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ABSTRACT

An analytical theory to study the optical properties of a hybrid nanostructure compris-

ing of a metallic nanoparticle (MP) in close proximity with a quantum system (QS) in

double Raman configuration is presented. In particular, the spectra of the quantum fields

emitted by the system is computed to gain insights into the plasmonic effects caused

by the nearby MP. Using Heisenberg-Langevin formalism, the quantum spectra of the

Stokes and anti-Stokes fields emitted by a mesoscopic spherical particle (which consists

of quantum particles in double Raman scheme) without the presence of a nearby MP is

first computed. The dependence of the spectra on the particle size, laser configuration and

angle of observation is then analyzed and studied. It is found that the mesoscopic nature

of the microparticle hides or modifies the spectral peaks originally formed due to quantum

coherence and laser interaction effects. The analytical calculation is then extended to in-

clude the plasmonic effects from a nearby MP, where the MP-QS interaction is modelled

using a semiclassical approach in which the MP is treated as a classical spherical dielec-

tric particle while the QS is treated quantum-mechanically using Heisenberg-Langevin

formalism. Spectra of the quantum fields emitted by the hybrid nanostructure exhibit cav-

ity interference effect which manifests itself as oscillations across interparticle distances.

Besides, Fano dip in the central peak of the spectra is observed at sufficiently weak laser

fields strengths, indicating enhancement of the local Stokes and anti-Stokes fields to the

extent that the quantum fields become comparable to or greater than the incident laser

fields strengths. Also, the MP-QS coupling, which is affected by the size of the MP

and the number density of the QS, changes the angular dependence of the spectra by

breaking the angular rotational symmetry. In the presence of Surface Plasmon Resonance

(SPR) the oscillatory dependence of the spectra on the interparticle distance and angles of
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observation becomes even stronger due to the plasmonic enhancement effect. The study

also includes the derivation of a general expression for the scattered electric field formula

which takes into account the multipole effects and is valid for arbitrary size of the com-

ponent particles as well as arbitrary observation distance. This expression is then applied

to the study of MP-QS interaction with the aim of deriving a scattered field formula that

is valid for any energy level configuration of the QS.
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ABSTRAK

Suatu teori analitik telah dibentangkan untuk mengkaji ciri-ciri optik satu struktur nano

hibrid yang terdiri daripada satu nanopartikel logam yang berdekatan dengan satu zarah

kuantum dalam konfigurasi Raman ganda. Khususnya, spektrum medan-medan kuan-

tum yang dipancarkan oleh sistem tersebut telah dikira untuk mendapatkan maklumat

mengenai kesan plasmonik yang disebabkan oleh nanopartikel logam yang berhampir-

an. Dengan mengunakan formalisme Heisenberg-Langevin, spektrum kuantum medan

Stokes dan anti-Stokes yang dipancarkan oleh satu zarah sfera mesoskopik (yang me-

gandungi zarah-zarah kuantum dalam skim Raman ganda) tanpa kehadiran nanopartikel

logam yang berhampiran dikira terlebih dahulu. Seterusnya, pergantungan spektrum pada

saiz zarah, konfigurasi laser dan sudut pemerhatian adalah dianalisa dan dikaji. Dida-

pati bahawa sifat-sifat mesoskopik zarah sfera menyembunyikan atau mengubah puncak

spektrum yang asalnya terbentuk kesan daripada kepaduan dan interaksi laser kuantum.

Pengiraan analitik kemudiannya diperluaskan untuk merangkumi kesan plasmonik dari

nanopartikel logam berhampiran, di mana interaksi nanopartikel logam-zarah kuantum

dianalisa menggunakan pendekatan klasik separuh yang memerlukan nanopartikel logam

dianggap sebagai zarah dielektrik sfera klasik manakala zarah kuantum dianalisa secara

kuantum-mekanikal menggunakan formalisme Heisenberg-Langevin. Spektrum medan-

medan kuantum yang dipancarkan oleh struktur nano hybrid itu menunjukkan kesan

interferens rongga yang boleh dilihat sebagai ayunan yang bergantung pada jarak antara

nanopartikel logam dan zarah kuantum. Selain itu, kejunaman Fano di puncak tengah

spektrum juga diperhatikan apabila kekuatan medan laser input lemah. Ini menunjukkan

peningkatan kekuatan medan Stokes dan anti-Stokes tempatan kesan daripada nanoparti-

kel logam sehingga kekuatan medan-medan kuantum itu menjadi setanding dengan atau

v

Univ
ers

ity
 of

 M
ala

ya



lebih tinggi daripada kekuatan medan laser. Selain itu, interaksi nanopartikel logam-zarah

kuantum yang bergantung pada saiz nanopartikel logam serta ketumpatan zarah kuantum

mengubah pergantungan spektrum pada sudut permerhatian dengan memecahkan simetri

putaran sudut. Dengan kehadiran resonans plasmon permukaan (SPR), ayunan spektrum

yang bergantung pada jarak antara nanopartikel logam dan zarah kuantum serta sudut

pemerhatian menjadi lebih kuat disebabkan kesan peningkatan medan plasmonik. Ka-

jian ini juga merangkumi pencarian ungkapan umum bagi medan elektrik bertaburan

yang mengambil kira kesan multipole dan sah bagi apa-apa nilai saiz zarah komponen

serta jarak pemerhatian. Ungkapan ini kemudiannya digunakan untuk mengkaji interak-

si nanopartikel logam-zarah kuantum dengan tujuan untuk memperoleh formula medan

bertaburan yang sah untuk sebarang konfigurasi tahap tenaga zarah kuantum.
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CHAPTER 1: INTRODUCTION

1.1 Issues and Motivations

Humans have been for centuries fascinated by the interesting optical properties

exhibited by Metallic Nanoparticles (MPs) which are dramatically different from those

of either the corresponding bulk materials or the atomic and molecular systems. One

of the oldest examples is the famous Lycurgus Cup from about 400 AD which is made

of glass embedded with gold-silver bimetallic nanoparticles. Due to the nanoparticles’

strong absorption of green light, this cup shows a striking red colour when light is shone

into the cup and transmitted through the glass, while appears green when viewed in

reflected light (Kumar, 2013). Other earlier examples include the red glasses of the late

Bronze Age (1200-1000 BCE) from Frattesina di Rovigo, Italy which contains copper

nanoparticles that cause the glasses to exhibit bright red colour (Angelini et al., 2004).

While nanoparticles were usually used for colouring glasses during ancient times, today,

they have brought about a revolution in physics, chemistry, material, biomedical and life

sciences.

One of the areas in which MPs play a promising role is optoelectronics. Most of the

current optoelectronic technologies necessitate the ability to control light phenomena for

achieving various functionalities. Perpetual competition in size reduction of the optoelec-

tronic components together with rapid advancement in nanotechnology have brought a

tremendous amount of attention to the study and design of nanostructured devices capable

of controlling light-matter interaction at the nanoscale (Novotny &Hecht, 2006). Metallic

nanostructures such as MPs are ideally suited to this end due to their ability to enhance

and confine optical fields beyond the classical diffraction limit. Such fascinating optical

properties of the MP stem from the occurrence of non-propagating collective oscillations
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of free electrons on its surface, known as Localized Surface Plasmons (LSPs) when cou-

pled to the electromagnetic field. From theoretical point of view, these LSP modes arise

naturally from the light scattering problem (Figure 1.1) of a small, subwavelength conduc-

tive nanoparticle in an electrostatic field. The curved surface of the nanoparticle exerts

an effective restoring force on the driven conduction electrons, giving rise to Localized

Surface Plasmon Resonances (LSPRs) which lead to field amplification both inside and in

the near-field zone outside the nanostructure (Maier, 2007). The LSPR of the MP, which

usually lies in the frequency range from the infrared to visible region of the electromag-

netic spectrum are highly dependent on the geometric parameters of the MP such as its

size and shape (Figure 1.2 (b)) as the oscillations of the free electrons are confined by the

particle boundaries over finite nanoscale dimensions (Kumar, 2013). Other parameters

that affect the LSPR frequency include the electronic properties of the constituent metal

(Figure 1.3) as well as the dielectric properties of the surrounding medium.

Figure 1.1: Schematic diagram of the scattering problem of a homogeneous metallic
sphere placed into an electrostatic field. Here, a is the radius of the metallic sphere,
Eapplied is the incident electrostatic field which is parallel to the z−axis while ε (ω) and
εm represent the dielectric function of the homogeneous sphere and permitivity of the
surrounding medium, respectively.
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Figure 1.2: (a) Schematic illustration of LSPR of a metallic nanosphere, (b) Dark-field
microscopy image with the corresponding SEM images, and light-scattering spectra of
Au nanocrystals of different sizes and shapes. Note that different sizes and shapes of
the Au nanocrystals yield different spectral position of the peak of the spectra (which
corresponds to LSPR frequency) (Willets & Duyne, 2007; Kuwata et al., 2003).

Figure 1.3: Plot of the absorption spectra showing the variation in the optical properties
of Au-Ag alloy nanoparticle colloids with varying compositions. In the graph inset, the
position of the experimental absorption band (dots) is plotted as a function of composition
and the solid line is the linear fit to the values obtained using Mie theory. The HRTEM
image shows the homogeneous distribution of Au and Ag atoms within the particles
(Liz-Marzán, 2006).
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The large fields and high confinement of the MP due to the presence of the LSPR

(Alvarez-Puebla et al., 2010) enable strong interaction of the MP with other photonic

elements such as quantum emitters (Zhang et al., 2006; Artuso & Bryant, 2008), thus

opening wide horizons for new designs and applications in the novel area of quantum

plasmonics. For this reason, the interaction between plasmonic MP and quantum emitters

such as molecules (Davis et al., 2010) and quantum dots (QDs) (Zhang et al., 2006; Zhang

& Govorov, 2011; Ridolfo et al., 2010; Artuso & Bryant, 2010; Govorov, 2010; Sadeghi,

2009) has been the subject of a tremendous number of studies over the past decade. Many

interesting results from the strong exciton-plasmon coupling (Manjavacas et al., 2011)

have been reported, which include nonlinear Fano effect (Zhang et al., 2006; Zhang &

Govorov, 2011), exciton-induced transparency (Artuso &Bryant, 2010), effects on photon

statistics (Ridolfo et al., 2010), effects on spin coupling in the presence of magnetic fields

(Govorov, 2010), inhibition of optical excitations and enhancement of Rabi oscillations

(Sadeghi, 2009), enhancement of fluorescence emission rate of nanocrystals (Shimizu

et al., 2002), increase in the efficiency of photosynthesis systems (Govorov & Carmeli,

2007), etc.

The importance of this field of research is highlighted by its ground-breaking and

diverse applications in various fields such as in the development of biological markers

(Boyer et al., 2002) and nanosensors (Alivisatos, 2004; Rindzevicius et al., 2005; Govorov

& Carmeli, 2007), ultrasensitive spectroscopy (Li et al., 2010), nanoscale laser cavities

(spaser) (Noginov et al., 2009), surface enhanced Raman scattering (SERS) (Félidj et al.,

2002; Xu et al., 1999; Talley et al., 2005; Theiss et al., 2010), optical filters and sensors

(Genet & Ebbesen, 2007; Maier & Atwater, 2005), subwavelength optical waveguides

(Gantzounis & Stefanou, 2006) as well as optical nanoantennas (Mühlschlegel et al.,

2005; Bharadwaj et al., 2009) that allow control of radiation from single quantum emitters
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(Taminiau et al., 2008) and generation of extreme ultraviolet pulses via High Harmonic

Generation (HHG) (Kim et al., 2008). Also, it has been demonstrated that MP can act as

a nanopulse controller and functional amplifier for QD in the presence of a coherent field

(Sadeghi, 2010). The radiative rate of exciton and the nonradiative energy transfer rate

can also be controlled by coherent exciton-plasmon interaction (Govorov et al., 2006).

The LSPR of MP also plays an important role in the fundamental studies on the control

of emission from semiconductor nanocrystals (Matsuda et al., 2008; Pons et al., 2007;

Govorov et al., 2006; Shimizu et al., 2002). In addition, bottom-up fabrication techniques

of plasmonic nanoparticle clusters are promising towards the realization of low-cost

photonic nanodevices, such as optical nanocircuits (Ozbay, 2006; Engheta, 2007; Chang

et al., 2007) that can merge electronics and photonics at the nanoscale.

Figure 1.4: Schematic diagram of the typical model for studying MP-QS interaction.
Here, EQS,MP represents the field scattered from the QS to MP whereas EMP,QS is the field
scattered from MP to QS. The applied field Eapplied induces a polarization in both MP
and QS which in turn allows dipole-dipole coupling to take place.

So far, all the existing works on plasmonicMP-quantum system (QS) interaction have

not considered quantum systems in double Raman scheme emitting correlated photons

which carry novel quantum properties useful for quantum metrology (Huver et al., 2008)

and ultrafast quantum information processing (Hammerer et al., 2010). This scheme has

remarkable features and has been widely studied in the context of quantum erasers (Scully
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& Drühl, 1982), quantum information (Kuzmich et al., 2003; Chou et al., 2004; van der

Wal et al., 2003; Jiang et al., 2004), quantum entanglement (Moiseev & Ham, 2005; Lia

et al., 2005; Yang & Wu, 2005; André et al., 2002; Yang et al., 2005), nonlinear optics

(Lukin et al., 1999; Lukin et al., 1998) and subwavelength resolution microscopy (Scully,

1994). It has been shown that the photons generated from double Raman scheme exhibit

nonclassical properties such as squeezing (Lukin et al., 1999), violation of the Cauchy-

Schwartz inequality (Balić et al., 2005; Kolchin et al., 2006), and antibunching with Rabi

oscillations in G(2) for the single-atom case (Scully & Ooi, 2004). Various systems in

this scheme have been studied, including single atoms (Patnaik et al., 2005), two atoms

with dipole-dipole interaction (Ooi, 2007b; Ooi et al., 2007), an array of atoms (Ooi &

Lan, 2010), a single-atom two-photon laser (Ooi, 2007a; Benkert et al., 1990) and a one-

dimensional amplifier (Ooi et al., 2007). These systems are relevant for the generation

of nonclassical photons in quantum information (Bennett & Shor, 1998). For example,

double Raman scheme enables efficient mapping of the quantum information (Kozhekin et

al., 2000; Fleischhauer & Lukin, 2002) carried by the input Stokes photon into the atomic

ensembles and reading off the information as an anti-Stokes photon after a controllable

time delay up to 2µs (Jiang et al., 2004), which is much longer than those produced in

cascade scheme and in parametric down-conversion (Wu et al., 1987; Kurtsiefer et al.,

2001).

Motivated by the previous works on MP-QS interaction and double Raman scheme,

in this thesis, the optical properties of a hybrid nanostructure consisting of a spherical MP

in close proximity with a QS in four-level double Raman configuration is theoretically

studied. A semiclassical approach is adopted in which the MP is treated as a classical

spherical dielectric particle while the QS is treated quantum-mechanically using quantum

Langevin formalism with noise operators (Ooi et al., 2007). In such system the laser field
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excites the discreet transitions in the QS as well as the surface plasmons (with continuous

spectral response) of theMP. Though there is no direct coupling between theMP andQS, a

long-range Coulomb interaction exists between them which couples the two particles and

leads to excitation transfer. The coupling between the continuum excitations (plasmons)

of the MP and the discreet excitations (excitons) of the QS will lead to a novel effect

called nonlinear Fano effect (Zhang et al., 2006). Such effect arises from the interference

between the external field and the induced internal field in the hybrid nanostructure and

usually manifests itself in the form of an asymmetric shape of the optical absorption

spectra.

In this thesis the quantum properties of the photons emitted by the above-mentioned

hybrid nanostructure will be explored. The quantum coherences associated with the

Stokes and anti-Stokes transitions will be analytically solved using Heisenberg-Langevin

formalism. Then, the spectra of the Stokes and anti-Stokes fields will be computed and

analyzed. The dependence of the spectra on various parameters such as the laser fields

strengths, interparticle distance, etc. will also be studied. Besides, the angular/directional

dependence of the spectra will be explored. It is hoped that this research will have

implications on the study and design of nanophotonics devices and quantum information

tools that rely on plasmon-exciton interactions.

1.2 Aim and Objectives

In this thesis, the quantum optical properties of a hybrid nanostructure comprising of

a MP in close proximity with a QS in double Raman configuration is studied and solved

using quantum Langevin formalism with noise operators. The objectives of this study are

1. To solve for the coherences associated with the Stokes and anti-Stokes fields emitted

by a QS in double Raman scheme using quantum Langevin formalism with noise
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operators.

2. To study the effects caused by the finite size of a mesoscopic micro-particle on the

properties of the quantum fields.

3. To investigate the effects of MP-QS coupling on the spectra of the Stokes and anti-

Stokes fields emitted by a hybrid nanostructure consisting of a MP located near a

QS in double Raman configuration.

4. To study the dependence of the spectra of Raman photon pairs on various parameters

including the angles of observation.

1.3 Outline

The following are the main topics that will be covered in this thesis:

1. Double Raman scheme: The focus will be on the analytical solution for four-level

double Raman scheme based on quantum Langevin formalism with noise operators.

The aim is to compute the coherences associated with the Stokes and anti-Stokes

transitions which will be useful for deriving the expression of the scattered electric

field.

2. Scattered field formula: The focus will be on the integral solution of the scattered

field formula which is derived from the Maxwell equations taking into account the

optical nonlinear polarization and the finite size of the source particle. Also, the

general expression for the scattered electric field formula which takes into account

the multipole effects and is valid for arbitrary size of the source particle as well as

arbitrary observation distance will be derived. The expression will then be applied

to the study of MP-QS interaction with the aim of deriving a scattered field formula

which is valid for any energy level configuration of the QS.
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3. Quantum spectra: The spectra of the Stokes and anti-Stokes fields emitted from

two systems: (i) A mesoscopic spherical particle and (ii) A hybrid nanostructure

comprising of a MP in close proximity with a QS will be computed and analyzed.

Both mesoscopic particle and QS consists of quantum particles in double Raman

configuration which emit Stokes and anti-Stokes photons. The quantum spectra

obtained will provide insights into the quantum properties of the photons emitted

by both systems. In particular, the variation of the spectra with various parameters

will be studied and explanation for the underlying physical mechanisms responsible

for the variations will be provided.

4. MP-QS interaction: The Coulomb interaction between MP and QS will be analyt-

ically studied by computing the local fields of each particle and the scattered field

from both MP and QS at arbitrary distance. Then, the plasmonic effects caused

by the MP on the QS will be analyzed by interpreting the results of the simulated

Stokes and anti-Stokes spectra.

1.4 Organization of the thesis

This thesis is organized as follow. The first chapter is the introductory chapter which

gives an account on the issues concerned in this study as well as the motivations behind

the research. It also contains the aim and objectives of the study, the outline of the research

approach as well as a summary on the structure of the thesis.

Chapter 2 is concerned with the literature review. This chapter contains the theories

as well as findings from various published works which are relevant to our study of

MP-QS interaction. Specifically, quantum Langevin formalism with noise operators as

well as its application in solving for the QS in four-level double Raman scheme will be

reviewed. Also, in this chapter, the normal- and antinormal-order spectra which is the
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physical quantity that will be employed throughout this thesis to study the properties of

the quantum fields will be defined. This chapter is ended with reviews on the study of

MP-QS interaction in other revelent works based on both semiclassical and fully quantum-

mechanical approach.

The next chapter, Chapter 3, contains the analytical theory of quantum spectra

of Raman photon pairs emitted by a mesoscopic spherical particle. In this chapter, the

analytical solution of the coherences associated with the Stokes and anti-Stokes transitions

is obtained based on the quantum Langevin formalism reviewed in Chapter 2. Then,

analytical derivation of the quantum spectra of the Stokes and anti-Stokes fields emitted

from the mesoscopic spherical particle without the presence of MP will be shown. The

mesoscopic particle in this study contains atoms or molecules in four-level double Raman

configuration.

Chapter 4 covers the main body of this thesis, which is the interaction between MP

andQS in four-level double Raman scheme. The long-range Coulomb interaction between

MP and QS will be analyzed using the local fields of both particles which will be helpful

in the search for the explicit expression of scattered fields at arbitrary point. As in Chapter

3, the Stokes and anti-Stokes spectra are computed and will be simulated and analyzed in

Chapter 6.

This is followed by Chapter 5 which comprises of the derivation of the general

expression of the scattered field formula from a MP-QS hybrid nanostructure similar to

one studied in Chapter 4. The scattered field formula derived includes multipole effects

and is valid for arbitrary size of QS and MP, arbitrary observation distance as well as any

energy-level configuration of the QS.
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The results and discussions of this study are covered in Chapter 6. Here simulation

results of the quantum spectra derived in Chapter 3 and 4, particularly their dependence

on various parameters such as the size of the particle, strengths of the laser fields, etc.

will be shown. This is followed by interpretation of the results based on existing theories

and some well-known physical phenomena.

Finally, this thesis is concluded in Chapter 7. In this chapter, the key findings of this

study will be summarized and their implications discussed. This chapter also includes

suggestions for future work.
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CHAPTER 2: REVIEW OF RELEVANT THEORIES AND STUDIES ON
METALLIC PARTICLE-QUANTUM SYSTEM INTERACTION

In this chapter, some of the theories as well as findings from various published

works which are relevant to our study on metallic nanoparticle-quantum system (MP-QS)

interaction will be reviewed. In the first section of this chapter quantum Langevin formal-

ism with noise operators which is the theoretical tool that will be used for obtaining the

quantum-mechanical solution for the QS in double Raman scheme will be the introduced.

The focus will be on solving a simple problem using Heisenberg-Langevin approach with

the aim of providing readers a simple example of the application of this mathematical

method. In section 2.2, the analytical solution for the four-level double Raman scheme

based on quantum Langevin formalism will be provided. This is followed by section 2.3

which gives the definitions of normal- and antinormal-order spectra that will be employed

throughout this thesis and their connection to the first-order correlation functions. A

review on the theoretical treatment of MP-QS interaction based on semiclassical theory

comes next in section 2.4. This chapter ends with a section on full quantum-mechanical

treatment of the MP-QS interaction based on two approaches, namely the density ma-

trix method and Zubarev’s Green’s function formalism, both of which enable us to fully

account for the quantum aspects of the optical response of our system.

2.1 Quantum Langevin Formalism

In real experiments, the quantum system of interest actually couples to the environ-

ment which normally has more degrees of freedom compared to the system of interest.

This coupling leads to a phenomenon in the system of interest known as damping which

plays an important role in describing, for example, the decay of an atom in an excited

state to a lower state. However, while the dynamics of the system of interest is profoundly

changed by this coupling, in general, it is assumed that the quantum statistical state
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(i.e. density operator) of the environment remains unchanged due to its many degrees of

freedom.

The problem of damping is usually attacked by separating the complete system into

a system of primary interest (termed system) and a system of secondary interest (termed

reservoir) with a huge number of degrees of freedom. Usually, one is interested in the

stochastic dynamics of the system alone. This leads to the need to obtain the equations of

motion associated with only the system after eliminating the reservoir degrees of freedom

by tracing over the reservoir variables. Two different approaches are usually presented to

deal with this problem. In the Schrödinger (or interaction) picture, this is achieved via

the master equation techniques in which the reservoir variables are eliminated by using

the reduced density operator for the system. In the Heisenberg picture, the damping

of the system will be considered using the noise operators method in which the system

dynamics are governed by the Heisenberg-Langevin equations (Scully & Zubairy, 1997;

Yamamoto & Imamoglu, 1999). In this thesis the focus will only be on the Heisenberg-

Langevin approach as it provides a particularly simple method for the calculation of

two-time correlation functions of the atomic coherences operators which are required for

the computation of the quantum fields spectra.

In the subsections that follow insights into the description of damping mechanism

based on Heisenberg-Langevin approach (also known as quantum Langevin formalism

in this thesis) will be obtained by considering the decay of a single-mode field inside

a cavity with lossy mirrors. In this case, the system is the single-mode field whereas

the reservoir consists of a large number of phonon-like modes in the mirrors. The

single-mode field may be considered as a single harmonic oscillator interacting with

many other simple harmonic oscillators (phonon-modes). The first subsection gives the

theoretical treatment of this problem based on quantum Langevin formalism starting from
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the Hamiltonian up to the equations of motion for the operators associated with the system.

This is followed by subsection 2.1.2 where various correlation functions associated with

the noise operators are computed. This is important for this study particularly for the

calculation of the field spectra which is actually the Fourier transform of the first-order

correlation function. Subsection 2.1.3 concerns the Einstein diffusion equation which is

necessary for the computation of diffusion coefficients that appear in the calculation of

correlation functions in subsection 2.1.2.

2.1.1 Simple Treatment of Damping Based on Heisenberg-Langevin Approach

Consider a system which consists of a single-mode field of frequency ν and anni-

hilation operator â (t). The reservoir consists of many oscillators with closely spaced

frequencies νk and annihilation (and creation) operators b̂k (and b̂†k). The total Hamilto-

nian of the field-reservoir system is

Ĥ = Ĥ0 + Ĥ1, (2.1)

where the free Hamiltonian

Ĥ0 = ~νâ†â +
∑

k
~νk b̂†kb̂k (2.2)

consists of the energy of the free field and the reservoir modes and

Ĥ1 = ~
∑

k
gk

(
b̂†kâ + â†b̂k

)
(2.3)
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is the interaction Hamiltonian where the usual rotating wave approximation has been

made. The Heisenberg equations of motion for the operators are

d
dt

â (t) = i
~

[
Ĥ, â (t)

]
= −iνâ (t) − i

∑
k

gkb̂k (t) , (2.4)

d
dt

b̂k (t) = −iνk b̂k (t) − igkâ (t) . (2.5)

Now, the field operator â (t) has to be solved. Firstly, Equation 2.5 is integrated to get

b̂k (t) = b̂k (0) e−iνk t − igk

∫ t

0
dt′â (t′) e−iνk (t−t ′). (2.6)

The first term in Equation 2.6 represents the free evolution of the reservoir modes whereas

the second term represents their interactionwith the system. Eliminating b̂k (t) in Equation

2.4 by substituting Equation 2.6 into Equation 2.4 will lead to

d
dt

â (t) = −iνa (t) −
∑

k
g2

k

∫ t

0
dt′a (t′) e−iνk (t−t ′) + fa (t) , (2.7)

where

fa (t) = −i
∑

k
gkb̂k (0) e−iνk t (2.8)

is the noise operator as it depends on the reservoir operator b̂k (0). The evolution of the

expectation values of the system operators will therefore be affected by the fluctuations in

the reservoir. The presence of all the reservoir frequencies causes the noise operator to

vary rapidly. The fast frequency dependence of â (t) can be removed by transforming to

the slowly varying annihilation operator

ã (t) = â (t) eiνt . (2.9)
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Note that the commutation relation

[
ã (t) , ã† (t)

]
= 1 (2.10)

still holds true. Equation 2.7 now reduces to

d
dt

ã (t) = −
∑

k
g2

k

∫ t

0
dt′ã (t′) e−i(νk−ν)(t ′−t) + F̂ã (t) (2.11)

with

F̂ã (t) = eiνt fa (t) = −i
∑

k
gkb̂k (0) e−i(νk−ν)t . (2.12)

As in the Weisskopf-Wigner approximation (Scully & Zubairy, 1997), by assuming that

the modes of the reservoir are closely spaced in frequency, one can replace the summation∑
k by an integral

∑
k
→ 2

V

(2π)3

∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞

0
k2dk, (2.13)

where V is the quantization volume. Using k = νk
c and the Dirac delta function

∫ ∞

−∞
dνk ei(ω−νk )(t−t ′) = 2πδ (t − t′) , (2.14)

the first term of Equation 2.11 then becomes

∑
k

g2
k

∫ t

0
dt′ã (t′) e−i(νk−ν)(t ′−t) ' 1

2
Cã (t) , (2.15)

where the damping constant

C = 2π [g (ν)]2 D (ν) (2.16)
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with g (ν) as the coupling constant evaluated at k = ν
c and

D (ν) = Vν2

π2c3 (2.17)

as the density of states. Hence, Equation 2.11 can be reduced to the Langevin equation

d
dt

ã (t) = −1
2
Cã + F̂ã (t) , (2.18)

where F̂ã (t) is the noise operator which depends on reservoir variables. Note that the

presence of the noise operator in Equation 2.18 is necessary for the preservation of the

commutation relation in Equation 2.10. If the noise term (F̂ã (t) = 0) is not considered in

Equation 2.18, one will get the solution

ã (t) = ã (0) e−Ct/2. (2.19)

If operator ã (0) satisfies the commutation relation in Equation 2.10, then

[
ã (t) , ã† (t)

]
= e−Ct, (2.20)

which is the violation of the commutation relation. This shows that the noise operators

are necessary to help maintain the commutation relation at all times. Equation 2.18 is

in fact a manifestation of the fluctuation-dissipation theorem (i.e. dissipation is always

accompanied by fluctuations) as it contains a damping term along with a noise term.

