CHAPTER THREE : CR-SUBMANIFOLDS OF A NEARLY-KAEHLER MANIFOLD
In this chapter, we will study the properties of a
CR-submanifold N of a nearly-Kaehler manifold M. Most of the
theorems here have already proven to be true for a CR-submanifold
of a Kaehler manifold (see chapter two). Here, we found that with
a few alterations, they are also true for a CR-submanifold of a

nearly-Kaehler manifold.

3.1 Introduction
Let M be a nearly-Kaehler manifold. Then, for any
X, Y € T(TM), we have
Ty + (TNx =0 (3.1)
where ¥ is the Levi-Civita connection on M. Let N be a
CR-submanifold on M. Similarly, as in chapter two, we denote by
V, the induced Levi-Civita connection on N and P and Q as the
projections on the distributions D and D* respectively.
As in Chapter Two, for any £ e r(rN) , we put
JE = BE + CE
where BE € I'(D') and C€ € T(T*N).
So, for any X, Y € I'(TN),
Jh(X,Y) = Bh(X,Y) + Ch(X,Y) (3.2)
Since M is a nearly-Kaehler manifold, we have
(VXJ)Y + (VYJ)X =0

VXJY - JVXY + VYJX - JVYX =0

VXJ‘{ + VYJX = JVXY + JVYX (3.3)
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The Gauss formula gives us

VxY = VXY + h(X,Y)

»
3
a
<l

YX = VYX + h(X,Y)
By combining the two equations above, we obtain

VY + U X = UgY + VX + 2h(X,Y)

Applying J to both sides of the equation above, we have

JVXY + JVYX = JVXY + JVYX + 2Jh(X,Y) (3.4)

By using equations (3.2) and (3.3), equation (3.4) becomes

VXJY + VYJX - JVXY - JVYX = 2Bh(X,Y) + 2Ch(X,Y)

Thus, we obtain
Uy JPY + Uy Jay + VyJPX + VYJQX - JPVXY - Javyy - JPU X - JQu,x

= 2Bh(X,Y) + 2Ch(X,Y)

By applying the Gauss and Weingarten formulas, we have

L
VXJPY + h(X,JPY) + VXJQY = A YX +V,

JQ Y
= AjgxY T JPYyY - JQULY - JPV.X - JQU.X

JPX + h(Y,JPX) + VyJOX
= 2Bh(X,Y) + 2Ch(X,Y) (3.5)

Therefore, we have the following equations:
P(VXJPY) - P(AJQYX) + P(VYJPX) - P(AJQXY)
= JPVXY + JPVYX (3.6)
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Q(VXJP‘{) - QA X) + Q[VYJPX) - Q(AJQXY) = 2Bh(X,Y)

JQy
(3.7)
and
1 L
h(X,JPY) + VXJQY + h(Y,JPX) + VYJQX = JQVXY + JQVYX + 2Ch(X,Y)

(3.8)

Equations (3.7) and (3.8) will be used in the proof of

proposition 3.6 and 3.7.

3.2 Integrability of Distributions of a CR-submanifold of a
Nearly-Kaehler Manifold.

In this section, we will discuss the integrability
condition for the distributions D and D' of a CR-submanifold of a
nearly-Kaehler manifold M. We will also discuss necessary and
sufficient conditions for the leaves of D and D‘L to be totally
geodesic in N and M. We start off with a proposition where N is

not necessarily a CR-submanifold.

Proposition 3.1
Let N be a submanifold of a nearly-Kaehler manifold M
and Dx the holomorphic subspace of TxN , with constant dimension.
If the distribution D is integrable then
h(X,JY) = h(JX,Y) (3.9)

for any X,Y € I'(D).
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Proof:

Let N’ be an integral submanifold of D and let V’ be the
Levi-Civita connection with respect to N‘, V the Levi-Civita
connection with respect to N and V the Levi-Civita connection with
respect to M. Also, let h’ be the second fumdamental form of N’ in
N and h the second fundamental form of N’ in M. As in the previous
chapters, we let h be the second fundamental form of N in M.

