CHAPTER TWO : CR-SUBMANIFOLDS

2.1 Introduction

Let M be an m-dimensional almost Hermitian manifold with
almost complex structure J and with Hermitian metric g and N be an
n-dimensional Riemannian manifold isometrically immersed in M.

N is called a (almost) complex (holomorphic) submanifold
of M if TXN is invariant by J, that is

J(TXN) = TxN’ for each x € N

N is called a totally real (anti-invariant) submanifold

of M if

JTN) € TN, for each x € N

These two classes of submanifolds have been studied
extensively in the last decade. For instance, results on the
geometry of totally real submanifolds can be found in Yano-Kon
[25] and a survey on the geometry of complex submanifolds can be
found in Ogiue [19]. Later, Bejancu [1] introduced a study on a
submanifold which generalizes both a complex submanifold and a
totally real submanifold. This new class of submanifolds, situated

between the above two classes is called the CR-submanifolds.

Definition

N is a CR-submanifold of M if there exists a

differentiable distribution

D : x—;DchxN
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on N that satisfies the following conditions:
(1) D is holomorphic, that is,
J(Dx) =D, ., for each x € N
(ii) the complementary orthogonal distribution
L L
D" : x —— Dx < TXN
is anti-invariant, that is,

J(Di) c T;N ) for each x € N

We let p be the complex dimension of the distribution D
and q the real dimension of the distribution D*. When p=0, a
CR-submanifold becomes a totally real submanifold and when q=0, a
CR-submanifold becomes a complex  submanifold. A proper
CR-submanifold is a CR-submanifold which is neither a complex

submanifold nor a totally real submanifold.

2.2 Examples of CR-submanifolds
In this section, we give an elaboration of the proof of

two examples which are found in Blair-Chen [7].

Example 1:

Any real hypersurface N of M is a CR-submanifold.

Proof :

For any point x e M, let (XI,JXI, X X

JZ} be a basis of TXM, where Z € I‘(T;N) and (Xl, JX

z,

R
JXm—l’ JZ} is a basis of TXN‘ We define a distribution Dx such

that D, be spanned by (Xl' K Koy Jxm_l) and the
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complementary distribution, D; be spanned by {JZ}. Hence, we
obtain
J(Dx) =D,
L L L
and J(Dx) ={JJ2) =-2, ZeT(TN) }c TN
This proves that the hypersurface N of M is a CR-submanifold.

QED

Example 2:
Before we begin with example 2, we first give a

definition of an anti-holomorphic submanifold.

Definition
A submanifold N of an almost Hermitian manifold M is
anti-holomorphic if

"
J(TXN) S TxN , for each x € N

We proceed to prove the following:
(1) If N is an anti-holomorphic submanifold of an almost Hermitian
manifold M, then

dimNz%dimM

(2) Let N be an anti-holomorphic submanifold of an almost
Hermitian manifold M.

1) If dim N = > dim M, then N is a CR-submanifold with

1
2
D!=TN and D= {0}

x x x
In this case, N is not only a CR-submanifold but also a

totally real submanifold.
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ii) If dim N > % dim M, then N is a CR-submanifold with
L L _ L u
D} = J(TiN) and D= (TN )
where ( J(T/N) )" = (X e TN : g(X,Y) =0, Y e J(TIN).

Proof of (1)
From the definition of an anti-holomorphic submanifold
of M, it follows that

L
dim (J(TXN)) = dim TxN

Since J is a endormorphism, thus we obtain

e
dim (TxN) = dim TXN (2.1)

By taking account of (2.1) and TxM = TXN ® T:N N
dim T M = dim T N + dim TN
X x x
= 2 dim TxN ) by (2.1)

Therefore dim TN = 2 dim T.M
X 2 X

Since dim N = dim TXN and dim M = dim TXM. thus
dim N = % din M

QED

Proof of (2)
Suppose dim N = % dim M. Therefore,
2 dim TN = dinm T M
=dim TN + dim TN
X X
Thus, dim T N = dim TN
X X

Since J is a endormorphims, therefore
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dim TN = dim J(T_N)
X X

4
that is, J(TXN) TXN

L
Hence, J (TxN) < TxN

We let Dx= {0} and D)l( = TxN. Then, N is not only a CR-submanifold
but also a totally real submanifold of M with

TXM = TXN ® J(TXN)

Next, suppose dim N > % dim M. We now prove that D and
Dl, as defined, is holomorphic and anti-invariant respectively. We
note that

L L _ oL
J(Dx) = J(J(TXN)) = TN
This means that, J(D;) < T;N. Therefore D" is anti-invariant.

