 

-27 

-31 

-31 

 

2.4.7 Reactant-product interaction: 

There are some types of side reaction which are taking place between reactant and 

products. These types of reaction are important in dry reforming of methane. The most 

famous reaction of this type is RWGS reaction resulting in the utilization of H2 and 

produces H2O. Instead of its slightly positive Gibbs free energy, this reaction is 

considered for further investigation (Table 2.4 ). 

Table 2.4: Reactant- product reactions 

Reaction  ∆Grxn,1023 K
o  (kJ) 

CO2 + C   ↔   2CO  

CH4  + 2H2O     ↔   CO2  + 4H2 

CH4  +  H2O ↔  CO + 3H2 

CO2 + H2 ↔ CO + H2O  

-9 

-35 

-33 

2 
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2.4.8 Product-product reactions 

In this category, the interaction of products molecules is taken under consideration 

as seen in Table 2.5. The reaction of water and carbon has potential to occur while other 

reactions between CO and H2 are not considered in this study.  

 

Table 2.5: Product-product reactions 

Reaction   ∆Grxn,1023 K
o  (kJ)  

CO + H2   ↔   HCHO 

H2O + C     ↔   CO + H2 

CO + 2H2 ↔ CH3OH  

122 

-11 

150 

 

 

2.4.9 Network of reaction  

Based on the above studied reaction and their occurrence at 750 oC, one can easily 

point out the reactions which will be thermodynamically favourable and have significant 

influence over the dry reforming of methane. The reactions selected from the above 

discussion are stream reforming of methane and RWGS reaction (Table 2.4), CH4 

decomposition (Table 2.1), reactant cross reactions (Table 2.3), and carbon removal 

reactions (Table 2.4 and 2.5). The similar network of reaction can be found in (Mark et 

al., 1997) study.  

CH4 + CO2 ↔ 2 CO + 2 H2      (2.9) 

CO2 + H2 ↔ CO + H2O      (2.10) 

CH4 + H2O ↔ CO + 3 H2      (2.11) 

CH4  ↔ C + 2 H2       (2.12) 

C+ CO2 ↔ 2CO      (2.13) 

C + H2O ↔ CO + H2      (2.14) 

CH4 + 2CO2 ↔ 3CO + 2H2O + H2    (2.15) 

CH4 + 3CO2 ↔ 3CO + 2H2O + H2    (2.16) 
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From the above independent reactions, which are sufficient to describe the 

reaction system are describe above. However, to narrow down our study to those reactions 

which will be enough to exhibit the influence of reaction, it is necessary to determine the 

rank of stoichiometric coefficient matrix (Fogler, 1986). The stoichiometric coefficient 

matrix is expressed in equation 2.17, with the conventional style (–ve sign for reactants 

and +ve sign for products) and the reduced matrix is shown in equation 2.18. The rank of 

matrix (in this case 3) shows that only 3 reactions will be sufficient to describe the whole 

reaction system. However, in the selection process of three independent reactions 

(Equation 2.9, Equation 2.12 and Equation 2.13), it is important to note that one carbon 

formation or removal reaction should be included. 

 

 

 

(2.17) 

 

 

 

 

(2.18) 

 

 

 

2.5 Influence of parameters on catalytic activity  

 Numerous variables, such as active metal, support and calcination temperature, 

affected the catalytic activity and carbon deposition. The following section will 

 CH4 CO2 CO H2 H2O C 

Eq 2.9 -1 -1 2 2 0 0 

Eq 2.10 0 -1 1 -1 1 0 

Eq 2.11 -1 0 1 3 -1 0 

Eq 2.12 -1 0 0 2 0 1 

Eq 2.13 0 -1 2 0 0 -1 

Eq 2.14 0 0 1 1 -1 -1 

Eq 2.15 -1 -2 3 1 1 0 

Eq 2.16 -1 -3 4 0 2 0 

 CH4 CO2 CO H2 H2O C 

Eq 2.9 -1 -1 2 2 0 0 

Eq 2.10 0 -1 1 -1 1 0 

Eq 2.11 0 0 0 0 0 0 

Eq 2.12 -1 0 0 2 0 1 

Eq 2.13 0 0 0 0 0 0  

Eq 2.14 0 0 0 0 0 0 

Eq 2.15 0 0 0 0 0 0 

Eq 2.16 0 0 0 0 0 0 
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investigate the influence of these variables over catalytic activity, stability and 

morphology of deposited carbon. 

 

2.5.1 Influence of active metal on catalytic activity 

 Dry reforming of methane has been investigated with noble (Rh, Ru, Pd and Pt) 

and non-noble metal (Ni, Co and Fe) based catalysts (D. Liu, Quek, et al., 2009). Noble 

metal catalysts have drawn attention for their superior coking resistance, higher stability 

and activity especially for higher temperature applications (> 750 oC) (Djinović et al., 

2011). A study investigated the effect of different noble metals (Rh, Ru, Pt, Pd and Ir) 

supported over alumina and concluded that noble metal (5 wt%) supported catalysts lead 

to higher coking resistance and stability (Hou et al., 2006). The catalytic activity and 

stability trend of the catalysts was Rh/α-Al2O3 > Ru/α-Al2O3 > Ir/α-Al2O3 > Pd/α-Al2O3 

> Pt/α-Al2O3. The amount of carbon deposited (mg cat/g cat h) over these catalysts was 

4.9 for Pd/α-Al2O3, and rest of them showed no carbon deposition Ru/α-Al2O3, Rh/α-

Al2O3 Ir/α-Al2O3 and Pt/α-Al2O3. The lower stability of Pt and Pd supported catalysts can 

be ascribed to the sintering of the metal particles at higher reaction temperatures. 

 Another study investigated the effect of incorporation of noble metals (Ru, Rh, 

Pt, Pd, Ir and Au) over Mg-Al layered double hydroxides and reported higher catalytic 

activity and stability for Ru/MgAlOx, Rh/MgAlOx and Ir/MgAlOx. (Tsyganok et al., 

2003) However, the catalytic activity and stability for Pd, Pt and Au catalysts were such 

as: Pd/MgAlOx > Pt/MgAlOx > Au/MgAlOx. The coke deposition (wt%) in the decreasing 

trend over these catalysts was Pd/MgAlOx (102.9) > Au/MgAlOx (41.4) > Pt/MgAlOx 

(5.5) > Ir/MgAlOx (4.9) > Rh/MgAlOx (1.9) > Ru/MgAlOx (1.3). The catalytic activity 

and stability of the catalysts matched with the coke deposition trend. The higher catalytic 

activity and lower carbon deposition by Ru supported catalysts can be explained on the 

basis of X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD 
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profiles (Figure 2.8a) depicting the structure of catalyst before (1) and after (2) dry 

reforming of methane at 800 oC for 50h. The spent catalyst indicates the presence of MgO 

and MgAl2O4 and the absence of metallic Ru was noticed, which indicates that Ru was 

present in a small particle size on the support. This conclusion was verified by TEM 

image (Figure 2.8b) that showed the presence of highly dispersed and smaller metal 

particles around 1.5 nm. The presence of highly dispersed and smaller particle size 

assisted in the reduction of carbon deposits, agglomeration and sintering. The ability of 

Ru to completely eliminate or reduce carbon deposition to a minimal level also matched 

with the above discussed study (Hou et al., 2006). 

 

 

Figure 2.8: (a) XRD profiles of the catalyst (1) before and (2) after activity test and 

(b) TEM image of the catalyst after the activity test (Tsyganok et al., 2003).  

 

However, noble metals exhibiting superior carbon deposition resistance and in 

certain studies displayed higher catalytic activities, cannot be applied on the industrial 

scale due to their high-cost (Crisafulli et al., 2002). In this scenario, non-noble metals (Ni, 

Co, Fe) become a suitable alternative for the industrial application due to low cost (Y. J. 

O. Asencios & Assaf, 2013; D. Liu, Quek, et al., 2009). The comparison of noble (Rh, 

Ru, Pd, Ir and Pt) and non-noble (Ni and Co) metal catalysts showed higher catalytic 

activities of Ni and Co catalysts compared to the noble metal supported catalysts. 

However, the higher coke deposition for Ni (24.0 mg cat/g cat h) and Co (49.4 mg cat/g 
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cat h) catalysts indicate their poor coke resistance ability compared to noble metal 

catalysts. Moreover, the addition (small amounts) of noble metals (Rh, Ru, Pd, and Pt) to 

Ni produced catalysts with affordable cost having good catalytic properties and lower 

sensitivity to carbon deposition (Ocsachoque et al., 2011).  

The modification effect of Rh over Ni catalyst supported over mesoporous 

alumina indicated that Ni catalyst without Ru addition exhibited higher coke formation 

rates (17.2 mg coke/mg cat h) and lower methane (62.0%) and carbon dioxide (68.0%) 

conversions (Hou et al., 2006). However, with the addition of small amount of Rh, Rh-

Ni catalyst exhibited higher catalytic and no coke deposition was detected. This higher 

stability and activity was attributed to the synergic effect of Rh and Ni, which lead to the 

formation of Rh-Ni cluster. Moreover, another study reported that bimetallic catalyst 

(0.4Pt-Ni/γ-Al2O3) exhibited the highest activity (69% methane conversion) compared to 

monometallic 4Ni/γ-Al2O3 (60%) and 0.4Pt/γ-Al2O3 (65%) catalysts (García-Diéguez et 

al., 2010). The highest catalytic activity was associated with the formation of Pt-Ni alloy, 

which has higher Pt content on its surface and leads to the production of smaller metal 

particle size (10 nm) than monometallic Ni catalysts (25 nm). The graphitic carbon peak 

in Figure 2.9 has been noticed to decrease with the increase of Pt content (0.04 to 0.4) in 

Ni/γ-Al2O3 catalyst, moreover, the study indicated the lower carbon deposition (6wt%) 

for bimetallic catalyst (0.4Pt-Ni/γ-Al2O3) compared to monometallic (Ni/γ-Al2O3) 

catalyst (45 wt%).  Univ
ers

ity
 of

 M
ala

ya



27 

 

 

Figure 2.9: XRD profiles for alumina support (a) and spent catalysts: (b) 4Ni/Al2O3, 

(c) 0.04Pt4Ni/Al2O3, (d) 0.4Pt4Ni/Al2O3, and (e) 0.4Pt/Al2O3 (García-Diéguez et al., 

2010). 

 

The highest catalytic activity of bimetallic catalyst was also proved by another 

study (M.-S. Fan et al., 2010), which reported higher methane conversion (80%) for Ni-

Co/MgO-ZrO2 compared to monometallic Ni (70%) and Co (71%). It was attributed to 

the better metal dispersion, smaller particle size and the synergic effect between Ni and 

Co. Similarly, an addition of Rh (Jóźwiak et al., 2005) and Pt (Pawelec et al., 2007) to Ni 

supported on SiO2 (Jóźwiak et al., 2005) and ZSM-5 (Pawelec et al., 2007) indicated 

higher methane conversions 84% and 28%, respectively, compared to monometallic 

Ni/SiO2 (72%) and Ni/ZSM-5 (25.8%).  

Another study reported that a combination of Ni and Pd exhibited better catalytic 

activities compared to Ni or Pd alone (Steinhauer et al., 2009). A study investigated Ni, 

Ni-Rh and Ni-Co supported on CeZr and reported that bimetallic catalysts (Ni-Rh/CeZr 

and Ni-Co/CeZr) showed stable catalytic activities compared to Ni/CeZr (Horváth et al., 

2011). The addition of Mo (T. Huang et al., 2011) and Pt (D. Liu et al., 2010) to Ni 

supported on mesoporous materials SBA-15 (T. Huang et al., 2011) and MCM-41 (D. 
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Liu et al., 2010) showed higher activities compared to Ni/SBA-15 and Ni/MCM-41. The 

role of active metals in the enhancement of catalytic activity is listed in Table 2.6. 
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Table 2.6: Influence of active metals on catalytic activity. 

 

Metals Support W P RC Reactor Conversiona Ref. 

  T t CH4 CO2  

Ni Al2O3 10 IMP 

SG 

800 30 

48 

FBR 

FIBR 

63.0 

94.0 

69.0 

93.0 

(Hao et al., 2009) 

Co γ-Al2O3 20 SG 700 20 

20 

FBR 

FIBR 

32.0 

66.0 

39.0 

71.0 

(Hao, Zhu, Jiang, et 

al., 2008) 

Ni CeO2 10 IWIMP 550 7 FBR 11.7 29.7 (Barroso-Quiroga & 

Castro-Luna, 2010) 

Ni ZrO2 5 IWIMP 750 10 FBR 65.0 - (Chang et al., 2006) 

Ni-

CeO2 

ZrO2 5 IWIMP 700 50 FBR 59.0 - (M. Rezaei et al., 

2009) 

Pt ZrO2 1 IMP 700 4 FBR 79.0 86.0 (Özkara-Aydınoğlu 

et al., 2009) 

Rh CeO2 

ZrO2 

0.5 

 

IMP 800 50 FBR 50.7 

65.9 

63.2 

74.2 

(H. Y. Wang & 

Ruckenstein, 2000) 

Pt Al2O3 

ZrO2 

1 IMP 800 97 FBR 46.0 

83.0 

62.0 

94.0 

(Ballarini et al., 

2005) 

Ru Al2O3 

CeO2 

3 

2 

IMP 750 20 FBR 46.0 

52.0 

48.0 

60.0 

(Djinović et al., 

2011) 

NiO MgO 13.1 IMP 800 5 FBR 93.0 95.0 (Feng et al., 2012) 
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Table 2.6: Continued 

Co MgO 12 IMP 900 0.5 FBR 91.9 93.9 (H. Y. Wang & 

Ruckenstein, 2001) 

Ni 

Pt-Ni 

Ni 

MgO-SiO2 

 

SiO2 

5 

0.01-5 

5 

IMP 700 -- FBR 58.3 

80.7 

55.0 

- 

- 

- 

(Jing et al., 2004) 

Pt-

CeO2-

ZrO2 

MgO 0.8-3.0-3.0 IMP 800 24 FBR 69.0 80.0 (M. Yang et al., 

2012) 

Ni CeZr 5 IMP 750 70 FBR 41.0 - (Pietraszek et al., 

2011) 

Ni 

Ni-Rh 

Ce0.75Zr0.25O2 14 

14-0.7 

IMP 750 17 FBR 5.8 

6.9 

8.3 

11.8 

(Makhum, 2006) 

Ni Ce0.75Zr0.25O2 2.1 CP 

 

850 9 FBR 92 95 (J. Chen et al., 2008) 

Ni 

Ni-

MgO 

Ce0.8Zr0.2O2 15 

15-10 

CP 800 42 

200 

FBR 78.0 

95.0 

77.0 

96.0 

(Jang et al., 2013) 

Ru 

 

Ru-Ce 

Al2O3 

CeO2 

Al2O3 

5 

5 

5 & 3 

IMP 750 -- 

-- 

-- 

FBR 91.0 

90.0 

97.0 

90.0 

96.0 

97.0 

(Safariamin et al., 

2009) 

Ni MCM-41 1.2 

Ni/Si= 0.04 

DHT 750 30 FBR 70.0 - (D. Liu, Lau, et al., 

2009) 
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Table 2.6: Continued 

Ni 

Ni-Rh 

MCM-41 Ni/Si= 0.19 DHT 600 4 

14 

FBR 20.0 

29.0 

38.0 

39.0 

(Arbag et al., 2010) 

Ni 

Rh@Ni 

Mg@R

h@Ni 

MCM-41 

 

0.22 

1.0 

1.0-1.0 

DHT 600 4 

1 

1 

FBR 28.0 

31.0 

38.0 

39.0 

41.0 

40.0 

(Yasyerli et al., 

2011) 

Ni SBA-15 12.5 IMP 800 720 FBR 43 70 (M. Zhang et al., 

2006) 

Ni-Mo SBA-15 5-25 IWIMP 800 120 FBMR 84.0 96.0 (J. Huang et al., 

2011) 

Ni SiO2 4.5 IWIMP 750 11 FBMR 47.0 60.0 (Effendi et al., 2003) 

Ni-Ce SiO2 10-5 IWIMP 800 30 FBR 81.4 87.5 (Zhu et al., 2013) 

Rh SiO2 0.5 IMP 800 50 FBR 71.9 77.2 (H. Y. Wang & 

Ruckenstein, 2000) 

a: %; -: data not available in the original work; --: initial conversion at time (0 h); W: metal weight percentage;  

P: preparation method; RC: reaction condition; T: temperature (oC); t: time (h); IMP: impregnation; CP: co-precipitation;  

SG: sol-gel; IWIMP: incipient wetness impregnation; DHT: Direct hydrothermal synthesis; CM: commercial; FBR:  

fixed bed reactor; FIBR: fluidized bed reactor; MR: microreactor; FBMR: fixed bed quartz micro-reactor. 
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The comparison of Ni and Co catalysts supported on Al2O3 having similar 

preparation method (sol-gel) and reactor type (fluidized bed) exhibited higher catalytic 

activities for Ni/Al2O3 compared to Co/Al2O3 (Hao et al., 2009; Hao, Zhu, Jiang, et al., 

2008). The higher catalytic activity and stability can be attributed to the higher surface 

area (216 m2/g), smaller particle size (10.5 nm) and higher dispersion (9.5%) of Ni-based 

catalyst; however, the role of slightly higher reaction temperature (800 oC) cannot be 

neglected. The study of the monometallic (Ni) (Chang et al., 2006), bimetallic catalyst 

(Ni-CeO2) (M. Rezaei et al., 2009) and noble metal (Pt) supported on ZrO2 (Özkara-

Aydınoğlu et al., 2009) exhibited higher catalytic activities for the Pt/ZrO2 (Özkara-

Aydınoğlu et al., 2009) catalyst. The investigation on catalysts Rh (H. Y. Wang & 

Ruckenstein, 2000)and Pt (Ballarini et al., 2005) supported on ZrO2 at same reaction and 

preparation conditions showed higher methane conversion (83%) for Pt/ZrO2 compared 

to Rh/ZrO2 (65.9%).  

NiO/MgO (Feng et al., 2012), Co/MgO (H. Y. Wang & Ruckenstein, 2001) and 

Pt-CeO2-ZrO2/MgO (M. Yang et al., 2012) exhibited higher catalytic activity for 

NiO/MgO compared to other catalysts although its stability was not high as in the case of 

Pt-CeO2-ZrO2/MgO but it was fair enough to be regarded as a suitable catalyst due to its 

low cost. The comparison of monometallic (Ni) and bimetallic (Pt-Ni) catalysts supported 

on MgO-SiO2 exhibited the higher catalytic activity for the bimetallic catalyst (Jing et al., 

2004). The incorporation of different active metals on the ceria-zirconia mixture revealed 

that Ni/CeZr (Pietraszek et al., 2011) produced better catalytic activities compared to 

Ni/Ce0.75Zr0.25O2 and Ni-Rh/Ce0.75Zr0.25O2 (Makhum, 2006). Similarly, Ni (J. Chen et al., 

2008; Jang et al., 2013) and Ni-MgO (Jang et al., 2013) supported on Ce0.75Zr0.25O2  (J. 

Chen et al., 2008) and Ce0.8Zr0.2O2 (Jang et al., 2013) exhibited higher catalytic activities 

and enhanced stability for Ni-MgO/Ce0.8Zr0.2O2. The catalytic activity of 

Ni/Ce0.75Zr0.25O2 was almost equal to Ni-MgO/ Ce0.8Zr0.2O2, however the addition of 
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MgO to Ni lead to the increased stabilities (200 h). The incorporation of different 

monometallic (Arbag et al., 2010; Yasyerli et al., 2011) and bimetallic catalysts (Arbag 

et al., 2010; Yasyerli et al., 2011) in mesoporous support (MCM-41) leads to the 

conclusion that bimetallic catalysts produced better catalytic activities and stability 

compared to monometallic. However, another study proves otherwise and the catalytic 

activity of Ni/MCM-41 was higher than the above discussed articles, whereas, it can be 

attributed to the higher reaction temperature (750 oC) (D. Liu, Lau, et al., 2009). The 

comparison of various studies for monometallic (Ni) (M. Zhang et al., 2006) and 

bimetallic (Ni-Mo) (J. Huang et al., 2011) catalysts supported by mesoporous support 

(SBA-15) exhibited higher catalytic activities for the bimetallic catalyst Ni-Mo/SBA-15. 

This was attributed to the smaller particle size, higher specific surface area, strong metal 

support interaction and it was concluded that Mo has significant influence in effectively 

reducing the carbon deposition (J. Huang et al., 2011; T. Huang et al., 2011).  

The incorporation of the various active metals (Ni (Effendi et al., 2003; Jing et al., 

2004), Rh (H. Y. Wang & Ruckenstein, 2000)) and their combinations (Ni-Ce) (Zhu et 

al., 2013) on SiO2 exhibited higher catalytic activity and stability for the bimetallic 

catalyst (Ni-Ce/SiO2). The investigation of various active metals (Ni (Barroso-Quiroga & 

Castro-Luna, 2010), Rh (H. Y. Wang & Ruckenstein, 2000) and Ru (Djinović et al., 2011; 

Safariamin et al., 2009)) supported on CeO2 exhibited higher catalytic activity (90% 

methane conversion) for Ru/CeO2, however stability data for this study is missing. Even 

the higher reaction temperature in case of Rh/CeO2 did not improve the catalytic activity 

compared to Ru/CeO2 (lower reaction temperature). The addition of Ru (Crisafulli et al., 

2002) and Pt (Pompeo et al., 2007) to Ni supported on silica, H-ZSM-5 (Crisafulli et al., 

2002), α-Al2O3, α-Al2O3-ZrO2 and ZrO2 (Pompeo et al., 2007) lead to the superior 

catalytic activities compared to the monometallic catalyst (Ni), which was attributed to 

the higher dispersion and synergy between the metals. Similar results were reported by 
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various authors, which concluded that concluded that the Ni-Co catalyst supported on 

TiO2 and γ-Al2O3 exhibited highest catalytic activities compared to monometallic (Ni, 

Co) catalysts (Takanabe et al., 2005b; J. Xu et al., 2009) . Similarly, Rh-Ni catalyst 

supported on CeO2-Al2O3 (Ocsachoque et al., 2011), BEA zeolite (P. Frontera et al., 

2010) and boron nitride (BN) (J. C. S. Wu & Chou, 2009) resulted in higher catalytic 

activity (85%, 73% and 72% methane conversion, respectively) compared to 

monometallic (Ni) catalysts. 

From Table 2.6, it was established that addition of various non-noble metals (Ce, 

Mo) and noble metals (Rh, Pt) to Ni showed significantly higher catalytic activities and 

better stability compared to monometallic Ni-based catalysts (Arbag et al., 2010; 

Crisafulli et al., 2002; J. Huang et al., 2011; Jing et al., 2004; Makhum, 2006; Pompeo et 

al., 2007; Yasyerli et al., 2011; Zhu et al., 2013). However, it was encountered in some 

studies that monometallic catalyst showed higher catalytic activity compared to noble 

metals but showed higher carbon deposition (Hou et al., 2006). This study leads to the 

conclusion that even though the superior ability of noble metals for carbon deposition 

resistance is established throughout the study, however, keeping in mind the high cost 

and its application on a larger scale, it is advisable to apply monometallic catalysts. The 

proper selection of active metals for dry reforming of methane is a first step towards the 

achievement of better catalytic activity and stability. Therefore, various parameters 

(selection of support and pretreatment conditions), which have strong potential to affect 

the catalytic activity will be discussed in the following sub-sections. 

 

 

2.5.2 Influence of support on catalytic activity 

Smaller metal particles produced in the nanometer range (1-10 nm) resulted in the 

difficulty of their application in the reactor; therefore, support bodies are required (Mul 

& Moulijn, 2005). It is suggested that supports has important role in the enhancement of 
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catalytic activity and suppression of carbon deposition produced during dry reforming 

reaction (M. C. J. Bradford & Vannice, 1999). The basic supports employed for dry 

reforming assisted in the gasification of carbon species, which resulted in the suppression 

of carbon deposition (Lucrédio et al., 2011; Özdemir, Öksüzömer, & Ali Gürkaynak, 

2010). Ni (3.4-45 wt%) supported on the basic metal oxide (MgO) was investigated for 

dry reforming of methane (Y.-H. Wang et al., 2009) and among various catalysts 

prepared, Ni8Mg-6 (8 wt% Ni and calcination temperature of 600 oC) showed the highest 

methane conversion (84%). Previous studies showed that the formation of NiO/MgO 

solid solution significantly increased the stability of the catalyst (Hu & Ruckenstein, 

2002). XRD studies revealed that free NiO or NiO-based MgO-NiO was present in the 

catalyst, leading to the conclusion that all reduced Ni2+ was incorporated into the MgO 

support lattice forming NiO-MgO, which exhibited stable activity (Y.-H. Wang et al., 

2009). Metal oxide supports such as CeO2, CeO2-ZrO2, YSZ, and TiO2 supports were 

used extensively due to their good redox properties and oxygen mobility (A. Kambolis et 

al., 2010). Several authors (W. Chen et al., 2013; Djinović et al., 2011; Odedairo et al., 

2013) reported that CeO2 improved metal dispersion and resisted sintering. Improvements 

in catalytic activity were attributed to strong metal-support interaction, high oxygen 

storage capacity and the Ce4+/Ce3+ redox potential. The modification of CeO2 by the 

addition of ZrO2 resulted in good thermal stability and superior oxygen mobility 

compared to CeO2 alone (Horváth et al., 2011; M Rezaei et al., 2008). Similarly, higher 

catalytic activity (90% methane conversion) and stability (10 h) was reported for 

Ni/CeO2-ZrO2 (Akpan et al., 2007), which confirmed the influence of CeO2 addition over 

ZrO2 to enhance catalytic activity. Supports providing oxygen to metals, such as ZrO2 

were more beneficial compared to irreducible oxide (Al2O3 or SiO2) (Nagaoka et al., 

2001; H. Y. Wang & Ruckenstein, 2000). Pt supported on ZrO2 for dry reforming of 

methane exhibited highest stability and catalytic activity (86% methane conversion) 
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(Özkara-Aydınoğlu et al., 2009). The catalytic activity of Ni supported on MgO-ZrO2 

(MZ) showed highest methane (61%) and carbon dioxide (72%) conversions for 

20Ni20MZ (20 wt% Ni and 20 mol% MZ) and attributed to a balance between Ni sites 

and oxygen vacancies produced by the MZ. The smaller particle size (22 nm) of 

20Ni20MZ reduced coke formation and significantly improved catalytic activity 

compared to the other catalysts (Y. J. O. Asencios & Assaf, 2013). The reactant 

conversions for different catalysts are listed in Table 2.7. 
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    Table 2.7: Influence of supports on catalytic activity. 

Metal Support P W     RC Reactor Conversiona Carbon Ref. 

