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ABSTRACT 

          The main aim of this research is to design single and multi-elements on-body antennas 

that operate at  2.4 GHz ISM band. The patch and the ground plane are designed using highly 

conductive pure copper while three dielectric materials are used as the substrate for 

comparison purposes. The antenna design are simulated using CST Microwave Studio. 

Several characteristics of the antenna such as reflection coefficient, bandwidth, VSWR, 

efficiency and radiation pattern are evaluated for both free space and on-body application. 

The comparison results reveal that the antennas design using RT Duroid 5880 result in low 

gain loss. Only small difference in reflection coefficient, S11 and bandwidth is observed for 

the array antennas as a consequence of variation in body tissue thickness. The increase in the 

fat layer thickness also resulted in a steady increase in gain for all antenna configurations. In 

order to minimize the attenuation of antenna performance in close proximity with the human 

body, simple gain improvement techniques are utilized. Antenna simulated gain is  improved 

by 7.2 % for the first design and 8.4 % for the second design of 2x1 array antenna and 4.7 % 

for 4x1 array antenna. 
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ABSTRAK 

Tujuan utama penyelidikan ini adalah untuk mereka bentuk antena tunggal dan 

berbilang elemen yang diletakkan di atas badan beroperasi pada 2.4 GHz. Patch dan ground 

plane direka dengan menggunakan tembaga tulen yang sangat konduktif manakala tiga bahan 

dielektrik digunakan sebagai substrat untuk tujuan perbandingan. Simulasi reka bentuk yang 

dihasilkan adalah menggunakan Microwave CST Studio. Beberapa ciri antena seperti pekali 

pantulan, jalur lebar, VSWR, kecekapan dan corak radiasi dinilai untuk ruang bebas dan 

aplikasi di atas badan. Hasil perbandingan menunjukkan bahawa reka bentuk antena yang 

menggunakan RT Duroid 5880 menyebabkan kehilangan kuas yang rendah. Hanya 

perbezaan kecil dalam koefisien pantulan, S11 dan jalur lebar diperhatikan untuk antena array 

akibat variasi dalam ketebalan tisu badan. Peningkatan ketebalan lapisan lemak juga 

mengakibatkan peningkatan kuasa dalam semua konfigurasi antenna. Untuk mengurangkan 

penguragan prestasi antena dekat dengan tubuh manusia, teknik penambahbaikan kuasa 

dilaksanakan. Kuasa antena diperbaiki sebanyak 7.2% untuk reka bentuk pertama dan 8.4% 

untuk reka bentuk kedua antena array 2x1 dan 4.7% untuk antena array 4x1. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

            Development in wireless technologies creates new opportunities for Body-Centric 

Wireless Communication (BCWC) which have gained huge attention among researchers and 

industry players due to their promising applications in personal healthcare, military, sports 

and body-sensor networks. Body centric wireless communication link between on-body 

electronic devices and surrounding environment can be established with the help of antennas.  

BCWC can be classified into three types based on the positions of the transmitter and receiver 

[1]: 

 Off-body: Channel is off the body and in the free space and only one antenna in the  

                 communication link is located on the body. 

 On-body: Most of the communication channel is on the surface of the body and both 

                transmitting and receiving antennas are mounted on the body. 

 In-body: Significant part of the channel is integrated into the body and implantable  

                antennas are used. 

 

         There are two primary challenges need to be considered by researchers for antenna 

design for body-centric communication. The first challenge is to deal with degradation in 

radiation efficiency, radiation pattern, gain and the shift in input impedance of the antenna 

due to antenna-body interaction. Conventional antennas such as dipole [2], loop [3, 4], planar 

inverted-F (PIFA) [5, 6] and microstrip patch [7-9] were used for body- centric 

communications. The loop antenna is an omnidirectional antenna which gives maximum 

radiation along the loop’s surface with E and H fields being perpendicular to each other [10]. 

A compact PIFA antenna has been designed for 2.4 GHz applications in [5] which also gives 
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an omnidirectional pattern. Patch antenna is a directional antenna that radiates power strongly 

in specific directions. This characteristic of patch antenna enables it to be suitable for on-

body antenna design because maximum power need to be radiated away from the body. 

Besides that, microstrip patch antennas have been a popular candidate for wireless 

application due to their planar configuration and can be easily fabricated onto a printed circuit 

board (PCB). 

        The second challenge is an antenna’s performance can be affected due to the strong 

coupling between the antenna and the human body which may influence the user’s health. 

Therefore, preventive or corrective measures should be implemented to ensure that its 

performance does not change severely. 

 

1.2       Problem statement 

            The purpose is to initiate communication with the body wireless is to provide the user 

with comfort and flexibility instead of bulky and wired connection. Wireless Body Area 

Network (WBAN) technology involves multiple sensor nodes located in-body or on-body 

which facilitates in monitoring the surrounding environment. The data from the sensors will 

be wirelessly transferred by antennas to an external computing facility. The antennas for 

body-centric communication should be low profile, compact in size and insensitive to the 

user’s body proximity.  

         Although microstrip patch antenna of single element has been a promising candidate 

for body centric communication, it also suffers from several drawbacks such as narrow 

bandwidth and low gain. Thus, to enhance the bandwidth and gain of the antenna, multi-

elements known as an array of single patch antenna can be designed. Furthermore, the study 

of human body’s influence on antenna performance is crucial because human body anatomy  
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is unique for each individual.  Behavior of electromagnetic waves propagating in the vicinity 

of human body are determined by the thickness and composition of the body tissue. This is 

because each body tissue has its own electrical property so variation in tissue thickness will 

influence the ways the waves are reflected and absorbed. The single element and array 

antennas proposed in this project is designed to operate for 2.4 GHz applications. An 

investigation on the antenna's performance both in free space and on-body for various tissue 

thickness are also investigated. 

 

1.3       Aim and Objectives 

            The main aim of this project is to design on-body antennas that operate at 2.4 GHz 

Industrial, Scientific and Medical (ISM) band. To accomplish this aim, the objectives of this 

project include:- 

1. To design and compare single element, 2x1 array and 4x1 array antenna’s  

     performance both in free space and on-body. 

