CHAPTER FOUR : CR-SUBMANIFOLDS OF A QUASI-KAEHLER MANIFOLD

4.1 Introduction
Let M be a quasi-Kaehler manifold. Then for any
X, Y € I'(TM), we have
@Y + (T IY =0
where V is the Levi-Civita connection on M. As in the previous
chapters, we let N be a CR-submanifold of M with V as its
Levi-Civita connection. We let P and Q be the projection morphisms
on the distributions D and DJ' respectively. Hence, from the
equation above, when X € I'(D) and Y € I'(TN), we have
VXJY - JVXY - VJ

XY - JVJXJY =0

VXJPY + VXJQY - JVxY - VJXY - JVJXJP‘{ - JVJXJQY =0

By using the Gauss and Weingarten formulas, we have

L
VXJPY + h(X,JPY) + VXJQY - Ay - J(VxY + h(X,Y)) - VixY

X
JX + v*JQy)
JX

Q

- h(JX,Y) - J(VJXJPY + h(JX,JPY)) - J(_AJQY

=0

which gives us,

L
VXJPY + h(X,JPY) + VXJQ‘{ AJQYX - JPVxY - JQVXY
- Bh(X,Y) - Ch(X,Y) - PVJXY - QVJXY - h(JX,Y) - JVJXJPY
L L
Bh(JX,JPY) - Ch(JX,JPY) + JAJQYJX BVJXJQY CVJXJQY

=0
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By comparing the tangential and normal parts, we have
P(VXJPY) - P(AJQYX) - JPVXY - PVJXY - JPVJxJPY + JP(AJQYJX) =0

(4.1)

L
Q(VXJPY) - Q(AJQYX) - Bh(X,Y) - Q(VJXY) - Bh(JX,JPY) - B(VJXJQY)

=0 (4.2)
h(X,JPY) + V)JEJQY - JQVXY - Ch(X,Y) - h(X,Y) - JQVJXJPY
n

- Ch(JX,JPY) + JQ(AJQYJX) - CVJXJQY =0 (4.3)

4.2 Integrability of the Holomorphic Distribution of a
CR-submanifold of a Quasi-Kaehler Manifold.

In this section, we will discuss the integrability

conditions of the holomorphic distribution D of a CR-submanifold

of a quasi-Kaehler manifold M. The following proposition is a

generalization of proposition 3.1 of chapter three (see p. 50).

Proposition 4.1
Let N be a submanifold of a quasi-Kaehler manifold
M and Dx the holomorphic subspace of TxN, with constant dimension.
If the distribution D is integrable, then
h(X,JY) = h(JX,Y)

for any X, Y € I'(D).

Proof:

Let N’ be an integral submanifold of D and let V’ be the
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Levi-Civita connection with respect to N’, V the Levi-Civita
connection with respect to N and V the Levi-Civita connection with
respect to M. Also, let h’ be the second fundamental form of N’ in
N and h the second fundamental form of N’ in M. As usual, we let h
be the second fundamental form of N in M.
Since M is a quasi-Kaehler manifold, we have
@Y + (T, )JY =0

VJY-JVXY-V

X Y-JVJXJ‘{=O

JX

By using the Gauss formula, we have
’ i - . B - . - h - .
VXJY + h(X,JY) J(VXY + h(X,Y)) vaY h(JX,Y) J(VJXJY

+h(JX,JY)) = 0
which gives us

V)’(JY - V:JXY - J(V)’(Y + V:IXJY) + h(X,JY) - h(JX,Y) - J(h(X,Y)
+ hOJX,JY)) = o

Since D is holomorphic, J(V;(Y + V:IXJY) € I'(D). Thus, by comparing

the tangential and normal part of the above equation, we obtain

VRIY = VY - J(VY 4 V4 0Y) = 0 (4.4)
and
R(X,JY) - R(JX,Y) - J(R(X,Y) + R(JY,JX)) =0 (4.5)

By interchanging X with Y in equation (4.5), this gives us

h(Y,JX) - R(JY,X) - J(R(Y,X) + R(JY,JX)) =0 (4.6)
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Hence, equations (4.5) and (4.6) gives us
h(X,JY) - h(JX,Y) - K(Y,JX) + h(JY,X) = 0

that is, R(X,JY) = h(JX,Y) (4.7)

Since h = h’ + h, we obtain
h’ (JX,Y) + h(JX,Y) = h’(X,JY) + h(X,JY)
that is, h(JX,Y) - h(X,JY) = h’(X,JY) - h’ (JX,Y)
The left hand side is normal to N in M and the right hand side is

tangent to N. Hence, the proposition is proved.

From the proof of proposition 4.1, we have the following

corollary.

