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ABSTRACT 

A digital image is a two-dimensional numerical array that is produced to record a 

faithful yet significant scene, however more often than not the recorded image invariably 

represents a blurred version of the original scene. Blurring is introduced in the process of 

imaging due to relative motion between camera and scene, atmospheric turbulence, etc. 

Hence, image restoration is a fundamental research topic in the realm of image to obtain 

an optimal estimate of the original image given the degraded image. 

This research project explores the motion blur which arises from the relative motion 

between camera and scene. In this study, four different techniques are used to remove the 

motion blur. They are Direct Inverse filter, Wiener filter, Constrained Least Squares filter, 

and Lucy Richardson algorithm, to restore degraded image (motion blurred image). 

In this research project, an original image is motion blurred at fixed length (30 pixels) 

along with different angles (θ). These degraded images are then restored with the derived 

image restoration techniques. Statistical error image metrics (MSE and PSNR) and 

Human Visual System feature-based metric (SSIM) are then computed to evaluate and 

analyze the quality of the restored images using the aforementioned image restoration 

techniques. Experimental and simulation results show that Wiener filter is the best-

performing image restoration technique, followed by Direct Inverse filter, Constrained 

Least Squares, and lastly, Lucy Richardson algorithm. 
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ABSTRAK 

Imej digital adalah perwakilan pelbagai berangka bagi imej dua dimensi yang 

dihasilkan untuk merakam signifikasi imej, tetapi ianya lebih kerap daripada imej yang 

tidak direkodkan yang mewakili versi kabur bagi imej asal. Imej kabur diperkenalkan 

dalam proses pengimejan adalah kerana pergerakan relatif antara kamera dan tempat 

kejadian, pergolakan atmosfera, dan sebagainya. Oleh itu, pemulihan imej adalah topik 

penyelidikan asas dalam bidang imej untuk memperoleh anggaran optimum imej asal 

yang diberikan imej yang berkualiti rendah. 

Projek penyelidikan ini akan mengkaji gerakan kabur yang hadir dari gerakan relative 

antara kamera dan imej. Dalam kajian ini, empat teknik yang berbeza diguna untuk 

menghilangkan gerakan kabur. Berikut adalah penapis terus songsang, penapis Wiener, 

penapi berkuasa rendah, dan algorithma Lucy Richardson, bagi memulihkan imej yang 

terdegradasi (imej kabur bergerak). 

Dalam projek penyelidikan ini, imej asal yang merupakan gerakan kabur pada 

kepanjangan tetap (30 piksel) pada sudut yang berbeza (θ). Imej yang terdegradasi ini 

kemudiannya dipulihkan dengan teknik pemulihan imej yang diperolehi. Statistik ralat 

bagi metrik imej (MSE dan PSNR) dan sistem visual manusia (SSIM) kemudiannya 

dihitung untuk menilai dan menganalisis kualiti imej yang dipulihkan dengan 

menggunakan teknik pemulihan imej yang disebutkan diatas. Hasil eksperimen dan 

simulasi menunjukkan bahawa penapis Wiener adalah teknik pemulihan imej yang 

terbaik, diikuti oleh penapis songsang terus, penapis berkuasa rendah dan algoritma Lucy 

Richardson.  
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CHAPTER 1: INTRODUCTION 

Image Restoration is the process of reconstructing or recovering an image that has 

been degraded by some degradation phenomenon. Restoration techniques are primarily 

modeling of the degradation and applying the inverse process in order to recover the 

original image. Image restoration techniques exist both in spatial and frequency domain 

(Xavier, 2007). 

1.1 Research Background 

Digital image play an important role in our daily life such as satellite television, 

magnetic resonance imaging, computer tomography etc. An image is a two dimensional 

representation of scene or object. A digital image is basically a numerical representation 

of an object such that digital image processing refers to the manipulation of an image by 

means of certain operations. An image may be defined as a two-dimensional function f(x, 

y), where x and y are spatial digital coordinates and amplitude off at any pair of 

coordinates (x, y) is called the intensity or gray level of the image at that point, where at 

point (x, y) the intensity value of f are finite and discrete in quantities, so we call the 

image a digital image. On the other hand, a color image is established by combining 2-D 

images individually. For instance, in the popular RGB color model, three component 2-

D images, one for each primary colors, are combined to establish a color image. Hence, 

techniques developed for monochrome images can be applied to color images by 

processing the three component 2-D images separately. 

An image is produced to record a faithful yet significant scene, however, more often 

than not the recorded image invariably represents a blurred version of the original scene. 

Blurring is defined as bandwidth reduction of an original image due to imperfections in 

the process of imaging and capturing. The introduction of blurs in recorded image 

includes but not limited to the following: 
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I. relative motion between the camera and scene 

II. atmospheric turbulence 

III. an optical system that is out of focus 

IV. relative motion between the camera and ground 

V. aberration in the optical system 

VI. the short exposure time 

The image degradation can be modelled as illustrate in Figure 1.1.1 and 

mathematically formulated as follows: 

𝑔(𝑥, 𝑦)  =  𝑓(𝑥, 𝑦)  ∗  ℎ(𝑥, 𝑦) 

Where 𝑔(𝑥, 𝑦) is the degraded image, 𝑓(𝑥, 𝑦) is the original image, ℎ(𝑥, 𝑦) is the 

degradation function, and ∗ indicates convolution. 

 

Figure 1.1.1 Image Degradation Model in Spatial Domain 

Due to the fact that convolution in the spatial domain is the same as multiplication in 

the frequency domain, the equivalent representation of the image degradation model in 

the frequency domain is illustrated in Figure 1.1.2 and mathematically formulated as 

follows: 

𝐺 (𝑢, 𝑣)  =  𝐻(𝑢, 𝑣)𝐹(𝑢, 𝑣)  +  𝑁(𝑢, 𝑣) 

Where (𝑢, 𝑣) represents the spatial frequency coordinates whereas the terms in capital 

letters are the Fourier transforms of the corresponding terms in the spatial domain. 
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Figure 1.1.2 Image Degradation Model in Frequency Domain 

Thus, image restoration, image deconvolution, or image deblurring is a fundamental 

research topic in the realm of image processing. Image restoration is an objective 

Procedure concerns with the reconstruction or recovery of an image that has been 

degraded. Contrary to popular belief, image restoration is distinct from image 

enhancement. The latter is mainly a subjective procedure comprises technique such as 

contrast stretching that manipulates an image to take advantage of the human visual 

system. 

The objective of image restoration is clear-cut which is to obtain an optimal estimate 

𝑓(x, y) of the original image 𝑓(𝑥, 𝑦) given the degraded image 𝑔(𝑥, 𝑦), some information 

in regard to the degradation function ℎ(𝑥, 𝑦). 

 

Figure 1.1.3 Image Degradation and Restoration Model in Spatial Domain. 
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1.2 Problem Statement 

The recorded image invariably represents a blurred version of the original scene. 

Blurring is introduced in the process of imaging due to relative motion between camera 

and scene, atmospheric turbulence, an optical system that is out of focus, etc. 

1.3 Objectives of Research 

The main objective of this research project is to derive image restoration techniques 

and implement the derived image restoration techniques in MATLAB to restore a blurred 

image. The following outlines the detailed objectives of this research project: 

I. To restore a blurred or degraded image using Direct Inverse Filter. 

II. To restore a blurred or degraded image using the Wiener Filter. 

III. To restore a blurred or degraded image using Constrained Least Squares (CLS) 

Filter. 

IV. To restore a blurred or degraded image using Lucy-Richardson Algorithm. 

V. To compare between Direct Inverse Filter, Wiener Filter, Constrained Least 

Squares Filter, and Lucy Richardson Filter 

 

1.4 Research Report Organization 

Chapter 2 discusses the related works comprehensively. 

Chapter 3 outlines the research implementation as well as the image degradation model 

which comprises of blur model. Additionally, this chapter also discusses the image quality 

assessment techniques. As well as, this chapter presents the detailed derivations of each 

image restoration techniques employed to reconstruct the blur image. 
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Chapter 4 presents the restored images, computes and tabulates the image quality 

metrics, discusses features, challenges, as well as drawbacks of the image restoration 

techniques, and compares the image restoration techniques. 

Chapter 5 summarizes the research with direction for future developments. 
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CHAPTER 2: LITERATURE REVIEW 

2.1  Introduction  

The goal of image restoration is to reconstruct an approximated version of the original 

image from a degraded observation. Image degradation occurs due to various reasons like 

camera mis-focus, atmospheric turbulence, camera or object motion, etc. The blurring in 

images due to motion is commonly encountered when there is a relative motion between 

the camera and object. Motion deblurring is required in many applications such as satellite 

imaging, medical imaging and traffic control. The motion may be linear or non-linear. 