T T CH4 CO2 

Ni Al2O3 IMP  15 700 -- FBR 63.0 57.3 - (Therdthianwong et al., 2008) 

NiO Al2O3 IMP  10.5 800 5 FBR 52.5 - - (X. Chen et al., 2005b) 

Ni  MgO IWIMP 10 700 4 FBR 20.0 30.0 - (Hua et al., 2010) 

NiO MgO IMP  13.1 800 5 FBR 82.0 90.0 - (Feng et al., 2012) 

Ni CeO2 IMP   10 550 7 FBR 11.7 29.7 - (Barroso-Quiroga & Castro-

Luna, 2010) 

Ni SiO2 MVIMP 4.5 750 11 FBR 47.0 60.0 4.40c (Effendi et al., 2003) 

Ni Al2O3-ZrO2 IMP 10 850 24 FBR 80.0 81.0 - (Rahemi et al., 2013) 

Ru 

Rh 

Al2O3 

CeO2 

IMP 

IMP  

3 

2 

750 20 FBR 46.0 

52.0 

48.0 

60.0 

- 

- 

(Djinović et al., 2011) 

Rh CeO2 HTM 2 750 70 FBR 44.1 50.1 0.67c (Djinović, Batista, et al., 

2012) 

Rh γ-Al2O3 

La2O3 

MgO 

SiO2 

Y2O3 

CeO2 

Nb2O5 

Ta2O5 

TiO2 

ZrO2 

IMP 0.5 800 50 FBR 82.1 

68.2 

80.3 

71.9 

73.0 

50.7 

15.3 

63.4 

33.1 

65.9 

87.4 

77.5 

85.8 

77.2 

82.1 

63.2 

26.6 

69.7 

46.5 

74.2 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

(H. Y. Wang & Ruckenstein, 

2000) 
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Table 2.7: Continued 

Ni Ce0.8Zr0.2O2 

MgO-

Ce0.8Zr0.2O2 

CP  15 

15-10 

800 42 

200 

FBR 78.0 

96.0 

77.0 

97.0 

- 

 

(Jang et al., 2013) 

Ni CaO 

Sm2O3 

CaO-Sm2O3 

SG 10 700 34 

5 

34 

FBR 33.0 

42.0 

54.0 

35.0 

47.0 

58.0 

44c 

- 

20c 

(W. D. Zhang et al., 2007) 

3Ni-Co 

6 Ni-Co 

CeO2-ZrO2 ST  3-3 

6-6 

800 20 FBR 30.0 

30.0 

37.0 

45.0 

2.54c 

2.55c 

(Osojnik Črnivec et al., 2012) 

Ni MgO-ZrO2 IMP 10 750 14 FBR 80.0 - - (Nagaraja et al., 2011) 

a: % ; b: % weight loss ; c: wt% ; -: data not available in the original work; --: initial conversion at time (0 h); P: Preparation method;  

W: Metal weight percentage; RC: reaction condition; T: temperature (oC); t: time (h); IMP: impregnation; CP: Co-precipitation;  

SG: sol-gel; ST: solvothermal approach and aging in ethylene glycol medium; MVIMP: multipore volume impregnation;  

HTM: hard template method; FBR: fixed bed reactor.
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The comparison of the catalytic activities of Ni (Hua et al., 2010; Therdthianwong 

et al., 2008) supported on Al2O3 and MgO showed higher catalytic activity for Ni/Al2O3 

catalyst compared to Ni/MgO. However, opposite trend was observed for nickel oxide 

(NiO) (X. Chen et al., 2005a; Feng et al., 2012) supported on Al2O3 and MgO, which 

showed higher catalytic activity and stability for NiO/MgO catalyst. While Rh supported 

on MgO and γ-Al2O3 showed somewhat similar reactant conversions (Table 2.7) (H. Y. 

Wang & Ruckenstein, 2000). However, the basic supports are considered to reduce 

carbon deposition due to enhanced CO2 chemisorption and in this view MgO appears to 

be a suitable support which can reduce carbon deposition without adding extra cost 

(Zanganeh et al., 2013).  

 Ranjbar and Rezaei (2012) reported 60% methane conversion for Ni/CaO-Al2O3 

catalysts and lower coke deposition was observed due to addition of basic metal oxide 

(CaO) to alumina. Similarly, the addition of cations (Y3+, Mg2+, Ca2+ and La2+) to ZrO2 

enhanced catalytic activity by producing oxygen species (O2- or O-) and assisted in the 

oxidation of hydrocarbon (S. Wang et al., 2001). Furthermore, Ni supported on CaO-ZrO2 

exhibited 86% methane conversion, which was dedicated to the high basicity of Ca2+ ions 

and ZrO2 (acidic-basic character). Higher hydrothermal stability of the catalyst 

suppressed water generation produced by the RWGS reaction (S. Liu et al., 2008). 

Another study also reported the influence of MgO addition to ZrO2 over Ni and reported 

higher methane conversion(80%) and was stable up to 14 h (Nagaraja et al., 2011). 

Several authors reported that the addition of MgO to ZrO2 will lead to enhanced resistance 

to coke deposition and lead to higher surface areas (García et al., 2009; Trakarnpruk & 

Sukkaew, 2008).  

Rh supported on SiO2, TiO2, Nb2O5 and Y2O3 showed 71.9%, 33.1%, 15.3% and 

73.0% methane conversion, respectively (H. Y. Wang & Ruckenstein, 2000). There are 

various studies reporting the influence of CeO2 supported over Rh and all studies reported 
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somewhat similar catalytic activities in the range of 44-53% methane conversion 

(Djinović, Batista, et al., 2012; Djinović et al., 2011; H. Y. Wang & Ruckenstein, 2000). 

TiO2 and SiO2 were investigated as a support for different metals (Cu, Co, Fe, Ni, Ru, 

Rh, Pd, Pt, Ir) and reported higher methane conversion (0.05-7.1%) for TiO2 compared 

to SiO2 (0.05-2.9%) (Michael C. J. Bradford & Albert Vannice, 1999). The highest 

activity exhibited by TiO2 was attributed to TiOx species formed during reduction, which 

reduced the large ensemble sizes and the metal-support interaction enhanced catalytic 

activity. Another study investigated the different types of supports (Al2O3, TiO2, SiO2, 

ZrO2) for molybdenum carbide (Mo2C) and reported that higher activity and stability was 

observed for Mo2C/Al2O3 (Brungs et al., 2000). The stability trend for the catalysts was 

Mo2C/Al2O3 > Mo2C/ZrO2 > Mo2C/SiO2 > Mo2C/TiO2. The higher stability for alumina 

supported catalyst was due to the enhanced metal-support interaction during the 

preparation (between Mo2C precursor and support). Moreover, it was concluded that the 

oxidation of active metal was the major reason for the deactivation of the catalyst. The 

oxidation of molybdenum carbide to molybdenum oxide leads to the deactivation because 

MoO2 is inactive during the reaction period. The study indicated that supports played a 

prominent role in the enhancement of catalytic activity and reduction in the carbon 

deposition. The information previously discussed (Table 2.7) indicated that supports such 

as: ZrO2, metal oxides (Mg2+, Y2+, Ca2+) addition on ZrO2, MgO, CeO2 and ceria-zirconia 

mixtures showed higher catalytic activities and their basic character enhanced the stability 

by reducing coke deposition. The study emphasized the importance of proper support 

selection, suitable molar or weight ratios of the support materials and the proper 

combination of various metal oxides to enhance catalytic activity. 
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2.5.3 Influence of calcination temperature on catalytic activity 

 Activation methods can influence reactivity and stability of the catalyst (Montero 

et al., 2009) and it has been reported previously that calcination is a critical step in 

controlling the size of Ni, which in turn influence catalyst stability and activity (Cesteros 

et al., 2000; Jiuling Chen et al., 2009; Y. Chen & Zhang, 1992; Shaikhutdinov et al., 

1995). Calcination of deposited precursor will be important for the complete 

decomposition of salts and it is believed that calcination of catalyst creates specific 

transformations and solid state reactions which include: decomposition of the precursor, 

solid state reaction of the supported oxide and support and reaction between supported 

oxide and support (Hagen, 1999; Yan et al., 2003). Calcination of MgO resulted in 

significant changes arising from the restructuring of the metal oxide, which increased the 

defect production and were suggested as electron donating (O2-) centers. These electrons 

donating (O2-) centers were postulated as super basic sites in solid base catalysis (Montero 

et al., 2010). A study was reported on effect of calcination temperatures  (500 to 800 oC) 

on MgO and reported that crystallite sites (as a function of calcination temperature) 

showed no significant increase from 500-700 oC (Mguni et al., 2012). However, a 

prominent increase in crystallite size (35 nm to 80 nm) occurred due to the sintering of 

MgO by the calcination of catalyst at higher temperature (800 oC). The smaller particle 

size achieved by the calcination of catalyst at 500-700 oC showed higher catalytic 

activities and a decrease in catalytic activity occurred with the further increase of 

calcination temperature. The relationship between calcination temperature and surface 

area was also investigated (Jiuling Chen et al., 2009) for Ni/Al2O3 in the range of 300-

750 oC. The average NiO crystallite size increased (2.4 nm to 6.3 nm) and surface area 

decreased from 170 to 105 m2/g with the increase of calcination temperature from 300 to 

750 oC, which suggested that higher calcination temperatures caused the NiO to coalesce. 

Moreover, the catalyst calcined at 300 and 450 oC showed higher catalytic activity 
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compared to the catalyst calcined at 600 and 750 oC and the lower catalytic activity for 

Ni/Al2O3 could be a result of inactive Ni sites due to the high calcination temperatures. 

 Metal promoters (K, Ca, Sn, Ga, Ce) played a key role in the hindrance of carbon 

deposition, increased metal reducibility, enhanced metal-support interaction, increased 

metal dispersion and suppressed sintering (Castro Luna & Iriarte, 2008). However, the 

efficiency of these promoters strongly depended on the preparation conditions, 

calcination temperature and reducing conditions (Al-Zeghayer & Jibril, 2005). The effect 

of calcination temperatures (400 and 600 oC) and time (2, 8, 24 and 96 h) on the catalytic 

activity for the hydrodesulfurization (HDS) of dibenzothiophene (DBT) was studied for 

Co-Mo/Al2O3 (Al-Zeghayer & Jibril, 2005). The global rate constants (g feed/g cat. h) 

for the catalysts were 7.4 (C400/2), 4.7 (C400/8), 48.1 (C400/24), 37.7 (C400/96) and 

31.9 (C600/24), where CXXX/Y notation described the temperature in oC (XXX) at 

which catalyst was calcined and Y the calcination time (h). Catalyst calcined for shorter 

time (2 and 8 h) proved to be less active compared to those calcined for longer time (24 

and 96 h), and there was no improvement in DBT conversion even when the calcination 

duration was longer than 24 h or the temperature reached 600 oC. The highest conversion 

achieved at 400 oC occurred due to better dispersion and increased metal-support 

interaction. Catalyst calcined at 400 oC (longer treatment duration) exhibited the best 

performance revealing the importance of careful selection of calcination temperature and 

treatment duration. However, there is a study reporting the opposite behaviour (Brungs et 

al., 2000), which observed that the catalyst calcined for shorter durations (4 h) exhibited 

higher stability compared to the catalyst calcined for longer durations (24 h) (Figure 2.10). 

The calcination of catalyst at longer duration reported to have deleterious effects on the 

Mo2C catalyst. This study depicts the importance of choosing the suitable calcination 

durations because catalyst calcined at similar temperature but different time durations will 

have a negative impact on the stability and lifetime of the catalyst.  
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Figure 2.10: The influence of calcination duration on (a) Mo2C/SiO2 and (b) 

Mo2C/Al2O3 (•) 4 and (◦) 24 h (Brungs et al., 2000). 

 

The effect of calcination temperatures (350, 450 and 570 oC) on CO oxidation in 

the presence of 5 wt% CoOx/TiO2, and the catalyst calcined at 450 oC showed higher CO 

conversion (82%) compared to 38% and 2% for 350 and 570 oC, respectively (W.-H. 

Yang et al., 2007). The main difference was the type of Co species formed at 450 and 570 

oC, where 450 oC produced a Type A clean Co3O4, the major reason for its higher catalytic 

activity, while 570 oC produced Type B Co3O4, which was covered by ConTiOn+2 and was 

the primary reason for the low CO conversion. The study indicates that in some cases, 

lower calcination temperatures (i.e., 350 oC) will not be sufficient to completely 

decompose the precursor, which will result in lower catalytic activity. 

 The influence of calcination temperatures (500–900 oC) on catalyst performance 

and reducibility for Co/MgO with the different Co loadings (H. Y. Wang & Ruckenstein, 

2001). Catalysts with Co loadings between 8 and 36 wt% and calcined at 500 or 800 oC 

showed higher catalytic activity and stability compared to Co loading between 4 and 48 

wt% calcined at 900 oC, while calcination of catalyst with Co (48 wt%) at 500 or 800 oC 

resulted in deactivation. Formation of CoO/MgO was the primary reason for higher 

stabilities at 8 and 36 wt% Co loadings and the large metal particle induced by the higher 

Co loading (48 wt%) calcined at 500 oC or 800 oC was believed to be the major cause of 

sintering and coke deposition leading to unstable activities. The study leads to conclusion 

that in some cases, lower calcination temperature and low metal loading were suitable 
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due to the higher stabilities induced in the catalyst. The influence of calcination 

temperatures on catalytic activity of various catalysts is shown in Table 2.8.
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    Table 2.8: Influence of calcination temperature on catalytic activity and stability 

 

Metal Support  P Calc. condition     RC Conversiona Carbon  Ref. 

T M t T t CH4  CO2  

NiO MgO IMP 600  

800  

Air 

 

1.5 

 

800 5 82.0 

93.0 

90.0 

95.0 

- 

- 

(Feng et al., 2012) 

Co MgO IMP 500 

800 

900  

Air 

 

 

8 

 

 

900 0.5 95.7 

91.9 

5.5 

97.4 

93.9 

11.9 

- 

- 

- 

(H. Y. Wang & 

Ruckenstein, 2001) 

Co SiO2 IMP * 

300 

400 

500 

600 

700 

900 

Air 6 850 25 12 

22 

2 

21 

16 

2 

31 

46 

8 

44 

40 

9 

- 

- 

- 

- 

- 

- 

(S.-H. Song et al., 

2014) 

Ni TiO2-

SiO2 

IMPCSG 550 

700 

800 

Air 

 

 

5 

 

 

700 10 

10 

1.8 

57.0 

65.0 

60.0 

70.0 

77.0 

65.0 

0.012b 

0.017b  

0.147b  

(S. Zhang et al., 

2008) 

Ni Al2O3 IWIMP  500 Air 3 700 -- 63.0 57.0 - (Therdthianwong et 

al., 2008) 

Ni Al2O3 IWIMP  800 Air 4 700 -- 91.2 70.6 - (Sun et al., 2013) 

Ni Al2O3 SG.  850 Air 10 750 30 84.7 90.8 - (Castro Luna & 

Iriarte, 2008) 

Ni Al2O3 SG.  700 Air 4 800 24 60.0 69.0 19.1c (Hao, Zhu, Lei, et 

al., 2008) 
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     Table 2.8: Continued 

Ni CaO-

Al2O3 

TB. 

  

700 

900 

1100 

Air 

 

48 

 

 

700 -- 17.15 

38.84 

36.96 

21.95 

43.59 

41.64 

2.2c  

0.8c  

0.4c  

(Lemonidou et al., 

1998) 

Ni γ-Al2O3 IWIMP  600 

900 

Air 2 700 9 

9 

68.0 

73.0 

66.4 

80.1 

- 

- 

(Al-Fatesh & 

Fakeeha, 2012) 

Ni-Ce SiO2 IWIMP  800 

 

Ar 

O2 

CO

2 

H2 

- 

 

 

 

800 

 

30 89.3 

87.3 

85.1 

81.4 

94.6 

92.4 

91.4 

87.5 

- 

- 

- 

- 

(Zhu et al., 2013) 

La2Ni

O4 

γ-Al2O3 SG 500  

800 

Air 

 

6 

 

700 30 60.0 

49.0 

49.5 

60.0 

32.9d  

13.8d 

(B. S. Liu & Au, 

2003) 

a: %; b: (g/gcat.h); c: wt%; d: (mg/g.h); -: data not available in the original work ; --: initial conversion at time (0 h);  

P: preparation method; RC: reaction condition; T: temperature (oC); t: time (h); M: medium; IMP: impregnation;  

SG: sol-gel; ME: microemulsion; IWIMP: incipient wetness impregnation; TB: total blending; IMPCSG: impregnation  

combined sol-gel.
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The higher catalytic activity and stability were reported in a number of studies at 

calcination temperature of 800 oC (Feng et al., 2012; B. S. Liu & Au, 2003) irrespective 

of catalyst types. XRD profile (Figure 2.11) revealed the absence of Nio peak for the 

catalyst calcined at 800 oC pointing towards the existence of strong metal-support 

interaction, which resulted in the higher reactant conversions for NiO/MgO-800 

compared to NiO/MgO-600, which showed the presence of Nio (Feng et al., 2012).  

 

Figure 2.11: XRD patterns of impNiO/MgO catalyst (Feng et al., 2012). 

 

The influence calcination temperatures (500-900 oC) on Pt/γ-Al2O3 and reported 

that best catalytic activity was observed at 800 oC, while at 900 oC a comparatively lower 

catalytic activity was recorded and catalyst calcined at 600 oC exhibited worst one (J. Yu 

et al., 2011). Similar, results were reported by another study (Al-Fatesh & Fakeeha, 2012) 

that the catalyst calcined at lower temperature exhibited lower catalytic activities 

compared to catalyst calcined at higher temperature (900 oC). However, there are studies 

showing that there is a temperature limit as certain higher calcination temperature will 

not always lead to higher catalytic activity and stability. Another study investigated the 

wide range of calcination temperatures (700 to 1100 oC) for (Ni/CaO-Al2O3) and reported 

that catalyst calcined at 900 oC exhibited higher stability and activity compared to 700 
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and 1100 oC, which could be attributed to the smaller metal particle size formed at 900 

oC (Lemonidou et al., 1998). Moreover, the surface area was decreased (104 to 5.48 m2/g), 

with an increase in calcination temperatures from 700 to 1100 oC (Lemonidou et al., 

1998).  

Calcination temperature has a major influence on the reactant conversions 

(comparison of (Therdthianwong et al., 2008) and (Sun et al., 2013)). While the weight 

percentages of the metal content (15 wt%) and reaction temperatures (700 oC) were the 

same, the catalyst calcined at a higher temperature (800 oC) resulted in higher methane 

conversion (91.2%) compared to the catalyst calcined at lower calcination temperature 

500 oC (63%). This can be attributed to the smaller particle size formed before (12.1 nm) 

and after (14.3 nm) the dry reforming of methane and the little change in particles size 

for used catalyst indicates the higher resistance of catalyst to sintering (Sun et al., 2013). 

Similar results were obtained for Ni/Al2O3 calcined at 450, 650 and 850 oC for 16 h (Joo 

& Jung, 2002), where the  catalyst calcined at 850 oC showed higher activity and stability 

compared to the catalyst calcined at 450 oC (Joo & Jung, 2002). The comparison of 

different studies (Castro Luna & Iriarte, 2008) and (Hao, Zhu, Lei, et al., 2008) showed 

that catalyst calcined at 700 oC exhibited lower methane (60%) and carbon dioxide (69%) 

conversions even though the reaction temperature was high (800 oC) (Hao, Zhu, Lei, et 

al., 2008), while the catalyst calcined at higher calcination temperature (850 oC) showed 

higher methane conversion (84.7%) even though the reaction temperature was low (750 

oC) (Castro Luna & Iriarte, 2008). Thermodynamically, an increase in the reaction 

temperature would result in increased activity (J. H. Edwards & A. M. Maitra, 1995) 

while the opposite was observed, indicated the influence of calcination temperature over 

catalytic activity. A study reported the effect of different calcination mediums (Ar, H2, 

O2 and CO2) on Ni-Ce/SiO2 and denoted as Ni-Ce-Ar, Ni-Ce-O2, Ni-Ce-CO2, Ni-Ce-H2. 

Ni-Ce-Ar exhibited higher methane (89.3%) and carbon dioxide (94.6%) conversions 

Univ
ers

ity
 of

 M
ala

ya



49 

 

followed by O2, CO2 and H2 (Zhu et al., 2013). TPR-H2 profiles showed a higher peak 

for Ni-Ce-Ar at 536 oC in Figure 2.12, which pointed towards the existence of strong 

metal-support interaction while the reduction peak at lower temperature (405 oC) was 

ascribed to the loss of surface oxygen. The study showed that calcination mediums indeed 

have a certain influence over catalytic activity. 

 

Figure 2.12: TPR profiles of fresh Ni-Ce/SiO2 catalyst (Zhu et al., 2013). 

 

There are various studies reporting better catalytic activities at lower calcination 

temperature. Ni/TiO2-SiO2 showed lower coke deposition at 700 oC compared to the 

catalyst calcined 800 oC (S. Zhang et al., 2008), while the better catalytic activity and 

stability (attributed to the newly formed compound Ni2.44Ti0.72Si0.07O4) were due to the 

synergistic effect between metal and support and the smaller metal particle size (5.7 nm) 

resisted carbon deposition. Similar trend was noticed for Au/TiO2 calcined at 200, 300 

and 600 oC, where lower temperatures (200 and 300 oC) resulted in the highest catalytic 

activities (Boccuzzi et al., 2001). Two different studies also reported the presence of 

certain calcination temperature limits in their investigations for Ni/Al2O3-SiO2 (Ashok et 

al., 2008) and Ni-Mg catalysts, (Moliner et al., 2008). The results implied a certain 
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temperature limit (> 450 oC) after which a serious decrease in H2 yield occurred due to 

NiO formed during pre-treatment (Figure 2.13) (Ashok et al., 2008). Similarly, it was 

reported that calcination at higher temperatures (> 600 oC) resulted in rapid deactivation 

due to an increase of NiO domain size (from 31 nm to 92.7 nm at 1000 oC) with a 

corresponding decrease in BET surface areas (Moliner et al., 2008). 

 

Figure 2.13: Effect of calcination temperatures on H2 yield (Ashok et al., 2008). 

 

Higher calcination temperature was suggested to affect the morphology of the 

catalyst as observed for Co/γ-Al2O3 calcined at 500 oC and 1000 oC (E. Ruckenstein & 

Wang, 2002) and it was reported that surface area would be decreased with the increase 

of calcination temperature (Moliner et al., 2008; H. Y. Wang & Ruckenstein, 2001; S. 

Zhang et al., 2008). Different species were generated during calcination, which played a 

significant role in the enhancement of catalytic activity. Co3O4 was formed at 500 oC 

while at 1000 oC Co2AlO4 and CoAl2O4 were observed. The lower Co content (6 wt%) 

catalyst calcined at 500 oC showed higher conversion and lower carbon deposition, while 

the high Co metal content (9 wt%) catalyst calcined at 1000 oC showed higher conversion 

and lower carbon deposition (E. Ruckenstein & Wang, 2002). These observations 
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suggested there may be situations in which one calcination temperature might be working 

efficiently for a certain metal content while being unsuitable for a different metal content. 

The comparison of data from various studies suggested that calcination 

temperature played a significant role in catalytic activity/stability and indicated the 

existence of temperature limits above which a certain drop in catalytic activity was 

observed (Boccuzzi et al., 2001; Moliner et al., 2008; H. Y. Wang & Ruckenstein, 2001; 

J. Yu et al., 2011; S. Zhang et al., 2008) or below which deactivation occurred (Al-Fatesh 

& Fakeeha, 2012; Feng et al., 2012; Joo & Jung, 2002; B. S. Liu & Au, 2003). The 

conclusion from the above studies indicated that although the high calcination 

temperature leads to the loss of surface area of the catalyst, however, it will produce stable 

catalyst structure. Hence it will be advisable to calcined the catalysts at high temperatures 

due to the endothermic nature of dry reforming reaction, which will require higher 

reaction temperatures to achieve acceptable conversion (Al-Fatesh & Fakeeha, 2012). 

 

 

2.6 Catalyst preparation methods 

In the catalysis study, the efficiency of catalytic process is mainly attribute to the 

expose surface area of active phase due to the fact that majority of reaction occurred at 

the surface of catalyst (Mul & Moulijn, 2005). Therefore, it is important to express the 

relationship between the exposed surface area and the particle size of the catalyst. The 

calculation of surface area can be done by assuming that active phase consists of uniform 

spherical particles (density, ). 

Volume of one particle, V = 1/6 π d3   (m3) 

Weight of one particle, W = 1/6  π d3  (kg) 

Surface area of one particle, Sp = π d2  (m2) 

Specific surface area, SA = Sp/W = π d2/( 1/6 π d3) = 6/ d (m2/kg) 
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The calculation of this plot is shown in Figure 2.14 and it can be seen that only at 

lower particle size, a significant surface area has been obtained. 

 

Figure 2.14: The relationship between particle size and specific surface area for Ni ( 

= 8900 kg/m3) (Mul & Moulijn, 2005).  

 

However, the implication of such small size particles in the reactor is difficult; 

therefore support bodies are required to acquire higher dispersion over support bodies 

(Mul & Moulijn, 2005). Moreover, the application of the support bodies is important for 

precious metals based catalyst, which would result in the efficient utilization of precious 

metals compared to the bulk catalysts. The other purpose of support bodies is to produce 

catalyst stability and this can be achieved by the higher metal-support interaction. To 

illustrate the above, take an example of copper oxide which is very efficient oxidation 

catalyst but exhibits thermal instability. This problem was counteracted by the application 

of high surface alumina which enhanced its thermal stability and activity (Acres et al., 

1981). In this study, we will focus on the preparation methods for supported catalysts: 

impregnation, co-precipitation, sol-gel, Ion-exchange, deposition (Campanati et al., 

2003). The brief description of the methods used previously will be briefly discussed in 

this section and the microemulsion method will be described in detail. 
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2.6.1 Impregnation 

It is generally described as a preparation method in which the solid is contacted 

with the liquid phase containing the metal precursor. The two-major type of impregnation 

are dry or pore volume impregnation and wet or excess solution impregnation. In the dry 

impregnation, the special care is taken regarding the volume of solution which is chosen 

equal to or slight less than the pore volume of the support. However, in case of wet 

impregnation as its name indicates, the excess precursor solution is employed and later 

on this excess solution is removed with the help of drying (Campanati et al., 2003; Haber 

et al., 1995). There are two other types of impregnation which depends on the sequence 

of the introduction of active components: Co-impregnation is regarded as the 

impregnation in which two or more active components are introduced in a single step and 

successive impregnation is the type of impregnation in which two or more active 

components are introduced sequentially (Haber et al., 1995). 

 

2.6.2 Co-precipitation 

The catalyst prepared by co-precipitation requires the intimate mixing of metal 

ions and support (Acres et al., 1981). In the co-precipitation two major stages are 

included: nucleation and growth. There are several techniques available to synthesize 

catalyst from co-precipitation, one of them is to add drop wise the solution containing the 

active metal to the precipitating solution and vice versa (Haber et al., 1995). The process 

of co-precipitation depends upon the solubility of the components involved in the 

preparation of catalyst and the chemistry occurring during preparation (Schwarz et al., 

1995).  
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2.6.3 Deposition 

This preparation method describes the placement of active metal components on 

the external surface of the support. Sputtering is described as a technique to achieve this 

goal, in which the metal vapor is condensed and deposited on the agitated support. 

However, this process should be done in a high vacuum, which make this technique only 

useful for model catalysts (Acres et al., 1981).  