Corollary 4.1

Let N be a submanifold of a quasi-Kaehler manifold M and
Dx the holomorphic subspace of TxN' with constant dimension. If D
is integrable, the integral submanifold of D is a quasi-Kaehler

submanifold of M.

Proof:
Taking account of equation (4.4), we have
. . =
(VXJ)Y + (VJXJ)JY =0
Therefore, N’ is a quasi-Kaehler submanifold of M.

QED
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Kon-Tan [16] proved an integrability condition for the
distribution D of a CR-submanifold of a quasi-Kaehler manifold. We

begin with the following lemma.

Lemma 4.1 (Kon-Tan [16])

Let N be a CR-submanifold of a quasi-Kaehler manifold M.
Then
1) [3,31(x,Y) = Z(VXJ)JY - Z(VYJ)JX
= 2J(VYJ)X - 2J(VXJ)Y

for any X, Y € I'(TM).

1) XY+ 0V = L5, s sy« VY - X
+ h(JX,Y) - h(X,JY)

for any X, Y € I'(D).

JX - v, JY

=1
1i1) h(X,JY) - h(JX,Y) = 3 JIJ,JI(X,Y) + JIX,Y] + VY X

for any X, Y € I'(D).

Proof:

i) Since the Levi-Civita connection is torsion free, for any

X, Y e€T(m)),
[J,J1(X,Y) = [JX,JY] - [X,Y] - JIUX, Y] - JIX,JY]

= VJXJY - VJYJX - VxY + va - JVJXY + JVYJX = JU,Jy

X
+ JVJYX
= (VJXJ)Y - (VJYJ)X + J(VYJ)X - J(VXJ)Y
= @i e @ 00 - TDIX + Ty
= Z(VXJ)JY - Z(VYJ)JX, since M is quasi-Kaehler
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= ZJ(VYJ)X - 2J(VXJ)Y

ii) For any X, Y € I'(D),

1
LI, Y) + JIX, Y] + Vix¥ = VX + hOIX,Y) - h(X,JY)

1 = -
2L ITXY) + JIX, Y] + Ty - U,

FUIIEY) + IV + TIX + UXY] = TIY - (0Y,X)

1 = -
EJ[J.J](X.Y) + JIX, Y] + [JX,Y] + [X,JY] + (VYJ)X + JVYX

- (VXJ)Y - JVXY

S+ UXY] + (K9] - JCI@DX - J@DY )

[JX,Y] + [X,JY], using 1).

1ii) This follows from ii), since V is torsion free.

QED

The following theorem is found in Kon-Tan [16]. However

we gave a slightly different proof here.

Theorem 4.1 (Kon-Tan [16])
Let N be a CR-submanifold of a quasi-Kaehler manifold N.
Then the holomorphic distribution D is integrable if and only if
h(X,JY) = h(JX,Y)
and [J,J1(X,Y) e T'(D)

for any X, Y € I'(D).

Proof:

Suppose D is integrable. Then

[J,J1(X,Y) = [JX,JY] - [X,Y] - J[JX,Y] - J[X,JY] € I'(D)
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for any X, Y € I'(D). It follows from proposition 4.1 that
h(X,JY) = h(JX,Y)

for any X, Y € I'(D).

Conversely, suppose h(X,JY) = h(JX,Y) and
[J,J1(X,Y) € I'(D), for any X, Y € I'(D). Then, from lemma 4.1, we
have

JYD = = 3 IULIIKY) + T - UK € T(mY)

It then follows that [X,Y] € I'(D), for any X, Y € I'(D). Hence, D
is integrable.

QED

Combining theorem 4.1 with lemma 4.1 (i), we have the

following theorem.

Theorem 4.2 (Kon- Tan [16])
Let N be a CR-submanifold of a quasi-Kaehler manifold M.
The holomorphic distribution D is integrable if and only if
h(X,JY) = h(JX,Y)
and (VXJ)Y - (VYJ)X € r(p)

for any X, Y € I'(D).

We denote by p the complementary orthogonal subbundle to
J(Y) in T'N. Then M is invariant by J, that is, J(ux) = By for
each x € N (see section 2.3, chapter 2). We obtain the following

proposition.
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Proposition 4.2
Let N be a CR-submanifold of a quasi-Kaehler manifold M.
The condition h(X,JY) = h(JX,Y) is satisfied if and only if
g(h(X,JY) - h(JX,Y), J2) =0

for any X, Y € I'(D) and Z € I'(D*).

Proof':
Suppose for any X, Y € I'(D), h(X,JY) = h(JX,Y). Then,

obviously, g(h(X,JY) - h(JX,Y), J2) = 0, for any Z € roh).