2.1.2 Correlation Functions of Noise Operators

It was mentioned earlier that quantum Langevin approach is chosen in this study

because it is convenient for the calculation of the correlation functions. Here in this
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subsection the focus will be on the computation of various correlation functions associated

with the noise operator F̂ã (t). The procedures outlined in this subsection will later be

useful for reference when the field correlation function will be derived in Chapter 3 and

4.

We assume that the reservoir is in thermal equilibrium, so that

〈
b̂k (0)

〉
R =

〈
b̂†k (0)

〉
R
= 0, (2.21)

〈
b̂†k (0) b̂k′ (0)

〉
R
= n̄kδkk′, (2.22)

〈
b̂k′ (0) b̂†k (0)

〉
R
= (n̄k + 1) δkk′, (2.23)

〈
b̂k′ (0) b̂k (0)

〉
R =

〈
b̂†k′ (0) b̂

†
k (0)

〉
R
= 0. (2.24)

Using Equation 2.12 and Equations 2.21-2.24, one can evaluate various correlation func-

tions involving F̂ã (t) as follows. First of all, from Equation 2.21,

〈
F̂ã (t)

〉
R =

〈
F̂†ã (t)

〉
R
= 0. (2.25)

Next, using Equation 2.22, one obtains

〈
F̂†ã (t) F̂ã (t′)

〉
R
=

∑
k

∑
k′

gkgk′
〈
b̂†k (0) b̂k′ (0)

〉
R

exp [i (νk − ν) t − i (νk ′ − ν) t′]

=
∑

k
g2

kn̄k exp [i (νk − ν) (t − t′)]

=

∫ ∞

0
D (νk) [g (νk)]2 n̄ (νk) ei(νk−ν)(t ′−t)dνk, (2.26)

where the usual continuous representation of
∑

k have been applied. Now, the slowly

varying terms D (νk), [g (νk)]2 and n̄ (νk) at νk = ν can be pulled out from the integral
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and the remaining integral can be replaced by a δ−function to arrive at

〈
F̂†ã (t) F̂ã (t′)

〉
R
= Cn̄thδ (t − t′) . (2.27)

In analogy with classical Langevin theory, the diffusion coefficient Dã†ã is defined as

follows 〈
F̂†ã (t) F̂ã (t′)

〉
R
= 2 〈Dã†ã〉R δ (t − t′) . (2.28)

According to Equation 2.27, the diffusion coefficient for ã†ã is given by

2 〈Dã†ã〉R = Cn̄th. (2.29)

Similarly, following the same procedures one can show that

〈
F̂ã (t) F̂†ã (t

′)
〉

R
= C (n̄th + 1) δ (t − t′) (2.30)

and 〈
F̂ã (t) F̂ã (t′)

〉
R =

〈
F̂†ã (t) F̂

†
ã (t
′)
〉

R
= 0, (2.31)

from which one may deduce that

2 〈Dãã†〉R = C (n̄th + 1) , (2.32)

〈Dãã〉R = 〈Dã†ã†〉R = 0. (2.33)

Now the correlation functions
〈
F̂†ã (t) ã (t)

〉
and

〈
ã† (t) F̂ã (t)

〉
shall be determined.

These two correlation functions will be useful for the derivation of equations of motion
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for
〈
ã† (t) ã (t)

〉
R in subsection 2.1.3. Solving Equation 2.18, one gets

ã (t) = ã (0) exp
(
−C

2
t
)
+

∫ t

0
dt′ exp

[
−C

2
(t − t′)

]
F̂ã (t′) . (2.34)

Multiplying F̂†ã (t) from the left and taking the expectation, one obtains

〈
F̂†ã (t) ã (t)

〉
R
=

〈
F̂†ã (t)

〉
R

ã (0) exp
(
−C

2
t
)

+

∫ t

0
dt′ exp

[
−C

2
(t − t′)

] 〈
F̂†ã (t) F̂ã (t′)

〉
. (2.35)

If one assumes ã (0) and F̂ã (t′) to be statistically independent, it follows that from Equa-

tions 2.25 and 2.28, 〈
F̂†ã (t) ã (t)

〉
R
=
C
2

n̄th = 〈Dã†ã〉R . (2.36)

Similarly, one can show that

〈
ã† (t) F̂ã (t)

〉
R =
C
2

n̄th. (2.37)

2.1.3 Einstein Relation

In this subsection, the Einstein relation will be derived from the results obtained in

subsection 2.1.1.and 2.1.2. This relation will be needed later in the evaluation of diffusion

coefficients in Chapter 3 and 4. The equation of motion for the mean of ã (t) and of the

number operator ã† (t) ã (t) will first be derived. One knows from Equations 2.25 and

2.18 that

d
dt
〈ã (t)〉R = −

1
2
C 〈ã (t)〉R , (2.38)
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which shows that the mean value of the system operator goes to zero in time. Meanwhile,

the mean time development of the field number operator is

d
dt

〈
ã† (t) ã (t)

〉
R =

〈
dã† (t)

dt
ã (t)

〉
R
+

〈
ã† (t) dã (t)

dt

〉
R

= −C
〈
ã† (t) ã (t)

〉
R +

〈
F̂†ã (t) ã (t)

〉
R
+

〈
ã† (t) F̂ã (t)

〉
R

= −C
〈
ã† (t) ã (t)

〉
R + Cn̄th, (2.39)

which shows that the steady-state value of the number operator
〈
ã† (t) ã (t)

〉
R is n̄th (times

the identity operator).

Next, one may use Equation 2.29 to write Equation 2.39 as

2 〈Dã†ã〉R =
d
dt

〈
ã† (t) ã (t)

〉
R + C

〈
ã† (t) ã (t)

〉
R . (2.40)

From Equation 2.18 and its conjugate, one gets the relations

1
2
C

〈
ã† (t) ã (t)

〉
R = −

〈
ã† (t)

[
dã (t)

dt
− F̂ã (t)

]〉
R
, (2.41)

1
2
C

〈
ã† (t) ã (t)

〉
R = −

〈[
dã† (t)

dt
− F̂†ã (t)

]
ã (t)

〉
R
. (2.42)

Adding up Equations 2.41 and 2.42 will give the second term on the right-hand side (RHS)

of Equation 2.40. Hence, Equation 2.40 may be written as

2 〈Dã†ã〉R =
d
dt

〈
ã† (t) ã (t)

〉
R −

〈[
dã†

dt
− F̂†ã (t)

]
ã (t)

〉
R

−
〈
ã† (t)

[
dã (t)

dt
− F̂ã (t)

]〉
R
. (2.43)

Equation 2.43 is called the Einstein relation which provides an extremely simple way
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to determine the diffusion coefficient 2 〈Dã†ã〉R. Although in this thesis this relation is

derived from the problem of damped harmonic oscillator, this relation is actually valid

for many general system-reservoir problems. In general, the diffusion coefficient 2DA,B

associated with any two operators A and B can be determined from the relation

2DA,B =

〈
d (AB)

dt
− A

(
dB
dt
− FB

)
−

(
dA
dt
− FA

)
B
〉
. (2.44)

This relation will be revisited again in Appendix C for the determination of normal- and

antinormal-order diffusion coefficients required in the evaluation of the fields spectra.

2.2 Quantum-Mechanical Solution for Four-Level Double Raman Scheme

TheQS considered in our study ofMP-QS interaction in chapter 4 consists of quantum

particles in four-level double Raman configuration as shown in Figure 2.1(a). For this

reason, this section focuses on the analytical solution for the double Raman scheme based

on Heisenberg-Langevin formalism. The results obtained in this section will be revisited

again in Chapter 3 for the evaluation of quantum coherences and fields.

In this scheme, the incident laser field (called "pump") first excites the system from

its ground state |c〉 to |d〉 where a Stokes photon is later generated via a spontaneous

Raman process while the system decays to level |b〉. It is possible to generate another

photon, called the anti-Stokes photon, which is strongly correlated to the Stokes photon

by applying a strong resonant control field which couples level |b〉 to |a〉. The quantum

Stokes and anti-Stokes fields generated by this scheme are sometimes referred to asRaman

photon pairs.

In the Schrödinger picture, the total Hamiltonian describing the four-level double

Raman scheme is given by
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Figure 2.1: (a) Energy level diagram for the four-level double Raman scheme. The QS
interacts with pump Ωp and control Ωc lasers (solid arrows) and emits quantized Stokes
Ês and anti-Stokes Êa fields (wavy arrows) with their respective frequencies given by
νi (i = p, s, c, a). (b) Vibrational energy levels of a molecule as the four energy levels in
double Raman scheme.

Ĥ = Ĥ0 + V̂, (2.45)

where

Ĥ0 =
∑

ς=a,b,c,d

~ως |ς〉 〈ς | +
∑
k,λ

(
â†kλâkλ +

1
2

)
~νkλ (2.46)

is the free Hamiltonian and
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V̂ = −~
∑

k,ς=b,c

(
g

aς
k |a〉 〈ς | + g

dς
k |d〉 〈ς |

)
âk (t) ei(k·r−νkt)

−~
(
Ωp |d〉 〈c| ei(kp ·r−νpt) +Ωc |a〉 〈b| ei(kc ·r−νct)

)
−~

(
gs·Ês |d〉 〈b| ei(ks ·r−νst) + ga·Êa |a〉 〈c| ei(ka ·r−νat)

)
+ adj. (2.47)

is the interaction Hamiltonian after the usual rotating wave approximation has been made.

The first term on the RHS of Equation 2.46 is the atomic Hamiltonian of the QS (system)

whereas the second term represents the Hamiltonian due to the environment (reservoir)

which is treated as a large number of harmonic oscillators as in section 2.1. Here,

gs =
1
~
®℘bd, ga =

1
~
®℘ca, g

aς = 1
~ ℘aς and gdς = 1

~ ℘dς are the coupling strengths, Ωp and

Ωc are respectively the Rabi frequency of the pump and control laser fields, Ês and Êa are

respectively the quantum Stokes and anti-Stokes fields operators and Ek =
√
~νk

2ε0V where

νk andV are the mode frequency and quantization volume, respectively. Here, k and λ are

respectively the wavevector and polarization associated with the harmonic oscillators of

the reservoir in the Langevin formalism. νi (i, j = p, s, c, a) is the carrier frequency of the

pump, Stokes, control and anti-Stokes field, respectively whereas ki is the corresponding

wavevector.

Instead of studying the time-evolution of the density matrix elements, here the

equations of motion for the atomic operators σ̂αβ (α, β = a, b, c, d) in the Heisenberg

representation will be derived. In the Heisenberg representation, it is the operators which

represent the observables that carry the time-dependence instead of the state vectors. The

atomic operators already contain an implicit trace over the reservoir variables and the

inverse is also true (Berman & Malinovsky, 2011). Hence, Heisenberg representation

can greatly simplify calculations especially when one is interested in the atomic variables
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only. This also justifies the choice of Heisenberg-Langevin formalism in the evaluation

of the atomic populations and coherences for double Raman scheme in Chapter 3.

The equations of motion are derived from the Heisenberg equation given by

dÔ
dt
=

i
~

[
Ĥ, Ô

]
, (2.48)

where in this case the operator is Ô = σ̂αβ (α, β = a, b, c, d), since one is only interested in

solving for the populations and coherences of the QS though the same is also applicable to

the field (reservoir) operators â† and â. One may add the phenomenological decay terms

(
dσ̂αβ

dt

)
decay

= −γαβσ̂αβ (2.49)

to each of the 16 equations describing the time-evolution of the atomic operators σ̂αβ

to account for the possible radiative and non-radiative relaxation processes and de-

fine the slowly-varying envelop operators as p̂ab = σ̂abe−iνct, p̂ac = σ̂ace−iνat, p̂ad =

σ̂ade−iνcst, p̂bc = σ̂bce−iνact, p̂bd = σ̂bdeiνst and p̂cd = σ̂cdeiνpt . Here, νi j = νi − ν j and

νi (i, j = p, s, c, a) denotes the carrier frequency of the pump, Stokes, control and anti-

Stokes fields, respectively. The results are 16 Langevin equations with 10 of them shown

below

d
dt

p̂aa = i
(
Ωc p̂ab −Ω∗c p̂ba

)
+ i

(
ga·Ẽa p̂ac − g∗a·Ẽ

†
a p̂ca

)
−Taa p̂aa + Γabn̄abp̂bb + Γacn̄ac p̂cc + F̂aa (t) , (2.50)

d
dt

p̂ab = −Tabp̂ab − ig∗a·Ẽ
†
a p̂cb + ig∗s ·Ẽ

†
s p̂ad

+iΩ∗c (p̂aa − p̂bb) + e−iνct F̂ab (t) , (2.51)

25

Univ
ers

ity
 of

 M
ala

ya



d
dt

p̂ac = −Tac p̂ac − iΩ∗c p̂bc + ig∗a·Ẽ
†
a (p̂aa − p̂cc)

+iΩ∗p p̂ad + F̂ac (t) e−iνat, (2.52)

d
dt

p̂ad = −Tad p̂ad − ig∗a·Ẽ
†
a p̂cd + igs·Ẽs p̂ab

−iΩ∗c p̂bd + iΩp p̂ac + F̂ad (t) e−iνcst, (2.53)

d
dt

p̂bb = −i
(
Ωc p̂ab −Ω∗c p̂ba

)
− i

(
gs·Ẽs p̂db − g∗s ·Ẽ

†
s p̂bd

)
−Tbb p̂bb + Γab (n̄ab + 1) p̂aa + Γdb (n̄db + 1) p̂dd + F̂bb (t) , (2.54)

d
dt

p̂bc = −Tbc p̂bc − igs·Ẽs p̂dc + ig∗a·Ẽ
†
a p̂ba

−iΩc p̂ac + iΩ∗p p̂bd + e−iνact F̂bc (t) , (2.55)

d
dt

p̂bd = −Tbd p̂bd − igs·Ẽs (p̂dd − p̂bb)

−iΩc p̂ad + iΩp p̂bc + eiνst F̂bd (t) , (2.56)

d
dt

p̂cc = −i
(
Ωp p̂dc −Ω∗p p̂cd

)
− i

(
ga·Ẽa p̂ac − g∗a·Ẽ

†
a p̂ca

)
−Tcc p̂cc + Γac (n̄ac + 1) p̂aa + Γdc (n̄dc + 1) p̂dd + F̂cc (t) , (2.57)

d
dt

p̂cd = −Tcd p̂cd − iga·Ẽa p̂ad + igs·Ẽs p̂cb

−iΩp (p̂dd − p̂cc) + eiνpt F̂cd (t) , (2.58)
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d
dt

p̂dd = i
(
Ωp p̂dc −Ω∗p p̂cd

)
+ i

(
gs·Ẽs p̂db − g∗s ·Ẽ

†
s p̂bd

)
−Tdd p̂dd + Γdbn̄dbp̂bb + Γdcn̄dc p̂cc + F̂dd (t) , (2.59)

and the remaining 6 equations can be obtained via the relation p̂†αβ = p̂βα. The com-

plex decoherences Tαβ (α, β = a, b, c, d) in Equations 2.50-2.59 are given in Appendix

F whereas Γαβ denotes the spontaneous emission rate. The explicit form of the noise

operators are

F̂aa (t) = i
(
gab

k σ̂ab + g
ac
k σ̂ac

)
âk (t) ei(k·r−νkt) + adj., (2.60)

F̂ab (t) = igba
k (σ̂aa − σ̂bb) â†k (t) e

−i(k·rj−νkt)

+i
(
gbd

k σ̂ad − gca
k σ̂cb

)
â†k (t) e

−i(k·r−νkt), (2.61)

F̂ac (t) = i
(
gcd

k σ̂ad − gba
k σ̂bc

)
â†k (t) e

−i(k·r−νkt)

+igca
k (σ̂aa − σ̂cc) â†k (t) e

−i(k·r−νkt), (2.62)

F̂ad (t) = −i
(
gba

k σ̂bd + g
ca
k σ̂cd

)
â†k (t) e

−i(k·r−νkt)

+i
(
gdb

k σ̂ab + g
dc
k σ̂ac

)
âk (t) ei(k·r−νkt), (2.63)

F̂bb = −i
(
gab

k σ̂ab + g
db
k σ̂db

)
âk (t) ei(k·r−νkt) + adj., (2.64)

F̂bc (t) = −i
(
gab

k σ̂ac + g
db
k σ̂dc

)
âk (t) ei(k·r−νkt)

+i
(
gca

k σ̂ba + g
cd
k σ̂bd

)
â†k (t) e

−i(k·r−νkt), (2.65)
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F̂bd (t) = i
(
gdc

k σ̂bc − gab
k σ̂ad

)
âk (t) ei(k·r−νkt)

−igdb
k (σ̂dd − σ̂bb) âk (t) ei(k·r−νkt), (2.66)

F̂cc (t) = i
(
gca

k σ̂ca + g
cd
k σ̂cd

)
â†k (t) e

−i(k·r−νkt) + adj., (2.67)

F̂cd (t) = −i
(
gac

k σ̂ad + g
dc
k σ̂dd

)
âk (t) ei(k·r−νkt)

+i
(
gdb

k σ̂cb + g
dc
k σ̂dc

)
âk (t) ei(k·r−νkt), (2.68)

F̂dd (t) = −i
(
gbd

k σ̂bd + g
cd
k σ̂cd

)
â†k (t) e

−i(k·r−νkt) + adj., (2.69)

while the remaining 6 noise operators can be derived from the relation F̂†αβ = F̂βα.

Equations 2.50-2.59 will be revisited again in Chapter 3 where the coherences p̂bd

and p̂ac associated with the Stokes and anti-Stokes transitions, respectively will be solved

analytically. In general, seeking for the analytical solution to a set of Langevin equations

is extremely challenging, if not impossible due to the highly nonlinear nature of the

equations. Approximations are usually needed to arrive at the final analytical solution of

the atomic operators and this will be discussed in Chapter 3.

2.3 Quantum Spectra and First-Order Correlation Function

This section is concerned with the definition of quantum spectra and their relation to

the first-order correlation function. A characteristic of the light fields of utmost interest

has traditionally been its spectrum. Quantum spectra carry useful information on the

quantum properties of the scattered fields which could provide insights into the optical

properties of the source. For this reason, throughout this thesis, the MP-QS interaction

will be studied by computing and analyzing the quantum spectra of the fields emitted from

the MP-QS system. Here, clarification on the definitions of normal- and antinormal-order
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spectra that will be applied in our study will be provided.

One may start from the definition of the Fourier transform of the electric field

polarized in the q−direction

Eq (ω) =
1
√

2π

∫ ∞

−∞
Eq (t) eiωt dt, (2.70)

E†q (−ω) =
1
√

2π

∫ ∞

−∞
E†q (t) e−iωt dt, (2.71)

where Eq (t) and E†q (t) are scalar. In classical electrodynamics, the power spectrum in

the q−direction is proportional to the absolute square of the q−polarized electric field in

frequency domain (Puri, 2001)

Sq (ω) =
��Eq (ω)

��2 = E∗q (−ω) Eq (ω)

=
1

2π

∫ ∞

−∞
E∗q (t) e−iωt dt

∫ ∞

−∞
Eq (t′) eiωt ′dt′

=
1

2π

∫ ∞

−∞
eiω(t ′−t)

∫ ∞

−∞
E∗q (t) Eq (t′) dtdt′. (2.72)

By defining τ = t′ − t, one gets

S (ω) = 1
2π

∫ ∞

−∞
eiωτCq (τ) dτ, (2.73)

where

Cq (τ) =
∫ ∞

−∞
E∗q (t) Eq (t + τ) dt (2.74)

is the first-order (field-field) correlation function for the q−polarized electric field. Hence,

the power spectrum is actually the Fourier transform of the first-order correlation function.

However, since the fields emitted by our MP-QS system are quantum fields, the

power spectrum defined above cannot be applied to our study. There is a need to find the
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quantum-mechanical version of the power spectrum. One may do so by first representing

the q−polarized electric field as a quantum-mechanical operator Êq (t). According to the

Wiener-Khintchine theorem, the power spectrum Sq (ω) in the q−direction is related to

the two-time correlation function of the q−polarized electric field Êq (t) by (Scully &

Zubairy, 1997)

Sq (ω) =
1

2π
lim

T→∞

1
T

∫ T

0
dt

∫ T

0
dt′

〈
Ê†q (t) Êq (t′)

〉
e−iω(t−t ′), (2.75)

By assuming that the fields are statistically stationary, i.e. the field correlation function〈
Ê†q (t) Êq (t′)

〉
is independent of the origin of time and depends only on the time difference

τ = t − t′., Equation 2.75 will become

Sq (ω) =
1

2π
lim

T→∞

1
T

∫ T

0
dt

(∫ t

0
dt′ +

∫ T

t
dt′

) 〈
Ê†q (t) Êq (t′)

〉
e−iω(t−t ′)

=
1

2π
lim

T→∞

1
T

∫ T

0
dt

[∫ t

0

〈
Ê†q (τ) Êq (0)

〉
e−iωτdτ +

∫ T−t

t

〈
Ê†q (0) Êq (τ)

〉
eiωτdτ

]
,

(2.76)

If the field operators are correlated for only a short period of time, one may extend the

upper limit of the τ−integration to infinity without bringing significant change. Using the

relation
〈
Ê†q (τ) Êq (0)

〉
=

〈
Ê†q (0) Êq (τ)

〉∗
, one arrives at

Sq (ω) =
1
π

Re
[∫ ∞

0
eiωτ 〈

Ê†q (0) Êq (τ)
〉

dτ
]
. (2.77)

The normal- and antinormal-order spectra in the q−direction may be defined as

Sn
q (ω) =

〈
Ê†q (−ω) Êq (ω)

〉
=

1
π

Re
[∫ ∞

0

〈
Ê†q (0) Êq (τ)

〉
dτ

]
, (2.78)
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San
q (ω) =

〈
Êq (ω) Ê†q (−ω)

〉
=

1
π

Re
[∫ ∞

0

〈
Êq (τ) Ê†q (0)

〉
dτ

]
, (2.79)

respectively. For unpolarized detection in the Cartesian coordinate, one may compute the

spectra due to all q−components (q = x, y, z) as follows

Sn (ω) =
∑

q=x,y,z

〈
Ê†q (−ω) Êq (ω)

〉
=

〈
Ê† (−ω) · Ê (ω)

〉
, (2.80)

San (ω) =
∑

q=x,y,z

〈
Êq (ω) Ê†q (−ω)

〉
=

〈
Ê (ω) · Ê† (−ω)

〉
. (2.81)

Normal- and antinormal-order correlations can be understood as follows. Normal-

order correlation functions are used to describe photodetection experiments based on the

photoelectric effect which detect photons by absorbing them. Due to the ubiquity of this

photodetection technique, normal-order correlation functions are more frequently used

(Glauber, 1963). On the other hand, antinormal-order correlation functions describe pho-

todetection using quantum counter introduced byMandel (Mandel, 1966) which functions

by stimulated emission rather than by absorption of photons. In this case, it is the cre-

ation operator instead of the annihilation operator that plays the central role. Comparison

between the two distinct correlations is interesting in the photodetection theory.

In Chapter 3 and 4, the spectra of the quantum fields will be computed based on

Equations 2.80 and 2.81.

2.4 Metallic Nanoparticle-Quantum System Interaction: Semiclassical Treatment

In this section, a brief review on the theoretical treatment of the MP-QS interaction

based on previousworks (Zhang et al., 2006; Artuso&Bryant, 2008)will be provided. The

problem of MP-QS interaction has been theoretically studied by many research groups,

with most of them focusing on the changes in the absorption spectrum of the hybrid

nanostructure induced by the plasmonic effects of the MP. In most of the cases, the QS is
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modelled as a spherical semiconductor quantum dot (SQD) with only two energy levels

(ground and excited states) whereas the MP is treated as a spherical dielectric particle. A

semiclassical approach is usually employedwhere theQS is treated quantum-mechanically

via density matrix formalism while the metallic nanoparticle (MP) is described using

classical electrodynamics and quasistatic approach.

The basic excitations in the MP are the surface plasmons with a continuous spectrum

whereas the excitations in SQD are the discreet interband excitons. Although there is no

direct tunneling between the MP and the SQD, a long-range Coulomb interaction couples

the excitons and plasmons, leading to the formation of hybrid excitons and Förster energy

transfer. Such effects of coupling between the excitons and plasmons become particularly

strong near resonance when the exciton energy lies in the vicinity of the plasmon peak. In

the final part of this section the reader will see that the coupling between the continuum

excitations (plasmon) and discreet excitations also leads to a novel effect called nonlinear

Fano effect which manifests itself in the form of asymmetrical shape of the absorption

spectrum.

While the theoretical treatment given below was taken from a previous work (Zhang

et al., 2006) which focuses on nonlinear Fano effect, the formalism used can be employed

to study other aspects of MP-QS interaction.

2.4.1 Analytical Solution of MP-SQD Interaction

The system considered here consists of a hybrid molecule (Figure 2.2) which is made

of a spherical MP of radius a and a spherical SQD with radius r in the presence of a

polarized external field E = E0 cos (ωt). The center-to-center distance between MNP

and SQD is denoted as R and is aligned along the z−axis. Since the size of the hybrid

molecule is much smaller (i.e. tens of nanometers) than the wavelength of the incident

light, we can neglect retardation effects. Also, due to the symmetry of the spherical
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SQD, it has three bright excitons with dipoles parallel to the direction α, where α can

be x, y,and z. Although the dark exciton states are not excited in the dipole limit, they

do provide a nonradiative decay channel for the bright excitons which contribute to the

exciton lifetime. Given the symmetry of the molecule and the linearly polarized field one

obtains the Hamiltonian

ĤSQD =
∑
i=1,2

εic
†
i ci − µESQD

(
c†1c2 + c†2c1

)
, (2.82)

where c†1 and c†2 are the creation operators for the vacuum ground state and α-exciton

state, respectively, µ is the interband dipole matrix element, and ESQD is the total field

(local field) felt by the SQD which is given by

ESQD = E +
sαPMP

εe f f 1R3 , (2.83)

with εe f f 1 =
2ε0+εs

3ε0
, ε0 and εs are the dielectric constants of the background and SQD,

respectively, E is the external field, sα = 2 (−1) for electric field polarization α = z (x, y)

and PMP is the polarization resulted from the charges induced on the surface of the MP.

Equation 2.83 shows that the total field felt by the SQD is a combination of the external

field and the field scattered from the MP. By the same reasoning, the field felt by the MP

is due to the external field and the field scattered from the SQD. Thus, one can write the

polarization of the MP as

PMP = γa3
(
E +

sαPSQD

εe f f 2R3

)
, (2.84)

where the relation PMP = γa3EMP has been used, with γ = εm(ω)−ε0
2ε0+εm(ω), εe f f 2 =

2ε0+εs
3 and

εm (ω) as the dielectric function of the MP from the Drude model. The polarization of
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the SQD is expressed as

PSQD = µ (ρ21 + ρ12) , (2.85)

where ρ21 and ρ12 are the transition matrix elements that can be solved from the master

equation

d ρ̂
dt
=

i
~

[
ρ̂, ĤSQD

]
− Γ ρ̂. (2.86)

The diagonal and off-diagonal relaxation matrix elements are given by

Γ12 = Γ21 =
1

T20
, (2.87)

Γ22 = −Γ11 =
1
τ0
, (2.88)

where τ0 includes the nonradiative decay via the dark states. To solve the coupled equations

in a self-consistent manner, the high frequency part is first separated by writing ρ12 and

ρ21 as ρ12 = ρ̄12eiωt and ρ21 = ρ̄21e−iωt , respectively. After applying the rotating wave

approximation, the solution for the steady-state coherence is obtained as

ρ̄21 = A + iB, (2.89)

where A and B form a system of nonlinear equations

A = −(ΩI + KΩR)T2

1 + K2 ∆, (2.90)

B =
(ΩR − KΩI)T2

1 + K2 ∆, (2.91)

1 − ∆
τ0
= 4ΩRB − 4ΩI A − 4GI

(
A2 + B2

)
, (2.92)
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with

∆ = ρ11 − ρ22, (2.93)

K = [(ω − ω0) + GR∆]T2, (2.94)

ω0 =
ε2 − ε1
~

, (2.95)

1
T2
=

1
T20
+ GI, (2.96)

G =
s2

aγa3µ2

~εe f f 1εe f f 2R6 , (2.97)

GR = Re [G] , (2.98)

GI = Im [G] , (2.99)

Ωe f f = Ω0

[
1 + sαγ

( a
R

)3
]
, (2.100)

Ω0 =
µE0

2~εe f f 1
, (2.101)

ΩR = Re
[
Ωe f f

]
, (2.102)

and

ΩI = Im
[
Ωe f f

]
. (2.103)

If one assumes the external field to be weak (Ω0 <<
1
T2
, 1
τ ), steady state solution in

the following form will result

ρ̄12 = −
Ωe f f

(ω − ω0 + GR) − i (Γ12 + GI)
. (2.104)

The interpretation of Equation 2.104 is as follows. The interaction between the plasmon

and the exciton leads to the formation of hybrid exciton with shifted exciton frequency
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and decreased lifetime determined by GR and GI , respectively. The long-range Coulomb

coupling leads to incoherent energy transfer at the rate GI via Förster mechanism while

the exciton shift GR shows the partially coherent nature of the interaction.