2.  To investigate the influence of various tissue thickness on antenna’s performance. 

3. To improve on-body antenna’s gain by adopting simple gain enhancement  

      techniques. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction  

 

          The basic concept of microstrip antenna is explored here. In the beginning of the 

chapter also, wireless standards for body-centric communication antenna has been reviewed. 

Antenna material characterization, feeding mechanism and also the concept of multi-

elements and its feeding technique also has been considered. Last but not least, the 

importance of determining parameters of tissue layers is also discussed.  

 

2.2 Frequency Allocation for WBAN 

 

          The Institute of Electrical and Electronics Engineers (IEEE) 802.15 Task Group 6 

authorized a dedicated standard termed IEEE 802.15.6 for Body Area Network (BAN) in 

2012. It constitutes  the physical (PHY) and medium access control (MAC) layers specified 

for short-distance wireless transmission in the vicinity of, or integrated into a  human body 

(but not limited to humans) for various applications such as healthcare monitoring for the 

children or elderly, military or non-medical related. The requirements for BAN are the nodes 

have to be simple, economical in terms, cost, consume low power and guarantee its users of 

comfort. Thus, the standard features include three physical layers such as Narrowband (NB), 

Ultra-Wide Band (UWB) and Human Body Communications (HBC). Figure 1 depicts a 

spectrum allocation chart for all available frequencies for BAN applications.  
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Figure 2.1: Allocation of WBAN frequency bands in different countries [11] 

 

        The requirement for high data rate is crucial in medical application because a huge 

amount of patients' data needs to be uploaded and transferred to the base station. The data 

rate requirement for WBAN varies from 1 kbps to 1 Mbps. Furthermore, antenna design for 

transmission and reception of data purposes has to be compact as to be possible. This can be 

achieved by using higher frequency bands for antenna design as size is inversely proportional 

to wavelength. Table 2.1 summarizes the characteristics of popular wireless standards for 

medical application.    

                                          Table 2.1: Features of medical wireless technology  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Wireless 
Description 

Technology 

    • Frequency ranges from unlicensed 902 - 908 MHz, 2.4 - 2.45 

      GHz, 5.7 - 5.8 GHz 

ISM Band • Easy to install and access, low power utilization, cost 

      effective 

    • Congested due to wireless coexistence   
                

    • Frequency ranges from 402 - 405 MHz 

    • Implantable antenna or devices are designed to work with 

MedRadio or    this band 

MICS • Limitations in transmitting the signal as it has very low 

       power 

    • Maximum EIRP : 25 μW at 3m from MICS devices 

                

    • Bandwidth exceeds 500 MHz, which provides high  

       data rate 

UWB • Low power consumption and complexity 

    • Can penetrate through obstacles easily 
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2.3 Microstrip Patch Antenna 

 

          Microstrip antennas are desirable over other type of antenna configurations due to   the 

distinctive characteristics such as low profile and flexibility in terms of resonant frequency, 

propagation, far-field pattern, impedance matching when the specific radiator shape and 

mode are selected. Additionally, they are also flexible to planar and nonplanar surfaces, 

inexpensive to fabricate them by exploiting the cutting edge printed-circuit engineering, and 

mechanically powerful when mounted on inflexible surfaces, suitable with MMIC designs 

[10]. A conventional microstrip patch antenna is built by integrating a dielectric substrate 

between radiating patch at the top and the ground plane as portrayed in Figure 2.2. The 

radiating element and ground plane is usually fabricated by using conductive metals such as 

copper or gold while the dielectric substrate is made of non-conducting material such as a 

FR-4 board.  

 

 

 

 
 
 
 
 
 
 
 

 

Figure 2.2: Microstrip patch antenna [10]  
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                Furthermore, the radiating patch can be constructed using various shapes as 

illustrated in Figure 2.3. However, rectangular and circular structure are preferred by 

researchers because they are really suited for thin substrates. Rectangular configuration is 

distinguishable and simple to evaluate for practical engineering. The antennas in this research 

are rectangular in shape to simplify the fabrication process.  

 

 

 

 

 

 

 

 

 

 

 

 

                      Figure 2.3: Typical configurations of patch antennas 

 

           Microstrip patch antenna also suffers from several drawbacks despite being simple in 

structure, low profile and moderate in size.  The disadvantages are low efficiency, low power, 

polarization purity is difficult to achieve, excitation of surface waves and narrow frequency 

bandwidth.   

2.4 Feeding Mechanism 

 

         Various approaches can be taken to feed the microstrip antennas. These techniques can 

be divided into contacting and non-contacting [10]. Power is supplied directly to the radiator 

using direct path of transmission lines such as transmission feed line, coaxial and inset feed 

Univ
ers

ity
 of

 M
ala

ya



8 
 

in the contacting technique. Electronic coupling facilitates power transmission between the 

feed line and the conducting element in the non-contacting technique. The four most popular 

feeding techniques are feed line, coaxial, inset-feed and proximity coupling.  However, only 

feed line, inset –feed and coaxial feeding method will be reviewed in this research.  

2.4.1   Transmission Line  

            A  smaller in width radiating strip compared to the patch is linked to the edge of the 

plot as exhibited in Figure 2.4. Such method allows the feed line and patch to be etched on 

substrate resulting in a planar structure. The feed line can be directly connected to the patch 

for the purpose of impedance matching. Its location and measurement can be adjusted to 

result in desired impedance matching as well. Therefore, the transmission line feed simplifies 

the modelling and fabrication process. 

 

Figure 2.4: Transmission line feed [10]  

 2.4.2   Inset-Feed  

            Impedance of the feed line can be equated to the path without the aid of any extra 

matching device with the creation of inset cut in the patch as displayed in Figure 2.5. The 

matching can be done by adjusting the inset location. It is easy to fabricate such simple 

feeding configuration and also provides good impedance matching of the antenna. In this 
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study, the authors found that the inset-feed contributed the best result in terms of gain and 

reflection coefficient compared to strip line and quarter- wave feed [12].  