The degradation due to motion can be modelled as a two dimensional linear shift invariant 

process. In many applications, the observed image g(x, y) can be expressed as a two-

dimensional convolution of the original image with the degradation function h(x, y), and 

is expressed as the equation below: 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) + ŋ(𝑥, 𝑦)  

Where ∗ denotes the two dimensional linear convolution and (x, y) is the additive 

noise. The degradation function h(x, y) is also known as Point Spread Function (PSF). 

The degradation model can otherwise be expressed in frequency domain as, 

𝑔(𝑢, 𝑣) = 𝑓(𝑢, 𝑣)ℎ(𝑢, 𝑣) + 𝑛(𝑢, 𝑣) 

Where g (u, v), f (u, v), h (u, v), and n (u, v) are the frequency responses of the observed 

image, original image, PSF and noise respectively. In the absence of noise the above 

expression reduces to, 

𝑔(𝑢, 𝑣) = 𝑓(𝑢, 𝑣)ℎ(𝑢, 𝑣) 

In classical restoration techniques, it is assumed that the PSF is known prior to 

restoration. So the restoration technique is just to inverse the process using frequency 

domain techniques with some regularization to avoid the noise amplification  (Dash & 

Majhi, 2014). 
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2.2 Deblurred Motion Blurred Images 

The problem of restoration of images blurred by relative motion between the camera 

and the object of interest. This problem is common when the imaging system is in moving 

vehicles or held by human hands, and in robot vision. In order to correct the image 

restoration, it is imperative to know the point-spread function (PSF) of the blurring 

system. They stated that a simplification technique for restoring motion blurred images 

specified only the blurred image itself. At the first, the technique determines the PSF of 

the blur after that applies it for restoring the blurred image. The blur identification here is 

based on the concept that image characteristics along the direction of motion are affected 

mostly by the blur and are different from the characteristics in other directions. By 

filtering the blurred image, and emphasize the PSF correlation properties at the expense 

of those of the original image (Yitzhaky, Mor, Lantzman, & Kopeika, 1998). 

This study, presented a comparison of image restoration techniques, namely Wiener 

filter, Regularized filter and Lucy Richardson. In this research paper, an original image, 

see Figure 2.2.1 is motion blurred across 21 pixels at an angle of 11 degrees as presents 

in Figure 2.2.2 and then restored using the image restoration techniques as illustrated in 

Figure 2.2.3, Figure 2.2.4, and Figure 2.2.5. 
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Figure 2.2.1 Original Image (Yadav & Omprakash, 2013) 

 

Figure 2.2.2 Motion Blurred Image (Yadav & Omprakash, 2013) 

 

Figure 2.2.3 Restored Image using Lucy Richardson Algorithm (Yadav & 

Omprakash, 2013) 
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Figure 2.2.4 Restored Image using Regularized Filter (Yadav & Omprakash, 

2013) 

 

Figure 2.2.5 Restored Image using Wiener Filter (Yadav & Omprakash, 2013) 

Table 2.1 PSNR of Image Restoration Techniques (Yadav & Omprakash, 2013) 

 

The experimental results that is snapshots and PSNR values indicates that Weiner filter 

technique is the best to restore motion blurred image with an information of  PSF 

corrupted blurred image with LEN=21 pixels and THETA=11 degrees (Yadav & 

Omprakash, 2013). 
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2.3 Image restoration Techniques 

The degradation are including; blurring, quantization effects, information loss because 

sampling, and different sources of noise. The main purpose of image restoration is for 

estimating the original image from the degraded data. It is broadly applied in different 

fields of applications, like astronomical imaging medical imaging, photography 

deblurring, remote sensing, microscopy imaging, and forensic science, etc. Frequently, 

the benefits of enhancing image quality to the maximum possible extent for complexity 

of the restoration algorithms and outweigh the cost involved. In this research the 

comparison of different image restoration methods such as Richardson-Lucy algorithm, 

Wiener filter and Direct Inverse filter through PSNR (Peak Signal to Noise Ratio). 

Table 2.2 Comparison of PSNR Values (dB) (Khare & Nagwanshi, 2011) 

SNR Angle Length Lucy Inverse Wiener 

10 45 6 11.8423 12.8899 14.5264 

30 45 6 11.8441 12.8512 14.5329 

50 45 6 11.8449 12.9172 14.5339 

70 45 6 11.844 12.8419 14.5343 

90 45 6 11.8435 12.8899 14.5346 

 

This experimental results showed that better restoration using Wiener filter with PSNR 

= 14.5346. As compare to Lucy Richardson and Inverse filter (Khare & Nagwanshi, 

2011). 

 

 

Univ
ers

ity
 of

 M
ala

ya



11 

2.4  Image Restoration by Richardson Lucy Algorithm 

This research paper, presented the performance analysis of different image restoration 

techniques. In this research paper, an original image is degraded through blurring and 

addition of a random noise. The degraded image is then restored using Inverse filter, 

Wiener filter, and Richardson Lucy algorithm as shown in Figure 2.4.1 and Figure 2.4.2. 

Restored images are then evaluated with image quality metrics, namely MSE and PSNR. 

Experimental results in this research paper Table 2.3 and Table 2.4 show that as the noise 

variance increases, the PSNR value of Inverse filter decreases. In other words, Inverse 

filter underperforms in the presence of noise. Furthermore, Wiener filter outperforms 

Inverse filter in general but loses out to Richardson Lucy algorithm. This research paper 

concludes that Richardson Lucy algorithm is the best-performing image restoration 

technique, followed by Wiener filter and Inverse filter (Thakur & Datar, 2014). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2.4.1 Results of pepper (a) original image (b) blurred image (c) Restored 

by Inverse filter (d) Restored by Wiener filter (e) Restored by R-L at iteration 30 

(Thakur & Datar, 2014) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2.4.2 Results of cameraman (a) original image (b) blurred image (c) 

Restored by Inverse filter (d) Restored by Wiener filter (e) Restored by R-L at 

iteration 30 (Thakur & Datar, 2014) 

Table 2.3 Results for the Cameraman image (Thakur & Datar, 2014) 
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Table 2.4 Results for the peppers image (Thakur & Datar, 2014) 

 

2.5  Image Restoration via wiener Filter 

The performance comparison of Wiener filter between frequency domain and spatial 

domain. Experimental results in an ideal case where the statistical properties of original 

image and additive noise are known show that the Wiener filter implemented in frequency 

domain performs better than in spatial domain as illustrated in Figure 2.5.1 and Figure 

2.5.2 (Furuya, Eda, & Shimamura, 2009). 

 

Original image 

 

Degraded image 

 

Figure 2.5.1 Original and Degraded image (Furuya et al., 2009) 
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Resorted of frequency domain 

 

 

Resorted of spatial domain 

Figure 2.5.2 Restored Images in Frequency and spatial Domain (Furuya et al., 

2009) 

2.6 Deblurred Image using Wiener Filter 

This section, discusses on how to de-blurred image with Wiener filter with information 

of the Point Spread Function (PSF) corrupted blurred image with different values. Image 

is restored using Wiener deconvolution it works in the frequency domain, image is blurred 

by motion is added in image. Direct image is deblurred with using of true PSF (Point 

Spread Function) in Wiener Filter, if noises are not added in degraded image. Wiener 

filter works in the frequency domain, attempting to minimize the impact of deconvoluted 

noise at frequencies which have a poor signal-to-noise ratio. As shown in Figure 2.6.1 

results of deblurring of images using Wiener filter. Since the PSF is varying in the motion 

direction, it is not correlated perpendicularly to the motion direction. If we increase length 

and theta of PSF, then blurring of image is increased (Mistry & Banerjee, 2014). 
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(a) 

 

(b) 

 

(c) 

Figure 2.6.1 (a) original, (b) blurred, (c) restored image (Mistry & Banerjee, 

2014) 

2.7 Lagrange Multipliers in Digital Image Restoration 

In this section, an image restoration technique developed based on the algorithm of 

Lagrange multipliers is presented. An original image is motion blurred horizontally and 

then restored using the proposed technique, Wiener filter, Constrained Least Squares 

filter, and Lucy Richardson algorithm. It is interesting to note that the simulation result 

as illustrated in Figure 2.7.1 shows that the Lucy Richardson algorithm requires 

significant computational time to accomplish the image restoration. Lagrange Multipliers 

is the best-performing image restoration technique. 

However, proposed image restoration technique is deemed impractical because the 

noise is excluded in the formulation of the proposed technique. It is important to note that 

noise is unavoidably introduced during the image acquisition process. Hence, integration 

of noise into formulation or model of image restoration technique is important otherwise 

the image restoration technique is vulnerable to excessive noise amplification 

(Stojanovic, Stanimirovic, & Miladinovic, 2012). 
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Figure 2.7.1 Computation Time vs Length of motion (Stojanovic et al., 2012) 

2.8 Image Quality Assessment Techniques using SSIM 

In this study, the image quality assessment (IQA) techniques is presented the method 

relates the correlation between objective scores and subjective evaluations. Basically, in 

the subjective IQA, humans are the evaluator of the image quality. 