Since M is a nearly-Kaehler manifold,

T Y + (T DX = 0

VXJY - JVXY + VYJX - JVYX =0

By using the Gauss formula, we obtain
URIY + R(X,JY) - J(VY + R(X,Y)) + VX + R(Y,JX)
- JUX + R(Y,X) =0
VLIY + VeIX - J(V;(Y + VgX) + h(X,JY) + h(Y,JX) - 2JR(X,Y) =0

(3.10)

Note that, since D is holomorphic, J(V)’(Y + v{{x) € I'(D). Therefore,

by comparing the tangential and normal parts of (3.10), we

obtain
V;(JY + V’YJX - J(V)’(Y + V’YX) =0 (3.11)
and
h(X,JY) + R(Y,JX) - 2Jh(X,Y) =0 (3.12)
By replacing X by JX in (3.12),
R(JX,JY) - h(Y,X) = 2Jh(JX,Y)
= 2J(2JR(X,Y) - R(X,JY)), by (3.12)
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= -4h(X,Y) - 2Jh(X,JY)
This gives us,

h(JX,JY) = -3R(X,Y) - 2JR(X,JY)

Next, we replace Y by JY in (3.12). Similarly, we obtained
-h(X,Y) + R(JY,JX) = 2JR(X,JY),

that is, -3h(X,Y) + 3h(JY,JX) = 6JR(X,JY)

By substituting (3.14) into (3.13), we have
R(JX,JY) = 6Jh(X,JY) - 3R(JX,JY) - 2JR(X,JY)
which gives us 4h(JX,JY) = 4JR(X,JY),

that is, h(JX,JY) = Jh(X,JY)

By replacing Y by JY in (3.15), the equation becomes
RUJX,Y) = Jh(X,Y)
Similarly, we have
ROJY,X) = JR(Y,X)

Hence, h(JX,Y) = RUJY,X)

From the Gauss formula, we have

VxY = V)’(Y + h(X,Y)

VXY = VXY + h(X,Y)
and VxY = V)’(Y + h' (X,Y)

By combining the three equations above, we obtain
Y+ h(X,Y) = QY + b (X,Y) + h(X,Y)

Hence, R(X,Y) = h'(X,Y) + h(X,Y),
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that is, h=h'+h (3.18)
on I'(TN’). By using (3.17) and (3.18), we obtain

h’ (JX,Y) + h(JX,Y) = h’(X,JY) + h(X,JY)

h(JX,Y) - h(X,JY) = h’(X,JY) - h’ (JX,Y)
The left hand side is normal to N in M and the right hand side is

tangent to N. Hence (3.9) is proved.

QED

From the proof of proposition 3.1, we have the following

corollary.

Corollary 3.1

Let N be a submanifold of a nearly-Kaehler manifold M
and Dx the holomorphic subspace of TxN, with constant dimension.
If D 1is integrable, the integral submanifold of D is a

nearly-Kaehler submanifold of M.

Proof':
Taking account of equation (3.11), we obtain
(V;(J)Y + (VQJ)X =0
Therefore, N’ is a nearly-Kaehler submanifold of M.

QED

Let N be a CR-submanifold of a nearly-Kaehler manifold

M. The following lemma is found in Bejancu [3].
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Lemma 3.1:
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Then
h(X,JY) - h(JX,Y) = %J([J,J](X,Y)) + JIX, Y] + VYJX - Vx.l‘{
(3.19)

for any X, Y € I'(D).

Proof :
For X, Y € I'(D) and by using theorem 1.7 of chapter 1,
we have

1
EJ({J.J](X.Y)) + JIX, Y] + VX - VY

"

-Z(VYJ)X + JVXY - JVYX + VYJX - VXJY (3.20)

~2(VYJX - JVYX) + JU Y - JVYX + VYJX - VY (3.21)

X

Since M is a nearly-Kaehler manifold, we have

(VXJ)Y = -(VYJ)X

Therefore, equation (3.20) can also be written as

FILITEY) + XY + 0K - 7,

Y
XY - JVYX + VYJX - VXJY

ZVXJY - JVXY - JVYX + VYJX - VXJY (3.22)

Z(VXJ)Y + JV.