 

2.6.4 Ion-exchange 

It is described as a method which consists of replacing an ion from the surface of 

support in an electrostatic interaction with another ion in solution. The ion present in the 

solution will penetrate into the pore of the solid and the penetrating ion will replace the 

ion present over target surface. This process will continue until equilibrium is achieved. 

For example, the surface of support containing ions A is put into excess volume 

(compared to pore volume) of a solution with ion B. The ions B will penetrate into the 

solution replacing A over the surface of support and this process will continue until 

equilibrium is achieved (Campanati et al., 2003). 

 

2.6.5 Microemulsion 

The history of microemulsion (ME) dates back to 1940s, when first time it was 

defined by Schulman and Friend (Schulman & Friend, 1949). The microemulsions have 

been applied to various industrial process ranging from oil recovery to synthesis of 

nanoparticles (V Chhabra et al., 1997). However, the synthesis of nanoparticles was 

reported (Magali Boutonnet et al., 1982) for the first time in 1980s. The literature suggests 

that for the synthesis of hollow structures, template-assisted approach provides a suitable 

and versatile procedure, which is divided into two major groups such as: hard templating 

and soft templating (Q. Zhang et al., 2009). Our focus is on soft template approach, which 
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includes surfactants and long chain polymers having the properties of amphiphilic 

molecules (hydrophilic head and hydrophobic tails) (Fendler, 1987). These materials have 

the tendency to self-assemble into aggregates in the form of normal and reverse micelles, 

which restricts the growth of synthesized materials. Both types of emulsions either water-

in-oil (W/O) or oil-in-water (O/W) fall in the category of soft templates (Q. Zhang et al., 

2009).  

 Microemulsion is regarded as the mixture of water, oil and surfactant (cationic, 

anionic, and non-ionic) and its salient features are its transparent nature and 

thermodynamic stability (Eriksson et al., 2004). Microemulsion exhibits different 

behaviours at macroscopic and molecular level, in the first case it exhibits homogenous 

characteristics and in the second case it shows heterogeneous solution (Eriksson et al., 

2004). There are two types of microemulsion system based on the dispersed phase and 

continuous phase. In conventional micelles, the dispersed phase is oil and continuous 

phase is water as shown in Figure 2.15. The other type is inverse micelle in which 

dispersed phase is water and continuous phase is oil and normally regarded as water-in-

oil (W/O) microemulsion. In W/O microemulsion, the water droplets which are trapped 

inside are transformed into small droplets ranging from 10-100 nm.  

 

Figure 2.15: Microemulsion schematics for water in oil and oil in water. 

 

Univ
ers

ity
 of

 M
ala

ya



56 

 

Water-in-oil microemulsion are defined as the structural setting in which the 

hydrophilic heads are attracted towards the water and hydrophobic tails are facing 

towards the non-aqueous phase as shown in Figure 2.16 (Malik et al., 2012). 

 

Figure 2.16:  Structure of reverse micelles 

 

The distinguished feature of water-in-oil microemulsion synthesis approach is that 

the water droplets containing metal salt dissolved in it serves as nanoreactors for the 

synthesis of nanoparticles, when dispersed in continuous oil phase. Thus, the 

controllability of the nanoparticles size is better based on the water content. These water 

droplets are stabilized by surfactant and provide a cage effect in the synthesis of 

nanoparticles via microemulsion, as they will limit the growth and aggregation of 

particles (Fu & Qutubuddin, 2001; Santra et al., 2001). 

The application of microemulsion synthesis approach to synthesize nanoparticles 

has certain advantages over the previously used preparation methods (impregnation, co-

precipitation, sputtering, sol-gel method etc.), as it forms transparent and nano-sized 

water droplets (dispersed phase) in oil (continuous phase), which are stabilized by the 

surfactant. This unique type of surfactant covered water droplets create a 

microenvironment that lead to the formation of monodispersed nanoparticles (D.-H. Chen 

& Wu, 2000). Another benefit of microemulsion is that it can be synthesize at room 

temperature which play an important role to produce small size particles, while in case of 
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conventional preparation methods requires high temperature resulting in larger size 

particles (Eriksson et al., 2004).  

These inverse micelle functioned as a microreactors for processing reactions (D.-

H. Chen & Wu, 2000) and also this method allows the formation of nano-sized range 

metal particles with narrow size distribution which is a very important factor to enhance 

activity, stability and reduce carbon deposition (Magali Boutonnet et al., 2008). In 

impregnation, it is quite difficult to control the composition of the bimetallic catalyst, 

however, the preparation of bimetallic catalyst prepared by microemulsion gives better 

control over the composition. 

 

2.7 Strategy for nanoparticles preparation by microemulsion synthesis  

There are two possible ways to prepare microemulsion depending on the sequence 

of mixing microemulsion 

(a) First route is the preparation of two separate microemulsion, one contained the metal 

ions and other contained the reducing agent or precipitating agent as shown in Figure 

2.17(a). The mixing of both microemulsions lead to the nucleation to occur on the micelle 

edges. 

 (b) Another route to prepare is from single microemulsion by adding reagent in one 

microemulsion and then adding reducing agent in the same microemulsion as shown in 

Figure 2.17b. This is also a common way to produce metal nanoparticles. 
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Figure 2.17: Description of nanoparticles synthesis from the microemulsion route 

(Eriksson et al., 2004; Zabidi, 2012) 

 

 

2.8 Influence of various factors on the synthesis of nanoparticles 

 The major focus in the microemulsion system will be the size of particle formed 

during the preparation and understanding of the factors affecting the particle size is 

important to avoid large size particles. 

 

2.8.1 Water content 

The water content in reverse micelle has an important influence in determining 

the final size of particles formed. The metal salts are solubilized inside the water pool and 

provides the space for the reaction to occur. The radius of the reverse micelles for the 

spherical water droplets formed in microemulsion with the certain water content is 

calculated by the following expression: R* = 3V/∑, in which R* denotes the radius, V 

denotes the volume and ∑ the surface area of the sphere. Thus, it is clear that water content 

in a reverse micelle is important to control the particle size. The aqueous content present 

in the emulsion is generally denoted in relation with the surfactant concentration is given 

by the ratio of water to surfactant ratio R= water/surfactant (Eriksson et al., 2004; Ganguli 

et al., 2010). Previous study reported that the average diameter of Ni particles was 

decreased (from 14.3 to 4.3 nm) with the increase of water content (from 18wt% to 

22wt%) at constant water to surfactant ratio (0.66) (D.-H. Chen & Wu, 2000). As we 
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know that microemulsion system consists of water, oil and surfactant, a decrease in the 

water content will lead to the increase in oil content, which in turn results in the increase 

of surfactant/oil ratio. The inverse micelle system which consists of oil as continuous 

phase, the decreased surfactant/oil ratio would mean an unstable interface and lower 

interaction between the surfactant and oil. This instability of the interface would lead to 

the larger particle size because the greater mobility of the interface would allow them to 

rearrange. As the water content was decreased (from 22% to 18%) the surfactant/oil ratio 

decreased from 0.73 to 0.49, which lead to the formation of larger metal particles (14.3 

nm) (D.-H. Chen & Wu, 2000). However, the formation of larger particle size with the 

decrease of water content does not match with basic microemulsion function and this 

study contradicts with previous reported studies. Previous studies suggested that lower 

water content would lead to the decrease in particle size. This phenomenon will be 

discussed in detail in the following section. 

Several authors reported that nanoparticle growth is affected by the change in 

water to surfactant ratio (Cason et al., 2001; Kitchens et al., 2003). This variation in the 

particle size with water to surfactant ratio is dedicated to the concept of bound or free 

water. At low water content, the water inside the polar core is strongly attached to the 

polar head of the surfactant group and micelle interface is considered to be rigid leading 

to lower intermicellar exchange and thus growth rates. This can be dedicated to the lower 

amount of content available to hydrate the polar head group and counter ion (M. Pileni, 

1998). The increase of water content makes micelle interface become more fluid leading 

to the rate of higher growth rate (higher intermicellar exchange), until a point is reached 

after this extra water added is just added to the bulk water pool. This situation has been 

reported to occur at water to surfactant ratio of 10 – 15 (M. Pileni, 1993). 

Pileni group also investigated the relationship and controllability of the particle 

size and morphology of nanoparticles by varying water to surfactant ratio (R) (M. Pileni, 
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2007). The reported that in the synthesis of copper nanoparticles, there was seen an 

increase in Cu particle size with the increased of water content. Furthermore, the affinity 

of surfactant towards the metal centre also play an important role to influence the particle 

size. The lower affinity of the surfactant towards the metal centre leads to the inefficiency 

to control the growth and an increase in the final particle size was observed (Isabelle 

Lisiecki, 2005). It is reported that with the increase of water content in the microemulsion 

system at constant surfactant concentration, an increase in reverse micelle dimeter will be 

observed. The occurrence of this phenomenon will lead to the increase in intermicellular 

potential and larger particle size will be observed.  

Furthermore, with the increase of water content in microemulsion system, the 

quantity of tightly bound water decreases and thus lead to lower interaction energy 

between water and surfactant. The lower interaction energy between water and surfactant 

will then lead to decrease interfacial rigidity and thus an increase in particle size will be 

observed (M. Pileni, 1998).  As shown in Figure 2.18, an increase in water content in the 

microemulsion system leads to the increase of copper particle diameter. In this study, two 

different types of oil such as isooctane and cyclohexane were studied. The study indicates 

that the application of isooctane (larger solvent molecules) produced larger particles size 

compared to cyclohexane (smaller solvent molecules). This was attributed to the inability 

of larger solvent molecules to penetrate into the alkyl chains of surfactant, which favours 

the occurrence of larger intermicellular exchange and thus larger particle size were 

formed (M. Pileni, 1998).  Univ
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Figure 2.18: Influence of water content and oil type on copper particle diameter (M. 

Pileni, 1998) 

 

2.8.2 Surfactant types 

The source of word surfactant is from “surface active agent” and is extensively 

used to reduce the interfacial tension between two immiscible phases. Generally, 

surfactant consist of organic molecules with a polar head group (hydrophilic head) and a 

long alkyl chain (hydrophobic tail) (Ganguli et al., 2010). The application of surface 

active agents or surfactants is important as surfactant molecules has the ability to form 

self-assembles to form aggregates (M. Pileni, 1998). Surfactants are regarded as a kind 

of amphiphiles having hydrophilicity and hydrophobicity at same time and helps to 

reduce the interfacial tension. The nature of microemuslion strongly depends on the type 

of surfactant being used (Lin, 2006). Based on their structure, surfactants are normally 

divided into ionic, non-ionic and zwitterionic as shown below in Figure 2.19: 

 

Figure 2.19: Types of surfactants based on their structure (Lin, 2006) 
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Similarly, it was reported that increase of surfactant concentration would lead to 

the smaller particles due to its tendency to enhance the number of droplet. This will 

eventually lead to the lower metal ions per droplet and in turn smaller size (Eriksson et 

al., 2004). The formation of microstructure is often linked with the formation of 

interfacial curvature induced by the balance between surfactant polar head group forces 

set by electrostatic double layer and by the hydrophobic tails interaction set by the oil (M. 

Pileni, 1998).  

A specific empirical number has been assigned to each surfactant based on the 

size of two chains, which is known as Hydrophilic-Lipophilic Balance (HLB). It indicates 

the degree of hydrophilic or lipophilic for specific surfactant. Griffin proposed an HLB 

scale for the non-ionic surfactants and HLB number 1 was assigned to the most lipophilic 

molecules while a higher value of 20 was assigned to the most hydrophilic molecules. 

There are different methods to calculate the HLB number for specific surfactant.  For 

example, HLB values for polyhydric alcohol fatty acid esters can be calculated using the 

following expression, where Mh denotes the weight of hydrophobic group and Mw is the 

molecular weight (Ganguli et al., 2010).  

HLB = ( 1 −
𝑀ℎ

𝑀𝑤
) 

The HLB value for fatty acid esters (Tween type) are calculated by the following 

expression, where E is the weight percentage of oxyethylene and P indicates the weight 

percentage of polyhydric alcohol. 

HLB = (E + P)/5 

HLB values are considered to be dependent on its structure and the application of 

certain surfactant will be decided based on it HLB number, for example W/O 

microemulsion type can be formed with the surfactant having low HLB number and O/W 

microemulsion can be formed with surfactant having a higher HLB number (Ganguli et 

al., 2010). The addition of surfactant in the microemulsion not only stabilizes the 

emulsion but also reduced interfacial tension. Furthermore, surfactant wall provides a 
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spherical module for the synthesis of metal particles (Magali Boutonnet et al., 2008; 

Eriksson et al., 2004). The miscibility of these surfactants changes with the temperature 

as suggested in the previous study in which they investigated the application of different 

ionic and non-ionic surfactants at two different temperatures 25 oC and 60 oC (Lin, 2006). 

It was reported that ionic surfactant AOT and Tween 85 (non-ionic surfactant), were 

miscible with all the oil phases studied (isooctane, petroleum ether and cyclohexane). 

However, Tween 80, Triton X-100, Igepal CO-720 and Brij 97 are not miscible with the 

above-mentioned oil phases. Moreover, non-ionic surfactants Triton X-114 and Igepal 

CO-520 dissolved in ether and cyclohexane and remain immiscible with isooctane. The 

miscibility results for different surfactants are shown in Table 2.9 below for their study 

(Lin, 2006). 

Table 2.9: Miscibility data of different surfactant with oil phases at 25 oC. 

 

denotes non-immiscibility, denotes miscibility.   

Table 2.10: Miscibility data of different surfactant with oil phases at 60 oC. 

 

denotes non-immiscibility, denotes miscibility.   
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The difference between the miscibility data at 25 oC and 60 oC is that Brij 97 becomes 

miscible with cyclohexane at 60 oC but still remain immiscible with other two oil phases.  

 

2.8.3 Compatibility of surfactant and oil 

Another important feature regarding the choice of surfactant in the compatibility 

(miscibility) of particular surfactant with oil and there is basic strategy to choose proper 

surfactant for oil, which is the structure similarity. It is suggested that better miscibility 

exists between surfactant and oil which are having the similar structures, for example, 

Triton X-100 does not dissolve in cyclohexane due to cyclic structure of oil phase, and 

can dissolve in isooctane due to its linear structure. However, this does not apply to all 

the surfactants such as for Tween 85, Triton X-100, Triton X-114, Igepal CO-520 and 

Igepal CO-720, even though they are having cyclic chain in their structure, however, all 

of them do not dissolve in cyclohexane (Lin, 2006). Therefore, Hydrophile-Lipophile 

balance (HLB) values provide a more practical solution to the miscibility and over the 

formation of different microemulsion either water in oil or oil in water. HLB values for 

various surfactants are shown in Figure 2.20: 

 

Figure 2.20: HLB values of different surfactants 

 

Non-ionic surfactants usually consist of ethylene oxide (EO) units, such as Igepal 

CO-520 and Triton X series has polyoxyethylenated alkylphenols units, while Tween 

series has polyoxyethylenated polyols units (Lin, 2006). The hydrophilic nature of non-

ionic surfactants depends upon the number of EO units in its structure and an increase in 
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the number of EO units by applying different non-ionic surfactants gives flexibility to the 

manufacturer to have different solubility and characteristics of the under investigated 

system (Schmolka & Shick, 1967).  In the solution of non-ionic surfactant with oil, there 

is tendency that surfactant molecules will aggregate by the intermolecular hydrogen 

bonding (Kumar & Balasubramanian, 1980) leading to the formation of micelles. The 

micelles will have the ability to solubilise the aqueous phase by the interaction of EO 

units present in the polyoxyethylenated (POE) chains (Rosen, 2004). The previous study 

suggested that cyclohexane is the better choice for all the surfactants being employed in 

terms of water solubilisation compared to isooctane and petroleum ether. It has been 

suggested that the water solubilisation in the microemuslion increases with the increase 

of micelle size and this can be further explained by aggregation number. This aggregation 

number is the indication of the number of surfactant units forming the micelle. 

Aggregation number can be calculated by the following formula provided the molecular 

weight of surfactant used is know: 

n = Mm/Mo 

where n denotes aggregation number, Mm denotes micelle weight and Mo 

molecular weight of surfactant (Rosen, 2004). The above expression suggests that the 

higher aggregation number indicates the increase in micellar size and better water 

solubility. Cyclohexane has been found to exhibit better miscibility with surfactants and 

this leads to the larger aggregation number compared to isooctane and petroleum ether, 

which is the reason superior water solubility characteristics was observed in water in oil 

microemulsions (Lin, 2006). The phase diagram for water/Igepal CO-520/cyclohexane 

microemulsion system is shown in Figure 2.21 and the shaded area indicates the suitable 

ratio of water, oil and surfactant that should be chosen to form water-in-oil microemulsion 

(Lin, 2006). Beyond this area, water-in-oil microemulsion will not be observed. 
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Figure 2.21: Phase diagram for water, cyclohexane and Igepal CO-520 system at 25 oC.  

 

2.8.4 Effect of aging time 

The previous study showed that with the reaction time during the synthesis of 

nanoparticles can have influence over the average particle size and also on the tetra-ethyl-

ortho-silicate (TEOS) hydrolysis via w/o microemulsion. The synthesis of SiO2 particles 

studied with the influence of reaction time exhibits that with the increase of time an 

increase in the average diameter was observed as shown in the below Figure 2.22 (Lin, 

2006). Therefore, the choice of proper reaction time is important to have smaller particle 

size during the nanoparticle synthesis. 

 

Figure 2.22: Influence of reaction time on SiO2 average diameter  
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2.8.5 Effect of temperature  

It is suggested that the choice of proper temperature in the microemuslion 

synthesis approach is critical as it has been found to influence the characteristics of the 

surfactant aggregates such as: size, shape, ionic nature and also the solubilisation of the 

surfactant in the system. The shift in temperature from room temperature can have 

influence over the intermolecular interactions between components (water, oil and 

surfactant) of microemulsion (Lin, 2006). Furthermore, the proper selection of 

temperature is important to have maximum solubilisation of water in microemulsion 

system with non-ionic surfactants (Tween 85, Igepal Co-520 and Triton X-114).  It was 

observed that with the increase of temperature, maximum solubilisation of water 

decreased for all the surfactants under investigation as shown below in Figure 2.23 (Lin, 

2006): 

 

Figure 2.23: Maximum solubilisation of (a) Tween 85, (b) Igepal Co-520 (c)Triton X-

114 in cyclohexane. 

 

The maximum solubilisation of Igepal CO-520 decreased from 8.9% to 0.4% as 

the temperature was increased from room temperature 25 oC to 60 oC. The influence of 

temperature on the solubilisation of water in microemulsion system was more pronounced 

for Igepal CO-520 compared to Tween 85 and Triton X-114.  Therefore, room 

temperature is better for Igepal CO-520 and cyclohexane based microemulsion system 

for having maximum solubilisation. Hydrophilicity of surfactant is basically depending 
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upon the number of EO units present in surfactant chain and it is claimed that the increase 

of temperature will lead to the dehydration of POE units (Schmolka & Shick, 1967). This 

will in turn leads to the decrease in the water solubilisation in the micelle core indicating 

the presence of inverse temperature-solubility behaviour. The dehydration of POE units 

with the increase of temperature causes structural changes such as in the aggregation 

number and interfacial tension of surfactant aggregates (Misra, 1991). In a result of 

decrease in aggregation number, reduction in capacity of micelle occurs and the smaller 

size of micelle then has lower capacity for water solubilisation (E Ruckenstein & 

Nagarajan, 1980). The special care should be taken in the choice of temperature in the 

preparation of inverse micelle as these are temperature sensitive as shown in Figure 2.24. 

At higher temperature, the structure of oil droplets will be destroyed and at lower 

temperature water droplets will be affected (Eriksson et al., 2004).  

 

Figure 2.24: The effect of temperature and composition of water and oil in the 

preparation of microemulsion (Schwuger et al., 1995).  

 

2.8.6 Metal salt concentration 

Metal salt concentration in the microemulsion system plays a major role in 

controlling the final metal particles, as higher concentration of salt will result in the 

increased possibility of having metal precursor or nuclei and will have greater probability 

of filled-filled micelle exchange upon collision and thus an increase in particle size will 
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be observed. Therefore, an increase in metal salt concentration will leads to the increase 

in metal particles, provided that water/surfactant and surfactant/oil ratios are held 

constant. 

 

2.9 Types of microemulsion 

The addition of surfactant into the mixture of two immiscible fluids serves as to 

lower down the interfacial tension, which results in the formation of emulsion or 

microemulsion. The difference between emulsion and microemuslion lies in their size of 

droplet and stability of the droplet formed. The former being kinetically stable, while the 

latter is thermodynamically stable. Basically, there are two types of microemulsion, one 

is regarded as dispersed and other is bicontinuous. In dispersed microemulsion, droplets 

formed based on dispersed phase (water or oil) are stabilized by surfactant in continuous 

phase (water or oil), while in bicontinuous microemulsion, a continuous network of water 

and oil is separated by the formation of membrane based on surfactant molecules 

(Hamley, 2007). The description of dispersed and bicontinuous phase are shown below 

in Figure 2.25 (Savko, 2011): 

 

Figure 2.25: Schematics of dispersed and bicontinuous microemulsion a) water in oil 

dispersed b) water in oil bicontinuous c) oil in water bicontinuous d) oil in water 

dispersed. 

 

The presence of free water inside the core is called water pool and the structure of 

interfacial water is different from bulk water. Moreover, in W/O microemulsion, polar 
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heads of surfactants are directed towards the water core and non-polar tails are directed 

towards the oil continuum (Magali Boutonnet et al., 1982). Moreover, the water core can 

be considered bound or unbound based on the water content present in the microemulsion 

system. Therefore, the situation in which the water content is small, the water molecules 

will form strong hydrogen bond with the surfactant polar head groups and are said to be 

bound water. However, as the water content is increased, the chances of the presence of 

unbound or free water is increased.  

 

2.10 Mechanism 

The micelle formed in the microemulsion system are considered to be of dynamic 

nature and micelles formed collide with each other via Brownian motion and coalesce to 

form dimers, which later on exchange contents and break part again (Bommarius et al., 

1990). This exchange process and mobile nature of micelles formed lead to the well-

mixing of inorganic reagents encapsulated inside the micelles. Furthermore, the exchange 

process is deemed important for nanoparticle synthesis which are inside reverse micellar 

templates allowing different reactants to react with each other upon mixing. Micelles in 

reverse microemulsion are regarded to act as nanoreactors providing a suitable 

environment for controllable nucleation and growth. The role of surfactant is important 

that provides protective layer which restricts the nanoparticles from agglomeration 

(Eastoe et al., 2006; M. Pileni, 1998). 

It has been suggested that the final particle is not formed inside the microemulsion 

droplet but only the nuclei. The microemulsion system is considered as of dynamic nature 

meaning that during the process of particle formation a number of collisions will occur. 

The formation of final particles is supposed to be happening in two steps: first is the 

nucleation process inside the microemulsion droplet and then the growth or aggregation 

process to form the final particle (Eriksson et al., 2004). The presence of surfactant played 
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an important role to prevent the occurrence of nucleation too fast. This will result in the 

nanoparticles which will grow at the same rate favouring the formation of homogenous 

size distribution. This will form the emulsion system in which small particles stabilized 

by the surfactant molecules restricting the coalescence phenomenon that otherwise will 

assist in the occurrence of agglomeration of particles just formed (Eriksson et al., 2004). 

The size of microemulsion droplet will influence the size of the nuclei but the final size 

is controlled by the surrounding surfactant molecules (Y. Li & Park, 1999). 

Different types of monometallic, bimetallic nanoparticles and semiconducting 

particles are synthesized by microemulsion synthesis approach. The basic approach in 

this method is to form a water in oil microemulsion, in which the content of each 

component is selected from ternary phase diagram for that particular surfactant and oil 

system. After selecting the suitable amount of water, surfactant and oil, the next step is to 

prepare metal salt solution in water and then added into the above prepared mixture of 

surfactant and oil. The aqueous solution of metal salt will then go into the core of micelles 

forming reverse micelles as the hydrophilic head will be towards the water core and 

hydrophobic tails will be outward. The addition of reducing or precipitating agent will 

then form active metal nuclei. Due to their Brownian motion, each micelle will collide 

each other, which leads to the formation of larger particles as shown in Figure 2.26 for 

this exchange mechanism. 

 
Figure 2.26: Micelle exchange mechanism (M. Pileni, 1998) 
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The final metal particle size obtained after the synthesis process seems to be the 

reflection of average number of micelles exchanges, which strongly depend upon the 

intermicellular potential and also on the rigid nature of the interface. Therefore, as more 

and more micellar exchange will occur due to more intermicellular potential, it is 

expected to form larger particle size. Moreover, smaller size particles are expected to 

form, as a result of lower intermicellular potential. The nature of interface plays an 

important in controlling the size of metal particles. It is suggested that larger collision 

energy will be required in order to have successful micelle exchanges for system having 

rigid interface and in turn leading to the formation of smaller particles (M. Pileni, 1997, 

1998). However, many factors are taken into account such as: micelle size, solvent molar 

volume, which can have influence over intermicellular potential. In the next section, we 

will discuss the catalyst prepared by microemulsion synthesis approach and applied for 

dry reforming of methane.  

 

2.11 Preparation of catalysts via microemulsion synthesis 

In  recent studies on dry reforming of methane, the supported Ni-catalysts 

exhibited better catalytic activities due to the advanced preparation techniques and 

preparation methods (Kang et al., 2012). One way to tackle the issue of carbon deposition 

is to encapsulate metallic nanoparticles in silica (SiO2) porous shell. It was reported that 

the isolation of nanoparticles by porous shell will not only enhance the excess of reactant 

to active metal core but will also reduce the chances of sintering during the reaction (Y. 

Li et al., 2014). The preparation of these porous shell can be executed by microemulsion 

technique (Y. Li et al., 2014).  

A new class of catalyst has been emerged by the combination of core-shell and 

hollow structures named as yolk-shell or nano-rattles structure (core@void@shell) and 

denoted as A@B (J. Liu et al., 2011). These coated catalysts have higher resistance for 
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sintering and surface area loss compared to conventional supported catalysts (Dahlberg 

& Schwank, 2012). Moreover, the internal void can be regarded as reaction chamber or 

nanoreactor in which chemical reaction will occur in a different manner especially from 

macro-scale reactions due to the confinement effects of the active metal inside a shell (Q. 