Observers are shown with an image and requested to input the score on a scale from 1 

to 5 as shown in Table 2.4. The accumulated scores are then averaged to compute the 

mean opinion score (MOS). Generally, subjective IQA is not only expensive and 

troublesome in obtaining meaningful outcomes but also time consuming thus completely 

impracticable for real time processing. 

Table 2.5 Mean Opinion Score (MOS) (Nisha, 2013) 

1 2 3 4 5 

Very Poor 

Quality 

Poor 

Quality 

Good 

Quality 

Very Good 

Quality 

Excellent 

Quality 
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On the other hand, objective IQA can be categorized into full reference (FR) model, 

no reference (NR) model, and reduced reference (RR) model, depending on the 

availability of the original image. FR model can be classified into simple statistical error 

metrics and human visual system feature based metrics. 

Simple statistical error metrics include mean square error (MSE), peak signal to noise 

ratio (PSNR), average difference (AD), maximum difference (MD), and mean absolute 

error (MAE). These metrics are generally mathematical simple and tractable however 

they do not associate very well with the perceived quality since characteristics of human 

visual system (HVS) are not integrated into their models. 

Human visual system featured based metrics include structural similarity index 

(SSIM) and mean structural similarity index (MSSIM). SSIM index measures the 

similarity of luminance, contrast, and structural between original image and degraded 

image whereas MSSIM index is the mean of SSIM. 

This study shows that full reference metrics such as SSIM and MSSIM are more 

effective than PSNR and MSE as these metrics tend to become unstable in the presence 

of significant degradation (Nisha, 2013). 

Experimental results show that MSE and PSNR are very fast and easy to implement 

but incapable of assessing image quality across different types of distortion. On the other 

hand, SSIM is capable of assessing image quality accurately across different types of 

distortion except highly blurred image (C.Sasi varnan, 2011). 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Flow Chart of Image Degradation/Restoration  

The flowchart of the image degradation and restoration method is shown. As shown in 

Figure 3.1.1, the original image is degraded by motion blur with length and angle of 

motion. This is accomplished by convoluting the PSF with the original image. Next, the 

several image restoration techniques are applied. The image quality metric is then applied 

on the restored images. 

 

Figure 3.1.1 Flow Chart of Images Degradation/Restoration 
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3.2 Blur Model 

When a camera moves along a certain direction and across a certain distance during 

exposure time then every point of the original scene is mapped onto several pixels of the 

recorded image. This phenomena gives rise to a recorded image that is motion blurred. 

Motion blur is identified by two parameters, namely angle and length (Moghaddam & 

Jamzad, 2006). The motion blur effect is a filter that makes the image appear to be moving 

by adding a blur in a specific direction. The motion can be controlled by angle or direction 

(0 to 360 degrees) and/or by length or distance in pixels (0 to 999), based on the software 

used. Basically the angle describes the motion direction whilst the length describes the 

relative motion involved between the camera and scene during the exposure time. In 

addition, the angle is measured in degrees while the length is quantified in pixels. 

In spatial domain, h(x,y) is referred  to as the point spread function (PSF), a term that 

arises to characterized the spread out of a point of light (Gonzalez, Woods, & Eddins, 

2010). In the frequency domain, the Fourier transform of h(x,y) is called the Optical 

transfer function (OTF). In other words, PSF is the inverse Fourier transform of OTF. 

3.3 Point Spread Function 

The PSF of motion blur is a spatially invariant. It means the blurring takes place the 

exact same way at every spatial location. Point spread function that are spatially variant 

include but not limited to rotational blur, local blur, etc. are beyond the scope of this 

research project. The PSF of motion blur is, in fact, a line segment through the origin and 

the total sum of the PSF coefficients is 1. Thus, the intensity is 1/L along the line segment 

and zero elsewhere. 

 

The general PSF of the motion blur is mathematically formulated as follows: 
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ℎ(𝑚, 𝑛; 𝐿, 𝜑) =  {  
1

𝐿
             𝑖𝑓 √𝑚2 + 𝑛2  ≤  

𝐿

2
 𝑎𝑛𝑑 

𝑚

𝑛
=  − tan 𝜑

0               𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                                   

} 

Where m and n are the PSF pixel coordinates. Figure 3.3.1 illustrates the PSF obtained 

with application of above equation for linear motion for length of 30 pixels and at an 

angle of zero degrees, while Figure 3.3.9 shows the effect of motion blurring on the 

colored chips image. The filter spreads the effect of the neighboring pixels in the direction 

of motion. 

 

Figure 3.3.1 Frequency Response of Motion Blur with L = 30 pixels and θ = 0° 
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Figure 3.3.2  Frequency Response of Motion Blur with L = 30 pixels and θ = 45° 

 

Figure 3.3.3 Frequency Response of Motion Blur with L = 30 pixels and θ = 90° 
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Figure 3.3.4 Frequency Response of Motion Blur with L = 30 pixels and θ = 135° 

 

Figure 3.3.5 Frequency Response of Motion Blur with L = 30 pixels and θ = 180° 
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Figure 3.3.6 Frequency Response of Motion Blur with L = 30 pixels and θ = 225° 

 

Figure 3.3.7 Frequency Response of Motion Blur with L = 30 pixels and θ = 270° 
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The result of the motion blurring in the modelled as the convolution of the original 

image ƒ (𝑥, 𝑦) with the PSF ℎ(𝑥, 𝑦) and is mathematically formulated as follows 

(Sngulagi, 2015). 

𝑔(𝑥, 𝑦)  =  ƒ(𝑥, 𝑦)  ∗  ℎ(𝑥, 𝑦) 

Figure 3.3.8 shown the original image while Figure 3.3.9 till Figure 3.3.15 illustrate 

the convolution of original image with PSF. 

 

Figure 3.3.8 Original Image 
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Figure 3.3.9 Motion Blurred Image with L = 30 and θ = 0° 

 

Figure 3.3.10 Motion Blurred Image with L = 30 and θ = 45° 
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Figure 3.3.11 Motion Blurred Image with L = 30 and θ = 90° 

 

Figure 3.3.12 Motion Blurred Image with L = 30 and θ = 135° 
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Figure 3.3.13 Motion Blurred Image with L = 30 and θ = 180° 

 

Figure 3.3.14 Motion Blurred Image with L = 30 and θ = 225° 
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Figure 3.3.15 Motion Blurred Image with L = 30 and θ = 270° 

3.4 Image Quality Assessment (IQA) 

Measurement of image quality is important for many image processing applications. 

Image quality assessment is closely related to image similarity assessment in which 

quality is based on the differences (or similarity) between a degraded image and the 

original, unmodified image. Image quality assessment (IQA) is defined as the estimation 

and evaluation of the perceptual quality of an image in a way associated with the human 

appreciation. IQA can be classified into two categories, namely subjective and objective 

methods. The former category is evaluated by humans whereas the latter category is 

evaluated by image quality metrics. Objective image quality metrics can be categorized 

into three different classes, namely full reference, reduced reference, and no reference, 

depending on the availability of the original image with which the restored image is to be 

compared with (C.Sasi varnan, 2011). In this research project, the full reference image 

quality metrics, namely Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR), 

and Structural Similarity Index (SSIM) are employed to evaluate and estimate the quality 

of restored images. 
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3.4.1 Mean Squared Error (MSE) 

Mean squared error (MSE) defines the difference between the original image and the 

restored image (Eskicioglu & Fisher, 1995). As well as, defines the cumulative squared 

error between the restored image and the restored image (Nisha, 2013). The mathematical 

definition for MSE is: 

MSE =  
1

𝑀 ∗ 𝑁
∑[𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2

𝑀 𝑁

 

Where M and N are the number of rows and columns in the original image and restored 

image. The lower the cumulative squared error between the images, the smaller the value 

of MSE. The greatest error free restoration is accomplished when the value of MSE is 

equal to zero. 

3.4.2 Peak Signal-to-Noise Ratio (PSNR) 

The PSNR block computes the peak signal-to-noise ratio, in decibels, between two 

images. This ratio is often used as a quality measurement between the original and a 

compressed image. A higher PSNR value simply means that the quality of the restored 

image is higher (C.Sasi varnan, 2011) PSNR is mathematically formulated as follows: 

PSNR = 10 𝑙𝑜𝑔10 (
𝑃2

𝑀𝑆𝐸
) ; P = maximum pixel value 

It is interesting to note that a small mean square error will result in a high peak signal 

to noise ratio and vice versa. 