By summing up equations (3.21) and (3.22), we obtain

1
2( éJ([J,J](X.Y)) + JIX,Y] + V,JX - VxJY )

Y
= 2(VXJY - VXJY) - Z(VYJX - VYJX)
= 2h(X,JY) - 2h(Y,JX)

Thus, equation (3.19) is proved.
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Sato proved a necessary and sufficient integrability
condition for the distribution D. The following version here is
found in Bejancu [3]. However, we make a slight change in the

proof .

Theorem 3.1
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Then the distribution D is integrable if and only if
h(X,JY) = h(JX,Y) (3.23)
and [J,J1(X,Y) e r'(D) (3.24)

for any X, Y € TI'(D).

Proof:

Suppose D is integrable. Then, by proposition 3.1, we
have (3.23). Since

[J,J1(X,Y) = [JX,JY] - [X,Y] - JLJX,Y] - JIX,JY]

therefore, [J,J]1(X,Y) € I'(D), for any X, Y € I'(D).

Conversely, suppose equations (3.23) and (3.24) are
satisfied. From lemma (3.1), we have

- - -1
JIX, Y] = VY = UyIX 37 (13,31 (X,Y)) (3.25)

For each W e I'(D'), there exists V € F(T'N) such that V = JW.
Therefore, by using (3.24) and (3.25), we have

g([X,Y],W) = g(JIX,Y], W) = g(VxJY - VYJX - %J([J,J](X,Y)), V)

[

8LTIY V) = g(VIX,V) = g(10,5106,)),v)

=0
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Hence, [X,Y] € I'(D) for each X, Y € I'(D). It follows that D is
integrable.

QED

Theorem 3.2 (Urbano [22])
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Then the distribution D is integrable if and only if
(VXJ)Y € (D)
and h(X,JY) = h(JX,Y)

for any X, Y € I'(D).

Proof:
By using theorem 1.7 of chapter 1 and theorem 3.1,
theorem 3.2 is clear.

QED

Kon-Tan [15] proved a necessary and sufficient condition
for each leaf of D to be totally geodesic in N. Suppose D is
integrable. For any X, Y € I'(D), let

VXY = V)’(Y + al(X,Y)
where V,’(Y € I'(D) and «(X,Y) € I'(D*). Therefore, each leaf of D is
totally geodesic in N if and only if
«(X,Y) = 0 or VxY € r'(D)
for any X, Y € I'(D). Similarly, each leaf of D is totally geodesic
in M if and only if
a(X,Y) + h(X,Y) = 0 or V.Y € I'(D)

for any X, Y € I'(D).
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Theorem 3.3 (Kon-Tan [15])
Let N be a CR-submanifold of nearly-Kaehler manifold M.
Suppose D is integrable. Then each leaf of D is a totally geodesic
submanifold of N if and only if
h(X,JY) = Jh(X,Y) (3.26)

for any X, Y € I'(D).

Proof':
Since D is integrable, by theorem 3.2, we have

(VXJ)Y = VXJY + h(X,JY) - JU,Y - Jh(X,Y) e I'(D).

X
Therefore, if each leaf of D is totally geodesic in N,

VXJY, JVXY € I'(D) and this gives us h(X,JY) - Jh(X,Y) = 0
Hence, h(X,JY) = Jh(X,Y).

Conversely, for any X, Y € I'(D), U e I'(D*) and since
(VyJ)Y € T(D), we have
0= g((VxJ)Y,U) . g(VxJY + h(X,JY) - JVXY - Jh(X,Y), U)
= g(VxJY,U) - g(JVxY,U), by the assumption of (3.26)

= 8(%,JY,0)
Therefore VXJY € I(D). This tells us that each leaf of D is
totally geodesic in N.
QED
Kon-Tan [15] also proved a necessary and sufficient

condition for each leaf of D to be totally geodesic in M.
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Theorem 3.4 (Kon-Tan [15])
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Suppose D is integrable. Then, each leaf of D is a totally
geodesic submanifold of M if and only if
h(X,Y) =0 (3.27)

for any X, Y € I'(D).

Proof:
For any X, Y € I'(D), we have
Uy = VY + a(X,Y) + h(X,Y)
where VY € T'(D), a(X,Y) e r*) and h(X,Y) e F(T'N). If each leaf
of D is totally geodesic in M, we have
«(X,Y) + h(X,Y) = 0.

Thus, «(X,Y) = 0 and h(X,Y) = 0, for any X,Y € I'(D).