2.4.2 Energy Absorption Spectra

In this subsection, the effect of plasmon-exciton interaction on the energy absorption

rate of the hybrid nanostructure in both the weak and strong field regime will be studied.

The total energy absorption rate of the hybrid nanostructure is given by

Q = QMP +QSQD, (2.105)

where

QMP =

〈∫
jEdV

〉
, (2.106)

QSQD =
~ω0ρ22
τ0

(2.107)

are the absorption rate of the MP and SQD, respectively. Here, j is the current, 〈...〉 is the

average over time and ω0 is the bare exciton frequency. After rigorous calculations, the

expression of total energy absorption becomes

Q = CΩ2
0

[
(K − q)2

1 + K2 + α
1

1 + K2

]
+ β

~ω0

1 + K2 , (2.108)

where

q =
sαµ2ΩRT2∆

~εe f f 1εe f f 2R3Ω0
, (2.109)

C =
1
6

(
2~
µ

)2
a3ω

���� 3ε0
2ε0 + εm

����2 Im (εm) (2.110)
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as well as K and Ω0 are given in Equations 2.94 and 2.101, respectively. For the weak

field regime, α =
(

1
1+GIT20

)2
and β =

��4Ωe f f
��2 T2

2
T20

while for the strong field regime, α = 1

and β = 1
2τ0
. In the discussion that follows, gold (Au) MP with bulk dielectric constant

ε (ω) taken from Palik (1985) will be used as our example. The values for the rest of the

parameters are provided in Table 2.1.

Table 2.1: Numerical values of various parameters used in Figures 2.2-2.4.

Parameters Numerical Values
a 7.5 mm
ε0 1.0
εs 6.0
ω0 2.5 eV
τ0 0.8 ns
T20 0.3 ns
r0 0.65 nm

Figure 2.2: Absorption spectra in the weak field regime with light intensity I = 1 W/cm2

for different interparticle distances. Here, ω denotes the frequency of the incident laser
light whereas ~ω0 is the bare exciton energy. Left inset: The model of the system under
study. Right inset: Quantum transitions in the system; the vertical (horizontal) arrows
represent light (Coulomb)-induced transitions (Zhang et al., 2006).

Figure 2.2 shows the spectrum of the total energy absorption rate in the weak field

regime where the intensity of the incident light is I0 = 1 W/cm2. Red shifting and
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broadening of the energy absorption peak with decreasing interparticle distance R can be

clearly observed from the figure. This behavior is due to the formation of hybrid exciton

with shifted frequency and shortened lifetime at relatively small R. The results in Figure

2.2 predicts the frequency shift to be about 40 µeV for small separations of R ' 15 nm.

The energy absorption spectrum in the strong field regime shown in Figure 2.3

exhibits a different behavior where asymmetrical Fano shape and substantial suppression

of energy absorption at higher frequencies are observed. The asymmetric shape of the

spectrum which vanishes at large R originates from the Coulomb coupling between the

MP and the SQD. This asymmetry is interesting because in the usual linear Fano effect,

the interference effect causes the absorption rate to become zero for certain range of

frequencies (Fano, 1961) yet such is not the case in Figure 2.3 where nonvanishing energy

absorption at any light frequency is found. This is actually due to the nonlinear nature of

the interference effect (Finkelstein-Shapiro, 2016). To understand this, one has to examine

Equations 2.83 and 2.84 where it can be deduced that the effective field applied to SQD

and MP is the superposition of the external and the induced internal field. The nonlinear

interference of the external and induced field as represented by the nonlinear coupled

equations in Equations 2.90-2.92 gives rise to the asymmetric Fano shape. Note that in

Figure 2.3 one can again observe red shift in the resonant frequency as R decreases.

To explain why symmetric shape is observed for the weak field regime in Figure 2.2

but nonlinear Fano shape is observed for the strong field regime in Figure 2.3, one has

to first look at the analytical form of the total absorption rate in Equation 2.108. In the

weak field regime
(
Ω0 <<

1
T2
, 1
τ

)
, Q has the Fano function form in the limit T20 → ∞.

For a finite T20, the finite broadening of the exciton peak destroys the linear Fano effect,

giving rise to the symmetric peak (Figure 2.2). When the SQD is driven by strong field(
Ω0 >>

1
T2
, 1
τ

)
, the absorption peak becomes strongly suppressed as in an atom (Yariv,
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Figure 2.3: Absorption spectra in the strong field regime with light intensity I = 103

W/cm2 for different interparticle distances. Inset: Absorption spectra for R = 15 nm in a
wider frequency regime. Note that the exciton feature is within the plasmon peak (Zhang
et al., 2006).

1989). As for the MP, it is assumed that the plasmon is not strongly excited due to

the short lifetime of the plasmon (of order 10 fs). In general, the ac dipole moments

of the MP and SQD increase simultaneously with the increase in the intensity. When

this happens, the interference between the two channels of plasmon excitation in the MP

(which corresponds to the first and second field terms in Equation 2.84) increases and

thus greatly enhances the peak asymmetry even up to the point where the minimum of the

absorption curve becomes comparable to peak height (Figure 2.3).

Finally, it is shown in Figure 2.4 the polarization dependence of the energy absorption

spectrum. It is observed that the Fano absorption intensity has the opposite shape for the

electric field polarization along the z− and x (y) −directions. This is predictable since

sα (α = x, y, z) in Equations 2.83 and 2.84 changes sign depending on the polarizations

(z yields positive sign while x, y give negative sign), thus dictating the enhancement or

suppression of the effective field.
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Figure 2.4: Absorption spectra in the strong field regime showing dependence on the
polarization of the incident laser field (Zhang et al., 2006).

In short, the optical properties of a hybrid nanostructure composed of a MP and

a SQD is studied from the energy absorption spectrum. The analytical theory predicts

several interesting effects caused by the plasmon-exciton interaction such as exciton energy

shift, Förster energy transfer and nonlinear interference effect. Nonlinear Fano absorption

shape is observed in the strong field regime which has striking differences to the usual

Fano effect. A point to note here is that the analytical theory developed here is based

on semiclassical approach where the two-level SQD is treated quantum-mechanically

via density matrix formalism while the MP is treated using classical electrodynamics.

However, there are also cases where fully quantum-mechanical approach is necessary in

the study of MP-SQD interaction. This approach will be reviewed in the next section.

2.5 Metallic Nanoparticle-QuantumSystem Interaction: Full QuantumTreatment

The analytical theory on MP-SQD interaction reviewed in section 2.4 was based on

semiclassical treatment. Since the Fano effect in quantum systems is a consequence of
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quantum interference, a full quantum theory is necessary for a reliable description of the

nonlinear Fano effect. Here in this section, the full quantum treatment of the problem of

MP-SQD interaction where both the exciton and plasmon are treated on equal footing will

be reviewed. It will later be shown that the absorption spectra obtained from semiclassical

and quantum theories exhibits striking differences in the strong nonlinear regime. Two

quantum approaches will be presented, one based on densitymatrix formalism and another

on Zubarev’s Green function approach (Manjavacas et al., 2011). The full quantum theory

reviewed here can be applied to other systems where quantum nature is important, for

example, systems with discreet spectrum showing confined Fano effect.

2.5.1 Density Matrix Formalism

Themodel in this study is the same as the one highlighted in 2.4.1 (Figure 2.5), except

that the plasmon is now treated quantum-mechanically. One can see from Figure 2.5(b)

that both exciton and plasmon are assumed to share a common ground state |0〉. The

excited state |e〉 of the exciton is coupled to |0〉 through a dipole transition with moment

µ. The plasmon, on the other hand, has a large number of excited states denoted by | j〉

which are coupled to the ground state via dipole moment µ j . The total Hamiltonian of

the hybrid nanostructure is given by

H = H0 + Hint, (2.111)

where

H0 = ε0c†0c0 + εec†e ce −
Eµ
εe f f 1

(
c†0ce + c†e c0

)
+

∑
j

ε jc
†
j c j − E

∑
j

µ j

(
c†0c j + c†j c0

)
, (2.112)
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Hint =
∑

j

(
Hjec†j ce + He jc†e c j

)
, (2.113)

and c0 is the annihilation operator for the common ground state, ce
(
c j

)
is the annihilation

operator for the excited state of the exciton (plasmon), µ
(
µ j

)
is the dipolemoment between

the ground state and the exciton-excited state (plasmon-excited state), εe f f 1 =
2ε0+εs

3ε0
with

ε0 and εs as the dielectric constants of the background and SQD, respectively and He j

is the interaction amplitude between the exciton and plasmon. Note that the effective

dielectric constant of the MP has been absorbed into µ j .

Figure 2.5: (a) The model of the hybrid nanostructure under study and (b) Energy level
diagram of the hybrid system.

The dynamics of the system is governed by master equation of the form

dρ
dt
= − i
~
[H, ρ] − 1

2
{Γ, ρ} , (2.114)

where the second term on the RHS describes possible dissipation effects. Applying the

rotating wave approximation, one will arrive at the coupled equations

d ρ̄ee

dt
= iΩ1 (ρ̄0e − ρ̄e0) +

i
~

∑
j

(
Hje ρ̄e j − He j ρ̄ je

)
− Γe ρ̄ee, (2.115)

d ρ̄0e

dt
= i (ω0 − ω) ρ̄0e + iΩ1 (ρ̄ee − ρ̄00) +

i
~

∑
j

Hje ρ̄0 j + i
∑

j

Ω j ρ̄ je − Γ0e ρ̄0e, (2.116)
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d ρ̄e j

dt
= i

(
ω j − ω0

)
ρ̄e j − iΩ j ρ̄e0 +

i
~

∑
j

He j ρ̄ee −
i
~

Hek ρ̄k j + iΩ1 ρ̄0 j − Γe j ρ̄e j, (2.117)

d ρ̄0 j

dt
= i

(
ω j − ω

)
ρ̄0 j + i

∑
k

Ωk ρk j − iΩ j ρ̄00 +
i
~

He j ρ̄0e + iΩ1 ρ̄e j − Γ0 j ρ̄0 j, (2.118)

d ρ̄ j j

dt
= iΩ j

(
ρ̄0 j − ρ̄ j0

)
+

i
~

(
He j ρ̄ je − Hje ρ̄e j

)
− Γj ρ̄ j j . (2.119)

Here the slow variables are defined as ρee = ρ̄ee, ρ0e = ρ̄0eeiωt, ρ0 j = ρ̄0 jeiωt, ρe j = ρ̄e j

and ρk j = ρ̄k j . The frequency ω j =
εj−ε0
~ and the Rabi frequencies are Ω1 =

µE0
2~εe f f 1

and

Ω j =
µjE0
2~ . Here, steady-state solution is considered for the case with large dissipation in

MP such that Γe j ≈
Γe+Γj

2 ≈ Γj2 and Γ0 j ≈
Γj

2 , as well as for the near resonant regime, i.e.

ω ≈ ω0,

γρee = −iΩe f f ρ̄e0 + H.c., (2.120)

(ω0 − ω + γ0e) ρ̄0e = Ωe f f∆, (2.121)

where ∆ = ρ00 − ρee,Ωe f f = Ω1 −
∑

j
ΩjHje

~ω′j
is the normalized field felt by the SQD with

ΩR = Re
(
Ωe f f

)
,ΩI = Im

(
Ωe f f

)
, ω′j = ω j − ω + iΓ0 j,

γ0e =
∑

j

[
Ω2

j

ω′∗j
−

��He j
��2

~2ω′j
+ 4 Im

(
1
~ω′j

)
HjeΩ jΩ1

γ

]
+ iΓ0e, (2.122)

and

γ = Γe +
∑

j

2
��He j

��2 Γe j

~2
[ (
ω j − ω0

)2
+ Γ2

e j

] . (2.123)

Hence, the steady-state solution for ρee and ρ̄0e is obtained as

ρee =
Y

��Ωe f f
��2

K2 + Γ̃2
0e + 2Y

��Ωe f f
��2 , (2.124)

ρ̄0e =

(
KΩR + Γ̃0eΩI

)
+ i

(
KΩI − Γ̃0eΩR

)
K2 + Γ̃2

0e + 2Y
��Ωe f f

��2 , (2.125)
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where K = ω0 − ω + δ, δ = Re (γ0e) , Γ̃0e = Im (γ0e) and Y = 2Γ̃0e
γ . Due to the fast

dissipation of the MP, it is assumed that ρ00+ ρee ≈ 1. Just as in section 2.4, the MP-SQD

interaction will be studied from the absorption spectra. After some calculations, the total

energy absorption of the hybrid nanostructure is found to be

Qtot = QMP +QSQD, (2.126)

where

QSQD = Γeρee~ω0, (2.127)

QMP =
∑

j

Γj ρ j j~ω j =
∑

j

2Γ0 j µ
2
j~ω j(

ω j − ω0
)2
+ Γ2

0 j

E2
0

(2~)2
F (K) , (2.128)

with

F (K) =
(K − βR)2 +

(
Γ̃0e − βI

)2
+

[
β2 (Y − 1) + Y

] ��Ωe f f
��2

K2 + Γ̃2
0e + 2Y

��Ωe f f
��2 . (2.129)

Here, βR = βΩR, βI = βΩI and β =
Hej

~Ωj
. Alternatively, one may write Equation 2.129 as

F =
|ε + q |2

1 + ε2 =
(ε + qR)2

1 + ε2 +
q2

I

1 + ε2 , (2.130)

where

ε =
ω − ω0 − δ√
Γ̃2

0e + 2Y
��Ωe f f

��2 , (2.131)

q = qR + iqI, (2.132)

qR =
He jΩR

~Ω j

1√
Γ̃2

0e + 2Y
��Ωe f f

��2 , (2.133)

and

qI =

√√√(
Γ̃0e − βI

)2
+

[
β2 (Y − 1) + Y

] ��Ωe f f
��2

Γ̃2
0e + 2Y

��Ωe f f
��2 . (2.134)
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The absorption rate of the entire hybrid nanostructure will be dominated by the absorption

of MP under two conditions: strong laser field and short interparticle distance. This is

due to the saturation effect of SQD (for strong laser field) and/or the fast dissipation of

MP (for short interparticle distance). Due to the huge value of Γ0 j , the absorption line

shape is largely determined by F, the Fano function.

A comparison is made in Figure 2.6 between the total energy absorption rate obtained

from semiclassical theory and quantum theory. At the same time, the dependence of the

absorption rate on the dipole moment, µ = er0 of the SQD as well as the laser intensity is

also shown in the figure. The numerical values of all the related parameters are given in

Table 2.2. It can be clearly observed from Figure 2.6 that there is a good agreement for

the total absorption rate between the semiclassical theory and quantum theory for the case

of weak field or strong field off-resonance (left panel of Figure 2.6 with ∆ ≈ 1). However,

for the case with strong field (right panel of Figure 2.6 where ∆ << 1), the quantum

results are significantly different from the semiclassical results. Generally speaking, the

absorption line shape in quantum theory is more symmetrical than the one in semiclassical

theory.

Table 2.2: Numerical values of various parameters used in Figure 2.6.

Parameters Numerical Values
εb 2.0 (polymer)
εs 7.2 (CdTe)
R 15 nm
a 7.5 nm

Furthermore, one can observe another peculiar behavior in the absorption spectrum

in Figure 2.6(f) for the case of strong field and large exciton dipole. It is shown that

the semiclassical theory exhibits instabilities in the small energy window near resonance.

In this near resonance regime, there are three steady-state solutions with different values

of exciton excited state population and absorption rate for each frequency. These three
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Figure 2.6: Total energy absorption spectra obtained from semiclassical theory (black
curves with dots) and fully quantum theory (red curves with triangles) for different values
of dipolemoment of the SQD in both weak and strong field regime. (a)-(c) are for the weak
regime and (d)-(f) are for the strong field regime. In (f), the black curve with dots, blue
curve with squares and purple curve with stars represent the three nonlinear steady states
solutions obtained from the semiclassical theory. The inset in (f) is the magnification
of the curves in the near resonance regime. Note that the curves in the inset have been
shifted for clearer view (Zhang & Govorov, 2011).

steady-state solutions are represented by the black curve with dots, blue curve with squares

and purple curve with stars in Figure 2.6(f). Beyond the near resonance energy window,

all three curves collapse to only one curve. Another interesting observation is in Figure

2.6(e) where the black curve shows zero total absorption (induced transparency effect).

In contrast, the absorption spectrum from quantum theory (red lines with triangles) does

not show instabilities and transparency effects for any values of dipole moment and laser
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field strengths. The explanation for the absence of instability and transparency effects

in quantum theory is that the continuum states cannot be heavily populated since the

population nonlinearity for the MP cannot be achieved at the light power considered here.

The main result of this subsection is the striking difference between semiclassical

and full quantum theory in terms of their absorption spectra in the strong field regime.

This result shows that full quantum theory is needed in explaining the behavior of the

MP-SQD when the laser field is strong. Now that the problem has been solved via density

matrix method it is appropriate to look at another interesting full quantum approach in

solving MP-SQD interaction termed "Zubarev’s Green function formalism".

2.5.2 Zubarev’s Green Function Formalism

This subsection presents a fully quantum-mechanical approach for modelling the

optical response of plasmons interactingwith a quantum emitter based on Zubarev’s Green

functions (Zubarev, 1960). While this method has been successfully applied to different

problems in statistical physics and linear response theory (Tsukada & Brenig, 1985; Pike

& Swain, 1971; Nordlander & Avouris, 1986), it has recently been adapted to study the

optical absorption rate of a hybrid nanostructure formed by a metallic nanoparticle and a

quantum emitter (such as SQD) (Manjavacas et al., 2011) similar to the system in section

2.4 and subsection 2.5.1. This approach enables us to describe the internal evolution of

such quantum systems beyond the perturbative regime, thus helping us to take advantage

of their quantum features, such as collective and single-particle excitations, and quantum

correlations and interferences.

Below shows the application of Zubarev’s Green functions to the problem of MP-

SQD interaction as illustrated in Figure 2.5(a). The absorption spectra obtained from

the retarded Zubarev’s Green function of the quantum operators that mediate the photon

absorption process will be computed. Before that, the basics of this formalism and how
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it could lead us to the analytical form of the absorption spectrum will be reviewed first.

The retarded Zubarev Green function of the annihilation and creation operators, A

and A† of a quantum system is defined in the frequency domain as

〈〈
A (ω) ; A† (ω)

〉〉
ω+i0+ = −

i
~

∫ ∞

−∞
dtei(ω+i0+)tθ (t)

〈[
A (t) , A† (0)

]
η

〉
, (2.135)

where A (t) is the Heisenberg representation of operator A, θ (t) is the Heaviside step

function,
[
A, A†

]
η
= AA† − ηA†A is the commutator of bosonic operators (η = 1) or the

anticommutator of fermionic operators (η = −1), i0+ is added to ensure convergence of

the integral and 〈〈...〉〉 is just a notation to represent the Zubarev Green function (not

related to expectation value). The time-evolution of A (t) is described by the Heisenberg

equation of motion, which for fixed excitation energy ε f leads to the solution

A (t) = A (0) e−iε f t/~. (2.136)

Using Equation 2.136, one can now write Equation 2.135 as

〈〈
A (ω) ; A† (ω)

〉〉
ω+i0+ = −

i
~

∫ ∞

0
dte−i[(ε f −~ω−i0+)t]/~ [〈

A (0) A† (0)
〉
− η

〈
A† (0) A (0)

〉]
,

(2.137)

where
〈
A (0) A† (0)

〉
and

〈
A† (0) A (0)

〉
denote the expectation values associated with the

initial state |i〉 of the system. In our system, the initial state is assumed to be the ground

state (at T = 0 K). In this case, the second term on the RHS of Equation 2.137 vanishes

since 〈i | A† (0) A (0) |i〉 = 0. Solving the integral in Equation 2.137, one arrives at

〈〈
A (ω) ; A† (ω)

〉〉
ω+i0+ = −

〈
A (0) A† (0)

〉
ε f − ~ω − i0+

, (2.138)
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The optical absorption cross section is given by Fermi’s Golden rule as

σ (ω) = 2πρ
~φ

∑
f

|〈 f ; n − 1| Hint |i; n〉|2 δ
(
ε f − ~ω

)
, (2.139)

where |i〉 and | f 〉 represent the initial and final state of the system, respectively, ε f is the

energy difference between the initial and final state, n is the number of external photons

with frequency ω, ρ is the density of final state (number of states per unit energy), φ

is the photon flux through the target (with the dimension of per unit area per unit time)

(Perkins, 2000) and Hint is the interaction Hamiltonian that couples the system to the

external photon given by

Hint = ∆Aa

(
Aa† + A†a

)
, (2.140)

where a and a† are the annihilation and creation operators for the external photons,

respectively. Using the interaction Hamiltonian in Equation 2.140 and the identity

δ (x) = Im
(

1
x − i0+

)
, (2.141)

Equation 2.139 becomes

σ (ω) = 2πρ
~φ

Im

∑

f

〈i; n| Hint | f ; n − 1〉 〈 f ; n − 1| Hint |i; n〉
ε f − ~ω − i0+

 . (2.142)

Equation 2.142 can be further simplified using a |n〉 =
√

n |n − 1〉 as well as the orthogo-

nality of the photonic states 〈n|n′〉 = δn,n′ into

σ (ω) = 2πρ
~φ

Im

∑

f

〈i | A | f 〉 〈 f | A† |i〉
ε f − ~ω − i0+

 . (2.143)

Here, it is assumed that A† connects the initial ground state to a set of final states separated
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by a common energy ε f . This assumption is good enough for this study in which the

external photons couple through the excitation of a single particle plasmon. Hence,

one may extract the ε f from the sum over final states and using the closure relation∑
f | f 〉 〈 f | = Î (within the ε f reachable-energy shell), Equation 2.143 becomes

σ (ω) = 2πρ
~φ

Im
{
〈i | AA† |i〉

ε f − ~ω − i0+

}
. (2.144)

Finally, by realizing that 〈i | AA† |i〉 in Equation 2.144 and
〈
A (0) A† (0)

〉
in Equation 2.138

carry the same magnitude in the Schrödinger and Heisenberg picture, respectively, one

can substitute Equation 2.138 into Equation 2.144 to obtain

σ (ω) = −2πρ
~φ

Im
{〈〈

A (ω) ; A† (ω)
〉〉
ω+i0+

}
, (2.145)

which relates the Zubarev’s Green function to the absorption spectra.

The Green function on the RHS of Equation 2.145 is usually calculated by writing

its equation of motion. To derive the equation of motion, it is necessary to first obtain the

retarded Zubarev Green function
〈〈

A; A†
〉〉

in time domain by performing inverse Fourier

transformation on Equation 2.135. This leads us to

〈〈
A (t) ; A+ (0)

〉〉
= − i
~
θ (t)

〈[
A (t) , A† (0)

]
η

〉
. (2.146)

Multiplying each term by i and differentiating with respect to time, one gets

i
d
dt

〈〈
A (t) ; A+ (0)

〉〉
=

1
~

dθ (t)
dt

〈[
A (t) , A† (0)

]
η

〉
+

〈〈
i
dA (t)

dt
; A† (0)

〉〉
, (2.147)
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which can be simplified using Heisenberg equation of motion dA
dt =

i
~ [H, A] to yield

~
d
dt

〈〈
A (t) ; A+ (0)

〉〉
= δ (t)

〈[
A (t) , A† (0)

]
η

〉
+

〈〈
[A,H] ; A† (0)

〉〉
. (2.148)

where H is the Hamiltonian of the system and [A,H] = AH − H A. Taking the Fourier

transform of Equation 2.148, one will arrive at

~ω
〈〈

A (ω) ; A+ (ω)
〉〉
ω+i0+ =

〈[
A (ω) , A† (ω)

]
η

〉
+
〈〈
[A (ω) ,H (ω)] ; A† (ω)

〉〉
, (2.149)

which is the most simplified version of the equation of motion for 〈〈A; A+〉〉 in frequency

domain from which the analytical form of 〈〈A; A+〉〉 can be found. However, Equation

2.149 depends on another Green function
〈〈
[A,H] ; A†

〉〉
, which can also be calculated

by writing down it equation of motion. Iterating this process, one obtains a hierarchy of

equations that have to be truncated at some point via application of a physical approxima-

tion. The result is a linear system of equations from which after solving, 〈〈A; A+〉〉 (and

therefore σ (ω)) is obtained.

Now the results in Equations 2.135, 2.145 and 2.149 will be applied to our study of

MP-SQD interaction. The system considered here comprises of a smallMP (with diameter

of tens of nanometers) located close to a SQD. The coupled plasmon-exciton system will

result in a hybrid plasmonic excitonic modes referred to as Plexcitons (Manjavacas et al.,

2011). Here, it is assumed that the MP support a well-defined dipolar plasmon mode

whereas the SQD is a fermionic system with only two possible states (ground and excited

states). Also, the usual dipole approximation will be applied to the MP where higher-

multipole modes are neglected. This approximation is reasonable for noble-metal particle

with radius much smaller than the wavelength.

51

Univ
ers

ity
 of

 M
ala

ya



The total Hamiltonian of the system is given by

H = H0 + Hint + Hdecay (2.150)

where

H0 = εdd†d + εcc†c (2.151)

is the free Hamiltonian,

Hint = −∆dc
[
d†c + c†d

]
(2.152)

is the interaction Hamiltonian and

Hdecay =

∫
~ω f †d (ω) fd (ω) dω +

∫
~ω f †c (ω) fc (ω) dω

−
∫ [

νd (ω) fd (ω) d† + ν∗d (ω) f †d (ω) d
]

dω

−
∫ [

νc (ω) fc (ω) c† + ν∗c (ω) f †c (ω) c
]

dω (2.153)

is the Hamiltonian describing the decay of plasmon and exciton. This decay term is

used to realistically account for the finite lifetime in the excitations of the system which

originates from the inelastic interaction of the excitations with a continuum of modes.

For example, a plasmon can decay radiatively by emitting a photon and nonradiatively

through generation of electron-hole pairs, phonons, etc. Here, d and c (d† and c†) are

the annihilation (creation) operators for the MP plasmon and SQD fermion of energies εd

and εc, respectively, ∆dc is the plasmon-exciton coupling strength (taken to be real), and

fd (ω) and fc (ω) are the annihilation operators of the continuum modes coupled to the

plasmon and fermion with coupling constant νd (ω) and νc (ω), respectively.

Since the absorption cross section of the MP is generally much larger than that of the
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SQD, one may obtain the absorption spectrum from the Green function 〈〈d; d+〉〉 via

σ (ω) = −2πρ
~φ

Im
{〈〈

d; d+
〉〉
ω+i0+

}
, (2.154)

From Equations 2.149 and 2.150, the equation of motion for 〈〈d; d+〉〉 is

(~ω − εd)
〈〈

d; d†
〉〉
= 1 − ∆dc

〈〈
c; d†

〉〉
−

∫
νd (ω′)

〈〈
fd (ω′) ; d†

〉〉
dω′. (2.155)

Now, there is a need to compute
〈〈

c; d†
〉〉

and
〈〈

fd (ω′) ; d†
〉〉

to get
〈〈

d; d†
〉〉
. The

equation of motion for
〈〈

c; d†
〉〉

is given by

(~ω − εc)
〈〈

c; d†
〉〉
= −∆dc

〈〈(
1 − 2c†c

)
d; d†

〉〉
−

∫
νc (ω′)

〈〈(
1 − 2c†c

)
fc (ω′) ; d†

〉〉
dω′. (2.156)

Again, new Green functions
〈〈(

1 − 2c†c
)

d; d†
〉〉

and
〈〈(

1 − 2c†c
)

fc (ω′) ; d†
〉〉

emerge.

If one continues to iterate this process he will produce an infinite hierarchy of equations

of motion. Here this process will be truncated at this point by approximating c†c by its

expectation value
〈
c†c

〉
= nc, which is the result of the fermionic character of the SQD.

