CHAPTER ONE : DEFINITIONS AND PRELIMINARIES

1.1 Differentiable manifolds and tensor fields
Before we begin with this first section, we shall give
some basic notations which will be wused throughout this
dissertation.
We denote the real line by R and the m-dimensional
Euclidean space by lRm, that is,
m
R™ = {x = (xl,...,xm) PXg € R, 1 =1,...,m}
We shall use C to denote the complex number field and "
to denote the complex m-space, that is,
c" = ¢ (zl,.‘.,zm) 1z, €C,i=1,...m}
The function uy R" —> R defined by
u; (x) = Xy
where x = (xl,.u,xm) € Rm. is called the ith coordinate function
on R". For an open set U c R¥ and if £ : U —> R , then we let
l‘1 = uye f
where fi is called the ith component function of f.

Let U ¢ R™ be open and f:U — R. For a non-negative
integer k, f is differentiable of class Ck on U (or f is Ck) if
all the partial derivatives up to order k exist and are

0 if f is continuous. If

continuous. In particular, f is C
f:U——)Rm, then f is differentiable of class Ck if all its
component functions are of class Ck. f is said to be C” if it is

Ck for all k = 0. We shall restrict our attention solely to the



case of class C” , so by differentiable, we shall always mean
differentiable of class C*. The terminology smooth is also used

to indicate differentiability of class c®.

Let U and V be vector spaces. The Cartesian product of

U and V is defined as the set U x V = {(u,v) : ue€ Uand v € V}.

An m-dimensional differentiable manifold is a
paracompact, second countable topological space M such that
a) M is a Hausdorff space and each point p of M has a
neighborhood that is homeomorphic to an open set of R™.

b

there exist a collection of coordinate systems ((Ua' by )}
where ¢u is a homeomorphism of a connected open set Uu <M
onto an open subset of ™ satisfying the following
properties:
i) M=Uu

&
ii) for all «,B the mapping

-1
¢ae ¢B : ¢B(Uan UB) — ¢a(uan UB)
is differentiable.

iii) The collection ((Ua'¢a)) is maximal with respect to

ii).

The collection of coordinate systems ((Ua,qiu)) defines the
differentiable structure of the manifold M. The mapping ¢a is
called the coordinate map and the functions x‘5 = uJo ¢a, for
J=1,...m are called the coordinate functions. The open set Ua

is called a coordinate neighborhood of p, for all p e Ua‘ The

pair (Um,%‘) is also known as a chart of M.



In order to define a complex manifold of complex
dimension m, we replace R" in the definition of a differentiable
manifold by the m-dimensional complex space c"‘. The condition b)
is replaced by the condition that the m coordinate functions of
¢u° ¢;31 (p) should be holomorphic functions of the complex

coordinates of p.

Let N and M be two manifolds. A mapping f : N — M is
said to be differentiable, if for every chart (Ui'¢i) of N and

every chart (VJ,WJ) of M such that f(Ui) cV the mapping

5
-1

WJ°f°¢1 : ¢X(Ui) - wJ(VJ)

is differentiable. A differentiable function on M is a

differentiable mapping of M into R. We denote the set of all

differentiable function as F(M).

Let M be an m-dimensional manifold and p be a point of

M. Functions f and g define on an open set containing p are said
to be equivalent if they agree on some neighborhood of p. The set
of equivalent classes is denoted by ?p' We note that F_ is an
algebra. The tangent vector v at a point p € M is defined to be a
linear derivation of fp, that is, for all f, § € ?p and r € R,

1) v(f + rg) = v() + rv(g)

11) v(fg) = FipIv(@) + gpiv(d)
The set of tangent vectors at p is called the tangent space of M
at p and is denoted by TpM. It can be shown that TpM is an
m-dimensional vector space. The dual space of TPM will be denoted
by T;M.

In practise, we shall treat tangent vectors as operators



on functions. If f is a differentiable function defined on a
neighborhood of p, and v € TpM, we define
vif) = v(f), for f e l?p

Hence, v(f) = v(g) whenever f and g agree on a neighborhood of p.