Yang et al., 2008). The synthesis of Ni@SiO2 core@shell structure was executed by W/O 

microemulsion synthesis approach (Dahlberg & Schwank, 2012). They reported the 

formation of cylindrical nanotube cavities in which the movement of Ni particles inside 

the cavity results in greater accessibility of metal surfaces. Such type of catalysts in which 

metal particles are covered with oxide layers exhibited strong resistance against sintering 

and occurrence of single-atom migration such as Ostwald ripening or leaching (Dahlberg 

& Schwank, 2012). Another study also reported the preparation of Ni@SiO2 yolk-shell 

structure (Park et al., 2010) and investigated for steam reforming of methane. The higher 

sintering and coking resistance of Ni@SiO2 catalyst was attributed to the confinement 

effect of Ni particles inside silica shell. There are  number of papers discussing the 

application of yolk shell catalysts for partial oxidation of methane (L. Li, He, et al., 2012; 

L. Li, Lu, et al., 2012; Takenaka et al., 2007) and steam reforming of methane (Park et 

al., 2010; Takenaka et al., 2008), however, there was little fewer studied reporting their 

application on dry reforming reaction. A study reported the preparation of Ni@SiO2 by 

microemulsion and reported 60% CH4 and 73.5% CO2 conversion and higher stability 

(90 h) for dry forming of methane (Z. Li et al., 2014). It was reported that although the 

carbon deposition was little high 29.4% for Ni@SiO2, it showed excellent stability within 

20 h of the reaction period. It was ascribed to the formation of active type of carbon Cα 

during the reaction period instead of inactive type Cβ. Another recent study reported the 

formation of yolk-shell bimetallic catalyst (Cu-Ni@SiO2) by microemulsion synthesis 

approach and compared the catalytic activity of yolk-shell catalyst for dry reforming of 

methane with  impregnated catalyst (T. Wu et al., 2013). The higher catalytic activity and 
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stability of yolk-shell catalyst was attributed to the isolation effect of core particles from 

each other and resulted in enhanced sintering resistance. The lower catalytic activity of 

the impregnated catalyst was attributing to the weak metal-support interactions, which 

leads to the poor sintering resistance and in turn lower catalytic activities and stability. A 

study investigated a Ni/CZ catalyst prepared by W/O microemulsion exhibited 6.1% 

methane conversion while Ni/MgO-SiO2 catalyst prepared by similar method produced a 

nano-sized catalyst in the range of 3-7 nm, though conversion rates were not reported 

(Makhum, 2006). Another study reported the preparation of LaNiO3 nanoparticles 

covered by SiO2 shell (LaNiO3@SiO2) and compared the activity and stability of the 

catalyst with conventionally prepared impregnated catalysts (Ni/SiO2 and LaNiO3/SiO2) 

for dry reforming of methane (Zheng et al., 2014). The study reported higher catalytic 

activity and stability of yolk shell catalyst prepared by microemulsion compared to 

impregnated catalysts. This was attributed to smaller Ni particles, resistance to 

agglomeration and carbon deposition provided by protective shell of metal oxide (SiO2) 

to LaNiO3 nanoparticles. TGA analysis of the various catalysts verified the higher carbon 

deposition resistance for yolk shell catalyst (LaNiO3@SiO2) compared to impregnated 

catalysts. 

However, it was suggested that the application of inert support material (SiO2) 

will lead to monofunctional mechanism such that both methane and carbon dioxide will 

be activated by metal alone. In this pathway, the methane decomposition will first produce 

H2 and carbon, while in the second important step gasification of produced C with CO2 

will have limited opportunity to occur. This will lead to the deactivation of the catalyst. 

Therefore, the application of MgO and CeO2 exhibiting bifunctional mechanism will play 

an important role in the enhancement of catalyst performance, where both metal and 

support have their own separate role of activating methane and carbon dioxide, 

respectively (Theofanidis et al., 2015).  
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There were few studies reported on the formation of MgO supported with different 

active metals by microemulsion synthesis. A study was reported on the microemulsion 

synthesis of MgO supported LaMnO3 nanoparticles, however their application studies 

were focused on methane combustion (Svensson et al., 2006). Another study also reported 

the preparation of Ni/MgO core/shell nanoparticles by a special experimental setup in 

which beam of Ni nanocluster was co-deposited with evaporated MgO in controlled O2 

environment, however, no specific application studies were reported (D’Addato et al., 

2011). Another study reported the preparation of SnO2 nanoparticles by microemuslion 

synthesis approach supported over basic metal oxide (MgO and CaO). Their study 

focused on the catalytic oxidation of dimethyl ether and reported that both catalyst 

exhibited acceptable activity for dimethyl conversion (L. Yu et al., 2007). Another study 

reported the synthesis of NiO-MgO nanoparticle encapsulated by silica shell, however, 

their application study was focused on CO2 methanation only and was prepared by 

modified stÖber method (Y. Li et al., 2014). A study reported the preparation of MgAl2O4 

by microemulsion synthesis approach (water/ Igepal CO-520/cyclohexane), however, the 

application of this catalyst was not discussed (Chandradass et al., 2010). Ni/MgO-SiO2 

catalyst was prepared by microemulsion synthesis approach by applying Igepal CO-520, 

cyclohexane and water, however, the catalytic activity of the catalyst for dry reforming 

of methane was not reported (Bae, 2013). Several studies were also found on the 

preparation of MgO nanoparticles alone through microemulsion synthesis applying 

different surfactant, co-surfactant and oil types (Ganguly et al., 2011; Han et al., 2005; 

Wen et al., 2010).  

Number of studies reported on the synthesis of Ni/CeO2 catalyst by various 

preparation methods (impregnation, hard template method and solvothermal approach) as 

described in sub-section 2.5.2., however there were no studies reported on the application 

of microemulsion synthesis (water/Igepal CO-520/cyclohexane) approach for the 
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preparation of Ni@CeO2 core-shell like structures and applied for dry reforming of 

methane. A study reported the synthesis of CeO2 yolk for the stabilization of Au 

nanoparticles synthesized by solvothermal approach and their application was on the 

reduction of p-nitrophenol. A detailed review was published recently on the encapsulation 

of noble metals (Pt, Au, Pd, Rh and Ru) by CeO2 core and yolk shell catalysts, however 

it was mainly focused on noble metal catalysts and none of the studies were presented for 

non-noble metals (Ni and Co) (S. Song et al., 2015). Another study reported the synthesis 

of Ce1-xNixO2-y by reverse microemulsion method, however, the application of the catalyst 

was on water gas shift reaction (Barrio et al., 2010). Another study reported the synthesis 

of Ni-based catalyst supported on cerium-lanthanum oxide by microemulsion synthesis 

approach, however they studied this catalyst for the selective oxidation of ammonia 

(Nassos et al., 2006) . Different types of catalysts prepared by different types of 

surfactants and oil are described in Table 2.11 along with their application.  

 

Table 2.11: Different catalysts prepared by microemulsion synthesis approach 

Catalyst  Application  Microemulsion Ref 

Pt/Al2O3, pumice Hydrogenation  PEGDE/hexadecane

/water 

(M Boutonnet et al., 

1980) 

Pt, Pd, Rh/pumice Hydrogenation  PEGDE/hexadecane 

or hexane/water 

(M. Boutonnet et al., 

1987) 

Pt/TiO2 Selective 

hydrogenation 

PEGDE/n-octane/ 

water 

(Boutonnet Kizling et 

al., 1996) 

Pd, Rh particles Hydrogenation AOT + PFPE-PO4/ 

water/supercritical 

CO2 

(H. Ohde et al., 2002; 

M. Ohde et al., 2002) 

CeO2/Al2O3 CO oxidation OP-10/cyclohexane 

/n-hexyl alcohol/ 

water 

(Masui et al., 1997) 

Pt/Al2O3 Combustion of 

methane 

Tween 80/ 

cyclohexane or 

heptane/ 

cyclohexanol/ water 

(Rymeš et al., 2002) 

BaAl19O11 Combustion of 

methane 

Neodol 91-6/1-

pentanol/iso-octane/ 

water 

(Zarur & Ying, 2000) 

Pd/Al2O3 Combustion of 

methane 

Berol 02/ 

cyclohexane/water 

(Pocoroba et al., 2001) 
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          Table 2.11: Continued 

Pd/ZrO2, TiO2, 

Al2O3 

Methanol 

synthesis 

NP-5/ 

cyclohexane/water 

(Kim et al., 1998) 

 

Cu/ZnO H2 production Berol 02 

/cyclohexane /water 

(Agrell et al., 2001) 

Rh/SiO2 CO2 

hydrogenation 

NP-5/cyclohexane / 

water 

(Kishida et al., 1996) 

Rh/SiO2 CO2 

hydrogenation 

NP-5/cyclohexane / 

water 

(Kishida et al., 1995) 

Rh/SiO2 CO 

hydrogenation 

CTAB/hexanol/ 

water 

(Kishida et al., 1998) 

Rh/SiO2 CO 

hydrogenation 

CTAB/hexanol/ 

water 

(Hanaoka et al., 1997) 

Rh/SiO2 CO 

hydrogenation 

CTAC/hexanol/ 

water 

(Tago et al., 2000) 

Pd/ZrO2 CO 

hydrogenation 

CTAB/hexanol/ 

water 

(Kim et al., 1997) 

Fe/SiO2  CO 

hydrogenation 

NP-5 or NP-10 or 

NP-20/hexanol or 

butanol/ water 

(Hayashi et al., 2002) 

2Li2O/MgO Oxidative 

coupling of 

methane reaction 

 Span-83/kerosene/ 

propanol /water 

(Fallah & Falamaki, 

2010) 

 

2.12 Summary 

 This chapter summarizes all the literature present on dry reforming of methane 

with various catalysts studied at different reaction conditions. The influence of metal, 

support and calcination temperature over catalytic activity was discussed in detail. 

Microemulsion synthesis approach has been discussed in details along with its significant 

parameters influencing the morphology and structure of synthesized nanoparticles.  
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CHAPTER 3:MATERIALS AND METHODS 

 

3.1 Introduction 

Water-in-oil microemulsion synthesis method consists of two steps operation, first 

the synthesis of active metal nanoparticles at desired parameters and later on the addition 

of support materials to the microemulsion system. In this section, the methodology of the 

preparation of MgO and CeO2 based catalysts and their activity studies at desired 

condition are described; 

 

➢ Part 1: 

Synthesis of Ni nanoparticles and 20%Ni/MgO at different preparation 

parameters (water/surfactant ratio, aging time, calcination temperature, 

molar concentration) and investigating their catalytic activity and 

characterization. 

 

➢ Part 2: 

An investigation on the influence of catalyst composition, calcination and 

reduction temperatures on Ni/MgO catalyst for dry reforming of methane. 

 

➢ Part 3: 

Water-in-oil microemulsion synthesis of Ni@CeO2 core-shell like 

structures for dry reforming of methane 
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3.2 Part 1: Synthesis of Ni nanoparticles and 20%Ni/MgO at different 

preparation parameters (water/surfactant ratio, aging time, calcination 

temperature, molar concentration) and investigating their catalytic activity 

and characterization. 

 In this section, the influence of different synthesis parameters on the Ni 

nanoparticle was investigated and later on synthesize Ni/MgO catalyst at these 

optimized parameters. 

 

3.2.1 Materials and chemicals 

Nickel (II) nitrate hexahydrate Ni(NO3)2.6H2O and magnesium nitrate 

hexahydrate (Mg(NO3)2.6H2O) were procured from Acros Organics. Ammonium 

hydroxide (28 wt %) and ethanol was purchased from R&M solutions. Non-anionic 

surfactant Igepal CO-520 (Polyoxyethylene (5) nonylphenylether) was acquired from 

Sigma-Aldrich. A number of gases used in our study such as: H2 (99.999%), CH4 

(99.995%) CO2 (99.995%) and N2 (99.99%) were procured from Linde Malaysia. 

 

3.2.2 Preparation of Ni nanoparticles 

The microemulsion compositions investigated in this study were chosen 

according to the ternary phase diagram for water/Igepal co-520/ cyclohexane system 

(Figure 2.21). Microemulsion system having different compositions of surfactant, water 

and oil were prepared as mentioned in Table 4.1 and method described here is for 

microemulsion system A2 (water/ surfactant/ oil; 6/9/85). First of all, 9 ml of Igepal CO-

520 were added to 85 ml of cyclohexane and stirred for around 15 min. Later on, 2 M 

Ni(NO3)2 solution was prepared according to the aqueous phase (water%) deemed 

suitable for each microemulsion system. Nickel solution was added dropwise to 
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microemulsion system by keeping in view the transparency of ME system as shown in 

Figure 3.1.  

 

Figure 3.1: (a,b) Microemulsion system containing Igepal CO-520, cyclohexane and 

Ni metal solution, (c) After addition of NH4OH in the microemulsion solution. 

 

 

The migration of transparent region to translucent indicates the ending signal for 

the addition of aqueous phase Ni solution. The pH of the microemulsion was adjusted at 

13 with the aid of ammonium solution (28 wt%). The microemulsion solution was then 

put on sonication for 40 min. The temperature was continuously monitored and controlled 

at room temperature with the assistance of cold water. After sonication, the sample was 

left for stirring for 2 h at 650 rpm. The sample was removed from stirrer and ethanol (40 

ml) was added as a destabilizer for microemulsion system. The sample was then 

centrifuged at 4000 rpm for 30 min and another cycle of washing and centrifugation was 

repeated with ethanol. The sample was then dried at 100 oC for overnight and then 

calcined at 450 oC for 2h. Similar procedure was repeated to investigate the influence of 

aging time (0.5 to 24 h), calcination temperature (450 to 100 oC) and metal molar 

concentration (2 M to 7 M). Different microemulsion systems were denoted with A1, A2, 

A3, A4, A5 and A6 for different water to surfactant ratios. 

 

3.2.3 Preparation of Ni/MgO catalyst 

To prepare 20% (wt) Ni/MgO, desired quantity of Mg(NO3)2. 6H2O was first 

added in suitable amount of water enough to dissolve complete salt and then ammonium 
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hydroxide (28 wt%) was added to convert it to magnesium hydroxide. For supported 

catalyst preparation, the prepared magnesium solution was added into the microemulsion 

system of metal solution after the sonication of 15 min. Then, the solution was stirred for 

30 min and later on sonicated for 25 minutes. The solution was then put on stirrer for 2 

hours at 650 rpm. The sample was removed from stirrer and ethanol (40 ml) was added 

as a destabilizer for microemulsion system. The sample was then centrifuged at 4000 rpm 

for 30 min and another cycle of washing and centrifugation was repeated with ethanol. 

The sample was then dried at 100 oC for overnight. The produced nanocatalysts was 

calcined at 450 oC for 2 h and then reduced at 550 oC with 30% H2/N2 mixture prior to 

activity and stability test. To investigate the influence of calcination temperature on the 

supported catalysts, the prepared samples were calcined at 600 and 800 oC for 2 h and 

then reduced at same conditions. Catalysts calcined at different calcination temperatures 

(450, 600 and 800 oC) was expressed as Cat1, Cat2 and Cat3, respectively. The detailed 

methodology of the experiments is described in Figure 3.2. 

 

Figure 3.2: Experimental methodology flow chart 
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3.2.4 Catalyst characterization 

The catalysts were characterized with different characterization techniques at 

conditions described below in detail; 

 

3.2.4.1 Surface area and pore volume 

The convenient way to measure the surface area, pore volume and surface 

properties is N2 physisorption. The adsorption of nitrogen on solid surface is not selective 

at boiling point of nitrogen (-196 oC). For the measurement of surface area, first N2 is 

adsorbed on the solid surface until relative pressure (P/Po) equal to 1, where P denotes 

the N2 equilibrium pressure in the system and Po expresses the saturated pressure of N2. 

The reverse process of N2 adsorption, can be studied by lowering the relative pressure 

(P/Po) from 1 to zero and regarded as N2 desorption. The desorption will result in the 

release of adsorbed N2 from the surface of solid or evaporates from the pores. 

Adsorption/desorption isotherms can be obtained by simply plotting the nitrogen 

adsorption/desorption volumes versus relative pressure and these isotherms can be 

classified on the basis of IUPAC system explain the surface properties, average diameter 

of pores and pore size distribution. A hysteresis loop will be formed provided that 

desorption of N2 does not take the similar path as N2 adsorption as shown in Figure 3.3. 

 

Figure 3.3: Adsorption/desorption isotherms for N2 molecules 
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Therefore, in this study specific surface area (BET), pore size distribution, pore 

volume and mean particle size was estimated from N2 adsorption-desorption isotherms at 

liquid nitrogen temperature (-196 oC) with an Autosorb BET apparatus (Micromeritics 

ASAP 2020). Prior to each measurement, the sample was first degassed at 90 oC for 1 h 

and then at 300 oC for 4 h. The pore size distribution curve was obtained by Barrett, 

Joyner & Halenda (BJH) method. 

 

3.2.4.2 X-Ray diffraction 

X-ray diffraction (XRD) technique is regarded as an important non-destructive 

tool to determine the crystallite size and structure of the metal oxides. The basic principle 

of this technique is that the constructive and destructive interference will occur provided 

that the atoms are organized regularly in crystals and the distance between them is of 

same magnitude as shown in Figure 3.4. This will result in the X-rays emitted at certain 

angles based on the space between atoms called planes.  

 
Figure 3.4: X-ray diffraction principal 

 

XRD patterns of the fresh and spent catalyst were obtained in a PANanalytical 

diffractometer to determine the crystallite size and structure of the metal oxides. The 

evaluation of the diffractograms was made by X’pert High score software. Diffraction 

patterns of the samples were recorded with a Rigaku miniflex Cu-Kα radiation with a 
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generator voltage of 45 kV and current of 40 mA. The intensity was measured by step 

scanning in the 2θ range of 5-80o with a step of 0.026o and a scan rate of 0.0445o s-1. The 

scherrer equation was used to obtain average crystallite size of different Ni nanoparticles 

produced as shown below: 

𝐷𝑎𝑣𝑔 = 
0.9λ

βcosθ
(

180

π
)    (3.1) 

Where K denotes shape factor with a value of 0.9, λ denotes wavelength (0.154 

nm), β is the width of the peak at half height and θ is Bragg angle.  

 

3.2.4.3 Temperature-programmed reduction 

The reducibility characteristics of metal oxides can be investigated by 

temperature-programmed reduction in the presence of reducing agents such as: H2, CO 

and CH4. The reduction properties of metal oxides for example nickel oxide (NiO) 

changes with the addition of support materials indicating the strong or weak interaction 

between metal and support materials. The reduction of NiO with H2 as reducing agent is 

explained by following simple reaction shown below in equation 3.2:  

NiO + H2 → Ni +H2O    (3.2) 

The theoretical consumption of H2 can be estimated by the stoichiometry of the 

above reaction and extent of reduction can then be calculated by the ratio of theoretical 

and actual H2 consumption. In this study, temperature-programmed reduction was 

conducted with hydrogen (H2). Temperature-programmed reduction H2 (TPR-H2) was 

performed with Micromeritics TPx 2720 analyzer by placing 0.03 g of sample at the 

bottom of the U-shaped quartz tube. The sample was first purged with He at 130 oC for 

60 min at a flow rate of 20 ml/min. After the cleaning process, the sample was reduced 

by 5% H2/N2 at a flow rate of 20 ml/min and the temperature was ramped at 10 oC/min 
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from 100 oC to 900 oC. H2 consumption during the reduction process was recorded by 

thermal conductivity detector (TCD).  

 

3.2.4.4 Temperature-programmed desorption 

Temperature programmed desorption (TPD) technique is used to determine the 

intensity of acidic and basic active sites on the surface of catalysts by measuring the 

desorption of probe molecules (CO2 and NH3). The catalyst placed inside the quartz tube 

will be first saturated with probe molecules and then the excess gas will be flushed with 

inert gas i.e., helium. Later on, the catalyst saturated with probe molecules will be heated 

in presence of inert atmosphere at certain temperature ramp, which will lead to the 

desorption of molecules by breaking the bonds between solid and molecules. In this study, 

the basicity of Ni/MgO catalyst was investigated by CO2 desorption. 

Temperature-programmed desorption-CO2 (TPD) was performed to identify the 

strength of basic active sites of catalysts in Micromeritics TPx 2720 analyzer. In this 

technique, 0.03 g of sample was first heated to 800 oC (ramp 10 oC/min) with helium flow 

(20 ml/min) passing through quartz tube for 60 min. Then, the catalyst bed temperature 

was brought about to 25 oC with helium flow and the flow was switched to 10% CO2/He 

mixture with flow rate of 20 ml/min for 30 min to have significant adsorption on the 

catalyst surface. Thereafter, the sample was purged with helium for 30 min to remove 

physisorbed elements from the sample. Then the sample was heated to 900 oC from room 

temperature at a rate of 10 oC/min.  

 

3.2.4.5 Transmission electron microscopy 

This technique allows the micro-structural examination of catalysts at high-

magnification imagining and also give detailed information about the crystal structure, 

orientation. Furthermore, the produced carbon during the reaction studies examined by 
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transmission electron microscopy (TEM) analysis gives insight into the structure of 

carbon either open mouth, closed mouth, shell-like or in the form of nanotubes. TEM is 

regarded as an electron-optical microscope, which employs electromagnetic lenses to 

focus and direct electron beam and data will be collected once the beam passed through 

the sample. TEM images of fresh and spent catalysts were performed by using FEI 

TecnaiTM controlled at an accelerating rate of 200 keV.  

 

3.2.4.6 Scanning electron microscopy 

Scanning electron microscopy (SEM) provides information regarding the 

morphology of solids in the form of images formed by the electron emitted by the surface 

of the solid. Moreover, 3-dimensional images of the object under investigation are 

obtained due to the longer depth of field. The principal theory of this technique is that 

field emission source provides electron, which are accelerate by electrical field gradient 

and due to the high vacuum, these electrons are deflected by electronic lenses to form a 

narrow scan beam. With the assistance of electron detector, the image formation electrons 

are capture and electronic signals are produced. These electron signals are then amplified 

and later can be seen on monitor in the form of video-scan image. Surface morphology 

of the spent catalyst was studied by field emission scanning electron microscopy 

(FESEM) images and elemental composition of pure catalyst was performed by FEG 

Quanta 450, EDX-OXFORD. 

 

3.3 Catalytic activity test 

Activity tests were carried out in a fixed-bed reactor made of stainless steel having 

6.03 cm outer diameter, 0.87 cm wall thickens and 120 cm length. To avoid the interaction 

of feed gas with stainless steel, a quartz tube with 3.56 cm internal diameter, 4 cm outer 

diameter and 120 cm length was placed inside the reactor obtained from Technical Glass 
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Products (Painesville, USA). For each run, 0.5 g of catalyst was immobilized between 

two quartz wool plugs to serve as catalyst bed. Reactant gases (methane and carbon 

dioxide) were fed into the reactor at a total flow rate of 1.4 L/min (CH4: CO2 = 1:1) and 

weight hourly space velocity (WHSV) of 1.68 x 105 ml g-1 h-1 or 168 L h-1g-1. Before 

activity tests, the reduction of catalysts was done with 30% H2/N2 at 550 oC for 2 h. 

Schematic diagram for the reactor used in dry reforming reaction is shown in Figure 3.5. 

 
Figure 3.5: Schematic diagram of experimental setup and dry reforming of methane 

unit. 

 

 Thereafter, the mixture of reactant gases consisting of methane and carbon dioxide 

(CH4: CO2 = 1:1) was introduced and the activity test was conducted at different 

temperatures ranging from 550 oC to 850 oC. The stability of the catalysts was 

investigated at the same reaction conditions but at three different temperatures (750 oC, 

800 oC and 850 oC). The flow rate of reactant gases was controller by mass flow 

controllers purchased from Dwyer, USA, in the range of 0 - 2 L/min. The mole percentage 

of hydrogen produced and unreacted methane was detected by calibrated Rosemount 
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Analytical X-STREAM (UK) on-line analyzer. The composition of carbon monoxide and 

carbon dioxide in the outlet gases were measured by GAURDIAN NG EDINBURGH 

SENSONR (UK). The conversion and yields of both reactants and products are calculated 

as follows: 

CH4 conversion (%) =  
moles of CH4 converted

moles of CH4 in feed
 x 100 

CO2 conversion (%) =  
moles of CO2 converted

moles of CO2 in feed
 x 100 

H2 yield (%) =  
moles of H2 produced

2 moles of CH4 in feed
 x 100 

CO yield (%) =  
moles of CO produced

(moles of CH4 in feed + moles of CO2in feed)
 x 100 

 H2/CO = moles of H2 produced/moles of CO produced 

 Weight hourly space velocity (WHSV) ml/h.g = 
Feed flow rate Ffeed(ml/h)

weight of catalyst (g)
 

Carbon deposition (gc/gcat) =  
Weight of deposited carbon on the catalyst (g

c
)

total weight of catalyst (g
cat

)
 

 

3.4 Part 2: An investigation on the influence of catalyst composition, calcination 

and reduction temperatures on Ni/MgO catalyst for dry reforming of 

methane. 

 In this section, the influence of different Ni metal content (20, 40 and 80 wt%), 

calcination temperatures (450, 600 and 800 oC) and reduction temperatures (550 

and 800 oC) over the catalytic activity and catalyst performance was investigated. 

The materials mentioned in sec 3.2.1 are same for this study and also the 

characterization techniques are same also. 

 

Univ
ers

ity
 of

 M
ala

ya



89 

 

3.4.1 Catalyst preparation  

In this study, microemulsion system based on water/Igepal CO-520/ cyclohexane 

was chosen and their ratio (water/surfactant/oil = 6/9/85) was selected from the ternary 

phase diagram. In the first step, 9 ml of Igepal was added into cyclohexane (85 ml) and 

left under stirring for 15 min. To synthesize, Ni/MgO catalyst having different weight 

percentage of Ni (20 wt%, 40 wt% and 80 wt%), desirable amount of Ni(NO3)2 was 

dissolved in 6 ml of water to prepare 2 M Ni metal solution and then added dropwise to 

the mixture of surfactant and oil. The solution was put on stirrer for 15 min and then 

sonicated for 15 min. The pH of the microemulsion was adjusted at 13 with the addition 

of ammonium hydroxide. Thereafter, the Mg(NO3)2 solution was prepared separately, in 

which desirable amount of magnesium nitrate was dissolved in a suitable amount of water 

to dissolve all salt and then ammonium hydroxide was added to convert it to magnesium 

hydroxide. The prepared solution was then added to the microemulsion system containing 

Ni metal solution and then sonicated for 25 min. The temperature was continuously 

monitored and controlled at room temperature by using ice cold water. After sonication, 

the sample was put on stirrer for 2 h at 650 rpm and then ethanol (40 ml) was added as a 

destabilizer. Later on, centrifugation was done at 4000 rpm for 30 min and then washing 

was done with ethanol. After washing, another cycle of centrifugation was repeated. The 

sample was dried for overnight at 100 oC and calcined at 450 oC for 2h. Ni/MgO catalysts 

with different weight percentages of Ni (20 wt%, 40 wt% and 80 wt%) are denoted as 

CS1, CS2 and CS3, respectively. To investigate the influence of calcination temperatures 

on the supported catalyst (CS3 (80wt%)-450 oC), same preparation procedure was 

repeated and the catalysts were calcined at 600 oC and 800 oC for 2 h, denoted as CS4 and 

CS5, respectively.  
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3.4.2 Experimental setup  

In this study, all the reaction conditions were similar to previously explained 

activity assessment test in sec 3.3. However, in this study, the catalysts were reduced at 

two different reduction temperatures (550 oC and 800 oC) to investigate the influence of 

reduction temperatures.  

 

3.5 Part 3: Water-in-oil microemulsion synthesis of Ni@CeO2 core-shell like 

structures for dry reforming of methane. 

 In this study, microemulsion approach was used to synthesize Ni@CeO2 core- 

shell like structures at the optimum condition used to prepare Ni nanoparticles and later 

on cerium(III) nitrate hexahydrate was added into the emulsion.  