 

Figure 2.5: Recessed inset-feed line [13]| 

 

2.4.3   Coaxial Feed  

           The inner conductor of the coaxial connection is connected to the radiator, while the 

outer part is linked to the ground as depicted in Figure 2.6. The benefits of this type of feeding 

include it can be located at any preferred position, resulting in good impedance matching and 

low spurious radiation. This feed is also easy to construct, making this technique to be 

popular among researchers. 

 

 

 

          

 

 

 

                                         Figure 2.6: Coaxial-probe feed [10]| 
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              The major drawback of probe-feed concept is that the connector sticks up from the 

antenna plane, which is impractical for on-body applications. The antenna  will  be  mounted 

on the human body and thus,  should  not bring  discomfort for the person who wearing  the  

antenna  in terms  of  physical orientation.  Additionally, the antenna should be of a flat and 

planar configuration.  Therefore, the inset-feed is chosen to feed the antennas.  

 

2.5 Antenna Material Specification  

 

          Antenna’s performance is dependent on features of the materials used to develop them.  

For this reason, it is really important for an antenna designer to have a good understanding 

of the electrical properties of both conductive and non-conductive material that are readily 

available in the market. After  analyzing  the electrical characteristics such as  dielectric 

constant and conductivity, suitable  materials  are selected to design  antennas  with good  

radiation  property and  efficiency. 

2.5.1   Substrate Materials 

            Antennas designed for on-body application should transmit energy perpendicular to 

the flat structure and the ground plane and systematically protects the human body. Thus, the 

radiation strength of the antenna is distinctively influenced by substrate’s dielectric constant 

and thickness. Generally, low value of dielectric constant reduces surface wave losses that 

are fixed to guided wave transmission within the substrate. Dielectric substrate’s thickness is 

also vital for antenna design. The substrate that results in excellent antenna performance are 

thick substrates with low electrical permittivity as it provides a large bandwidth. In addition 

to it, a substrate with low loss tangent is also preferred to design high-gain antenna. The 
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electrical properties and features of the substrate materials used in this research is described 

in the Table 2.2.  

 Table 2.2: Electrical properties of substrate materials 

 

2.5.2   Conductive Materials  

          The choice of conductive metals for both patch and the ground plane also plays a 

substantial role to guarantee efficient performance of the proposed antennas. Copper, gold, 

silver and  other metals are few conducting materials that available for commercial purposes 

today. Conductive material with very low value of electrical surface resistivity is usually 

chosen  to reduce the antenna’s electrical losses.  

 

2.6 Microstrip Antenna Arrays  

           

           Single element antenna gives broad radiation pattern in which the directivity and gain 

values are relatively low. Although directivity and gain can be increased by enlarging the 

size of the antenna, the main beam becomes narrower. As a consequence, side lobes also gets 

larger. Since large antennas limit its performance, array configuration can be utilized. 

Generally, the elements of an array are indistinguishable.  

           An array’s total field can be derived mathematically through vector addition of the 

individual element’s field. It is expected that the amount of current flowing in each element 

Properties RT Duroid 5880 R0 3730 FR - 4 

Dielectric constant, εr, 
2.20 ± 0.02 3.00 ± 0.06 4.3 - 4.7 

10 GHz, 23 °C 

Dissipation factor, tan δ 
0.0009 0.0016 0.0025 

10 GHz, 23 °C 
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is the same which is influenced by the distance between the elements and type of feeding 

network. Five attributes can be tuned to obtain radiation pattern which are: 

 Geometrical structure (circular, rectangular and etcetera) 

 Spacing between antenna elements 

 Excitation phase of respective elements 

 Excitation amplitude of respective element 

 Pattern of individual elements        

          Multiple single elements can be arranged in a certain orientation to form an array of 

antennas as highlighted in Figure 2.7. The goal of array design is to obtain the highest antenna 

gain and directivity with minimal side lobe level. However, the arrangement of the elements 

to form an array network is crucial for it to be successful.  

     

Figure 2.7: Typical array antenna arrangement 

             As Figure 2.7 (a) indicates, a single line is adequate to feed the elements which is 

also labeled as series-feed network. This technique is restricted to fixed- beam arrays or beam 

–scanning arrays through frequency variation.   

          Linear array in Figure 2.7 (b) consists of N elements arranged along a line.  The spacing 

between the elements can be classified into two: equal or unequal. Number of elements to 

put in a design primarily depends on the designer’s preference. Equally spaced linear array 

d ≤ λ 

Univ
ers

ity
 of

 M
ala

ya



13 
 

is also termed as uniform array in which all the identical elements have same amplitude and 

excitation phase.  

         In addition to the linear orientation of radiators, they also can be arranged in a grid to 

form a planar array. Planar arrays are more functional as they provide a symmetrical radiation 

pattern with smaller side lobes. Thus, it is more convenient to control the antenna beam with 

this configuration. An antenna designer should emphasize on the distance between each 

element while designing a series, linear or planar antenna which distance (d) ≤ lambda (λ) is 

adapted. If d > λ, this will result in grating lobes in the antenna pattern. Grating lobe is 

identical to the main beam but it is projected in an unintended direction. This research utilizes 

linear arrangement of the antenna design.  

 

2.6.1   Feeding Networks for Array Antenna 

           As discussed in the previous section, series elements can be fed by deploying a single 

line. The second feeding technique involves multiple lines that is corporate-feed network. 

Corporate-feed method splits power by 2n = 2, 4, 8 and etcetera. Implementation of this 

technique provides the designer with freedom in controlling the amplitude and phase of each 

element. The corporate-feed can be realized through the use of T-junction or Wilkinson 

power divider.  

2.6.1.1   Corporate Feed Configuration  

               If the transmission line loss is not taken into account, the T-junction can be 

considered lossless. Thus, such junctions cannot be jointly matched to all ports. Power 

division is done to ensure that equal power distribution among the N elements. Microstrip 

lines of different impedance are considered for matching purposes. Hence, the arrangement 
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in Figure 2.8 (a) is applied for 2x1 linear array design that is for input 50 Ω line splits into 

two output 100 Ω lines. The Wilkinson power divider technique allows matching of all ports 

and isolation between output ports. This equal-split divider can be designed for 50 Ω input 

impedance system by using a quarter - wave transformer to match the 50 Ω feed line to 100 

Ω lines. Figure 2.8 (b) is a good illustration of the Wilkinson power divider concept. Feed 

network of 4x1 array includes both T-junction and Wilkinson power divider.  

