CHAPTER TWO : CR-SUBMANIFOLDS

2.1 Introduction

Let M be an m-dimensional almost Hermitian manifold with almost complex structure J and with Hermitian metric g and N be an n-dimensional Riemannian manifold isometrically immersed in M.

N is called a (almost) complex (holomorphic) submanifold of M if T_vN is invariant by J, that is

 $J(T_X N) = T_X N$, for each $x \in N$

N is called a *totally real (anti-invariant) submanifold* of M if

$$J(T_X^N) \subset T_X^{\perp}N, \quad \text{for each } x \in N$$

These two classes of submanifolds have been studied extensively in the last decade. For instance, results on the geometry of totally real submanifolds can be found in Yano-Kon [25] and a survey on the geometry of complex submanifolds can be found in Ogiue [19]. Later, Bejancu [1] introduced a study on a submanifold which generalizes both a complex submanifold and a totally real submanifold. This new class of submanifolds, situated between the above two classes is called the CR-submanifolds.

Definition

N is a *CR-submanifold* of M if there exists a differentiable distribution

 $D : x \longrightarrow D_{v} \subset T_{v}N$

on N that satisfies the following conditions:

(i) D is holomorphic, that is,

$$\begin{split} J(D_{\mathbf{x}}) &= D_{\mathbf{x}} \ , \qquad \text{for each $\mathbf{x} \in \mathbf{N}$} \end{split}$$
 (ii) the complementary orthogonal distribution $D^{\perp} : \ \mathbf{x} \ \longrightarrow D^{\perp}_{\mathbf{x}} \subset T_{\mathbf{x}} \mathbf{N} \\ \text{ is anti-invariant, that is,} \\ J(D^{\perp}_{\mathbf{x}}) \subset T^{\perp}_{\mathbf{x}} \mathbf{N} \ , \qquad \text{for each $\mathbf{x} \in \mathbf{N}$} \end{split}$

We let p be the complex dimension of the distribution D and q the real dimension of the distribution D^{\perp} . When p=0, a CR-submanifold becomes a totally real submanifold and when q=0, a CR-submanifold becomes a complex submanifold. A proper CR-submanifold is a CR-submanifold which is neither a complex submanifold nor a totally real submanifold.

2.2 Examples of CR-submanifolds

In this section, we give an elaboration of the proof of two examples which are found in Blair-Chen [7].

Example 1:

Any real hypersurface N of M is a CR-submanifold.

Proof :

For any point $x \in M$, let $\{X_1, JX_1, \ldots, X_{m-1}, JX_{m-1}, Z, JZ\}$ be a basis of T_XM , where $Z \in \Gamma(T_X^+N)$ and $\{X_1, JX_1, \ldots, X_{m-1}, JX_{m-1}, JZ\}$ is a basis of T_XN . We define a distribution D_X such that D_X be spanned by $\{X_1, JX_1, \ldots, X_{m-1}, JX_{m-1}\}$ and the

complementary distribution, $D_{\mathbf{X}}^{\mathbf{L}}$ be spanned by {JZ}. Hence, we obtain

$$\begin{split} J(D_X) &= D_X \end{split}$$
 and
$$J(D_X^{\perp}) &= \{ J(JZ) = -Z, \ Z \in \Gamma(T^{\perp}N) \ \} \subset T_X^{\perp}N \end{split}$$

This proves that the hypersurface N of M is a CR-submanifold.

QED

Example 2:

Before we begin with example 2, we first give a definition of an anti-holomorphic submanifold.

Definition

A submanifold N of an almost Hermitian manifold M is anti-holomorphic if

$$J(T_X^{\perp}N) \subset T_X^N$$
, for each $x \in N$

We proceed to prove the following:

(1) If N is an anti-holomorphic submanifold of an almost Hermitian manifold M, then

$$\dim N \ge \frac{1}{2} \dim M$$

(2) Let N be an anti-holomorphic submanifold of an almost Hermitian manifold M.

i) If dim N =
$$\frac{1}{2}$$
 dim M, then N is a CR-submanifold with
 $D_x^{\perp} = T_x N$ and $D_x = \{0\}$
In this case, N is not only a CR-submanifold but also a

totally real submanifold.

Proof of (1) :

From the definition of an anti-holomorphic submanifold of M, it follows that

Since J is a endormorphism, thus we obtain

$$\dim (T_X^{\perp}N) \leq \dim T_X^{\perp}N \qquad (2.1)$$

By taking account of (2.1) and $T_X M = T_X N \oplus T_X^{-1} N$, dim $T_X M = \dim T_X N + \dim T_X^{-1} N$ $\leq 2 \dim T_X N$, by (2.1) Therefore $\dim T_X N \ge \frac{1}{2} \dim T_X M$

Since dim N = dim
$$T_X^N$$
 and dim M = dim T_X^M , thus
dim N $\ge \frac{1}{2}$ dim M

