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ABSTRACT 

A digital image is a numeric representation of a two-dimensional image. A recorded 

image is often contaminated with noise. Hence, image restoration is a fundamental 

research topic in the realm of image to obtain an optimal estimate of the original image 

given the degraded image. 

 In this study, Direct Inverse Filter, Wiener filter, and Complex Wavelet filter 

techniques are applied to eliminate the noise, thereby improving the quality of the 

restored image. They are analyzed, derived, and implemented using MATLAB software 

for reconstructing the degraded image. Two types of noise, Gaussian noise and Salt & 

Pepper noise with different levels of noise are used to contaminate the original image. 

Then, image quality metrics, namely; mean square error (MSE), peak signal-to-noise 

ratio (PSNR), and structural similarity index (SSIM) are applied to measure the quality 

of the restored images using the aforementioned image restoration techniques. 

Experimental and simulation results show that Constrained Complex wavelet filter is 

the best-performing image restoration technique followed by Wiener filler, and finally 

Direct Inverse filter.  
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ABSTRAK 

Imej digital adalah perwakilan berangka bagi imej dua dimensi. Kebiasaanya, imej 

yang telah direkodkan akan mengandungi gangguan isyarat. Oleh itu, pemulihan imej 

merupakan topik penyelidikan asas dalam bidang imej untuk memperoleh anggaran 

optimum kepada imej asal yang telah diberikan oleh imej yang berkualiti rendah. 

Dalam kajian ini, teknik penapisan songsang terus, penapisan Wiener, dan penapisan 

kompleks Wavelet digunakan untuk menghilangkan gangguan isyarat dan seterusnya 

meningkatkan kualiti imej yang dipulihkan. Imej tersebut akan dianalisis, diperoleh dan 

dilaksanakan mengguna perisian MATLAB untuk membina semula imej yang lebih 

baik. Terdapat dua jenis gangguan isyarat iaitu; gangguan isyarat Gaussian dan 

gangguan isyarat Salt & Pepper dengan tahap gangguan isyarat yang berbeza digunakan 

keatas imej asal. Seterusnya, metrik kualiti imej; iaitu purata ralat persegi, nisbah 

isyarat-ke-gangguan, dan indeks persamaan struktur digunakan untuk mengukur kualiti 

imej yang dipulihkan mengguna teknik pemulihan imej yang disebutkan diatas. Hasil 

eksperimen dan simulasi menunjukkan bahawa penapisan kompleks Wavelet adalah 

teknik pemulihan imej yang paling baik diikuti dengan teknik  penapisan Wiener dan 

teknik penapisan songsang terus. 
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CHAPTER 1: INTRODUCTION 

1.1 Research Background 

Visual components of digital images are in principle a matrix of numerical values. 

Image processing operations use algorithms to manipulate these numerical values 

mathematically. Since these algorithms operate in predefined ways, it is possible to 

predict their behavior. By studying the underlying processes of enhancement 

algorithms, it is therefore possible to predict how they react in relation to different 

image properties and thereby establish an ideal order for their application. (Ledesma, S. 

A, 2015). A proposed framework for forensic image enhancement.  

The recorded images are invariably contaminated with noise that arises from a 

number of sources and can be either multiplicative noise or additive noise. The principal 

sources of noise in digital images are:  

I. If the image is scanned from a photograph made on film, the film grain is the 

source of noise. Noise can also be the result of the damage to the film, or be 

introduced by the scanner itself.  

II. The imaging senor may be affected by environmental conditions during 

image acquisition.  

III. If the image is acquired directly in a digital format, the mechanism for 

gathering the data can introduce noise.  

IV. Insufficient light levels and senor temperature may introduce the noise in the 

image.   

V. Electronic transmission of image data can introduce noise.   

VI. Interference in the transmission channel may also corrupt the image.   

VII. If dust particles are present on the scanner screen, they can also introduce 

noise in the image (Kaur, 2015a).  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Thus, the image degradation can be modelled as shown in Figure 1.1 and 

mathematically formulated as follows: 

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y) 

where g(x, y) is the degraded image, f(x, y) is the original image, h(x, y) is the 

degradation function, n(x, y)is the additive noise, and * indicates convolution. 

 

Figure 1.1 Image Degradation Model in Spatial Domain 

1.2 Image Degradation Model in Spatial Domain 

Due to the fact convolution in the spatial domain is the same as multiplication in the 

frequency domain, the equivalent representation of the image degradation model in the 

frequency domain is illustrated in Figure 1.1 and mathematically formulated as follows: 

G(u, v) = H(u, v)F(u, v)N(u, v) 

where (u, v) represents the spatial domain coordinates whereas the terms in capital 

letters as the Fourier transforms of the corresponding terms in the spatial domain  
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Figure 1.2 Image Degradation Model in Frequency Domain 

1.3 Image Degradation Model in frequency Domain 

In image processing, noise reduction and restoration of image is expected to improve 

the qualitative inspection of an image and the performance criteria of quantitative image 

analysis techniques Digital image is inclined to a variety of noise which affects the 

quality of image. The de-noising the image is main purpose in restoring the detail of 

original image as much as possible. The criteria of the noise removal problem depend 

on the noise type by which the image is corrupting. In the field of reducing the image 

noise several types of linear and nonlinear filtering techniques have been proposed. 

Different approaches for reduction of noise and image enhancement have been 

considered, each of which has their own limitation and advantages (Rani, 2013).  

 

Figure 1.3 Image Degradation and Restoration Model in Spatial Domain. 
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The objective of image restoration is clear-cut which is to obtain an optimal estimate 

f̂(x, y) of the original image f(x, y) given the degraded image(x, y), some information in 

regard to statistical properties of the additive noise. 

1.4 Problem Statement  

The recorded image may have degraded due to contaminated with different variances 

of Gaussian noise and different densities of salt and pepper noise. 

1.5 Objectives of Research  

The main objective of this research project is to derive image restoration techniques 

and implement the derived image restoration techniques in MATLAB to restore a 

degraded image. The following outlines the detailed objectives of this research project: 

I. To restore a degraded image using Direct Inverse Filter. 

II. To restore a degraded image using the Wiener Filter. 

III. To restore a degraded image using discrete wavelet transform. 

IV. Comparison between Direct Inverse Filter, Wiener Filter and Wavelet 

Transform Filter. 

1.6 Research Report Organization  

Chapter 2 discusses the related works comprehensively. Chapter 3 outlines the 

research implementation as well as the image degradation model which comprises of 

noise models. Additionally, this chapter also discusses the image quality assessments 

techniques, as well as this chapter presents the detailed derivations of each image 

restoration techniques employed to reconstruct the different types of noise. Chapter 4 

presents the restored images, computes and tabulates the image quality metrics, discuss 

features, challenging, as well as drawbacks of the image restoration techniques, and 
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compares the image restoration techniques. Chapter 5 summarizes the research with 

direction for future development. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Restoration of digital images 

Image restoration is the operation that corrects degraded images and reconstructs a good 

quality signal from an image of mediocre quality. The restoration of the photograph 

could be done using varieties of editing techniques for the purpose of removing aging 

effects and visible damage.  

2.2 Image degradation model 

Let 𝑋 = {𝑥𝑖𝑗} be a two-dimensional random field defined on the grid                                        

𝐿 = {(𝑗𝑖), 0 ≤ 𝑖 < 𝑀 0,≤ 𝑗 < 𝑁}, representing a true but unobservable image 𝑥𝑖𝑗 

measures the intensity of the color, the gray level of the pixel at position (i, j). The 

available data is y, a measurable version of x but affected by degradations due to noise 

and/or blurring which try to recover an image from its fuzzy or noisy version. In image 

restoration, the linear model of observation is expressed by: 

𝑌 = 𝐻𝑖𝑗 + 𝑛 

In this formulation, n represents an additive perturbation often considered as centered 

Gaussian white noise, while H represents the matrix of the system spread function. 

Sometimes, degradation involves nonlinear transformation and multiplicative noise. 

This usually happened in the presence of speckle in radar images or grains on X-ray 

films. The problem of recovering x is much more difficult. The matrix H and the 

statistical characteristics of the noise n are assumed to be known. Nevertheless, this 

assumption is not always met and these quantities must also be estimated. Restoration 

techniques, therefore, require the modeling of the degradation and the image itself and 

then apply an inverse procedure to obtain an estimate of the true image (Pillai & 

Khadagade, 2017). 
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In mathematical terms, image restoration is an inverse problem badly posed. A problem 

is well posed if its solution exists, therefore it’s unique and depends continuously on the 

observed data. These are the so-called conditions of Hadamard for a problem of being 

well laid. In image restoration, the single solution does not exist. Moreover, it is 

impossible to obtain the true solution from erroneous or noisy data. The regularization 

of the problem by incorporating the information a priori in addition to the information 

provided by the observation makes it possible to define an admissible class of solutions. 