 

Figure 2.8: Microstrip line feed network  

 

2.7 Study of Biological Tissue Thickness based on Previous Research Works  

          

         The influence of electromagnetic wave propagation through the human tissue 

dependent on thickness and dielectric characteristics of respective layers. The dielectric 

properties, conductivity and thickness of body tissue vary from an individual to another with 

age, gender and health conditions and also a particular region of the body. Furthermore, the 

operating frequency of the electromagnetic wave also influences permittivity, conductivity 

and penetration depth of the tissue layers. Penetrating microwaves will behave differently 

due to alteration in penetration depth for these reasons [14]:  

 Electrical properties of body tissues depends on resonant frequency 

 Outer tissues penetration depth will be affected by propagation of microwaves 

through different tissues 
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 Scattering characteristic of the tissue changes as lambda (λ) varies  

 

             Body tissue can be classified into two types: high-water content and low-water 

content [1]. Skin and muscles are some examples of the first type due to higher values of 

permittivity and conductivity while fats of low permittivity and loss belong to the second 

type. The skin organ covers the exterior of living organisms and acts as a barrier against 

surrounding environment. Its tissue includes the epidermis, dermis and hypodermis as 

evidenced in Figure 2.9. Hypodermis or subcutaneous adipose tissue (SAT) is located 

underneath dermis layer. It provides mechanical protection, thermoregulation and energy 

storage. Body region, age, gender and diet of an individual greatly affects the thickness of 

the fat layer. Muscle tissue is generally considered as elastic and responsible to produce and 

maintaining motion. Skeletal and cardiac muscles are able to contract and relax [3]. 

Therefore, it is necessary for a designer to identify complete compositions of tissue layers to 

develop efficient antennas for body-centric communication. The most common regions of 

human body preferred for on-body applications are arm, abdomen, chest or thigh. The 

configuration and thickness of several tissue layers of different body parts reported in 

literature are compiled in Table 2.3.  

 

 

 

             

 

 

Figure 2.9: Composition of human skin [15] 
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Table 2.3: Human tissue thickness according to different body region 

Reference Application Gender Tissue Model Body  Thickness of body tissues 

        Configuration Parts (mm) 

              Skin (dry) Fat Muscle 

[5] 
ISM  Man         Not 

(2.4GHz)  Rectangular Chest 4.5 2/4/10/8 stated 

[16] 

  Not 
Rectangular Chest 

2 10 28 
5.6 GHz stated 

    
Cylindrical Arm 

    

[3] 

        

0.96 15 13.5 
ISM  Adult Rectangular Frontal 

(433 MHz)     Thorax 

        

[4] 

MICS         

4 4 52 
(401-406 Not Cylindrical Not 

MHz) stated   stated 

ISM          

[6] 

        
Chest 3 6 26 

MICS Not Rectangular 

(403.5 

MHz) stated     Abdomen 2 8 25 

        

[17] 
Not Male 

Rectangular Abdomen 2 9 7 
stated (Taro) 

[7] 
ISM  Not 

Rectangular 
Not 

2 4 44 
(2.45 GHz) stated stated 

[8] 

ISM  Not 

Rectangular 

Not 

1 2 10 (2.45 GHz) stated stated 

      

[9] 
ISM  Not 

Rectangular 
Not 

1 2 30 
(2.45 GHz) stated stated 

[2] 

    

Rectangular 

  

4 4 8 
ISM  Not Not 

(2.45 GHz) stated stated 

      

[18] 

MICS Not 

Rectangular 

Not 

5 13 35 (404 MHz) stated stated 

      

[19] 

MICS Not 

Rectangular 
 

3 4 20 (402-405 stated Chest 

MHz)     
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Reference Application Gender Tissue Model Body  Thickness of body tissues 

        Configuration Parts (mm) 

              

Skin 

(dry) Fat Muscle 

[20] 

MICS Not 

Rectangular  

  

4 4 20 (402-405 stated Trunk 

MHz)     

[21] 

  Not 

Rectangular 

Not 

3 7 60 ISM  stated stated 

      

[22] 

  
Children 

Rectangular 

  
0.6 - 1 0 - 16 30 

BAN Frontal 

  
Adult 

Thorax 
0.8 - 2.6 

1.4 - 

23.2 
30 

    

[23] 

ISM Male 

Rectangular 

Not 

1.6 - 3 0 - 15 
20 and 

25 
(902-928)   stated 

      

[24] 

  

Female Ellipsoidal 

        

1.38 GHz         

and Chest 2 15 5 

2.88 GHz         

          

[25] 

MICS  Not 

Rectangular Arm 4 4 16 
(403MHz) stated 

ISM   

(2.45 GHz)   

[26] 

    

Rectangular 

  

1.5 - 2.5 0-23 0-30 

0.9 - 17 

GHz Not Not 

  stated stated 

      

[27] 

    

Rectangular 

  

2 4 30 
2.45 GHz Not Not 

  stated stated 

      

[28] 

  Not 

Rectangular 

Forearm 2 2 20 

Multiple stated Chest 3 3 20 

    Thigh 4 5 20 
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CHAPTER 3: METHODOLOGY 

 

3.1 Introduction  

 

              Antenna design process of single and multi-elements are discussed in detail in this 

chapter which includes material selection, calculation of the dimensions of both radiator and 

feed and optimization. Next, their performance is evaluated both in free space and on-body 

setting. This chapter also addresses several gain enhancement approaches to improve the 

interaction between the antenna and body tissue.  