3.4.3 Structural Similarity Index (SSIM) 

SSIM index is a perceptual metric that measures the similarity between the restored 

image and the original image. SSIM index measures the similarity of luminance, contrast, 

and structural between the two input images (Li & Bovik, 2010) . The luminance, 
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contrast, and structural functions of the SSIM index are formulated individually as 

follows (Kudelka Jr, 2012): 

Luminance, l(x, y)  =
2𝑚𝑥𝑚𝑦 + 𝐶1

𝑚𝑥
2 + 𝑚𝑥

2 + 𝐶1

 

Contrast, c(x, y)  =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2

 

Structural, s(x, y)  =  
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

Where 𝑚𝑥 and 𝑚𝑦 represent the means of original image and restored image, 

respectively;𝜎𝑥 and 𝜎𝑦 are the standard deviations of original image and restored image, 

respectively; 𝜎𝑥𝑦 is the covariance between original image and restored image; 𝐶1, 𝐶2 and 

𝐶3 are constants that stabilize the computations when the denominators become small.  

The combination of the luminance, contrast, and structural functions yields a general 

form of SSIM index as follows: 

SSIM (x, y)  =  
(2𝑚𝑥𝑚𝑦 + 𝐶1)(2𝜎𝑥𝜎𝑦 + 𝐶2)

(𝑚𝑥
2 + 𝑚𝑥

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

SSIM index is a maximum (1) if and only if the original image equates restored image 

(Dosselmann & Yang, 2008). 
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3.5 Image Restoration Techniques 

3.5.1 Direct Inverse Filter  

Direct inverse filter computes an optimal estimate  𝐹(𝑢, 𝑣) of the original 

image 𝐹(𝑢, 𝑣) simply dividing the degraded image 𝐺(𝑢, 𝑣) by the degradation function 

𝐻(𝑢, 𝑣)as follows: 

𝐹(𝑢, 𝑣) =
𝐺(𝑢, 𝑣) 

H(𝑢, 𝑣)
 

Substitute 𝐺(𝑢, 𝑣)𝑤𝑖𝑡ℎ 𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣) + 𝑁(𝑢, 𝑣): 

𝐹(𝑢, 𝑣) =
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑁(𝑢, 𝑣) 

H(𝑢, 𝑣)
 

𝐹 (𝑢, 𝑣) =
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

H(𝑢, 𝑣)
+

𝑁(𝑢, 𝑣)

H(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) +
𝑁(𝑢, 𝑣)

H(𝑢, 𝑣)
 

It is interesting to note that the direct inverse filter can recover a degraded image 

exactly in the absence of noise. However, in the event that the noise is unknown, then it 

is impossible for a direct inverse filter to reconstruct the degraded image. Furthermore, in 

the event that the degradation function has zero or absolute small values, then the noise 

can easily dominate the estimate 𝐹(𝑢, 𝑣). 

In a nutshell, the direct inverse filter makes no explicit for managing noise and tends 

to allow noise to dominate over the estimate in the process of restoration. 
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3.5.2  Wiener Filter 

Wiener filter is an enhanced image restoration technique that integrates not only the 

degradation function but also statistical properties of noise and original image in the 

reconstruction process. 

Wiener filter obtains an optimal estimate 𝑓(𝑥, 𝑦) of the original image 𝑓(𝑥, 𝑦) by 

minimizing the mean square error (MSE) between them on the assumption that the blur 

and the original image are uncorrelated. The detailed derivation of Weiner filter is as 

follows: 

𝑒2 = 𝐸[|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦)|2] 

𝑒2 = 𝐸[|𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦) ∗ 𝑤(𝑥, 𝑦)|2] 

Convert the statistical error function to frequency domain by applying Fourier 

transform onto each the corresponding terms: 

𝑒2 = 𝐸[|𝐹(𝑢, 𝑣) − 𝐹(𝑢, 𝑣)𝑊(𝑢, 𝑣)|2] 

Apply 𝐺(𝑢, 𝑣) =  𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑁(𝑢, 𝑣) into the statistical error function above to 

obtain: 

𝑒2 = 𝐸[|𝐹(𝑢, 𝑣) − (𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑁(𝑢, 𝑣))𝑊(𝑢, 𝑣)|2] 

𝑒2 = 𝐸[|𝐹(𝑢, 𝑣) − 𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)𝑊(𝑢, 𝑣) − 𝑁(𝑢, 𝑣))𝑊(𝑢, 𝑣)|2] 

𝑒2 = 𝐸[|𝐹(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣)) − 𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣)|2] 

Apply complex conjugate formula, |𝑧|2 = 𝑧𝑧̅ = 𝑧̅𝑧: 
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𝑒2 = 𝐸[(𝐹(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))

− 𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣))(𝐹(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣)) − 𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 

𝑒2 = 𝐸 [(𝐹(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))

− 𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣)) (𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ]  

𝑒2 = 𝐸 [(𝐹(𝑢, 𝑣)𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

− 𝐹(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

− (𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑁(𝑢, 𝑣)𝑊(𝑢, 𝑣)

+ 𝑊(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑁(𝑢, 𝑣)𝑁(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) ]  

The noise, 𝑁(𝑢, 𝑣)is assumed to be independent of the original image 𝐹(𝑢, 𝑣), hence: 

𝐸[𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐹(𝑢, 𝑣)] = 𝐸[𝑁(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐹(𝑢, 𝑣)] = 0 

Apply the assumption that the noise and the original image are uncorrelated into the 

statistical error function: 

𝑒2 = 𝐸 [𝐹(𝑢, 𝑣)𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝑊(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑁(𝑢, 𝑣)𝑁(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ] 

In addition, the power spectral densities of the noise and original image are defined as 

follows: 

𝑆𝐹(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 

𝑆𝑁(𝑢, 𝑣) = |𝑁(𝑢, 𝑣)|2 

Therefore, 
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𝑒2 = 𝐸 [𝑆𝐹(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ 𝑊(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑁(𝑢, 𝑣)  ] 

Find the minimum value of the function by differentiating the statistical error function 

with respect to Wiener filter, 𝑊(𝑢, 𝑣): 

𝑑𝜀

𝑑𝑊
= − 𝐻(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝐹(𝑢, 𝑣) + 𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑁(𝑢, 𝑣) 

𝑑𝜀

𝑑𝑊
= 𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑁(𝑢, 𝑣) −  𝐻(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝐹(𝑢, 𝑣) 

Set derivative equal to zero and solve for wiener filter, 𝑊(𝑢, 𝑣): 

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑁(𝑢, 𝑣) −  𝐻(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝐹(𝑢, 𝑣) = 0 

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑁(𝑢, 𝑣) = 𝐻(𝑢, 𝑣)(1 − 𝑊(𝑢, 𝑣)𝐻(𝑢, 𝑣))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑆𝐹(𝑢, 𝑣) 

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑆𝑁(𝑢, 𝑣) = 𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣) − 𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑆𝑁(𝑢, 𝑣) =
𝑆𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −
𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑆𝑁(𝑢, 𝑣) =
𝑆𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑆𝑁(𝑢, 𝑣) + 𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑆𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑆𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝑆𝑁(𝑢, 𝑣) + 𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
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𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝑆𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝑆𝑁(𝑢, 𝑣) + 𝑆𝐹(𝑢, 𝑣) 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ×

1
𝑆𝐹(𝑢, 𝑣)

1
𝑆𝐹(𝑢, 𝑣)

 

𝑊(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
𝐻(𝑢, 𝑣)

𝑆𝑁(𝑢, 𝑣)

𝑆𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

𝑊(𝑢, 𝑣) =
𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑆𝑁(𝑢, 𝑣)

𝑆𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

𝑊(𝑢, 𝑣) =
𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑆𝑁(𝑢, 𝑣)

𝑆𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
×

𝐻(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

𝑊(𝑢, 𝑣) =
𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐻(𝑢, 𝑣)

𝑆𝑁(𝑢, 𝑣)

𝑆𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐻(𝑢, 𝑣)𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
×

1

𝐻(𝑢, 𝑣)
 

𝑊(𝑢, 𝑣) =
|𝐻(𝑢, 𝑣)|2

𝑆𝑁(𝑢, 𝑣)

𝑆𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + |𝐻(𝑢, 𝑣)|2
×

1

𝐻(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) =  𝑊(𝑢, 𝑣) × 𝐺(𝑢, 𝑣) 

𝐹(𝑢, 𝑣) =

[
 
 
 |𝐻(𝑢, 𝑣)|2

𝑆𝑁(𝑢, 𝑣)

𝑆𝐹(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + |𝐻(𝑢, 𝑣)|2
×

1

𝐻(𝑢, 𝑣)

]
 
 
 

×  𝐺(𝑢, 𝑣) 

Where  

𝐹(𝑢, 𝑣) = optimal estimate of original image 𝐹(𝑢, 𝑣) 

𝐻(𝑢, 𝑣) = the degradation/blurring/PSF/OTF function  

|𝐻(𝑢, 𝑣)|2 = 𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝐻(𝑢, 𝑣) 
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𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = the complex conjugate of 𝐻(𝑢, 𝑣) 

𝑆𝐹(𝑢, 𝑣) = |𝐹(𝑢, 𝑣)|2 = the power spectrum of the original image  

𝑆𝑁(𝑢, 𝑣) = |𝑁(𝑢, 𝑣)|2= the power spectrum of the additive noise  

Power spectrum density (PSD) or power spectrum of a signal describes the average 

signal power per spatial frequency (𝑢, 𝑣). The power spectral densities of original image 

and additive noise are represented by 𝑆𝐹(𝑢, 𝑣) and  𝑆𝑁(𝑢, 𝑣) respectively.  