2.3 Measuring the Quality of Restoration 

2.3.1 Standards for Measuring Restoration Quality 

In image restoration, the most commonly used quantitative measurements are improved 

signal-to-noise ratio (ISNR), Mean Squared Error (MSE) and the peak of the signal-to-

noise ratio, PSNR (Peak Signal-to-Noise Ratio) respectively. These are defined as 

follows: 

𝐼𝑆𝑁𝑅 = 10. log10

∑ [𝑥(𝑖, 𝑗) − 𝑦(𝑖, 𝑗)]2𝑖,𝑗

∑ [𝑥(𝑖, 𝑗) − �̂�(𝑖, 𝑗)]2𝑖,𝑗
 

𝑀𝑆𝐸 =
1

𝑀.𝑁
[∑ [𝑥(𝑖, 𝑗) − �̂�(𝑖, 𝑗)]2𝑖,𝑗  

𝐼𝑆𝑁𝑅 = 10. log10 [
𝑀𝐴𝑋𝑝

2

𝑀𝑆𝐸
] 

Where x, y, and x represent the original (true) image, the degraded image, and the 

restored image respectively. 𝑀𝐴𝑋𝑝, is the maximum intensity of the gray levels. 

Obviously, these measurements are used exclusively for simulation cases where the 

original image is available. As a result, they do not always reflect the perceptual 

properties of the human visual system. However, they provide an objective standard by 
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which different restoration techniques are compared. When image restoration quality is 

measured with two different measurements, three important aspects are considered in a 

comparative evaluation of the two measurements. These important characteristics are; 

accuracy, precision, and direction of measurement. 

2.3.2 Accuracy of the Quality Measurement of Restoration 

A precise measurement of the restoration quality of an image must closely reflect the 

subjective appreciation of the human observer. However, there is no clear definition of 

image quality and its exact measurement procedure. Therefore, there is no reliable 

criterion for assessing the accuracy of a measure of restoration quality. Precision is the 

expression of a small relative variability in the measurement process. Let us assume set 

of similar images distorted by the same type of blur and with the same amount of noise. 

These images have been restored by the same restore operator. A high-precision 

measurement of image restoration quality, when applied to these restored images, 

should produce a set of small-scale propagation measurements. The smaller the spread, 

the more accurate the measurement. 

2.3.3 Meaning of the Quality of Restoration 

The improvement on the SNR is defined as the difference between the signal to noise 

ratio of the images before and after restoration. A positive SNR improvement indicates 

that the quality of the distorted image is improved, while the negative SNR indicates 

deterioration of the image. The zero value of the SNR improvement indicates no 

improvement or deterioration.  

2.4 Image restoration 

Numerous methods have been proposed to solve and regularize the equation of the 

linear model of observation. However, considering direct restoration approaches, either 
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a stochastic model or a deterministic model for the original image can be used. In both 

cases, the model represents a priori information about the solution that can be used to 

make the problem well posed. Stochastic regularization is based on statistical 

considerations of images and noise as stochastic or random processes. If the only 

random process in question is the additive noise n, then the solution of the minimum 

estimate of the quadratic mean of x will be called a regression problem. 

min𝐸{‖𝑥 −�̂�‖} 

However, if the image x is also considered as a random process, with the knowledge 

of 𝑅𝑥𝑥 = 𝐸{𝑥𝑥𝑇}  which is the covariance matrix of x, and  𝑅𝑛𝑛 = 𝐸{𝑛𝑛𝑇} which is the 

noise covariance matrix, then the problem will be subject to a Wiener estimate. In this 

case, the linear estimate which minimizes the equation of the quadratic mean of x is 

given by: 

�̂� =  𝑅𝑥𝑥𝑯
𝑇(𝑯 𝑅𝑥𝑥𝑯

𝑇 +  𝑅𝑛𝑛) −1y 

This equation can be rewritten and solved in the domain of the discrete frequencies 

which leads to Fourier implementation of the Wiener filter. There are several methods 

that can be used to estimate the statistical parameters needed to run the Wiener filter. 

They can be estimated by parametric and nonparametric approaches. Examples of 

techniques that fall within this framework can be found in (Pillai & Khadagade, 2017) 

(Li, Meunier, & Soucy, 2006). 

2.4.1 Image restoration by Wiener filter  

The Wiener filter is a spatially invariant linear filter in which the impulse response is 

chosen so that it minimizes the mean square error between the ideal image and the 

Univ
ers

ity
 of

 M
ala

ya



10 

restored image. This minimization of the mean squared error between the original image 

and the restored image is written as follows: 

𝐸𝑄𝑀 = 𝐸[(𝑜(𝑥, 𝑦) − �̂�(𝑥, 𝑦))2] 

where o is the ideal image, ô is the restored image and E is the mathematical 

expectation. This criterion tends to reduce the difference between the restored image 

and the ideal image. The solution to this minimization problem is easily defined in the 

spectral domain as the Wiener filter (Bovik, 2010). 

�̂�(𝑢, 𝑣) = 𝐼(𝑢, 𝑣)
𝐻∗(𝑢, 𝑣)

𝐻∗(𝑢, 𝑣)𝐻(𝑢, 𝑣) +
𝑆𝐵

2(𝑢, 𝑣)

𝑆𝑂
2(𝑢, 𝑣)

 

Where H and H* are the frequency equivalent of the impulse response and its complex 

conjugate, respectively. While 𝑆𝑂 and 𝑆𝐵 are the spectral powers of the ideal image and 

the noise, respectively. 

In a typical situation where an image is noisy, this approach makes a compromise 

between reverse filter restoration and noise suppression for frequencies where the 

frequency response is close or equal to zero (Bovik, 2010). Although it is easy to 

implement, this approach requires a comprehensive knowledge of the noise spectrum. 

The least squares method with constraints is an alternative to overcome the problem of 

the inverse filter. This approach is implemented using predetermined prior information 

about the original image as a regularization parameter (Bovik, 2010). Also, the method 

is based on the minimization of the quadratic difference between the acquired image (ô) 

and the estimated image (o). 
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2.4.2 Image Recovery by Reverse Filter 

The inverse filter is undoubtedly one of the first approaches to be used in the 

deconvolution of images since 1960. The inverse filter is generally a linear filter whose 

impulse response is the inverse of the degradation function suffered by the image. The 

implementation of this filter in the space domain can be difficult. But on the contrary, 

the spectral equivalent is generally easier. In the absence of any noise, the equation can 

be written as follow: 

𝐼(𝑢, 𝑣) = (𝑢, 𝑣)𝑂(𝑢, 𝑣) => �̂�(𝑢, 𝑣) =
𝐼(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
 

Where ô is the restored image close to the real image o. 

The advantage of this technique, it requires only the knowledge of the impulse response. 

It is very fast in terms of computing time and allows the perfect restoration of the 

image. In a situation where noise is presented in the image, its effects are irremediably 

amplified by this technique. This is also the case for frequencies close to the cutoff 

frequency. Therefore, this method is not desirable when noise is presented. To remedy 

the shortcomings of this approach and overcome its sensitivity to noise, several 

restoration filters have been developed which collectively are called "square least-

squares filters". 

2.4.3 Image Recovery by Wavelets 

Wavelets are functions of L2 (R). These functions are generated by a translation of the 

localization parameter u ∈ R and a dilation of the scaling factor s ∈ R from a single 

function called wavelet-mother ψ ∈ L2 (R), of zero average and which Oscillates 

locally. 
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Wavelets originate in the theory of signal processing, whereas it is necessary to find 

means and tools to approximate functions. Their roots are generated by functional 

analysis, mainly from advanced concepts on vector spaces and their properties. Jean 

Morlet and Alex Grossman were the two geophysicists that invented wavelets in the 

early 1980s. Gabor subsequently decomposed a signal in frequencies over several 

intervals. This help to reduce the problem of representation of the signal, particularly, 

by comparing the intervals with the several pieces of oscillating curves of different 

frequencies. These pieces of curves are indeed small waves, commonly called wavelets, 

whose size are variable. The wavelet transforms are found in both the continuous and 

the discrete domain. They work on all possible shifts or compressions of the signal 

under consideration. The notions of multi-resolution analysis by Mallat's work (Mallat, 

1989) have introduced powerful new tools, linking orthogonal wavelets to mirror filters. 