 

3.2 Project Flow  

 

This project is organized into 5 phases which are:-  

 

a) Review related literature on  properties of the material, antenna suitable for on-body 

application, the concept of the antenna array and feeding mechanism 

b) Further study on the actual thickness of tissue layers according to human body parts 

c) Design single and array antenna at  frequency of interest using transmission line 

method 

d) Compare and contrast the variation in antenna’s performance both in free space and  

human body environment  

e) Investigate on the significance of gain enhancement techniques in improving 

antenna’s performance of on-body  

 

These phases will be further explained by stages as follows: - 
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Stage 1:        

             Studies are conducted to understand the key concept and requirement of body-centric 

wireless communication (BCWC). The selection of different laminate materials according to 

the conductivity, permittivity and their respective thickness are emphasized. Moreover, a 

study on antenna suited for on-body application also has been considered. Classification of 

antenna arrays and their design requirement cited in literature also has been referred.  

 

Stage 2:  

             Factors such as age, gender, dietary status and the anatomy of an individual will 

influence the performance of the antenna. Therefore, knowledge of electromagnetic 

properties of the body tissues and their respective thickness is crucial. At this stage, several 

manuscripts in the literature are surveyed to obtain the actual thickness of the tissue layers 

which are validated according to body parts.  

 

Stage 3:  

            Attention is focused on designing the rectangular microstrip patch antenna using three 

different substrate materials at 2.4 GHz. Dimensions of single element and array antenna are 

calculated and optimized to meet requirement.  

 

 Stage 4:  

             The dimensions of antennas that provide best results in terms of reflection 

coefficient, bandwidth, gain and etcetera are finalized. Thereafter, performance evaluation of 

antenna’s on-body using three layer structure with uniform thickness respectively are carried 

out as a preliminary. The antenna configurations that results in low loss will be used to 

investigate the effect of the actual thickness of body tissue obtained from literature. 
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Literature review on material 

properties, on-body and array 

antennas, body tissue parameters and 

feeding mechanism 

Design and simulate single and array 

antennas in free space  

Investigate antenna’s performance due 

to variation in tissue thickness 

Implement gain enhancement 

techniques 

Data collection and analysis 

YES 

NO 

NO 

Stage 5:  

            The final step involves improving the performance of antennas that are mounted on-

body by selecting an actual configuration of three-layer structure. The numerical results of 

gain enhancement will be elaborated in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Project flowchart 
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3.3 Design Specification  

 

3.3.1   Antenna Material Specification 

           The selected substrate materials should exhibit uniform dielectric constant, low loss 

tangent and acceptable thickness. Two dielectric materials of Rogers Corporation such as RT 

Duroid 5880 and R0 3730 are used in this research along with epoxy laminate, FR-4. The 

radiator and the ground plane are designed using conductive material such as pure copper. 

The specification of all materials used are listed in Table 3.1. Full material description of 

Roger’s laminates can be found at Appendix A and Appendix B.        

Table 3.1:  Electrical properties of the dielectric and conductive materials 

Material RT/ duroid 
R0 3730 FR-4 Pure Copper Aluminium 

Parameter 5880 

Dielectric constant,   
2.2 3 4.7 - - 

 εr 

Conductivity, 
- - - 5.96e+007 3.56e+007 

S/m 

Dissipation factor, 
0.0009 0.0016 0.0025 - - 

tan δ 

Thickness, h (mm) 1.6 1.534 1.6 0.035 1 

 

3.3.2   Design Methodology 

           The initial parameters and dimension of a single rectangular patch antenna can be 

computed based on Transmission Line Model equation. The width of the patch for specific 

resonant frequency, fr  is determined using equation 3.1: 

 

                                        𝑊 =  
𝐶

2 𝑓r
  √

2

𝜀𝑟+1
                                                            (3.1) 
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             Since the edges of the patch will experience fringing effect, some of the lines of 

electric field will pass through the air instead of the substrate medium. Therefore, 

modification need to be done to the relative permittivity whereas physical length of the patch 

is also extended from its original configuration. The effective dielectric constant, εeff and the 

extended incremental patch length,  ∆𝐿 are given by  

 

                                 𝜀𝑒𝑓𝑓 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2
(1 + 12

ℎ

𝑤
)−

1

2                                           (3.2) 

 

                                     ∆𝐿 = 0.412ℎ 
(𝜀𝑒𝑓𝑓+0.3)(

𝑤

ℎ
+0.264)

(𝜀𝑒𝑓𝑓−0.258)(
𝑤

ℎ
+0.8)

                                                  (3.3)                                                           

 

Thus, the accurate patch length is calculated through equation 3.4 as shown:  

                                        𝐿 =
𝐶

2𝑓√𝜀𝑒𝑓𝑓
− 2∆𝐿                                                           (3.4) 

 

      The patch requires characteristic impedance of 50 Ω for its feed line. Therefore, inset-

feed method can be used to equate the input resistance to the feed. First, conductance, G1 and 

mutual conductance, G12 must be computed to obtain input resistance as stated in equation 

3.5 and equation 3.6: 

                             𝐺1= 
1

120𝜋2 ∫ [
sin(

𝑘0𝑊

2
cos 𝜃)

cos 𝜃
]

2
𝜋

0
𝑠𝑖𝑛3 θ 𝑑𝜃                                            (3.5) 

                   𝐺12= 
1

120𝜋2 ∫ [
sin(

𝑘0
2

cos 𝜃)

cos 𝜃
]

2
𝜋

0
𝐽0 (𝑘0  𝐿 sin 𝜃)𝑠𝑖𝑛3 θ 𝑑𝜃                             (3.6) 

 

Where, Jo is the Bessel function of the first kind of order zero while ko is wavenumber.  

 

Next, the input resistance is then obtained by  
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                                      𝑅𝑖𝑛 = 
1

2 (𝐺1+𝐺12)
                                                            (3.7) 

 

Finally, the input resistance at y = yo from the edge can be computed using equation 3.8: 

                            𝑅𝑖𝑛 
 (𝑦0)=𝑅𝑖𝑛 

 (0) 𝑐𝑜𝑠2  (
𝜋

𝐿
𝑦0)                                                  (3.8) 

 

At  yo, matching is made as the input resistance is 50 Ω. The inset feed length, yo can be 

solved using Matlab solver.  