For any X e (J(T;N))", we have

JX=X16X2¢X3

L TR L
where X1 € J(TXN) s X2 € (J(TXN)) and X3 € TXN
We also note that, for any X’ e TiN, we have
0 = g(X,X")
= g(JX,JX")
g . 4
= g(Xl.JX ) + g(XZ,JX ) + g(Xa.JX )
= .
= g(X;,Jx"),
since g(Xz,JX’) = g(XB,JX’) = 0. Therefore, X1 = 0.

We also have,

g(Xg,X’) =g(JX - Xl - X2 . X),
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gJX - X

"

2.X), sinceX1=0

= g(JX,X") - g(XZ,X')

gUJX,X") , since g(XZ,X') =0

Since JUJI(TyN)) = TiN, so for X’ e TN, there exist X'’ e JTN)
such that X’ = JX’’. Therefore

g(X3,X") = gUX,X")

= g(JX,JX'")
= g(X,X’")
=0
This implies that )(3 = 0. Hence, for X € (J(T;N))".
JX = XZ

where Xz € (J(T:N))“. This proves that D is holomorphic and thus,
N is a CR-submanifold of M with
RN L_ L
Dx = (J(TXN)) and Dx- J(TXN)

QED

2.3 Characterization of a CR-submanifold
Let N be an arbitrary Riemannian manifold isometrically
immersed in an almost Hermitian manifold M.
For each vector field X € I'(TN), we put
JX = ¢X + wX (2.2)
where ¢X is the tangent part and wX is the normal part of JX.
Similarly, for each vector field £ € I'(T'N), we put
JE = BE + C¢ (2.3)

where B is the tangent part and C£ is the normal part of JE£.
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We begin this section with a theorem found in Bejancu
[3] which characterizes a CR-submanifold of an almost Hermitian

manifold M.

Theorem 2.1 (Bejancu [3], p. 21)
The submanifold N of M is a CR-submanifold if and only
if rank (¢) = constant

and wegp =0

In this section, we give a proposition which is a slight
improvement of the theorem given above. The idea of the proof of
the proposition here is almost similar to a theorem found in

Yano-Kon [26].

Proposition 2.1
The submanifold N of M is a CR-submanifold if and only

if woe¢=0

Proof':

Suppose N is a CR-submanifold of M. We let P and Q be
the projection of TN to D and p* respectively. So, for any
X e T(IN),

JX = ¢X + wX
J(PX + QX) = ¢X + wX

JPX + JQX = ¢X + wX (2.4)

Since PX € I'(D) and QX e I'(D*), thus we have JPX e r(p), that is,
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JPX € T'(TN) and JQX e T(T'N). Thus, by comparing the tangential
and normal parts of (2.4), we have
JPX = ¢X (2.5)
JOX = wX (2.6)
Therefore

w o ¢(X) = w(JPX) = JQ(JPX) = O, since JPX e I'(D).

Conversely, suppose w o ¢ = 0. We now prove that the
rank of ¢ is a constant and therefore, by theorem 2.1, N is a
CR-submanifold.
For any X e I'(IN), we have
JX = ¢X + wX

%X = JgX + JuX

By applying (2.2), (2.3) and the assumption we¢ = 0, we have
-X = ¢X + BowX + CowX

which gives us

-1 = ¢2 + Bow + Cow

By comparing the tangential and normal parts of the equation

above, we have

¢° = -1 - Bow (2.7)

and Cow = 0 (2.8)

For any X € I'(TN) and € e F(T*N),
g(wX,§) + g(X,BE) = g(JX-¢X,£) + g(X,JE-CE)

= g(JX,€) - g(¢X,€) + g(X,JE) - g(X,C8&)
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= -g(X,J€) + g(X,J§)
=0

Thus, we have g(wX,€) + g(X,BE) =0

For £ € I‘(TJ'N). there exists £’ e I‘(TJ'N) such that £ = C£’. Hence,

g(wX,CE") + g(X,BeCE’) = 0.