Proof of (2) : Suppose dim N = $\frac{1}{2}$ dim M. Therefore, 2 dim T_xN = dim T_xM = dim T_xN + dim T¹_xN Thus, dim T_xN = dim T¹_xN Since J is a endormorphims, therefore

We let $D_x = \{0\}$ and $D_x^{\perp} = T_x N$. Then, N is not only a CR-submanifold but also a totally real submanifold of M with

$$T_X M = T_X N \oplus J(T_X N)$$

Next, suppose dim N > $\frac{1}{2}$ dim M. We now prove that D and D¹, as defined, is holomorphic and anti-invariant respectively. We note that

$$J(D_{X}^{\perp}) = J(J(T_{X}^{\perp}N)) = T_{X}^{\perp}N$$

This means that, $J(D_X^{\perp}) \subset T_X^{\perp}N$. Therefore D^{\perp} is anti-invariant.

For any $X \in (J(T_X^{\perp}N))^{\perp}$, we have

$$JX = X_1 + X_2 + X_3$$

where $X_1 \in J(T_X^{\perp}N)$, $X_2 \in (J(T_X^{\perp}N))^{\perp}$ and $X_3 \in T_X^{\perp}N$

We also note that, for any X' $\in T_x^{\perp}N$, we have 0 = g(X, X') = g(JX, JX') $= g(X_1, JX') + g(X_2, JX') + g(X_3, JX')$ $= g(X_1, JX'),$

since $g(X_2, JX') = g(X_3, JX') = 0$. Therefore, $X_1 = 0$. We also have,

$$g(X_3, X') = g(JX - X_1 - X_2, X'),$$

$$= g(JX - X_2, X'), \quad \text{since } X_1 = 0$$

$$= g(JX, X') - g(X_2, X')$$

$$= g(JX, X'), \quad \text{since } g(X_2, X') = 0$$

Since $J(J(T_X^{\perp}N))$ = $T_X^{\perp}N$, so for X' \in $T_X^{\perp}N$, there exist X'' \in $J(T_X^{\perp}N)$ such that X' = JX''. Therefore

$$g(X_3, X') = g(JX, X')$$

= g(JX, JX'')
= g(X, X'')
= 0

This implies that $X_3 = 0$. Hence, for $X \in (J(T_y^{\perp}N))^{\perp}$,

$$JX = X_{2}$$

where $X_2 \in (J(T_X^{\downarrow}N))^{ij}$. This proves that D is holomorphic and thus, N is a CR-submanifold of M with

> $D_{X} = (J(T_{X}^{\perp}N))^{\perp}$ and $D_{X}^{\perp} = J(T_{X}^{\perp}N)$ QED

2.3 Characterization of a CR-submanifold

Let N be an arbitrary Riemannian manifold isometrically immersed in an almost Hermitian manifold M.

For each vector field $X \in \Gamma(TN)$, we put

$$JX = \phi X + \omega X \tag{2.2}$$

where ϕX is the tangent part and ωX is the normal part of JX.

Similarly, for each vector field $\xi \in \Gamma(T^{\perp}N)$, we put

$$J\xi = B\xi + C\xi \qquad (2.3)$$

where BE is the tangent part and CE is the normal part of JE.

We begin this section with a theorem found in Bejancu [3] which characterizes a CR-submanifold of an almost Hermitian manifold M.

Theorem 2.1 (Bejancu [3], p. 21)

The submanifold N of M is a CR-submanifold if and only if rank (ϕ) = constant and $\omega \circ \phi = 0$

In this section, we give a proposition which is a slight improvement of the theorem given above. The idea of the proof of the proposition here is almost similar to a theorem found in Yano-Kon [26].

Proposition 2.1

The submanifold N of M is a CR-submanifold if and only if $\omega \,\circ\, \phi \,=\, 0$

Proof:

Suppose N is a CR-submanifold of M. We let P and Q be the projection of TN to D and D¹ respectively. So, for any X $\in \Gamma(TN)$,

$$JX = \phi X + \omega X$$
$$J(PX + QX) = \phi X + \omega X$$
$$JPX + JQX = \phi X + \omega X$$
(2.4)

Since PX \in $\Gamma(D)$ and QX \in $\Gamma(D^{\perp}),$ thus we have JPX \in $\Gamma(D),$ that is,

JPX $\in \Gamma(TN)$ and JQX $\in \Gamma(T^{\perp}N).$ Thus, by comparing the tangential and normal parts of (2.4), we have

$$JPX = \phi X \tag{2.5}$$

$$JQX = \omega X$$
 (2.6)

Therefore

$$\omega \circ \phi(X) = \omega(JPX) = JQ(JPX) = 0$$
, since JPX $\in \Gamma(D)$.

Conversely, suppose $\omega \circ \phi = 0$. We now prove that the rank of ϕ is a constant and therefore, by theorem 2.1, N is a CR-submanifold.