By this method, it is now possible to approximate a signal φ by two main elements: A 

scaling function ψ obtained by a low-pass filter, and δ by a high-pass filter. The low-

pass filter will give us the signal summary macroscopically, and the details of the said 

signal are obtained at the output of the high-pass filter. It should be remembered that 

filters are mathematically well-defined elements and therefore have established 

properties. The filter bank approach has therefore been used extensively in telephony. 

However, the literature refers it to several types of wavelets, characterized by their 

respective bases.  

2.4.4 Discrete wavelets 

In the case where the parameters (s, u) are discretized, the wavelet ψ (t) is constructed 

from a so-called scale function. The basic principles of the multiresolution analysis 

were laid down by Mallat (Mallat, 1989). A multi-resolution analysis of L2 (R) makes it 

possible to organize the information contained in a 1D signal into a set of approximation 
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and detail signals at successive levels of resolution j = 1, ..., J. The detail signal at a 

stage j> 1 is by definition equal to the difference between the approximation of the 

original signal at stage j - 1 and its approximation at stage j. Thus, from the coarsest 

scales to the finest scales, more and more precise representations of the initial signal 

accede. 

2.4.5 Wavelets with compact supports 

Note that to simplify the implementation of the wavelet transform, finite impulse 

response filters are chosen for analysis and synthesis. This amounts to imposing a ψ (t) 

to be bonded and compactly supported. Wavelets of this type have been studied by 

(Daubechies, 1988). 

2.4.6 Biorthogonal wavelets 

It appears that the orthonormal wavelets with compact support must satisfy some strict 

conditions. The non-linearity’s of the phase of the analysis and synthesis filters is a 

disadvantage, especially in compression applications. To circumvent this problem, the 

orthogonality constraint is then released (Cohen, Daubechies, & Feauveau, 1992). 

2.4.7 Multi-dimensional Extension 

It is possible to extend the notion of wavelet decomposition to multidimensional signals, 

in particular to digital images. In the latter case, the decomposition of the original image 

I0 (m, n), m, n ∈ {1, ..., N} is recursively made separately. For each stage j = 0, ..., J - 1, 

the approximation image aj (m, n), m, n ∈ {1, ..., N /2J} is treated in 2 steps by 

successively analyzing it. This decomposition process results in a sub image 

approximation aJ (m, n), m, n ∈ {1, ..., N /2J} at the stage J and 3 sub pictures detail wj, 

o (m, N) at each stage j oriented horizontally (o = 1), vertically (o = 2) and diagonally (o 

= 3). Thus, the transformed two-dimensional discrete dyadic and separable wavelet has 
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the advantage of being a simple transformation to implement and not redundant (the 

total number of coefficients of approximation and wavelets at each stage j is equal to the 

number of pixels of the initial image). Note, however, that there are non-separable 

wavelet decompositions (Kovacvic & Sweldens, 2000). 

2.4.8 Wavelet transformations M bands 

A multi-resolution analysis in M bands of L2 (R) (Steffen, Heller, Gopinath, & Burrus, 

1993) uses a scaling function ψ0 (t) ∈ L2 (R) and M -1, M ≥ 2 wavelets. The 

approximation signals are obtained by a succession of orthogonal projections of the 

original signal on a nested sequence of firm vector subspaces. This type of 

transformation has the advantage of finer representations in frequency. It also has the 

advantage of offering more freedom for the choice of filters. For example, it is possible 

to generate orthogonal compact support wavelets with symmetric filters, which is not 

the case for dyadic wavelets (Steffen et al., 1993). 

2.4.9 Second generation wavelets 

The second - generation wavelet transformations (Sweldens, 1996) is being preferred to 

the first - generation transformations described above. Indeed, its principle is more 

intuitive and it’s based on the concept of the so-called facelift. There are three parts 

which is:  

 At a set point j, the set of coefficients aj(n) is divided into coefficients with even 

and odd positions. 

 The spatial redundancy present at the level of the approximation signal is 

exploited by predicting the coefficients at even positions from those in odd 

positions thanks to a prediction operator P. 

 The approximation signal aj+1 (n) at the stage j + 1 
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This new decomposition structure calls for the following comments as follows: 

 The intrinsic structure of this decomposition scheme guarantees its reversibility 

without any constraint on the operators U and P. This lack of constraint 

facilitates the design of these operators. 

 Quantizers can be included in the operators P and U. In this case, if the original 

signal a0 (n) is an integer, the approximation and wavelet coefficients are also 

integer values. 

It can be observed that any bi-orthogonal wavelet decomposition associated with filters 

can be implemented by means of a finite number of lifting levels followed at the output 

of multiplications by two non - zero constants. The interest of representing the classical 

filter bank in the form of a facelift is that it is easy to verify different useful properties 

of wavelets. In practice, a very wide choice is presented for the operators P and U which 

can be linear or nonlinear. The 5/3 (Sweldens, 1996) transform is one of the most 

successful and used decompositions of the second generation. 

2.4.10 Extensions of wavelet transformation 

Despite its interesting properties, the transformed discrete dyadic and separable wavelet 

has several limitations. These limitations include lack of translation invariance and 

relative poverty in directional information. Thus, other multi resolution decompositions 

have been devised to remedy these problems. In the following, we present some of these 

decompositions most used in image processing. 

2.4.11 Adjustable pyramids 

Adjustable pyramids (Simoncelli & Farid, 1996) are multi-scale, multi-oriented 

transformations in which the image is decomposed into stages of O sub bands localized 
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to different orientations. This decomposition is done by the projection of the image at 

each stage j ∈ {1, ..., J} on a chosen number O of oriented filters. These filters have the 

particularity of ensuring the property of the adjustability. Filters are oriented if they 

form copies of each other at different orientations. This property is ensured by the 

possibility of expressing each oriented filter localized to an orientation o = 1, ..., O as a 

linear combination of a set of basic filters. 

In addition, the decomposition into oriented pyramids is an invariant transformation by 

translation and rich in directional information. It also allows flexibility for the choice of 

the number of orientations O. All these reasons make orientable pyramids a powerful 

tool and widely used in image processing especially for classification (Beferull-Lozano, 

Xie, & Ortega, 2003). Nevertheless, the orientable pyramids have the disadvantage of 

being heavily redundant. Indeed, the number of coefficients at the output of the pyramid 

is equal to (40/3) times the number of initial coefficients. 

2.4.12 The wavelets by the filter bank approach 

A filter bank is an approach that is best known for the design of wavelets. A signal can 

be distributed on M bands, in this case, we speak of M-bands wavelet transform 

(Calderbank et al., 1998), (with M ≥ 2). The filter banks are generally of two types 

which are analysis and synthesis. 

a. The analysis filters, break down a signal input so that it is distributed 

on M bands. 

b. Synthesis filters perform the inverse operation of the analysis filters. 

For M input signal bands, they are recomposed to produce a single 

output signal 
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2.4.13 Wavelets using the Lifting-scheme approach 

The basic idea behind the facelift is that it provides a simple relationship between all 

multi resolution analyzes that share the same high pass filter or low pass filter. The 

wavelet can, therefore, be seen as a linear combination of scale functions, where the 

coefficients are given by the high-pass filter. The lifting scheme is a process of wavelet 

construction, better than the filter bank approach. One of its most important features is 

that they allow for any filter bank based on the facelift, to automatically satisfy the 

property of perfect reconstruction (Xiong, Tian, & Liu, 2007). 

2.4.14 The complex wavelet transform in dual tree 

To remedy the limitations of the 2D wavelet transform DWT, (Selesnick, Baraniuk, & 

Kingsbury, 2005) defined the complex 2D wavelet transform in a dual tree. Indeed, 

Kingsbury originally designed the complex 2D wavelet transform (Selesnick et al., 

2005) to generate complex details of coefficients, this transformation is then 2 times 

redundant. The complex 2D wavelet transforms in a dual (2D DT-CWT) wavelet is 

implemented by two complex 2D wavelet transforms operating in parallel called 

primary and dual trees respectively. 