However, one still needs to deal with
〈〈

fd (ω′) ; d†
〉〉

and
〈〈

fc (ω′) ; d†
〉〉
. Derivations of

their equations of motion gives

(~ω − ~ω′)
〈〈

fd (ω′) ; d†
〉〉
= −ν∗d (ω

′)
〈〈

d; d†
〉〉
, (2.157)

(~ω − ~ω′)
〈〈

fc (ω′) ; d†
〉〉
= −ν∗c (ω′)

〈〈
c; d†

〉〉
, (2.158)

which show that they only depend on Green functions derived above. Thus, one now has

a set of four closed coupled equations given by Equations 2.155, 2.156, 2.157 and 2.158.
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There is a need to solve for the integral terms in Equations 2.155 and 2.156. Substitution

of Equation 2.157 into Equation 2.155 and introduction of the positive infinitesimal

imaginary part of the frequency which appears in Equation 2.135 gives the result

∫
νd (ω′)

〈〈
fd (ω′) ; d†

〉〉
dω′ =

〈〈
d; d†

〉〉 ∫ |νd (ω′)|2

(~ω′ − ~ω − i0+)dω
′

=
〈〈

d; d†
〉〉 [
P

∫
dω′
|νd (ω′)|2

~ω′ − ~ω + iπ |νd (ω′)|2
]

=
〈〈

d; d†
〉〉 [

δωd + i
Γd

2

]
, (2.159)

where the Sokhatsky-Weierstrass theorem has been used, P is Cauchy principal value,

δωd is frequency shift and Γd = 2π |νd (ω′)|2 inelastic decay rate of dipolar plasmon. If

one solves in a similar way for the integral term in Equation 2.156, Equations 2.155 and

2.156 will become

(
~ω − εd + δωd + i

Γd

2

) 〈〈
d; d†

〉〉
= 1 − ∆dc

〈〈
c; d†

〉〉
, (2.160)

(
~ω − εc + (1 − 2nc)

[
δωc + i

Γc

2

] ) 〈〈
c; d†

〉〉
= −∆dc (1 − 2nc)

〈〈
d; d†

〉〉
, (2.161)

which form two closed coupled equations from which
〈〈

d; d†
〉〉

and thus σ (ω) can be

calculated. After a simple calculation, the absorption spectrum will become

σ (ω) = −2πρ
~φ

Im
©«~ω − εd + δωd + i

Γd

2
−

∆2
dc (1 − 2nc)

~ω − εc + (1 − 2nc)
[
δωc + i Γc2

] ª®®¬
−1

.

(2.162)

Figures 2.7-2.9 show the absorption spectrum for the MP-SQD system computed

for different values of the exciton resonance energy εc, exciton resonance width Γc and

plasmon-exciton coupling strength ∆dc, respectively. A comparison is made between the

spectra obtained from Zubarev Green function method (black continuous line) and with

54

Univ
ers

ity
 of

 M
ala

ya



that obtained from density matrix formalism (red dashed line) highlighted in subsection

2.5.1. Here, εd = 2.5 eV which is the plasmon resonance energy for gold nanoparticle and

Γd = 86 meV as the corresponding dipolar plasmon width. Also, is it assumed that the

frequency shifts δωd ≈ δωc ≈ 0 is negligible and the photon number is calculated from

nc = [exp(εc/kBT) − 1]−1 at temperature T = 300K . The values for other parameters are

given in the caption of each figures.

Figure 2.7: Dependence of the absorption spectrum of theMP-SQD system on the exciton
resonance energy, εc. The black continuous line is the absorption spectrum obtained from
Zubarev Green function formalism whereas the red dashed line is the absorption spectrum
obtained fromdensitymatrixmethod developed in subsection 2.5.1. Here, we use the value
Γc = 4 meV for the exciton resonance width and ∆dc = 160 meV for the plasmon-exciton
coupling strength. A Fano resonance is clearly visible as a result of the plasmon-exciton
coupling.

By looking at the black curve, one can easily identify the origin of the absorption

peaks in Figure 2.7(a),(b),(d): dipolar plasmon mode at around εd = 2.5 eV and excitonic

mode εc. One can also observe from Figure 2.7(c) that when the exciton resonance

energy matches the plasmon resonance energy, i.e. εc = εd = 2.5 eV, Fano resonance

occurs. This Fano resonance is a result of the interaction between the continuum modes

of the plasmons and the narrow discreet mode of the exciton. The line shape of the Fano
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resonance depends strongly on the resonance energy of the exciton as shown in Figure

2.7. The spectra obtained using density matrix formalism (red dashed line) also exhibit

Fano resonances but the line shapes are less symmetrical. It can also be observed from

Figure 2.7 that the red curves show larger deviations from the black ones at higher exciton

energy.

Figure 2.8 shows the dependence of the Fano resonance on the width of the exciton.

Both black and red curves show that the Fano resonance is the strongest when exciton

resonance width is the smallest and slowly disappears when the width grows larger. The

coupling strength also plays an important role in determining the shape of the Fano

resonance, as shown in Figure 2.9. For both black and red curves, the dip associated

with the Fano resonance disappears when the plasmon-exciton coupling is weak (∆dc is

small). As ∆dc increases, the Fano dip becomes deeper and the separation between the

resulting peaks becomes more pronounced. Actually, when ∆dc is larger than Γd2 one can

alternatively interpret the resulting line shape as vacuum Rabi splitting (Savasta et al.,

2010). One may also observe from Figure 2.9(d) that density matrix formalism predicts

the emergence of additional broader peaks which are believed to be a manifestation of the

formation of hybrid excitons with shifted frequency and shortened lifetime.

The discrepancies between the spectra obtained from density matrix formalism and

those from Zubarev’s Green function may be due to the following reasons:

1. The standard density matrix formalism reviewed in subsection 2.5.1 considers some

realistic effects on the absorption spectrum due to various parameters such as the

background permittivity, incident laser fields strengths, interparticle distance, etc.

On the other hand, such parameters are not considered in the Zubarev’s Green

function formalism in which only ∆dc (which depends on dipole moment), Γc and

εc dictate the degree to which plasmon and exciton interact and thus determine the
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Figure 2.8: Dependence of the absorption spectrum of theMP-SQD system on the exciton
resonance width, Γc. The black continuous line is the absorption spectrum obtained from
Zubarev Green function formalism whereas the red dashed line is the absorption spectrum
obtained from density matrix method developed in subsection 2.5.1. Here, we use the
value εc = 2.5 eV for the exciton resonance energy and ∆dc = 160 meV for the plasmon-
exciton coupling strength. Fano resonance disappears as Γc increases.

spectral line shape. In other words, in Zubarev’s formalism it is assumed that the

strength of the incident field is strong and the interparticle distance is small enough

for the exciton and plasmon to interact efficiently and that other parameters such as

background permittivity, shape and size of the metallic nanoparticle, etc. do not

affect the absorption spectrum significantly.

2. In the Zubarev’s Green function formalism, the direct coupling of the emitter

(which supports excitons) to the incident light is neglected and it is assumed that

only the plasmons couple efficiently to the external photons. Therefore, the optical

absorption spectrum of the hybrid nanostructure is assumed to depend only on

the Green function associated with the creation and annihilation operators of the

plasmons (see Equation 2.154). In contrast, such approximation was not made in

the semiclassical theory as the total absorption rate depends on contribution from

both SQD and MP (see Equation 2.126). In fact, such approximation is only valid
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in the case of strong laser field (due to saturation effect of SQD) or weak laser field

with short interparticle distance (due to fast dissipation of the plasmons in MP).

This means that in the case of weak field and long interparticle distance prediction

from the Zubarev’s Green function formalism will not be accurate.

3. The approximation
〈
c†c

〉
= nc made in Equation 2.156 in order to truncate the

infinite hierarchy of equations of motions may also contribute to the discrepancies.

The price one pays when making such approximation is that he will be unable to

fully account for the nonlinearity of the equations of motion in Equations 2.155-

2.158 which represents the complexity of the plasmon-exciton interaction. This is

in contrast to the density matrix formalism where the density matrix elements are

solved self-consistently without truncating any one of the equations of motion.

In general, the density matrix formalism provides a more accurate description of

the plasmon-exciton interaction as it analyses the complex nonlinear interaction more

realistically and self-consistently. Absorption spectrum obtained from Zubarev’s Green

function is only sufficient to describe strongly interacting plasmon-exciton systems (with

strong external input field and small interparticle distance) without taking into account

other practical factors thatmay affect the spectrumqualitatively and quantitatively. Despite

this, Zubarev formalism also offers several advantages over the density matrix formalism

in solving MP-QS interaction problem.

Themajor advantage of the Zubarev’s Green functionmethod is that it is conceptually

much simpler than the density matrix formalism since the only calculations required is the

evaluation of simple commutation relations between operators. Furthermore, since the

dynamics are obtained nonperturbatively directly from the Hamiltonian, this formalism

can be generalized to include more complex interactions such as coupling between two
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quantum emitters, coupling to phonons, etc. The simplicity of this formalism could make

it a powerful tool for studying plasmon-exciton interactions in plasmonic transistors,

modulators and quantum information devices.

Figure 2.9: Dependence of the absorption spectrum of the MP-SQD system on the
plasmon-exciton coupling strength, ∆dc. The black continuous line is the absorption
spectrum obtained from Zubarev Green function formalism whereas the red dashed line
is the absorption spectrum obtained from density matrix method developed in subsection
2.5.1. Here, we use the value εc = 2.5 eV for the exciton resonance energy and Γc = 4
meV for the exciton resonance width. Fano dip becomes more pronounced at large ∆dc.

To summarize, the quantum Langevin formalism with noise operators as well as their

applications in solving for double Raman scheme are reviewed. The results in section

2.2 will be useful for the derivation of the quantum coherences and fields in Chapter 3.

Also, the definitions of normal- and antinormal-order spectra and their relations to the

first-order correlation functions have also been covered. The fields spectra will be the final

outcome of our formalism in Chapter 3 and 4 and the spectra obtained will be simulated

and analyzed in Chapter 6. Then, several previous studies on the interaction between a

MP and a two-level QS based on both semiclassical and fully quantum-mechanical theory

were also reviewed. The formalism and the results of these previous studies will serve as

a guide for our study of MP-QS interaction in Chapter 4, 5 and 6.

59

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 3: MESOSCOPIC SPHERICAL PARTICLE: QUANTUM SPECTRA
OF RAMAN PHOTON PAIR FROM LANGEVIN THEORY

In this chapter, the quantum properties of the Raman photon pairs emitted by a

mesoscopic spherical particle composed of quantumparticles (atoms/molecules) in double

Raman configuration will be studied. Quantum Langevin formalism (Sargent et al., 1974;

Scully & Zubairy, 1997) will be used to describe the interaction of the quantum particles

with pump and control laser fields inside the small spherical particle with arbitrary

dimension. In this formalism, the Stokes and anti-Stokes electric fields are expressed

as quantum operators in terms of noise operators, thus enabling the computation of the

quantum-mechanical expressions for the field-field correlation functions in a transparent

manner. In particular, both the normal- and antinormal-order spectra (Puri, 2001) of the

Stokes and anti-Stokes electric fields are obtained. As described earlier in section 2.3,

the normal-order spectrum plays an important role in the description of experimentally

observed quantities such as photoelectron statisticswhereas the antinormal-order spectrum

describes a photodetection method introduced byMandel (Mandel, 1966) which functions

based on stimulated emission.

This chapter is organized in the following manner. First, the model of the system

under study as well as the various assumptions made will be described in detail. Then,

the analytical expression of the scattered electric field from a spherical particle with

arbitrary size will be derived starting from the Maxwell’s equations. This is followed

by the solution of the coherences operators associated with the Stokes and anti-Stokes

fields based on quantum Langevin formalism with noise operators highlighted in section

2.2. The coherences operators obtained will then be used to derive the analytical forms

of the Stokes and anti-Stokes electric fields. Finally, the chapter is concluded with the

expressions of the normal- and antinormal-order spectra of the Stokes and anti-Stokes
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fields. The simulation results of the spectra and their interpretations will be discussed in

Chapter 6.

3.1 Model

The model considered here consists of a single mesoscopic spherical particle with

radius ρ comprising of quantum particles (atoms/molecules) in double Raman configura-

tion (Figure 3.1). In this study, the center of the mesoscopic particle is assumed to be at

the origin of the Cartesian coordinate system. As shown in Figure 3.1, R is denoted as the

vector of the observation point and r as the position of the dipole within the mesoscopic

particle. The mesoscopic particle is assumed to be isolated, i.e. without the presence

of a nearby particle and upon interacting with the pump and control laser fields, it emits

Stokes and anti-Stokes fields which are quantum fields of which the electric fields can be

represented by quantum-mechanical operators. It is assumed that both incident pump and

control laser fields propagate along the +z−direction and are polarized along the x−axis.

Both laser fields are also assumed to be continuous wave (cw) lasers of which temporal

dependence is not important and can thus be neglected. Also, in this system the detection

distance is sufficiently large, i.e. R >> ρ such that the far-field approximation can be

made. In this study however, the dipole approximation commonly used in studying laser

interaction with small particles will not be applied so as to ensure our results to be valid

for arbitrary size of the particle.

3.2 Integral Solution of the Scattered Field in Far Zone

In this section, the analytical expression of the electric field emitted by a spherical

particle with arbitrary size will be derived starting from the Maxwell’s equations for the

macroscopic fields. The results obtained will be revisited in section 3.4 for the derivation

of the analytical form of the Stokes and anti-Stokes fields.

61

Univ
ers

ity
 of

 M
ala

ya



Figure 3.1: Illustration of a spherical microparticle composed of atoms in double Raman
configuration. Inset on the left shows the energy-level diagram which describes the
four-level double Raman scheme. The particle interacts with pump Ωp and control Ωc
lasers (solid arrows) which are incident along the z−direction and emits quantized Stokes
Ês and anti-Stokes Êa fields (wavy arrows) with their respective frequencies given by
νi (i = p, c, s, a).

The Maxwell’s equations which describe the relation between the four electromag-

netic fields vectors (D,B,E and H) and their sources, namely the free charge density ρ

and the free current density J are given by

∇ · D = ρ f , (3.1)

∇ · B = 0, (3.2)

∇ × E = −∂B
∂t
, (3.3)

∇ ×H =
∂D
∂t
+ J f . (3.4)

Here, E and B are the electric and magnetic field strengths, respectively whereas

D and H are the auxiliary fields (termed electric displacement and magnetic induction)
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which are related to the original fields strengths via

D =ε0E + P, (3.5)

H =
B
µ0
. (3.6)

where the macroscopic polarization P is defined as electric dipole moment per unit

volume. In our system, this polarization arises from the linear and nonlinear interaction

of the external fields (laser fields) with the atoms/molecules within the spherical particle.

Note also that in Equation 3.6 any effects arising frommagnetization have been neglected.

This assumption is reasonable since at optical frequency, the magnetic response is too

slow as it takes time much longer than the period of the optical wave (Fox, 2006). It

should also be understood that all the fields quantities (D,B,E and H) depend on space

and time, though they are not explicitly shown. The situation which will be focused here

contains no free currents or free charges in the particle volume, i.e. ρ f = J f = 0, so that

the Maxwell’s equations become

∇ · (ε0E + P) = 0, (3.7)

∇ · B = 0, (3.8)

∇ × E = −∂B
∂t
, (3.9)

∇ × B = µ0
∂ (ε0E + P)

∂t
. (3.10)

Taking the curl of Equation 3.9 and using Equation 3.10,

∇ × (∇ × E)= − 1
c2

∂2

∂t2 E−µ0
∂2

∂t2 P, (3.11)

63

Univ
ers

ity
 of

 M
ala

ya



where the following relation has been used

µ0ε0 =
1
c2 . (3.12)

Applying the vector relation ∇ × (∇ × E) = ∇ (∇ · E) − ∇2E to the LHS of Equation 3.11

yields

∇ (∇ · E) − ∇2E = − 1
c2

∂2

∂t2 E−µ0
∂2

∂t2 P. (3.13)

From Equation 3.5,

E =
D − P
ε0

, (3.14)

which when substituted into Equation 3.13 will result in

∇
(
∇ · D−∇ · P

ε0

)
− ∇2E = − 1

c2
∂2

∂t2 E−µ0
∂2

∂t2 P. (3.15)

It is already known from Equation 3.7 that ∇ · D = 0. After some arrangement one will

get the nonhomogeneous wave equation

(
∇2− 1

c2
∂2

∂t2

)
E = − 1

ε0

(
∇∇ · − 1

c2
∂2

∂t2

)
P. (3.16)

Here, the polarization P acts as the source term for the electric field E. Equation 3.16 can

be rewritten in a simpler form as

LE (R,t) = f (R,t) (3.17)

where the operator L = ∇2− 1
c2

∂2

∂t2 and f (R,t) = − 1
ε0

(
∇∇ · − 1

c2
∂2

∂t2

)
P (R,t) is the inhomo-

geneous term (source term). This differential equation may be solved by employing the
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Green function method where a Green function G has to be searched such that

LG (R, t, r, t′) = δ (R − r) δ (t − t′) , (3.18)

so that the solution for the electric field E (R,t) may be obtained as

E (R,t) =
∫ ∫

G (R, t, r, t′) f (r,t′) dt′dr. (3.19)

To verify Equation 3.19, one may apply L to the equation from the left and get

LE (R,t) =
∫ ∫

LG (R, t, r, t′) f (r,t′) drdt′

=

∫ ∫
δ (R − r) δ (t − t′) f (r,t′) drdt′

= f (R,t) , (3.20)

which returns Equation 3.17. The Green function which satisfies Equation 3.18 is

G (R, t, r, t′) = 1
4π |R − r| δ (t − t′) , (3.21)

with the retarded time t′ = t − |R−r|
c , which results in the integral solution

E (R, t) = −
∫

V

(
∇∇ · − 1

c2
∂2

∂t2

) P
(
r, t − |R−r|

c

)
4πε0 |R − r| d3r, (3.22)

where
∫

V denotes integration over the entire volume of the spherical particle. The defini-

tion for R and r here is consistent with Figure 3.1.
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It is particularly convenient to solve the wave equation in frequency domain. Fourier

transformation of Equation 3.16 into frequency domain yields

(
∇2 +

ω2

c2

)
E (R, ω) = − 1

ε0

(
∇∇ · +ω

2

c2

)
P (R, ω) . (3.23)

The definition of Fourier transformation used here is

E (ω) =
∫ ∞

−∞
E (t) eiωt dt (3.24)

and the same definition applies for the macroscopic polarization P (ω). The polarization

P (R, ω) consists of linear and nonlinear contributions expressed as

P (R, ω) = ε0χ
(1) (ω)E (R, ω) + PN L (R, ω) . (3.25)

Substitution of Equation 3.25 into Equation 3.7 gives the following relation

∇ · E = −∇ · P
N L

ε0ε (ω)
, (3.26)

where ε (ω) = 1+ χ(1) (ω) is the frequency-dependent dielectric function of the spherical

particle which describes linear dispersion. Applying Equations 3.25 and 3.26 on the RHS

of Equation 3.23 results in

(
∇2 +

ω2

c2

)
E (R, ω) = ∇∇·P

N L (R, ω)
ε0ε (ω)

χ(1) (ω) − 1
ε0
∇∇ · PN L (R, ω)

−ω
2

c2 χ
(1) (ω)E (R, ω) (ω) − 1

ε0

ω2

c2 PN L (R, ω) . (3.27)

Recalling the relation χ(1) (ω) = ε (ω) − 1, the above equation may again be simplified
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into a non-homogeneous wave equation in frequency domain

(
∇2 +

ω2

c2 ε (ω)
)

E (R, ω) = − 1
ε0

(
∇∇·
ε (ω) +

ω2

c2

)
PN L (R, ω) . (3.28)

Just as in Equation 3.16, the solution for E (R, ω) in Equation 3.28 can be obtained by

applying the Green function which satisfies

(
∇2 +

ω2

c2 ε (ω)
)

G (R, ω, r, ω′) = δ (R − r) δ (ω − ω′) . (3.29)

This Green function is found to be of the form (Jackson, 1999)

G (R, ω, r, ω′) = eik(ω)|R−r|

4π |R − r| δ (ω − ω
′) , (3.30)

which then leads to the solution for the electric field in frequency domain

E (R, ω) = −
∫

V

(
∇∇·
ε (ω) +

ω2

c2

)
PN L (r, ω) eik(ω)|R−r|

4πε0 |R − r| d3r, (3.31)

where the wave vector is given by k (ω) = ω
c

√
ε (ω). As mentioned in section 3.1, it is

assumed in this study that the detection distance is sufficiently large such that the far-field

approximation can be made, that is,

|R − r| ' R − R̂ · r. (3.32)

Expressing the polarization in spherical polar coordinate, PN L (r, ω) = R̂PN L
R + Θ̂PN L

Θ
+

Φ̂PN L
Φ

and using

∇∇ ·
[
PN L (r, ω) eik |R−r|]
|R − r| ' −

k2PN L
R eik(R−R̂·r)

R
R̂, (3.33)
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one can rewrite Equation 3.31 as

E (R, ω) = ω
2

c2

∫
V

(
Θ̂PN L
Θ
+ Φ̂PN L

Φ

)
eik(ω)|R−r|

4πε0 |R − r| d3r . (3.34)

Note that only the transverse (angular) component of the polarization contribute to the far

field. The derivation will stop at this point.

3.3 Quantum Langevin Formalism for Coherences

In this section, the analytical expressions of the coherences σ̂bd and σ̂ac associated

with the Stokes and anti-Stokes transitions, respectively in the four-level double Raman

scheme (Figure 2.1(a)) will be derived utilizing quantum Langevin formalism with noise

operators as highlighted in section 2.2. The results from this section will be useful

for deriving the scattered Stokes and anti-Stokes electric field in the next section. One

may just proceed from the results in Equations 2.50-2.59, which are the 16 coupled

Langevin equations describing the time-evolution of the atomic operators. Due to the

high nonlinearity of the Langevin equations, analytical solutions are only possible when

some assumptions are made. Here, it is assumed that the Stokes Ês (t) and anti-Stokes

Êa (t) fields are weak so that both the populations σ̂ii (i = a, d, b, c) and the coherences

associated with the laser transitions σ̂dc and σ̂ab can be approximated as time-independent

complex numbers. This results in just four coupled equations describing the time-evolution

of σ̂ac, σ̂ad, σ̂bc and σ̂bd . The closed coupled equations for the slowly varying atomic

envelope operators of these four coherences p̂ac = σ̂ace−iνat, p̂ad = σ̂ade−iνcst, p̂bc =

σ̂bce−iνact and p̂bd = σ̂bdeiνst are given by

d
dt

p̂ac = −γac p̂ac + iωac p̂ac − iνa p̂ac + ig∗a·Ẽ
†
a (p̂aa − p̂cc)

−iΩ∗c p̂bc + iΩ∗p p̂ad + e−iνat F̂ac (t) , (3.35)
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d
dt

p̂ad = −γad p̂ad + iωad p̂ad − iνcs p̂ad − ig∗a·Ẽ
†
a p̂cd + igs·Ẽs p̂ab

−iΩ∗c p̂bd + iΩp p̂ac + e−iνcst F̂ad (t) , (3.36)

d
dt

p̂bc = −γbc p̂bc + iωbcσ̂bc − iνac p̂bc − igs·Ẽs p̂dc + ig∗a·Ẽ
†
a p̂ba

−iΩc p̂ac + iΩ∗p p̂bd + e−iνact F̂bc (t) , (3.37)

d
dt

p̂bd = −γbd p̂bd + iωbdσ̂bd + iνs p̂bd − igs·Ẽs (p̂dd − p̂bb)

−iΩc p̂ad + iΩp p̂bc + eiνst F̂bd (t) , (3.38)

where νi j = νi−ν j and νi (i, j = p, s, c, a) denote the carrier frequency of the pump, Stokes,

control and anti-Stokes fields, respectively, all of which satisfy νp + νc = νs + νa for the

parametric four photons transitions. The complex decoherences are given by

Tac = i∆a + γac, (3.39)

Tad = i (∆c − ∆s) + γad, (3.40)

Tbc = i
(
∆p − ∆s

)
+ γbc, (3.41)

Tdb = i∆s + γdb, (3.42)

with the detunings ∆a = νa − ωac,∆c = νc − ωab,∆s = νs − ωdb, and ∆p = νp − ωdc of

the pump, Stokes, control, and anti-Stokes fields, respectively. Here, ωac simply means

the transition frequency between energy level a and c and the same definition applies

to all other cases. As mentioned in section 3.1, the spatial dependence of the pump

and control laser fields is retained but the temporal dependence is neglected, i.e. Ωp
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and Ωc are constants in time. Hence, the Rabi frequencies for the lasers l = p, c are

Ωl (r) = gl ·Ẽl =
∑

q=x,y,z glqẼlq, where glq =
℘lq

~ is the coupling strength with ℘lq as the

q−component transition dipolemoment. In order to solve for the coherences p̂bd (r, ω) and

p̂ac (r, ω), which are respectively associated with the Stokes and anti-Stokes transitions

the following assumptions need to be made

p̂aa − p̂cc ≈ wst
cc = 〈p̂aa − p̂cc〉 , (3.43)

p̂dd − p̂bb ≈ wst
bb = 〈p̂dd − p̂bb〉 , (3.44)

p̂ab ≈
〈
p̂st

ab

〉
= pst

ab, (3.45)

p̂dc ≈
〈
p̂st

dc

〉
= pst

dc, (3.46)

where the populations and the coherences operators at the laser transitions are taken

as steady state expectation values. Taking this into account and performing Fourier

transformation Q̃ (ω) =
∫ ∞
−∞ Q̃ (t) eiωt dt

(
Q̃ = Ẽs, Ẽ

†
a, p̂x, Ĝx where x = ac, ad, bc, bd

)
on

the four coupled equations results in

p̂ac (ω) =
1

Tac (ω)
[
i Ã† (ω)wst

cc − iΩ∗c p̂bc (ω) + iΩ∗p p̂ad (ω) + Ĝac (ω)
]
, (3.47)

p̂ad (ω) =
1

Tad (ω)
[
iS̃ (ω) pst

ab − i Ã† (ω) pst
cd + iΩp p̂ac (ω) − iΩ∗c p̂bd (ω) + Ĝad (ω)

]
,

(3.48)

p̂bc (ω) =
1

Tbc (ω)
[
−iS̃ (ω) pst

dc + i Ã† (ω) pst
ba − iΩc p̂ac (ω) + iΩ∗p p̂bd (ω) + Ĝbc (ω)

]
,

(3.49)

p̂bd (ω) =
1

T∗db (ω)
[
−iS̃ (ω)wst

bb + iΩp p̂bc (ω) − iΩc p̂ad (ω) + Ĝbd (ω)
]
, (3.50)

where we have defined S̃ = gs·Ẽs =
∑

q=x,y,z gsqẼsq and Ã = ga·Ẽa =
∑

q=x,y,z gaqẼaq

with the coupling strengths gsq =
℘db,q

~ and gaq =
℘ac,q

~ , and the complex decoherences
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after Fourier transformation are Tx (ω) = Tx − iω (x = ac, ad, bc) and T∗db (ω) = T∗db − iω.

At this point, readers should bear in mind that the pump and control laser fields inside

the spherical particle depend on the spatial coordinate of the particle. This is due to the

refraction and focusing by the geometry of the particle which are taken into account by the

Lorentz-Mie theory (Ooi et al., 2005; Bohren & Huffman, 1983) given in Appendix A,

with the assumption that the incident laser fields are x polarized. Now, the aim is to solve

for p̂ac (ω) and p̂bd (ω) by rewriting the four coupled equations in Equations 3.47-3.50 in

matrix form

©«

p̂ac (ω)

p̂ad (ω)

p̂bc (ω)

p̂bd (ω)

ª®®®®®®®®®®®¬
= −M

©«

i Ã† (ω)wst
cc + Ĝac (ω)

iS̃ (ω) pst
ab − i Ã† (ω) pst

cd + Ĝad (ω)

−iS̃ (ω) pst
dc + i Ã† (ω) pst

ba + Ĝbc (ω)

−iS̃ (ω)wst
bb + Ĝbd (ω)

ª®®®®®®®®®®®¬
, (3.51)

where

M =

©«

−Tac (ω) iΩ∗p −iΩ∗c 0

iΩp −Tad (ω) 0 −iΩ∗c

−iΩc 0 −Tbc (ω) iΩ∗p

0 −iΩc iΩp −T∗db (ω)

ª®®®®®®®®®®®¬

−1

. (3.52)

At the end, the following results will be obtained

p̂bd (ω) = −
©«

4∑
j=1

M4 jĜ j + Xs Ã† + Gs S̃ª®¬ , (3.53)

p̂ac (ω) = −
©«

4∑
j=1

M1 jĜ j + Ga Ã† + XaS̃ª®¬ , (3.54)

71

Univ
ers

ity
 of

 M
ala

ya



with the coefficients

Gs = i
(
pst

abM42 − pst
dcM43 − wst

bbM44
)
, (3.55)

Ga = i
(
wst

ccM11 − pst
cd M12 + pst

baM13
)
, (3.56)

Xs = i
(
wst

ccM41 − pst
cd M42 + pst

baM43
)
, (3.57)

Xa = i
(
pst

abM12 − pst
dcM13 − wst

bbM14
)
. (3.58)

In Equations 3.53 and 3.54, the noise operators are labelled as Ĝ1 = Ĝac, Ĝ2 = Ĝad, Ĝ3 =

Ĝbc, Ĝ4 = Ĝbd . The steady-state solutions for the populations and coherences at laser

transitions are provided in Appendix C.