For any X \in $\Gamma(TN)$, we have $JX = \phi X + \omega X$ $J^2 X = J\phi X + J\omega X$

By applying (2.2), (2.3) and the assumption $\omega \circ \phi = 0$, we have

$$-X = \phi^2 X + B \circ \omega X + C \circ \omega X$$

which gives us

 $-I = \phi^2 + B \circ \omega + C \circ \omega$

By comparing the tangential and normal parts of the equation above, we have

$$\phi^{2} = -I - B \circ \omega \qquad (2.7)$$

and

$$C \circ \omega = 0 \tag{2.8}$$

For any $X \in \Gamma(TN)$ and $\xi \in \Gamma(T^{\perp}N)$,

$$g(\omega X, \xi) + g(X, B\xi) = g(JX - \phi X, \xi) + g(X, J\xi - C\xi)$$

= $g(JX, \xi) - g(\phi X, \xi) + g(X, J\xi) - g(X, C\xi)$

$$= -g(X, J\xi) + g(X, J\xi)$$

$$= 0$$
 Thus, we have
$$g(\omega X, \xi) + g(X, B\xi) = 0$$

For $\xi \in \Gamma(T^{\perp}N)$, there exists $\xi' \in \Gamma(T^{\perp}N)$ such that $\xi = C\xi'$. Hence, $g(\omega X, C\xi') + g(X, B \circ C\xi') = 0.$

Therefore, we obtain

$$g(X, B\circ C\xi') = -g(\omega X, C\xi') = -g(\omega X, J\xi' - B\xi')$$
$$= -g(\omega X, J\xi') + g(\omega X, B\xi')$$
$$= g(J\omega X, \xi')$$
$$= g(B\circ\omega X + C\circ\omega X, \xi')$$
$$= 0, \text{ since } C\circ\omega = 0.$$
$$B\circ C = 0 \qquad (2.9)$$

Hence

Similarly, from (2.3), we obtain $J^2\xi = JB\xi + JC\xi$. By applying (2.2) and (2.3), we obtain

$$-\xi = \phi \circ B\xi + \omega \circ B\xi + B \circ C\xi + C^2 \xi$$
$$= \phi \circ B\xi + \omega \circ B\xi + C^2 \xi , \qquad \text{by } (2.9)$$

By comparing the tangential part of the equation above,

$$\phi \circ B = 0$$
 (2.10)

~

From (2.7),
$$\phi^2 = -I - B \circ \omega$$

 $\phi^3 = -\phi - \phi \circ B \omega = -\phi$, by (2.10)
Therefore $\phi^3 + \phi = 0$ (2.11)

(2.11) tells us that ϕ define an f-structure on $\Gamma(TN)$ as defined by Yano [24]. Hence, the rank of ϕ is a constant (see Stong [21]) and by theorem 2.1, N is a CR-submanifold.

OED

From the proof of proposition 2.1, we obtain the following proposition.

Proposition 2.2

The submanifold N of an almost Hermitian manifold M is a CR-submanifold if and only if $C\circ\omega$ = 0.

Proof:

For any $X \in \Gamma(TN)$, we have

 $JX = \phi X + \omega X$

By applying J to the equation above and using (2.2) and (2.3), we obtain

 $-I = \phi^2 + \omega \circ \phi + B \circ \omega + C \circ \omega$

By comparing the normal part,

$$\omega \circ \phi + C \circ \omega = 0$$

Hence, it is clear that N is a CR-submanifold of M if and only if $C \circ \omega = 0$.

QED

Let N be a CR-submanifold of an almost Hermitian manifold M. We made the following observations:

(1) From the proof of proposition 2.1, we observed that

$$D_x = \text{Im } \phi_x$$
, for each $x \in N$
rank(ϕ) = constant

(2) For each $x \in N$, we observed that

$$D_{v}^{\perp} = Im B_{v}$$

Proof:

and

For any $\xi \in \Gamma(T^{\perp}N)$ and $X \in \Gamma(D)$, we have $g(B\xi, X) = g(B\xi+C\xi, X) = g(J\xi, X) = -g(\xi, JX) = 0.$ Thus, $B\xi \in \Gamma(D^{\perp})$, which implies that Im $B_{\nu} \subseteq D_{\nu}^{\perp}$.

> Conversely, for any $Y \in \Gamma(D^{\perp})$, we have, Y = -J(JY) = J(-JY) = B(-JY) + C(-JY)

By comparing the tangential part, we obtain,

$$Y = B(-JY)$$
,

which implies that $D_X^{\perp} \subseteq$ Im $B_X^{}.$ Hence, we conclude that $D_X^{\perp} = \text{Im } B_X^{}$

(3) Let μ be the complementary orthogonal vector bundle of JD^{\perp} in $T^{\perp}N$, that is, $T^{\perp}N = JD^{\perp} \odot \mu$. We observed that $J(\mu_X) = \mu_X$, $X \in N$. For any $\xi \in \Gamma(\mu)$ and $Z \in \Gamma(D^{\perp})$, $0 = g(J\xi, Z) = g(B\xi + C\xi, Z) = g(B\xi, Z)$