The ratio 𝑆𝑁(𝑢, 𝑣)/𝑆𝐹(𝑢, 𝑣) is known as the noise to signal power ratio. It is important 

to note that in the absence of noise, the power spectrum of noise,  𝑆𝑁(𝑢, 𝑣) is zero, hence, 

the noise to signal power ratio becomes zero as well. In other words, the Wiener filter 

reduces or approximates to a direct inverse filter in the absence of noise. 

Furthermore, the power spectrum of the noise is determined by the noise variance only 

for all spatial frequencies due to the assumption that the noise is independent of the 

original Image, thus has zero mean. 

𝑆𝑁(𝑢, 𝑣) = 2𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣) 

However, the estimation of power spectrum of the original image is often challenging 

since the original image in practical case is obviously unavailable. Thus, periodogram is 

an approach commonly used to estimate the power spectrum of the original image by 

determining the power spectrum of the degraded image and compensating for the variance 

of the noise 𝑛
2 . 

𝑆𝐹(𝑢, 𝑣) ≈ 𝑆𝐺(𝑢, 𝑣) − 𝑛
2 ≈

1

𝑁𝑀
𝐺(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅𝐺(𝑢, 𝑣) − 𝑛

2  
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Last but not least, it is important to note that even in the event that the noise to signal 

power ratio is unknown, the optimal estimate of the original image can still be obtained 

by varying the constant ratio and observing the restored outcomes. 

3.5.3 Constrained Least Squares (CLS) Filter  

Constrained least squares (CLS) filter is another image restoration technique, the CLS 

filter requires only information about the length and theta of blur in the process of image 

restoration by applying Laplacian filter and imposing constraint so that the sum of squares 

of the Laplacian values at each pixels is minimal. 

Apply Laplacian filter with constraint so that the sum of the squares of the Laplacian 

values at each pixel position is minimal 

 

∑ ∑[∆2𝑓(𝑥, 𝑦)]2 = (𝐿𝑓)𝑇

𝑁−1

𝑦=0

𝑀−1

𝑥=0

(𝐿𝑓) = 𝑚𝑖𝑛𝑖𝑚𝑎𝑙  

Where 

Constraint: 

|𝑔 − 𝐻𝑓|
2

= |𝑛|2 

|𝑛|2 = 𝑛𝑇𝑛 = 𝜀 

|𝑔 − 𝐻𝑓|
2

= (𝑔 − 𝐻𝑓)
𝑇
(𝑔 − 𝐻𝑓) 

(𝑔 − 𝐻𝑓)
𝑇
(𝑔𝜀 − 𝐻𝑓) = 𝜀 

Minimal (𝐿𝑓)𝑇(𝐿𝑓) with the constraint of (𝑔 − 𝐻𝑓)
𝑇
(𝑔𝜀 − 𝐻𝑓) = 𝜀 
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𝐿𝑒𝑡 𝑎(𝑥, 𝑦)  = ∑ ∑[∆2𝑓(𝑥, 𝑦)]2 = (𝐿𝑓)𝑇

𝑁−1

𝑦=0

𝑀−1

𝑥=0

(𝐿𝑓) = 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 

𝐴𝑛𝑑 𝑏(𝑥, 𝑦) =  𝜀 = (𝑔 − 𝐻𝑓)
𝑇
(𝑔𝜀 − 𝐻𝑓) 

 

 

Figure 3.5.1 Satisfaction of Two Incompatible Equations 

Figure 4.3.1 illustrates that in the (𝑥, 𝑦) plane, 𝑎(𝑥, 𝑦) is exactly satisfied at point A 

whereas is exactly satisfied at point B. Hence, it is an uphill task to satisfy both  𝑎(𝑥, 𝑦) 

and 𝑏(𝑥, 𝑦) exactly for the same value of (𝑥, 𝑦). However, the point where the two 

isocontour of the functions just touch is the point where minimal total violation of two 

constraints takes place. 

As the contours grow away from point A, the values function|𝑎(𝑥, 𝑦)| takes become 

greater. Similarly, as the contours grow away from point B, function |𝑏(𝑥, 𝑦)| takes 

greater values. 
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Point C, where the values of |𝑎(𝑥, 𝑦)| and |𝑏(𝑥, 𝑦)| are as small as possible, must be 

the point where an isocontour around A just touches an isocontour around B, without 

crossing each other(Petrou & Petrou, 2010). When two curves just touch each other, their 

tangents become parallel. The tangent vector to a curve along with a = constant is ∇𝑎 and 

the tangent vector to a curve along which b = constant is ∇𝑏. The two tangent vectors do 

not need to have the same magnitude for the minimum violation of the constraints. It is 

sufficient for them to have the same orientation. Therefore, point C is determined by the 

solution of equation ∇a + ʎ ∇b where ʎ is the Lagrange multiplier, an arbitrary constant 

that takes care of the probably dissimilar magnitudes of the two vectors. In other words, 

the solution to the simultaneous satisfaction of two incompatible equations is the solution 

of the differential set of equations as follows: 

∇𝑓 + ʎ ∇𝜀 = 0 

Substitute 𝜀 = (𝑔 − 𝐻𝑓)
𝑇
(𝑔𝜀 − 𝐻𝑓) 

𝑑

𝑑𝑓
[𝐿𝑇𝑓𝑇𝐿𝑓 + ʎ(𝑔 − 𝐻𝑓)

𝑇
(𝑔𝜀 − 𝐻𝑓)] = 0 

𝑑𝑓𝑇𝑎

𝑑𝑓
= 𝑎;

𝑑𝑏𝑇𝑓

𝑑𝑓
= 𝑏;

𝑑𝑓𝑇𝐴𝑓

𝑑𝑓
= (𝐴 + 𝐴𝑇)𝑓 

𝑑

𝑑𝑓
[𝑓𝑇𝐿𝑇𝐿𝑓 + ʎ(𝑔𝑇𝑔 − 𝑔𝑇𝐻𝑓 − 𝐻𝑇𝑔𝑓𝑡 + 𝑓𝑇𝐻𝑇𝐻𝑓)] = 0 

(𝐿𝑇𝐿 + 𝐿𝑇𝐿)𝑓 + ʎ[0 − 𝐻𝑇𝑔 − 𝐻𝑇𝑔 + (𝐻𝑇𝐻 + 𝐻𝑇𝐻)𝑓] = 0 

2𝐿𝑇  𝐿𝑓 − 2ʎ𝐻𝑇𝑔 + 2 ʎ𝐻𝑇𝐻𝑓 = 0 

2𝐿𝑇  𝐿𝑓 + 2 ʎ𝐻𝑇𝐻𝑓 = 2ʎ𝐻𝑇𝑔 
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2𝑓(𝐿𝑇𝐿 + ʎ𝐻𝑇𝐻) = 2ʎ𝐻𝑇𝑔 

𝑓 =
2ʎ𝐻𝑇𝑔

2(𝐿𝑇𝐿 + ʎ𝐻𝑇𝐻)
 

𝑓 =
ʎ𝐻𝑇𝑔

(𝐿𝑇𝐿 + ʎ𝐻𝑇𝐻)
 

𝐿𝑒𝑡 𝑦 =
1

ʎ
 

𝑓 =
𝐻𝑇𝑔

𝑦𝐿𝑇𝐿 + 𝐻𝑇𝐻
 

𝑓 =
𝐻𝑇𝑔

𝐻𝑇𝐻 + 𝑦𝐿𝑇𝐿
 

𝐹(𝑢, 𝑣) =  
𝐻𝑇(𝑢, 𝑣)𝐺(𝑢, 𝑣)

𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑦𝐿𝑇(𝑢, 𝑣)𝐿(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) = 𝐺(𝑢, 𝑣)  
𝐻𝑇(𝑢, 𝑣)

𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑦𝐿𝑇(𝑢, 𝑣)𝐿(𝑢, 𝑣)

𝐻(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) = 𝐺(𝑢, 𝑣)  
𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑦𝐿𝑇(𝑢, 𝑣)𝐿(𝑢, 𝑣)

1

𝐻(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) = [
𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑦𝐿𝑇(𝑢, 𝑣)𝐿(𝑢, 𝑣)