The decomposition of an image I (m, n) by the primary and dual trees provides two sub-

images approximations a1(m,n) and a′1 (m,n) with complex coefficients. In addition, 3 

sub-images of W 1, o (m, n), and o ∈ {1, 2, 3} will be provided with diagonally and 

vertically oriented diagrams at the output of each tree. Thus, this decomposition allows 

a better directional selectivity than the DWT at the price of a redundancy factor equal to 

4. It also has an additional advantage of being invariant by translation. 
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2.4.15 The transformed two-dimensional wavelet M bands into a dual tree 

As shown in the previous transformations, a compromise between a minimum of 

redundancy and a wealth of directional information is a real challenge. It is in this 

context that the transformed 2D M-band dual-wave (2D DT-MWT) wavelet has been 

introduced by (Chaux, Duval, & Pesquet, 2006). This wavelet is aimed to combine the 

advantages of the M band transforms, namely the flexibility of choosing filters and the 

selectivity in frequency as well as the directionality and the invariance by translation 

ensured by the dual tree decomposition. A 2D DT-MWT is based on the decomposition 

of an original image I (p, q), p, q ∈ {1, ..., N} by two transformations M separable two-

dimensional bands associated respectively with a primary tree and Dual shaft. The filter 

banks h0,..., hM and h′0 ,...,h′M associated with the primary tree and the dual tree form 

pairs of Hilbert. The decomposition of the image I (p, q) by the primary and dual trees 

results in two approximate images a1(p,q) and a′1(p,q) as well as M-1 sub bands detail 

w1,m,m′( (m, m') m,m′ ∈ {1,...,M −1}, (m,m′ ) ≠(0, 0)  to the output of each tree. To 

obtain directional sub bands, a linear combination of the signals w1,m,m′(p,q) and 

w′1,m,m′(p,q) is performed. 

The 2D DT-CWT characterizes only 6 different directions and it has the advantage of 

giving the user the free choice of the number of directions by adjusting the parameter 

M. This is done independently of the redundancy factor that remains always equal to 

two (2). It is noted that the 2D DT-MWT achieves a better compromise between 

directional selectivity and redundancy factor. The latter also has the advantage of being 

invariant by translation. Finally, it has the advantage of offering more freedom for the 

choice of filters compared to the 2D DT-CWT as the use of orthogonal compact support 

wavelets with symmetric filters. In this respect, it has been successfully used in image 
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processing (Chaux et al., 2006) and it would be of considerable interest to characterize 

images in the context of image search. 

2.4.16 Application of decomposition M-bands in dual tree to denoising 

The multidimensional decomposition of the complex dual-complex transform has 

already been shown to be effective in other denoising work. Specifically, it’s very 

effective in video processing (Selesnick & Li, 2003) or satellite imagery(Jalobeanu, 

Blanc-Féraud, & Zerubia, 2003). In this section, it will be shown that the M-band 

transform in a dual tree also achieves very good performances in image denoising. 

Furthermore, it performs better than the method which is based on M-band wavelet 

transforms and even often the decomposition into a dual dyadic tree. The images of 

particular interest are usually the ones containing a lot of oriented and textured 

information like seismic images. Different families of wavelets have been tested, the 

results obtained were corresponded with those obtained by Meyer wavelets [Tennant, 

Rao, 2003]. This is because, the wavelets are declined in M-bands for whatever M. 

Curvelets have demonstrated their effectiveness in denoising (Starck, Candès, & 

Donoho, 2002) as well as decompositions in dual M-bands (Chaux et al., 2006). 

Although the formalisms that led to these two methods are totally different, the fact 

remains that these two transformations provide directional analyzes. 

2.4.17 Quaternionic wavelets 

Although the complex 2D dual-tree algorithm is associated with wavelet functions with 

many qualities such as directionality and quasi-invariance by translation. But one can 

wonder about the answer given by this construction in relation to the problem originally 

laid down, namely the construction of a 2-D analytic wavelet function. Particularly, this 

point was not discussed in the founding articles concerning complex 2-D wavelets. We 

have conducted a reflection on this point from Bülow's work and the definition of a 
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really analytic 2-D wavelet appeared only very recently in the papers of Chan et 

al.(Chan, Choi, & Baraniuk, 2008). 

The presence of two complex numbers to define the analytic signal leads to a certain 

ambiguity in the definitions of the deduced information. Indeed, because of the 

structure, two norms and two angles was calculated which is difficult to explain their 

link or propose a strategy of fusion. Therefore, logically in the later work of Bülow on 

the quaternionic analytic signal has been recently proposed a quaternionic analytic 

wavelet decomposition by (Chan et al., 2008). 
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CHAPTER 3: RESEARCH METHODOLOGY  

3.1 Flow Chart of Image Degradation/Restoration  

The original image is degraded by either Gaussian Noise or Salt and Pepper noise. 

Various levels of noise are added to the image. Then, image restoration methods such as 

Direct Inverse Filter, Wiener Filter, and Complex Wavelet Filter. The flowchart of the 

image degradation and restoration is shown in Figure 3.1.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ORIGINL 

      IMAGE 

GAUSSIAN NOISE MODEL 

Noise Variance = [0.001, 0.005, 

0.01, 0.05, 0.1, 0.5] 

 

SALT & PEPPER NOISE 

MODEL Noise Density = 

[0.001, 0.005, 0.01, 0.05, 

0.1, 0.5] 

IMAGE RESTORATION 

Techniques: Direct Inverse Filter, 

Wiener Filter and Wavelet Transform 

Filter 

IMAGE QUALITY ASSESSMENT                  

Statistical Error Image Metrics: Mean Square Error (MSE) 

Human Visual System Feature-Based Metrics: Structural 

Similarity Index (SSIM) 

 

Addition  Addition  

Figure 3.1 Flow chart of Image Degradation/ Restoration 
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3.2 Noise model  

Noise is an unwanted information present in an image. Such unwanted information in 

an image can be removed with filters. In digital image processing, filters can be applied 

on an image in two ways, which include spatial and frequency domain. This paper 

mainly deals with the application of spatial domain filters on noisy images for the 

purpose of identifying the efficiency of the filters in terms of enhancing the quality of 

the image by removing the noise present on it (Swaminathan, 2016). Generally, an 

image gets affected by noise during its acquisition, transmission and storage. There are 

several ways that noise can be introduced into an image, depending on how the image is 

created. For example, If the image is scanned from a photograph made on film, the film 

grain is a source of noise. Noise can also be the result of damage to the film, or be 

introduced by the scanner itself. If the image is acquired directly in a digital format, the 

mechanism for gathering the data (such as a CCD detector) can introduce noise. 

Electronic transmission of image data can introduce noise(Kaur, 2015b).  

There are two common types of noise models in image processing, namely Gaussian 

noise model and salt and pepper noise model. 

3.2.1 Gaussian noise model  

The random noise that enters the system can be modelled as Gaussian or normal 

distribution. The Gaussian distribution is a well-known bell-shaped curve. This is 

mathematically denoted as F = S ± Na, where Na is the Gaussian probability density 

function (PDF) and S is the noiseless image. The Gaussian noise affects both the dark 

and light areas of an image. The probability density function of Gaussian noise is 

mathematically expressed as follows: The Gaussian distribution is  

P(z) =  
1

σ√2π
e
−

(z−m)2

2σ2  
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whereas the mean and variance of Gaussian noise are as follows: 

mean, m=a 

variance, σ2 = b2  

 

Figure 3.2 probability Density Function (Swaminathan, 2016). 
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Figure 3.3 Gaussian Noise (Mean=0; Variance=0.001). 

 

Figure 3.4 Gaussian Noise (Mean=0; Variance=0.005). 

Univ
ers

ity
 of

 M
ala

ya



25 

 

Figure 3.5 Gaussian Noise (Mean=0; Variance=0.005) 

 

Figure 3.6 Gaussian Noise (Mean=0; Variance=0.05) 
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Figure 3.7 Gaussian Noise (Mean=0; Variance=0.1) 

 

Figure 3.8  Gaussian Noise (Mean=0; Variance=0.5) 
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3.2.2 Salt and pepper noise model  

For this kind of noise, conventional low pass filtering, e.g. mean filtering or Gaussian 

smoothing is relatively unsuccessful because the corrupted pixel value can vary 

significantly from the original and therefore the mean can be significantly different from 

the true value. A median filter removes drop-out noise more efficiently and at the same 

time preserves the edges and small details in the image better. Conservative smoothing 

can be used to obtain a result which preserves a great deal of high frequency detail, but 

is only effective at reducing low levels of noise. In salt and pepper noise (sparse light 

and dark disturbances), pixels in the image are very different in color or intensity from 

their surrounding pixels; the defining characteristic is that the value of a noisy pixel 

bears no relation to the color of surrounding pixels. Generally, this type of noise will 

only affect a small number of image pixels. When viewed, the image contains dark and 

white dots, hence the term salt and pepper noise. Typical sources include flecks of dust 

inside the camera and overheated or faulty CCD elements.  