A506171333

Thus, $B\xi = 0$, and so, $J\xi = C\xi \in \Gamma(T^{\perp}N)$, for any $\xi \in \Gamma(\mu)$. We note that, for any $\xi \in \Gamma(\mu)$ and $Z \in \Gamma(D^{\perp})$,

$$g(C\xi, JZ) = g(J\xi, JZ), \quad \text{since } J\xi = C\xi$$
$$= g(\xi, Z)$$
$$= 0$$

that is, $C\xi \in \Gamma(\mu)$. Therefore, we have

$$J(\mu_{X}) \subseteq \mu_{X}$$
, for any $X \in \mathbb{N}$

Since $J\xi = C\xi \in \Gamma(\mu)$, we have

$$\xi = -JC\xi \in \Gamma(J\mu)$$

that is, $\mu_x \subseteq J(\mu_x)$, for any $x \in N$. Hence, $J(u_y) = \mu_y$.

(4) Finally we observed that ϕ and C define f-structures on TN and T¹N respectively. By applying ϕ on equation (2.5), we obtain $\phi(\phi X) = \phi(PX) = P((PX) - P(PX)) = PX$

Hence, we have,

$$\phi^2 = -P$$

Thus, $\phi(\phi^2 X) = -\phi(PX) = -JP(PX) = -JPX = -\phi X$, that is,
 $\phi^3 + \phi = 0$

Similarly, from $J\xi = B\xi + C\xi$, for $\xi \in \Gamma(T^{\perp}N)$ $J^{2}\xi = JB\xi + JC\xi$ $-\xi = \phi \circ B\xi + \omega \circ B\xi + B \circ C\xi + C^{2}\xi$

By taking the normal part,

$$C^{2}\xi + \omega \circ B\xi + \xi = 0$$

$$C^{3}\xi + C \circ \omega \circ B\xi + C\xi = 0$$

$$C^{3} + C = 0, \quad \text{since } C \circ \omega = 0$$

We summarize our observations in the proposition below:

Proposition 2.3

Let N be a CR-submanifold of an almost Hermitian manifold M. Then, for each $x \in N$,

- (i) $D_x = Im \phi_x$
- (ii) rank ϕ = constant
- (iii) $D_{y}^{\perp} = \operatorname{Im} B_{y}$
- (iv) $J(\mu_{\chi}) = \mu_{\chi}$, that is μ_{χ} is invariant by the almost complex structure J.
- (iv) ϕ and C define f-structures on TN and T¹N respectively.

2.4 Integrability Conditions of Distributions On A CR-submanifold

Let N be a CR-submanifold of an almost Hermitian manifold M. In this section, we give some of the integrability condition of the distributions D and D^{\perp} on a CR-submanifold.

The Nijenhuis tensor field of ϕ is given by

 $[\phi,\phi](X,Y) = [\phi X,\phi X] + \phi^2[X,Y] - \phi[\phi X,Y] - \phi[X,\phi Y]$ Similarly, for an almost complex structure J, we have

 $\label{eq:JJ} [J,J](X,Y) \ = \ [JX,JY] \ + \ J^2[X,Y] \ - \ J[X,JY] \ - \ J[JX,Y]$ for any $X,Y \ \in \ \Gamma(D).$

We first begin with a few theorems found in Bejancu [4] and [3].

Theorem 2.2 (Bejancu [4])

Let N be a CR-submanifold of an almost Hermitian manifold M. For any X, Y $\in \Gamma(D)$, the distribution D is integrable if and only if

 $[J, J] (X, Y)^{\perp} = 0 \quad \text{and} \quad Q[\phi, \phi] (X, Y) = 0$ where $[J, J] (X, Y)^{\perp}$ is the normal part of [J, J] (X, Y) to N.

Theorem 2.3 (Bejancu [3], p.26)

Let N be a CR-submanifold of a Hermitian manifold M. The distribution D is integrable if and only if

$$[\phi,\phi](X,Y) = 0$$

for any $X, Y \in \Gamma(D)$.

Theorem 2.4 (Bejancu [3], p. 26)

Let N be a CR-submanifold of an almost Hermitian manifold M. The distribution D^{\perp} is integrable if and only if

 $[\phi,\phi](X,Y) = 0$

for any $X, Y \in \Gamma(D^{\perp})$.

The following theorem is found in Kon-Tan [15]. It is an improvement of theorem 2.2.

Theorem 2.5 (Kon-Tan [15])

Let N be a CR-submanifold of an almost Hermitian manifold M. Then the distribution D is integrable if and only if

$$Q[\phi,\phi](X,Y) = 0$$

for any $X, Y \in \Gamma(D)$.

Proof:

If D is integrable, then from theorem 2.2, we have

 $Q[\phi,\phi](X,Y) = 0$

for any $X, Y \in \Gamma(D)$.