 

3.4 Antenna Design in Free Space  

 

 

3.4.1   Single Element Design  

           In the previous section, procedures to determine patch length and width and inset feed 

length for single element are described. The calculated dimensions are tabulated in Table 3.2. 

Table 3.2:  Dimensions of single patch antenna 

Parameters 
Values (mm) 

RT Duroid 5880 R0 3730 FR - 4 

Patch length,Lp 49.4 44.2 29.6 

Patch width,Wp 41.3 35.6 37.02 

Feed length,Lf 23 20.1 17.29 

Feed Width,Wf 4.93 3.86 3.137 

Inset feed,yo (50 ohm) 14.503 12.74 9.96 

Inset feed,yo (100 ohm) 11.55 10.36 8.995 
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(a) RT Duroid 5880 
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1 mm 

1 mm 

(b) R0 3730 

         CST Microwave Studio software is used to design and optimize all antenna 

configurations. The final dimensions of proposed single patch antenna for RT Duroid 5880 

and R0 3730 substrates are illustrated in Figure 3.2. Final geometry of single- element 

antenna using FR-4 can be acquired from research findings of previous candidate.  It is worth 

mentioning that both substrate and ground share the same dimension that is 80 mm x 80 mm.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.2: Front view of single patch antenna 
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3.4.2   Array Antenna Design 

3.4.2.1   Array Antenna for FR – 4 

              Selection of number of elements and separation between them is imperative in 

maximizing the performance of a linear antenna array. Figure 3.3 displays structure of 2x1 

and 4x1 linear array with 0.5λ spacing respectively. Patch elements are also configured in 

grid manner as portrayed in Figure 3.4. The both arrays are designed with length and width 

of each element is intriguingly identical to the single patch design. To design four element 

array, 50 Ω need to be matched to 100 Ω transmission line by determining the characteristic 

impedance. It can be calculated by  

                                                         Zc   =  √Z0Rin                                                          (3.9) 

           = √(50Ω)(100Ω) 

                                                                = 70.71 Ω 

    The impedance calculation for 50 Ω, 70.71 Ω and 100 Ω feed line is outlined in Table 3.3. 

 

Table 3.3:  Feedline impedance computation 

 

 

 

 

 

 

Material Impedance (Ω) 
Dimension   (mm) 

Length Width 

FR - 4 

50 17.29 3.137 

70.71 17.1 1.52 

100 17.5 0.7 

RT Duroid 5880 

50 23 4.75 

70.71 23.2 2.83 

100 23.6 1.43 

RO 3730 

50 20.1 3.67 

70.71 20.5 2.15 

100 20.9 1.03 
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Figure 3.3: Geometry of array antenna for FR-4 substrate 
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Figure 3.4:  2x2 array antenna for FR-4 substrate 

 

3.4.2.2   Array Antenna for RT Duroid 5880 

                Array of 2 and 4 elements arranged in linear manner are designed using RT Duroid 

5880 with the same design procedure for comparison purposes. Figure 3.5 highlights the 

dimensions of array antenna.        

 

 

 

 

 

 

 

(a) 2x1 Array 
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(b) 4x1 Array 

 

Figure 3.5: Design specification for RT Duroid 5880 antenna array 

 

3.4.2.3   Array Antenna for R0 3730 

               Figure 3.6 represents architecture of 2x1 and 4x1 linear array for R0 3730 also with 

0.5λ spacing.              

 

 

 

 

 

 

 

(a) 2x1 Array 
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(b) 4x1 Array   

 

Figure 3.6: Geometry of array antenna for R0 3730 substrate 

 

3.5 Antenna Design for On-Body Communication 

 

               The proposed antennas are placed on three-tissue layer that represents human body 

model as visualized in Figure 3.7. The electrical properties of the tissue layers can be obtained 

from database [29, 30] and are stated in Table 3.4. A uniform thickness 3mm is considered 

for the skin, fat and muscle tissue respectively to investigate the interaction of 

electromagnetic waves with biological tissues. The dimensions of tissue layers are set equal   

according to antenna configurations.  

Table 3.4:  Electrical properties of body tissues at 2.4 GHz 

Tissue Relative Conductivity (S/m), Penetration depth 

Type permittivity σ (mm) 

Skin (Dry)   38.1 1.441 23 

Muscle 52.7 1.705 23 

Fat 5.285 0.102 119.6 
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3 mm skin 

3 mm fat 

3 mm muscle 

 

 

 

  

  

 

                                                      (a) Single element 

 

 

 

 

 

 

                                                           (b) 2x1 array 

 

 

 

 

 

 

 

                                                        (c) 4x1 array                                                            

         Figure 3.7: Antennas on human body tissue for RT Duroid 5880 substrate 
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3.5.1  Parametric study of variation in body tissue thickness  

           Based on the preliminary antenna simulations for on-body setting, it is discovered that 

RT Duroid 5880 provides low gain loss comparatively. Therefore, antennas designed using 

that substrate will be used to evaluate its performance on-body with actual thickness of body 

tissues. Based on literature, the thickness of human skin ranges from 1mm to 5 mm depending 

on body regions. Variation in muscle and fat tissue thickness is related to factors such as age, 

gender, nutritional status and body parts of an individual. In addition, subcutaneous adipose 

tissue thickness also changes with Body Mass Index (BMI). It is ratio of amount of body 

lipid correlated to height and weight of individual. Table 3.5 reports the thickness of fat tissue 

according to BMI classification.  

 

Table 3.5: Hypodermis Layer in the Chest near Shoulder Area of People with Different 

BMI [31] 

 

BMI 
Man Hypodermis Woman Hypodermis 

(mm) (mm) 

Underweight <3   <7 

Normal  3-5      7-10 

Overweight  6-16       11-20 

Obese >16 >20 

 

 

          Muscle thickness is considered to be variable parameter that ranges from 7 mm [17] to 

60 mm [21]. This research focuses on designing antennas to be placed on chest of an adult. 