Salt and pepper noise is an impulse type of noise, which is also referred to as 

intensity spikes. This is caused generally due to errors in data transmission. It has only 

two possible values, a and b. The probability of each is typically less than 0.1. The 

corrupted pixels are set alternatively to the minimum or to the maximum value, giving 

the image a “salt and pepper” like appearance. Unaffected pixels remain unchanged. For 

an 8-bit image, the typical value for pepper noise is 0 and for salt noise 255. The salt 

and pepper noise is generally caused by malfunctioning of pixel elements in the camera 

sensors, faulty memory locations, or timing errors in the digitization process.(Garg & 

Kumar, 2012). 

Salt and pepper noise is sometimes called impulse noise or spike noise or random 

noise or independent noise. In salt and pepper noise (sparse light and dark disturbances), 
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pixels in the image are very different in color or intensity unlike their surrounding 

pixels. Salt and pepper degradation can be caused by sharp and sudden disturbance in 

the image signal. Generally, this type of noise will only affect a small number of image 

pixels. When viewed, the image contains dark and white dots, hence the term salt and 

pepper noise. Typical sources include flecks of dust inside the camera and overheated or 

faulty (Charge-coupled device) CCD elements. An image containing salt-and-pepper 

noise will have dark pixels in bright regions and vice versa. This type of noise can be 

caused by dead pixels, analogue-to- digital converter errors and bit errors in 

transmission.(Garg & Kumar, 2012) the probability density function of salt and pepper 

noise is as follows: 

P(Z) = {

pa for z=a 

pb for z = b
0 otherwise

  

the mean and variance of salt pepper noise are as follows: 

mean, m = aPa + bPb   

σ2 = (a − m)2Pb + (b − m)2Pb 

and the cumulative density function of salt and pepper noise is:                                         

{
     0 for z < a
pa     for a ≤  z <  b

pa + pb    for b ≤ z
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Figure 3.9 Salt and Pepper Noise (Density=0.001) 

 

Figure 3.10 Salt and Pepper Noise (Density=0.005) 
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Figure 3.11 Salt and Pepper Noise (Density=0.01) 

 

Figure 3.12 Salt and Pepper Noise (Density=0.05) 
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Figure 3.13 Salt and Pepper Noise (Density=0.01) 

 

Figure 3.14 Salt and Pepper Noise (Density=0.5) 
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3.3 Image Quality Assessment (IQA) 

Image Quality assessment plays an important role in various image processing 

applications. It is still an active area of research. A great deal of effort has been made in 

recent years to develop objective image quality metrics that correlate well with 

perceived human quality measurement or subjective methods. Objective image quality 

metrics can be categorized into three different classes, namely full reference, reduced 

reference, and no reference, depending on the availability of the original image with 

which the restored image is to be compared with (Varnan et al., 2012). In this work, the 

full reference (FR) approach were derived based on pixel to pixel error such as mean 

square error(MSE) or peak signal to noise ratio(PSNR), structural similarity index 

metric(SSIM). These were applied in current study for evaluating and estimating the 

quality of distorted images.  

3.3.1 Mean squared Error (MSE)  

It stands for the mean squared difference between the original image and distorted 

image. The mathematical definition for MSE (Eskicioglu & Fisher, 1995).  

MSE = (
1

M ∗ N
)∑∑(aij − bij)

2

N

j=1

M

i=1

 

In Equation (3.1), aij means the pixel value at position (i,j ) in the original image and 

bij means the pixel value at the same position in the corresponding distorted image. 

3.3.2 Peak Signal-to-Noise Ratio (PSNR) 

 PSNR is a classical index defined as the ratio between the maximum possible power 

of a signal and the power of corrupting noise that affects the fidelity of its representation 

(Zhe & Wu, 2004). 

PSNR = 10log102552/MSE 
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Where 255 is the maximal possible value the image pixels when pixels are 

represented using 8 bits per sample, and MSE (mean square error) is the Euclidian 

distance between the original and the degraded images. The major advantages of these 

metrics are its simplicity and mathematical tractability, but they are not correlating well 

with perceived quality measurement because the Human Vision System characteristics 

are not considered in their models. PSNR is more consistent in the presence of noise 

compared to the SNR. By using the CSF (contrast sensitivity function) as the weighting 

function, we can define weighted SNR (WSNR) as the ratio of the average weighted 

signal power to the average weighted noise power.  

3.3.3 Structural Similarity Index (SSIM) 

is a full reference metric, or we can say the measuring of image quality based on an 

initial uncompressed or distortion-free image as reference. It compares two images 

using information about luminous, contrast and structural functions between the two 

input images (Li & Bovik, 2010). The luminous, contrast and structure function of the 

SSIM index are formulated individual as follows (Kudelka, 2012).  

    luminous, l(x, y) =
2mxmy + C1

2mx
2+my

2 + C1
 

contrast, c(x, y) =
2xy + C2

2x
2+y

2 + C2

 

structural, s(x, y) =
xy + C3

xy + C3
 

 where mx and my represent the means of original image and restored image, 

respectively; xand yare standard deviation of original image and restored image, 

respectively; xyis the covariance between original image and restored image; 

C1, C2and C3are constants that stabilized the computation when the denominators 
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become small. The combination of the luminous, contrast and structural functions yields 

a general form of SSIM index as follows:  

SSIM (x, y) =
(2mxmy + C1)(2xy + C2)

(mx
2+my

2 + C1)(x
2+y

2 + C2)
 

SSIM index is a maximum (1) if only the original image equates restored image 

(Dosselmann & Yang, 2008).  

3.4 Image restoration techniques  

3.4.1 Direct Inverse Filter  

Direct inverse filter computes an optimal estimate F̂(u,v) of the original image F(u,v) 

simply dividing the degraded image G(u,v) by the degradation function H(u,v)as 

follows: 

F̂(u, v) =
G(u, v) 

H(u, v)
 

Substitute G(u, v)with F(u,v) H(u,v)+N(u,v): 

F̂(u, v) =
F(u, v)H(u, v) + N(u, v) 

H(u, v)
 

F̂ (u, v) =
F(u, v)H(u, v)

H(u, v)
+

N(u, v)

H(u, v)
 

F̂(u, v) = F(u, v) +
N(u, v)

H(u, v)
 

It is interesting to note that the direct inverse filter can recover a degraded image 

exactly in the absence of noise. However, in the event that the noise is unknown, then it 

is impossible for a direct inverse filter to reconstruct the degraded image. Furthermore, 
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in the event that the degradation function has zero or absolute small values, then the 

noise can easily dominate the estimate - F̂(u, v). 

In a nutshell, the direct inverse filter makes no explicit for managing noise and tends 

to allow noise to dominate over the estimate in the process of restoration. 

 

3.4.2 Wiener Filter 

The direct inverse filter is a poor image restoration technique in general and 

particularly vulnerable to noise. Therefore, Wiener filter is an enhanced image 

restoration technique that integrates not only the degradation function but also statistical 

properties of noise and original image in the reconstruction process. 

Wiener filter obtains an optimal estimate f̂(x,y) of the original image f(x,y) by 

minimizing the mean square error (MSE) between them on the assumption that the 

noise and the original image are uncorrelated. The detailed derivation of Weiner filter is 

as follows: 

e2 = E[|f(x, y) − f̂(x, y)|2] 

e2 = E[|f(x, y) − g(x, y) ∗ w(x, y)|2] 

Convert the statistical error function to frequency domain by applying Fourier 

transform onto each the corresponding terms: 

e2 = E[|F(u, v) − F(u, v)W(u, v)|2] 

Apply G(u, v) =  F(u, v)𝐻(u, v) + N(u, v) into the statistical error function above to 

obtain: 
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e2 = E[|F(u, v) − (F(u, v)H(u, v) + N(u, v))W(u, v)|2] 

e2 = E[|F(u, v) − F(u, v)H(u, v)W(u, v) − N(u, v))W(u, v)|2] 

e2 = E[|F(u, v)(1 − W(u, v)H(𝑢, v)) − N(u, v)W(u, v)|2] 

Apply complex conjugate formula, |z|2 = zz̅ = zz̅: 

e2 = E[(F(u, v)(1 − W(u, v)H(u, v))

− N(u, v)W(u, v))(F(u, v)(1 − W(u, v)H(u, v)) − N(u, v)W(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 

e2 = E [(F(u, v)(1 − W(u, v)H(u, v))

− 𝑁(u, v)W(u, v)) (F(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − N(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ]  

e2 = E [(F(u, v)F(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅(1 − W(u, v)H(u, v))(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