 

3.5.1 Material and chemicals 

Nickel (II) nitrate hexahydrate (Ni(NO3)2.6H2O) and cerium(III) nitrate 

hexahydrate (Ce(NO3)3.6H2O) were obtained from Acros Organics. Ammonium 

hydroxide (28 wt%) and ethanol was purchased from R&M solutions. Non-anionic 

surfactant Igepal CO-520 (Polyoxyethylene (5) nonylphenylether) was acquired from 

Sigma-Aldrich. Gases used in our study, such as: H2 (99.999%), CH4 (99.995%) CO2 

(99.995%) and N2 (99.99%) were acquired from Linde Malaysia. 

 

3.5.2 Catalyst preparation 

 In this study, water/Igepal CO-520/cyclohexane were chosen to form water-in-oil 

(W/O) microemulsion system and the ratio of constituents (water/surfactant/oil = 6/9/85) 

were selected from the ternary phase diagram. In the first step, 9 ml of Igepal CO-520 

was added into cyclohexane (85 ml) and left under stirring for 15 min. To prepare 

Ni@CeO2 catalyst, having different weight percentage of Ni (20 wt%, 40 wt% and 80 
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wt%), desirable amount of Ni(NO3)2 was dissolved in 6 ml of water to prepare 2 M Ni 

metal solution and then added dropwise to the mixture of surfactant and oil. The solution 

was put on stirrer for 15 min and then sonicated for 15 min. The pH of the microemulsion 

was adjusted at 13 with the addition of ammonium hydroxide. Thereafter, solution was 

prepared separately by dissolving a desirable amount of cerium (III) nitrate and the 

quantity was chosen according to the required weight percentage of CeO2 in total catalyst 

weight. pH of the solution was adjusted at 13 by the addition of NH4OH and left for 

stirring for 1 hour. Later on, the prepared yellowish like precipitate was added to the 

above microemulsion system and sonicated for 25 min. The temperature was 

continuously monitored and controlled at room temperature by using ice cold water. After 

sonication, the sample was put on stirrer for 2 h at 650 rpm then ethanol (40 ml) was 

added as a destabilizer. Later on, centrifugation was done at 4000 rpm for 30 min and 

washing was done with ethanol. After washing, another cycle of centrifugation was 

repeated. The sample was dried for overnight at 80 oC and calcined at 450 oC for 2h. 

Ni@CeO2 catalysts prepared with different weight percentages of Ni (20 wt%, 40 wt% 

and 80 wt%) are denoted as NC1, NC2 and NC3, respectively.  

 

3.5.3 Catalytic activity 

Activity tests were carried out in a fixed-bed reactor made of stainless steel having 

6.03 cm outer diameter, 0.87 cm wall thickens and 120 cm length. To avoid the interaction 

of feed gas with stainless steel, a quartz tube with 3.56 cm internal diameter, 4 cm outer 

diameter and 120 cm length was placed inside the reactor obtained from Technical Glass 

Products (Painesville, USA). In this study, 0.5 g of catalyst was immobilized between 

two quartz wool plugs to serve as catalyst bed. The feeding gases (methane and carbon 

dioxide) flow rate was set at 1.0 L/min (CH4: CO2 = 1:1) and weight hourly space velocity 

(WHSV) of 1.2 x 105 ml g-1 h-1 or 120 L h-1g-1. The reduction of catalysts before each 
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activity run was performed with 30% H2/N2 at 550 oC for 2 h. Thereafter, the activity tests 

were conducted at different temperatures ranging from 550 oC to 800 oC at a temperature 

ramp of 5 oC/min. The stability of the catalysts was studied under the equimolar 

concentration of feed gas (CH4/CO2 = 1) and at reaction temperature of 800 oC. Mass 

flow controllers (0 - 2 L/min) were used to control the flow of feed gas purchased from 

Dwyer, USA. Rosemount Analytical X-STREAM on-line analyzer was used to measure 

the mole percentage of unreacted methane and H2 produced, while Guardian NG gas 

monitor supplied by Edinburgh Sensors (UK) was used to measure the composition of 

carbon dioxide and carbon monoxide at the outlet. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

Part 1: Synthesis of Ni nanoparticles and 20%Ni/MgO at different preparation 

parameters (surfactant ratio, aging time, calcination temperature, molar 

concentration) and investigating their catalytic activity and characterization. 

 

4.1 Characterization of fresh catalyst  

4.1.1 Surface area and pore volume 

The investigation on the porous nature of NiO nanoparticle and NiO/MgO 

catalysts prepared was executed by N2 adsorption-desorption measurements. In this study, 

pure magnesium oxide (MgO) exhibited 34.69 m2/g surface area and bare NiO 

nanoparticles exhibited surface area around 23.87 m2/g. The addition of MgO in 

microemuslion system depicted quite high surface area around 153.22 m2/g, which 

indicated the porous nature of MgO support. BET surface areas for the pure NiO 

nanoparticles prepared at different water to surfactant ratios are described in Table 4.1. 

According to the IUPAC classification, N2 adsorption/desorption isotherms for A2 (pure 

NiO) and Cat1 (NiO/MgO) exhibit a type III isotherm with a large type H3 hysteresis 

loop as shown in Figure 4.1(a). The formation of this type of hysteresis loop at relatively 

high pressure indicates the formation of large pore volume in the samples.  

 The study of isotherms for supported catalysts (Cat1, Cat2 and Cat3) indicate that 

the increase of calcination temperature leads to the decrease in surface area and 

mesoporous volume as mentioned in Table 4.2 and Figure 4.2(a). The catalyst calcined at 

lower temperature (Cat1-450 oC) exhibited higher surface area, smaller BET pore size 

and higher mesoporous volume. It was suggested that the lower calcination temperature 

is more favourable to form smaller pores with greater surface area in the structure of 

NiO/MgO solid solution (Feng et al., 2012). The results indicate that the calcination 

temperature has strong influence over the surface area and pore size distribution. Similar, 
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type of decrease in surface area from 38.0 m2/g to 27.4 m2/g was reported with the 

increase of calcination temperature from 600 oC to 800 oC, respectively for impregnated 

NiO/MgO catalysts (Feng et al., 2012). Another study also reported that the increase of 

calcination temperature from 600 oC to 900 oC lead to the decrease in surface area from 

89 to 30 m2/g for 2(Ni0.1Mg0.9)/Al catalyst (Djaidja et al., 2006). 

 The pore distribution of prepared catalysts was obtained from the analysis of 

adsorption branch of N2 isotherm by the Barret-Joyner-Halenda (BJH) method as 

depicted in Figure 4.1(b) and Figure 4.2 (b). It can be seen from the BJH pore size 

distribution plot that the majority of pore size culminates around 0 - 50 nm, however, the 

formation of fewer pores with higher size (50 nm to 150 nm) maybe be linked with the 

formation of voids due to inter-nanoparticles in contact. Furthermore, BJH average pore 

width for A2, Cat1, Cat2 and Cat3 was calculated to be around 22.56 nm, 15.06 nm, 24.88 

nm and 20.27 nm, respectively. The higher surface area and smaller particle size for 

supported catalyst indicates the excellent ability of MgO coating to resist agglomeration 

of NiO nanoparticles.  

 

 

Figure 4.1: (a) N2 adsorption-desorption isotherms (b) BJH pore width distrubition of 

A2 and Cat1. 
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Figure 4.2: (a) N2 adsorption-desorption isotherms (b) BJH pore width distrubition of 

NiO/MgO catalysts calcined at different temperatures. 

 

 

Table 4.1: Physical characteristics of NiO particles prepared at different 

microemulsion composition 

 

 

Table 4.2: Physical characteristics of NiO particles, MgO and NiO/MgO catalysts 

prepared at different calcination temperatures 

Catalyst BET 

SA 

m2/g 

Calcination 

temperature 

(oC) 

Mesoporous 

volume 

cm3/g 

BET 

pore size 

(nm) 

XRD 

crystallite 

size (nm) 

A2 23.87 450 0.1151 20.36 27.58 

MgO 34.69 450 0.8326 9.643 25.69 

Cat1 153.22 450 0.3856 10.26 18.81 

Cat2 63.45 600 0.3483 22.37 21.29 

Cat3 34.72 800 0.1264 15.14 22.21 

 

 

4.1.2 X-ray diffraction 

The study of the crystalline structure and size for pure NiO nanoparticles prepared 

by microemulsion system was identified by X-ray diffraction (XRD) patterns. Figure 

4.3(a) shows the XRD patterns for all the unreduced pure NiO nanoparticles obtained by 

calcining at 450 oC for 2 h.  Pure NiO exhibits sharp peaks at 2θ values of 37.28o, 43.44o, 

Sample 

ID 

ME 

system 

(W/S/O) 

W/S S/O BET 

SA 

m2/g 

Mesoporous 

volume 

cm3/g 

BET pore 

size (nm) 

XRD 

crystallite 

size (nm) 

A1 

A2 

12/18/70 

6/9/85 

0.66 

0.66 

0.257 

0.105 

5.19 

23.87 

0.0344 

0.1151 

30.34 

20.36 

39.09 

27.58 

A3 

A4 

9/18/73 

6/12/82 

0.5 

0.5 

0.246 

0.146 

3.86 

9.28 

0.0325 

0.0681 

36.85 

31.44 

32.08 

26.40 

A5 

A6 

7/21/72 

4/12/84 

0.33 

0.33 

0.291 

0.142 

3.65 

9.97 

0.0349 

0.0865 

39.62 

37.39 

31.36 

24.55 
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63.01o, 75.55o and 79.40o corresponding to respective crystallite phase of (111), (200), 

(220), (311), and (222). The peaks observed in this study for NiO are in good agreement 

with standard card of cubic NiO with JCPDS no. 01-073-1519. Figure 4.3(b) exhibits the 

XRD patterns for pure NiO (JCPDS no. 01-073-1519), pure MgO (JCPDS no. 01-079-

0612) and NiO/MgO (JCPDS no. 00-024-0712) catalyst. XRD patterns of MgO are quite 

similar to those of NiO patterns. 2θ values of MgO values are matched at 62.23o, 74.63o 

and 78.52o for their respective crystal phase of (220), (311), and (222), respectively. 

However, same crystalline phase was observed for NiO at 2θ values but were greater by 

values of 0.78o, 0.92o and 0.88o than MgO. The similar results were reported by another 

study for the preparation of NiO/MgO catalyst (Feng et al., 2012). The formation of NiO-

MgO solid solution will be identified using the three diffraction lines at 2θ values of 

62.37o, 74.80o and 78.54o. These diffraction peaks are present in all the prepared catalysts 

and can be dedicated to the presence of NiO-MgO solid solution or MgO. Similar type of 

diffraction lines was reported by another study at same 2θ values (62.32o, 74.72o and 

78.66o). However, it is difficult to distinguish between the diffraction peaks of NiO, MgO 

and NiO-MgO solid solution (Hua et al., 2010). This has been dedicated to the similarity 

in their oxides structure (NiO and MgO) both having face-centered-cubic structures with 

very similar lattice parameters (4.1946 and 4.2112 Ao, respectively) and quite matching 

bond distance at 2.10 and 2.11 Ao for both NiO and magnesium oxides, respectively (Y. 

J. Asencios et al., 2011). Figure 4.3(b) clearly indicates the diffraction peaks observed 

near the above 2θ values indicating the formation of NiO-MgO solid solution. The 2θ 

values of Cat1 at 43.02o and 62.37o become weaker and broad compared to pure Cat2 and 

Cat3 at similar diffraction lines. Thus, indicating the higher dispersion of Ni particle and 

smaller particle size as confirmed by BET results also (Hua et al., 2010). Furthermore, 

even though XRD indicates the formation of NiO-MgO solid solution but the strength of 
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solid solution formation ranging from mild to very strong metal-support interaction will 

be investigated by TPR studies.  

 

Figure 4.3: (a) XRD patters for pure NiO particle, (b) XRD patters of NiO/MgO 

catalysts prepared at different calcination temperatures. Where ( ) presents NiO-MgO 

solid solution, ( ) presents NiO crystallite peaks and ( ) presents MgO crystallite peaks. 

 

 

4.1.3 Temperature-programmed reduction 

The reducibility characteristics of the catalysts has been studied widely by 

temperature-programmed reduction-H2 (TPR-H2) and is an established technique to 

distinguish between various species in solid solution. Two peaks were observed for Cat1, 

one at very low temperature 122.1 oC and other at quite high temperature 365.1 oC (Figure 

4.4(b)). The lower temperature peaks can be ascribed to the reduction of bulk NiO and 

higher reduction peak can be ascribed to the reduction of Ni3+ surface species located at 

surface sites for NiO/MgO catalyst. However, for Cat1the higher reduction peaks (> 500 

oC), which are the indication of strong metal-support interaction were not observed 

because of the lower calcination temperature used. The indication of strong metal-support 

interaction was exhibited at quite higher reduction temperature peaks greater than 500 oC 

as reported in many studies (Feng et al., 2012; M. Yu et al., 2014). The higher H2 uptake 

capacity for pure NiO indicates the higher reducibility referring to its higher NiO content 

(Figure 4.4(a)). Furthermore, the addition of MgO leads to the lower H2 uptake capacity 

for NiO/MgO catalysts and reduction temperature was shifted to slightly higher 

temperature from 347.2 to 365.1 oC. It has been strongly agreed that the extent of NiO 
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incorporation into NiO-MgO solution depends strongly on the calcination temperature. 

Therefore, the application of higher calcination temperature in Cat2 and Cat3 indicated 

the higher reduction peak temperatures 703.9 oC and 809.8 oC, respectively (Figure 

4.4(b)). The higher temperature reduction peak (703.9 oC) for Cat2 indicates the reduction 

of Ni2+ ions in the outermost and sub-surface layers of the MgO lattice. While, for 

Ni/MgO catalyst calcined at 800 oC, the higher reduction peak temperature indicates the 

reduction of lattice Ni2+ ions in the MgO matrix. Both peaks of Cat2 and Cat3 at higher 

reduction temperature are the indication of the formation of strong NiO-MgO solid 

solution. It can be concluded from the results that the NiO was completely diffused into 

the MgO to form strong NiO-MgO solid solution. This behaviour indicates the presence 

of strong metal-support interaction which restricts the reduction of NiO, owing to the 

formation of solid solution of NiO-MgO (Y. J. Asencios et al., 2011). 

 

 

Figure 4.4: (a) TPR profiles of pure Ni particles and (b) Ni/MgO catalyst calcined at 

different temperatures  

 

 

4.1.4 Temperature-programmed desorption 

The basicity of the catalysts was investigated by temperature-programmed 

desorption CO2 (TPD-CO2). The strength of basic sites is described as the temperature 

where the chemisorbed CO2 on the basic sites is desorbed. Therefore, the desorption of 

CO2 occurring at lower temperature indicates the presence of weak basic sites and 
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similarly strong basic sites are linked with the CO2 desorption peaks at higher 

temperature. TPD profiles for the catalysts calcined at lower calcination temperature 

(Cat1) indicates the presence of two major peaks, one being at lower temperature 252.4 

oC and other at higher temperature (653.4 oC). The desorption peaks of CO2 at lower 

temperature indicates the presence of weak basic sites, while the higher temperature peaks 

exhibit the existence of strong basic sites. TPD- CO2 profiles in Figure 4.5 indicates that 

the calcination temperature has strong influence over the enhancement of strong basic 

actives. The increase of calcination temperature (450 to 800 oC) shifts the CO2 desorption 

peaks to the higher temperature indicating that higher calcination has a strong influence 

on the formation of strong basic sites. Moreover, the desorption peak temperature at 

higher temperature can be dedicated to the decomposition of carbonate formed earlier 

from the interaction between catalyst and CO2. The increase in calcination temperature 

from 450 oC to 800 oC leads to the conclusion that Cat3 has desorbed CO2 very small 

compared to Cat1 and Cat2. The increase in calcination temperature (450 to 800 oC) shifts 

the CO2 desorption peak temperature from 653.4 oC to 896.03 oC indicates the existence 

of strong basic sites and all the NiO has incorporated in MgO phase to form NiO-MgO 

solid solution as described by the higher reduction peaks in TPR profiles.  

 

Figure 4.5: TPD-CO2 profiles of Ni/MgO catalyst calcined at different temperatures 
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4.1.5 TEM and EDX analysis 

TEM analysis depicts the morphology and structural characteristics of Ni/MgO 

catalyst (Cat1) exhibited that the addition of coating material (MgO) leads to the better 

nanoparticle distribution and also restricts the agglomeration of Ni nanoparticles (Figure 

4.6). This leads to higher surface area and smaller particle size for supported Ni/MgO 

catalysts as evident in BET results. Furthermore, EDX analysis indicates the weight 

percentages of A2 (pure NiO) and Cat1 (NiO/MgO) before reduction in Figure 4.7(a) and 

Figure 4.7(b), respectively. 

 

Figure 4.6: TEM images of the fresh Cat1 

 

Figure 4.7: EDX analysis of fresh A2 (a) and Cat1(b) before reduction. 

 

4.2 Influence of different microemulsion parameters 

4.2.1 Effect of surfactant, water and oil composition 

In the synthesis of nanoparticles by microemulsion system, the concept of the size 

of microemulsion droplet is very important, which depends solely on the solution 
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composition. The role of surfactant is not only to serve as a protective agent but also to 

restrict the agglomeration of nanoparticles. Therefore, the choice of microemulsion 

composition is critical steps in the synthesis of nanoparticles because it will not only 

affect the stability of microemulsion system but will play a major role to alternate the 

particle size. In this study, several microemulsion composition were chosen according to 

ternary phase diagram of water/Igepal CO-520/cyclohexane.  

In this set of experiments, the microemulsion system with lower water content for 

each water/surfactant ratio (0.33, 0.5, 0.66) exhibited higher surface area and smaller 

particles size. The detail of water to surfactant, surfactant to oil ratios (A1, A2, A3, A4, 

A5 and A6) along with different characteristics of nanoparticles such as: BET surface 

area, mesoporous volume, pore size and crystallite size are listed in Table 4.1. N2 

adsorption-desorption isotherms for these six samples are shown in Appendix A.  A closer 

look at individual water/surfactant ratio (e.g., 0.66) leads to the conclusion that the results 

are consistent with basic microemulsion function that the microemulsion system with 

lower water content produced higher surface area and smaller particle sizes. Furthermore, 

it also describes that smaller microemulsion droplet formation plays more critical role in 

this scheme of experiments rather than surfactant/oil ratio.  

The microemulsion system, dynamics, nanoparticle synthesis has been 

extensively reviewed previously and reached different conclusion (Eriksson et al., 2004; 

Lopez-Quintela, 2003; López-Quintela et al., 2004; M.-P. Pileni, 2003; M. Pileni, 1997). 

Water content in microemulsion system is described mostly by the water-to-surfactant 

ratio, however, it is important to recognize that water content can be increased not only 

by increasing water to surfactant ratio but also by increasing surfactant concentration in 

the microemulsion system (Eastoe et al., 2006). The similar trend has been depicted in 

Table 4.1 that at constant water to surfactant ratio (e.g., 0.66) the increase of surfactant 

weight ratio from 9 wt% to 18 wt% results in the increase of water content from 6 wt% 
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to 12 wt%, respectively. Previous study showed that final particle size will be dependent 

on initial water to surfactant ratio and have better control over the nanoparticle synthesis 

by merely changing water to surfactant ratio(Berkovich et al., 2002; I Lisiecki & Pileni, 

1993, 1995; Natarajan et al., 1996; M. Pileni, 1997). 

Another study exhibited the similar trend that the increase of water content 

induces a slight increase in droplet diameter Dh (from 24 to 32 nm) leads an increase in 

equivalent spherical diameter D (from 7.5 to 8.2) of the γ–Fe2O3 particles synthesized. 

Hence, leading to the conclusion that microemulsion droplet diameter played an 

important role in the control of average size of synthesized nanoparticles (Vishal Chhabra 

et al., 1996). The results from our study also matched with another study in which they 

reported that the increase of water content at constant water to surfactant ratio induces an 

increase in microemulsion droplet size due to the increase of water content in the 

microemulsion system and produced larger particle size of the synthesize nanoparticles 

(Chandradass et al., 2010; Chandradass & Kim, 2009). The increase of water content has 

been ascribed to the increase of droplet size which leads to the surfactant films becomes 

thinner and enhancing the exchange process. This would give rise to larger particle size 

(López-Quintela et al., 2004). The size of microemulsion water core is tuneable with the 

adjustment of water/surfactant ratio and assist in the control of the diameter of the 

nanoparticle in the ME. Therefore, the nucleation and growth of Ni nanoparticles is 

suggested to be diffusion-controlled process through interaction between micelles, 

however, other factors such as phase behaviour, solubility, dynamic behaviour of 

microemulsion, the reagent concentration in the water core also play important role in the 

synthesize of nanoparticles and affecting the morphology (Chandradass et al., 2010; 

Chandradass & Kim, 2009). 

In the above section, the influence of water/surfactant ratio was discussed in detail 

with respect to water content, however, the final particle size of the nanoparticles depends 
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also on the average number of micelle exchange. In Table 4.1, the study exhibited that at 

constant water to surfactant ratio the microemulsion system with lower water content 

leads to the continuous decrease in the particle size and respective increase in the surface 

area. This can be described by the concept of free and bound water which has considerable 

influence over the particle synthesis and morphology. The microemulsion system with 

lower water content is considered to be bound and the micelle interface is said to be rigid 

having insufficient water available to solvate both polar head group of surfactant and 

counter ion. Thus, the rigid nature of micelle interface leads to the lower rates of 

intermicellar exchange and in turn lower growth rates (Eastoe et al., 2006). 

The rate of micellar exchange depends upon the intermicellar potential and the 

rigidity of the surface. The higher net intermicellar potential will tend to favour growth 

interactions forming larger particles. On the other hand, the less intermicellar interaction 

will result in few micellar exchanges favouring smaller particles. The higher surface area 

in the lower water content microemulsion system is related to the rigid interface, which 

limits the rate of micellar exchange collisions and resulting in smaller particle size. A 

more rigid interface favours requires a large collision energy to effect a successful micelle 

exchange (M. Pileni, 1993, 1997, 1998). This intermicellar potential depends upon many 

factors such as micelle size, solvent molar volume, salinity and electrostatic charge. The 

increase of water content at constant water/surfactant ratio, the reverse micelle size 

increases. The increase of micelle size leads to two different phenomena: a) The 

intermicellar attraction potential increases and produced larger particle size. b) The 

increase of water content would lead to the lower rigidity due to the hydration of 

surfactant polar head group and lower interaction energy between water and the 

surfactant. This in turn leads to lower interfacial rigidity and an increase in particle size 

will be observed (M. Pileni, 1998).  
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4.2.2 Effect of aging time 

The selection of proper aging time plays an important role in the synthesis of 

nanoparticles via microemulsion synthesis. The effect of different aging times (0.5 h (T1), 

2 h (T2), 8 h (T3) and 24 h (T4)) were studied for their influence on surface area as 

depicted in Figure 4.8. The influence of different aging time (1.5, 3, 6, 24) for the 

preparation of Ni@SiO2 reported better morphology with narrow size distribution and 

have better cavity length distribution at base case for 3h (Dahlberg & Schwank, 2012). 

The further increase in aging time lead to the increase in the cavity length formation and 

produce longer nanotube instead of more organize spherical shapes. An investigation on 

the influence of aging time over the synthesis of SiO2 nanoparticle via microemulsion 

system reveals that with the increase of aging time, there was seen an increase in SiO2 

particle size (Lin, 2006). Therefore, in our study aging time of 2 h for chosen as a base 

case for the preparation of Ni nanoparticles. N2 adsorption-desorption isotherms for the 

influence of different aging times (T1, T2, T3 and T4) are shown in Appendix B.  

 

Figure 4.8: BET surface area for NiO particles at different aging times. 

 

4.2.3 Effect of calcination temperature: 

Activation methods has been considered to play an important role in the reactivity 

and stability of catalysts and it has been reported that calcination is a critical step in 
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controlling the size of Ni nanoparticles which in turn influence the activity and stability. 

The influence of calcination temperature for Ni/Al2O3 catalysts exhibited that the increase 

of calcination temperature from 300 to 750 oC lead to the decrease in surface area from 

170 to 105 m2/g (Jiuling Chen et al., 2009). This decrease in surface area was dedicated 

to the coalescence of NiO particles. It was reported that not only the surface area was 

decreased with the increase of calcination temperature but also the catalytic activity was 

decreased for the catalysts calcined at higher calcination temperature. A similar type of 

decrease in the surface area and increase in NiO domain size (from 31 nm to 92.7 nm) 

was reported with the increase of calcination temperature (from 600 to 1000 oC) for Ni-

Mg catalysts (Moliner et al., 2008). Therefore, in this study the influence of different 

calcination temperatures (450 oC (C1), 600 oC (C2), 750 oC (C3), 900 oC (C4) and 1000 

oC (C5)) was investigated over Ni nanoparticles formed by microemulsion system. The 

study exhibited that with the rise of calcination temperature, a decrease in surface area 

was noticed as shown in Figure 4.9. It can be concluded that the lower calcination 

temperature was suitable for the synthesis of higher surface area, smaller particle size and 

smaller crystallite size. N2 adsorption-desorption isotherms for the influence of different 

calcination temperatures (C1, C2, C3, C4 and C5) are shown in Appendix C.  

 

Figure 4.9: BET surface area for NiO particles at different calcination temperature. 
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4.2.4 Effect of molar concentration 

The choice of Ni metal concentration in the microemulsion system not only 

influences the final metal size but also plays an important role in the stability of the 

reverse micelle. The increase in precursor molar concertation would decrease the stability 

of reverse micelle which results in the occurrence of coalescence of metal particles and 

in turn produce higher metal particle size. Therefore, it is important to select suitable Ni 

molar concentration in microemulsion system. In this study, we have investigated 

different Ni metal concentrations such as: 2M (M1), 3M (M2), 5M (M3) and 7M (M4). 

BET analysis of different prepared samples indicate that the higher surface area for the 

samples having lower metal concentration as depicted in Figure 4.10. (T. Wu et al., 2013) 

reported that the different copper (Cu2+) concentration (0.07, 0.1 and 0.15M) in Cu-

Ni@SiO2 catalysts lead to the different particle size and depicted different crystal growth 

kinetics. The study reported that higher metal concentration (0.15 M) lead to the 

formation of unstable microemulsion and fast growth of crystals. The fast growth of 

nanoparticles would lead to the aggregation of water droplets producing larger size of 

particles. Another study also reported similar type of results for cobalt concentration in 

the microemulsion system. The study suggested that the increase in metal concentration 

would lead to the higher fraction of micelles containing nuclei and therefore it is highly 

probable that the interaction of micelle having metal particles increase and will produce 

larger particle size (Barber, 2005). Therefore, in this study the increase in metal 

concentration from 2M to 7M lead to the severe decrease in surface area from 23.87 to 

0.5640 m2/g. N2 adsorption-desorption isotherms for the influence of different calcination 

temperatures (M1, M2, M3 and M4) are shown in Appendix D.  
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Figure 4.10: BET surface area for NiO particles at different Ni molar concentration. 