Therefore, we obtain

g(X,BoCg’) = -g(wX,CE") = -g(wX,JE’ - BE')
= -g(wX,J€') + g(wX,BE")
= g(JuwX,€")
= g(BowX + CowX,&’)
=0, since Cow = 0.
Hence BeC = 0 (2.9)

Similarly, from (2.3), we obtain Jas = JB§ + JCE. By applying
(2.2) and (2.3), we obtain
-€ = $oBE + woBE + BoCE + C€

= $oBE + woBE + C%€ , by (2.9)

By comparing the tangential part of the equation above,

¢oB = 0 (2.10)
2
From (2.7), 9" = -1 - Bow
¢° = ¢ - ¢poBw = —¢ , by (2.10)
Therefore ¢3 +¢=0 (2.11)
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(2.11) tells us that ¢ define an f-structure on I'(TN) as defined
by Yano [24]. Hence, the rank of ¢ is a constant (see Stong [21])
and by theorem 2.1, N is a CR-submanifold.

QED

From the proof of proposition 2.1, we obtain the

following proposition.

Proposition 2.2
The submanifold N of an almost Hermitian manifold M is a

CR-submanifold if and only if Cew = 0.

Proof:
For any X € I'(TN), we have
JX = ¢X + wX
By applying J to the equation above and using (2.2) and (2.3), we
obtain
-1 = ¢ + wop + Bow + Cow
By comparing the normal part,
wogp + Cow = 0
Hence, it 1is clear that N is a CR-submanifold of M if and
only if Cew = 0.

QED
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Let N be a CR-submanifold of an almost Hermitian

manifold M. We made the following observations:

(1) From the proof of propositicn 2.1, we observed that

Dx= Im ¢x' for each x € N

and rank(¢) = constant

(2) For each x € N, we observed that

L =
Dx Im BX

Proof:

For any € e r(T*N) and X e r(p), we have

g(Bg,X) = g(BE+CE, X) = g(JE,X) = -g(£,JX) = 0.
Thus, B e T'(D'), which implies that Im B < D;.

Conversely, for any Y € I‘(DL), we have,

Y = -J(JY) = J(-JY) = B(-JY) + C(-JY)

PERPUSTAKAAN UNIVERSITI MALAYA

By comparing the tangential part, we obtain,
Y = B(-JY),
which implies that D)L( S Im Bx‘ Hence, we conclude that

1o
Dx_I'"Bx

(3) Let p be the complementary orthogonal vector bundle of JD* in
T'N, that is, T'N = JD% p. We observed that I =, x €N

For any € € I'(u) and Z € I"(D'l),

0 = g(Jg,2) = g(BE + C£,2) = g(BE,2)

AS061N1333
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Thus, B = 0, and so, JE = C£ € I'(T'N), for any £ € I'(n).
We note that, for any £ € I'(u) and Z € l‘(Dl),
g(Cg,J2) = g(J€,J2), since J§ = C&
= g(g,2)
=0
that is, C€ € I'(n). Therefore, we have

J(ux) S H,, for any x € N

x

Since J§ = C€ e I'(n), we have
€ = -JCE € T'(Jp)

that is, p < J(n ), for any x € N. Hence, J(u ) = p_.
X X X X

(4) Finally we observed that ¢ and C define f-structures on TN
and TN respectively. By applying ¢ on equation (2.5), we obtain

¢(¢X) = ¢JPX = JP(JPX) = J(JPX) = -PX
2

Hence, we have, ¢° = -P

Thus, $(8°X) = -¢(PX) = -JP(PX) = -JPX = -¢X, that is,
¢ +9=0

Similarly, from JE = BE + CE, for € € I'(T'N)

J%¢ = JBE + Jcg

-€ = $oBE + woBE + BoCE + C€

By taking the normal part,
C% + weBE + £ = 0
C®€ + CowoBE + CE = 0

C3 +C=0, since Cow = 0
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We summarize our observations in the proposition below:

Proposition 2.3
Let N be a CR-submanifold of an almost Hermitian
manifold M. Then, for each x € N,
(1) Dx = Im éx
(ii) rank ¢ = constant
L =
(iii) D, = Im B,
(iv) J(ux) = My that is o is invariant by the almost
complex structure J.