− F(u, v)(1 − W(u, v)H(u, v))N(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

− (F(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅N(u, v)𝑊(u, v)

+ W(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  N(u, v)N(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅) ]  

The noise, N(u, v)is assumed to be independent of the original image F(u, v), hence: 

E[F(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅ F(u, v)] = E[N(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅ F(u, v)] = 0 

Apply the assumption that the noise and the original image are uncorrelated into the 

statistical error function: 

e2 = E [F(u, v)F(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅(1 − W(u, v)H(u, v))(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ W(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  N(u, v)N(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅  ] 
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In addition, the power spectral densities of the noise and original image are defined 

as follows: 

SF(u, v) = |F(u, v)|2 

SN(u, v) = |N(u, v)|2 

 

Therefore, 

e2 = E [SF(u, v)(1 − W(u, v)H(u, v))(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

+ W(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  SN(u, v)  ] 

Find the minimum value of the function by differentiating the statistical error 

function with respect to Wiener filter, W(u, v): 

dε

dW
= − H(u, v)(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅SF(u, v) + W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  SN(u, v) 

dε

dW
= W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  SN(u, v) −  H(u, v)(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅SF(u, v) 

Set derivative equal to zero and solve for wiener filter, W(u, v): 

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  SN(u, v) −  H(u, v)(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅SF(u, v) = 0 

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  SN(u, v) = H(u, v)(1 − W(u, v)H(u, v))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅SF(u, v) 

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  SN(u, v) = SF(u, v) H(u, v) − SF(u, v) H(u, v)H(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

SN(u, v) =
SF(u, v)H(u, v)

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
−

SF(u, v) H(u, v)H(u, v)W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
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SN(u, v) =
SF(u, v)H(u, v)

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− SF(u, v) H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

SN(u, v) + SF(u, v) H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
SF(u, v)H(u, v)

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
SF(u, v)H(u, v)

SN(u, v) + SF(u, v) H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅
 

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
SF(u, v)H(u, v)

SN(u, v) + SF(u, v) H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅
×

1
SF(u, v)

1
SF(u, v)

 

W(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
H(u, v)

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅
 

W(u, v) =
H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅
 

W(u, v) =
H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅
×

H(u, v)

H(u, v)
 

W(u, v) =
H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅H(u, v)

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + H(u, v)H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅
×

1

H(u, v)
 

W(u, v) =
|H(u, v)|2

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + |H(u, v)|2
×

1

H(u, v)
 

F̂(u, v) =  W(u, v) × G(u, v) 
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F̂(u, v) =

[
 
 
 |H(u, v)|2

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + |H(u, v)|2
×

1

H(u, v)

]
 
 
 

×  G(u, v) 

where  

F̂(u, v) = optimal estimate of original image F(u, v) 

H(u, v) = the degradation/blurring/PSF/OTF function  

|H(u, v)|2 = H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅ H(u, v) 

H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅ = the complex conjugate of H(u, v) 

SF(u, v) = |F(u, v)|2 = the power spectrum of the original image  

SN(u, v) = |N(u, v)|2= the power spectrum of the additive noise  

Power spectrum density (PSD) or power spectrum of a signal describes the average 

signal power per spatial frequency (u, v). The power spectral densities of original image 

and additive noise are represented by SF(u, v) and  SN(u, v) respectively.  

The ratio SN(u, v)/SF(u, v) is known as the noise to signal power ratio. It is 

important to note that in the absence of noise, the power spectrum of noise, SN(u, v) is 

zero, hence, the noise to signal power ratio becomes zero as well. In other words, the 

Wiener filter reduces or approximates to a direct inverse filter in the absence of noise. 

Furthermore, the power spectrum of the noise is determined by the noise variance 

only for all spatial frequencies due to the assumption that the noise is independent of the 

original Image, thus has zero mean. 

SN(u, v) = 2for all (u, v) 

Univ
ers

ity
 of

 M
ala

ya



40 

However, the estimation of power spectrum of the original image is often 

challenging since the original image in practical case is obviously unavailable. Thus, 

period gram is an approach commonly used to estimate the power spectrum of the 

original image by determining the power spectrum of the degraded image and 

compensating for the variance of the noise n
2 . 

SF(u, v) ≈ SG(u, v) − n
2 ≈

1

NM
G(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅G(u, v) − n

2  

Last but not least, it is important to note that even in the event that the noise to signal 

power ratio is unknown, the optimal estimate of the original image can still be obtained 

by varying the constant ratio and observing the restored outcomes. 

3.4.3 Wavelet Transform Filter  

A wavelet is a function corresponding to a small oscillation, hence its name. Used in 

wavelet decomposition, decomposition like short-term Fourier transform, used in signal 

processing. 

In mathematics, a wavelet ψ is a summable square function of the Hilbert space 

defined as:        ∀t ∈ ℝ,ψs,𝜏(t) =
1

√s
ψ(

t−τ

s
) 

where: (s, t) ∈ ℝ+∗ × ℝ 

3.4.3.1 Discrete wavelets transform (DWT) 

Analyzing assumable square wavelet function consists in calculating all its scalar 

products. The obtained numbers are called wavelet coefficients, and the operation 

associating a function with its wavelet coefficients is called a wavelet transform. We 

can adapt the wavelet transform in the case where we are in a discrete set. It is then a 

question of sampling the signal s on a dyadic scale and τ, thus: 
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ψm,n[t] = s0
−m/2

ψ(s0
−mt − nT0 

In the case where the ψm,nform a Hilbert basis space, (this is the case, for example, 

of the Haar wavelet), the wavelet decomposition of a signal g consists in calculating the 

scalar products (g, ψm,n) . The reconstruction of the signal is then obtained by: 

g = ∑ ∑(g,

m∈Zm∈Z

ψm,n)ψm,n 

The main disadvantages of the DWT are lack of directionality and shift-sensitivity 

(an unpredictable change in the output coefficients happens when the input signal 

shifts).  

3.4.3.2 Dual -Tree Complex Wavelet Transform (DT-CWT) 

The DT-CWT solves all the problems of the DWT as it is quasi shift-invariant and 

has a good directional selectivity. As shown in Figure 4.2, the same step function is 

applied as input signals with different phases to both DWT and DTCWT. The result is 

that, the coefficients of the DTCWT transform are less affected by the shift. 
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Figure 3.15 shifted step responses of both DWT and DTCWT. 

 

As shown in the Figure 4.2 The DTCWT of a signal X(t) is calculated by means of 

two separate DWTs in parallel on the same data. Each tree has four levels (level 1 to 4 

and of the level 4 scaling function). And each tree represents the real or the imaginary 

parts of the transform. Univ
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Figure 3.16 DTCWT implementation of a signal x. 
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CHAPTER 4: RESULTS AND DISCUSSION 

This chapter shows the results of the three methods used to restore the degraded 

noise image. The restored image is evaluated using the image quality metrics discussed 

in the earlier chapters. A total of twelve images is used in this experimental study. The 

noise was added into images by using two methods are; Gaussian noise and Salt & 

Pepper.  

4.1  Direct Inverse Filter 

 

Figure 4.1 Restored image using Direct Inverse Filter in the absence of noise. 

 

Direct inverse filter is mathematically formulated as follows: 

�̂�(𝑢, 𝑣) =
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 𝑁(𝑢, 𝑣) 

H(𝑢, 𝑣)
 

However, in the absence of noise, the direct inverse filter reduces to: 
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�̂�(𝑢, 𝑣) =
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) + 0 

H(𝑢, 𝑣)
 

�̂�(𝑢, 𝑣) =
𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) 

H(𝑢, 𝑣)
 

�̂�(𝑢, 𝑣) = 𝐹(𝑢, 𝑣) 

 

Figure 5.1.1 elucidate and evaluate that a direct inverse filter is a suitable image 

restoration technique in the absence of noise. The MSE and PSNR of the resorted image 

in the absence of noise are 0.0003 and 84.0117, respectively. The MSE value indicates 

that the cumulative squared error between the restored image and the original image is 

extremely minimal whereas the high PSNR value indicates that the resorted image 

presents a high-quality image.  

 

Figure 4.2 Restored Image using Direct Inverse Filter in the present of Gaussian 

noise with 0 mean and 0.001 variance. 
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Figure 4.3 Restored Image using Direct Inverse Filter in the present of Gaussian 

noise with 0 mean and 0.005 variance.  

 

Figure 4.4 Restored Image using Direct Inverse Filter in the present of Gaussian 

noise with 0 mean and 0.01 variance. 
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Figure 4.5 Restored Image using Direct Inverse Filter in the present of Gaussian 

noise with 0 mean and 0.05 variance. 