1

𝐻(𝑢, 𝑣)
] 𝐺(𝑢, 𝑣)  

𝐹(𝑢, 𝑣) = [
|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 + 𝑦|𝐿(𝑢, 𝑣)|2
1

𝐻(𝑢, 𝑣)
] 𝐺(𝑢, 𝑣)  

Where 

𝐹(𝑢, 𝑣) = The optimal estimate of the original image 
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𝐻(𝑢, 𝑣) = The degradation/blurring/PSF/OTF function 

     |𝐻(𝑢, 𝑣)|2 = 𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣) 

𝐻𝑇(𝑢, 𝑣) = Transpose of 𝐻(𝑢, 𝑣) 

𝐿(𝑢, 𝑣) = Fourier transform of Laplacian filter, 𝑙(𝑢, 𝑣) 

𝑙(𝑢, 𝑣) =  [ 
0 1 0 
1 −4 1 
0 1 0 

] 

3.5.4 Lucy Richardson (LR) Algorithm 

Lucy Richardson (LR) algorithm, sometimes referred to as Richardson Lucy (RL) 

algorithm. is an iterative image restoration technique. It is interesting to note that actually 

LR algorithm is initially established to restore astronomical images that have been 

contaminated largely with Poisson noise however this iterative algorithm performs 

relatively well even for images that have been contaminated with other types of noise. 

Furthermore, LR algorithm does not require any knowledge about the original image. 

This feature makes LR algorithm a very practical image restoration technique because in 

actual scenarios more often than not the original image is unavailable. 

Theoretically, LR algorithm is developed based on a Bayesian framework by 

maximizing the likelihood probability function iteratively as follows: 

𝑝(𝐹|𝐺) = 𝑝(𝐺|𝐹)
𝑝(𝐹)

𝑝(𝐺)
 

Where 𝑝(𝐹|𝐺) is the likelihood probability, 𝑝(𝐹|𝐺)) is the posterior probability, 𝑝(𝐹) 

is a model of the original image, and 𝑝(𝐺) is a model of the degraded image. 
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The likelihood probability for image modelled with Poisson process is mathematically 

formulated as follows: 

𝑝(𝐺|𝐹) = ∏
[𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)]𝐺(𝑢,𝑣)𝑒−[𝐻(𝑢,𝑣)∗𝐹(𝑢,𝑣)]

𝐺(𝑢, 𝑣)!
𝑢,𝑣

 

The likelihood probability above is maximized by minimizing the negative log 

likelihood as follows: 

−𝑙𝑜𝑔 𝑝(𝐺|𝐹) = ∫ [𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) − 𝐺(𝑢, 𝑣)𝑙𝑜𝑔[[𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)]]
𝑣

𝑢

+ 𝑙𝑜𝑔[𝐺(𝑢, 𝑣)]!]𝑑𝑢𝑣 

𝐽(𝐹(𝑢, 𝑣)) = ∫ [𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) − 𝐺(𝑢, 𝑣)𝑙𝑜𝑔[𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)]]𝑑𝑢𝑣
𝑣

𝑢

 

A small perturbation 𝑝𝐹(𝑢, 𝑣) is added to the original image 𝐹(𝑢, 𝑣) in order to 

compute the derivative of the function as follows: 

𝐽 (𝐹(𝑢, 𝑣) + 𝑝𝐹(𝑢, 𝑣))

=  ∫ [𝐻(𝑢, 𝑣) ∗ [𝐹(𝑢, 𝑣) + 𝑝𝐹(𝑢, 𝑣)]
𝑣

𝑢

− 𝐺(𝑢, 𝑣)𝑙𝑜𝑔 [𝐻(𝑢, 𝑣) ∗ [𝐹(𝑢, 𝑣) + 𝑝𝐹(𝑢, 𝑣)]]] 𝑑𝑢𝑣 

𝐽 (𝐹(𝑢, 𝑣) + 𝑝𝐹(𝑢, 𝑣))

=  ∫ [𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) + 𝑝 (𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣))
𝑣

𝑢

− 𝐺(𝑢, 𝑣)𝑙𝑜𝑔 [𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) [1 + 𝑝
𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
]]] 𝑑𝑢𝑣 
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𝐽 (𝐹(𝑢, 𝑣) + 𝑝𝐹(𝑢, 𝑣))

= ∫ [𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) + 𝑝 (𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣))
𝑣

𝑢

− 𝐺(𝑢, 𝑣)𝑙𝑜𝑔 [𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣) − [𝑝𝐺(𝑢, 𝑣)
𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
]]] 𝑑𝑢𝑣 

 

𝐽 (𝐹(𝑢, 𝑣) + 𝑝𝐹(𝑢, 𝑣))

= 𝐽(𝐹(𝑢, 𝑣))

+ 𝑝 ∫ [(𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)) − 𝐺(𝑢, 𝑣)
𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
] 𝑑𝑢𝑣

𝑣

𝑢

 

 

 

∫ [(𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)) − 𝐺(𝑢, 𝑣)
𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
] 𝑑𝑢𝑣

𝑣

𝑢

= ∫ 𝐹(𝑢, 𝑣) [𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
] 𝑑𝑢𝑣

𝑣

𝑢

 

 

∇𝐽[𝐹(𝑢, 𝑣)] = 𝐻(−𝑢,−𝑣) ∗ [1 −
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
] 

Set the derivative ∇𝐽[𝐹(𝑢, 𝑣)] = to zero to obtain: 
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∫ 𝐻(−𝑢,−𝑣)𝑑𝑢𝑣 − 𝐻(−𝑢, 𝑣)
𝑣

𝑢

𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
= 0 

The PSF has an energy of one, thus: 

𝐻(−𝑢, 𝑣) ∗
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
= 1 

Assume that the convergence ratio 𝐹𝑝+1(𝑢, 𝑣)/𝐹𝑝(𝑢, 𝑣) = 1, then yields the 

following equation: 

𝐹𝑝+1(𝑢, 𝑣) = 𝐹𝑝(𝑢, 𝑣) [𝐻(−𝑢, 𝑣) ∗
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣) ∗ 𝐹(𝑢, 𝑣)
] 

Convert to spatial domain: 

𝑓𝑘+1(𝑥, 𝑦) = 𝑓𝑘(𝑥, 𝑦) [𝐻(−𝑥,−𝑦) ∗
𝐺(−𝑥,−𝑦)

𝐻(−𝑥,−𝑦) ∗ 𝐹(−𝑥,−𝑦)
] 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

This chapter shows the results of the four methods used to restore the degraded image. 

The restored image is evaluated using the image quality metric discussed in the earlier 

chapters. A total of seven images is used in this experimented study. The degraded images 

are blurred with a fixed length of 30 pixels and with various angles of motion.  

4.1 Direct Inverse Filter 

Direct inverse filter is mathematically formulated as follows: 

𝐹(𝑢, 𝑣) =  
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑁(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

However, in the absence of noise, the direct inverse filter reduces to: 

𝐹(𝑢, 𝑣) =  
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 0

𝐻(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) =  
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

𝐹(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) 
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Figure 4.1.1 Image Restoration using Direct Inverse Filter 

Figure 5.1.1 illustrates and validates that a direct inverse filter is indeed an excellent 

image restoration technique. It is capable of recovering a motion blurred image exactly 

in the absence of noise. The MSE and PSNR of the restored image are 0.8133 * 10−6 and 

109.0285 dB respectively. The MSE value indicated that the cumulative squared error 

between the restored image and the original image is extremely minimal while the high 

PSNR value indicates that the restored image presents a high quality image. 
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Figure 4.1.2 Restored image using Direct Inverse Filter at 0 degree 

 

Figure 4.1.3 Restored image using Direct Inverse Filter at 45 degree 
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Figure 4.1.4 Restored image using Direct Inverse Filter at 90 degree 

 

Figure 4.1.5 Restored image using Direct Inverse Filter at 135 degree 
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Figure 4.1.6 Restored image using Direct Inverse Filter at 180 degree 

 

Figure 4.1.7 Restored image using Direct Inverse Filter at 225 degree 
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Figure 4.1.8 Restored image using Direct Inverse Filter at 270 degree 

Table 4.1 MSE, PSNR and SSIM of Direct Inverse Filter 

Direct Inverse Filter 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

MSE 

0.3254*

𝟏𝟎−𝟔 

0.8133*

𝟏𝟎−𝟔 

0.4016*

𝟏𝟎−𝟔 

0.7046*

𝟏𝟎−𝟔 

0.3254*

𝟏𝟎−𝟔 

0.8133*

𝟏𝟎−𝟔 

0.4016*

𝟏𝟎−𝟔 

PSNR(dB

) 

113.0061 109.0285 112.0930 109.6514 113.0061 109.0285 112.0930 

SSIM 0.9973 0.9962 0.9973 0.9970 0.9973 0.9962 0.9973 

 

Figure 5.1.2 till Figure 5.1.8 illustrate and validate that the direct inverse filter is 

satisfactory of restoring a motion blurred image. Consequently, the MSE, PSNR, and 

SSIM of direct inverse filter for motion blur is computed and tabulated in Table 5.1. 