Conversely, observe that

 $[\phi,\phi]\,(X,Y)\,=\,[\phi X,\phi Y]\,-\,P[X,Y]\,-\,\phi[\phi X,Y]\,-\,\phi[X,\phi Y]$ and the last three terms are in $\Gamma(D).$ Thus, by the assumption,

 $0 = Q[\phi, \phi](X, Y) = Q[\phi X, \phi Y]$

= Q[JPX, JPY]

$$= Q[JX, JY]$$

for any X, Y \in $\Gamma(D).$ This tells us that [JX,JY] \in $\Gamma(D)$ and so, [X,Y] \in $\Gamma(D)$.

QED

2.5 CR-submanifolds of a Kaehler manifold

In this section, we will give a few results for a CR-submanifold N, of a Kaehler manifold M. Later, we discovered that with a few added conditions, some of the results here could be generalized to a nearly-Kaehler manifold. We will do this in the next chapter.

Let M be a Kaehler manifold. Then for any X, Y \in $\Gamma(\text{TM}),$ we have

$$(\nabla_{\mathbf{Y}}\mathbf{J})\mathbf{Y} = \mathbf{0} \tag{2.12}$$

where $\overline{\nabla}$ is the Levi-Civita connection on M. Let N be a CR-submanifold of M. Similarly, as in the previous section, we let

the holomorphic distribution D and the anti-invariant distribution D^{\perp} be defined respectively by the projections P and Q.

For any X, Y \in $\Gamma(TN)$ and taking account of equations (2.12), (2.2) and the Gauss formula, we have

$$\overline{\nabla}_{X}\phi Y + \overline{\nabla}_{X}\omega Y - J(\nabla_{X}Y + h(X,Y)) = 0,$$

where ∇ is the Levi-Civita connection on N. By using the Weingarten and Gauss formula again, the above equation becomes

$$\nabla_X\phi Y + h(X,\phi Y) - A_{\omega Y}X + \nabla_X^{\perp}\omega Y - J\nabla_X Y - Jh(X,Y) = 0$$
 and thus,

$$\begin{split} \mathbb{P}(\nabla_X \phi Y) &+ \mathbb{Q}(\nabla_X \phi Y) - \mathbb{P}(A_{\omega Y} X) - \mathbb{Q}(A_{\omega Y} X) - \phi(\nabla_X Y) - \omega(\nabla_X Y) + h(X, \phi Y) \\ &+ \nabla_X^{\perp} \omega Y - Bh(X, Y) - Ch(X, Y) = 0 \end{split}$$

where ϕ , ω , B and C are as defined in equations (2.2) and (2.3) of section 2.3. By comparing the tangential and normal parts, we obtain the following equations:-

$$P(\nabla_X \phi Y) - P(A_{\omega Y} X) = \phi(\nabla_X Y)$$
(2.13)

$$Q(\nabla_X \phi Y) - Q(A_{\omega Y} X) = Bh(X, Y)$$
(2.14)

$$h(X,\phi Y) + \nabla_X^{\perp} \omega Y = \omega(\nabla_X Y) + Ch(X,Y)$$
(2.15)

Similarly, for any $X \in \Gamma(TN)$ and $V \in \Gamma(T^{\perp}N)$ and taking account of equations (2.12), (2.3) and the Gauss and Weingarten equations, we have,

$$\overline{\nabla}_{X} \mathbf{EV} + \overline{\nabla}_{X} \mathbf{CV} - \mathbf{J}(-\mathbf{A}_{V} \mathbf{X} + \nabla_{X}^{\perp} \mathbf{V}) = \mathbf{0}$$

$$\overline{\nabla}_{X} \mathbf{EV} + \mathbf{h}(\mathbf{X}, \mathbf{EV}) - \mathbf{A}_{CV} \mathbf{X} + \nabla_{X}^{\perp} \mathbf{CV} + \mathbf{J}(\mathbf{A}_{V} \mathbf{X}) - \mathbf{J}(\nabla_{X}^{\perp} \mathbf{V}) = \mathbf{0}$$

and thus,

$$\begin{split} & \mathbb{P}(\nabla_X \mathbb{B}^V) + \mathbb{Q}(\nabla_X \mathbb{B}^V) - \mathbb{P}(\mathbb{A}_C \mathbf{v}^X) - \mathbb{Q}(\mathbb{A}_C \mathbf{v}^X) + \phi(\mathbb{A}_V X) + \omega(\mathbb{A}_V X) - \mathbb{B}(\nabla_X^1 \mathbf{v}) \\ & - \mathbb{C}(\nabla_X^1 \mathbf{v}) + \mathbb{h}(X, \mathbb{B}^V) + \nabla_X^1 \mathbb{C} \mathbf{v} = 0. \end{split}$$

By comparing the tangential and normal parts, we obtain the following:-

$$P(\nabla_X BV) + \phi(A_V X) = P(A_{CV} X)$$
(2.16)

$$Q(\nabla_X BV) = Q(A_{CV}X) + B(\nabla_X^{\perp}V)$$
(2.17)

$$h(X, BV) + \nabla_X^{\perp} CV + \omega(A_V X) = C(\nabla_X^{\perp} V)$$
(2.18)

We note that equations (2.13) - (2.18) can be found in Bejancu [3], p. 41.