Conversely, if h(X,Y) = 0, then for any X, Y € I'(D) and
U ermh,
0= g((VXJ)Y,U) = g(VXJY - JVXY,U), by the assumption of (3.27)
= g(VXJY.U) + g(VxY,JU)

= g(VXJY,U)

Therefore, VXJY € T'(D) for any X, Y e I'(D). This implies that
«(X,Y) = 0 and since h(X,Y) = 0, this tells us that each leaf of D

is totally geodesic in M.

QED
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By combining theorem 3.2, theorem 3.3 and theorem 3.4,
we have the following theorem which is a generalization of theorem

2.8 ((1) and (i1)) of chapter two.

Theorem 3.5 (Kon-Tan [15])
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Then
(1) the distribution D is integrable and its leaves are
totally geodesic in N if and only if
h(X,JY) = Jh(X,Y) and (V,J)Y € I'(D)

for any X, Y e I'(D).

(1i) the distribution D 1is integrable and its leaves
are totally geodesic in M if and only if
h(X,Y) = 0 and (V,J)Y € I'(D)

for any X, Y € I'(D).

Before we end this section, we discuss the integrability
condition for the distribution D* of a nearly-Kaehler manifold. We
have the following results found in Bejancu [3]. We note that

theorem 3.6 is proved by Sato.

Theorem 3.6
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. The distribution D* is integrable if and only if
g(h(U,X),JW) = g(h(W,X),JU) (3.28)

for all U, W e I'(D*) and X e I'(D).
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Theorem 3.7 (Bejancu [3], p. 28)
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. 1f D* is integrable, then each leaf of p* is immersed in N as a
totally geodesic submanifold if and only if
g(h(U,X),JW) =0 (3.29)

for all U, W € I'(D*) and X e I'(D).

3.3 Totally wumbilical CR-submanifolds of a nearly-Kaehler
manifold.

Most of the results in this section are generalized from
the previous results found in section 2.5 of chapter two. For
instance, lemma 3.2 (see p. 61) found in this section, is almost
similar to lemma 2.2 (see p. 40), whereas the results obtained in
theorem 2.9 is also true when M is a nearly-Kaehler manifold.

The definition of a totally umbilical submanifold is as
in section 1.3 of chapter one. Firstly, we gave a theorem which is
proven by Kon-Tan [17] which says that if N is a totally umbilical
CR-submanifold of a nearly-Kaehler manifold M, then pt 1s

integrable.

Theorem 3.8 (Kon-Tan [17])
If N is a totally umbilical CR-submanifold of a
nearly-Kaehler manifold M, then p* is integrable and its leaves

are totally geodesic in N.
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Proof:
Since N is totally umbilical, for any U, W e I‘(DL) and
X € I'(D),
g(h(U,X),JW) = g(g(U,X)H,JW) =0
Similarly, we also obtain g(h(W,X),JU) = 0. Hence, equation (3.28)
is satisfied. It follows from theorem 3.6 and 3.7 that D' is
integrable and its leaves are totally geodesic in N.

QED

Lemma 3.2 (Kon-Tan [17])
Let N be a totally umbilical CR-submanifold of a
nearly-Kaehler manifold M. If dim IJ1 > 1, then
(1) the mean curvature vector H is perpendicular to Jpt.

(1) AW =0, for all Z,W e I'(DY)

Proof :
Since M is nearly-Kaehler, for any 2, W € l'(D'L),

(VZJ)H + (VWJ)Z =0
VW - I+ T,
UIH - JTM = T,

JZ-JVHZ=O

JZ + ﬁuz (3.30)

By using the Gauss and Weingarten formulas, (3.30) becomes

. Lo _ - _ ot
AJVZ + VZJW JVZV Jh(Z,W) AJZ\I VWJZ + JVWZ + Jh(Z,W)

Since N is totally umbilical, we have

L

J(VwZ + VZH) + 2g(Z,W)JH = -Asz - AJZw + Vz

L
JW + VVJZ
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Thus, g(J(VwZ + VZH).Z) + 2g(2,W)g(z,JH)

L L
- g(AJ"Z,Z) - g(AJZV.Z) + g(VZJU.Z) + g(VuJZ,Z)
= - g(h(2,2),JW) - g(h(2Z,W),J2)
= IIZII2 g(W,JH) + g(Z,W)g(z,JH), since N is totally
umbilical

Therefore, g(2Z,W)g(z,JH) = IIZII2 g(W,JH), for any W, Z € ro.