3.4 Analytical Solutions for Stokes and Anti-Stokes Fields

The nonhomogeneous wave equation in frequency domain in Equation 3.23 can be

modified to include the subscript f = s, a which denotes Stokes and anti-Stokes fields,

respectively. The result is

(
∇2 +

ω2

c2

)
Ê f (R, ω) = −

1
ε0

{
∇∇ · +ω

2

c2

}
P̂ f (R, ω) . (3.59)

Note that both the electric field Ê f and polarization P̂ f vectors are now treated as quantum-

mechanical operators as we are now considering the wave equation for the quantum fields.

The quantum coherences operators σ̂bd and σ̂ac of the quantum particles are coupled to

the electric field operators of the Stokes and anti-Stokes fields via the quantum-mechanical

expression of the macroscopic polarization

P̂ f (r, ω) = N ®℘ f σ̂ f (r, ω) , (3.60)
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where N is the number density, ®℘s = ®℘bd = 〈b| d |d〉 and ®℘a = ®℘ca = 〈c| d |a〉 are the

dipole matrix elements, and σ̂s = σ̂bd = |b〉 〈d | and σ̂a = σ̂ca = |c〉 〈a| are the coherences

operators corresponding to the Stokes and anti-Stokes transitions, respectively.

Similarly, the far-field solution for a mesoscopic spherical particle can be modified

from Equation 3.34 as

Ê f (R, ω) =
ω2

c2

∫
V

{
Θ̂P̂N L
Θ, f + Φ̂P̂N L

Φ, f

}
eik f (ω)|R−r|

4πε0 |R − r| d3r, (3.61)

where the dispersive wave vector is related to the dielectric function through k f (ω) =√
ε f (ω)ωc . In spherical polar coordinate, the observation point is at R =R(sinΘ cosΦ,

sinΘ sinΦ, cosΘ)whereas the position of the dipole is at r =r (sin θ cos φ, sin θ sin φ, cos θ).

The magnitude of the distance is |R − r| =
√
∆2

x + ∆
2
y + ∆

2
z , where ∆x = X − x, etc. The

Θ− andΦ−component of the nonlinear polarization P̂N L
f can be written as P̂N L

Θ, f = Θ̂ · P̂
N L
f

and P̂N L
Φ, f = Φ̂ · P̂

N L
f , respectively and they are related to the Cartesian components P̂N L

q, f

(q = x, y, z) by the transformation unit vectors Θ̂ = (cosΘ cosΦ, cosΘ sinΦ,− sinΘ) and

Φ̂ = (− sinΦ, cosΦ, 0). The electric field can also be decomposed into Cartesian com-

ponents Ê f =
(
Ê f x, Ê f y, Ê f z

)
. To couple the Stokes and anti-Stokes fields to the atomic

coherences operators, Equation 3.61 an be written as

©«
Ês (R, ω)

Ê†a (R, ω)

ª®®®¬ =
∫

V

©«
Ks (R, r, ω) ®℘⊥bdσ̂

N L
bd (r, ω)

K∗a (R, r, ω) ®℘⊥acσ̂
N L
ac (r, ω)

ª®®®¬ d3r, (3.62)

where K f (R, r, ω) = ω2

c2
N

4πε0 |R−r| e
ik f (ω)|R−r| and the transverse dipole moment vector is

given by ®℘⊥g = Θ̂℘Θ,g+Φ̂℘Φ,g with the angular components ℘Θ,g = Θ̂· ®℘g and ℘Φ,g = Φ̂· ®℘g

where g = bd, ac.

Now, the original atomic σ̂x and field Ê f (ω) operators will be connected to their
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slowly varying envelop operators in frequency domain. The slowly varying envelop of

the field is defined by Ê f (t) = Ẽ f (t) e−iνf t . Hence, the Fourier transforms of the original

operators are related to their envelop operators as

©«
σ̂bd (ω)

Ês (ω)

ª®®®¬ =
∫

ei(ω−νs)t
©«

p̂bd (t)

Ẽs (t)

ª®®®¬ dt =
©«

p̂bd (ω − νs)

Ẽs (ω − νs)

ª®®®¬ , (3.63)

©«
σ̂ac (ω)

Ê†a (ω)

ª®®®¬ =
∫

ei(ω+νa)t
©«

p̂ac (t)

Ẽ†a (t)

ª®®®¬ dt =
©«

p̂ac (ω + νa)

Ẽ†a (ω + νa)

ª®®®¬ . (3.64)

This means that one can rewrite Equation 3.62 as

©«
Ês (ω)

Ê†a (ω)

ª®®®¬ =
∫

V

©«
Ks (R, r, ω) ®℘⊥bd p̂N L

bd (ω − νs)

K∗a (R, r, ω) ®℘⊥ac p̂N L
ac (ω + νa)

ª®®®¬ d3r, (3.65)

where theR and r dependence of Ê f and p̂N L
f , respectively has been suppressed for clarity.

However, p̂N L
bd (ω) and p̂N L

ac (ω) have to be used (instead of p̂N L
bd (ω − νs) and p̂N L

ac (ω + νa))

as these two are the solutions of the coupled equations obtained in Equations 3.53 and 3.54.

Thus, using Ẽs (ω) = Ês (ω + νs) and Ẽ†a (ω) = Ê†a (ω − νa) as obtained from Equations

3.63 and 3.64, one may write

©«
Ẽs (ω)

Ẽ†a (ω)

ª®®®¬ = N
∫

V

©«
Cs (r, ω) ®℘⊥bd p̂N L

bd (ω)

C∗a (r, ω) ®℘⊥ac p̂N L
ac (ω)

ª®®®¬ d3r, (3.66)

where Cs (r, ω) = (ω+νs)
2

c2
eiks (ω+νs ) |R−r |

4πε0 |R−r| and Ca (r, ω) = (ω−νa)
2

c2
eika (ω−νa ) |R−r |

4πε0 |R−r| . The dispersive

wave vectors are ks (ω + νs) =
√
εs (r, ω + νs) (ω+νs)c and ka (ω − νa) =

√
εa (r, ω − νa) (ω−νa)c
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with the dielectric functions

©«
εs (r, ω + νs)

εa (r, ω − νa)

ª®®®¬ = 1 +
N
~ε0

©«
Gs (r, ω) |℘db |2

Gs (r, ω) |℘ca |2

ª®®®¬ , (3.67)

which are derived from the linear parts of p̂N L
bd (ω) and p̂N L

ac (ω). The details on the deriva-

tion of Equation 3.67 is provided in Appendix B. Since the superscript N L (which means

nonlinear) in Equation 3.66 excludes the term proportional to the respective quantum

fields,

p̂N L
bd (ω) = −

©«
4∑

j=1
M4 jĜ j + Xs Ã†ª®¬ , (3.68)

p̂N L
ac (ω) = −

©«
4∑

j=1
M1 jĜ j + XaS̃ª®¬ . (3.69)

3.5 Stokes Spectra

In this section the normal- and antinormal-order spectra of the Stokes and anti-Stokes

fields will be derived. Then, simulation results of the spectra together with discussions

on the findings will be provided in Chapter 6.

3.5.1 Normal-Order Stokes Spectra

For weak fields, only the first term in Equations 3.53 and 3.54 involving the noise

operators are significant. It follows from Equation 3.66 that electric field vector of the

Stokes signal is given by

Ês (ω) = −N ®℘⊥bd

∫
V

Cs (r, ω)
4∑

j=1
M4 j (r, ω) Ĝ j (r, ω) d3r . (3.70)
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Considering the q−component (q = x, y, z) of the Stokes electric field, the normal-order

correlation is

〈
Ê†sq (−ω′) Êsq (ω)

〉
= N2

���℘⊥bd,q

���2 ∫
V
[Cs (r′, ω′)]∗Cs (r, ω)

×
4∑

j,l=1

[
M4 j (r′, ω′)

]∗ M4l (r, ω)
〈[

Ĝ j ′ (r′, ω′)
]†

Ĝl (r, ω)
〉

d3r′d3r . (3.71)

The normal-order noise correlation products in the frequency domain are

〈[
Ĝ j (r′, ω′)

]†
Ĝl (r, ω)

〉
=

〈∫
e−iω′t ′eiνj t ′F†j (r

′, t′) dt′
∫

eiωte−iνlt Fl (r, t) dt
〉

=

∫
e−iω′t ′dt′

∫
eiωt dteiνj t ′e−iνlt

〈
F†j (r

′, t′) Fl (r, t)
〉

=

∫
ei(ω−ω′+νj−νl)t2D j†,l (r, t) dt

(2π)3

N
δ (r′ − r)

=
(2π)3

N
2D̃ j†,l (r, ω′ − ω) δ (r′ − r)

=
(2π)3

N
2D̃n

j,l (r, ω
′ − ω) δ (r′ − r) , (3.72)

where the normal-order diffusion coefficients in the frequency domain are related to that

in time domain via Fourier transformation 2D̃n
j,l (ω) =

∫
2D̃ j†,l (t) eiωt dt and D̃ j†,l (t) =

ei(νj−νl)D j†,l (t) where j, l = ac, ad, bc, bd and j†, l† = ca, da, cb, db. In deriving Equa-

tion 3.72 we have used
〈
F†j (r

′, t′) Fl (r, t)
〉
=
(2π)3

N 2D j†,l (r, t) δ (r′ − r) δ (t′ − t) as taken

from Ooi et al., 2007. The calculations for all the diffusion coefficients are provided in

Appendix C.

In spherical polar coordinates, d3r = r2 sin θdrdθdφ and in the far-field approxima-
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tion,

|R − r| ' R − R̂ · r

= R−R
R
·r

= R − r [sinΘ sin θ cos (Φ − φ) + cosΘ cos θ] . (3.73)

Since

R2 �
���−2Rr [sinΘ sin θ cos (Φ − φ) + cosΘ cos θ] + r2 [sinΘ sin θ cos (Φ − φ) + cosΘ cos θ]2

��� ,
(3.74)

one can approximate |R − r|2 ≈ R2 in the denominator of |Cs (r, ω)|2. Recalling the

relation Sn
sq (ω) =

〈
Ẽ†sq (ω′) Ẽsq (ω)

〉
from section 2.3 and putting Equations 3.71 and

3.72 together, one will have the normal-order Stokes spectrum as

Sn
sq (ω) = AN

���℘⊥bd,q

���2 (ω + νs)4
4∑

j,l=1

∫ ρ

r=0

∫ π

θ=0

∫ 2π

φ=0
e2 Im ks(ω+νs)R̂·r

×M∗4 j (r
′, ω′)M4l (r, ω) 2D̃n

j,l (r, 0) d
3r, (3.75)

where A =
(

1
4πε0c2R

)2
(2π)3 and ρ is the radius of the spherical particle.

If the pump and control laser fields are homogeneous across the particle, the matrix

elements of M would be independent of position and the spectra would be similar to the

one obtained for a single atom. In this case, the normal-order Stokes spectrum would

become

Sn
sq (ω) = AN

���℘⊥bd,q

���2 4π
3
ρ3 (ω + νs)4

4∑
j,l=1

M∗4 j (r
′, ω′)M4l (r, ω) 2D̃n

j,l (r, 0) . (3.76)
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3.5.2 Antinormal-Order Stokes Spectra

To obtain the antinormal-order field correlation, one may start from the antinormal-

order noise correlation

〈
Ĝ j ′ (r′, ω′) Ĝ†l (r, ω)

〉
=
(2π)3

N
2D̃an

j,l (ω
′ − ω) δ (r′ − r) , (3.77)

while the rest remains the same as the normal-order case. The only difference between the

normal- and antinormal-correlation is in the diffusion coefficients where 2D̃n
j,l is replaced

by 2D̃an
j,l = 2D̃ j,l†. Hence, the antinormal-order spectrum for the q−component Stokes

signal is given by

San
sq (ω) = AN

���℘⊥bd,q

���2 4π
3
ρ3 (ω + νs)4

4∑
j,l=1

M4 j (r′, ω′)M∗4l (r, ω) 2D̃an
j,l (r, 0) . (3.78)

3.6 Normal- and Antinormal-Order Anti-Stokes Spectra

From Equation 3.66, the electric field vector of the anti-Stokes signal is given by

Êa (ω) = −N ®℘⊥ac

∫
V

Ca (r, ω)
4∑

j=1
M1 j (r, ω) Ĝ j (r, ω) d3r, (3.79)

where again it is assumed that the anti-Stokes field is weak. Following the same procedures

as in subsection 3.5.1 and 3.5.2, the q−component normal-order power spectrum of the

anti-Stokes signal is obtained as

Sn
aq (ω) = AN

��℘⊥ac,q

��2 (ω − νa)4
4∑

j,l=1

∫
V

e2 Im ka(ω−νa)R̂·rM1 j (r′, ω′)M∗1l (r, ω) 2D̃an
j,l (r, 0) d

3r

(3.80)
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and the antinormal-order anti-Stokes spectrum as

San
aq (ω) = AN

��℘⊥ac,q

��2 (ω − νa)4
4∑

j,l=1

∫
V

e2 Im ka(ω−νa)R̂·rM∗1 j (r
′, ω′)M1l (r, ω) 2D̃n

j,l (r, 0) d
3r .

(3.81)

In summary, the Stokes and anti-Stokes fields emitted from a mesoscopic spherical

particle in double Raman scheme have been analytically solved using quantum Langevin

formalism with noise operators. The analytical expression of the emitted fields obtained

allow us to compute the spectra from which the quantum properties of the Stokes and anti-

Stokes photons could be studied. Simulations of the spectra, particularly their dependence

on the particle size and angle of detection for different cases of laser fields strengths and

detunings are provided and analyzed in Chapter 6.
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CHAPTER 4: QUANTUM SYSTEM INTERACTING WITH METALLIC
PARTICLE: SPECTRA FROM LANGEVIN THEORY

This chapter concerns the main theme of this thesis: the quantum optical properties

of a hybrid nanostructure comprising of a metallic nanoparticle (MP) in close proximity

with a quantum system (QS) in double Raman configuration. Just like in Chapter 3,

quantum Langevin formalism with noise operators will be used to solve for the Stokes

and anti-Stokes fields scattered from the QS but this time the plasmonic effects caused

by a nearby MP will also be taken into account. In general, there will be a long-range

Coulomb interaction between the two particles, thus leading to excitation transfer which

will then result in interesting optical properties such as local field enhancement effect.

The local fields of QS and MP as well as the scattered fields at arbitrary observation point

will first be analytically solved and the then quantum fields spectra will be computed. In

Chapter 6, the quantum properties of the emitted Stokes and anti-Stokes photons will be

interpreted from the spectra and the dependence of the spectra on various parameters such

as interparticle distance, angle of observation, size of the particles, etc. will be analyzed.

The organization of this chapter is as follows. In section 4.1, the model of the system

under study will be established and at the same time, the assumptions or approximations

made throughout the chapter will be highlighted. Then, the analytical form of the scattered

field from a polarizing source under dipole approximation will be derived in section 4.2.

This expression will be helpful in the search for the explicit expression of scattered fields

at arbitrary point in section 4.3 as well as the local fields of QS and MP in section 4.4.

Then, in section 4.5, the scattered Stokes and anti-Stokes fields at arbitrary point will be

put in their final form. The final section of this chapter is on the computation of the Stokes

and anti-Stokes spectra, both of which are going to be simulated and studied in Chapter 6

in order to gain insights into the plasmonic effects on the quantum fields emitted by the
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hybrid nanostructure.

4.1 Model

The model considered in this study consists of a spherical MP of radius a in close

proximity with a spherical QS of radius b. As shown in Figure 4.1, the center of

the QS is located at the origin of the Cartesian coordinate whereas the spherical MP

is located at some point along the x−axis. We define R = RR̂ as the vector of the

observation point from the origin, r = r x̂ as the vector of the center of MP from the

origin and r′ = R − r = r′r̂′ as the vector of the observation point from the center of

MP. Here, the MP is a nanosized particle made of noble-metal such as silver (Ag) with

dispersive dielectric function εMP, f (ω) ( f = s, a) and polarizibility αMP, f (ω). On the

other hand, the QS is modelled as a single collective dipole, practically as a quantum

dot or nanoparticle comprising of atoms in four-level double Raman configuration and

with well-defined Stokes and anti-Stokes dielectric functions εQS, f (ω). The formalism

adopted in this chapter is considered a semiclassical approach in which theMP is treated as

a classical dielectric particle with continuous spectral response whereas the QS is treated

quantum-mechanically using Heisenberg-Langevin formalism as in sections 2.2 and 3.3.

For the sake of simplicity, it is assumed that the dimension of the QS is sufficiently small

such that any finite-size related effect such as laser focusing can be neglected. This means

that in this chapter the Lorentz-Mie theory which account for the spatial dependence of

the incident laser fields will not be incorporated into the formalism as in Chapter 3 and

the QS will be treated as a point particle. Also, to give a more realistic picture of the

MP spectral response the effect of spatial nonlocality (McMahon et al., 2010) will be

considered through the kd-dependent dielectric function, εMP, f (kd, ω) (where kd =
2π
d ,

d = 2a is the diameter of the MP). The retardation effect (Meier &Wokaun, 1983; Moroz,

2009) will also be included via the correction terms in the polarizibility, αMP, f (ω).
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Figure 4.1: Schematic showing the hybrid nanostructure comprising of a quantum system
(QS) located at the origin in close proximity with a metallic nanoparticle (MP) located
at some point along the x−axis. The QS is made of quantum particles in double Raman
configuration. Here, ÊQS, f (0) and ÊMP, f (r) ( f = s, a) are the Stokes and anti-Stokes
local fields of the QS and MP, respectively and Ê f (R) is the scattered field at arbitray
position R. We assume that the incident pump and control laser fields are polarized along
the x−axis and propagate in the +z−direction. The inset shows the energy-level diagram
for the four-level double Raman scheme similar to the one in Figure 3.1(b).

In this model, the electromagnetic fields of the lasers excite the discreet transitions

between the energy levels in the QS and the plasmons on the surface of MP which

provide strong continuous spectral response. A long-range Coulomb interaction exists

between MP and QS which couples the two particles and leads to excitation transfer. The

theoretical treatment given in this chapter considers only the dipole-dipole interaction

although several multipole interactions are also involved in the Coulomb coupling. This

dipole approximation approach in modelling MP-QS interactions has been extensively

used in the literatures (Zhang et al., 2006; Zhang & Govorov, 2011; Artuso & Bryant,

2010; Ridolfo et al., 2010; Sadeghi, 2009; Artuso & Bryant, 2008; Kosionis et al., 2013;

Kosionis et al., 2012; Ooi & Tan, 2013) and is valid when the sizes of both particles

are much smaller than the wavelengths of the radiation fields λs(a) >> a, b as well as
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the interparticle distance r >> a, b (Kosionis et al., 2012; Yan et al., 2008). As a

mathematical proof, it is shown in Appendix E that the dipole-dipole interaction becomes

dominant under these two conditions. The advantage of this approximation is that it

greatly simplifies the rigorous calculations involved without losing the essential physics

behind MP-QS interaction.

4.2 Scattered Fields from a Polarizing Source under Dipole Approximation

In this section, the analytical form of the scattered fields from a polarizing source

within the dipole approximation will be the main focus. The expression obtained will be

useful for the calculation of the scattered field at arbitrary point in section 4.3 and local

fields in section 4.4.

The scattered electric field (in frequency domain) froma polarizing source at arbitrary

point R within the dipole approximation is formally given by (Jackson, 1999)

ÊI, f (R,ω) =
K

ε
e f
I, f (ω)

f̂ I
f (R, ω) e

ikR, (4.1)

where I = QS or MP denotes the source particle, K = 1
4πε0

, k = ω
c is the wavevector and

ε
e f
I, f is the effective dielectric function of the source particle given by

ε
e f
I, f (ω) =

2εb + εI, f (ω)
3εb

, (4.2)

with εb and εI, f as the dielectric function of the background and source particle, respec-

tively. Since one is now dealing with quantum fields (Stokes and anti-Stokes fields), the
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vectorial part of the electric field in Equation 4.1 takes the operator form

f̂ I
f (R, ω) =

k2

R

(
n̂I × p̂I

f (ω)
)
× n̂I (4.3)

+
[
3n̂I

(
n̂I · p̂I

f (ω)
)
− p̂I

f (ω)
] (

1
R3 −

ik
R2

)
,

where p̂I
f is the dipole moment operator and the unit vectors n̂QS = R̂ = R

R and n̂MP =

r̂′ = r′
r ′ =

R−r
|R−r| point along the vectors from the respective source particle (QS or MP) to

the observation point R. It can be shown (Ooi & Tan, 2013) that by using the vector triple

product identity (a × b) ×c = (c · a)b− (c · b) a, Equation 4.3 can be further simplified

into

f̂ I
f (R, ω) = A (R, ω) p̂I

f (ω)+B (R, ω)
(
n̂I · p̂I

f (ω)
)

n̂I (4.4)

with the coefficients given by

A (R, ω) = k2

R
− 1

R3 +
ik
R2 , (4.5)

B (R, ω) = 3
R3 −

3ik
R2 −

k2

R
. (4.6)

The formula for the electric field scattered from a particle in Equation 4.1 is valid for any

vector dipole moment over a wide range of interparticle distances through the terms A

and B, provided R is larger than the dimension of the particle.

The dielectric functions of the QS are related to the density matrix elements via

εQS, f (ω) = 1 +
η f

Ω f
ρ̄ f (ω) , (4.7)

where ηs =
N |℘bd |2
~ε0

and ηa =
N |℘ca |2
~ε0

, N is the number density of the QS, ℘bd and ℘ca are

the dipole moments, Ωs and Ωa are respectively the Rabi frequencies of the Stokes and
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anti-Stokes fields and ρ̄s = ρ̄
st
db and ρ̄a = ρ̄

st
ac are the steady state coherences corresponding

to the Stokes and anti-Stokes transitions, respectively. These steady state coherences are

computed self-consistently from the 16 density matrix equations given in section 2.2 and

the details of the computation are provided in Appendix F.

On the other hand, the dielectric functions of theMP are approximated by (McMahon

et al., 2010)

εMP (kd, ω) = ε∞ −
ω2

p

ω [ω + iΓm] − β2k2
d

, (4.8)

where ε∞ is the dielectric function at infinity, ωp is the plasma frequency, Γm = Γ
∞
m +C vF

a

(Derkachova et al., 2015; Khlebtsov et al., 1996) is the electron relaxation rate that

depends on a the radius of the MP, vF is the Fermi velocity, C is a theory-dependent

quantity, β2 =
3v2

F

D+2 (for free electron gas) (McMahon, Gray, & Schatz, 2010; Fetter,

1973), where D is the dimension of the system (D = 3 in our case), kd =
2π
d , and d = 2a

is the diameter of MP.

A point to note here is that in Equation 4.8, the phenomenological relaxation term

C vF
a has been added to the relaxation rate Γ∞m to account for the increased electron-interface

scattering when the dimension of the MP is smaller or comparable to the mean free path

of the conduction electrons, λm. For gold (Au), λm = 37.7 nm at room temperature (Gall,

2016) and C = 0.33 (Derkachova et al., 2015), whereas for silver, λm = 53.3 nm with

C = 1 (Hövel et al., 1993). Moreover, the size-dependent correction term −β2k2
d has also

been added in the denominator of Equation 4.8 to account for the spatial nonlocality

which originates from the finite penetration of the charges induced by the EM fields in the

MP by an amount not negligible compared to the size of the nanostructure (David & de

Abajo, 2011). This effect is known to cause an effective reduction in permitivity which

leads to blue shift of the spectral peak (Palombaa et al., 2008; Kosionis et al., 2012). Take

note that all the parameters used in this study are for silver (Ag) nanoparticle. For this
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reason, here the effect of interband transition on the dielectric function in Equation 4.8 is

not included because for spherical silver nanoparticle such effect is not important as the

energy position of the LSPR is around 3.5 eV which does not coincide with the interband

transition at around 4.0 eV (Andrews et al., 2010). This approximation will break down

if the incident field with which the silver nanoparticle interacts is a broadband light with

linewidth above 100THz, where interband transitions could occur. Such cases will not

be considered here but instead the incident field is assumed to be a coherent laser with

narrow linewidth, and any other external sources of light that could stimulate interband

transitions are assumed to be too weak to bring any observable features in the dielectric

function.

4.3 Scattered Stokes and Anti-Stokes Fields at Arbitrary Point from the Hybrid
Nanostructure

The scatteredStokes and anti-Stokes fields at arbitrary pointR=R(sinΘ cosΦ, sinΘ sinΦ,

cosΘ) are due to the contribution from the polarization fields emitted by both QS andMP.

Hence, using the vector notation in Figure 4.1, the scattered Stokes Ês (R) and anti-Stokes

Ê†a (R) fields operators at point R are written as

Ê f (R,t) = ÊQS, f (R,t) + ÊMP, f (r′,t) , (4.9)

where the subscript f = s, a refers to the Stokes and anti-Stokes fields, respectively. Since

both QS and MP are modelled as dipole emitters, ÊQS, f (R) and ÊMP, f (r′) are the Stokes

and anti-Stokes polarization fields operators from the QS and MP, respectively.
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Next, by substituting Equations 4.1, 4.4, 4.5 and 4.6 into Equation 4.9 will lead to

Ês (R,ω) =
KeikR

ε
e f
QS,s (ω)

PQS (R, ω) ®℘bdσ̂bd (ω)

+
KαMP,s (ω) eikr ′

ε
e f
MP,s (ω)

PMP (r′, ω) Êloc
MP,s (ω) , (4.10)

Êa (R,ω) =
KeikR

ε
e f
QS,a (ω)

PQS (R, ω) ®℘caσ̂ca (ω)

+
KαMP,a (ω) eikr ′

ε
e f
MP,a (ω)

PMP (r′, ω) Êloc
MP,a (ω) . (4.11)

In the process the expressions for the quantum-mechanical dipole moment operator for

the QS, p̂QS
f = ®℘ f σ̂ f ( f ∈ s, a) and MP, p̂MP

f = αMP, f Êloc
MP, f have been used, where

Êloc
MP, f is the local field of the MP. The dipole matrix elements are ®℘bd = 〈b| d |d〉 and

®℘ca = 〈c| d |a〉 and the coherences operators corresponding to the Stokes and anti-Stokes

transitions are σ̂s = σ̂bd = |b〉 〈d | and σ̂a = σ̂ca = |c〉 〈a|, respectively. The dipole

moment of the MP, p̂MP
f depends on the local fields Êloc

MP, f through the polarizability

αMP, f =
1
K γ f a3 (a is the radius of the MP) where (Moroz, 2009)

γ f =
εMP, f (kd, ω) − εb

εMP, f (kd, ω) + 2εb −
[
εMP, f (kd, ω) − εb

]
x2 − i 2x3

3
[
εMP, f (kd, ω) − εb

] , (4.12)

with εMP, f (kd, ω) and εb as the dielectric functions of MP and background, respectively

and x = ka where k = 2π
λ and a is the MP radius. Note that if the last two terms

−
[
εMP, f (kd, ω) − εb

]
x2 − i 2x3

3
[
εMP, f (kd, ω) − εb

]
in the denominator of Equation 4.12

are ignored, the original expression γ f =
εMP, f −εb
εMP, f +2εb as obtained from the well-known

Clausius-Mossotti relation will recover. The x2−dependent term is added to account for

the retardation effect which arises from the dephasing between the fields emitted by
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different parts of the MP sphere whereas the x3−dependent term is the radiative reaction

correction which applies to any oscillating dipole (Moroz, 2009). These two terms can

be ignored when the size of the MP is sufficiently small such that x � 1.

The matrix PQS in Equations 4.10 and 4.11 is obtained by first representing all the

vectors as 3 × 1 matrices, such as

p̂QS
f =

©«
p̂QS

f ,x

p̂QS
f ,y

p̂QS
f ,z

ª®®®®®®®¬
(4.13)

and then simplifying Equation 4.4 usingmatrix multiplication. This provides a convenient

way for evaluating each vector component of the fields without involving too many unit

vectors such as ı̂, ̂ and k̂. One will finally arrive at

PQS (R, ω) = A (R, ω) I + B (R, ω)

©«
n2

QS,x nQS,ynQS,x nQS,znQS,x

nQS,xnQS,y n2
QS,y nQS,znQS,y

nQS,xnQS,z nQS,ynQS,z n2
QS,z

ª®®®®®®®¬
, (4.14)

where A (R, ω) and B (R, ω) are respectively given byEquations 4.5 and 4.6, nQS,q (q = x, y, z)

is the Cartesian component of the unit vectors n̂QS = R̂ = R
R , from which PQS acquires its

R dependence. PMP (r′, ω) can be obtained by simply replacing all the R’s in Equation

4.14 by r′ and nQS,q by nMP,q. Also, according to Figure 4.1, r′ = R−r x̂.