(iv) ¢ and C define f-structures on TN and T'N respectively.

2.4 Integrability Conditions of Distributions On A CR-submanifold

Let N be a CR-submanifold of an almost Hermitian
manifold M. In this section, we give some of the integrability
condition of the distributions D and D* on a CR-submanifold.

The Nijenhuis tensor field of ¢ is given by

(6,61 (X,Y) = [¢X,¢X] + ¢°[X,Y] - #LeX,Y] - ¢[X,¢Y]
Similarly, for an almost complex structure J, we have

[J,31(X,Y) = [JX,3v] + J2[X,Y] - JIX,JY] - J[JX,Y]

for any X,Y € I'(D).

We first begin with a few theorems found in Bejancu [4]

and [3].
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Theorem 2.2 (Bejancu [4])

Let N be a CR-submanifold of an almost Hermitian
manifold M. For any X, Y € I'(D), the distribution D is integrable
if and only if

I =0 and Qlg,¢1(X,Y) = 0

where [J.J](X,Y)l is the normal part of [J,J](X,Y) to N.

Theorem 2.3 (Bejancu (3], p.26)
Let N be a CR-submanifold of a Hermitian manifold M. The
distribution D is integrable if and only if
[¢,61(X,Y) =0

for any X,Y € I'(D).

Theorem 2.4 (Bejancu [3], p. 26)
Let N be a CR-submanifold of an almost Hermitian
manifold M. The distribution D' is integrable if and only if
[¢,41(X,Y) =0

for any X,Y e I'(D%).

The following theorem is found in Kon-Tan [15]. It is an

improvement of theorem 2.2.

Theorem 2.5 (Kon-Tan [15])
Let N be a CR-submanifold of an almost Hermitian
manifold M. Then the distribution D is integrable if and only if
Ql¢,¢1(X,Y) =0

for any X,Y e I'(D).
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Proof:
If D is integrable, then from theorem 2.2, we have
Ql¢,41(X,Y) =0

for any X,Y e I'(D).

Conversely, observe that
(.81 (X,Y) = [¢X,9Y] - PIX,Y] - ¢[¢X,Y] - $[X,¢Y]
and the last three terms are in I'(D). Thus, by the assumption,
0 = Qlg, ¢l (X,Y) = QI¢X,¢Y]
= QIJPX, JPY]
= Q[JX,JY]
for any X, Y € I'(D). This tells us that [JX,JY] e I'(D) and so,
[X,Y] e (D) .

QED

2.5 CR-submanifolds of a Kaehler manifold

In this section, we will give a few results for a
CR-submanifold N, of a Kaehler manifold M. Later, we discovered
that with a few added conditions, some of the results here could
be generalized to a nearly-Kaehler manifold. We will do this in
the next chapter.

Let M be a Kaehler manifold. Then for any X, Y € I'(TM),
we have

(VXJ)Y =0 (2.12)

where ¥V is the Levi-Civita connection on M. Let N be a

CR-submanifold of M. Similarly, as in the previous section, we let
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the holomorphic distribution D and the anti-invariant distribution
D" be defined respectively by the projections P and Q.

For 'any X, Y € T(TN) and taking account of
equations (2.12), (2.2) and the Gauss formula, we have

waY + waY - J(VXY + h(X,Y)) =0,
where V is the Levi-Civita connection on N. By using the
Weingarten and Gauss formula again, the above equation becomes
4 =
VX¢Y + h(X,¢Y) - AwYx + waY - JVxY - Jh(X,Y) =0

and thus,

P(VX¢Y] + Q(deﬂ) - P(AUYX) - Q(AwYX) - ¢(VXY) »u(VxY) + h(X, ¢Y)
+ Vyu¥ - Bh(X,Y) - Ch(X,Y) = 0

where ¢, w, B and C are as defined in equations (2.2) and (2.3) of
section 2.3. By comparing the tangential and normal parts, we

obtain the following equations:-

P(VX¢Y) - P(AwYX) = ¢(VXY) (2.13)
Q(VX¢Y) - QI'A”YX) = Bh(X,Y) (2.14)
h(X,¢Y) + V;UY = w(VXY) + Ch(X,Y) (2.15)