By interchanging Z and W in the equation above, we obtain

g(Z,W)gW,JH) = 11 g(z, JH)

g(z,w)?

Hence, g(W,JH) =
1zn?uwn>

g (W, JH) (3.31)

If dim D* > 1, then for Z not parallel with W,

g(Z,V)z < IIZII2 IIHII2

Hence, equation (3.31) shows that g(W,JH) = 0, that is, H is

perpendicular to JDJ'.

Let 2, W e I'(D") and X € F'(IN). Then
g(A W, X) = g(h(W,X),J2)
= g(W,X)g(H,J2)
=0
Therefore, AW = 0 for all Z,W e I'(DY).

QED
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By using the lemma 3.2, we are able to prove this simple
result when N is a totally umbilical anti-holomorphic submanifold

of a nearly-Kaehler manifold M.

Proposition 3.2
Let N be a totally umbilical anti-holomorphic
submanifold of a nearly-Kaehler manifold M, with dim N > % dim M.
(1) If dim D* > 1 , then N is totally geodesic.

(i1) If dim D' = 1, then N is a hypersurface.

Proof':

Suppose dim ot > 1. From section 2.2 of chapter 2 (see
p.24), D: is given by J(T;'N). for x € N. Therefore by using lemma
3.2, H is perpendicular to J( J(T;N) ) which implies that H is
perpendicular to T;N‘ Therefore H = 0. Thus, N is totally

geodesic.

Suppose dim D* = 1. Then, from the definition for D' of

an anti-holomorphic submanifold, we have

din (J(TJN)) = 1
which shows that dim TiN = 1. Since

dim T M = dim T N + dim TN

X X X
therefore, we have

m=din TN + 1

Thus, dim N = dim TxN =m-1. So, N is a hypersurface.
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The following theorem is a generalization of theorem 2.9
of chapter two. It classifies a totally umbilical CR-submanifold

of a nearly-Kaehler manifold.

Theorem 3.9 (Kon-Tan [17])
Let N be a totally umbilical CR-submanifold of a
nearly-Kaehler manifold M. Then
(1) N is totally geodesic, or
(ii) N is totally real, or

(1i1) the distribution D* is one-dimensional.

Proof:

Suppose dim o' > 1. By taking account of lemma 3.2, we
have H € I'(n), where p is the complementary orthogonal subbundle
of JD* on TN. Since p is invariant by the almost complex

structure J, we have JH e I'(u).

Now, if N is not totally real, then dim D = 2. Then, for

X # 0 in I'(D), we obtain

L
g(AJHJX,X) = g(VJxJH - VJXJH,X)

-g(VJxJH,X)

g(JH,VJxX), since JH € TI'(u)

g(JH,-VJXJ(JX))

g(JH,~(\7JXJ)JX - JVJXJX)

g(JH,-JVJxJX). since (VJXJ)JX =0

= g(JH,-Jv XJX - Jh(JX,JX))

J
g(JH, -Jh(JX,JX))
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-g(H,h(JX,JX))

-g(JX, JX)g(H,H)

-g(X,X)g(H,H)

- x 0? o H ?

However, g(AJHJZ,Z) = g(h(JZ,2),JH)

g(J2,2)g(H,JH)

0, since g(JZ,2) =0

Hence, H = 0, that is, N is totally geodesic.

QED

3.4 CR-product of a Nearly-Kaehler Manifold

In this section, we obtain a result that is almost
similar to theorem 2.10 (see p.43) of chapter two when the
manifold M 1is nearly-Kaehler. Similarly, as in the previous
sections, we let N be a CR-submanifold of a nearly-Kaehler
manifold M and p be the complementary orthogonal vector bundle of
Jp' in T'N. The definition of a CR-product of M is as defined in
section 2.5 of chapter two (see p.42). We now begin with a result

proven by Sato. Our version here is found in Bejancu [3], p. 33.