 

 

4.3 Activity and stability test 

The study of catalytic activity with respect to temperature for Cat1 and A2 was 

seen to increase with the rise of temperature, which was attributed to the thermodynamic 

nature of dry reforming reaction. Figure 4.11 exhibits the methane and carbon dioxide 

conversion for A2 and Cat1 with temperature ranging from 550 to 850 oC. Higher 

methane (49.93%) and carbon dioxide (54.80%) conversion was observed for Cat1 

compared to pure Ni nanoparticles (18.72% CH4 and 21.80% CO2).  

 
Figure 4.11: Methane and carbon dioxide conversion with respect to temperature for 

pure Ni and Ni/MgO catalyst.  

 

The higher catalytic activity of supported catalysts can be dedicated to its higher 

surface area, smaller particle size and also the strong metal-support interaction compared 
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to pure Ni nanoparticles as described by BET and TPR results. The investigation on the 

stability of Cat1 at different temperature (750 oC, 800 oC and 850 oC) indicates that among 

these three temperatures, 750 oC was suitable for dry reforming of methane. The 

application of higher temperature lead to the lower reactants conversion at the end of 

reaction time (140 min) as indicated in Table 4.3. However, Cat1 exhibited the higher 

stability despite the fact it has higher carbon deposition compared to the reaction studied 

at 800 oC and 850 oC. Thus, exhibiting the fact that carbon deposition does not lead to the 

severe deactivation and the occurrence of coke deposition are not affecting the stability 

of the catalysts. 

 Furthermore, the stability test of the A2 and Cat1 indicates the higher stability for 

Ni/MgO catalysts compared to bare Ni nanoparticles (A2), which deactivated within 20 

min of the reaction time. This led to the conclusion that the addition of MgO in the 

microemulsion system has significant effect on the reactivity and stability of catalysts but 

also resist towards the sintering of the catalyst. The stability study of different catalysts 

(Cat1, Cat2 and Cat3) calcined at different temperatures (Table 4.3) indicates that the 

catalyst calcined at lower calcination temperature (Cat1) depicted higher stability 

compared to the catalysts calcined at higher calcination temperatures (Cat2 and Cat3) as 

shown in Figure 4.12. The results from the stability study of the catalysts calcined at 

different temperatures are interesting and vary from the general trend, which suggest that 

the formation of strong NiO-MgO solid solution is favourable for dry reforming of 

methane and will exhibits higher activities. However, there are studies reporting 

otherwise and suggests that not all the times the increase of calcination temperature for 

Ni/MgO and strong solid solution formation leads to the higher activities and stabilities. 

Two set of catalysts Ni0.05Mg0.95 (solid solution) and 5%Ni/MgO were prepared by co-

precipitation and impregnation, respectively (Djaidja et al., 2006). Ni0.05Mg0.95 catalysts 

exhibited very low catalytic activity only 1% CH4 conversion and 1.4% CO2 conversion. 
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On the other hand, 5%Ni/MgO exhibited higher initial methane and carbon dioxide 

conversion (> 80%). The comparison of the activity of two catalysts having same weight 

percentages of Ni suggests that this rapid increase was due to the higher surface area of 

5%Ni/MgO (46 m2/g) compared to Ni0.05Mg0.95. Moreover, the increase in conversion 

was dedicated to the easier accessibility of the Ni active sites in 5%Ni/MgO, which seems 

difficult on Ni-Mg solid solution for Ni0.05Mg0.95.  

 NiO/MgO catalyst prepared at three different calcination temperatures denoted as 

MPF12-Std (calcined at 400 oC), MPF12-6 (calcined at 600 oC), MPF12-8 (calcined at 

800 oC) was applied to steam reforming of methane (Parmaliana et al., 1993). The study 

reported that the MPF12-std exhibited higher catalytic activities compared to other 

catalysts calcined at higher temperature (MPF12-6, MPF12-8). The study also reported 

that MPF12-Std exhibited higher stability, while MPF12-6 exhibited the second highest 

and MPF12-8 exhibited a strong decrease in the catalytic activity. They also suggested 

that the catalyst calcined at lower temperature MPF12-Std may not form complete solid 

solution but MPF12-8 certainly formed a solid solution. The similar trend is observed in 

our study that the catalysts calcined at lower temperature exhibited higher stability 

followed by the Cat2 and Cat3 exhibited the lower reactivity. This can be attributed to the 

higher surface area, smaller particle size and easier accessibility of Ni active sites 

compared to Cat2 and Cat3.  

 The lower catalyst performance of Cat2 and Cat3 can be described by the TPR 

results, which depicts that the formation of strong solid solution leads to the reduction of 

rare NiO species. Thus, the smaller number of active sites describe the lower reactants 

conversion as mentioned in Table 4.3 and Figure 4.12. However, for the same weight 

percentage of Ni in Cat1, TPR results depicts the number of reduced active sites increases, 

which arises due to the comparatively weak metal support interaction and thus increase 

in active sites leads to the increase in conversion. XRD analysis of spent catalyst (Cat1) 
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also indicates the presence of more intense Nio diffraction peaks compared to Cat2 and 

Cat3 leading to the fact that it has more active sites and thus higher conversion was 

observed (Figure 4.12). Furthermore, the study exhibited the reduction of surface area 

with the increase of calcination temperature as described in Table 4.2. The higher BET 

surface area observed for Cat1 provides a larger contact area for the reactants that lead to 

the higher catalytic performance. However, for the catalysts calcined at higher 

temperature there was seen a significant decrease in surface area and mesoporous volume, 

which describes well the lower reactivity and stability of the catalysts.  

 Moreover, the decrease in surface area decreases the number of active sites 

exposed to the chemical atmosphere or reactant gases. It can be deduced from the 

reactivity tests that the catalysts calcined at higher temperature has lower methane and 

carbon dioxide conversion, lower BET surface area and consequently the amount of 

carbon on the catalysts was low too. The catalytic activity and stability of the catalysts 

follows the same trend as their surface area and the mesoporous volume such as: Cat1 > 

Cat2 > Cat3 > A2. The correlation of the catalyst stability and carbon deposition indicates 

the fact that the catalyst stability and carbon deposition are not correlated. The study 

indicates that Cat2 and Cat3 has lower carbon deposition compared to Cat1, even then 

Cat1 exhibits the better stability after reaction period. The occurrence of carbon 

deposition has led to some extent of catalyst deactivation but our study indicates that it 

should not be the deciding factor that the catalyst having higher carbon deposition will 

always exhibit poor stability. The simultaneous occurrence of higher activity and carbon 

deposition leads to the conclusion that both the reforming and carbon formation may 

occur over the catalyst surface active sites (D. Liu, Lau, et al., 2009). Table 4.3 indicates 

that the catalysts with higher calcination temperature (Cat2 and Cat3) exhibited lower 

reactants conversion and consequently lower carbon deposition rates. This indicates the 

fact that even though the higher carbon resistance of the catalysts maybe attributed to the 
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very strong NiO-MgO solid solution but the lower decomposition rates of the reactants 

also contributed to the lower carbon deposition. Similar types of results were reported for 

NiO-MgO-ZrO2 catalysts applied for reforming of model biogas (Y. J. Asencios et al., 

2011). The catalysts (NiZ, Ni4MZ) having lower decomposition rates exhibited the lower 

carbon deposition (10 and 23 mmol h-1) compared to the catalysts Ni20MZ and NiM, 

which exhibited higher decomposition rates accompanied with higher carbon deposition 

of 26 and 46 mmol h-1, respectively. The impregnation of noble metal (Rh) into Ni-MCM-

41 catalyst for dry reforming of methane and reported that Rh@Ni-MCM-41-V exhibited 

stable and high activities (Arbag et al., 2010).  

 Although XRD results indicated the presence of intense peaks for graphitic carbon 

(26.0o) for this catalyst and the study concluded that coke formation on the surface did 

not cause major deactivation. Furthermore, the better performance of Rh@Ni-MCM-41-

V catalysts maybe attributed to the porous nature of coke formed allowing the transport 

of reacting gases to the active sites. Furthermore, all the tested catalysts in the stability 

and activity tests exhibited higher CO2 conversion compared to CH4 conversion and the 

detection of traceable amount of water at the outlet indicates the occurrence of another 

important reaction called as reverse water gas shift reaction (RWGS) as described in 

equation 4.1 (Meshkani & Rezaei, 2011; Zanganeh et al., 2013). The lower H2 production 

compared to CO in this study can be dedicated to its consumption in RWGS reaction and 

results in higher CO2 conversion and CO production.  

   CO2 + H2  →  CO + H2O  ∆H298K
o  = 41.0 kJ/mol  (4.1) 

The catalytic activity and stability indicates that the lower calcination temperature 

is suitable for dry reforming of methane for the catalysts prepared by microemulsion 

system for this MgO rich solid solution. 
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Table 4.3: Initial and final reactants conversion along with their carbon deposition at 

different calcination and reaction temperatures. 

a: stability of pure Ni at initial and after 20 min, Tc: calcination temperature; Tr: 

Reaction temperature. 

 

 

Figure 4.12: Methane and carbon dioxide conversion with respect to time at 750 oC 

for pure Ni and Ni/MgO catalysts calcined at different temperatures.  

 

4.4 Characterization of spent catalyst  

XRD patters of the spent catalysts (Cat1 and Cat2) indicate the characteristics of 

graphite peak (002) around 26o indicating the crystalline phase of CNTs matching with 

JCPDS no. 01-075-1621 (Figure 4.13).  However, no such peaks related to graphite 

carbon was observed for Cat3 and matched well with the reported coke deposition in 

Table 4.3. XRD analysis of the spent catalyst (Cat1, Cat2 and Cat3) indicates the presence 

of Nio peaks (at 44.48o, 51.83o and 76.35o) matching with JCPDS no. 01-070-1849. The 

intensity of these peaks was strong for Cat1 compared to Cat2 and Cat3, which exhibits 

weak diffraction peak related to Nio indicating the fact that not all NiO present in NiO-

MgO is reduced and still have intact strong NiO-MgO solid solution. XRD analysis also 

Sample 

ID 

Tc (oC) Tr (oC) Initial % Conv. Final %Conv. 

(after 140 min) 

Carbon 

deposition 

(gc/gcat)  CH4 CO2 CH4 CO2 

Cat1 450 750 46.13 51.40 34.30 37.60 2.648 

Cat1 450 800 45.43 50.80 24.83 22.40 0.820 

Cat1 450 850 46.44 55.20 27.98 27.00 0.122 

Cat2 600 750 41.26 48.00 26.95 27.20 0.244 

Cat3 800 750 25.39 30.40 19.29 17.40 0.034 

A2a 450 750 15.06 14.60 7.69 1.80 0.016 
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indicated the broad and strong Nio peaks, which suggests that these samples have more 

active sites on Nio under these reaction conditions and matches well with the higher 

conversion rates. However, Cat2 and Cat3 exhibited less intense peaks related to Nio 

species and the presence of strong NiO-MgO solid solution peaks exhibits the fact that 

there are less accessible active Nio sites.   

 
Figure 4.13: XRD analysis of spent catalysts where ( ) presents NiO-MgO solid 

solution, ( ) presents Ni crystallite peaks and ( ) presents graphite crystallite peaks. 

 

  The characterization of spent catalysts (Cat1, Cat2, Cat3, A2) by TEM and 

FESEM analysis exhibits the coke formation in different quantities and matches well with 

the reported Table 4.3 and XRD analysis. TEM images of Cat1 indicates the presence of 

homogenous distribution of CNTs covering MgO-based catalysts. The catalysts surface 

seems to completely cover by filamentous carbon. Moreover, TEM images of Cat1 

(Figure 4.14(a-c)) indicates the formation of majority whisker carbon species with a 

hollow internal channel having the open-end structure and no Ni particles found at the tip 

of CNTs. TEM images of Cat1 indicated that the carbon deposited was majorly 

filamentous type (whisker-like), however, the presence of encapsulating like carbon, 
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which have a shell-like structure was not seen. This whisker like carbon deposits does not 

cause catalyst deactivation as described by the stability test and matches well with the 

studies reported previously (Arbag et al., 2010; D. Chen et al., 2001; Montoya et al., 2000; 

Tomishige et al., 1999; Tomishige et al., 1998). The study suggests that only shell-like 

carbon have the deactivation behaviour. Similar results were reported by Kroll and swan 

for their study on the deactivation behaviour of Ni-based catalysts for dry reforming of 

methane (Kroll, Swaan, et al., 1996b; Swaan et al., 1994). They reported that whisker like 

carbon have very little toxicity but shell-like carbon deposits has higher toxicity and has 

tendency to encapsulate Ni particles hindering the access of reacting sites to active 

surface. Furthermore, TEM images indicates that the filamentous carbon was of different 

diameters indicating the presence of a distribution of Ni crystallite sites. The difference 

between the catalytic activity and stability of Cat1 and A2 can be linked with the type of 

carbon deposits as depicted by TEM and FESEM images in Figure 4.14(a-c) and Figure 

4.15(c,d). FESEM images of pure Ni indicates the formation of globular carbon and also 

strong agglomeration of Ni particles can be seen in the spent catalyst depicting its lower 

catalytic activity and strong deactivation. FESEM images of Cat2 (Figure 4.14(d)) and 

Cat3 (Figure 4.15(a,b)) indicates the lower quantities of carbon deposition and matches 

well with the XRD analysis. FESEM images of Cat3 indicates the agglomeration of 

supported catalysts and thus lead to the lower conversion rates.  
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Figure 4.14: TEM images of spent Cat1 (a,b,c) and FESEM images of Cat2 (d) after 

stability test. 

 

Figure 4.15: FESEM images of spent Cat3 (a,b) and pure Ni (c,d) after stability test. 
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4.5 Summary 

The synthesis of pure Ni nanoparticles by microemulsion synthesis approach 

indicates that water content plays an important role on the surface area of Ni particles. 

The increased water content at constant water-to-surfactant ratio leads to the higher 

intermicellar attraction potential and also the lower rigidity of the micelles, which in turn 

produced larger particle size or lower surface area. Furthermore, higher calcination 

temperature (800 oC) exhibited a decrease in catalytic activity compared to the catalysts, 

which were calcined at lower calcination temperature (450 oC).  

 

Part 2: An investigation on the influence of catalyst composition, calcination and 

reduction temperatures on Ni/MgO catalyst for dry reforming of methane. 

 

4.6. Characterization of fresh catalyst 

4.6.1 X-Ray diffraction 

X-ray diffraction (XRD) patterns of NiO, MgO and NiO/MgO catalyst gave 

insight into the crystallite size as shown in Figure 4.16. Pure NiO exhibits sharp peaks at 

2θ values of 37.28o, 43.44o, 63.01o, 75.55o and 79.40o corresponding to the respective 

crystallite phase of (111), (200), (220), (311), and (222), which matches well with 

standard card of cubic NiO with JCPDS no. 01-073-1519. Furthermore, pure MgO and 

NiO/MgO catalyst matched well with the standard card of cubic JCPDS no. 01-079-0612 

and JCPDS no. 00-024-0712, respectively. The presence of diffraction lines at 2θ values 

of 62.37o, 74.80o and 78.54o are attributed to the formation of NiO-MgO solid solution 

and in the present study for all the catalysts (CS1to CS5), these diffraction lines are 

present indicating the formation of NiO-MgO solid solution. Another study also reported 

the formation of NiO-MgO solid solution at similar 2θ values (62.32o, 74.72o and 78.66o) 

(Hua et al., 2010). However, the close similarity of NiO and MgO in their oxides structure 
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both having face-centered-cubic structures and also having similar lattice parameters 

(4.1946 and 4.2112 Ao) makes it quite difficult to distinguish between the diffraction 

peaks of NiO, MgO and NiO/MgO (Y. J. Asencios et al., 2011). Furthermore, Figure 4.16 

clearly indicates that with the increase of Ni content (20% to 80%) diffraction peaks 

become narrow indicating the increase of crystallite size (Table 4.4). The broad 

diffraction peaks for CS1 indicates the presence of small crystallite size, which matches 

well with the BET results for CS1 exhibiting larger surface area (Table 4.4).  

 
Figure 4.16: XRD patterns of calcined catalysts, where ( ), ( ), and ( ) presents 

NiO-MgO solid solution peaks, NiO crystallite peaks and MgO crystallite peaks, 

respectively. 

 

4.6.2 Surface area and pore volume 

BET surface area and pore size distribution of the catalysts were measured by N2-

physisoorption. The isotherms of nitrogen adsorption and desorption for these catalysts 

were found to be type III isotherm with a large type H3 hysteresis loop according to the 

IUPAC classification. The formation of type H3 hysteresis loop at relatively high pressure 

indicates the formation of large pore volumes in the samples. N2 adsorption/desorption 

isotherms for NiO, MgO, CS1 and CS2 are depicted in Figure 4.17(a). N2 isotherms for 
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catalysts (CS3, CS4 and CS5) having higher Ni weight percentage (80%) and calcined at 

different temperatures are exhibited in Figure 4.18(a). The surface area of pure NiO 

nanoparticles and MgO was 23.87 m2/g and 34.69 m2/g, respectively. An increase in 

surface area was observed for the supported catalysts (CS1, CS2, CS3) calcined at 450 

oC with the addition of MgO support as depicted in Figure 4.17(a), Figure 4.18(a) and 

Table 4.4. However, with the increase of Ni content (CS1 to CS3), there was seen a 

decrease in surface area from 153.22 to 54.01 m2/g. The decrease of surface area with the 

increase of Ni content can be attributed to the deposition of Ni onto smaller pore of 

support. A further decrease in the surface area from 54.01 m2/g to 15.19 m2/g was 

observed with the increase of calcination temperature from 450 oC (CS3) to 800 oC (CS5), 

respectively as depicted in Table 4.4 and Figure 4.18(a). Pore size distribution of catalysts 

was determined by Barret-Joyner-Halenda (BJH) method based on adsorption branch of 

N2 isotherm as shown in Figure 4.17(b) and Figure 4.18(b). Furthermore, BJH average 

pore width sizes for NiO, MgO, CS1, CS2, CS3, CS4 and CS5 were calculated to be 

around 22.56 nm, 12.41 nm, 15.06 nm, 18.04 nm, 15.34 nm, 27.04 nm and 30.85 nm, 

respectively.  

 

Figure 4.17: (a) N2 adsorption-desorption isotherms and (b) BJH pore width 

distribution of calcined catalysts. 
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Figure 4.18: (a) N2 adsorption-desorption isotherms and (b) BJH pore width 

distribution of calcined catalysts. 

 

Table 4.4: BET surface area, total pore volume and XRD crystallite size of calcined 

catalysts. 

Catalyst BET 

SA m2/g 

Pore 

volume 

cm3/g 

BET 

pore 

size 

(nm) 

Average 

crystallite 

size (nm) 

Average Nio size (nm)d 

spent 

catalyst 

reduced at 

550 oC 

spent 

catalyst 

reduced 

at 800 oC 

NiO 23.87 0.1215 20.36 27.58a - - 

MgO 34.69 0.0836 9.643 25.69b - - 

CS1 153.22 0.3932 10.26 18.81c 50.82 - 

CS2 125.82 0.4401 13.92 26.69 56.71 - 

CS3 54.01 0.2121 15.70 27.09 30.98 32.63 

CS4 29.11 0.1634 22.46 28.56 44.07 47.63 

CS5 15.19 0.0794 20.91 33.90 27.22 32.54 
aBased on all NiO peaks in JCPDS no. 01-073-1519; bBased on all MgO peaks in JCPDS 

no. 01-079-0612; cBased on all NiO-MgO peaks in JCPDS no. 00-024-0712; dBased on 

Nio peaks located at 44.48o and 51.83o. 

 

4.6.3 Temperature-programmed reduction 

Surface reducibility of the catalysts were examined by TPR-H2, which has been 

recognized as a technique to discriminate various species in solid solutions. TPR profiles 

of the Pure NiO and Ni/MgO catalysts are exhibited in Figure 4.19. The higher 

reducibility of pure NiO exhibited by higher H2 uptake refers to the reduction of bulk NiO 

as shown in Figure 4.19(a). TPR profiles of supported catalysts (CS1, CS2 and CS3) 

exhibited two peaks one at very low temperature (TL) and second peak at quite higher 

temperature (TH) except for CS1 for which the second peak also appear at medium 

temperature (TM) around 365.1 oC. The presence of temperature peaks (< 400 oC) can 
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either be attributed to the reduction of Ni3+ surface species located at surface sites for 

Ni/MgO catalyst or to the reduction of NiO which was uninfluenced by the MgO support. 

The presence of higher reduction peaks temperature in the range of 500-700 oC for 

supported catalysts indicates the reduction of Ni2+ ions in the outermost and sub-surface 

layers of the MgO lattice, which is in accordance with the literature cited (Feng et al., 

2012; Y.-H. Wang et al., 2009; M. Yu et al., 2014).  

Previous studies suggested that calcination temperature has a strong influence on 

the incorporation of NiO into NiO-MgO solid solution (Feng et al., 2012; Y.-H. Wang et 

al., 2009). This is the reason that for CS4 and CS5, application of higher calcination 

temperature (600 oC and 800 oC, respectively) shifts the reduction peak temperature from 

698.8 oC (CS3-450 oC) to 875.5 oC and 884.1 oC, respectively as shown in Figure 4.19(b). 

The shift of reduction peak to higher temperature (> 800 oC) indicates the reduction of 

lattice Ni2+ ions in the MgO matrix, which indicates the formation of strong NiO-MgO 

solid solution. Furthermore, the increase of calcination temperature from 600 oC to 800 

oC, shifted the medium reduction peak at 555.9 oC to 656.9 oC, which indicates the 

presence of strong metal-support interaction for CS5. The detail of the reduction peaks 

temperature along with their reducibility extent are mentioned in Table 4.5. Similar type 

of shift in reduction peaks to higher temperature was reported for Ni/MgO catalyst (Feng 

et al., 2012) as the calcination temperature was increased from 600 oC to 800 oC. Figure 

4.19(a,b) also showed that the addition of MgO leads to the shift of reduction peaks to 

higher temperature and also the interaction between NiO and MgO probably hindered the 

reduction of NiO owing to the formation of NiO-MgO solid solution.  

Table 4.5:   Reduction peaks temperatures and reducibility of Ni/MgO catalysts 

Catalyst TL (
oC) TM (

oC) TH (oC) Reducibility (%) 

NiO - 347.2  - 

CS1 122.1 365.1  11.26 

CS2 169.5 - 611.3 20.96 

CS3 190.8 - 698.8 31.42 

CS4 230.5 555.9 875.5 46.55 

CS5 - 656.9 884.1 45.63 
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Figure 4.19: TPR-H2 profiles of (a) NiO and (b) Ni/MgO catalysts. 

 

4.6.4 Temperature-programmed desorption 

The application of basic support (MgO) will have a strong influence on the 

strength of basic sites in Ni/MgO catalyst. Temperature programmed desorption of CO2 

(TPD-CO2) was performed in order to investigate the strength of basic sites in Ni/MgO 

catalyst. The temperature at which chemisorbed CO2 on the basic sites is desorbed, 

indicates the strength of basic sites. Weak basic sites are said to be formed in Ni/MgO 

catalyst, when CO2 desorption peaks occur at lower temperature, whereas strong basic 

sites exhibit an opposite trend (Bhavani et al., 2012). TPD-CO2 profiles for the catalysts 

having higher MgO content (CS1 and CS2) exhibited higher peak temperature at 653.4 

oC and 729.2 oC, respectively, which indicates the presence of strong basic active sites. 

The lower peak temperature for CS1 at 252.4 oC indicates the presence of weak basic 

sites. TPD-CO2 profiles for the catalyst having lower MgO content (CS3) exhibited the 

peak temperature at 367.1 oC, which indicates the presence of medium strength basic 

sites. The investigation on the influence of calcination temperature over the strength of 

basic sites indicated that CO2 desorption peaks were shifted to the higher temperature as 

the calcination temperature increased from 450 oC to 600 oC and 800 oC for CS4 and CS5, 

respectively. For CS4, the peak temperature shifted from 367.3 oC to 834.6 oC as depicted 
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in Figure 4.20, whilst for CS5 the peak temperature shifted to further higher temperature 

(862.0 oC). TPD-CO2 profiles for CS4 and CS5 indicates the existence of very strong 

basic sites, which indicates the interaction of metal sites with basic sites.  

 

Figure 4.20: TPD-CO2 profiles for Ni/MgO catalysts. 

 

 

4.6.5 TEM and EDX analysis 

TEM images of Ni/MgO catalyst having higher MgO content (CS1, Figure 4.21 

(a,b)) and lower MgO content (CS3, Figure 4.21(c,d)) exhibited that the addition of MgO 

in the microemulsion system leads to the better nanoparticle distribution, however, the 

influence of the addition of MgO to resist agglomeration was more pronounced in CS1 

compared to CS3, as depicted by its higher surface area in BET results (Table 4.4). 

Furthermore, EDX analysis of NiO, CS1, CS2 and CS3 indicates the weight percentages 

of Ni and Mg before the reduction are shown in Figure 4.22.  
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      Figure 4.21:    TEM images of freshly calcined catalysts (a,b) CS1 and (c,d) CS3. 

 

 

      Figure 4.22:    EDX analysis of (a) NiO, (b) CS1, (c) CS2 and (d) CS3 catalysts.  
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4.7. Activity and stability test 

The study of catalytic activity of catalysts (CS1, CS2, CS3, Ni) indicates that there 

was seen an increase in CH4 and CO2 conversions with the increase of temperature, which 

was attributed to the thermodynamic nature of the dry reforming reaction. Figure 4.23 

indicates that the catalyst having higher Ni content (CS3) exhibited higher catalytic 

activity among all the catalysts tested (CS1, CS2 and Ni). However, both CS1, CS2 

exhibited comparable activity, while CS2 being slightly higher. Ni nanoparticles 

exhibited the lower methane (18.72%) and carbon dioxide (21.80%) conversion at final 

temperature 850 oC.  

The stability test of different catalysts (CS1, CS2 and CS3) at different reaction 

temperatures (700 oC, 800 oC and 850 oC) exhibited that CS3 has the higher catalytic 

activity and stability at 750 oC compared to CS1 and CS2 as shown in Figure 4.24(a,b) 

and Table 4.6. The stability study of catalysts at higher reaction temperatures (800 oC and 

850 oC), exhibited a severe decrease in the catalytic activity. However, with the rise of 

reaction temperature, a significant decrease in carbon deposition was observed as 

mentioned in Table 4.6. This can be attributed to the presence of more reactive carbon 

species produced by methane decomposition at these higher reaction temperatures, which 

are easily gasified by CO2 (Kathiraser et al., 2015). The catalytic activity of both CS1 and 

CS2 were comparable to each other with respect to reaction temperature (Figure 4.23), 

however, the stability of both catalysts exhibited a different trend as mentioned in Table 

4.6. CS1 exhibited higher initial catalytic activity than CS2 at 750 oC, however, CS2 

exhibited higher initial and final conversions at higher reaction temperatures (800 and 

850 oC). Ni nanoparticles exhibited severe decrease in catalytic activity within 20 min of 

reaction period as shown in Figure 4.24(a,b), which was attributed the agglomeration of 

Ni particles.  
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Figure 4.23: Conversion-temperature relationship of different catalysts (Reaction 

conditions: CH4/CO2 =1/1 and WHSV= 1.68 x 105 ml g-1 h-1). 