Similarly, for any X € I'(IN) and V € I'(T'N) and taking account of
equations (2.12), (2.3) and the Gauss and Weingarten equations, we
have,
- - Lo
VXBV + VxCV J(-AVX + VXV) =0
n Loy _
VXBV + h(X,BV) ACVX + VXCV + J(AVX) - J(VXV) =0

and thus,
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ok
P7,BV) + QUT,BV) - P(AcX) = QUALX) + ¢(AX) + w(AX) - BILV)
- C(TgV) + h(X,BV) + VyCV = 0.

By comparing the tangential and normal parts, we obtain the

following: -
P(VXBV) + ¢(AVX) = P(ACVX) (2.16)
_ 1
Q(VXBV) = Q(ACVX) + B(VXV) (2.17)
L 4,
h(X,BV) + VXCV + U(AVX) = C(VxV) (2.18)

We note that equations (2.13) - (2.18) can be found in Be jancu

(3], p. 41.

Blair-Chen [7] proved the following theorem for the
distribution D of a submanifold (not necessary a CR-submanifold)

of a Kaehler manifold.

Theorem 2.6 (Blair-Chen [7])

Let N be a submanifold of a Kaehler manifold M and Dx
the maximal holomorphic subspace of TxN, with constant
dimension. Then the holomorphic distribution D is integrable if
and only if the second fundamental form satisfies

h(X,JY) = h(JX,Y)

for all X, Y € I'(D).

Therefore, by combining theorem 2.6 with a result found

in Bejancu [1], we have
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Theorem 2.7 (Blair-Chen [7], Bejancu [1])
Let N be a CR-submanifold of a Kaehler manifold M. Then
i) the distribution D* is integrable
i1) the distribution D is integrable if and only if
h(X,JY) = h(JX,Y)

for all X,Y e I'(D).

We also have a theorem which is a combination of results

obtained from Chen [8] and Bejancu-Kon-Yano [6].

Theorem 2.8 (Chen [8], Bejancu-Kon-Yano (6])
Let N be a CR-submanifold of a Kaehler manifold M. Then
i) the distribution D is integrable and its leaves are totally
geodesic in N if and only if
g(h(X,Y),J2) =0
for any X, Y € I'(D) and 2 e r'(p%).
ii) the distribution D is integrable and its leaves are totally
geodesic in M if and only if
h(X,Y) = 0
for any X, Y € I'(D).
111) the leaves of D' are totally goedesic in N if and only if
h(X,2) € I'(p)
for any X € I'(D) and Z ¢ I‘(Dl), where p is the orthogonal

complementary subbundle to JD* in T'N.

Next, we gave some geometrical properties of a totally

umbilical CR-submanifold of a Kaehler manifold M. We start off
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with the following lemmas.

Lemma 2.1
If N is a CR-submanifold of a Kaehler manifold M, then

AjxY = ApX
for all X, Y e I'(DY).

Proof :
Since M is a Kaehler manifold, for any X, Y e I‘(DL),
@Dy =0
VyJY - JT,Y =0
VXJY = JVXY
By applying the Gauss and Weingarten formulas, we obtain

Ly =
-AJYX + VY = JVXY + Jh(X,Y) (2.19)

X
Similarly, we have,
L =
Ay + VX = JUX + Jh(X,Y) (2.20)
Hence, from (2.19) and (2.20), we have the following,
L 1
-AJYX + VxJY + AJXY - VYJX = JVXY - JVYX
L L
AJXY - AJYX = J(VXY - VYX) VXJY + VYJX

L L
= JIX,Y] - VXJY + VYJX

Since D' is integrable, [X,Y] lies in D*. Therefore J[X,Y] lies in
the normal bundle. Hence,

AJxY = AJYX
for all X, Y e r'(p).
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Lemma 2.2 (Blair-Chen [7])
If N is a totally umbilical CR-submanifold of a Kaehler
manifold M, then either D' is 1-dimensional or the mean curvature

vector H is perpendicular to Jot.