Theorem 3.10
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Suppose the following conditions are satisfied:
i) g(h(X,¥),J2) =0 (3.32)

for any X € I'(D), Y € I'(TN) and Z e I'(D*)
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and i1) g([J,J1(X,Y),W) = 0 (3.33)
for any X, Y € I'(D) and W € I'(D*).

Then, N is a CR-product of M.

Proof:

By using (3.32) and the Gauss and Weingarten formulas,

for any X e I'(D) and U, Z € I'(D‘l), we have

0= g(VUX,JZ) = -g(JVUX,Z)
= g(JVUX - VUJX - VXJU.Z), since N is nearly-Kaehler
= -g(VUX,JZ) - g(VUJX.Z) - g(VxJU,Z)
= —g(VUX + h(U,X),J2) - g(VUJX + h(U,JX),2)
L
—g(-AJUX + VJU,2)
= -g(h(U,X),J2) - g(VUJX.Z) + g(AJUX,Z)
= -g(VUJX.Z) + g(h(X,2),Ju), by (3.32)
= ‘B(VUJX,Z)
Thus, Y JX € F(D), for any U e I'(D%), X € (D). (3.34)

Since g([J,J]1(X,Y),W) = 0, therefore by theorem 1.7 of
chapter one, we have
g(4J(T X, W) = 0, for any X, Y € I'(D), W e I'(D')
that is, g((Vy DX, W) = 0

or g(VYJx - JU X, 0W) =0

Y

By using the Gauss formula, we obtain
g(VYJX + h(Y,JX) - JUX = Jh(X,Y),JW) =0
g(h(Y,JX),Jw) - g(VYX,U) =0

that is, g(VYX,N) =0, by (3.32)
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From proposition 3.3, we obtain the following corollary.

Corollary 3.2
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Then if A X = 0, h(X,W) € I'(u), for any X € I'(D), Z e I'(DY)

and W € T(TN).
The following proposition is a converse of theorem 3.10.

Proposition 3.4
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. Suppose the distribution D and pt are integrable and their
leaves are totally geodesic. Then
AJZX =0
and g([J,J1(X,Y),W) =0

for any X, Y € I'(D) and 2, W e I'(DY).

Proof:
Since D' is integrable and its leaves are totally
geodesic, we have
g(AJzX.w) = g(h(X,W),J2) = 0 (3.36)
for any W, Z € r(o*) and X e r(o).
We note that, for any X, Y e I'(D) and Z € T'(D),

g(AJZX,Y) = g(h(X,Y),J2)

"

-g(Jh(X,Y),2)
= -g(h(JX,Y),2), by theorem 3.3

=0 (3.37)
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Therefore (3.36) and (3.37) gives us
AJZX =0
for any X € I'(D) and Z e I'(DY).

Since D 1is integrable, [J,J]I(X,Y) e I(D), for any
X, Y € I'(D). Hence
g([J,J1(X,Y),W) =0

for any W e I'(D%).

By combining proposition 3.4, proposition 3.3 and

theorem 3.10, we have

Proposition 3.5
Let N be a CR-submanifold of a nearly-Kaehler manifold
M. N is a CR-product if and only if
AJZX =0
and g([J,J1(X,Y),W) =0

for any X,Y € I'(D) and 2, W e I'(D%).
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3.5 D-parallel normal section on a CR-submanifold

The main purpose of this section is to obtain a
generalization of theorem 2.11 and theorem 2.12 of chapter two
(see p. 46 and 47). We will later see that the results in theorem
2.11 is also true when M is a nearly-Kaehler manifold. However, in
order to obtain the same results as in theorem 2.12, an extra
condition is needed in the hypothesis of the theorem.

The definition for a mixed totally geodesic
CR-submanifold, D-parallel normal section and the holomorphic
bisectional curvature are as defined in section 2.5, chapter two.
(see p. 45 and 47).

We obtain the following propositions.

Proposition 3.6
Let N be a mixed totally geodesic CR-submanifold of a
nearly-Kaehler manifold M. Then, for any X € I'(D), Y e F(DL),

VYX € r(p)

Proof:
Taking account of equation (3.7) and by using the

assumption that N is a mixed totally geodesic CR-submanifold, we

have
Q7 IX) = 0
Hence, V,JX € I'(D), for any X € F'(D), Y e I'(DY).