Blair-Chen [7] proved the following theorem for the distribution D of a submanifold (not necessary a CR-submanifold) of a Kaehler manifold.

Theorem 2.6 (Blair-Chen [7])

Let N be a submanifold of a Kaehler manifold M and D_X the maximal holomorphic subspace of T_XN , with constant dimension. Then the holomorphic distribution D is integrable if and only if the second fundamental form satisfies

$$h(X, JY) = h(JX, Y)$$

for all X, $Y \in \Gamma(D)$.

Therefore, by combining theorem 2.6 with a result found in Bejancu [1], we have

Theorem 2.7 (Blair-Chen [7], Bejancu [1])

Let N be a CR-submanifold of a Kachler manifold M. Then i) the distribution D^{\downarrow} is integrable

ii) the distribution D is integrable if and only if

h(X, JY) = h(JX, Y)

for all $X, Y \in \Gamma(D)$.

We also have a theorem which is a combination of results obtained from Chen [8] and Bejancu-Kon-Yano [6].

Theorem 2.8 (Chen [8], Bejancu-Kon-Yano [6])

Let N be a CR-submanifold of a Kaehler manifold M. Then i) the distribution D is integrable and its leaves are totally geodesic in N if and only if

g(h(X,Y),JZ) = 0

for any X, $Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

ii) the distribution D is integrable and its leaves are totally geodesic in M if and only if

h(X,Y) = 0

for any X, $Y \in \Gamma(D)$.

iii) the leaves of D^{\perp} are totally goedesic in N if and only if

 $h(X,Z) \in \Gamma(\mu)$

for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$, where μ is the orthogonal complementary subbundle to JD^{\perp} in $T^{\perp}N$.

Next, we gave some geometrical properties of a totally umbilical CR-submanifold of a Kaehler manifold M. We start off

with the following lemmas.

Lemma 2.1

If N is a CR-submanifold of a Kaehler manifold M, then $A_{JX}Y = A_{JY}X$ for all X, $Y \in \Gamma(D^{\perp})$.

Proof :

Since M is a Kaehler manifold, for any X, $Y \in \Gamma(D^{\perp})$,

$$0 = Y(L_X\overline{V})$$
$$0 = Y_X\overline{V} - YL_X\overline{V}$$

By applying the Gauss and Weingarten formulas, we obtain

$$-A_{JY}X + \nabla_X^{\perp}JY = J\nabla_X^{\gamma}Y + Jh(X,Y)$$
(2.19)

Similarly, we have,

$$-A_{JX}Y + \nabla_Y^{\perp}JX = J\nabla_Y X + Jh(X,Y)$$
(2.20)

Hence, from (2.19) and (2.20), we have the following,

$$\begin{split} & X_Y \nabla U - Y_X \nabla V = X U_Y^{\perp} \nabla - Y_X U + Y U_X^{\perp} \nabla + X_Y U A^{\perp} \\ & X U_X^{\perp} \nabla + Y U_X^{\perp} \nabla - (X_Y \nabla - Y_X \nabla) U = X_Y U A^{\perp} \\ & X U_Y^{\perp} \nabla + Y U_X^{\perp} \nabla + (X_Y U A^{\perp}) U = X A^{\perp} \\ & X U_Y^{\perp} \nabla + V U_X^{\perp} \nabla + (X_Y U A^{\perp}) U = X A^{\perp} \\ \end{split}$$

Since D^{\perp} is integrable, [X,Y] lies in D^{\perp} . Therefore J[X,Y] lies in the normal bundle. Hence,

$$X_{YL}A = Y_{XL}A$$

for all X, $Y \in \Gamma(D^{\perp})$.

Lemma 2.2 (Blair-Chen [7])

If N is a totally umbilical CR-submanifold of a Kaehler manifold M, then either D^{\perp} is 1-dimensional or the mean curvature vector H is perpendicular to JD^{\perp} .

Proof :

Suppose dim $D^{\perp} > 1$. Since N is totally umbilical, for any unit vector $X \in \Gamma(D^{\perp})$ and perpendicular to a vector $Y \in \Gamma(D^{\perp})$,

$$g(h(X, X), J) = g(g(X, X), H, JT)$$

$$= g(X, X)g(H, JY)$$

$$= g(H, JY)$$
However,

$$g(h(X, X), JY) = g(A_{JY}X, X)$$

$$= g(A_{JX}Y, X), \quad by \ lemma \ 2.1$$

$$= g(h(X, Y), JX)$$

$$= 0$$

 $\alpha(\mathbf{b}(\mathbf{X}|\mathbf{X}) | \mathbf{X}) = \alpha(\alpha(\mathbf{X}|\mathbf{X}) | \mathbf{X})$

Thus, g(H, JY) = 0. This tells us that, the mean curvature vector H is perpendicular to JD^{L} .