Conversely, suppose g(h(X,JY) - h(JX,Y) , JZ) = 0. Then
for any £ € I'(u) and by applying lemma 4.1, we obtain
g(h(X,JY) - h(JX,Y), €)
1
=gl 3 JILIIXY) + JIX, Y] + U JX - U JY ,€)
= UL ¢ BUIXYLE + T
- g(VXJY.El
= - L g1, 00 - glix, 0
=0
Therefore, h(X,JY) = h(JX,Y).

QED

4.3 Minimal Distribution
Let D be a differentiable distribution on a Riemannian
manifold with Levi-Civita connection V. We write
aX,¥) = (70"

for X, Y € I'(D), where (VXY)l denotes the component of VXY in the
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orthogonal complementary distribution p*.

If (Xl,. .,Xr) is an orthonormal basis for D, we define

the mean curvature vector H® of D by

o _ 102
H = ;kz:la(xk.xk)
The distribution D is said to be minimal if H® vanishes
identically.
For the holomorphic distribution D, we can find an
orthonormal basis of the form (X1 reo .XS,JXI ver .JXS) where
dimlRD =r = 2s, since D is invariant under J. Thus,

W=1ly (@(X X + €I, X))

k=1

This shows that D is minimal if kaxk + vakak has no component
L
in D7, for k = 1,...s.

The following result is obtained by Kon-Tan [16].

However, we give a slightly different proof here.

Proposition 4.3
Let N be a CR-submanifold of a quasi-Kaehler manifold M.
If the holomorphic distribution D is integrable, then each leaf of

D is a minimal submanifold in both N and M.
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Proof:
For any X, Y € I'(D), we have
(VXJ)Y + (VJXJ)JY =0
VxJY - JVXY - VJXY - JVJXJY =0
By applying the Gauss formula, we obtain
VXJY + h(X,JY) - JVXY - Jh(X,Y) - VJXY - h(JX,Y) - JVJXJ‘{

- Jh(JX,JY) = 0

Since D is integrable, the equation above becomes
VXJY - VJXY - J(VXY + VJXJY) =0
that is, J(VxY + VJXJY) = VJXY - VXJY.
Hence, VXY + VJXJY € r(n). (4.8)
For any X € I'(D), we thus obtain

UyX + V;JX € T(D)

Therefore, D is minimal in N.

Similarly, by applying the Gauss formula and theorem
4.1, we have

VX + U, JX = U X + h(X,X) + V _JX + h(JX,JX)
JX J

X X
= vxx + VJXJX € r'(d)

Hence, D is minimal in both N and M.

QED

The following corollary is obtained from the proof of

proposition 4.3.
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Corollary 4.2
Let N be a CR-submanifold of quasi-Kaehler manifold M.
Suppose D is integrable. Then

VY + YV JY € T(D)

JX
for any X, Y € I'(D).

Suppose D is integrable. For any X, Y € I'(D), we write
UyY = VY + alX,Y) (4.9)
where V;(Y € I'(D) and a(X,Y) € roohH. By using proposition 4.3,

we obtain the following result.

Corollary 4.3
Let N be a CR-submanifold of a quasi-Kaehler manifold M.
Suppose D is integrable. Then
a(JX,Y) = a(X,JY)

for any X, Y e I'(D).

Proof:
By using equations (4.8) and (4.9), we obtain
VY + alX,Y) + VixlY + «(JX,JY) € T'(D)
This shows that
a(X,Y) = -«(JX,JY)
that is, a(JX,Y) = a(X,JY)

for any X, Y € I'(D).
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4.4 Totally Umbilical CR-submanifold of a Quasi-Kaehler Manifold

Let N be a totally umbilical CR-submanifold of a
quasi-Kaehler manifold M. In this section, we obtain a necessary
and sufficient condition for the distribution D* to be integrable.
We also obtain a result which shows that the mean curvature vector
H lies in JD*.

We begin with the following proposition.

Proposition 4.4
Let N be a totally umbilical CR-submanifold of a
quasi-Kaehler manifold M. Then the distribution D' is integrable
if and only if
g([J,J1(V,W),X) =0

for any V, W e ro*) and X r().

Proof:
For any V, W e I‘(DJ'), and by applying the result
obtained in lemma 4.1, we have
[J,J1(V,W) = 2J(VHJ)V - 2J(VVJ)V
= z.l(Vva - ﬁwv) - 2J(ﬁva - J M)
zﬁva + zvuv - zﬁva - zvvu

By applying the Gauss and Weingarten formulas, we have
- _ L
[J,J1(V,W) = 2J( A+ V) o+ 20V + 2h(W,V)
L
2J( AJwV + VVJU) - 2VVH = 2h(V,W)
= - L - L -
= 2J( AW+ UV + AV - W)+ 2@V v

L L
2J(-AJVW + VuJV + AJwV - VVJW) + 2[W,V]
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Therefore, for any X € I'(D),
3 811,310,
= -gUARM.X) + gUTIV,X) + g(UIA LV, X) - gUITZIW,X) + g([W,V],X)
= g(A M, JX) = g(TydV,JX) = g(A [V, JX) + g(VIW,JX) + g(IW,V],X)
= g(h(W,JX),JV) - g(h(V,JX),JW) + g([W,V],X)
= g(W,JX)g(H,Jv) - g(V,JX)g(H,JW) + g([W,V],X), since N is
totally umbilical
= g([W,v],X),

1

that is, % g([J,J1(V,W),X) = g([W,V],X). Hence, D~ is integrable

if and only if g([J,J](V,W),X) =0

Next, we have the following proposition.