Let (U,¢) be a coordinate system with coordinate

functions XpvenoaXy and let p € U. For each i = 1,...m, we define
a mappin 9 as
pping 5;; p
(#1,) 0 252
1 'p 1 ¢(p)

for each differentible function f defined on a neighborhood of p.
Clearly, for f and g belonging to the same equivalence class in
F , we have
p

a3 3

= () = = (g)

{:b(i P 6)(i

It is easy to see that (8/8x1)[p defines a tangent vector at p and

{(8/8x,)| : i =1,...m} forms a basis of T M.
i’lp P

Let ™ = U T M and T*M = U,T*M. It can be shown that TM

PEN P PEX p
and T*M are 2m-dimensional manifolds. T and T*M are known
respectively as the tangent bundle and cotangent bundle (for

definition of vector bundle, see p. 5)

A vector field X on a manifold is an assignment of a
vector Xp to every point p € M. If f is a differentiable function
on M, then Xf is a function on M defined by

(Xf) (p) = pr



A vector field X is differentiable if Xf is differentiable for

every differentiable function f.

Next we let E and M be any arbitrary manifolds and m be

a differentiable mapping of E onto M. The manifold E is called

the vector bundle over M under the projection m if the following
conditions are satisfied :

i) u-l(p) is a real vector space called the fibre above p and

each n-l(p) is isomorphic to Rk. for some fixed k.
ii) for each p € M, there exist an open neighborhood U of p
k 1

such that the mapping ¢ : U x RT ——> m "(U) is a

diffeomorphism satisfying the commutative diagram below
kK __ ¢

UxRC—2% Ll
\ ln’
o

u

where me¢ = m .
°

In the case when E = TM, the fibre above p is just TPM'

A cross section is a mapping Yy : M —— E such that
my(p) = p, for all p € M.
The set of all cross section is denoted by I'(E). We note that
i) for wl. wz € T'(E) and p € M,
(wl + wz)(p) = wl(p) + wz(p)
ii) for ¢ € I'(E) and a function f € F(M),
(fy) (p) = £(ply(p)
Therefore, T'(E) forms a module over the ring F(M). We note that

in the case when E = TM, a cross section X defines a vector field

on M.



Let U and V be finite dimensional vector spaces and
F(U,V) be the free vector space over R whose generators are the
points of U x V. Hence, F(U,V) consists of all finite linear
combinations of pairs (u,v) with u € U and v € V. Let W(U,V) be
the subspace of F(U,V) generated by the set of all elements of
F(U,V) of the form
(u1¢ u,,v) - (ul,v) - (uZ,v) ) (u,vl* vy) - (u,vl) - (u, vz)
(ru,v) - r(u,v) , (u,rv) - r(u,v)

where u_, \.\2, u e U and v, v e Vand r € R. The tensor

1 1 V2
product of U and V is defined as the quotient space F(U,V)/W(U,V)

and is denoted by U ® V.

The contravariant tensor space of degree r for a vector
space U, T (U) is defined as U ® ...e U (r times tensor product),
whereas the covariant tensor space of degree s for a vector space
u, TS(U) is defined as U* ® ...® U* (s times tensor product) where
U* is the dual vector space of U. We note that Tl(U) = U and
Tl(u) =U* We set T =R = To' The tensor space of type (r,s) of
a vector space U, T; is defined as U e ...e U e U* ® ...® U* (r
times tensor product of U and s times tensor product of U*). It
can be shown that T;(M) =anTls.(TpM) is a vector bundle over M
with fibre n-l(p) = T:(TPM). A tensor field of type (r,s) is just

a cross section of T;(M)‘

If ¢ : N—— M is differentiable, the differential of f

at a point p is the mapping ((t,)p H TpN — T (p)M defined by

¢
(60, (X ) () = X (£o9)

where X € T N and f € F(M).
PP



¢ is called an immersion if ¢, is non-singular at each
p € N, that is, (o.)p(TpN) < T¢(P)M is n-dimensional. The pair
(N,¢) is called a submanifold of M if ¢ is a one-to-one immersion.
The map ¢ is an imbedding if ¢ is a one-to-one immersion which is
also a homeomorphism, that is, ¢ is a map into ¢(N) with its
relative topology. The map ¢ is a diffeomorphism if ¢ maps N

one-to-one onto M and the inverse map ¢_1 is C*.