 

The study exhibited the fact that Ni content in Ni/MgO catalyst has an important 

role in catalytic activity and stability of catalysts. TPR-H2 results suggested that with the 

increase of Ni content (20 wt% to 80 wt%) an increase in hydrogen consumption was 

observed, which indicates the reduction of more NiO to Nio. The higher Ni content in 

Ni/MgO catalyst will produce more Ni active sites upon reduction, which would be easily 

accessible by the reactants and thus exhibited higher catalytic activity as shown in Table 

4.6. This can be justified on the basis of XRD analysis of spent catalysts (Figure 4.26), 

which indicates the presence of more intense peak related to Nio for CS3. Thus, it can be 

concluded that the activity of the catalysts was related to the quantity of Nio present in the 

catalyst, which was obviously higher for the catalyst having higher Ni content. The 

surface area was decreased from 153.22 to 54.01 m2/g with the increase of Ni content 

from 20% to 80%, however, the methane and carbon dioxide conversion were increased 

from 46.13% to 49.76% and from 51.40% to 63.80%, respectively at 750 oC. Similar type 

of results was reported for Ni/Al2O3 catalyst, when the Ni content was increase from 5% 

to 25%, the BET surface was decreased from 212.4 to 164.8 m2/g, respectively 

(Therdthianwong et al., 2008). However, both methane and carbon dioxide conversions 

were seen to increase with Ni content. For 5% Ni/Al2O3, CH4 and CO2 conversions were 
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only 7.0% and 19.5% and increased to 63.4% and 66.9%, respectively for 25% Ni/Al2O3 

at 700 oC.  

The carbon deposition on CS3 was comparatively high (6.684 gc/gcat) compared 

to CS1 (2.648 gc/gcat) and CS2 (3.700 gc/gcat). However, when one correlates the amount 

of carbon deposition and catalyst stability, it can be found that larger amount of carbon 

deposition does not always lead to the sever decrease in activity. A closer look at Figure 

4.24(a,b) and Table 4.6, indicates even though carbon deposition was high for CS3 but it 

exhibited better catalyst stability. Similar type of results was reported for Ni catalysts 

supported on mesoporous material MCM-41 having different (gel Si/Ni ratio) (D. Liu, 

Lau, et al., 2009). They reported that Ni-MCM-41(B) and Ni-MCM-41(C) show poor 

stability, even though they have lower carbon deposition compared to Ni-MCM-41(D), 

which exhibited highest catalyst stability. The higher carbon deposition on CS3 can be 

attributed to the larger particle size, which leads to the production of higher carbon 

deposition (Hu & Ruckenstein, 2002).  

The influence of calcination temperature over catalyst stability was studied at 750 

oC, by calcining the catalyst CS3-450 oC at higher calcination temperatures, 600 oC (CS4) 

and 800 oC (CS5). The study showed that CS5 exhibited the higher stability and both 

initial (59.22% CH4 and 65.60% CO2) and final (52.09% CH4 and 59.80% CO2) 

conversions were high compared to CS3 and CS4. Even though, with the increase of 

calcination temperature (450 to 800 oC), there was seen a further decrease in BET surface 

area from 54.01 to 15.19 m2/g. The stability of the catalyst was uninfluenced with the 

decrease of BET surface area (larger particle size), which showed that the catalyst particle 

size did not play major role in the catalytic activity and stability. Furthermore, the carbon 

deposition was low for CS5 (3.580 gc/gcat) compared to CS3 (6.684 gc/gcat) and CS4 

(4.782 gc/gcat), which can be attributed to the strong NiO-MgO solid solution. BET 

analysis indicates that CS5 has the largest particle size among all the catalyst test, still it 
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exhibited the better stability and activity. Similar results was reported for another study 

in which active metal Ni, NiCo or NiRh supported on CeZr-mixed oxide exhibited stable 

activity for the samples containing larger particles size and suggested that larger particle 

size was also responsible for long term stability (Horváth et al., 2011). 

It has been suggested that reduction temperature plays an important role in 

catalytic activity and stability of the catalyst. The investigation on the influence of 

reduction temperature was done in order to optimize the activation conditions. Therefore, 

the influence of reduction temperatures (550 oC and 800 oC) on the catalytic stability of 

catalysts (CS3, CS4 and CS5) was investigated and the results are shown in Figure 

4.24(c,d). The study shows that the catalysts reduced at higher reduction temperature (800 

oC) exhibited severe catalyst deactivation. The results indicated that the catalyst (CS5) 

calcined at higher temperature (800 oC) and reduced at lower temperature (550 oC) 

exhibited the better stability and activity of the catalyst compared to CS3 and CS4 as 

mentioned in Figure 4.24(c,d) and Table 4.6. The catalysts (CS3 and CS5) reduced at 

higher temperature (800 oC), even lead to the lower initial reactants conversions, while, 

CS4 exhibited higher initial catalytic activity at 800 oC compared to the same catalysts 

reduced at 550 oC (Table 4.6). The influence of reduction temperature (700 oC, 750 oC, 

800 oC and 850 oC, 900 oC and 950 oC) on the catalytic behaviour of Co/TiO2 catalyst  

was investigated for dry reforming of methane (Takanabe et al., 2005a). The study 

showed that the catalyst Co/TiO2 exhibited higher methane (65.5%) and carbon dioxide 

(71.7%) conversion at lower reduction temperature (700 oC). Both methane and carbon 

dioxide conversions were decreased with the increase of reduction temperature such as: 

that at 750 oC it exhibited 55.7% CH4 and 64.3% CO2 conversion, at 800 oC exhibited 

39.0% CH4 and 51.2% CO2 conversion, at 850 oC exhibited 5.6% CH4 and 9.2% CO2 

conversion. Furthermore, at higher reduction temperatures of 900 oC and 950 oC, methane 

and carbon dioxide conversion become negligible. They suggested that catalyst 
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deactivation of Co/TiO2 catalysts with the increase of reduction temperature was 

attributed to the metal sintering. The study of the influence of reduction temperature (400 

oC, 500 oC, 600 oC and 700 oC and 900 oC) on cobalt catalyst supported on SiO2 applied 

for Fischer-Tropsch catalysis exhibited that the catalysts reduced at higher reduction 

temperature were more prone to sintering and exhibited lower catalyst performance 

compared to the catalyst reduced at lower reduction temperature (Bezemer et al., 2006). 

Similar results were reported for Ni-MCM-41 in which the increase of reduction 

temperature from 550 to 750 oC leads to the decrease in methane conversion from 80% 

to 73% and carbon dioxide from 83% to 74% (D. Liu, Lau, et al., 2009).  The study leads 

to the conclusion that the reduction of catalysts at higher reduction temperature makes 

the catalysts more prone to sintering, which in turn reduces the number of available active 

sites and thus leads to the lower catalytic activities and deactivation. Therefore, it seems 

that the proper choice of reduction temperature is critical and should be investigated 

properly for each of the preparation method.  

 

Figure 4.24: Conversion-time relationship of different catalysts (Reaction conditions: 

750 oC CH4/CO2 =1/1, WHSV= 1.68 x 105 ml g-1 h-1). 

Univ
ers

ity
 of

 M
ala

ya



129 

 

Carbon formation during the dry reforming reaction is suggested to be produced 

by two major reactions: methane decomposition (equation 4.2) and Boudouard reaction 

(equation 4.3) being endothermic and exothermic, respectively (Guczi et al., 2010; M. Yu 

et al., 2014; J. Zhang et al., 2008).  

CH4   →   C+2H2                    ∆H298K
o  = 74.6 kJ/mol (4.2) 

  2CO →   CO2 + C   ∆H298K
o  = -172.46 kJ/mol (4.3) 

 

Thermodynamic analysis of dry reforming reaction suggests that this reaction 

becomes spontaneous at higher reaction temperature (> 640 oC) (S. Wang et al., 1996; J. 

Zhang et al., 2007). Furthermore, previous studies suggested that methane decomposition 

is favourable at higher reaction temperatures (>700 oC) due to its endothermic nature (P 

Frontera et al., 2013; M. Yu et al., 2014), while, Boudouard reaction is not 

thermodynamically favourable at higher reaction temperatures (>700 oC) and above 700 

oC becomes non-spontaneous (P Frontera et al., 2013; S. Wang et al., 1996; J. Zhang et 

al., 2008). Therefore, the application of higher reaction temperature not only eliminates 

the influence of Boudouard reaction (J. Zhang et al., 2007) but also will shift the 

equilibrium to the left side and will favour the occurrence of reverse of Boudouard 

reaction as shown in equation 4.4 (Özdemir, Öksüzömer, & Gürkaynak, 2010). 

CO2 + C → 2CO  ∆H298K
o  = 172.46 kJ/mol  (4.4) 

Furthermore, the spontaneous reaction temperature for reverse Boudouard 

reaction is 719 oC  (Long Xu et al., 2014). Therefore, dry reforming of methane at higher 

reaction temperature (750 oC) can be regarded as a combination of one carbon formation 

reaction (equation 4.2) and one carbon elimination reaction (equation 4.4) (J. Zhang et 

al., 2008). The occurrence of reverse Boudouard reaction will assist in the removal of 

carbon produced by reacting with chemisorbed CO2 (Meshkani & Rezaei, 2011; J. Zhang 

et al., 2008). However, the occurrence of carbon deposition at 750 oC (Table 4.6) during 

this study indicates the existence of following conditions such as: the rate of methane 
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decomposition (equation 4.2) was high compared to carbon removal reaction (equation 

4.4) and reverse Boudouard reaction seems to be the limiting step as suggested by various 

studies (Y. J. Asencios et al., 2011; J. Zhang et al., 2008).  

Higher CO2 conversion was exhibited by Ni/MgO catalyst compared to methane 

during the activity and stability tests. Furthermore, the presence of water at outlet 

indicates the occurrence of  reverse water gas shift reaction (RWGS) as shown in equation 

4.5 (Meshkani & Rezaei, 2011; Zanganeh et al., 2013).  The study also indicated that 

during the reaction time CO yield was always higher than H2 yield for all the catalysts as 

shown in Figure 4.25, which is attributed to the RWGS reaction. The utilization of 

produced H2 in the RWGS reaction (equation 4.5) by CO2 leads to the production of higher 

CO and in turn higher CO2 conversions are observed. 

  CO2 + H2  →  CO + H2O  ∆H298K
o  = 41.0 kJ/mol  (4.5) 

 

 

Figure 4.25: H2 and CO yield of different catalysts (Reaction conditions: 750 oC 

CH4/CO2 =1/1, WHSV= 1.68 x 105 ml g-1 h-1). 

 

Thus, the study leads to the conclusion that the better catalytic activity and 

stability of the Ni/MgO catalyst was exhibited by the formation of strong “NiO rich” solid 

solution and obviously will be present in the catalyst having higher Ni content. For the 

catalysts having higher MgO content (CS1 and CS2), NiO would diffuse from the 

outermost layer into a deeper layer to form a more stable type of “MgO rich” solid 

solution. However, for catalytic reactions, a surface “NiO rich” solid solution will be 
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more beneficial as it will produce more Nio active sites compared to the “MgO rich” solid 

solution (Y. Li et al., 2014). That is the reason, that catalysts having higher Ni content 

(CS3, CS4 and CS5) exhibited higher catalytic activity, which are having “NiO rich” solid 

solution. Furthermore, with the increase of Ni content an increase in the reducibility of 

NiO in calcined NiO/MgO was observed (Figure 4.19). Hu and Ruckenstein (Hu & 

Ruckenstein, 2002) suggested that the occurrence of such type of phenomenon would 

lead to the formation of large Ni particle size in Ni/MgO catalyst similar to that observed 

in this study by BET results (Table 4.4), which will be eventually more prone to the 

sintering and coking at high Ni loading. Hence, larger Ni particles in Ni/MgO catalyst 

would lead to severe deactivation of the catalytic activity during the reaction time (Hu & 

Ruckenstein, 2002).  

However, according to the present data for activity (Table 4.6 and Figure 4.23 and 

Figure 4.24(a,b)) and surface area of different catalysts (Table 4.4), particle size of Ni 

was not having a major influence over the stability of the reduced Ni/MgO catalyst. 

Similar type of results were reported (Y.-H. Wang et al., 2009) for Ni/MgO catalyst in 

which the larger Ni particle size (20.0 nm) was observed on reduced Ni30Mg-6 compared 

to the smaller particle sizes (16.7 and 10.0 nm) observed for reduced Ni8Mg-4 and 

Ni8Mg-5, respectively. However, Ni30Mg-6 exhibited very stable activity, but both 

Ni8Mg-4 and Ni8Mg-5 catalysts were deactivated rapidly during the reaction time. These 

results lead to an important conclusion that not only the Ni loading and Ni particle size in 

the reduced catalyst, but also physicochemical state of NiO in the oxidized sample plays 

a major role in affecting the stability of the catalyst. Previous study suggested that for 

Ni/MgO catalyst it is important to have NiO entities that belong to NiO-MgO solid 

solution, otherwise it would not be possible to have stable Ni sites (Y.-H. Wang et al., 

2009). Therefore, the key to form stable Ni sites in Ni/MgO catalyst, it is necessary to 

have a complete reaction of the NiO component with the MgO support during the 
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calcination step to form NiO-MgO solid solution. Therefore, in this study the catalyst 

calcined at higher temperature (800 oC) exhibited better stability due to the formation of 

strong NiO-MgO solid solution compared to the catalysts calcined at a lower calcination 

temperature (CS3-450 oC and CS4-600 oC) having similar Ni content. Previous study 

suggested that calcination temperature has significant influence on the diffusion of Ni2+ 

ions into the MgO lattice and strong metal-support interaction was observed (Feng et al., 

2012).  

The comparison of different catalysts applied to dry reforming of methane with 

the present study indicates that Ni/MgO catalyst prepared by microemulsion synthesis 

exhibited better performance compared to the previous studies (Arbag et al., 2010; X. 

Chen et al., 2005b; Hua et al., 2010; M Rezaei et al., 2008; Tomishige et al., 2002; 

Zanganeh et al., 2013) as mentioned in Table 4.7. Previous studies reported that the 

catalysts at low WHSVs exhibited higher reactants (CH4 and CO2) conversion and 

opposite trend will be observed at high WHSVs. The lower reactants conversion at higher 

WHSV values, was attributed to the fact that the residence or contact time will be lower, 

moreover, larger amounts of reactants will be flowing into the reactor and reactants will 

have limited opportunity to adsorb on active sites (Newnham et al., 2012; Rahemi et al., 

2013; San José-Alonso et al., 2013; Leilei Xu et al., 2012). However, the comparison of 

Ni/MgO catalyst (present work) with previous studies exhibited that even though the 

WHSV was quite higher (1.68 x 105 ml h-1 g-1), it exhibited higher reactants conversion 

indicating its better performance even under severe reaction conditions. Moreover, the 

study suggests that the preparation conditions, Ni metal content, calcination temperatures 

and reduction temperatures has much strong influence over this unique system of NiO-

MgO solid solution prepared by microemulsion synthesis. Therefore, we can conclude 

that the influence of MgO addition was prominent not only on the activity of Ni/MgO 

catalyst, but also provide resistance towards the agglomeration of Ni particles. 
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Furthermore, the stability tests of CS1, CS2 and CS3 at 800 oC and 850 oC are shown in 

Appendix E and Appendix F. 

 

Table 4.6: Activity and stability of Ni/MgO catalysts at CH4/CO2 =1/1 and WHSV= 

1.68 x 105 ml g-1 h-1 

Sample 

ID 

Tc 

(oC) 

Tred 

(oC) 

Treac(oC) Initial % 

Conv. 

Final % Conv. (after 

140 min) 

Carbon 

(gc/gcat) 

  CH4 CO2 CH4 CO2 

CS1 450 550 750 

800 

850 

46.13 

45.43 

46.44 

51.40 

50.80 

55.20 

34.30 

24.83 

27.98 

37.60 

22.40 

27.00 

2.648 

0.820 

0.122 

CS2 450 550 750 

800 

850 

35.87 

53.05 

63.72 

41.80 

60.40 

70.20 

34.90 

37.40 

42.16 

37.20 

44.60 

48.60 

3.700 

2.892 

0.806 

CS3 450 550 

 

 

800 

750 

800 

850 

750 

49.76 

62.09 

73.84 

45.03 

63.80 

69.00 

79.40 

44.60 

44.21 

44.01 

43.89 

34.72 

56.40 

49.80 

53.20 

36.80 

6.684 

3.380 

2.680 

3.760 

CS4 600 550 

800 

750 47.29 

62.48 

54.00 

64.80 

46.37 

38.82 

51.40 

46.00 

4.782 

3.884 

CS5 800 550 

800 

750 59.22 

37.84 

65.60 

38.00 

52.09 

28.46 

59.80 

31.40 

3.580 

3.030 

Nia 450 550 750 15.06 14.60 7.69 1.80 0.016 

a: final conversions of pure Ni after 20 min; Tc: calcination temperature; Tred: reduction 

temperature, Treac: reaction temperature. 

 

Table 4.7:   Comparison of catalytic activity of previous studies with Ni/MgO catalysts.  

Catalyst RC Final conversion (%) Ref. 

T WHSV T CH4 CO2 

Ni0.10Mg0.90O 600 1.4 x 104 300 25.0 30.0 (Zanganeh et 

al., 2013) 

Ni-MCM-41 

Rh-MCM-41-V 

600 3.6 x 104 240 28.0 

32.0 

38.0 

39.0 

(Arbag et al., 

2010) 

5%Ni/ZrO2 700 1.5 x 104 300 54.0 59.0 (M Rezaei et 

al., 2008) 

PT-Ni/MgO 

C-Ni/MgO 

700 9.6 x 104 240 49.0 

20.0 

54.0 

30.0 

(Hua et al., 

2010) 

NiO/Al2O3 800 9.37 x 104 300 52.5 - (X. Chen et al., 

2005b) 

3 mol% 

Ni/MgO 

3 mol% Pt/MgO 

850 5.6 x 104 240 50.0 

40.0 

62.0 

50.0 

(Tomishige et 

al., 2002) 

Ni/MgO (CS5) 

Ni/MgO (CS4) 

Ni/MgO (CS3) 

750 1.68 x 105 140 52.09 

46.37 

44.21 

59.80 

51.40 

56.40 

This study 

 T: temperature oC; WHSV: weight hourly space velocity ml h-1 g-1; t: min; PT: plasma 

treated catalyst; C: conventional impregnated catalyst. 
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4.8 Characterization of spent catalyst  

The characterization of spent catalysts (CS1-CS5) by XRD analysis indicates the 

presence of graphite peak (002) around 26o, which was attributed to the crystalline phase 

of CNTs matching with JCPDS no. 01-075-1621 (Figure 4.26). Furthermore, XRD 

analysis of all the spent catalysts exhibited Nio peaks at 44.48o and 51.83o, which matched 

with JCPDS no. 01-070-1849. XRD analysis of spent catalyst (CS3) indicates the 

presence of broad and strong Nio peaks compared to CS1 and CS2, which suggests that 

CS3 have more Nio active sites at these reaction conditions and this can be attributed to 

the higher Ni content. Therefore, the catalyst having higher Ni content (CS3) exhibited 

higher catalytic activity compared to the catalysts having lower Ni content (CS1 and 

CS2). XRD analysis of spent catalysts reduced at higher reduction temperature (800 oC) 

are also shown in Figure 4.26 and the average crystallite sizes of spent catalysts (reduced 

at 550 oC and 800 oC) are mentioned in Table 4.4. An increase in the crystallite sizes was 

observed for the catalysts reduced at 800 oC compared to the catalysts reduced at lower 

reduction temperature (550 oC) indicating the occurrence of Ni metal sintering, which 

matches well with the previous studies that the higher reduction temperature makes the 

catalyst prone to sintering (Bezemer et al., 2006; Takanabe et al., 2005a).  
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Figure 4.26: XRD analysis of spent catalysts, where ( ), ( ) and ( ) presents NiO-

MgO solid solution peaks, Ni crystallite peaks and graphite peaks, respectively. 

 

 

Carbon accumulation on spent catalysts can be observed by TEM and FESEM 

images, indicating the presence of carbon species having different morphologies. The 

analysis of spent catalysts (CS1, CS2, CS3 and CS5) indicates that the majority of the 

accumulated carbon were in the form of carbon nanotubes (whisker-like carbon species). 

Moreover, TEM and FESEM images (Figure 4.27 and Figure 4.28) indicate the presence 

of different types of carbon nanotubes (CNTs) such as: CNTs with Ni particle at the tip, 

CNTs with closed end but without the presence of Ni particle on the tip, CNTs with 

different diameters and CNTs with hollow internal channel having open end structure and 

no Ni particles at the tip. Previous studies suggested that the formation of single wall and 

multiwall carbon nanotubes either follow tip-growth or base-growth mechanism 

(Amelinckx et al., 1994; S. Fan et al., 1999). Moreover, the intensity of metal-support 

interaction plays a decisive role in the formation of carbon nanotubes mechanism either 

by tip-growth or base-growth mode. Tip-growth mode will be more pronounced for 
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catalysts having weak metal support interaction and metal particles will be lifted up by 

the growing carbon nanotubes. On the other hands, for the catalysts having strong metal-

support interaction, base-growth mode will be more pronounced in the formation of 

carbon nanotubes (Saraswat & Pant, 2011). Therefore, CNTs with hollow internal 

channel having open end structure and no Ni particles at the tip are more prominent for 

CS5 (Figure 4.28(c,d)), which can be attributed to its strong metal-support interaction as 

discussed in TPR-H2 results. Thus, indicates that base-growth mechanism was more 

pronounced for CS5 instead of tip growth model. Furthermore, previous studies suggested 

that the cracking of hydrocarbon on Ni based catalysts will lead to the production of 

filamentous (whisker-like) and encapsulating (shell-like) carbon species. However, it was 

reported that in terms of degree of toxicity, the former is considered less toxic from the 

point of view of deactivation process (D. Chen et al., 2001; Frusteri et al., 2002; Tsang et 

al., 1995), while the latter has serious influence on the deactivation of the catalysts by 

decreasing the total number of active sites. In the present study, all of the spent catalysts 

indicate the presence of filamentous type of carbon rather than encapsulating carbon 

species and previous studies suggested that this type of carbon does not cause major 

deactivation (Arbag et al., 2010; D. Chen et al., 2001; Montoya et al., 2000; Tomishige 

et al., 1999; Tomishige et al., 1998). This conclusion matches well with the present study 

that the catalysts indicating the presence of whisker-like carbon species does not exhibited 

deactivation and were quite stable during the reaction period. Furthermore, severe 

deactivation exhibited by pure Ni nanoparticles can be attributed to the existence of strong 

agglomeration of Ni particles as described in the FESEM images (Figure 4.28(e,f)).  
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Figure 4.27: TEM and FESEM images of spent catalysts (a,b) CS1 and (c,d) CS2 after 

the dry reforming reaction at 750 oC. 
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Figure 4.28: TEM images of spent catalysts (a,b) CS3, (c,d) CS5 and FESEM images 

of Ni (e,f) after the dry reforming reaction at 750 oC. 

 

 

4.9 Summary 

 The increase of calcination temperature increased the strength of NiO-MgO solid 

solution and also the higher Ni content played an important role in the higher performance 

of catalyst. Moreover, the application of higher reduction temperature leads to the lower 

catalytic activity as the catalyst more prone to sintering.  
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Part 3: Water-in-oil microemulsion synthesis of Ni@CeO2 core-shell like structures 

for dry reforming of methane. 

 

4.10 Characterization of fresh catalyst 

4.10.1 X-ray diffraction 

The powder X-ray diffraction of the prepared catalysts are shown in Figure 4.29. 

Pure NiO nanoparticles exhibited reflections at 2θ values of 37.28o, 43.44o, 63.01o, 75.55o 

and 79.40o corresponding to the crystallite phases of (111), (200), (220), (311) and (222), 

respectively matching with standard card of cubic NiO with JCPDS no. 01-073-1519. 

XRD patterns of pure CeO2 and the supported catalysts (NC1, NC2 and NC3) exhibited 

reflections at 28.72o, 33.40o, 47.65o, 56.67o, 59.28o, 69.64o, 76.98o and 79.1o 

corresponding to (111), (200), (220), (311) (222), (400), (331) and (420) phases matching 

with distinct fluorite type oxide structure of CeO2 (JCPDS no. 34-0394). Moreover, for 

NC2 and NC3 catalyst, peaks observed at 2θ values of 37.42o, 43.46o, 62.95o and 75.51o 

were assigned to NiO phases. With the increase of metal content for the supported 

catalysts, an increase in the crystallite size occurred, which matches well with the BET 

results as decrease in surface area was also observed (Table 4.8). For NC1, no NiO peaks 

were observed, however, for NC2 three small blunt peaks were observed at 2θ values of 

37.28o, 43.44o and 63.01o indicating that almost all the NiO is dissolved in CeO2. Similar 

type of results was reported for Ni/CeO2 catalyst prepared by impregnation that only small 

intensity peaks were observed at 2θ values of 37.25o, 43.28o and 62.88o corresponding to 

(111), (200) and (220) reflections indicating that NiO dissolved in CeO2 (M. Yu et al., 

2015). However, in case of NC3 the presence of strong NiO peaks indicates that not all 

the NiO particles are dissolved by CeO2 in NC3 catalyst and still free NiO particle exist 

in the catalyst. 
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Figure 4.29: XRD patterns of calcined catalysts, where ( ), and ( ) presents 

CeO2 peaks and NiO crystallite peaks, respectively. 
 

4.10.2 Surface area and pore volume 

The evolution of the pore structure of the catalysts were investigated by N2 

adsorption-desorption measurements at 77K. The supported catalysts (NC1, NC2 and 

NC3) having different Ni metal content exhibited a type IV adsorption isotherm typical 

for mesoporous materials with type H3 hysteresis loop at the higher relative pressure 

indicates the formation of large pore volumes as shown in Figure 4.30(a). (Zanganeh et 

al., 2013). The encapsulation of Ni nanoparticles by the addition of CeO2 shell promotes 

the diffusion of feed gas (CH4 and CO2) molecules to Ni core and also N2 molecules 

diffusion. Previous studies suggested that surface area of core-shell like structures were 

influenced by both core particle size as well as the shell characteristics (thickens and 

porosity) (Yao et al., 2010; Zheng et al., 2014). There was seen a decrease in surface area 

and total pore volume from 104.26 m2/g and 0.263 cm3/g to 49.36 m2/g and 0.112 cm3/g 

with the increase of Ni content from 20 wt% to 80 wt%, respectively. Large surface area 

of NC1 can be attributed to the thicker CeO2 shell due to the higher cerium content (80 

wt%). Similar types of results were reported for core-shell catalysts in which nano-Fe2O3, 
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nano-NiO, nano-RuO2 were encapsulated by SiO2 and nano-Fe2O3 by Al2O3 shell also 

(Yao et al., 2010). Nano-NiO@SiO2, nano-Fe2O3@SiO2, nano-RuO2@SiO2 and nano-

Fe2O3@Al2O3 exhibited BET surface area of 112 m2/g, 34 m2/g, 42 m2/g and 38 m2/g. 

The higher surface area for Nano-NiO@SiO2 was attributed to the thicker SiO2 shell. BJH 

pore size distribution curve confirm the uniform pore size distribution centered around 

22 nm, 13 nm and 8 nm for NC1, NC2 and NC3, respectively.  The pore size distribution 

centered at 20 nm for NC1 is attributed to the mesopores between interparticles. 