QED

Bejancu [5] and Chen [10] proved the following theorem which classifies a totally umbilical CR-submanifold of a Kaehler manifold.

Theorem 2.9 (Bejancu [10] and Chen [5])

Let N be a totally umbilical CR-submanifold of a Kaehler manifold M. Then

i) N is totally geodesic, or

ii) N is totally real, or

iii) the distribution D^{\perp} is one-dimensional.

Proof:

Suppose dim $D^{\perp} > 1$. From lemma 2.1, we have

$$A_{JX}BH = A_{JBH}X \qquad (2.21)$$

for all $X \in \Gamma(D^{\perp})$. We note that,

$$g(A_{JX}BH, X) = g(h(BH, X), JX)$$

= $g(g(BH, X)H, JX)$, since N is totally
umbilical

= g(BH, X)g(H, JX)

Similarly,

$$g(A_{JBH}X, X) = g(X, X)g(H, JBH)$$

Therefore, by using (2.21), we obtain

$$g(X,X)g(H,JBH) = g(BH,X)g(JX,H)$$

or
$$-g(X,X)g(JH,BH) = g(BH,X)g(JX,H)$$

= 0, by lemma 2.2

Since JH = BH + CH, we have

$$g(X,X)g(BH,BH) = 0$$

Thus, BH = 0. This tells us that $JH \in \Gamma(T^{\perp}N)$.

From (2.16), we have

$$P(A_{CH}Y) = \phi(A_{H}Y)$$
(2.22)

for any $Y \in \Gamma(TN)$.

Now, suppose that N is not totally real, that is, dim D \geq 2. Then, for Z $\in \Gamma(D)$, we obtain

$$g(PA_{JH}Y,Z) = g(A_{JH}Y,Z) = g(Y,Z)g(JH,H)$$
(2.23)
and $g(\phi(A_{H}Y),Z) = g(J(A_{H}Y),Z)$
 $= -g(A_{H}Y,JZ)$
 $= -g(Y,JZ)g(H,H)$ (2.24)

We note that,
$$g(PA_{JH}Y,Z) = g(PA_{BH} + C_HY,Z)$$

= $g(PA_{CH}Y,Z)$, since $BH = 0$

Therefore, by using (2.22), we obtain

$$g(Y,Z)g(JH,H) = -g(Y,JZ)g(H,H)$$
 (2.25)

or
$$-g(Y,Z)g(H,JH) = -g(Y,JZ)g(H,H)$$
 (2.26)

By summing (2.25) and (2.26), we have

$$2g(Y, JZ)g(H, H) = 0$$

Therefore, H = 0. This tells us that N is totally geodesic and so, the proof is completed.

QED

Let N be a CR-submanifold of an almost Hermitian manifold M. N is a *CR-product* if both the distributions D and D[⊥] are integrable and N is locally a Riemannian product $N_1 \times N_2$ where N_1 is a leaf of D and N_2 is a leaf of D[⊥]. B.Y.Chen [8] proved that N is a CR-product if and only if A_{JD} [⊥]D = 0. However, we are able to obtain a different proof than the one found in Chen [8]. We first begin with the following lemma.

Lemma 2.3

Let N be a CR-submanifold of a Kaehler manifold M. Then if $A_{JZ}X = 0$, $h(X,Y) \in \Gamma(\mu)$, for any $X \in \Gamma(D)$, $Z \in \Gamma(D^{\perp})$ and $Y \in \Gamma(TN)$.

Proof:

 $0 = g(A_{JZ}X,Y) = g(h(X,Y),JZ)$ Thus, h(X,Y) $\in \Gamma(\mu)$, for any X $\in \Gamma(D)$, Z $\in \Gamma(D^{\perp})$ and Y $\in \Gamma(TN)$. QED

Theorem 2.10

Let N be a CR-submanifold of a Kaehler manifold M. N is a CR-product if and only if $A_{JZ}X$ = 0, for any X $\in \Gamma(D)$ and Z $\in \Gamma(D^{\perp})$.

Proof:

Suppose N is a CR-product. Since D is integrable and its leaves are totally geodesic in N, by theorem 2.8, we have

$$g(A_{JZ}X,Y) = g(h(X,Y)JZ) = 0$$
 (2.27)

for any X, $Y \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

Since D^{\perp} is integrable and its leaves are totally geodesic, by theorem 2.8, we have

$$g(A_{JZ}X,U) = g(h(X,U), JZ) = 0$$
(2.28)
for any $X \in \Gamma(D)$ and $U, Z \in \Gamma(D^{\perp}).$

Therefore, by equations (2.27) and (2.28),

 $A_{JZ}X = 0$

for any $X \in \Gamma(D)$ and $Z \in \Gamma(D^{\perp})$.