1.2 Linear connections on a manifold.

We begin this section with a definition of a linear
connection on a manifold M. Let M be a real m-dimensional
connected differentiable manifold. A linear connection on M is a
mapping

V : T(TM) x I'(TM) — T'(T™) , X,Y) — vy

X
which satisfies the following conditions:

i) VfX*YZ=rVXZ*VYZ

ii) VX(fY +2) = fo

for any f € F(M) and X, Y, 2 € I'(TM). The operator V,

Y + (XF)Y + V2
X is called
the covariant derivative with respect to X.

We define the covariant differentiation of a function f
with respect to X by
Vyf = Xf
For any tensor field K of type (0,k) or (1,k), we define
the covariant derivative VXK with respect to X by
k

(VXK)(Xl""'Xk) = VX(K(XI""'Xk” -|=E; K(Xl...,VXXi,u,Xk)



for any Xi e I'(TM), 1 =1,....k.
The tensor field K is said to be parallel with respect

to the linear connection if VXK = 0 for any X € I'(TM).

We define the torsion tensor T of type (1,2) as
T(X,Y) = VY = UX - [X,Y]
for any X, Y € I'(TM), where [X,Y] is the Lie bracket of vector
fields X and Y defined by
[X,Y](f) = X(Yf) - Y(Xf), for any f € F(M).
A linear connection V with vanishing torsion tensor field is

called a torsion-free connection.

We define the curvature tensor R of type (1,3) as

R(X,Y)Z = VXVYZ - VYVXZ - V[X’Y]Z

for any X, Y, Z € T'(TM).

A Riemannian metric on M is a tensor field g of type
(0,2) which satisfies the following
i) g(X,Y) = g(Y,X), for any X, Y e I(TM), that is, g is
symmetric.
ii) g(X,X) = 0 for any X € I'(TM) and g(X,X) = 0 if and only
if X = 0, that is, g is positive definite.
The manifold M endowed with a Riemannian metric g is called a
Riemannian manifold. The length of a vector X is denoted by Ix]

and it is defined by |X|% = g(X,X).

Next, we have a well-known theorem which can be found in

(271, p. 29.



Theorem 1.1
There exists one and only one linear connection on a
Riemannian manifold that satisfies the following conditions:
i) the torsion tensor T vanishes, i.e,
T(X,Y) = VXY - VX - [X,Yl =0
ii) g is parallel, i.e, ng = 0. Therefore, we have
X(g(y,2)) = 8(v,Y,2) + 8(Y,v,2)

for any X, Y, Z € T(TM).

The linear connection stated in theorem 1.1 is called the
Riemannian connection or the Levi-Civita connection. It is
characterized by
Zg(VxY,Z) = X(g(Y,2)) + Y(g(2,X)) - 2(g(X,Y)) + g([X,Y],2)
+ g(lz,x1,Y) - g(lv,2],X)

for any X, Y, 2 € I'(TM).

Next, we shall define the Riemannian curvature tensor R
of type (0,4) by
R(X,Y,U,V) = g(R(X,Y)U,V)

for any X, Y, U, V € I'(TM).

The Riccl tensor field is defined by

n
S(X,Y) = E(g(R(El,X)Y,Ei)
1=1

where (El""'En) is a local field of orthonormal frames and

X, Y € T(TM).



The scalar curvature of M is defined by

n
P =‘£(S(E‘.El))

1.3 Submanifolds of a Riemannian manifold

In this section, we shall give some fundamental results
concerning the geometry of submanifolds of a Riemannian manifold.
These results will be used throughout this dissertation.