Furthermore, NC2 exhibited peak at lower pore width centered at 2.5 nm, which are 

considered as inner pore and larger pore size (13 nm) correspond to mesopores between 

interparticles (J. Liu et al., 2010; Ma et al., 2012). Pore size distribution of catalysts was 

determined by Barret-Joyner-Halenda (BJH) method based on adsorption branch of N2 

isotherm as shown in Figure 4.30(b). 

     Table 4.8: BET surface area, total pore volume and average XRD crystallite      

      size of catalysts. 

Catalyst 
BET 

SA m2/g 

Pore 

volume 

cm3/g 

BET pore 

size (nm) 

Average 

crystallite size 

(nm) 

NiO 23.87 0.121 20.36 27.58 

CeO2 81.50 0.213 10.48 34.53 

NC1 104.63 0.263 10.02 27.14 

NC2 91.48 0.151 6.60 30.52 

NC3 49.36 0.112 9.14 31.88 

 

 

Figure 4.30: (a) N2 adsorption-desorption isotherms and (b) BJH pore width 

distribution of calcined catalysts. 
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4.10.3 Temperature-programmed reduction 

In order to understand the reducibility characteristics of catalysts, temperature-

programmed reduction studies (TPR-H2) were performed. TPR-H2 profiles for all 

catalysts exhibited two reduction peaks: one at low temperature in the range of 180-195 

oC and other at quite high temperature in the range of 300-360 oC. Previous studies 

suggested that the peaks observed at lower reduction temperature (180-195 oC) indicates 

the reduction of adsorbed oxygen, which is susceptible to reduction by H2 at these 

temperature ranges (Ay & Üner, 2015; Italiano et al., 2015). Pure NiO nanoparticles 

exhibited higher H2 uptake indicating the higher reducibility of bulk NiO as shown in 

Figure 4.31(a). However, the presence of higher reduction temperature peaks (300-360 

oC) can be attributed to the reduction of strongly interacting NiO species with CeO2 

support as shown in Figure 4.31(b). The presence of higher reduction peak at 355.35 oC 

for NC3 is the indication of strong metal-support interaction compared to NC1 and NC2 

(Du et al., 2012). Moreover, higher H2 consumption refers to the availability of higher 

NiO species for reduction, which can be attributed to the higher NiO content (80 wt%). 

 

 

Figure 4.31: TPR-H2 profiles of (a) NiO and (b) Ni@CeO2 catalysts. 
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4.10.4 Transmission electron microscopy 

TEM images for NC1, NC2 and NC3 catalysts clearly indicates the formation of 

core-shell like structures in which Ni nanoparticles are encapsulated in a CeO2 shell. The 

literature suggests that morphology of these encapsulated catalysts not only depend on 

core nature (size and dispersion of cores), but also on the shell thickness used to 

encapsulate cores. Therefore, the accessibility of core increases with the decrease of shell 

thickness such as in case of NC2 and NC3 having lower CeO2 compared to NC1. 

However, as the Ni content increases, the chances of agglomeration and sintering also 

increases. Therefore, the proper balance between core metal and metal oxide content 

employed to encapsulate is important for better catalyst performance as the catalyst 

should have higher accessibility and lower agglomeration. For NC2 and NC3, Ni cores 

were prominent and visible in the form of dark spots covered by CeO2 shell as confirmed 

by the TEM images and evident by lattice fringe spacing of 0.206 and 0.208 

corresponding to the 200 facet of NiO species as shown in Figure 4.32(e, g, h). 

Furthermore, NiO species were also present on the edges (0.211 nm corresponds to 200 

facet) suggesting that not all NiO species were dissolved by CeO2, which matches well 

with XRD results.
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Figure 4.32: TEM images of freshly calcined catalysts (a,b,c) NC1 and (d,e,f) NC2, (g,h,k) NC3.
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4.11 Activity and stability test 

Methane and carbon dioxide conversions for the supported catalysts (NC1, NC2 

and NC3) and pure Ni is shown in Figure 4.33. The study exhibited that the increase of 

reaction temperature leads to the increase in reactants conversion (CH4 and CO2) due to 

the endothermic nature of dry reforming reaction. Catalytic activity of both NC2 and NC3 

increased with temperature; with NC1 exhibited 52.71% and 61.60%, NC2 exhibited 

64.12% and 68.20%, while NC3 exhibited 68.85% and 74.00% methane and carbon 

dioxide conversion at 800 oC, respectively. NC2 (40% Ni@CeO2) exhibited higher 

reactants conversion compared to NC1 and NC3 until 750 oC as shown in Figure 4.33. 

However, with the further increase of temperature (> 750 oC) an increase in CH4 and CO2 

conversion was observed. Moreover, CO2 conversion for NC3 was lower than NC1 until 

700 oC, even though it has higher Nio active sites compared to NC1 and after 700 oC, the 

carbon dioxide conversion increased. Ni nanoparticles exhibited 18.13% CH4 and 20.80% 

CO2 conversion at 800 oC reaction temperature.  

 

Figure 4.33: Conversion-temperature relationship of different catalysts (Reaction 

conditions: CH4/CO2 =1/1 and WHSV= 1.20 x 105 ml g-1 h-1). 

 

The stability of supported catalysts was studied at 800 oC, 1 atm, WHSV of 1.2 x 

105 ml h-1 g-1 and at stoichiometric ratio of reactants (CH4/CO2 = 1/1). The study exhibited 

that NC2 has higher stability and catalytic activity compared to NC1 and NC3 as shown 

in Figure 4.34. NC2 exhibited 54.92% CH4 and 64.60% CO2 final conversion after 140 
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min of reaction time, which was higher than NC1 (24.29% CH4 and 32.00% CO2) and 

NC3 (50.31% CH4 and 60.20% CO2) as mentioned in Table 4.9. Moreover, NC1 

exhibited rapid decrease in both methane and carbon dioxide conversion within 80 min 

of reaction time. Moreover, the carbon deposition after the stability test at 800 oC was 

1.00 gc/gcat for NC2, which was lower than NC3 exhibiting 1.480 gc/gcat. However, NC1 

exhibited much lower carbon deposition (0.100 gc/gcat) but the deactivation was much 

faster and lower catalytic activity was observed.  The highest catalytic activity and 

stability of NC2 can be attributed to its lower carbon deposition and better coverage of 

CeO2 shell to resist agglomeration and sintering of Ni core particles. However, as 

discussed previously in XRD result of fresh NC3 catalyst indicated the presence of free 

NiO species not dissolved in CeO2 due to its high Ni content (80%). Therefore, the 

presence of free NiO species will increase the chances of sintering and coalescence as the 

reforming reaction will take place. This will lead to the lower accessibility of Ni active 

sties (Abasaeed et al., 2015) and in turn lower catalytic activity and stability was observed 

together with higher carbon deposition.  

 

Table 4.9: Activity and stability of Ni@CeO2 catalysts at CH4/CO2 =1/1  

and WHSV= 1.20 x 105 ml g-1 h-1 

Catalyst Treac(oC) Initial % Conv. Final % Conv.  Carbon 

(gc/gcat) 
  CH4 CO2 CH4 CO2 

NC1 800 37.74 55.26 24.29 32.00 0.100 

NC2 750 

800 

72.09 

73.59 

76.60 

78.80 

48.89 

54.92 

56.40 

64.60 

1.472 

1.00 

NC3 750 

800 

72.00 

73.22 

70.40 

79.80 

47.18 

50.31 

54.40 

60.20 

2.840 

1.480 

Nia 800 17.10 16.04 7.49 1.72 0.026 

a: final methane and carbon conversion after 20 min; Treac: reaction temperature. 
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Figure 4.34: Conversion-time relationship of different catalysts (Reaction conditions: 

800 oC, CH4/CO2 =1/1, WHSV= 1.20 x 105 ml g-1 h-1). 

 

Carbon deposition in dry reforming reaction is attributed to the occurrence of 

methane decomposition and CO disproportionation (Khajenoori et al., 2014) reactions as 

described in equations 4.6 and 4.7: 

CH4   →   C+2H2                    ∆H298K
o  = 74.6 kJ/mol (4.6) 

  2CO →   CO2 + C   ∆H298K
o  = -172.46 kJ/mol (4.7) 

 

It is suggested that with the rise of temperature, equilibrium constant of CO 

disproportionation reaction exponentially decreases, which in turn suggest that carbon 

deposition from this source is increasing unlikely at this higher reaction temperatures (800 

oC) (Djinović et al., 2011; P Frontera et al., 2013; S. Wang et al., 1996; J. Zhang et al., 

2008) . However, equilibrium constant for methane decomposition was seen to increase 

with the rise of temperature, making this source a major reason for carbon deposition 

(Djinović et al., 2011; J. Zhang et al., 2008).  

Ceria is believed to prevent the catalyst from deactivating as it has higher thermal 

stability, oxygen storage capacity and oxygen transfer ability (Rad et al., 2016). 

Therefore, during the reforming reaction, ceria goes through continuous Ce4+/Ce3+ redox 

cycle supplying mobile surface oxygen (Djinović, Batista, et al., 2012; Özkara-Aydınoğlu 

et al., 2009), which enhances the catalyst cleaning ability of surface from carbon 

deposited on Ni by methane decomposition (Djinović, Batista, et al., 2012; Özkara-
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Aydınoğlu et al., 2009; Pino et al., 2011). CO2 dissociates over oxygen vacancy to 

produce CO and O species. The produced oxygen species occupies the oxygen vacancy 

such as that one atomic oxygen species occupies an oxygen vacancy (Huang et al., 2005; 

Huang & Yu, 2005). The dissociation of CO2 over CeO2 is believed to occur in similar 

fashion as that on reduced ceria (Sharma et al., 2000) and on Ni (Kroll, Swaan, Lacombe, 

et al., 1996) by the following equation 4.8:  

CO2 + * ……………… CO + O*   (4.8) 

Where * denotes the presence of an oxygen vacancy over ceria or the presence of 

active sites over Ni or on the reduced ceria. Furthermore, O* denotes an adsorbed oxygen 

over Ni or indicates the existence of occupied oxygen vacancy or regarded as an oxidized 

ceria species as shown in Figure 4.35 (Huang et al., 2005). The produced oxygen species 

may get access to the interfacial active centers due to the capability of ceria support to 

function as oxygen-ion conducting or to the Ni surface to oxidize the carbon produced 

from methane decomposition (Huang et al., 2005).  

 

Figure 4.35: Oxygen transport mechanism reaction over Ni based ceria catalysts, 

where  indicates oxygen vacancy and indicates occupied oxygen vacancy. 
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It is reported that with the rise of reaction temperature oxygen-ion conductivity 

(i.e., mobility of lattice oxygen) increases leading to higher catalytic activities. Similar 

type of results was reported for CO2 dissociation over Ni supported over SDC and GDC 

(Huang & Yu, 2005). They reported that oxygen-ion conductivity increased with the rise 

of reaction temperature from 450 oC to 500 oC, promoting the mobility of lattice oxygen, 

therefore, the oxygen vacancies become available for O species produced during reaction. 

Similarly, in this study, the rise of reaction temperature (750 oC to 800 oC) for NC2 and 

NC3 catalyst, a significant decrease in carbon deposition was observed, which can be 

attributed to the increase mobility of lattice oxygen. Thus, leads to the increased oxidation 

of produced carbon species. Deactivation of catalysts occurs, provided that the rate of 

oxygen transfer from support to the Ni metal is less than the rate of carbon formation 

(Özkara-Aydınoğlu et al., 2009). Therefore, the occurrence of carbon deposition (Table 

4.9) indicates that the rate of methane decomposition was higher compared to the rate of 

oxygen transfer to Ni surface as the oxygen transfer rate was not fast enough to oxidize 

the deposited carbon. 

The lower catalytic activity at 800 oC for NC1 can be attributed to the lower 

number of Nio active sites, as they will have limited active sites for the reactants feed gas 

molecules to adsorb and react. With the decrease of ceria content in NC3 catalyst, the 

oxygen storage capacity and oxygen transfer ability of catalyst decreased and lead to the 

higher carbon deposition. Therefore, the higher number of mobile surface oxygen will 

enhance the catalyst performance by inhibiting carbon deposition on the Ni metal surface 

during the reforming reaction as exhibited by NC2. Therefore, NC2 exhibited better 

catalyst performance having lower carbon deposition due to its unique balance between 

Ni actives sites and CeO2 quantity as both are critical components to achieve higher 

catalyst performance. 
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CO2 conversions for all the catalysts during stability test were higher than methane 

conversion, which is attributed to the occurrence of inevitable reverse water gas shift 

(RWGS) reaction, a well-established primary causes for this phenomenon as shown in 

equation 4.9 (Djinović et al., 2011; Zanganeh et al., 2013).  

CO2 + H2  →  CO + H2O ∆H298K
o  = 41.0 kJ/mol  (4.9) 

The occurrence of RWGS reaction influences the quality of produced syn-gas by 

lowering the H2/CO ratio below the theoretical value of unity (Djinović et al., 2011). 

Higher syn-gas ratio was observed for NC2 (H2/CO = 0.72) compared to NC1 (H2/CO = 

0.39) and NC3 (H2/CO = 0.66) after 140 min of reaction time as shown in Figure 4.36. 

H2/CO ratio decreased from initial 0.43 to 0.39 for NC1, 0.82 to 0.72 for NC2 and 0.87 

to 0.66 for NC3, indicating the influence of RWGS reaction.  

 
Figure 4.36: H2/CO ratio of different catalysts (Reaction conditions: 800 oC, CH4/CO2 

=1/1, WHSV= 1.20 x 105 ml g-1 h-1). 

 

 

Furthermore, CO yield was always higher than H2 yield as shown in Figure 4.37 

for all the catalysts, due to the occurrence of RWGS reaction. The utilization of produced 

H2 in the RWGS reaction by CO2 leads to the production of higher CO and in turn higher 

CO2 conversions are observed. The core-shell like structures performed much better than 

naked Ni nanoparticles. The result suggests that these encapsulated catalysts may provide 
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a unique core environment beneficial for the reaction. Based on the catalytic activity and 

stability results, we can conclude that both core properties (particle size, quantity), and 

shell properties (shell thickness, quantity) and also the interactions between them dictates 

the performance of core-shell like structures. The study indicates that in NC2 an optimal 

ratio of core and shell content exists, which is critical to have better coke resistance and 

also better catalyst performance. Therefore, it can be concluded that the excellent catalytic 

activity and the high coke resistance can be attributed to the high oxygen mobility and 

reduced sintering of Ni metal particles due to the protective CeO2 shell.  

 

Figure 4.37: H2 and CO yield of different catalysts (Reaction conditions: 800 oC, 

CH4/CO2 =1/1, WHSV= 1.20 x 105 ml g-1 h-1). 

 

 

4.12. Characterization of spent catalyst  

XRD patterns of the spent catalysts (NC2 and NC3) indicate the presence of 

diffraction peaks around 26o, which are attributed to the crystalline phase of CNTs 

matching with JCPDS no. 01-075-1621. The intensity of graphite peak was weak for NC2 

compared to NC3 indicating very sharp diffraction peaks.  However, no such graphite 

peaks were observed for NC1 as shown in Figure 4.38, which matches well with TEM 

results exhibiting the absence of formation of CNTs. XRD analysis of spent catalysts 

(NC2 and NC3) indicate the presence of Nio peaks at 2θ values of 44.63o and 51.9o 

matching with JCPDS no. 01-070-1849. The intensity of Nio peaks was strong for NC3 
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compared to NC2 and can be said that Ni particles were dislodged from shell, which can 

be seen in TEM images of spent catalysts. However, for NC1, the peaks related to Nio 

peaks were absent and Ni core particles were covered by encapsulated carbon, therefore, 

no Ni particles were seen. Moreover, the diffraction peaks belonging to Nio for the spent 

NC3 catalyst are sharper and narrower, which suggest occurrence of the sintering of Ni 

particles. The literature suggests that the sintering of metal particles during the reaction 

plays an important role in the decrease of catalytic activity as it reduces the number of 

active sites in the catalysts (Abasaeed et al., 2015). However, Nio peaks appear for spent 

NC2 catalyst are broader indicating the lower intensity of sintering. Therefore, NC2 

present better stability and catalytic activity as discussed earlier compared to NC3, as it 

has better resistance to sintering and also has better oxygen mobility.  

 

Figure 4.38: XRD analysis of spent catalysts, where ( ), ( ) and ( ) presents 

graphite peaks, Ni crystallite peaks, CeO2 peaks, respectively. 

 

Deactivation of catalyst in dry reforming reaction is attributed to several factors 

such as: carbon deposition, sintering of metal particles and oxidation of metallic active 

sites (Ay & Üner, 2015). It has been reported that the reforming of hydrocarbons on Ni-

based catalysts produces carbon deposits in the form of whisker (carbon nanotubes) and 
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shell-like (encapsulating) carbon species (Kroll, Swaan, et al., 1996a). TEM and FESEM 

images of spent catalysts (NC1, NC2, NC3 and pure Ni) after stability test indicates the 

presence of different type of morphology and structure of deposited carbon as exhibited 

in Figure 4.39 and Figure 4.40. TEM images of spent catalysts indicates the presence of 

very thin graphitic shell-like coke deposits encapsulating the metal particles for NC1, 

while for NC2 and NC3 extensive formation of filamentous coke was observed as shown 

in Figure 4.39. 

Different morphologies of carbon nanotubes (CNTs) such as: CNTs with Ni 

particle at the tip, CNTs with closed end but without the presence of Ni particle on the 

tip, CNTs with different diameters and CNTs with hollow internal channel having open 

end structure and no Ni particles at the tip were observed for NC2 and NC3 catalysts. For 

NC1, shell-like (encapsulating) carbon species were formed and severe deactivation 

exhibited by NC1 can be attributed to the formation of encapsulating carbon. The shell-

like carbon deposits occur due to the reason that part of the carbon formed during the 

early period of reforming reaction was unable to transfer in the bulk of Ni metal particles 

due to the relatively low diffusion rate of carbon (P. Chen et al., 1997). This leads to the 

blockage of Ni active sites and lower accessibility of active sites, thus severe deactivation 

and lower catalytic activity was observed for NC1 catalyst. Moreover, filamentous type 

of carbon deposits deactivates the catalyst by dislodgment of metal particles from the 

support to the tip of the filament (Ay & Üner, 2015). The position of metal particle in the 

CNTs is important for the stability of the catalyst. In this study, some of the metal particles 

were seen at the tip of the filaments and some were embedded in the carbon nanotubes. 

The previous study suggests that the condition in which metal particles are at the top of 

the filament, the reactants will have access to the active sites and may preserve the activity 

for some time. However, the situation in which the metal particles are embedded in the 

carbon, catalytic activity of the catalysts is seen to decrease as the reactant have lower 
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accessibility of the metal particles (San-José-Alonso et al., 2009). That is the reason, 

deactivation was observed for the NC2 and NC3 catalysts, however, the deactivation was 

not severe as in the case of encapsulating carbon.  Similar type of results was reported by 

previous studies  (D. Chen et al., 2001; Frusteri et al., 2002; Kroll, Swaan, et al., 1996a; 

Tsang et al., 1995), that whisker-like carbon species are less toxic compared to the shell-

like carbon species, as latter has the tendency to encapsulate the Ni particles and render 

the active sites inaccessible for reactants.  

 

Figure 4.39: TEM images of spent catalysts (a,b) NC1, (c,d) NC2 and  (e,f) NC3 after 

stability test for 140 min at 800 oC.
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TEM images indicates the homogenous distribution of carbon nanotubes having 

coil structure with different diameters as can be seen in FESEM images (Figure 4.40) for 

NC2 and NC3 catalysts. Furthermore, FESEM images of spent Ni catalyst exhibit the 

strong agglomeration of Ni particles and that is the reason very low catalytic activity and 

severe deactivation was observed.
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  Figure 4.40: FESEM images of spent catalysts (a,b) NC1  and (c,d) NC2, (e,f) NC3 and (g) Ni catalysts after stability testUniv
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4.13 Summary 

The application of Ni@CeO2 for dry reforming of methane exhibited that balance 

between Ni active sites (Ni content) and CeO2 content played an important role on the 

performance of catalyst, as the presence of suitable CeO2 content will lead to lower carbon 

deposition. It was observed that shell like carbon deposits covers the Ni active sites and 

makes them inaccessible for the reactants and exhibited severe deactivation as exhibited 

for 20% Ni@CeO2. However, the catalysts which produced whisker like carbon deposits 

during the catalytic activity exhibited the fact that it does not deactivates the catalyst 

severely.  

The comparison of the catalysts (Ni/MgO (CS5) and Ni@CeO2 (NC2)) exhibiting 

best stability among all the series of catalysts prepared as mentioned in Table 4.6 and 

Table 4.9 indicated that Ni@CeO2 exhibited lower carbon deposition (1.00 gc/gcat) 

compared to MgO based catalyst (3.580 gc/gcat), also the final (CH4 and CO2) conversions 

after 140 min was high for Ni@CeO2 catalyst. However, Ni/MgO catalysts were studied 

at much higher WHSV (1.68 x 105 ml g-1 h-1) and lower reaction temperature (750 oC) 

compared to Ni@CeO2 studied at comparatively low WHSV (1.20 x 105 ml g-1 h-1) and 

higher reaction temperature (800 oC). However, the fact that the carbon deposition was 3 

times lower for Ni@CeO2 catalyst in important factor and has more significance in dry 

reforming reaction. Therefore, it has better edge over Ni/MgO catalyst in the present 

reaction conditions. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

5.1 Conclusions 

 The conclusions drawn on the basis of this study are mentioned below: 

5.1.1 Part 1: Synthesis of Ni nanoparticles and 20%Ni/MgO at different 

preparation parameters (surfactant ratio, aging time, calcination temperature, 

molar concentration) and investigating their catalytic activity and characterization 

 The investigation on the synthesis of Ni nanoparticles by microemulsion synthesis 

approach leads to the conclusion this synthesis approach gave better control on the 

particle size and morphology of Ni nanoparticles by varying the surfactant, water and oil 

ratios at room temperature. Lower calcination temperature, moderate aging time and 

lower Ni molar concentration are suitable for the achievement of higher surface area and 

smaller particle size. The addition of MgO in the microemulsion system for Ni/MgO 

catalyst exhibited higher catalytic activity compared to Ni alone, which was attributed to 

higher surface area, smaller particle size and lesser agglomeration of Ni particles. The 

investigation on the influence of calcination temperature over 20%Ni/MgO catalysts lead 

to the conclusion that even though strong NiO-MgO solid solution was formed at higher 

calcination temperature, the activity and stability of the catalysts was not enhanced. The 

catalyst calcined at lower temperature performed well in the activity and stability tests. 

The better performance was attributed to the higher surface area and higher accessibility 

of Ni active sites. The study suggests that the formation of strong NiO-MgO solid solution 

is not favourable from the perspective of catalytic activity at these synthesis conditions 

(20 wt% Ni). Furthermore, the study suggests that the formation of filamentous carbon 

on Cat1 did not cause major deactivation and the catalysts maintains its stability during 

the reaction time.  
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However, as the Ni content in Ni/MgO catalyst was increased, influence of 

calcination temperature on the catalytic activity was different as it was for lower Ni 

content (20% Ni).  

 

5.1.2 Part 2: An investigation on the influence of catalyst composition, calcination 

and reduction temperatures on Ni/MgO catalyst for dry reforming of methane. 

In this section, the influence of Ni metal content, calcination temperature and 

reduction temperature was studied for dry reforming reaction. Ni/MgO catalyst (CS3) 

having higher Ni content (80%) exhibited better catalytic activity compared to 

20%Ni/MgO (CS1) and 40%Ni/MgO (CS2) catalyst, even though it exhibited higher 

carbon deposition. This can be attributed to the higher number of Nio active sites crucial 

for the reactants to be adsorbed and react. Even though BET results indicated that CS3 

has the lower surface area (larger particle size) compared to CS1 and CS2 but this did not 

influence the activity and stability of the catalyst. The increase of calcination temperature 

from 450 oC to 800 oC for the catalyst having higher Ni content (80%) not only enhanced 

metal-support interaction but also lower carbon deposition was observed compared to the 

catalyst calcined at lower calcination temperature (450 oC). The increase of catalytic 

activity for the catalyst (80%Ni/MgO) calcined at higher temperature (800 oC) can be 

attributed to the increased number of Ni2+ ions having strong interaction with MgO 

support and also better resistance towards sintering. The reduction of catalyst 

(80%Ni/MgO) at higher reduction temperature (800 oC) exhibited severe catalyst 

deactivation and this can be attributed to the more susceptibility of catalyst towards 

sintering. To sum up all the results, the key to form stable Ni/MgO catalyst prepared by 

microemulsion synthesis is the application of higher Ni content, higher calcination 

temperature and lower reduction temperature. 
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5.1.3 Part 3: Water-in-oil microemulsion synthesis of Ni@CeO2 core-shell like 

structures for dry reforming of methane. 

In the present study, catalytic performance of Ni@CeO2 catalyst were thoroughly 

investigated for dry reforming of methane. Two types of carbon deposits were observed 

such as: encapsulated or shell-like carbon deposits for 20%Ni@CeO2 and whisker-like 

carbon species for 40%Ni@CeO2 and 80%Ni@CeO2. The lower catalytic activity and 

deactivation of 20%Ni@CeO2 was dedicated to the shell-like carbon deposits which 

decreases the access of reactants to active sites. The presence of higher Ni content for 

40%Ni@CeO2 and 80%Ni@CeO2 leads to the increase of catalytic activity, however, 

40%Ni@CeO2 exhibited better catalyst performance due to the high CeO2 content 

compared to 80%Ni@CeO2. The lower carbon deposition for 40%Ni@CeO2 was 

dedicated to the increase of oxygen mobility and also CeO2 provides more oxygen to Ni 

surface to oxidize the deposited carbon. This indicates the importance of proper choice 

of both Ni and CeO2 content in Ni@CeO2 core-shell like structures. However, the 

occurrence of carbon deposition indicated that the rate of methane decomposition was 

high compared to the rate of transfer of oxygen to Ni surface to oxidize the deposited 

carbon. 

 

5.2 Recommendations for future work 

 This project has demonstrated performance of Ni-based catalysts supported on 

MgO and CeO2 for dry reforming reaction utilizing landfill gas (CH4 and CO2) in 

stoichiometric ratio. However, theses catalysts need more rigorous testing in the presence 

of impurities present in the biogas such as: chlorocarbons (chloromethane, CH3Cl) and 

hydrogen sulphide (H2S). The prospect of the application of small amount of noble metals 

(Rh, Ru, Pt or Pd) in Ni-based catalysts will be interesting and bimetallic catalysts can 

exhibit better performance. Furthermore, the addition of non-noble metals such as: cobalt 
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(Co) and iron (Fe) can be investigated in future work for the catalysts prepared via 

microemulsion synthesis approach. The future work can also be focused on the 

combination of both supports (MgO and CeO2) applied for Ni-based catalysts and also 

with the addition of noble metals. Thus, it will be interesting to investigate the influence 

of both basicity and oxygen mobility on catalytic activity of these combined catalysts.  
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