It is obvious from Equations 4.10 and 4.11 that the scattered Stokes and anti-Stokes

fields depend directly on the local fields at MP, Êloc
MP, f as well as the coherences operators

σ̂bd (ω) and σ̂ca (ω) whose analytical solutions depend on the local fields at the position

of QS as given in Equations 3.53 and 3.54 in section 3.3 in their slowly varying form.
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4.4 Exact Vectorial Local Fields

In this section, the local electric fields of the QS and MP which are required to

evaluate the scattered Stokes and anti-Stokes electric fields in Equations 4.10 and 4.11 will

be derived. Since the system considered here contains only two particles, the scatterings

between the two particles lead to only two coupled equations. If there weremany particles,

there would be multiple scatterings involving many coupled equations.

4.4.1 Local Fields of Metallic Nanoparticle

The local electric fields of the MP, Êloc
MP, f ( f = s, a) are due to the intrinsic quantum

Stokes and anti-Stokes fields Ê f 0 (which are independent of the exciton-plasmon coupling)

as well as the polarization fields emitted by the QS. Again, Equation 4.1 is used to write

the local Stokes and anti-Stokes electric fields at the MP as

Êloc
MP,s (r, ω) = Ês0 (ω) +

Keikr

ε
e f
QS,s(ω)

P (r,ω) ®℘bdσ̂bd (ω) , (4.15)

Êloc
MP,a (r, ω) = Êa0 (ω) +

Keikr

ε
e f
QS,a(ω)

P (r,ω) ®℘caσ̂ca (ω) , (4.16)

with the definition of the matrix P (r, ω) given by

P (r, ω) =

©«
A (r, ω) + B (r, ω) 0 0

0 A (r, ω) 0

0 0 A (r, ω)

ª®®®®®®®¬
. (4.17)

Here, the definitions for A (r, ω) and B (r, ω) are the same as in Equations 4.5 and 4.6

except that all the R’s are replaced by r , the separation distance between QS and MP.

Note that Equation 4.17 is obtained from Equation 4.14 by simply taking into account

the fact that both QS and MP are placed along the x−axis (nQS,x = 1, nMP,x = −1).
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Equations 4.15 and 4.16 are derived by including the dipole moment operator for the

QS, p̂QS
f = ®℘ f σ̂ f ( f = s, a) mentioned earlier which couples the local fields at MP to the

coherences operators at QS.

4.4.2 Local Fields of Quantum Emitter

Similarly, the local electric fields at the QS Êloc
QS, f are due to the intrinsic quantum

fields from the QS as well as the polarization fields from the MP. They are written as

Êloc
QS,s (r, ω) = Ês0 (ω) +

KαMP,s(ω)
ε

e f
MP,s(ω)

P (r, ω) Êloc
MP,s (ω) e

ikr, (4.18)

Êloc
QS,a (r, ω) = Êa0 (ω) +

KαMP,a(ω)
ε

e f
MP,a(ω)

P (r, ω) Êloc
MP,a (ω) e

ikr . (4.19)

In deriving Equations 4.18 and 4.19, the dipole moment operator for the MP, p̂MP
f =

αMP, f Êloc
MP, f which couples the local fields at QS to the local fields at MP has been used.

Substitution of the expressions for the local fields at MP in Equations 4.15 and 4.16 into

Equations 4.18 and 4.19, respectively yields

Êloc
QS,s (r, ω) = Ns (r, ω) Ês0 (ω) + Rs (r,ω) σ̂bd (ω) , (4.20)

Êloc
QS,a (r, ω) = Na (r, ω) Êa0 (ω) + Ra (r,ω) σ̂ca (ω) , (4.21)

where

N f (r, ω) = I +
KαMP, f (ω)
ε

e f
MP, f (ω)

P (r, ω) eikr (4.22)

and

R f (r,ω) =
K2αMP, f (ω)e2ikr

ε
e f
MP, f (ω)ε

e f
QS, f (ω)

P2 (r, ω) ®℘g . (4.23)

The subscript g in ®℘g is defined by g ( f ) = bd (s) , ca (a).
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4.5 Scattered Stokes and Anti-Stokes Fields: Final Form

Now, the analytical expressions of the scattered Stokes and anti-Stokes fields will be

derived given the expressions of the local fields in Equations 4.15 and 4.16. The vectorial

scattered Stokes and anti-Stokes fields at point R (in frequency domain) are found to be

Ês (R,ω) =Ms (R, r, r′, ω) σ̂bd (ω) + D̂s (r′, ω) , (4.24)

Êa (R,ω) =Ma (R, r, r′, ω) σ̂ca (ω) + D̂a (r′, ω) , (4.25)

where

M f (R, r, r′, ω) =
K

ε
e f
QS, f (ω)

PQS (R, ω) ®℘geikR

+
K2αMP, f (ω)

ε
e f
MP, f (ω) ε

e f
QS, f (ω)

PMP (r′, ω) P (r,ω) ®℘geik(r+r ′), (4.26)

D̂ f (r′, ω) = Q f (r′, ω) Ê f 0 (ω) , (4.27)

Q f (r′, ω) = κ f PMP (r′, ω) , (4.28)

and

κ f =
KαMP, f (ω)
ε

e f
MP, f (ω)

eikr ′ . (4.29)

In order tomake use of the results in Equations 3.53 and 3.54, the Fourier transform of

the slowly varying envelope fields operators defined by Ê f (R, t) = Ẽ f (R, t)e−iνf t instead

of the original fields operators in Equations 4.24 and 4.25 have to be computed. The
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Fourier transforms of the original fields and coherences are related to their envelopes via

©«
σ̂bd (ω)

Ês (ω)

Ês0 (ω)

ª®®®®®®®¬
=

∫
eiωte−iνst

©«
p̂bd (t)

Ẽs (t)

Ẽs0 (t)

ª®®®®®®®¬
dt =

©«
p̂bd (ω − νs)

Ẽs (ω − νs)

Ẽs0 (ω − νs)

ª®®®®®®®¬
, (4.30)

©«
σ̂ca (ω)

Êa (ω)

Êa0 (ω)

ª®®®®®®®¬
=

∫
eiωte−iνat

©«
p̂ca (t)

Ẽa (t)

Ẽa0 (t)

ª®®®®®®®¬
dt =

©«
p̂ca (ω − νa)

Ẽa (ω − νa)

Ẽa0 (ω − νa)

ª®®®®®®®¬
. (4.31)

Hence, Equations 4.24 and 4.25 can be rewritten as

Ẽs (ω − νs) =Ms (ω) p̂bd (ω − νs) +Qs (ω) Ẽs0 (ω − νs) , (4.32)

Ẽa (ω − νa) =Ma (ω) p̂ca (ω − νa) +Qa (ω) Ẽa0 (ω − νa) . (4.33)

However, the solutions given in Equations 3.53 and 3.54 are p̂bd (ω) and p̂ca (ω)

instead of p̂bd (ω − νs) and p̂ca (ω − νa). Hence, the Fourier frequency in the entire

expression has to be shifted and doing so leads to

Ẽs (ω) =Ms (ω + νs) p̂bd (ω) + D̃s (ω) , (4.34)

Ẽa (ω) =Ma (ω + νa) p̂ca (ω) + D̃a (ω) , (4.35)

where

D̃ f (ω) = Q f
(
ω + ν f

)
Ẽ f 0 (ω) . (4.36)
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4.6 Stokes and Anti-Stokes Spectra

In this section, the normal-order Stokes and anti-Stokes spectra of the hybrid nanos-

tructure will be computed. It is already known from section 2.3 that the q-component

(q = x, y, z) spectra for the Stokes and anti-Stokes fields at position R are defined as

S f q (R,ω) =
〈
Ê†f q(R,ω)Ê f q(R,ω)

〉
, (4.37)

with
〈
Ê†f (R,ω) · Ê f (R,ω)

〉
=

∑
q=x,y,z S f q (R,ω). This means that one needs to evaluate

the q-component of the fields correlations
〈
Ê†f q(ω)Ê f q(ω)

〉
. From the scattered fields

expressions in Equations 4.34 and 4.35, one obtains

〈
Ê†sq(ω′)Êsq(ω)

〉
= Csn̄s

∑
m=x,y,z

��Z s
qm (ω + νs)

��2 + ��Msq (ω + νs)
��2 〈

p̂†bd (ω) p̂bd (ω)
〉

+Msq (ω + νs)
〈
D̃†sq (ω) p̂bd (ω)

〉
+ M∗sq (ω + νs)

〈
p̂†bd (ω) D̃sq (ω)

〉
(4.38)

and

〈
Ẽ†aq (ω) Ẽaq (ω)

〉
= Can̄a

∑
m=x,y,z

��Za
qm (ω + νa)

��2 + ��Maq (ω + νa)
��2 〈

p̂ac (ω) p̂†ac (ω)
〉

+Maq (ω + νa)
〈
D̃†aq (ω) p̂†ac (ω)

〉
+ M∗aq (ω + νa)

〈
p̂ac (ω) D̃aq (ω)

〉
. (4.39)

Here, M f q is the q-component of the vector quantity in Equation 4.26, C f =
~νf π

ε0 Ac ,

n̄ f =
[
exp

(
θ f

)
− 1

]−1
, θ f = ~ν f /kBT is the average number of thermal photons at

temperature T (in Kelvin), ν f ( f = s, a) are the carrier frequencies of the Stokes and
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anti-Stokes fields, A is the effective interaction area and Z f
qm is the element of the matrix

Z f (ω) =

©«
1 + κ f (ω) PMP

11 (ω) κ f (ω) PMP
12 (ω) κ f (ω) PMP

13 (ω)

κ f (ω) PMP
21 (ω) 1 + κ f (ω) PMP

22 (ω) κ f (ω) PMP
23 (ω)

κ f (ω) PMP
31 (ω) κ f (ω) PMP

32 (ω) 1 + κ f (ω) PMP
33 (ω)

ª®®®®®®®¬
. (4.40)

The subscript q and m (q,m = x, y, z) in Z f
qm (ω) are related to the elements of the

matrix Z f ( f = s, a) via the relation Z f
xx = Z f

11, Z f
xy = Z f

12, Z f
yy = Z f

22, Z f
zx = Z f

31, ...., etc.

Matrix Z f actually comes from the new definition for D̃ f q (ω) as

D̃ f q (ω) =
∑

m=x,y,z

Z f
qm

(
ω + ν f

)
Ẽ f 0m (ω) . (4.41)

Now6operator products are left:
〈
p̂†bd (ω) p̂bd (ω)

〉
,
〈
D̃†sq (ω) p̂bd (ω)

〉
,
〈
p̂†bd (ω) D̃sq (ω)

〉
,〈

p̂ac (ω) p̂†ac (ω)
〉
,
〈
D̃†aq (ω) p̂†ac (ω)

〉
and

〈
p̂ac (ω) D̃aq (ω)

〉
to be evaluated. After a rather

rigorous calculations, the atomic operators products are found to be

〈
p̂†bd (ω) p̂bd (ω)

〉
=

4∑
i=1

H4i Ji, (4.42)

〈
p̂ac (ω) p̂†ac (ω)

〉
=

4∑
i=1

H∗1iKi, (4.43)

where the matrices H, J and K are given in Appendix G. Other operator products are
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given by

〈
D̃†sq (ω) p̂bd (ω)

〉
= −Csn̄sGs

∑
m

gsmNsm (ω + νs) Z s∗
qm (ω + νs)

−Xs

∑
m

R∗aZ s∗
qm (ω + νs)

〈
Ẽ†s0m (ω) p̂ac (ω)

〉
−Gs

∑
m

Rs Z s∗
qm (ω + νs)

〈
Ẽ†s0m (ω) p̂bd (ω)

〉
, (4.44)

〈
D̃†aq (ω) p̂†ac (ω)

〉
= −Can̄aG∗a

∑
m

gamNam (ω + νa) Za∗
qm (ω + νa)

−G∗a
∑

m

RaZa∗
qm (ω + νa)

〈
Ẽ†a0m (ω) p̂

†
ac (ω)

〉
−X∗a

∑
m

R∗s Za∗
qm (ω + νa)

〈
Ẽ†a0m (ω) p̂

†
bd (ω)

〉
, (4.45)

where Ra =
∑

q′ gaq′Raq′ (ω + νa) ,Rs =
∑

q′ gsq′Rsq′ (ω + νs) and the other two terms

can be obtained as 〈
p̂†bd (ω) D̃sq (ω)

〉
=

〈
D̃†sq (ω) p̂bd (ω)

〉∗
, (4.46)

〈
p̂ac (ω) D̃aq (ω)

〉
=

〈
D̃†aq (ω) p̂†ac (ω)

〉∗
. (4.47)

The solutions for the field-atomic operator products (such as
〈
Ẽ†s0m (ω) p̂ac (ω)

〉
) in〈

D̃†sq (ω) p̂bd (ω)
〉
and

〈
D̃†aq (ω) p̂†ac (ω)

〉
are given in Appendix H.

To summarize, the spectra of the scattered fields froma hybrid nanostructure compris-

ing of a MP in close proximity with a QS in double Raman scheme have been analytically

solved, taking into account the long-range Coulomb interaction between the two particles.

The spectra obtained will allow us to gain insights into the quantum properties of the

emitted Stokes and anti-Stokes at arbitrary position, particularly the plasmonic enhance-
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ment effects caused by the presence of the MP. These will be discussed in Chapter 6

where simulations showing the dependence of the spectra on various parameters such as

the interparticle distance, size of the particles, angle of observation, etc. will be presented

and analyzed.
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CHAPTER 5: QUANTUM SYSTEM-METALLIC PARTICLE INTERACTION:
ANALYTICAL THEORY FOR THE GENERAL CASE

In this chapter, a general analytical theory for the problem of metallic nanoparticle-

quantum system (MP-QS) interaction which includes electric multipole effects and is valid

for arbitrary interparticle separation, observation distance as well as particle shape and

size will be developed. Most of the previous theoretical studies on MP-QS interaction

were based on dipole approximation which is only valid for the case when both the

interparticle separation and the wavelength of the electromagnetic field is much larger

compared to the sizes of the components. However, the most interesting regime of strong

MP-QS interaction occurs when the interparticle distance is sufficiently small such that

the dipole approximation is no longer valid. To describe this interesting regime of strong

coupling, in this chapter the Coulomb interaction between MP and QS will be treated

exactly by including electric multipole effects instead of making the dipole approximation

as in chapter 4. Furthermore, most of the related studies, including the one with multipole

effects (Yan et al., 2008), neglect the finite size effects due to the geometry of the MP and

QS and consider only the far-field of the hybrid nanostructure. This causes the theories

developed to lose generality since they could be invalid for near-field and for the cases

where the sizes of the MP and QS are comparable to the wavelength. To overcome this,

the formalism used in this chapter will take into account the finite size of the particles

via the volume integral and at the same time, will be valid for near-, intermediate- and

far-field zone. The ultimate aim is to obtain the exact and general solution to the problem

of MP-QS interaction.

Section 5.1 concerns themodel of the problem studied in this chapter. This is followed

by section 5.2 which gives the general expression for the scattered multipole field from

the MP and QS at arbitrary position R. Derivations of the local fields of MP and QS are
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provided in section 5.3. Finally in section 5.4, the expression for the scattered multipole

field at point R will be written down in its final form. The general expression obtained

will be useful for studying MP-QS interaction involving any energy level configuration of

the QS, any sizes and shapes of the QS and MP, any value of interparticle separation and

arbitrary observation point in the Cartesian coordinate.

5.1 Model

Figure 5.1 shows the hybrid system under consideration in this chapter. Similar to

the system in chapter 4, the system considered here consists of a QS of radius b with

its center located at the origin of the Cartesian coordinate and a spherical MP of radius

a with its center located at some point along the x−axis. However, unlike the previous

chapter, the finite dimensions of both QS and MP will now be considered. For this

reason, the vector notation used in Figure 4.1 has to be modified. As shown in Figure

5.1, R = RR̂ is the vector of the observation point from the origin, r =rr̂ is the vector

of the electric multipoles within the QS, R′ = R′R̂′ is the vector of the observation point

from the center of MP, r′=r′r̂′ is the vector of the electric multipoles within the MP and

d = dx̂ is the vector of the center of MP from the origin. The semiclassical approach will

again be utilized in this study where the MP is modelled using classical electrodynamics

whereas the QS is treated quantum-mechanically using either the density matrix equations

or Heisenberg-Langevin formalism. Here, the energy level configuration of the QS will

not be specified like what has been done in chapter 4 but rather keeping our formalism

general by leaving the atomic coherences associated with the field as ρi j , where i and j

are the labels for the row and column of the density matrix ρ̂ which describes the state of

the QS. Hence, the formalism developed in this chapter will concern only the scattered

and local fields and not the quantum-mechanical solution associated with the QS.
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Figure 5.1: Schematic of the hybrid nanostructure under study. Note that the model
is similar to the one in Figure 4.1 except that the vector notations have been changed to
account for the finite sizes of theMP andQS and theQS can be in any energy configuration.

5.2 Scattered Multipole Fields at Arbitrary Distance from a Polarizing Source of
Arbitrary Size: General Form

The field scattered from a polarizing source can be obtained from solution of the

Maxwell’s equations as highlighted in section 3.2. From Equation 3.16, the nonhomoge-

neous wave equation is given by

(
∇2 − 1

c2
∂2

∂t2

)
E (R, t) = − 1

ε0

(
∇∇ · − 1

c2
∂2

∂t2

)
P (R, t) . (5.1)

After Fourier transformation into the frequency domain usingE (R, ω) =
∫ ∞
−∞ E (R, t) eiωt dt,

one will get the nonhomogeneous wave equation in frequency domain

(
∇2 +

ω2

c2

)
E (R, ω) = − 1

ε0

(
∇∇ · +ω

2

c2

)
P (R, ω) . (5.2)
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Using the Green’s function

G (R, ω, r, ω′) = 1
|R − r| δ (ω − ω

′) , (5.3)

the electric field outside the particle can be solved as

E (R, ω) =
∫

V

[
∇∇ · +k2 (ω)

] P (r, ω) eik(ω)|R−r|

4πε0 |R − r| d3r, (5.4)

where k (ω) = ω/c. In spherical polar coordinates, the exponential term on the RHS of

Equation 5.4 can be expanded as (Jackson, 1999)

eik(ω)|R−r|

|R − r| = 4πik
∞∑

l=0
h(1)i (kR) jl (kr)

l∑
m=−l

Y ∗lm (θ, φ)Ylm (Θ,Φ) , (5.5)

where the value of l = 0, 1, 2, 3, ... actually corresponds to different order of multipole

polarization in the source particle. For example, l = 0 is for dipole, l = 1 is for quadrupole,

l = 2 is for octupole, and so on. Hence, by keeping all the terms in l, the electric multipole

effects are automatically included into the scattered field expression. Also, the volume

integration
∫

V over the dimension of the source particle at the RHS of Equation 5.4 means

that the finite size of the source particle has already been taken into account. Furthermore,

by not making the far-field approximation |R − r| ' R− R̂ ·r and using the exact expression

for |R − r| instead, Equation 5.4 will be valid for any distance outside the particle, not

just at the far-field zone. After all of the above considerations, Equation 5.4 is now

considered the exact scattered multipole field expression valid for arbitrary particle size

and observation distance.
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Now, the multipole field scattered from the QS will be derived using the vector

notation in Figure 5.1. Starting from the expression for microscopic polarization,

PQS (r, ω) = NQS ®℘ρi j (r, ω) , (5.6)

where NQS is the number density of QS, ®℘ is the dipole moment and ρi j (r, ω) is the

density matrix element (atomic coherence) obtained from the ith row and jth column

of the density matrix ρ̂ (r, ω) that describes the evolution of the atomic states. When

Equation 5.6 is substituted into Equation 5.4, one gets

EQS (R, ω) = X (ω)
∫ [
∇∇ · +k2 (ω)

] ®℘ρi j (r, ω) eik(ω)|R−r|

|R − r| d3r, (5.7)

where X (ω) = NQS

4πε0ε
e f
QS
(ω)
, ε

e f
QS (ω) =

2εb+εQS(ω)
3εb is the effective dielectric function of

QS which consists of the dielectric function of the QS εQS (ω) as well as the back-

ground permitivity εb, R = (X,Y, Z)=R (sinΘ cosΦ, sinΘ sinΦ, cosΘ), r = (x, y, z) =

r(sin θ cos φ, sin θ sin φ, cos θ) and |R − r| =
√
∆2

x + ∆
2
y + ∆

2
z with ∆x = X − x, etc.

As for the field scattered from the MP, the expression for polarization PMP (r′, ω) =

αMPEMP (r′, ω) which couples with the local field of the MP will be used instead of

Equation 5.6. This gives the result

EMP (R′, ω) = Y (ω)
∫ [
∇′∇′ · +k′2 (ω)

] EMP (r′, ω) eik ′(ω)|R′−r′ |

|R′−r′| d3r′, (5.8)

whereY (ω) = αMP

4πε0ε
e f
MP

, αMP is the polarizibility of theMP, εe f
MP (ω) =

2εb+εMP(ω)
3εb is the ef-

fective dielectric function of MP, R′= (X′,Y ′, Z′)=R′ (sinΘ′ cosΦ′, sinΘ′ sinΦ′, cosΘ′),

r′= (x′, y′, z′) = r′ (sin θ′ cos φ′, sin θ′ sin φ′, cos θ′) and |R′ − r′| =
√
∆′2x + ∆

′2
y + ∆

′2
z with

∆′x = X′ − x′, etc. Note that in Equations 5.7 and 5.8, k (ω) and ∇ are defined as the
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wavevector and Del operator associated with the QS whereas k′ (ω) and ∇′ are the corre-

sponding quantity and operator associated with the MP. The operators ∇ and ∇′ operate

on coordinates of the observation point R and R′, respectively.

At this point, it is appropriate to focus on the nonlocal dielectric response of the

MP (David & de Abajo, 2011; de Abajo, 2008) which is taken into account via the

(wavevector) k−dependence of theMP dielectric function εMP (ω) asmentioned in section

4.2. Such effect will become important when the size of the MP is much smaller than the

wavelength. Reader should recall that in the local treatment, the dielectric function of the

MP is provided by the Drude formula

εMP (ω) = ε∞ −
ω2

p

ω [ω + iΓm]
, (5.9)

where ε∞ is the dielectric function at infinity, ωp is the plasma frequency, Γm = Γ
∞
m +C vF

a

is the electron relaxation rate that depends on a the radius of the MP (Derkachova et

al., 2015; Khlebtsov et al., 1996), vF is the Fermi velocity and C is a theory-dependent

quantity as mentioned in section 4.2. In the nonlocal case, however, the MP dielectric

function is given by (Dasgupta & Fuchs, 1981; Kosionis, et al., 2012)

εMP (ω) =
[

6
π

a
∫ ∞

0

j2
1 (ka)

εMP (k, ω)
dk

]−1

, (5.10)

where j1 is the first-order spherical Bessel function, k = |k| and εMP (k, ω) is the nonlocal

dielectric function in k−space, which according to the hydrodynamic model (Agarwal &

ONeil, 1983; Fuchs & Claro, 1987), is given by

εMP (k, ω) = ε∞ −
ω2

p

ω [ω + iΓm] − β2k2 . (5.11)
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In this expression, β2 =
3v2

F

D+2 (McMahon et al., 2010; Fetter, 1973)with D as the dimension

of the system (D = 3 in our three-dimensional case). The nonlocal dielectric function

in Equation 5.10 can be derived from the problem of a small MP interacting with an

electrostatic field where dipole approximation can be made. Its detailed derivation is

provided in Appendix I. Substituting Equation 5.11 into Equation 5.10,

εMP (ω) =
[

1
εMP,D (ω)

+ 3
(

aωp

βu

)2
I3/2 (u)K3/2 (u)

]−1

, (5.12)

where Iν and Kν are the modified Bessel functions, εMP,D (ω) is given by the Drude

formula in Equation 5.9 and

u =
a
√
ω2

p − ω (ω + iΓm)
β

. (5.13)

Lastly, the total multipole field at arbitrary position R is due to the contribution from

both QS and MP. Hence, its expression is just the addition of Equations 5.7 and 5.8,

E (R, ω) = EQS (R, ω) + EMP (R′, ω)

= X (ω)
∫ [
∇∇ · +k2 (ω)

] ®℘ρi j (r, ω) eik(ω)|R−r|

|R − r| d3r

+Y (ω)
∫ [
∇′∇′ · +k′2 (ω)

] EMP (r′, ω) eik ′(ω)|R′−r′ |

|R′−r′| d3r′. (5.14)

5.3 Local Fields of Metallic Nanoparticle and Quantum System

Since Equation 5.14 couples to the local field of MP, EMP (r′, ω), the next task is

to search for the analytical form of EMP (r′, ω) as in section 4.4. The local field of MP

is due to the intrinsic field (which is independent of the MP-QS coupling) as well as the
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polarization field from the QS. One may write this as

EMP (r′, ω) = E0
MP (r

′, ω) + EQS (d, ω)

= E0
MP (r

′, ω) + X (ω)
∫ [
∇d∇d · +k2 (ω)

] ®℘ρi j (r, ω) eik(ω)|d−r|

|d − r| d3r, (5.15)

where from the diagram, d= (d, 0, 0) and therefore |d − r| =
√
(d − x)2 + y2 + z2. The

Del operator ∇d acts on d while the wavevector k (ω) is associated with the field from the

QS. Though not explicitly written here, the atomic coherence ρi j (r, ω) will most likely

contain the local field of QS, EQS (r, ω). Hence, it is of interest to search for EQS (r, ω).

The local field of QS is due to the intrinsic field and the polarization field from the

MP, which can be written as

EQS (r, ω) = E0
QS (r, ω) + EMP (d, ω)

= E0
QS (r, ω) + Y (ω)

∫ [
∇d∇d · +k′2 (ω)

] EMP (r′, ω) eik ′(ω)|d−r′ |

|d − r′| d3r′, (5.16)

where |d − r′| =
√
(d − x′)2 + y′2 + z′2 and the wavevector k′ (ω) is associated with the

field from the MP. This shows that Equations 5.15 and 5.16 form two coupled equations

which describe the long range Coulomb coupling between MP and QS. Substituting

Equation 5.15 into Equation 5.16,

EQS (r, ω) = E0
QS (r, ω) + Y (ω)

∫ [
∇d∇d · +k′2 (ω)

] E0
MP (r

′, ω) eik ′(ω)|d−r′ |

|d − r′| d3r′

+X (ω)Y (ω)
∫ [
∇d∇d · +k′2 (ω)

]
×

{∫ [
∇d∇d · +k2 (ω)

] ®℘ρi j (r, ω) eik(ω)|d−r|

|d − r| d3r

}
eik ′(ω)|d−r′ |

|d − r′| d3r′. (5.17)
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A point to note here is that it has been mentioned earlier that the coherence ρ (r, ω) will

mostly contain EQS (r, ω). This causes Equation 5.17 to be highly nonlinear and obtaining

the analytical solution for EQS (r, ω) would be a tedious task.

5.4 Scattered Multipole Fields at Arbitrary Point: Final Form

After getting the expression for the local fields of MP and QS, one can further expand

Equation 5.14 into

E (R, ω) = EQS (R, ω) + EMP (R′, ω) , (5.18)

where

EQS (R, ω) = X (ω)
∫ [
∇∇ · +k2 (ω)

] ®℘ρi j (r, ω) eik(ω)|R−r|

|R − r| d3r, (5.19)

EMP (R′, ω) = Y (ω)
∫ [
∇′∇′ · +k′2 (ω)

] E0
MP (r

′, ω) eik ′(ω)|R−d−r′ |

|R − d − r′| d3r′

+X (ω)Y (ω)
∫ [
∇′∇′ · +k′2 (ω)

]
×

{∫ [
∇∇ · +k2 (ω)

] ®℘ρi j (r, ω) eik(ω)|d−r|

|d − r| d3r

}
eik ′(ω)|R−d−r′ |

|R − d − r′| d3r′, (5.20)

and the vector relation R′ = R − d which can easily be obtained from Figure 5.1 has been

used. For problems dealing with quantum fields, the electric fields vectors in Equation

5.18 can be written in operator form

Ê (R, ω) = ÊQS (R, ω) + ÊMP (R′, ω) , (5.21)

where

ÊQS (R, ω) = X (ω)
∫ [
∇∇ · +k2 (ω)

] ®℘σ̂ji (r, ω) eik(ω)|R−r|

|R − r| d3r, (5.22)
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ÊMP (R′, ω) = Y (ω)
∫ [
∇′∇′ · +k′2 (ω)

] Ê0
MP (r

′, ω) eik ′(ω)|R−d−r′ |

|R − d − r′| d3r′

+X (ω)Y (ω)
∫ [
∇′∇′ · +k′2 (ω)

]
×

{∫ [
∇∇ · +k2 (ω)

] ®℘σ̂ji (r, ω) eik(ω)|d−r|

|d − r| d3r

}
eik ′(ω)|R−d−r′ |

|R − d − r′| d3r′, (5.23)

with σ̂ji (r, ω) = | j〉 〈i | as the atomic coherence operator obtained from Heisenberg

equations.