Let N and M be Riemannian manifolds with Riemannian
metric g and g respectively. A mapping f : N —— M is called
isometric if

g(X,Y) = g(f,X,f,Y) for any X, Y € I'(IN)

Let N be a submanifold of a Riemannian manifold M and

that TPN has been identified as a subspace of T M). If M has a

f(p)

Riemannian metric g and XP, Yp € TPN c T“p)H, then we define

gp(Xp,Yp) = 8r(p)

The Riemannian metric g, defined above is called the Riemannian

(X ,Y )
PP

metric induced by g (or the induced metric). To avoid any

confusion, we shall denote the metrics on N and M by g.

Let € be a vector of M at a point p of N that satisfies
g(X,§) = 0, for any vector X of N at p. Then £ is called a normal
vector of N in M at p. A unit normal vector field of N in M is
also called a normal section on N. We denote the vector bundle of
all normal vectors of N in M by T!N. Then the tangent bundle of M,
restricted to N is the direct sum of the tangent bundle TN of N

and the normal bundle T*N of N in M, that is,



™ =TN o T'N
We denote by V and V the Levi-Civita connection on N and

M respectively.

For any X,Y € T'(TN), the Gauss formula is given by

VxY = VXY + h(X,Y) (1.1)
where h : T(IN) x T'(IN) —> [(T'N) 1s a normal bundle valued
symmetric bilinear form of T(TN) and is called the second

fundamental form on N.

For any X € T'(TN) and £ € l‘(TJ'N), the Weingarten formula

is given by

TE = AKX + VyE (1.2)
where -A§X and V;E are the tangential and normal parts of \7X§
respectively. Hence, for any £ € r(T"'N), we have a linear operator
A§ : T(IN) — T'(TN) that satisfies

g(h(X,Y),§) = g(AEX,Y) (1.3)
l\E is called the fundamental tensor of Weingarten with respect to

the normal section £. The operator v* defines a linear connection

on the normal bundle T'N and is called the normal connection on N.

The covariant derivative of h is defined as
= L - -
[Vxh)[Y,Z) = Yy (h(Y,2)) h(VxY.Z) h(Y.VXZ) (1.4)

for all X, Y, Z € T'(TN).

By using the Gauss and Weingarten formulas, we obtain
R(X,Y)Z = R(X,Y)Z - Aot AvxzY
+ (Vh)(Y,2) - (V4h) (X,2) (1.5)



for all X, Y, Z € I'(TN), where R and R are the curvature tensors
of N and M respectively. Equation (1.5) then gives us the
following equation.

g(R(X,Y)Z,U) = g(R(X,Y)Z,U) + g(h(X,2),h(Y,U))

- g(h(Y,2),h(X,U)) (1.6)

and ®RENDY = (O0)(1,2) - (Th)(X,2) 1.7
for all X, Y, Z, U e T(TN).

Equation (1.6) is called the Gauss equation whereas

equation (1.7) is known as the Codazzi equation.

The curvature tensor R* of the normal connection V' is
defined by
L = vlote _ glole _ ot
RT(X,Y)€ = VXVYE VYVXE V[X,YIE (1.8)
for all X, Y € T(TN) and § e I'(T'N). For &, £ € I'(T*N) we define

[As,AC] =A.o A - A o A (1.9)

£ ¢ ¢ g

and by using the Gauss and Weingarten formulas, we have

g(R(X,V)E,Q) = gRY(X,Y)E,8) + g([A,AX,Y)  (1.10)

g
for any X, Y € T'(TN) and &, € € r(T*N). Equation (1.10) is called

the Ricci equation.

A normal vector field § on N is said to be parallel if
V;E =0, for any X € I'(TN). A submanifold N is totally geodesic if
its second fundamental form vanishes identically, that is, h = 0,
or equivalently AE = 0, for any € € r(r'N). If AE = al where a is
a differential function and I is the identity morphism on T'(TN),
then £ is called an umbilical section on N, or N is said to be

umbilical with respect to £. If the submanifold N is umbilical

with respect to every local normal section of N, then N is said to

12



be totally umbilical.

Let (El""'En) be an orthonormal basis in TPN, for a

point p in N. Then the trace of h is given by
n

tr(h) = E(h(El,Ei))
1=1

and it is independent of the basis. We define the mean curvature

vector of N by
H=1erm
n

If H=0 on N, then N is called a minimal submanifold of M. We
note that N is totally umbilical if and only if
h(X,Y) = g(X,Y)H

for any X, Y € I'(IN).