Proof :
Suppose dim ot > 1. Since N is totally umbilical, for
any unit vector X € I'(D*) and perpendicular to a vector Y € I‘(D‘L),

g(h(X,X),JY) = g(g(X,X)H,JY)

g(X,X)g(H,JY)

g(H,JY)

However, g(h(X,X),JY) = g(AJYX,X)

g(AJxY,X), by lemma 2.1

g(h(X,Y),JX)
=0
Thus, g(H,JY) = 0. This tells us that, the mean curvature vector H

is perpendicular to Jot.

Bejancu (5] and Chen [10] proved the following theorem
which classifies a totally umbilical CR-submanifold of a Kaehler

manifold.

Theorem 2.9 (Bejancu [10] and Chen [5])
Let N be a totally umbilical CR-submanifold of a Kaehler
manifold M. Then

i) N is totally geodesic, or
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ii) N is totally real, or

111) the distribution D* is one-dimensional.

Proof:
Suppose dim p* > 1. From lemma 2.1, we have
AjyBH = AJBHX (2.21)
for all X € I'(D*). We note that,
g(AJxBH,X) = g(h(BH,X), JX)
= g(g(BH,X)H,JX), since N is totally
umbilical

= g(BH,X)g(H,JX)

Similarly,

g(AJBHX.X) = g(X,X)g(H, JBH)

Therefore, by using (2.21), we obtain
g(X,X)g(H,JBH) = g(BH,X)g(JX,H)
or - g(X,X)g(JH,BH) = g(BH.X)g(JX.Hi
=0, by lemma 2.2

Since JH = BH + CH , we have

g(X,X)g(BH,BH) = 0
Thus, BH = 0. This tells us that JH e I'(T'LN).
From (2.16), we have

P(ACH‘{) = ¢(AHY) (2.22)

for any Y € I'(TN).

Now, suppose that N is not totally real, that is,

dim D = 2. Then, for Z e I'(D), we obtain
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g(PA Y,2) = g(A_Y,2) = g(Y,2)g(JH,H) (2.23)
JH JH

and g(q)(AHY),Z) = g(J(AHY),Z)

= -g(AHY,JZ)

= -g(Y,JZ)g(H,H) (2.24)
We note that, g(PAJHY,Z) = g(PABH . CHY,Z)

= g(PACHY.Z). since BH = 0

Therefore, by using (2.22), we obtain
g(Y,2)g(JH,H) = -g(Y,J2)g(H,H) (2.25)

or -g(Y,2)g(H,JH) = -g(Y,JZ)g(H,H) (2.26)

By summing (2.25) and (2.26), we have

2g(Y,JZ)g(H,H) = 0

Therefore, H = 0. This tells us that N is totally geodesic and so,
the proof is completed.

QED

Let N be a CR-submanifold of an almost Hermitian
manifold M. N is a CR-product if both the distributions D and D
are integrable and N is locally a Riemannian product le N2 where
N1 is a leaf of D and Nz is a leaf of D. B.Y.Chen [8] proved that
N is a CR-product if and only if AJDLD = 0. However, we are able
to obtain a different proof than the one found in Chen [8]. We

first begin with the following lemma.
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Lemma 2.3
Let N be a CR-submanifold of a Kaehler manifold M. Then
if A X = 0, h(X,Y) € F'(4), for any X € I'(D), Z € I'(D*) and

Y e T(TN).

Proof':
0 = g(A; X, Y) = g(h(X,Y),J2Z)
Thus, h(X,Y) € I'(p), for any X € I'(D), Z € l"(Dl) and Y € I'(TN).

QED

Theorem 2.10
Let N be a CR-submanifold of a Kaehler manifold M. N is
a CR-product if and only if AJZX = 0, for any X e€ I'(D) and

z ermhH.