The result in Equation 5.18 can be further solved once the atomic coherence ρi j (r, ω)

is known. Similarly, knowledge of the analytical form of atomic coherence operator

σ̂ji (r, ω) will bring about the solution for Equation 5.21. Once the scattered field ex-

pression is obtained, the spectra of the fields can be computed and analyzed. Study of

the spectra will provide insights into the quantum properties of the emitted fields and the

plasmonic effects caused by the MP.
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CHAPTER 6: RESULTS AND DISCUSSION

This chapter presents theMATLAB simulations of the Stokes and anti-Stokes spectra

derived in Chapter 3 and 4 along with the discussion of the results. The first section of

this chapter focuses on the spectra of the Stokes and anti-Stokes fields (Equations 3.76 and

3.80) emitted from a mesoscopic spherical particle composed of atoms in double Raman

configuration without the presence of the metallic nanoparticle (MP). In particular, the

variation of the spectra across different radii of the mesoscopic particle for various cases

of laser fields strengths will be studied. The directionality of the fields emission will

also be studied and analyzed from the angular dependence of the spectra. The next

section is concerned with the Stokes and anti-Stokes spectra (Equation 4.37) of a hybrid

nanostructure comprising of a quantum system (QS) in double Raman scheme in close

proximity with a metallic nanoparticle (MP). The Stokes and anti-Stokes fields spectra of

the hybrid nanostructure are shown to change with the interparticle distance r , observation

angles Φ and Θ as well as number density N . Furthermore, effect of the configuration of

the laser parameters and the presence of surface plasmon resonance (SPR) on the spectra

will be studied. In both sections, analysis and interpretation of the results are provided.

6.1 Quantum Spectra of Raman Photon Pair from aMesoscopic Spherical Particle

In this section, the results obtained from the simulations of the quantum spectra in

Equations 3.76 and 3.80 will be discussed. It is plot in Figures 6.1-6.7 the normal-order

spectra of the Stokes and anti-Stokes fields emitted by a mesoscopic spherical particle of

radius ρ containing atoms in double Raman configuration. In particular, Figure 6.1 shows

the change of the spectra with particle radius ρ for the case without linear dispersion

where the permitivity ε f ( f = s, a) of the mesoscopic particle is taken to be a constant

value (independent of frequency). On the other hand, Figures 6.3 and 6.4 show similar
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plot for the case where the frequency dependence of the wavevector is included through

ε f (ω) in Equation 3.67. The angular dependence of the spectra is shown in Figures 6.5,

6.6 and 6.7 where linear dispersion is included. In all of the above-mentioned figures the

spectra for four different cases of laser parameters at resonance
(
∆p = ∆s = ∆c = ∆a = 0

)
are studied: (i) weak and symmetric pump and control laser strengths Ωp = Ωc = γac,

(ii) strong and symmetric laser strengths Ωp = Ωc = 10γac, (iii) asymmetric laser

strengths Ωp = 3γac,Ωc = 7γac and (iv) the opposite Ωp = 7γac,Ωc = 3γac. Other cases

include Raman electromagnetically induced transparency (EIT) scheme with ∆p = ∆s =

−20γac,∆c = ∆a = 0,Ωp = γac and Ωc = 10γac as well as off-resonance configurations

∆p = ∆s = ∆c = ∆a = −20γac,Ωp = γac and Ωc = 3γac. Also in these figures, instead

of plotting the original spectra Ss(a)q (ω) in Equations 3.76 and 3.80, the dimensionless

spectra (denoted by an overbar) given by

S̄s(a)q (ω) = Ss(a)q (ω)
Γdb(ac)

ANV
��℘db(ac)

��2 ν4
s(a)

, (6.1)

is plotted where the subscript s and a denote Stokes and anti-Stokes fields, respectively,

q = x, y, z denotes the Cartesian components, A =
(

1
4πε0c2R

)2
(2π)3, N is the number

density of the mesoscopic particle, V = 4π
3 ρ

3 is the volume of the particle, ℘db(ac) is

the dipole moment associated with the Stokes (anti-Stokes) field and νs(a) is the Stokes

(anti-Stokes) carrier frequency. As mentioned in section 3.3, due to the finite size of the

spherical particle, the focusing effect which gives rise to spatially inhomogeneous pump

and control laser fields inside the particle becomes significant. Here, this effect is taken

into account using the Mie theory provided in Appendix A with np= 1.5 and nc = 1.4

(refractive indices associated with the pump and control laser fields inside the mesoscopic

particle). The main features of the spectra together with their physical interpretation will
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be discussed in the following subsections.

Figure 6.1: The x−component of the normal-order Stokes spectra (identical to anti-Stokes
spectra) versus particle radius ρ without linear dispersion (with constant permitivities
np = 1.5, nc = 1.4, ns = na = 1.3) for cases of resonant

(
∆p = ∆s = ∆c = ∆a = 0

)
and

symmetric pump and control laser fields (a) Ωp = Ωc = γac and (b) Ωp = Ωc = 10γac;
resonant and asymmetric laser fields (c) Ωp = 3γac,Ωc = 7γac and (d) Ωp = 7γac,Ωc =

3γac; (e) Raman-EIT scheme ∆p = ∆s = −20γac,∆c = ∆a = 0,Ωp = γac andΩc = 10γac;
and (f) off-resonance configurations ∆p = ∆s = ∆c = ∆a = −20γac,Ωp = γac and
Ωc = 3γac. Here, ∆ω f = ω − ν f ( f = s, a) denotes the detuning from the Stokes and
anti-Stokes carrier frequencies. Other parameters used are given by Γx = Γ = 5× 107 s−1

with x = ac, ab, db, dc, n̄x = [exp (θx) − 1]−1 with θx = ~ωx/kBT at temperature T = 300
K, N ' 1027 m−3, Θ = Φ = 0 and ℘ac,q = ℘db,q = 2 × 10−29 C m with q = x, y, z.

6.1.1 Effects of Laser Fields Strengths

It can be observed clearly from Figure 6.1(a) that when the pump and control laser

fields strengths are weak and equal
(
Ωp = Ωc = γac

)
, side peaks occur at around ±(Ωp +

Ωc) = ±2γac which cannot be seen clearly due to their overlapping with the central peak.

In another case where the laser fields strengths are strong and equal
(
Ωp = Ωc = 10γac

)
,

Mollow triplets (Mollow, 1969; Cohen-Tannoudji & Reynaud, 1977) become clearly

visible (Figure 6.1(b)) with side peaks at around ±(Ωp + Ωc) = ±10γac, particularly for
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the case of small particle radius (which describes well the single atom scenario). From

these two results it can be observed that the separation between the side peaks grows

wider as the laser strengths increases which is due to stronger ac Stark shift induced

by the laser fields. When the pump and control laser fields strengths have different

values Ωp , Ωc, four strong resonant peaks (Figures 6.1(c) and (d)) appear at around

−
(
Ωp +Ωc

)
,−

��Ωp −Ωc
�� , ��Ωp −Ωc

�� and Ωp + Ωc which all can be explianed as due to

Autler Townes splittings. In the Raman-EIT case, one can clearly observe the EIT peaks

at around ±Ωp = ±10γac together with the "transparency window" between the peaks in

Figure 6.1(e).

A closer look at Figures 6.1(b)-(d) reveals that the side peaks (at small particle radius)

are actually shifted slightly less than ±
(
Ωp +Ωc

)
from the center. This can be understood

by looking at the pump-field distributions inside the particle shown in Figure 6.2 for

different values of the particle radius ρ. It can be observed from the figure the presence

of regions with normalized intensity |Epx |2+|Epz |2
E2
p0

less than unity which corresponds to

effective Rabi frequencies less than the input valueΩp. This reduced laser intensity effect

is due to the refraction and focusing by the geometry of the particle and is the origin for

the unexpected shifts of the side peaks in Figures 6.1(b)-(d). Similar explanation could

be given for the slight shift of the EIT peaks from ±Ωp = ±10γac in Figure 6.1(e). This

feature distinguishes the spectra for mesoscopic particles from the spectra of an isolated

particle or single atom.

Similar spectral peaks are also observed in Figures 6.3 and 6.4 (where dispersion is

taken into account) for all four cases of resonant laser fields, except that the spectra exhibit

narrow morphology-dependent resonant (MDR) peaks at large ρ. This feature will be

discussed in subsection 6.1.5.
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Figure 6.2: Normalized field intensity distributions
��Epx

��2 /E2
po and

��Epz
��2 /E2

po for the
pump laser for five different particle radii ρ. Note that

��Epz
��2 is smaller than

��Epx
��2 in all

five cases.

6.1.2 Comparison Between Normal- and Antinormal-Order Spectra

Asmentioned in section 2.3, normal-order correlations are used to describe photode-

tection based on absorption of photons whereas antinormal-order correlations describe

the opposite process, i.e. stimulated emission. Mathematically, the difference between

Equations 3.76 and 3.78 and Equations 3.80 and 3.81 is in the diffusion coefficients

2D̃n(an)
j,l (r)which are frequency independent. This results in identical shape and profile of

the normal- and antinormal-order spectra for both Stokes and anti-Stokes (so it is trivial

to show the antinormal-order spectra). In fact, the results show that both normal- and

antinormal-order spectra yield identical features for all cases of resonant fields strengths

with or without dispersion. In the small particle regime, any differences between the

normal- and antinormal-order spectra would actually yield the quantum nature of the

fields since classically there would be no distinctions between the two orderings.

6.1.3 Comparison Between Stokes and Anti-Stokes Spectra

In the absence of dispersion, the Stokes and anti-Stokes spectra exhibit identical

features (so it is trivial to show both) not only for the resonant (Figures 6.1(a)-(d)) cases

but also for the Raman-EIT case (Figure 6.1(e)) and off-resonance case (Figure 6.1(f)),
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Figure 6.3: The x−component of the normal-order Stokes spectra (upper panels) and
anti-Stokes spectra (lower panels) versus particle radius ρ with linear dispersion. The
pump and control lasers are resonant

(
∆p = ∆s = ∆c = ∆a = 0

)
and equal in strengths

with (a) Ωp = Ωc = γac (weak fields) and (b) Ωp = Ωc = 10γac (strong fields). All other
parameters are the same as in Figure 6.1.

though there are minor differences that are immaterial as they are not the main features. In

the presence of dispersion however, both Stokes and anti-Stokes spectra show significant

differences as can be observed from Figures 6.3-6.7.

Careful observation of Figures 6.3 and 6.4 reveals that generally, Stokes spectra

acquires higher central peak (MDR peak) as compared to anti-Stokes spectra, especially

at large particle radius ρ. Higher peaks indicate higher efficiency of detection so this

means that Stokes fields strengths are much higher than that of anti-Stokes. Also, Stokes

central peaks are also shown to be narrower at large particle size, thus indicating narrower

spectral widths.
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Figure 6.4: The x−component of the normal-order Stokes spectra (upper panels) and anti-
Stokes spectra (lower panels) versus particle radius ρwith linear dispersion for the cases of
asymmetric resonant lasers with (a) Ωp = 3γac,Ωc = 7γac and (b) Ωp = 7γac,Ωc = 3γac.
All other parameters are the same as in Figure 6.1.

6.1.4 Finite Size Effects: Spectral Broadening

A first glance at Figures 6.3 and 6.4 reveals that the side peaks become unresolved

as the particle size ρ increases due to spectral broadening caused by the finite size of

the mesoscopic particle. One can observe in Figure 6.3(a) that the three (Mollow) peaks

of the spectra for the case of weak and symmetric laser fields
(
Ωp = Ωc = γac

)
can no

longer be resolved at around ρ = 0.1µm. Similar feature is found in Figure 6.4 for the

asymmetric lasers case Ωp , Ωc where the two side peaks broadens and then coalesce

into a single peak with the increase in particle size ρ. However, for the case of strong and

symmetric fields
(
Ωp = Ωc = 10γac

)
, the Mollow triplets are clearly visible and still can

be resolved even at large particle size ρ. Also, broadening does not affect the central peak

in this case.
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One may also observe the shifting of the side peaks away from the center in Figures

6.3(b) and 6.4. This is due to the collective effect of spatially inhomogeneous laser fields

inside the mesoscopic particle which causes a position-dependent ac Stark shift in the

energy levels. The focusing effect caused by the geometry of the spherical particle creates

a large ac Stark shift around a small spatial region. Most parts in the entire volume of

the spherical particle experience a range of ac Stark shifts. This means that the shift and

broadening of the resonance lines are actually due to the superpositions of a range of ac

Stark shifted peaks. The nature of this spectral broadening is due to spatial factor of the

mesoscopic particle, an entirely different mechanism from other known broadenings, such

as the ones due to atomic collision, Doppler effect, high intensity laser fields, etc. This

feature also differentiate the spectra for mesoscopic particles from the spectra for single

particles.

6.1.5 Effects of Linear Dispersion

When linear dispersion is taken into account through the inclusion of the frequency-

dependent dielectric functions (Equation 3.67) in the wavevector k f (ω) =
√
ε f

ω
c , the

spectra exhibit significant difference at certain particle size. Comparison between Figure

6.1 and Figures 6.3 and 6.4 show that the difference is due to the presence of morphology-

dependent resonant (MDR) peaks near the center of the spectra at large ρ. For example,

one can see in Figure 6.3(a) (for the case Ωp = Ωc = γac) a narrow MDR peak appears in

the Stokes spectra at around −γac and a slightly broader MDR peak appears in the anti-

Stokes spectra at around 2γac for ρ ' 0.01µm. For stronger fields withΩp = Ωc = 10γac,

the MDR peaks are not seen until ρ ' 0.1µm. Also, the MDR peaks grow with the

particle radius and their spectral position do not change with laser parameters. These

features hold for asymmetric laser fields as well, as shown in Figure 6.4. Hence, one may

say that strong fields can reduce the effect of particle size on the spectra.
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Figure 6.5: Angular Θ−dependence of the normal-order Stokes and anti-Stokes spectra
with linear dispersion for the cases of symmetric resonant laser fields with (a) Ωp = Ωc =

γac (weak fields) and (b) Ωp = Ωc = 10γac (strong fields). All other parameters are the
same as in Figure 6.1.

6.1.6 Angular Dependence of the Spectra

In the absence of dispersion, both Stokes and anti-Stokes spectra of all components

do not change with the angle of observation Θ. It is found that the variation of the

spectra with Θ and Φ only occurs when the frequency-dependent dielectric function

εs,a (ω) (Equation 3.67) is taken into account through the wavevector k (ω). The Θ− and
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Φ−dependence of the spectra originates fromEquation 3.73 and the presence of dispersive

loss and gain from the terms e2 Im ks(ω)R̂·r and e2 Im ka(ω)R̂·r in the integrals of Ssq (ω) and

Saq (ω), respectively. For ρ = 1 nm, only the magnitude of the peaks changes with Θ

and Φ and no change is seen in the profile of the spectra across the frequencies. For

ρ = 10 nm or larger, the frequency profile of the spectra begin to change withΘ, as shown

in Figures 6.5 and 6.6 for various configurations of laser parameters. It can be clearly

seen from the spectra in Figure 6.5 for the case of weak and symmetric resonant fields

(Ωp = Ωc = γac) that Fano-like dips appear at certain angular and spectral position for

all of the three components. When the symmetric laser fields become stronger, the side

peaks of the Mollow triplets become comparable or higher than the central peak. As for

the case of asymmetric laser fields, the four peaks from Autler-Townes splittings are not

clearly visible in Figures 6.6(a) and (b). The Stokes peaks in the Raman-EIT scheme

are displaced from the center due to large detuning while the anti-Stokes exhibit narrow

peaks at certain angles. The scattered Stokes and anti-Stokes fields actually acquire the

y−component after the scattering process. It can also be observed from Figures 6.5 and

6.6 that the y−component spectra resemble the x−component but are quite different from

the z−component which vanishes at Θ = 0, π due to the transversality of the waves.

In Figure 6.7 where the variation of the spectra across angle Φ at Θ = 0 is studied,

one also observes that the z−component spectra do not depend on Φ due to the azimuthal

rotational symmetry. The x−component spectra vanishes at Φ = 00, 1800 and peaks at

Φ = 900 and 2700 due to the transversality of the fields. The same Φ−dependence is

found in all other cases of laser configurations so it is trivial to show all.

6.2 Quantum Stokes and Anti-Stokes Spectra fromMP-QS Hybrid Nanostructure

In this section, the optical properties of a hybrid nanostructure comprising of a

plasmonic MP and a QS in four-level double Raman scheme will be studied based on the
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Figure 6.6: Angular Θ−dependence of the normal-order Stokes and anti-Stokes spectra
with linear dispersion for the cases of asymmetric resonant laser fields with (a) Ωp =

3γac,Ωc = 7γac, (b) Ωp = 7γac,Ωc = 3γac and (c) Ωp = γac,Ωc = 10γac. All other
parameters are the same as in Figure 6.1.
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Figure 6.7: Angular Φ−dependence of the normal-order Stokes and anti-Stokes spectra
with linear dispersion for the cases of symmetric resonant laser fields with (a) Ωp = Ωc =

γac (weak fields) and (b) Ωp = Ωc = 10γac (strong fields). All other parameters are the
same as in Figure 6.1.

simulations of the spectra (Equation 4.37) of scattered quantum (Stokes and anti-Stokes)

fields. The Stokes and anti-Stokes fields spectra are plotted in Figures 6.9-6.17, showing

how the spectra change with the separation distance r between QS and MP, observation

angles Φ and Θ as well as number density N . For the sake of clarity, throughout

this section the dimensionless q−component (q = x, y, z) Stokes and anti-Stokes spectra

S̄s(a)q = Ss(a)q
R6

K2 |℘bd(ca) |2
are plotted instead of the original spectra. Also, the spectra are

numerically normalized by dividing all the values in the spectra by the maximum value
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attained by the z−component spectra, so that all the peaks values are in the order of 1-100.

This allows clearer presentation of the results and at the same time, comparison between

different components of the spectra.

Also, throughout this section the radius of the MP is fixed to be a = 50 nm and

70 nm (to compare the spectra between the two values) and the radius of the QS is

fixed to be b = 10 nm (Khlebtsov & Khlebtsov, 2007) (in other similar studies the radii

values are even smaller, about a = 5 nm and b = 1.5 − 2.0 nm (Malyshev & Malyshev,

2011)), all of which are much smaller than the wavelength of the Stokes (λdb = 632.10

nm) and anti-Stokes (λac = 570.07 nm) fields, thus fulfilling the condition for dipole

approximation λ >> a, b. Also, in Figures 6.9-6.13 the plots start from the minimum

interparticle distance of r = 1000 nm (k0r ' 11, where k0 = ωac/c) so as to fulfill the

condition r >> a, b for the validity of dipole approximation. Unless stated otherwise, the

range of number density considered in this study is 2.39 × 1023m−3 < N < 5.01 × 1025

m−3. Here, the minimum density is obtained based on the requirement that there must

consist of at least one atom in the QS volume whereas the maximum density is the highest

density below which the collective effects can be ignored, based on the simulation results

of Equation 39 in Ref. (Ficek & Tanaś, 2002) given by

Ωi j = −
3Γx

4

{[
1 −

(
µ̄ · r̄i j

)2
] cos

(
kxri j

)
kxri j

−
[
1 − 3

(
µ̄ · r̄i j

)2
] [

sin
(
kxri j

)(
kxri j

)2 +
cos

(
kxri j

)(
kxri j

)3

]}
,

(6.2)

which characterizes the strength of the collective interactions between atoms. Here,

Γx (x = ab, ac, db.dc) is the spontaneous emission rate in Appendix C, kx = ωx/c, ri j =

N−1/3 is the distance between the ith and jth atom (interatomic distance), µ̄ is the unit

vector of the dipole moment and r̄i j is the unit vector for the displacement vector ri j from

the ith to the jth atom. The left side of Figure 6.8(a) shows the plot of Equation 6.2 versus
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number density in logarithmic scale, log10 N and atomic dipole orientation µ̄ · r̄i j (with

respect to the interatomic axis) for the anti-Stokes transition. From the figure, it can be

observed that for number densities N < 1025 m−3, the interaction strengths between 2

nearest atoms in the QS responsible for collective emission becomes zero for all atomic

dipole orientations. This means that N ' 1025 m−3 can be regarded as an upper limit

below which collective effects between atoms can be ignored. From the numerical values

obtained, a more accurate upper limit to the number density would be N = 5.01 × 1025

m−3 as stated above. For a more detailed study of Equation 6.2 one may refer to the left

panel of Figure 6.8(b) where the quantity is plotted versus interatomic distance ri j . It

can be observed from the figure that Ωi j shows strong oscillatory behavior at small ri j

(which corresponds to high number density) and such oscillations undergo damping as ri j

increases (which corresponds to decreasing number density), giving an almost constant

value of zero. This zero value of Ωi j implies negligible collective interaction between

atoms at large ri j . Hence, the result in Figure 6.8(b) is consistent with that of Figure 6.8(a).

The absence of oscillation in Figure 6.8(a) is due to the large range of N (and therefore ri j)

Ωi j is plotted against. It can also be observed from Figure 6.8(b) that oscillation of Ωi j

undergoes damping at smaller ri j for the case where the dipole moment is parallel to the

interatomic axis defined by vector ri j as compared to other dipole orientations. A point

to note here is that all four transitions in the double Raman scheme exhibit similar feature

so it is trivial to show all. The plot for Fac in Figure 6.8 will be discussed in subsection

6.2.7.

Furthermore, with such large size of the MP considered here the retardation effect

which causes redshift of the plasmon resonance peak could be important. In fact, our sim-

ulations (Figure 6.10) show that for a > 50 nm, the retardation effect becomes significant.

In Figure 6.10, a comparison is made between the polarizibility αMP, f ( f = s, a) with
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Figure 6.8: (a) Plot of the collective interaction strength Ωi j (left) and Fac (right) versus
number density in log scale, log10 N and atomic dipole orientation (with respect to the
interatomic axis) µ̄ · r̄i j for the anti-Stokes transition in double Raman scheme with
ka = ωac/c. (b) Plot of the anti-Stokes collective interaction strength Ωi j (left) and Fac
(right) versus interatomic distance ri j/λa for three different cases atomic dipole orientation
µ̄ · r̄i j = 1/

√
2 (red line), µ̄ · r̄i j = 0 (blue line) and µ̄ · r̄i j = 1 (black line).

and without taking into account the retardation effect. It is shown that the polarizibility

obtained from the retarded and non-retarded model exhibit departure starting from the

particle radius a = 50nm and beyond. This indicates that retardation effect could be

important for the two cases of particle radii a = 50 nm and 70 nm considered in this

section. Our model here takes into account not only the retardation effect via the two

correction terms −
[
εMP, f (kd, ω) − εb

]
x2 − i 2x3

3
[
εMP, f (kd, ω) − εb

]
in the denominator
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Figure 6.9: Raman Stokes-EIT: Stokes spectra versus interparticle distance r for the
case Ωp = 3γac,Ωc = 0 at Θ = Φ = 00 with initial condition ρ̄bb (0) = 1 and without
surface plasmon resonance (SPR) (ωac , ωSPR). We compare between the spectra for two
different cases of metallic nanoparticle radius, a = 50 nm and a = 70 nm. The x− and
y−component spectra are combined into one plot as S̄sq (q = x, y) due to their similarity.
The plot starts from r = 1000 nm (k0r > 11, where k0 = ωac/c) so as to fulfill the
condition r >> a, b for the validity of dipole approximation. The number density used,
N = 2.52 × 1025 m−3 is the middle value of the range of number densities 2.39 × 1023

m−3 < N < 5.01×1025 m−3. The parameters used in εMP (kd, ω) (Equation 4.8) are those
for silver (Ag) nanoparticle withωp = 9.1 eV= 2.2×1015 s−1, Γ∞m = 18 meV = 2.73×1013

s−1and ε∞ = 3.7. Other parameters are εb = 1.5, quantum particle radius b = 10 nm
and the probe field amplitude Es0,q =

0.1~γac
℘db,q

, where the dipole moments are taken to be
isotropic: ℘ac,q = ℘db,q = 2 × 10−29C m.

of Equation 4.12 but also the effect of spatial nonlocality via the term −β2k2
d in Equation

4.8. Figure 6.11 shows that the real part of the nonlocal dielectric function εMP, f ( f = s, a)

only deviates from the Drude model when a < 15 nm whereas its imaginary part deviates

when a < 40 nm. Since the real part is much higher in magnitude compare to imaginary

part, one can just take the limit a < 15 nm as the particle size below which nonlocal

effect is important. Although in this section the values a = 50 nm and 70 nm (which are
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much larger than a = 15 nm) are used, nonlocal effect is still included here for the sake

of completeness.In the following subsections the main results from the spectra will be

highlighted based on how they are affected by various parameters.

Figure 6.10: Dependence of the polarizibility αMP, f ( f = s, a) on the radius a of the MP
at the resonant frequencies ω = ωdb (for Stokes) and ω = ωac (for anti-Stokes). We
compare between the polarizibility with (blue continuous line) and without (red dashed
line) retardation effect. All other parameters are the same as in Figure 6.9

6.2.1 Effects of Resonant Laser Fields Strengths

As in section 6.1, here the Stokes and anti-Stokes spectra for various cases of

resonant laser fields will be studied: (i) Raman-EIT utilizing the Λ−system associated

with the Stokes field as the three-level EIT system, (ii) weak symmetric laser fields
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Figure 6.11: Dependence of the MP dielectric function εMP, f ( f = s, a) on the radius a
of the MP at the resonant frequencies ω = ωdb (for Stokes) and ω = ωac (for anti-Stokes).
We compare the MP dielectric function obtained from the Drude model (red dashed line)
with the one including nonlocal effect (blue continuous line). All other parameters are
the same as in Figure 6.9.

(Ωp = Ωc = γac), (iii) strong symmetric laser fields (Ωp = Ωc = 15γac) and (iv)

asymmetric laser fields (Ωp = 7γac,Ωc = 3γac). For all these cases the value of number

density N = 2.52 × 1025m−3 which is the middle value of the range of number densities

mentioned above is used. This value of N corresponds to about 105 atoms within the QS

volume. Since both the x- and y-component Stokes and anti-Stokes spectra for all cases

of resonant laser fields exhibit exactly the same features across the interparticle distances

r , both spectra are combined into one plot as S̄ f q (q = x, y) in Figures 6.9-6.13. The

similarity between the x- and y-component spectra across r is a direct result of our choice
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of observation angles, Φ = Θ = 00.

For the Raman-EIT case in Figure 6.9, the Stokes field acts as the weak probe field

while the pump Ωp field serves as the strong coherent laser field. From the figure, one

can see how the famous EIT spectra (and other cases of resonant laser fields) is affected

by MP, in particular the oscillations of the two peaks and the "breathing" feature of the

peaks with varying interparticle distance r .

Figure 6.12: Weak, strong and asymmetric resonant pump and control laser fields for
Stokes: Stokes spectra versus interparticle distance r for the cases of weak (Ωp = Ωc =

γac), strong (Ωp = Ωc = 15γac) and asymmetric (Ωp = 7γac,Ωc = 3γac) pump and
control laser fields with initial condition ρ̄bb (0) = ρ̄cc (0) = 0.5. We compare between
the spectra for the case with SPR (ωac = ωSPR) and the case without SPR (ωac , ωSPR).
The x− and y−component spectra are combined into one plot as S̄sq (q = x, y) due to
their similarity. The metallic nanoparticle radius considered here is a = 50 nm. All other
parameters are the same as in Figure 6.9.

Other cases of resonant laser excitations (Figures 6.12 and 6.13) exhibit spectra with

typical features of QS in double Raman configuration which serve not only to show the

correctness of the results but also contain the physics of strong quantum fields resulting

from the influence of MP. When both pump and control laser fields strengths are the same
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and weak (Ωp = Ωc = γac), the side peaks at ±(Ωp + Ωc) = ±2γac remain for the Stokes

and anti-Stokes spectra. However, surprisingly for the Stokes spectra, there is a Fano dip

at the higher central peak, creating two peaks at ±0.25γac while for anti-Stokes the central

peak is completely absent. This Fano dip and absence of central peak can be interpreted

as quenching due to enhancement of the quantum Stokes and anti-Stokes fields by the MP

to the extent where the pump and control laser fields become weaker or comparable to

the quantum fields. While the dip can be observed in the case of weak laser fields, such

is not the case when the laser fields become sufficiently large (Ωp = Ωc = 15γac). When

both pump and control laser fields have strong symmetric fields strength Mollow triplets

become clearly visible in the Stokes and anti-Stokes spectra. Surprisingly, the middle

peak for the anti-Stokes spectra is much smaller than the side peaks as it has been almost

completely suppressed or quenched by the enhanced anti-Stokes field under the influence

of the MP.