1.4 Distributions on a manifold

An r-dimensional distribution on a manifold M is a
mapping D defined on M, which assigns to each point p of M an
r-dimensional linear subspace Dp of TPM. A vector field X is said
to belong to D if we have )(p € Dp for every p € M. We denote this
by X € I'(D). The distribution D is said to be differentiable if
for any p € M, there exist r differentiable linearly independent
vector fields X1 € I'(D) in a neighborhood of p. The distributions
discussed in this dissertation are supposed to be differentiable
of class C”.

A submanifold N of M is said to be an integral manifold

of D, if for every p € M, f,,(TpN) = Dp. where f is the imbedding

‘AKAAN UNIVEKSINL MALAY A
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of N into M. This means that Dp coincides with the tangent space
to M at p. The distribution D is said to be integrable if for
every p € M, there exists an integral manifold of D containing p.
If there exists no integral manifold of D which properly contains

N, then N is called the maximal integral manifold or leaf of D.

The distribution D is said to be involutive if for all
X, Y € T'(D), we have [X,Y] € I'(D). The following is the classical

theorem of Frobenuis which is found in [3], p. 8.

Theorem 1.2

Let D be an involutive distribution on a manifold M.
Then D is integrable and through every point p € M, there passes
an unique maximal integral manifold of D. Any integral manifold

through p is an open submanifold of the maximal one.

Suppose N is a Riemannian manifold endowed with two
complementary distributions, that is, TN = D o D‘L and V be its
Levi-Civita connection. The distribution D is said to be parallel
with respect to V if

VY € r'(D)
for any X € I'(TN) and Y € I'(D).
Similarly, the distribution p* is said to be parallel with respect
to V if
L
Vy2 € I'(D7)
for any X € T'(IN) and Z € I'(D'). We then have the following

theorems found in Bejancu [3].



Theorem 1.3 (Bejancu [3])
Both distributions D and D* are parallel with respect to
the Levi-Civita connection V if and only if they are integrable

and their leaves are totally geodesic in N

Proof:
Suppose both distributions D and p* are parallel with
respect to V. Thus,

[X,Y] = VXY - VX e I'(D)

Y
for any X, Y € r'(n),
- _ 1
and u,vl = IV - U er®)
for any U, V e I'(DY).

Hence, by theorem 1.2, D and p* are integrable. Next, we
let N’ be a leaf of D and V' be the Levi-Civita connection with
respect to N’. Then, by the Gauss formula, we have

. = _—

h'(X,Y) = VxY VXY (1.11)
for any X, Y € I'(TN’), where h’ is the second fundamental form of
N’ on N. Since VXY. V)’(Y € I'(TN’) and h’(X,Y) € F(D*). by equation
(1.11), we obtain h = 0, that is N’ is totally geodesic in N. In a
similar way, it follows that each leaf of D is totally geodesic

in N.

Conversely, suppose D and p* are integrable and their
leaves are totally geodesic in N. Then, by using the Gauss formula
for the immersions of the leaves of D and DJ' in N, we obtain

VXY € I'(D), for any X, Y € I'(D)

and VUV 3 I"(DL). for any U, V € rooY)



Since g is parallel with respect to V, we have

g(Ty¥, V) = -g(Y,7,V) = 0
and g(VxU,Y) = -g(U,VxY) =0

for any X, Y € I'(D) and U, V e I'(D"). Hence, both D and D' are
parallel.

QED

Theorem 1.4 (Bejancu [3])
The distribution D is parallel with respect to the
Levi-Civita connection ¥V if and only if the complementary

orthogonal distribution p* is parallel with respect to V.

Proof':
Suppose D is parallel. Since g is parallel with
respect to V, we have
8(Y,7,u) = ~g(V,Y,U) =0

U e r(")

for any X € I'(IN), Y € I'(D) and U € I'(D%). Therefore, VX

and thus, D‘L is parallel.
The converse is proved in a similar way.