However, it is clear from Table 5.1 when the θ is equates 0o, the MSE showed the 

lowest value, while the SSIM is the highest value. Similarly, the results of 180o was same 

due to 180o is conjugated for 0o. In contrast, when the θ is equates 45o, the MSE showed 
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the highest value, while the SSIM is the lowest value. Likewise, the results of 225o was 

same due to 225o is conjugated for 45o. 

 

Figure 4.1.9 MSE of Direct Inverse Filter for Motion Blur 

 

Figure 4.1.10 PSNR of Direct Inverse Filter for Motion Blur 
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Figure 4.1.11 SSIM of Direct Inverse Filter for Motion Blur 

4.2 Wiener Filter 

Wiener filter is mathematically formulated as follows: 

𝐹(𝑢, 𝑣) =  [
|𝐻(𝑢, 𝑣)|2

𝑆𝑁(𝑢, 𝑣)
𝑆𝐹(𝑢, 𝑣)

+  |𝐻(𝑢, 𝑣)|2
 ×  

1

𝐻(𝑢, 𝑣)
]  × 𝐺(𝑢, 𝑣) 

where 𝐹(𝑢, 𝑣)  is the optimal estimate of original image 𝐹(𝑢, 𝑣);𝐻(𝑢, 𝑣) is the 

degradation/blurring/PSF/OTF function; |𝐻(𝑢, 𝑣)|2 = 𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝐻(𝑢, 𝑣); 𝐻(𝑢, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the 

complex conjugate of 𝐻(𝑢, 𝑣); 𝑆𝐹(𝑢, 𝑣) =|𝐹(𝑢, 𝑣)|2  is the power spectrum of the original 

image; 𝑆𝑁(𝑢, 𝑣) = |𝑁(𝑢, 𝑣)|2 is the power spectrum of the additive noise. 

However, it is interesting to note that in the absence of noise, the noise to signal ratio, 

𝑆𝑁(𝑢, 𝑣) 
𝑆𝐹(𝑢, 𝑣)⁄  is zero and the Wiener filter reduces to a direct inverse filter as 

follows: 

𝐹(𝑢, 𝑣) =  [
|𝐻(𝑢, 𝑣)|2

0 + |𝐻(𝑢, 𝑣)|2
 ×  

1

𝐻(𝑢, 𝑣)
]  × 𝐺(𝑢, 𝑣) 
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𝐹(𝑢, 𝑣) =  
𝐺(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

Figure 5.2.1 showed that the result of Wiener filter restored the motion blurred was 

better quality compared with the direct inverse filter. The computation of MSE, PSNR, 

and SSIM of Wiener filter was silently various to direct inverse filter. The MSE, PSNR 

and SSIM of the restored image are 0 and 121.9285 dB and 1 respectively, when θ and 

length are equate to 45o and 30 pixels respectively.  

 

Figure 4.2.1 Image Restoration using Wiener Filter 

Wiener filter is an enhanced image restoration technique that incorporates the blurring 

function into the image recovery process. The following is the MATLAB code of Wiener 

filter to restore motion blurred image. 
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Figure 5.2.2 till Figure 5.2.8. Presented the results of restored images of motion 

blurred.  

 

 

Figure 4.2.2 Restored image using Wiener Filter at 0 degree Univ
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Figure 4.2.3 Restored image using Wiener Filter at 45 degree 

 

Figure 4.2.4 Restored image using Wiener Filter at 90 degree 
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Figure 4.2.5 Restored image using Wiener Filter at 135 degree 

 

Figure 4.2.6 Restored image using Wiener Filter at 180 degree 
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Figure 4.2.7 Restored image using Wiener Filter at 225 degree 

 

Figure 4.2.8 Restored image using Wiener Filter at 270 degree 

The results of Wiener filter showed that the restored images are perfectly look like the 

original image. Consequently, the quantitative parameters, namely MSE, PSNR, and 

SSIM are computed and tabulated in Table 5.2 to compare and analyze the quality 

between the restored images and the original image. Generally, the cumulative squared 
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errors between the restored images and original image are very minimal. Hence, the 

qualities of the restored images are quite good overall. However, it is clear from Table 

5.2 when the θ is equates 0o, the MSE showed the highest value, while the SSIM is the 

lowest value. Similarly, the results of 180o was same due to 180o is conjugated for 0o. In 

contrast, when the θ is equates 45o, the MSE showed the lowest value, while the SSIM is 

the highest value. Likewise, the results of 225o was same due to 225o is conjugated for 

45o. Moreover, PSNR values are relatively high, and the luminance, contrast, as well as 

the structural similarities are quite close to the original image.  

Wiener filter is indeed a more practical image restoration technique since it only 

requires knowledge of length and theta of blur, where can easily be estimated from the 

blurred image. Generally, the cumulative errors are particularly low, qualities are quite 

high, and pretty similar to the original image.  

Table 4.2 MSE, PSNR and SSIM of Wiener Filter 

Wiener Filter 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

MSE 0.0125*𝟏𝟎−𝟑 0 0.0099*𝟏𝟎−𝟑 0.0008*𝟏𝟎−𝟑 0.0125*𝟏𝟎−𝟑 0 0.0099*𝟏𝟎−𝟑 

PSNR 

(dB) 

 

97.1616 

 

121.9285 105.7600 119.0747 

 

97.1616 

 

121.9285 105.7600 

SSIM 0.9975 1 0.9985 0.9998 0.9975 1 0.9985 
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Figure 4.2.9 MSE of Wiener Filter for Motion Blur 

 

Figure 4.2.10 PSNR of Wiener Filter for Motion Blur 
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Figure 4.2.11 SSIM of Wiener Filter for Motion Blur 

4.3 Constrained Least Squares (CLS) Filter 

CLS filter is mathematically formulated as follows: 

𝐹(𝑢, 𝑣) =  [
|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 + 𝛾|𝐿(𝑢, 𝑣)|2
 ×  

1

𝐻(𝑢, 𝑣)
]  × 𝐺(𝑢, 𝑣) 

Where 𝐹(𝑢, 𝑣) =  the optimal estimate of the original image; 𝐻(𝑢, 𝑣) = the 

degradation/blurring/PSF/OTF function; |𝐻(𝑢, 𝑣)|2  =  𝐻𝑇(𝑢, 𝑣)𝐻(𝑢, 𝑣) ; 𝐻𝑇(𝑢, 𝑣) 

 transpose of 𝐻(𝑢, 𝑣); 𝐿(𝑢, 𝑣) Fourier transform of Laplacian filter;  and 𝛾 is an adjustable 

parameter to satisfy the constraint. 

The only unknown in the CLS filter formulation is y however this unknown can be 

found iteratively if motion length and motion theta are known. In other words, the CLS 

filter requires only the length and theta of motion in the process of image restoration. The 

following is the MATLAB code of CLS filter to restore a motion blurred image: 
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The restored images of motion blurred using CLS filter are illustrated and shown in 

Figure 5.3.1 till Figure 5.3.7. 
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4.3.2 Restored image using CLS Filter at 45 degree 

 

4.3.3 Restored image using CLS Filter at 90 degree 
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4.3.4 Restored image using CLS Filter at 135 degree 

 

4.3.5 Restored image using CLS Filter at 180 degree 
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4.3.6 Restored image using CLS Filter at 225 degree 

 

4.3.7 Restored image using CLS Filter at 270 degree 

Qualitatively, the result quality of CLS showed that the restored images is different 

from the original. Consequently, the quantitative parameters, namely MSE, PNNR, and 

SSIM are computed and tabulated in Table 5.3. When the θ is equates 0o, the cumulative 

error showed the lowest value, while the SSIM is the highest value. Likewise, the results 
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of 180o was same because of 180o is conjugated for 0o. In contrast, when the θ is equates 

45o, the MSE showed the highest value, while the SSIM is the lowest value. Similarly, 

the results of 225o was same due to 225o is conjugated for 45o. 

Somewhat, CLS filter showed the lowest values compared to the other methods such 

as Direct Inverse filter and Wiener filter. 