Proof:
Suppose N is a CR-product. Since D is integrable and its
leaves are totally geodesic in N, by theorem 2.8, we have
g(Asz,Y) = g(h(X,Y)J2) = 0 (2.27)
for any X, Y € I'(D) and Z e T'(DY).
Since DL is integrable and its leaves are totally
geodesic, by theorem 2.8, we have
g(AJZX,U) = g(h(X,U),J2) =0 (2.28)
for any X € (D) and U, Z e T'(D%).
Therefore, by equations (2.27) and (2.28),
AJZX =0
for any X e I'(D) and Z e I'(DY).
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Conversely, for any X, Y € I'(D), we have
(VXJ)Y =0
VXJY - JVXY =0
By the Gauss formula, we have

VXJY - JVXY = -h(X,JY) + Jh(X,Y)

Since the left hand side belongs to TN e JD*, and the right hand
side belongs to p, we have
h(X,JY) = Jh(X,Y)

that is, h(X,JY) = h(JX,Y).

We note that
0= g(AJzX,Y) = g(h(X,Y),J2)
for any X, Y € I'(D) and Z e l'(Dl). Hence, by theorem 2.8, D is

integrable and its leaves are totally geodesic in N.

By theorem 2.7, D‘L is integrable and by lemma 2.3, we
have
h(X,2) € I'(p)
for any X € T'(D) and Z e I'(D%). Hence, by theorem 2.8, the leaves
of D* are totally geodesic in N. N is therefore, a CR-product.

QED

We are able to obtain a similar theorem when M is a

nearly-Kaehler manifold. We will do this in chapter 3.
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Before we end this section, we gave some geometrical
properties of a mixed totally geodesic CR-submanifold N of a
Kaehler manifold M. Let p be the complementary orthogonal vector

bundle of JD* in T'N. We begin with the following definitions.

Definition

i) A CR-submanifold is said to be mixed totally geodesic
if h(X,Y) = 0, for any X € I'(D) and any Y e I'(D%).

i1) A normal vector field £ (# 0) is said to be a

D-parallel normal section if V;& = 0, for each X € I'(D).

Lemma 2.4
A CR-submanifold N of an almost Hermitian manifold M is

mixed totally geodesic if and only if AEX € I(D), for any

X € T(D) and £ e T(T*N).

Proof :
If N is mixed totally geodesic, then
0 = g(h(X,Y),€) = g(A.X,Y)

€

for X e T'(D), Y e I‘(D*). £ e F(T*N). Therefore, A.X € I'(D).

€

Conversely, suppose AEX € Ir'(D). Let { &1,‘.‘ ’€2m-n } be
a local orthonormal basis of I'(T'N). Then,
0= g(AE X,Y) = g(h(X.Y),Ei), 1s1is2mnn
i

for any X € I'(D) and € € I'( T'N). Since h(X,Y) € I'(T*N), we have

h(X,Y) =0
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Therefore, N is mixed totally geodesic.

QED

Lemma 2.5 (Bejancu [2])
Let N be a mixed totally geodesic CR-submanifold of a
Kaehler manifold M. Then, we have
AJEX = JAsx
for any X € I'(D) and € € I'(p).

Lemma 2.6 (Bejancu [2])
Let N be a mixed totally geodesic CR-submanifold of a
Kaehler manifold M. Suppose the distribution D is integrable. Then,
JAX = -AJX

3 €
for any X € I'(D) and € € F(T*N).

The following theorem gives a characterization for the

parallel normal section which belongs to the normal subbundle JD*.

Theorem 2.11 (Bejancu [2])

Let N be a mixed totally geodesic CR-submanifold of a
Kaehler manifold M. Then the normal section, £ e l‘(JDL) is
D-parallel if and only if VXJE € I'(D), for each vector field
X € I'(D).
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Definition
The holomorphic bisectional curvature for a pair of

vector fields (X,Y) on an almost Hermitian manifold M is given by

R(X,JX;JY,Y)

H(X,Y) = XYY

By using lemma 2.4 and lemma 2.5, Bejancu [2] proved the

following theorem.

Theorem 2.12 (Bejancu [2])

Let N be a mixed totally geodesic CR-submanifold of a
Kaehler manifold M. Suppose the distribution D is integrable. If
there exists a unit vector field X e I'(D) such that for all normal
sections § € I'(u), the holomorphic bisectional curvatures H(X,p)
are positive, then the normal subbundle u does not admit

D-parallel section.

We note that the theorem above has been proven by B.Y

Chen and H.S Lue for complex submanifolds of a Kaehler manifold.
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