Parametric analysis is carried out by setting the skin thickness for 2 mm, 3mm and 4.5 mm 

while the muscle layer is labeled as 20 mm thick. The thickness of fat tissue is assigned 

according to BMI classes respectively: 2mm/4mm/10mm/18mm for man and 

3mm/9mm/15mm/21mm for woman.  
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3 mm skin 

3 mm fat 

20 mm muscle 

3.5.2  Gain  Enhancement Techniques for On-Body Antennas 

          Transmission line are critical part of antenna design as it is used for the purpose of 

impedance matching and minimize power loss from the antenna. Antenna reactive fields 

interact with the body resulting in degradation of input impedance, gain and efficiency. 

Therefore, modification is done to the transmission line in Figure 3.8 by blending the edge 

as indicated in Figure 3.10 to improve impedance matching and gain. Note that the tissue 

thickness is assigned as 9 mm for the original structure. Different approach has been proposed 

in this research to overcome the disadvantage of antenna-body interaction by using the simple 

body model configuration in Figure 3.9. The thickness of body tissue is validated in [28].  

 

            

 

 

   

Figure 3.8: Original structure of 2x1 array antenna on-body 

 

 

 

 

 

                       Figure 3.9: 2x1 array antenna on human chest model 
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Figure 3.10: Modifications implemented on the design 

 

 

 

 

 

 

 

 

 

                    Then, modification of feed structure are proposed by increasing its length from 

15 mm to 22 mm. In addition, current path of antenna is also altered due to adjustment of 

transmission line. The final dimension of feed length is 27 mm. Gain enhancement approach 

includes addition of superstrate for terahertz application [32] and usage of metamaterials 

such as EBG structure [33]. Superstrate is a dielectric layer of specific thickness placed on 

top of radiator which results in additional complexity. A recently reported work [34] 

proposed placement of hemispherical lens and parasitic ring on top of skin layer to improve 

the gain of an implantable antenna. The effectiveness of parasitic elements in increment of 

antenna gain for free space communication also has been discussed in [35]. Parasitic 

elements should be placed at optimum distance from driven element as it need to receive 

radiation from main radiator.  

                Two parasitic strips with dimension 12 mm x 36 mm are vertically placed 9 mm 

away from the main radiator. Since the type of material used to design parasitic elements 

and their shape may influence antenna performance, a circular parasitic ring with a radius of 
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10 mm and 2 mm wide is placed adjacent to the main feed in the earlier stage. The influence 

of different shape configuration is then investigated by replacing the circular ring with 

hexagon ring made of pure copper. Further experiment is also conducted by changing the 

materials of the hexagon ring from pure copper to another conductive material, aluminium. 

This antenna array is further modified by cutting four diamond slots, two at the parasitic 

strips and another two is at the dual patches and two octagon slots at the strips as well. Last 

but not least, two square slots of 20 mm x 20 mm dimension are also removed from the 

substrate. The final structure of proposed array antenna is displayed in Figure 3.11.  

 

 

 

 

 

 

 

 

                        

 

            The authors in [35] investigated the effect of parasitic patches in multi-banding and 

gain enhancement of microstrip antenna. Double dip is observed in the reflection coefficient 

graph because the four parasitic patches elements are connected to the main patch resulting 

in strong near-field coupling. In this research, the impact of multi-parasitic elements in gain 

increment also has been investigated. Firstly, a single parasitic strip is placed adjacent to the 

radiator. Then, another parasitic strip is added consecutively resulting in four parasitic 
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Figure 3.11: Final proposed geometry of 2x1 array on-body antenna 
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elements along the main radiator as depicted in Figure 3.12. Note that all parasitic elements 

shares the same shape and width but vary in length.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          4x1 array on-body antenna is also modified by curving the edge of transmission lines. 

Furthermore, change is also implemented at the feedline by lengthening its length to 28 mm. 

This results in alteration of current path as well. Two square slots of 14 mm x 14 mm 

dimension are also cut from the substrate. The final dimensions of proposed 4x1 array 

antenna and substrate configuration are shown in Figure 3.14 and Figure 3.15 respectively.   
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Figure 3.12: Proposed second design of 2x1 array on-body antenna 
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Figure 3.13: Final dimension of slots in substrate for both design 
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Figure 3.14: Final proposed 4x1 on-body antenna array 

Figure 3.15: Substrate geometry of 4x1 on-body antenna array 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

 

              The evaluation of antenna performance in two scenarios, first one in free space and 

then onto the human body is presented in this chapter. The characteristics of antennas include 

reflection coefficient, bandwidth, efficiency, VSWR, radiation pattern, gain and directivity. 

Parametric analysis of on-body antennas due to variation in tissue thickness are also 

described here. The last section of this chapter presents several improvement techniques of 

antenna performance to minimize the antenna-body coupling.  

 

4.2       Antenna Performance in Free Space 

 

4.2.1     Dimensional Analysis of Single Element Patch Antenna 

     

              It is crucial to investigate the influence of parameters such as length and width on 

antenna performance. This can be realized by varying the antenna parameters of patch, feed 

transmission line and etcetera during the designing stage. The optimization process aids an 

antenna designer in selecting the best antenna configuration. This section highlights the 

numerical analysis of parametric study performed on single element patch antenna for RT 

Duroid 5880 substrate. Reflection coefficient, S11  is calculated by varying the inset feed 

length, notch gap width and patch length and width. 

         Reflection coefficient, S11 represents the ratio of amplitude of reflected voltage wave, 

V- to incident voltage wave, V+ at the load. It describes how much power is returned to the 

transmitter device. Reflection of power occurs when an antenna is mismatched to the 

receiver. In order to ensure that an antenna received maximum power, the source impedance 
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Figure 4.1: Influence of inset feed length, yo on antenna performance 

Figure 4.2: Influence of notch gap width, g on antenna performance 

and transmission line must be well coordinated to its characteristic impedance. To design a 

good antenna, S11 of less than -10 dB must be achieved which implies 90 % of the input 

power is transmitted and the remaining 10 % of the power is reflected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

           Figure 4.1 reveals that there has been only slight variation in reflection coefficient, S11 

when the length of the inset feed, yo  is increased  from 14 mm to 14.5 mm with a step size 

of  0.1 mm. The S11 value at 2.4 GHz is -32.247 dB which when yo is 14 mm and -20.988 

dB for 2.3988 GHz when yo is tuned to 14.5 mm. It has been mentioned in the previous 
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chapter that yo is the inset length from the radiating edge. Based on the theory mentioned in 

[10], varying the location of where the feed line connects to the patch antenna, input 

impedance can be controlled. Therefore, selection of inset length of 14 mm indicates that the 

patch impedance is closer to the feed line impedance. Figure 4.3 shows that at 2.4 GHz, the 

input impedance is almost at the point ‘1’ of the unit circle of the smith chart. This denotes 

the real part of the impedance is almost 50 Ω which represents good impedance matching.  