 

Figure 4.6 Restored Image using Direct Inverse Filter in the present of Gaussian 

noise with 0 mean and 0.1 variance. 
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Figure 4.7 Restored Image using Direct Inverse Filter in the present of Gaussian 

noise with 0 mean and 0.5 variance.  

 

Figure 4.8 Restored Image using Direct Inverse Filter in the present of Salt 

&Pepper noise at 0.001 density. 
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Figure 4.9 Restored Image using Direct Inverse Filter in the present of Salt 

&Pepper noise at 0.005 density.  

 

Figure 4.10 Restored Image using Direct Inverse Filter in the present of Salt 

&Pepper noise at 0.01 density. 
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Figure 4.11 Restored Image using Direct Inverse Filter in the present of Salt 

&Pepper noise at 0.05 density  

 

Figure 4.12 Restored Image using Direct Inverse Filter in the present of Salt 

&Pepper noise at 0.1 density. 
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Figure 4.13 Restored Image using Direct Inverse Filter in the present of Salt 

&Pepper noise at 0.5 density 

 

Table 4.1 MSE, PSNR, and SSIM of Direct Inverse Filter 

Direct Inverse Filter 

Quantitative 

Parameters 

Gaussian Noise (Variance) Salt & pepper Noise (Density) 

0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5 

MSE 0.0034 0.0144 0.0273 0.1140 0.1987 0.4938 0.0015 0.0061 0.0121 0.0578 0.1149 0.5212 

PSNR (dB) 72.8596 66.5363 36.7735 57.5599 55.1498 51.1951 76.4053 70.2806 67.3145 60.5118 57.5288 50.9605 

SSIM 0.6492 0.3465 0.2368 0.0803 0.0484 0.0178 0.8902 0.7595 0.6274 0.2300 0.1186 0.0200 
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Figure 4.14 MSE of Direct Inverse Filter for Gaussian Noise. 

 

Figure 4.15 PSNR of Direct Inverse Filter for Gaussian Noise. 
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Figure 4.16 SSIM of Direct Inverse Filter for Gaussian Noise. 

 

Figure 4.17 MSE of Direct Inverse Filter for Salt & Pepper Noise 
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Figure 4.18 PSNR of Direct Inverse Filter for Salt & Pepper Noise 

 

 

Figure 4.19 SSIM of Direct Inverse Filter for Salt & Pepper Noise 
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4.2 Wiener Filter 

Weiner filter is mathematically formulated as follows: 

F̂(u, v) =

[
 
 
 |H(u, v)|2

SN(u, v)

SF(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + |H(u, v)|2
×

1

H(u, v)

]
 
 
 

×  G(u, v) 

where F̂(u, v) is the optimal estimate of original F(u, v); H(u, v) is the degradation 

function; |H(u, v)|2 = H(u, v)̅̅ ̅̅ ̅̅ ̅̅ ̅H(u, v);  H(u, v) is the complex conjugate of H(u, v); 

SF(u, v)=|F(u, v)|2 is the power spectrum of the original image; SN(u, v) = |N(u, v)|2 is 

the power spectrum of additive noise. 

However, it is interesting to note that in the absence of noise, the noise to signal 

ratio, SN(u, v)/F(u, v) is zero and the Wiener filter reduces to a direct inverse filter as 

follows: 

F̂(u, v) = [
|H(u, v)|2

0 + |H(u, v)|2
×

1

H(u, v)
] ×  G(u, v) 

F̂(u, v) =
G(u, v)

H(u, v)
 

Wiener filter has showed that the restored images are fairly closed to the original 

image although some noise is still obvious. Quantitatively, The MSE, PSNR, and SSIM 

methods are calculated and presented as illustrated in Table 5.2. They were applied for 

comparing and analyzing the quality between the restored images and the original 

image. Generally, the cumulative squared errors were achieved a very minimal value 

between the restored images and original image. Therefore, the qualities of the restored 

images were better. Thus, from Table 5.2 clearly showed that the noise increases, the 

cumulative error increases, and the quality of the restored image decreases.  
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Overall, although some noise is still shown, Wiener filter method generated restored 

image which it is closely like the original image by integrating the noise into signal 

ratio. However, the achievements of Wiener filter assume that the statistical properties 

of both noise and original image are recognized. Practically, one or more of these 

quantities is unrecognized, and the issue is that, the experimental signal to noise ratio 

should be repeated till an adequate result is achieved.  

 

Figure 4.20 Restored Image using Wiener Filter in the present of Gaussian noise 

with 0 mean and 0.001 variance. 
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Figure 4.21 Restored Image using Wiener Filter in the present of Gaussian noise 

with 0 mean and 0.005 variance. 

 

Figure 4.22 Restored Image using Wiener Filter in the present of Gaussian noise 

with 0 mean and 0.01 variance. 
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Figure 4.23 Restored Image using Wiener Filter in the present of Gaussian noise 

with 0 mean and 0.05 variance. 

 
 

Figure 4.24 Restored Image using Wiener Filter in the present of Gaussian noise 

with 0 mean and 0.1 variance. 
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Figure 4.25 Restored Image using Wiener Filter in the present of Gaussian noise 

with 0 mean and 0.5 variance. 

 

Figure 4.26 Restored Image using Wiener Filter in the present of Salt &Pepper 

noise at 0.001 density. 
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Figure 4.27 Restored Image using Wiener Filter in the present of Salt &Pepper 

noise at 0.005 density. 

 

Figure 4.28 Restored Image using Wiener Filter in the present of Salt &Pepper 

noise at 0.01 density. 
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Figure 4.29 Restored Image using Wiener Filter in the present of Salt &Pepper 

noise at 0.05 density. 

 

Figure 4.30 Restored Image using Wiener Filter in the present of Salt &Pepper 

noise at 0.1 density. 
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Figure 4.31 Restored Image using Wiener Filter in the present of Salt &Pepper 

noise at 0.5 density. 

Table 4.2 MSE, PSNR, and SSIM of Wiener Filter 

Wiener Filter 

Quantitative 

Parameters 

Gaussian Noise (Variance) Salt & pepper Noise (Density) 

0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5     

MSE 0.0003 0.0008 0.0015 0.0064 0.0119 0.0399 0.0005 0.0016 0.0027 0.0063 0.0088 0.0411 

PSNR (dB) 82.8322 78.9040 76.4449 70.0626 67.3851 62.1160 80.9869 76.0517 73.7709 70.1169 68.7009 61.9916 

SSIM 0.9738 0.9396 0.9057 0.7542 0.6537 0.4067 0.9718 0.9273 0.8851 0.7720 0.7223 0.4130 
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Figure 4.32 MSE of Wiener Inverse Filter for Gaussian Noise 

 

 

Figure 4.33 PSNR of Wiener Inverse Filter for Gaussian Noise 
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Figure 4.34 SSIM of Wiener Inverse Filter for Gaussian Noise 

 

 

Figure 4.35 MSE of Wiener Inverse Filter for Salt & Pepper Noise 
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Figure 4.36 PSNR of Wiener Inverse Filter for Salt & Pepper Noise 

 

 

Figure 4.37 SSIM of Wiener Inverse Filter for Salt & Pepper Noise 
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4.3 Wavelet Transform Filter  

 

Figure 4.38 Restored Image using Complex Dual Tree Wavelet Filter in the 

present of Gaussian noise with 0 mean and 0.001 variance. 

 

Figure 4.39 Restored Image using Complex Dual Tree Wavelet Filter in the 

present of Gaussian noise with 0 mean and 0.005 variance. 
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Figure 4.40 Restored Image using Complex Dual Tree Wavelet Filter in the 

present of Gaussian noise with 0 mean and 0.01 variance. 

 

Figure 4.41 Restored Image using Complex Dual Tree Wavelet Filter in the 

present of Gaussian noise with 0 mean and 0.05 variance. 
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Figure 4.42 Restored Image using Complex Dual Tree Wavelet Filter in the 

present of Gaussian noise with 0 mean and 0.1 variance. 

 

Figure 4.43 Restored Image using Complex Dual Tree Wavelet Filter in the 

present of Gaussian noise with 0 mean and 0.5 variance. 
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Figure 4.44 Restored Image using Complex Dual Tree Filter in the present of 

Salt &Pepper noise at 0.001 density. 

 

Figure 4.45 Restored Image using Complex Dual Tree Filter in the present of 

Salt &Pepper noise at 0.005 density. 
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Figure 4.46 Restored Image using Complex Dual Tree Filter in the present of 

Salt &Pepper noise at 0.01 density. 