Proposition 4.5
Let N be a totally umbilical proper CR-submanifold of a
quasi-Kaehler manifold M. Then the mean curvature vector

H e r(oh).

Proof:
For any X, Y € I'(D), we have
(VXJ)Y + (VJXJ)JY =0

VXJY—JVY-VXY-JV

X'~ Y =0

By using the Gauss formula,

VXJY + h(X,JY) - JVXY - Jh(X,Y) - VJXY - h(JX,Y) - .IVJXJY
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D

- Jh(JX,JY) =0

Since N is totally umbilical,

Y - g(JX,Y)H - JV __JY

VXJ‘{ + g(X,JY)H - JVXY - Jg(X,Y)H - VJX X

- Jg(JX,JY)H = 0

Since -g(JX,Y) = g(X,JY) and g(X,Y) = g(JX,JY), thus,

VXJ‘{ + 2g(X,JY)H - JVXY - 2g(X,Y)JH - V Y - JV JY =0

JX JX
For any £ € I'(n), we have

(VY + 2g(X, JY)H - JU,¥ - 2g(X,Y)JH - U,

X Y - JUIY,€) = 0

X
that is,

g(VxJY,ﬁ) + 2g(X,JY)g(H,&£) - g(JVxY,E) - 2g(X,Y)g(JH,€&)
- g(VJxY,E) - g(JVJxJY.i) =0

2g(X,JY)g(H,§) + g(VxY.Ji) - 2g(X,Y)g(JH,§) + g(VJxJY.JE) =0
Therefore, 2g(X,JY)g(H,£) + 2g(X,Y)g(H,J§) =0

For any unit vector X € I'(D),
2g(X,JX)g(H,§) + 2g(X,X)g(H,J§) =0
Since g(X,JX) = g(JX,X) = -g(X,JX), thus, g(X,JX) = 0. Therefore,
2g(H,J€) =0

It follows that H € l"(JDl), since J§ € I'(p).
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Let M be a nearly-Kaehler manifold. Hence, M is also
quasi-Kaehler. It follows from lemma 3.2 of chapter three (see p.
61) and proposition 4.5 that if N is a totally umbilical proper
CR-submanifold of a nearly-Kaehler manifold M, with dim DJ' > 1,
then H = 0 and since N is totally umbilical, it follows that
h = 0. Hence, N is totally geodesic. Therefore, we obtain the

following corollary (compare theorem 3.9 of chap. 3, p. 64).

Corollary 4.4
Let N be a totally umbilical proper CR-submanifold of a
nearly-Kaehler manifold M. Then N is totally geodesic or the

dim D' = 1.

4.5 Mixed Totally Geodesic CR-submanifold
In this section, we obtain a set of equivalent equations

stated in the proposition below.

Proposition 4.6
Let N be a mixed totally geodesic CR-submanifold of a
quasi-Kaehler manifold M. Then for any X € I'(D) and Y € I‘(Dl). the
following are equivalent:
1) VJXY € r(p)
11) BV}, JY) = 0

L _ ot
ii1) J(VJXJY) = VY
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Proof:
Taking account of equation (4.2), we have
L =
QYY) + BV JY) =0
_ _p(ot
QYY) = -B(V}JY)
Therefore, V, ¥ € (D) if and only if B(Vj,JY) = 0, for any

X € T(D), Y e T(DY).

Suppose VJXY € I'(D). By using equation (4.3), we obtain
L 1 _
VXJY - JQVXY - CVJXJY =0
L 1 _
VY - CUJY =0, since V.Y € r)
L L L -
VXJ‘{ - (JVJXJY B(VJXJY)) =0

L _ ot L _

Hence, JVJXJY = VxJY, since B(VJXJY) = 0, for any X e TI(D),

Y e r(oh).

Suppose J(ijJY) = V)'L(JY. Taking account of equation

(4.3), we have
1 L _
VXJY - JQVXY CVJXJY =0
VLIY - JQUY - (JvhIY - B(VEUY)) =0
X X JX JX
L
JQVXY + B(VJXJY) =0
By comparing the tangential part, we obtain B(VjXJY) = 0, for any
X e T(D), Y e r(Y).

QED
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