QED



1.5 Almost Hermitian manifold.

Let M be a real differentiable manifold. A tensor field
J of type (1,1) on M is called an almost complex structure on M if
at every point p € M, J is an endomorphism of the tangent space
TPM such that J2 = -I. A manifold M with a fixed almost complex
structure J is called an almost complex manifold. It is a
well-known fact every almost complex manifold is of even dimension

and is orientable (see Kobayashi-Nomizu [10]). A complex manifold

M also carries a natural almost complex structure.

Next we define the torsion tensor field of type (1,2)
of an almost complex structure J by

[J,J1(X,Y) = [JX,JY] - JIX,JY] - J(JX,Y] - [X,Y]
for any X, Y € I'(TM). The torsion tensor of J is also known as the
Nijenhuis tensor of J. We shall now state the condition for an

almost complex manifold M to be a complex manifold.

Theorem 1.5 (Newlander-Nirerburg [18])
Let M be an almost complex manifold with an almost
complex structure J. Then J is a complex structure if and only if

J has no torsion.

We state the following integrability theorem of almost

complex manifold which is found in [27], p. 113.

Theorem 1.6
Let M be a real 2m-dimensional almost complex manifold

with almost complex structure J. Suppose there exists an open



covering (U‘) of M satisfying the following conditions: There is a

local coordinate system (xl....xm,yl,..ym) on each U such that

i
for each point of Ul'

J J J J

for j=1,...m.

RN a o
J{ax ]= 3y and J[W]=-ax
Then M is a complex manifold.

A Hermitian metric on an almost complex manifold M is a
Riemannian metric g satisfying
g(JX,JY) = g(X,Y),

for any X, Y € I'(IN).

An almost complex manifold endowed with a Hermitian
metric is called an almost Hermitian manifold. It is easily
proved that every almost complex manifold with a Riemannian metric

h admits a Hermitian metric g.

The fundamental 2-form Q of an almost Hermitian manifold
M is defined by
Q(X,Y) = g(X,Jy), for any X, Y € I'(TM).
We note that
VXQ(Y,Z) = g(Y,(VXJ)Z)
and 3da(X,Y,2) = g((ﬁxJ)v,z) + g((VYJ)z,x) + g((VZJ)x,Y)

for all X, Y, Z € T(TM).

An almost Hermitian manifold M is said to be a Kaehler

manifold if (ﬁxJ)Y = 0 for all X, Y € I'(TM) and an almost Kaehler

18



manifold if dQ(X, Y, Z) =0, for all X, Y, Z € T(TM). M is called
a nearly Kaehler manifold if (VXJ)X = 0, for any X € T'(TM). We
note that M is a nearly-Kaehler manifold if and only if

@Y + @ NX =0,  for any X, Y e F(TH).
A quasi-Kaehler manifold is an almost Hermitian manifold that
satisfies the following

(VXJ)Y + (VJXJ)JY =0, for any X, Y € I'(TM).

Gray [12] proved that every almost Kaehler or nearly
Kaehler manifold is necessarily a quasi-Kaehler manifold while a
Kaehler manifold is both an almost Kaehler and nearly-Kaehler

manifold. The following theorem is found in Bejancu [3].

Theorem 1.7 (Bejancu [3])
Let M be a nearly-Kaehler manifold. Then the Nijenhuis
tensor of J is given by
[J,J1(X,Y) = a3(V D)X

for any X, Y € I'(TM).

Proof:
From the definition of the Nijenhuis tensor and since V is a
torsion free connection, we obtain
[J,J1(X,Y) = (VJXJ)Y - (VJYJ)X + J((VYJ)X) - J((VXJ)Y)
(1.12)
Since M is nearly-Kaehler, we have

(VJYJ)X = -(VXJ)JY =V J(VXJY) = J((VXJ)Y]
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Therefore (1.12) becomes

[J,J1(X,Y) = Z(VYX + J(VYJX) -y - J(VXJY))

Z(J(VYJX - J(VYX)) - J(VXJY - J(VXY ))}

= ZJ((VYJ)X - (VXJ)‘{)

4J( (VYJ)X)
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QED