Figure 6.14 shows the effects of the laser strengths on the Fano resonance. One can

see clearly from the figure that as the pump and control laser fields strength increases,

the Fano dip at the central peak of the Stokes spectra (blue continuous line) becomes less

significant and the usual central peak slowly recovers. Also from Figure 6.14 one can

observe the presence of additional small peaks between the central and side peaks of the

Stokes spectra for weaker laser fields strengths. These unexpected extra peaks are due

to additional ac Stark shifts induced by the enhanced Stokes field which has greater or

comparable strength as compared to the input laser fields. These additional peaks become

less significant with increasing laser fields strengths such that the ac Stark shifts (which

result in Mollow triplets) caused by the laser fields becomes dominant. Similar features

are found in anti-Stokes spectra (red dashed line in Figure 6.14) except that the central

peaks are suppressed even further. Autler-Townes splittings are also evident in the spectra
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for the case where the laser fields are asymmetric (Ωp = 7γac,Ωc = 3γac), with four

strong resonant peaks at −
(
Ωp +Ωc

)
,−

��Ωp −Ωc
�� , ��Ωp −Ωc

�� and Ωp + Ωc, but with the

two inner peaks suppressed in the anti-Stokes spectra. As expected, due to stronger ac

Stark shift, the separation between the side peaks increases as the laser fields get stronger.

Figure 6.13: Weak, strong and asymmetric resonant pump and control laser fields for
anti-Stokes: Anti-Stokes spectra versus interparticle distance r for the cases of weak
(Ωp = Ωc = γac), strong (Ωp = Ωc = 15γac) and asymmetric (Ωp = 7γac,Ωc = 3γac)
pump and control laser fields with initial condition ρ̄bb (0) = ρ̄cc (0) = 0.5. We compare
between the spectra for the case with SPR (ωac = ωSPR) and the case without SPR (ωac ,
ωSPR). The x− and y−component spectra are combined into one plot as S̄aq (q = x, y)
due to their similarity. The metallic nanoparticle radius considered here is a = 50 nm.
All other parameters are the same as in Figure 6.9.

6.2.2 Effects of Detunings

In Figures 6.9-6.15 the spectra plotted are for the cases where the fields are resonant

i.e. detunings, ∆x = 0 (x = p, c, s, a). In this subsection, the effects of detunings on the

Stokes and anti-Stokes spectra will be studied. Here, readers should refer to Figure 6.16

where a comparison of Stokes and anti-Stokes spectra for four different cases of detunings
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is made. At a first glance of Figure 6.16, one can tell that the presence of detunings

causes the spectra to look asymmetrical and that it affects the anti-Stokes spectra much

more significantly than the Stokes spectra. As shown in Figure 6.16(a), when all the

fields are detuned by the same amount (∆x = 5γac), the anti-Stokes spectra exhibit

asymmetrical shape where the side peak at +(Ωp + Ωc) = +30γac becomes higher than

the peak at −(Ωp +Ωc) = −30γac, indicating higher fields at the positive frequency. This

is reasonable since all the fields are detuned towards the positive frequencies. Although

the Stokes spectra look symmetrical at the first glance, careful observation reveals that

in both Stokes and anti-Stokes spectra, small additional peak actually occurs at around

+(Ωp + Ωc) = +10γac while the same is not true at −(Ωp + Ωc) = −10γac. This

additional peak is caused by the additional ac Stark shift due to the non-resonant pump

and control laser fields which have frequencies νp and νc with magnitude 5γac higher than

the transition frequencies. When the sign of the detuning is reversed, i.e. ∆x = −5γac

(carrier frequencies of the fields is lower than transition frequencies), the shape of both

the Stokes and anti-Stokes peaks becomes reversed (with higher anti-Stokes side peaks at

the negative frequency instead of positive frequency), as shown in Figure 6.16(b).

Figure 6.16(c) shows what happens to the spectra when only the pump and control

laser fields are detuned from their transition frequencies but not the quantum fields.

The result shows that while the additional peaks at around +(Ωp + Ωc) = +10γac still

occurs in both Stokes and anti-Stokes spectra as in Figure 6.16(a), but the side peaks at

+(Ωp+Ωc) = +30γac in both the Stokes and anti-Stokes spectra become suppressed. This

is because as the laser fields are detuned towards the positive frequency, the Stokes and

anti-Stokes transitions becomes stronger at the negative frequency. This causes peak at

the negative frequency to be higher, indicating higher detection efficiency.
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In contrast to Figure 6.16(c), Figure 6.16(d) is for the case where both the pump

and control laser fields are resonant but the Stokes and anti-Stokes fields are detuned by

+5γac. It can be observed from the figure that the anti-Stokes side peak at the positive

frequency is higher due to the enhancement of the quantum field at this frequency while

the Stokes spectra remains almost symmetrical.

6.2.3 Effects of Interparticle Distance

In this subsection, Figures 6.9-6.13 will be analyzed to study the effects of interpar-

ticle distance r on the spectra. One can clearly observe from the figures that while the

profile of the spectra across the frequencies does not change with r , the main feature on

the r−dependence is the oscillations in the spectra with period of k0r = 2π, due to the

interference effect of the fields from the two particles. Since the Stokes and anti-Stokes

fields in Equations 4.34 and 4.35 comprise of the scattered fields from both QS and

MP, the crests and troughs on the peaks correspond respectively to the constructive and

destructive interference of the fields from both particles. An interesting feature here is

that the interference between the fields is correlated to interparticle distance in a periodic

manner, with certain values of r giving constructive interference and other values resulting

in destructive interference. This is likened to a cavity effect formed by two particles close

to each other that dictates the phases of the fields scattered from both particles which

in turn determine the outcome of the interference at point R. At small r , the stronger

interference between the polarization fields from the QS and MP leads to larger amplitude

of oscillations of the spectral peaks, as can be seen from Figures 6.9-6.13. The oscil-

lations in the spectra experience damping as r increases and eventually die off at large

separation distance, where the interference effect is less significant, as clearly shown in the

bottom-right top-view plot in Figure 6.9 for the case a = 70 nm in Raman-EIT scheme.

The same oscillatory behaviour applies to all other cases of laser strengths including EIT.
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At k0r > 50, the spectra for all the cases of laser strengths resemble that of the case for a

single QS in the absence of MP.

In Figures 6.12 and 6.13 it can be observed that for the case without surface plasmon

resonance (SPR) (ωac , ωSPR), the x− and y−components spectra actually contain

oscillations across k0r but appear to be less visible than the z−component spectra. This is

due to the fact that the z−component spectrum is 40 to 50 times lower in magnitude (due

to the nonvanishing B (R, ω) in Equation 4.14) as compared to the other two components,

hence causing the oscillations across k0r to have higher visibility. This is also due to

our choice of observation angles , Φ = Θ = 00 which corresponds to nI,x = nI,y = 0

and nI,z , 0, thus leading to stronger r−dependence (via the nonvanishing B (R, ω))

of the z−component field as compared to the x− and y−component (with vanishing

B (R, ω)). Figure 6.15 reveals that if we choose other values of Φ and Θ, for example,

Φ = Θ = 450,(Figure 6.15(a)) the oscillations can be seen more clearly in the x− and

y−components spectra which now have magnitudes comparable to the z−component.

For the case Φ = 00,Θ = 900, it is the y−component spectrum that has much higher

magnitude and exhibit weaker oscillations than the rest while for the case Φ = Θ = 900,

the oscillations of the y−component spectral peaks are the most significant. All these can

be similarly explained based on the values of the terms nI,x, nI,y and nI,z in Equation 4.14.

For the case with SPR (ωac = ωSPR), all three components of the spectra in Figures

6.12 and 6.13 exhibit visible oscillations across k0r due to the plasmonic enhancement

effect which will be discussed in subsection 6.2.5.

6.2.4 Effects of MP Size

One can observe from Figure 6.9 that the oscillations in the spectra is stronger for

the case where a = 70 nm. In fact, the results show that the interference effect for all

cases of resonant laser fields becomes more significant as the size of MP gets larger. This
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Figure 6.14: Symmetric resonant pump and control laser fields: x−component Stokes
(blue continuous line) and anti-Stokes (red dashed line) spectra at k0r = 15 for the case
of symmetric pump and control laser fields (Ωp = Ωc) with initial condition ρ̄bb (0) =
ρ̄cc (0) = 0.5. We compare among the spectra for four different cases of laser fields
strengths. The metallic nanoparticle radius considered here is a = 50 nm and SPR is
absent (ωac , ωSPR). All other parameters are the same as in Figure 6.9.

phenomenon can be explained by referring to the polarizibility αMP, f =
1
K γ f a3 which

characterizes the dynamical response of the MP to the external fields (polarization fields

from the QS), particularly the ability of the particle to form dipoles which will then take

part in the long-range Coulomb interaction responsible for the MP-QS coupling. The

cubic dependence of αMP, f on a implies that larger MP will give stronger response and

thus stronger long-range Coulomb interaction between the two particles which manifests

itself in the form of oscillatory behaviour of the spectral peaks across k0r . This explains

the stronger oscillations in the spectra for larger MP size. Our simulations (not shown

here) show that the spectra start to exhibit little oscillations at around a = 25 nm and the

oscillations become stronger as a increases.
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Figure 6.15: Stokes spectra versus interparticle distance r for the case of strong (Ωp =

Ωc = 15γac) symmetric resonant pump and control laser fields with initial condition
ρ̄bb (0) = ρ̄cc (0) = 0.5. We compare between the Stokes spectra at (a) Φ = Θ = 450, (b)
Φ = 00,Θ = 450 and (c) Φ = Θ = 900. The metallic nanoparticle radius considered here
is a = 70 nm and SPR is presence (ωac = ωSPR). All other parameters are the same as in
Fig. 6.9.

6.2.5 Effects of Surface Plasmon Resonance (SPR)

In this subsection, the effects of surface plasmon resonance (SPR) on the Stokes and

anti-Stokes spectra will be studied. To observe strong plasmonic enhancement effect one

has to make sure that the SPR condition is fulfilled, that is, when the factor γ f in Equation
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Figure 6.16: Strong symmetric non-resonant pump and control laser fields: z−component
Stokes and anti-Stokes spectra at k0r = 15 for the case of strong symmetric nonresonant
pump and control laser fields (Ωp = Ωc = 15γac) with initial condition ρ̄bb (0) = ρ̄cc (0) =
0.5 in the presence of SPR (ωac = ωSPR). We compare between the spectra for various
cases of detunings: (a) ∆p = ∆c = ∆s = ∆a = 5γac, (b) ∆p = ∆c = ∆s = ∆a = −5γac,
(c) ∆p = ∆c = 5γac,∆s = ∆a = 0 and (d) ∆p = ∆c = 0,∆s = ∆a = 5γac. The metallic
nanoparticle radius considered here is a = 70 nm. All other parameters are the same as
in Figure 6.9.

4.12 is maximum. This occurs at the SPR frequency given by

ωSPR =

√
ω2

p

ε∞ + 2εb
+ β2k2

d −
Γ2

m

4
, (6.3)

where the retardation effect has been neglected by dropping the x2 and x3 terms in the

denominator of Equation 4.12 to simplify the calculations. It can be calculated from

Equation 6.3 that the SPR frequency for silver (Ag) nanoparticle is ωSPR ' 5.3544 ×

1015s−1 when a = 50 nm and ωSPR ' 5.3469 × 1015s−1 when a = 70 nm.

In Figures 6.12 and 6.13 the plasmonic enhancement effect on the Stokes and anti-

Stokes spectra for different cases of resonant laser fields is studied by setting ωac = ωSPR.

Comparison between the spectra for the case with and without SPR in Figures 6.12 and

6.13 reveals that the oscillations of the spectra across k0r become much stronger in the
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presence of SPR for all three cases of resonant laser fields. This enhanced oscillations is

the result of the plasmonic enhancement effect which enhances the local Stokes fields at

QS and MP, leading to stronger interference of the fields from both particles.

Figure 6.17: Dependence on number density N: (leaft panel) x-component Stokes
spectra in log scale versus number density in log scale, log10 N for the case of strong
symmetric pump and control laser fields (Ωp = Ωc = 15γac) with initial condition
ρ̄bb (0) = ρ̄cc (0) = 0.5 at k0r = 25 (corresponds to r ' 2268 nm). (right panel) The
profile of the spectra across frequencies at minimum and maximum number densities.
The metallic nanoparticle radius used here is a = 50 nm and the quantum particle radius
is b = 134 nm. SPR is not considered here (ωac , ωSPR). All other parameters are the
same as in Figure 6.9.
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Figure 6.18: Angular Φ−dependence: Stokes spectra versus Φ for the case of strong
symmetric pump and control laser fields (Ωp = Ωc = 15γac) with initial condition
ρ̄bb (0) = ρ̄cc (0) = 0.5 at two different interparticle distances k0r = 12 and 30 and
at Θ = 900 (x − y plane). We compare between the spectra for the case with SPR
(ωac = ωSPR) and the case without SPR (ωac , ωSPR). The metallic nanoparticle radius
considered here is a = 70 nm. All other parameters are the same as in Figure 6.9.
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6.2.6 Angular/Directional Dependence

The spectra also depend on the observation anglesΦ and Θ as shown in Figures 6.18

and 6.19 for the Stokes field under the case of strong symmetric laser field. Both Stokes

and anti-Stokes spectra show the same angular dependence for all cases of laser strengths

so it is trivial to show all. The angular dependence of the spectra lies entirely in the

q−component unit vectors nI,q in Equation 4.14 which is uncorrelated to any frequency-

dependent terms. This explains why only the magnitude of the spectra changes with Φ

and Θ, while the spectral positions of the resonant peaks remain invariant. The variation

of the spectra across the observation angles occurs in the form of oscillatory behaviour

which is due to either the sine and cosine terms in nI,q or the interference between the

polarization fields from the QS and MP. For discussion on the variation of spectra across

observation angles we refer mainly to the case a = 70 nm because for the case a = 50 nm,

the dependence of the spectra on observation angles are not clearly visible (not shown

here) due to the weaker MP-QS coupling.

One can see from Figures 6.18 and 6.19 some interesting results such as the variation

of the spectra across Φ and Θ that strongly depends on the interparticle distance r . In

Figure 6.18 where it has been set Θ = 900 (x − y plane), there is a dependence of all

x, y, z−components of the spectra on Φ at small k0r , regardless of whether SPR is present

or not. At k0r = 12, the z−component spectral peaks are maximum only at one angle

Φ = 00 or 3600. But at larger k0r , the dependence of the z-component spectra onΦ slowly

disappears and only the x− and y-component spectra depend on Φ. The z−component

spectrum is supposed to be invariant by rotation over Φ on the x − y plane because at

Θ = 00, nI,z = 0 and the z−component spectra whose angular dependence relies entirely

on the three terms in the third row of matrix PI in Equation 4.14 eventually loses its

Φ-dependence. Hence, the result for k0r = 12 shows that the interference effect caused by
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Figure 6.19: Angular Θ−dependence: Stokes spectra versus Θ for the case of strong
symmetric pump and control laser fields (Ωp = Ωc = 15γac) with initial condition
ρ̄bb (0) = ρ̄cc (0) = 0.5 at two different interparticle distances k0r = 12 and 30. We
compare between the spectra for the case with SPR (ωac = ωSPR) and the case without
SPR (ωac , ωSPR). The metallic nanoparticle radius considered here is a = 70 nm. All
other parameters are the same as in Figure 6.9.
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the presence of MP is causing the oscillations in the z−component spectra, despite being

perpendicular to the plane of Φ rotation (x − y plane of observation). This shows that the

influence of MP breaks the azimuthal rotational symmetry. At large k0r , the interference

across Φ on the x − y plane becomes insignificant, i.e. the angular Φ dependence ceases

for the z−component field because the MP is too far from the QS to exert any significant

influence on the fields scattered from theQS.Notice that the x-component spectra vanishes

at Φ = 00, 1800 (peaks at Φ = 900 and 2700) due to the transversality of the fields.

Similar argument can be used to explain the results in Figure 6.19 whenwe setΦ = 00

(x− z plane) and allow the spectra to vary withΘ. This time, it is the y-component spectra

that is supposed to show invariance acrossΘ because the y-component field, whose angular

dependence lies in the terms in the second row of matrix PI loses its dependence on Θ

since at Φ = 00, nI,y = 0. However, at small k0r , the y-component field shows angular

dependence on Θ with maximum around Θ = 1800 as the influence of the MP has broken

the Θ rotational symmetry. As r increases, the MP loses its influence on the QS and thus

the y−component spectra shows invariance across Θ (absence of oscillations) due to Θ

rotational symmetry, as it is perpendicular to the x − z plane of observation. Here, the

z-component vanishes at Θ = 00 and 1800. Our simulations (not shown here) also reveal

that when we set Φ = 900 (y − z plane), it is the x−component spectra that is invariant

across Θ at large r .

One can also observe in Figures 6.18(b) and 6.19(b) that when the SPR condition

is fulfilled (ωac = ωSPR), the oscillations of the z−component spectra across Φ in Figure

6.18(b) and the y−component spectra across Θ in Figure 6.19(b) become stronger, indi-

cating stronger directional dependence of the spectra. This is again due to the plasmonic

enhancement of the local quantum fields caused by the MP, thus leading to stronger in-

terference effect which manifests itself in the form of oscillations across the observation
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angles. Moreover, a closer look at Figures 6.18(b) and 6.19(b) also tells us that the angular

dependence of the spectra under SPR condition is visible up to large interparticle distance,

i.e. k0r = 30, as can be observed in the small oscillations of the z−component spectral

peaks in Figure 6.18(b) and the y−component spectral peaks in Figure 6.19(b). This

shows the long-range influence of the plasmonic enhancement of MP on the QS which is

not found in cases without SPR.

Themagnitudes of the spectra in Figures 6.18 and 6.19may at first seem contradictory

to the results in Figures 6.9-6.14 but careful analysis shows that there is no contradiction at

all. In Figure 6.12, the magnitude of the x− and y−component Stokes spectra for the case

of symmetric strong pump and control laser fields at Θ = Φ = 00 is about 40 times larger

than the magnitude of the z−component spectra. This is actually in agreement with the

results in Fig. 6.19 (withΦ = 0) where the highest magnitude of the x− and y−component

Stokes spectra atΘ = 00 is around 0.8, which is also about 40 times larger than the highest

magnitude of the z−component spectra (estimated to be ∼ 0.02 and 0.02 × 40 = 0.8).

Also, take note that the magnitudes shown in the figures are not absolute values of the

spectra but values relative to the normalized z−component spectra as explained in the first

paragraph of this section. This provides an explanation for the magnitudes of all the three

components of the spectra in Figures 6.18 and 6.19 which attain highest values of∼ 1: that

the magnitudes of the highest peaks in all three components are comparable. To see the

reason behind this let’s focus on the Stokes spectra (for the case k0r = 30 andωac , ωSPR)

in Figure 6.18, where Θ = 900. It can be seen that the x− and z−component spectra are

maximum at the angle Φ = 900 due to the vanishing B (R, ω) in Equation 4.14 (as a result

of nI,x = nI,z = 0, nI,y , 0) whereas the y−component spectra is minimum at this angular

position (due to the nonvanishing B (R, ω)). On the other hand, at Φ = 1800, where

nI,y = nI,z = 0, nI,x , 0, it is the y− and z−component spectra that are maximum and the
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x−component spectra becomes minimum, also due to the vanishing and nonvanishing of

B (R, ω), respectively. Since each component achieves maximum value at certain values

of Φ by similar factor, i.e. vanishing B (R, ω), it comes as no surprise that the highest

peaks in each component of the Stokes spectra are comparable in magnitude. This leads

to the ∼ 1 peaks magnitude of all three components of the spectra in Figure 6.18. Similar

reasoning can be applied to explain the maximum magnitude of all three components of

the spectra in Figure 6.19.

6.2.7 Effects of Number Density

As mentioned in the second paragraph of this section the collective effect is ignored

in Figures 6.9-6.16 and Figures 6.18 and 6.19 where the value of number density N =

2.52 × 1025m−3 is used. In this subsection, the variation of the spectra across different

number densities beyond the range 2.39 × 1023 m−3 < N < 5.01 × 1025 m−3 will be

studied. To do so there is a need to include the collective effect between the atoms in the

QS by replacing the spontaneous emission rates Γx (x = ab, ac, db.dc) in Appendix C by

the collective spontaneous emission rates Γ′x given by (Ficek & Tanaś, 2002)

Γ
′
x = ΓxFx

(
kxri j

)
, (6.4)

where

Fx
(
kxri j

)
=

3
2

{[
1 −

(
µ̄ · r̄i j

)2
] sin

(
kxri j

)
kxri j

+
[
1 − 3

(
µ̄ · r̄i j

)2
] [

cos
(
kxri j

)(
kxri j

)2 −
sin

(
kxri j

)(
kxri j

)3

]}
.

(6.5)

Here, kx = ωx/c and ri j = N−1/3 is the distance between the ith and jth atom (interatomic

distance). Figure 6.8(a) shows the dependence of Fac on dipole orientation and number

density. Unlike Ωi j , Fac remain constant at maximum value in the range of number
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densities 1022 m−3 < N < 1028 m−3 and decreases dramatically at low number densities

N < 1022 m−3. Interesting feature of Fac can only be found in Figure 6.8(b) where the

dependence of Fac on the interatomic distance ri j is studied for three different cases of

dipole moment: µ̄ · r̄i j = 1/
√

2, µ̄ · r̄i j = 0 and µ̄ · r̄i j = 1. It can be observed from

Figure 6.8(b) that the collective spontaneous emission rate exhibits strong oscillations at

small interatomic distances (due to collective dipole-dipole interactions between atoms)

and undergoes damping with the increase in interatomic distance, just like Ωi j . It also

shows the same dependence on dipole moment orientation as Ωi j in this figure.

In Figure 6.17 where the dependence of the spectra on the number density is stud-

ied, heavy hole exciton is assumed in the QS which gives the value
(
µ̄ · r̄i j

)2
= 1/2

(Abdussalam & Machnikowski, 2012). A larger size of QS is also considered so that the

minimum number density can be lowered down to 1020 m−3. It is assumed that the radius

of the QS is b = 134 nm so that the entire QS volume contains at least one atom at the

minimum number density of N = 1020 m−3. This value of b still fulfills the condition for

the validity of dipole approximation λ >> b whereas the condition r >> b is fulfilled by

setting k0r = 25 in Figure 6.17, which corresponds to r ' 2268 nm.

It is shown in Figure 6.17 for the case of strong symmetric laser fields without SPR

the variation of the x-component Stokes spectra across the range of number densities 1020

m−3 < N < 1028 m−3. Onemay observe from Figure 6.17 that theMollow triplets become

sharper and narrower at higher number density. This is due to the collective effect which

induces stronger ac Stark shifts on the Stokes and anti-Stokes transition levels. On the

other hand, the higher and broader peaks at lower number density shows higher efficiency

of the photon emission and broader spectral widths of the emitted photons. The spectral

position of the peaks do not change with number densities and similar features are found

in all other cases of laser fields strengths. Our results (not shown here) also show that
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the presence of SPR does not affect the variation of the spectra across different number

densities.

6.3 Comparison Between the Two Cases

It is interesting to compare the spectra discussed in section 6.1 with those mentioned

in section 6.2. The spectra in section 6.1 are for the case where the finite size of the source

particle (mesoscopic spherical particle) is taken into account and the MP is absent. In

contrast, the spectra discussed in section 6.2 are for the case where the QS is assumed to

be a point-like particle and it is interacting with a nearby MP. Any distinction between

the spectra for the two cases is due to either the mesoscopic nature of the particle or the

plasmonic effects caused by the MP or both.

Unfortunately, direct comparison cannot be made for most of the spectra due to the

different parameters involved. For example, the spectra in Figure 6.1 and Figures 6.3 and

6.4 are plotted with respect to the particle size ρ whereas the spectra in Figure 6.9 and

Figures 6.15-6.15 are plotted with respect to the interparticle distance k0r . However, one

can still compare between the Stokes spectra in Figure 6.5(b) and the Stokes spectra in

Figure 6.19 as both spectra are plotted with respect to the same parameter, Θ. The first

distinction is in the side peaks of the spectra for the mesoscopic particle (Figure 6.5(b))

which are higher than the central peak while the same is not true in the spectra in Figure

6.19 for all cases. This is likely due to the focusing effect caused by the mesoscopic nature

of the particle which suppresses the central peak. This feature is absent in the MP-QS

hybrid nanostructure where we assume the QS to be point-like. The second distinction is

in the occurrence of significant spectral peak in the x− and y−component Stokes spectra

in Figure 6.19 which is absent in the corresponding spectra in Figure 6.5(b). This peak

is due to the presence of a nearby MP which contributes to additional scattered fields

at around Θ = 00. The third distinction is the absence of oscillation across Θ in the
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y−component Stokes spectra in Figure 6.5(b) which is present in Figure 6.19 (for the case

k0r = 12). As explained in subsection 6.2.5, this oscillatory dependence is due to the

plasmonic effects caused by the nearby MP which breaks the Θ−rotational symmetry.

Another interesting comparison that can be made is between the profile of the spectra

across the frequency range for the two cases at specific ρ (for the case in section 6.1) or

specific k0r (for the case in section 6.2). For this comparison readers should refer mainly

to the spectra in Figure 6.3(b) (at smallest ρ) and the spectra in Figure 6.14 for the case

Ωp = Ωc = 10γac. Both the Stokes and anti-Stokes spectra in Figure 6.3(b) actually

resemble those obtained for single atom case. One can clearly observe that the only

distinction here is the presence of Fano dip in the central peak of the spectra in Figure

6.14 and the occurrence of additional peaks between the central peak and the two side

peaks. Both of these features has been explained in subsection 6.2.1 as phenomena due

to the enhanced quantum fields as well as the additional ac Stark shifts induced by the

plasmon-enhanced quantum fields, respectively.

In summary, the optical properties of two types of quantum systems: (i) A meso-

scopic spherical particle composed of doubleRaman atoms and (ii) A hybrid nanostructure

consisting of a double Raman QS and a MP have been studied. In particular, the depen-

dence of the Stokes and anti-Stokes spectra from the two systems on various parameters

has been discussed and the explanation for the underlying physical mechanisms has been

provided. It is found that the spectra obtained for both systems are dramatically different

due to either the mesoscopic nature of the microparticle or the plasmonic effects caused

by the nearby MP. Conclusion of the results will be provided in the following chapter.
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CHAPTER 7: CONCLUSION

In conclusion, the optical properties of a hybrid nanostructure comprising of a

plasmonic metallic nanoparticle (MP) and a quantum system (QS) in four-level double

Raman configuration from the spectra of the quantum fields emitted have been studied. A

semiclassical approach is adopted in analyzing the MP-QS interaction in which the MP

is treated as a classical dielectric spherical particle whereas the QS is treated quantum-

mechanically using quantum Langevin formalism with noise operators. Local fields

enhancement due to the MP which manifests itself as a Fano dip in the central peak

of the spectra is observed, indicating Stokes and anti-Stokes fields strengths that are

comparable to or greater than the incident laser fields. The long-range MP-QS interaction

also results in cavity interference effect where oscillations of the spectral peaks across

interparticle distances are observed, indicating interference of the quantum fields from

both particles. Such oscillations experience damping with the increase in interparticle

distance as the plasmonic effects due to the MP becoming weaker. The results show

that the spectra for single particle without the presence of MP can only be reproduced

at sufficiently large interparticle distance, i.e. k0r > 50. Furthermore, the quantum

spectra are sensitive to the observation angles Θ and Φ where oscillatory behaviour is

observed and some component will become dominant depending on the the observation

angles. The limit of long-range interaction may be inferred from the point where the

transversality of the fields no longer applies in the spectra versus angles for the three field

components. The oscillatory dependence of the spectra on the interparticle distance and

observation angles becomes even more significant in the presence of surface plasmon

resonance, where the plasmonic field enhancement effect is at maximum. Finally, the

results show that due to collective effects among the atoms, higher number density leads
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to stronger enhancement of the quantum fields. It is expected that the findings of this

work will have implications on the development of nanostructured devices capable of

controlling light-matter interaction at the nanoscale, particularly those with potential

applications in spectroscopy of nanomaterials and generation of nonclassical photons for

quantum information processing. Possible extensions of this work include the study of a

QS placed in the gap of metallic nanoparticle dimer (Nordlander et al., 2004; Savasta et

al., 2010b; Wu et al., 2010), computation of Glauber’s two-photon correlations G(2), and

fully quantum-mechanical treatment of similar MP-QS interaction system.
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