Conversely, for any X, Y $\in \Gamma(D)$, we have

 $0 = Y(L_X \overline{\nabla})$ $0 = Y_X \overline{\nabla} L - YL_X \overline{\nabla}$

By the Gauss formula, we have

$$\nabla_X JY - J\nabla_X Y = -h(X, JY) + Jh(X, Y)$$

Since the left hand side belongs to TN \odot JD¹, and the right hand side belongs to μ , we have

$$h(X, JY) = Jh(X, Y)$$

that is, h(X, JY) = h(JX, Y).

We note that

$$0 = g(A_{12}X,Y) = g(h(X,Y),JZ)$$

for any X, Y \in $\Gamma(D)$ and Z \in $\Gamma(D^{\perp}).$ Hence, by theorem 2.8, D is integrable and its leaves are totally geodesic in N.

By theorem 2.7, D^{\perp} is integrable and by lemma 2.3, we have

$$h(X,Z) \in \Gamma(\mu)$$

for any X \in $\Gamma(D)$ and Z \in $\Gamma(D^{\perp}).$ Hence, by theorem 2.8, the leaves of D^{\perp} are totally geodesic in N. N is therefore, a CR-product.

QED

We are able to obtain a similar theorem when M is a nearly-Kaehler manifold. We will do this in chapter 3.

Before we end this section, we gave some geometrical properties of a mixed totally geodesic CR-submanifold N of a Kaehler manifold M. Let μ be the complementary orthogonal vector bundle of JD¹ in T¹N. We begin with the following definitions.

Definition

i) A CR-submanifold is said to be mixed totally geodesic if h(X, Y) = 0, for any $X \in \Gamma(D)$ and any $Y \in \Gamma(D^{\perp})$.

ii) A normal vector field ξ (\neq 0) is said to be a *D*-parallel normal section if $\nabla_x^1 \xi = 0$, for each $X \in \Gamma(D)$.

Lemma 2.4

A CR-submanifold N of an almost Hermitian manifold M is mixed totally geodesic if and only if $A_{\xi}X \in \Gamma(D)$, for any $X \in \Gamma(D)$ and $\xi \in \Gamma(T^{1}N)$.

Proof :

If N is mixed totally geodesic, then $0 = g(h(X,Y),\xi) = g(A_{\xi}X,Y)$ for $X \in \Gamma(D)$, $Y \in \Gamma(D^{\perp})$, $\xi \in \Gamma(T^{\perp}N)$. Therefore, $A_{\xi}X \in \Gamma(D)$.

Conversely, suppose $A_\xi X \in \Gamma(D).$ Let (ξ_1,\ldots,ξ_{2m-n}) be a local orthonormal basis of $\Gamma(T^1N).$ Then,

$$0 = g(A_{\xi_{i}} X, Y) = g(h(X, Y), \xi_{i}), \qquad 1 \le i \le 2m-n$$

for any X \in $\Gamma(D)$ and ξ \in $\Gamma($ $T^{1}N). Since <math display="inline">h(X,Y)$ \in $\Gamma(T^{1}N),$ we have h(X,Y) = 0

Therefore, N is mixed totally geodesic.

QED

Lemma 2.5 (Bejancu [2])

Let N be a mixed totally geodesic CR-submanifold of a Kaehler manifold M. Then, we have

$$A_{JE}X = JA_{E}X$$

for any $X \in \Gamma(D)$ and $\xi \in \Gamma(\mu)$.

Lemma 2.6 (Bejancu [2])

for any X

Let N be a mixed totally geodesic CR-submanifold of a Kaehler manifold M. Suppose the distribution D is integrable.Then,

$$JA_{\xi}X = -A_{\xi}JX$$

 $\in \Gamma(D)$ and $\xi \in \Gamma(T^{\perp}N)$.

The following theorem gives a characterization for the parallel normal section which belongs to the normal subbundle JD^{\perp} .

Theorem 2.11 (Bejancu [2])

Let N be a mixed totally geodesic CR-submanifold of a Kaehler manifold M. Then the normal section, $\xi \in \Gamma(JD^{\perp})$ is D-parallel if and only if $\nabla_{\chi}J\xi \in \Gamma(D)$, for each vector field $X \in \Gamma(D)$.

Definition

The holomorphic bisectional curvature for a pair of vector fields (X,Y) on an almost Hermitian manifold M is given by $H(X,Y) = \frac{\overline{R}(X,JX;JY,Y)}{g(X,X)g(Y,Y)}$

By using lemma 2.4 and lemma 2.5, Bejancu [2] proved the following theorem.

Theorem 2.12 (Bejancu [2])

Let N be a mixed totally geodesic CR-submanifold of a Kaehler manifold M. Suppose the distribution D is integrable. If there exists a unit vector field $X \in \Gamma(D)$ such that for all normal sections $\xi \in \Gamma(\mu)$, the holomorphic bisectional curvatures $H(X,\mu)$ are positive, then the normal subbundle μ does not admit D-parallel section.

We note that the theorem above has been proven by B.Y Chen and H.S Lue for complex submanifolds of a Kaehler manifold.