Table 4.3 MSE, PSNR and SSIM of CLS Filter 

CLS Filter 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

MSE 0.6096*𝟏𝟎−𝟒 0.7830*𝟏𝟎−𝟒 0.7137*𝟏𝟎−𝟒 0.7094*𝟏𝟎−𝟒 0.6096*𝟏𝟎−𝟒 0.7830*𝟏𝟎−𝟒 0.7137*𝟏𝟎−𝟒 

PSNR 

(dB) 

90.2806 89.1930 89.5957 89.6220 90.2806 89.1930 89.5957 

SSIM 0.9767 0.9697 0.9707 0.9718 0.9767 0.9697 0.9707 

 

 

4.3.8 MSE of CLS Filter for Motion Blur 
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4.3.9 PSNR of CLS Filter for Motion Blur 

 

4.3.10 SSIM of CLS Filter for Motion Blur 
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4.4 Lucy Richardson (LR) Algorithm 

LR algorithm is mathematically formulated as follows: 

𝑓 𝑘+1(𝑥, 𝑦) =  𝑓 𝑘(𝑥, 𝑦) [ℎ(−𝑥, −𝑦) ∗  
𝑔(𝑥, 𝑦)

ℎ(𝑥, 𝑦) ∗  𝑓 𝑘(𝑥, 𝑦
 ] 

Where 𝑓 represents the estimate image, h is the point spread function, g is the degraded 

image, and * indicates convolution. 

The restored images of motion blurred using LR filter are illustrated and shown in 

Figure 5.4.1 till Figure 5.4.7. 

 

 

4.4.1 Restored image using LR Filter at 0 degree 
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4.4.2 Restored image using LR Filter at 45 degree 

 

4.4.3 Restored image using LR Filter at 90 degree 
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4.4.4 Restored image using LR Filter at 135 degree 

 

4.4.5 Restored image using LR Filter at 180 degree 
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4.4.6 Restored image using LR Filter at 225 degree 

 

4.4.7 Restored image using LR Filter at 270 degree 

Certainly, the restored images using LR algorithm are relatively poorest as compared 

with other methods. As a results, the image quality metrics, namely MSE, PSNR, and 

SSIM are computed to measure the quality of the restored images and presented in Table 

5.4. Generally, the cumulative errors are quite small. Consequently, when the θ is equates 
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0o, the MSE showed the highest value, while the SSIM is the highest value. Similarly, the 

results of 180o was same due to 180o is conjugated for 0o. On the other hand, when the θ 

is equates 45o, the SSIM is the lowest value. Likewise, the results of 225o was same 

because of 225o is conjugated for 45o.  

Predictably, LR algorithm performs worse than Direct Inverse filter, Wiener filter and 

CLS filter.  

Table 4.4 MSE, PSNR and SSIM of LR Filter 

LR Filter 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

MSE 0.0025 0.0029 0.0026 0.0024 0.0025 0.0029 0.0026 

PSNR(dB) 74.1286 73.4876 73.9759 74.3790 74.1286 73.4876 73.9759 

SSIM 0.8455 0.7918 0.8088 0.8068 0.8455 0.7918 0.8088 

 

 

 

4.4.8 MSE of LR Filter for Motion Blur 
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4.4.9 PSNR of LR Filter for Motion Blur 

 

4.4.10 SSIM of LR Filter for Motion Blur 
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4.5 Comparison between Direct Inverse Filter, Wiener Filter, Constrained 

Least Squares Filter, and Lucy Richardson Filter 

The results of four methods (i.e. Direct Inverse, Wiener, CLS, and LR filters) can be 

showed in Table 5.5, 5.6, and 5.7 for comparing the image quality metrics, namely MSE, 

PSNR, and SSIM. The image quality assessment of Wiener filter was achieved high 

performance in all aspects of the image compared with other methods like Direct Inverse 

filter, CLS filter, and LR filter. In contrast, LR filter is the poorest image restoration 

technique as it is vulnerable to blur and incapable of restoring motion blurred image. LR 

filter is designed for noise removal. The formulation of LR filter equation is for noise 

removal and that is a reason for not performing well for motion blur. Furthermore, CLS 

filter outperforms LR filter but loses out to Wiener filter and Direct Inverse filter.  

The both CLS and LR filters do not require any knowledge about the original image 

in the process of image restoration. Hence, these techniques are indeed very handy in 

practice. However, the challenge of CLS filter lies in experimenting and determining the 

optimum Lagrange multiplier whereas the challenge of LR filter is in determining the 

optimum number of iterations.  

It is interesting to observe that incorporation of the statistical properties of blurred and 

original image into formulation of Wiener filter makes it more attractive and suitable than 

Direct Inverse filter. Therefore, the challenge is to intelligently estimate the statistical 

properties of the original image until an acceptable restored image is obtained. 

Observably, the performance of Wiener filter introduced high quality of image. Wiener 

filter minimize the mean square error between the estimate random process and the 

desired process. Wiener filter have been used with Fast Hartley Transform (FHT) to 

increase the speed of deblurring process. Moreover, it gave  the preferable image 

restoration technique due to it not only performs slightly better but also requires shorter 
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computational time and simply design than Direct Inverse filter. In addition, it is exploited 

the signal from begging, controlled yield error. Overall, the best-performing image 

restoration technique is Wiener filter, followed by Direct Inverse filter. CLS filter, and 

lastly LR filter. 

Table 4.5 MSE of Direct Inverse Filter, Wiener Filter, CLS Filter and LR Filter 

Mean Squared Error (MSE) 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

Inverse 0.000003254 0.000008133 0.000004016 0.000007046 0.000003254 0.000008133 0.000004016 

Wiener 0.000125 0 0.000099 0.000008 0.000125 0 0.000099 

CLS 0.0006096 0.0007830 0.0007137 0.0007094 0.0006096 0.0007830 0.0007137 

LR 0.0025 0.0029 0.0026 0.0024 0.0025 0.0029 0.0026 

 

Table 4.6 PSNR of Direct Inverse Filter, Wiener Filter, CLS Filter and LR 

Filter 

Peak Signal-to-Noise Ratio (PSNR) 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

Inverse 113.0061 109.0285 112.0930 109.6514 113.0061 109.0285 112.0930 

Wiener 97.1616 121.9285 105.7600 119.0747 97.1616 121.9285 105.7600 

CLS 90.2806 89.1930 89.5957 89.6220 90.2806 89.1930 89.5957 

LR 74.1286 73.4876 73.9759 74.3790 74.1286 73.4876 73.9759 
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Table 4.7 SSIM of Direct Inverse Filter, Wiener Filter, CLS Filter and LR Filter 

Structural Similarity Index (SSIM) 

Theta 0 45 90 135 180 225 270 

length 30 30 30 30 30 30 30 

Inverse 0.9973 0.9962 0.9973 0.9970 0.9973 0.9962 0.9973 

Wiener 0.9975 1 0.9985 0.9998 0.9975 1 0.9985 

CLS 0.9767 0.9697 0.9707 0.9718 0.9767 0.9697 0.9707 

LR 0.8455 0.7918 0.8088 0.8068 0.8455 0.7918 0.8088 
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CHAPTER 5: CONCLUSION & FUTURE DEVELOPMENT 

5.1 Conclusion 

In this study, four image restoration techniques were applied namely Wiener filter, 

Direct Inverse filter, Constrained Least Squares (CLS) filter, and Lucy Richardson 

algorithm. They were implemented, derived and analyzed based on a MATLAB software 

for reconstruct an original image that has intensively affected by motion blurred at fixed 

length (30 pixels) along with different angles (θ). At that time, image quality metrics, 

namely mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural 

similarity index (SSIM) are operated to evaluate and measure the quality of the restored 

images. The results (Simulations and image quality metrics) revealed that Direct Inverse 

filter is reasonable for restoring a motion blurred image. CLS filter showed the low values 

compared to the other filter techniques as Direct Inverse filter and Wiener filter. In 

contrast, LR techniques presented poorest quality performs compared with other filter 

techniques, LR filter is designed for noise removal. Wanted to see how effective it can be 

for blur. The formulation of LR filter equation is for noise removal and that is a reason 

for not performing well for motion blur. Wiener filter is indeed a more practical image 

restoration technique since it only requires knowledge of length and theta of blur, where 

can easily be estimated from the blurred image.  The results indicated that the 

performance of Wiener filter exhibited high quality of image compared with other filters. 

It presented the desirable image restoration technique because of it highly performs and 

also requires shorter computational time and simply design than other filters techniques. 

Wiener filter minimize the mean square error between the estimate random process and 

the desired process. Wiener filter have been used with Fast Hartley Transform (FHT) to 

increase the speed of deblurring process. Additionally, it exploited the signal from 

begging and controlled produce error. Wiener filter is the high-performing image 

restoration technique, followed by Direct Inverse, CLS, and, LR filters. Generally, the 
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cumulative errors are particularly low, qualities are quite high, and pretty similar to the 

original image. 

 

5.2 Future Development 

This study used several image restoration techniques to overcome the degradation that 

caused by the motion blur. Thus, we need to develop one of the filters used in this study 

or create a new technique which may help to improve the restoration of the degraded 

image. 
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