QED
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The following proposition is a generalization of theorem

2.11 of chapter two.

Proposition 3.7
Let N be a mixed totally geodesic CR-submanifold of a
nearly-Kaehler manifold M. Then the normal section £ € l"(JD"') is

D-parallel if and only if VXJE € I'(D) for each X € I'(D)

Proof :
Let X € I'(D) and Y e I'(D") such that JY = £. By using
equation (3.8) of section 3.1 and the assumption that N is mixed

totally geodesic, we have

1
VXE

JQVXY + JQVYX.

JQVXY. by proposition 3.6
= JQU, (-J§) = -JQU,JE
So, € 1is D-parallel if and only if VXJ§ e Ir(pn).

QED

Next, we have several lemmas. We note that lemma 3.3 and
lemma 3.5 are almost similar to lemma 2.5 and lemma 2.6 of chapter

two respectively (see p. 46).

Lemma 3.3
Let N be a mixed totally geodesic CR-submanifold of a
nearly-Kaehler manifold M. Suppose D is integrable.Then
JAX = -A_JX

3 3
for any X € I'(D) and € € r(T*N).
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Proof:
For any X,Y € I'(D) and £ € I'(T"'N),
gUALX, Y) = -g(AX,JY)
-g(h(X,JY),§)

-g(h(JX,Y),€), by theorem 3.1.

“8(AIX,Y)

Therefore, g(JAX + AEJX,Y) = 0. By lemma 2.4 (see p. 45), we obtain

3

= -A.JX
JA§X 3

QED

Lemma 3.4
Let N be a mixed totally geodesic CR-submanifold of a
nearly-Kaehler manifold M. Suppose D is integrable and its leaves
are totally geodesic in N. Then
A X = -AJX

JE €
for any X € I'(D) and § € I'(n).

Proof:
For any X € I'(D), Y € I'(D) and £ € I'(n), we have
g(h(JX,Y),€) = g(Jh(X,Y),€), by theorem 3.3
= -g(h(X,Y),J§)
= -g(Ang,Y)
However, g(AEJX,Y) = g(h(JX,Y),€). Therefore,
g(AEJX + AJ€X.Y) =0
which gives us, AJ€X = —AEJX, by lemma 2.4
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Lemma 3.5
Let N be a mixed totally geodesic CR-submanifold of a
nearly-Kaehler manifold M. Suppose D is integrable and its leaves
are totally geodesic in N. Then
A X = JAX

Jg 3
for any X € I'(D) and £ € I'(pn).

Proof':
From lemma 3.3 and 3.4, we have
JAX = -AJX = A X
3 3 JE
Therefore AJ€X = JAEX

for any X € I'(D) and € € I'(p).

QED

From lemma 3.3, lemma 3.4 and lemma 3.5, we are able to
prove proposition 3.8 which is almost similar to theorem 2.12 of

chapter two.

Proposition 3.8

Let N be a mixed totally geodesic CR-submanifold of a
nearly-Kaehler submanifold M. Suppose D is integrable and its
leaves are totally geodesic in N. If there exists a unit vector
X € ['(D) such that for all normal sections £ € I'(u), the
holomorphic bisectional curvatures H(X,£) are positive, then the

normal subbundle p does not admit D-parallel sections.
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Proof:
Suppose £ is a parallel section of p. For X, Y € I'(D),
the curvature tensor R* of the normal connection V' is given by

RUKYIE = Uguye - VyTE - Uy €

=0

From the Ricci equation
R(X,Y;J€,6) = g(R(X,Y)JE,€)

= g(R*(X,Y)JE,€) - g([A}, A (X),Y)

€€

=- g([AJs,AEI(X),Y)

= - g(AJger(X) - A§°AJE(X),Y)

= - S(JAiAE(X) - A§JA€(X)'Y)' from lemma 3.5
= - g(JAgAg(X) + JAEAE(X)'Y)' from lemma 3.3
= “28(JAZX,Y)

2

Therefore, R(X,JX;J§,€) = -25(.|A€

X,JX) = -Zg(Azx,x). Since H(X,£)
is positive, therefore
0> Zg(AZX,X)
which is a contradiction because g is positive definite. Thus the
proposition is proved.

QED
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