 

Figure 4.47 Restored Image using Complex Dual Tree Filter in the present of 

Salt &Pepper noise at 0.05 density. 
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Figure 4.48 Restored Image using Complex Dual Tree Filter in the present of 

Salt &Pepper noise at 0.1 density. 

 

Figure 4.49 Restored Image using Complex Dual Tree Filter in the present of 

Salt &Pepper noise at 0.5 density. 
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Table 4.3 MSE, PSNR, and SSIM of Complex Dual Tree 

Complex Wavelet Filter 

Quantitative 

Parameters 

Gaussian Noise (Variance) Salt & pepper Noise (Density) 

0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5 

MSE 
0.0008 

0.0011 0.0015 0.0050 0.0097 0.0389 
0.0007       

0.0008 0.0009 0.0019 0.0037 0.0388 

PSNR (dB) 79.1223 77.7389 76.3915 71.1612 68.2522 62.2360 
79.3952 

78.9642 78.4541 75.2503 72.3988 62.2410 

SSIM 0.9571 0.9313 0.9069 0.7906 0.7027 0.4266 0.9630 0.9558 0.9471 0.8868 0.8248 0.4330 

 

 

 

Figure 4.50 MSE of Complex Dual Tree Wavelet Inverse Filter for Gaussian 

Noise. 
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Figure 4.51 PSNR of Complex Dual Tree Wavelet Inverse Filter for Gaussian 

Noise. 

 

 

Figure 4.52 SSIM of Complex Dual Tree Wavelet Inverse Filter for Gaussian 

Noise 
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Figure 4.53 MSE of Complex Dual Tree Wavelet Inverse Filter for Salt & 

Pepper Noise 

 

 

Figure 4.54 PSNR of Complex Dual Tree Wavelet Inverse Filter for Gaussian 

Noise 
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Figure 4.55 SSIM of Complex Dual Tree Wavelet Inverse Filter for Gaussian 

Noise 

Complex Wavelet filter was exhibited the best an achievement compared with other 

methods that the restored images are similarly look like the original image. 

Quantitatively, The MSE, PSNR, and SSIM methods are calculated and presented as 

shown in Table 5.3. They were implemented to analyze and compare the result quality 

between the restored images and the original image. as compared to other methods, the 

cumulative squared errors in Wavelet filter were showed an extremely minimal value 

between the restored images and original images. Therefore, the qualities of the restored 

images were better. Thus, Table 5.3 showed that the noise increases, the cumulative 

error increases, and the quality of the restored image decreases. In addition, adding the 

noise to the original image, the results of the two noise methods showed that the salt and 

paper method was giving the better image quality compared with Gaussian Noise.  
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4.4 Comparison between Direct Inverse Filter, Wiener Filter and Wavelet 

Transform Filter 

Table 5.4, 5.5, and 5.6 the MSE, PSNR, and SSIM of Direct Inverse, Wiener, and 

Complex Wavelet filters were compared based on the quality of the image. Direct 

Inverse filter is achieved the low quality of the image restoration technique due to its 

vulnerable with any type of noise. In contrast, Wiener filter showed a better quality than 

Direct Inverse filter but loses out to Complex Wavelet filters. Integration of the 

statistical properties of noise and original image into formulation of Wiener filter makes 

it more appropriate than Direct Inverse filter. Hence, the assumption in Wiener filter 

method that the statistical properties of noise and original image are well-known makes 

it badly unfeasible in practical. Consequently, the problem is to carefully evaluate the 

statistical properties of the original image till a satisfactory restored image is acquired. 

On the other hand, Complex Dual Tree Wavelet filter performed a high quality of image 

compared with other method such as Direct Inverse Filter and Wiener filter in all 

aspects of image quality assessment.  

Table 4.4 MSE of Direct Inverse Filter, Wiener Filter, and Complex Dual Tree 

Wavelet. 

Mean Square Error (MSE) 

Image 

Restoration 

Techniques 

Gaussian Noise (Variance) Salt & pepper Noise (Density) 

0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5 

Inverse 
0.0034 

0.0144 0.0273 0.1140 0.1987 0.4938 
0.0015 

0.0061 0.0121 0.0578 0.1149 0.5212 

Wiener 0.0003 0.0008 0.0015 0.0064 0.0119 0.0399 
0.0005 

0.0016 0.0027 0.0063 0.0088 0.0411 

Wavelet 0.0008 0.0011 0.0015 0.0050 0.0097 0.0389 0.0007 0.0008 0.0009 0.0019 0.0037 0.0388 
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Table 4.5 PSNR of Direct Inverse Filter, Wiener Filter, and Complex Dual Tree 

Wavelet. 

Peak Signal Noise Ratio (PSNR) 

Image 

Restoration 

Techniques 

Gaussian Noise (Variance) Salt & pepper Noise (Density) 

0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5 

Inverse 72.8596 66.5363 36.7735 57.5599 55.1498 51.1951 76.4053 70.2806 67.3145 60.5118 57.5288 50.9605 

Wiener 82.8322 78.9040 76.4449 70.0626 67.3851 62.1160 80.9869 76.0517 73.7709 70.1169 68.7009 61.9916 

Wavelet 79.1223 77.7389 76.3915 71.1612 68.2522 62.2360 79.3952 78.9642 78.4541 75.2503 72.3988 62.2410 

  

Table 4.6 SSIM of Direct Inverse Filter, Wiener Filter, and Complex Dual Tree 

Wavelet. 

Structural Similarity Index (SSIM) 

Image 

Restoration 

Techniques 

Gaussian Noise (Variance) Salt & pepper Noise (Density) 

0.001 0.005 0.01 0.05 0.1 0.5 0.001 0.005 0.01 0.05 0.1 0.5 

Inverse 
0.6492 

0.3465 0.2368 0.0803 0.0484 0.0178 0.8902 0.7595 0.6274 0.2300 0.1186 0.0200 

Wiener 0.9738 0.9396 0.9057 0.7542 0.6537 0.4067 0.9718 0.9273 0.8851 0.7720 0.7223 0.4130 

Wavelet 0.9571 0.9313 0.9069 0.7906 0.7027 0.4266 0.9630 0.9558 0.9471 0.8868 0.8248 0.4330 
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CHAPTER 5: CONCLUSION AND FUTURE DEVELOPMENT  

5.1 Conclusion  

In this study, three image restoration techniques such as Direct Inverse Filter, Wiener 

filter, and Complex Wavelet filter were applied. These techniques were studied, 

derived, and implemented in MATLAB to reconstruct an original image that has 

intensively de-noising contaminated with either Gaussian noise or Salt and Pepper noise 

method at a variety of variances or densities. Then, image quality metrics, namely; 

mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity 

index (SSIM) are operated for evaluating and measuring the quality of the restored 

images. Consequently, the simulations and image quality metrics illustrated that Direct 

Inverse filter is poorest in restoring image because noise amplify at the nulls, so the 

noise becomes very large. Wiener filter outperforms Direct Inverse filter but the 

assumption that statistical properties of noise and original image are known makes it an 

impractical in practice. In addition, the wiener filter is the optimal filter for low amount 

of noise and cannot be used for large amount of noise because it assumes your process 

dynamics are linear, only provide a point estimate and can only handle processes with 

additive, unimodal noise. On the other hand, Complex Wavelet filter algorithm 

outperforms Wiener filter and Direct Inverse filter respectively, thus the Wavelet filter 

is the optimal filter for large amount of noise because have irregular shape which able to 

perfectly reconstruct functions with linear and higher order polynomial shapes such as 

rectangular and triangular. Principle of removing noise by applying a wavelet transform 

is that the noise typically associates to the high frequency information. Thus, noise 

information is frequently concentrated in sub blocks with infra-low frequency, infra-

high frequency, and high frequency. Sub blocks with high frequency are practically 

constituted of noise information. Hence, if we fixed high frequency sub block to zero 

and suppress low frequency and high frequency sub blocks on certain inhibition, it can 
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obtain a certain effect of the noise removal. The performance of wavelet de-noising 

revealed that wavelet transform is fit to eliminate the image with a high frequency 

signal, In general. Complex Wavelet filter was showed the high quality of image 

compared with the following algorithms, Wiener filter, and Direct Inverse filter, 

respectively.  

5.2 Future Development  

In this research, applying different techniques of an image processing such as Direct 

Inverse Filter, Wiener Filter, and Wavelet Filter. For further studies, it is interesting to 

develop the techniques that used in this study and design a new technique of image 

restoration to improve the restoration of the noisy image.  
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