 

 

 

             

 

 

 

                                            Figure 4.3: Smith chart 

 

            Figure 4.2 illustrates the dependency of resonant frequency with notch gap width, g. 

The operating frequency is deviated slightly with variation in the inset feed width. When g 

is incremented from 1 mm to 1.4 mm, the frequency shifts from 2.4 GHz to 2.3971 GHz with 

S11 of -17.268 dB.  In contrast, the frequency shifts to the right to  2.401 GHz when g is 0.8 

mm with S11 of -28.991 dB.  The best impedance matching can be achieved when the width, 

g is set at 1 mm where the S11 value is -33.044 dB at 2.4 GHz. 
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Figure 4.4: Impact of patch length, Lp on antenna performance 

Figure 4.5: Impact of patch width, Wp on antenna performance 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 

 

 

 

 

          The S11 graphs in Figure 4.4 and Figure 4.5 represent the impact of varying patch 

length, Lp and patch width, Wp respectively. A sharp dip is observed when Lp is tuned to 48 

mm. It marks a value of  -67.402 dB at 2.402 GHz. Besides that, a bandwidth of 43.7 MHz 

is also achieved for 2.4 GHz ISM band. On the contrary, S11  value at 2.4 GHz is -33.044 dB 

when Lp is increased to 49 mm. A bandwidth of 47.4 MHz is achieved for that particular 

center frequency which is comparatively higher.  
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Table 4.1: Final dimensions of single element patch antenna 

             A distinct shift in frequency is observed in Figure 4.5 when the patch width is 

decreased by -0.2 mm. An accurate explanation for this is that the patch width is inversely 

proportional to the operating frequency proven by equation 3.1. A  S11  value of -21.713 dB 

is obtained at 2.3932 GHz when the width of the patch, Wp is equivalent to 40.7 mm. Further 

shift is detected when Wp is decreased to 40.5 mm. The S11 shifts from its initial position to 

the left that is 2.4044 GHz. This signifies that performance of an antenna is extremely 

responsive to the patch width parameter. Thus, it need to be tuned to an optimum value to 

achieve targeted results.  

               The final values of dimension which gives best reflection coefficient, S11  at required 

operating frequency are selected and stated in Table 4.1:  

 

Parameter Lp Wp yo g 

Dimension (mm) 49 40.6 14 1 

 

 

4.2.2     Performance Analysis of Single Element and Antenna Arrays   

               

              The goal of antenna array design is to achieve high gain and directivity which are 

dependent on number of elements selected based on requirement. The elements can be 

arranged in many ways on a substrate to form various geometry. Antenna configuration can 

be classified as linear, planar, and circular and etcetera. The overall radiation pattern of 

antenna array is shaped by taking number of elements used and spacing between them into 

consideration. The simulation process is initiated with two elements aligned in linear form 

with inter-element spacing of 0.4λ, 0.45λ and 0.5λ for FR-4 substrate. The 2x1 antenna array 
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Table 4.2: Influence of IES between elements on antenna performance 

       Table 4.3: Effect of IES between elements on HPBW 

has a ground dimension of 160 mm x75 mm. The simulation results for 2x1 array antenna 

are recorded in Table 4.2.  

 

IES spacing  fr  S11  BW  VSWR Gain  Directivity  

(d) (GHz) (dB) (MHz)   (dB) (dB) 

0.5 λ 2.394 -53.39 71.5 1.004 6.846 8.982 

0.45 λ 2.396 -37.629 74.3 1.003 6.704 8.751 

0.4 λ 2.4014 -21.948 66 1.173 6.483 8.481 

 

 

  

 

                   Radiation pattern in E-plane is more significant for electrical type antennas. The 

E-plane cut is obtained by varying the theta, θ while keeping phi, φ constant. Thus, the 

stimulated gains are recorded when phi is equivalent to zero. The highest gain and directivity 

is recorded when the two elements are spaced apart by 0.5λ. Half Power Beam Width 

(HPBW) is the coverage angle of an antenna within acceptable half-power limit (-3dB). 

Additionally, side lobes are beam that are adjacent to main lobe.  A diminutive decrease in 

SLL and a gradual increase in HPBW is noticed when the elements spacing is reduced from 

0.5λ to 0.4λ.  The spacing between the elements is fixed at 0.5 λ. 

            Further experiment is conducted by varying the ground plane dimension. Table 4.4 

describes the influence of varying ground plane dimension on antenna performance: 

 

 0.4 λ 0.45 λ 0.5 λ 

Element HPBW SLL (dB) HPBW SLL (dB) HPBW SLL (dB) 

2 58.1° -14.8 54.2° -14.9 50.8° -15 
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Table 4.4: Effect of ground plane dimension on antenna performance 

Table 4.5: Comparison between single patch and antenna arrays 

 

 

Ground dimension fr  S11  BW  VSWR Gain  Directivity  

(mm x mm) (GHz) (dB) (MHz)   (dB) (dB) 

160 x 70 2.394 -47.017 74.7 1.008 6.771 8.927 

160 x 75 2.394 -53.39 71.5 1.004 6.846 8.982 

160 x 80 2.395 -53.397 74 1.004 6.875 9.02 

160 x 85 2.395 -44.49 73 1.011 6.905 9.074 

165 x 80 2.395 -52.629 73.4 1.005 6.901 9.046 

 

               The simulation results verifies that the highest reflection coefficient and good gain 

for FR-4 substrate can be achieved with ground plane dimension of 160 mm x 80 mm at 

spacing of 0.5 λ. The effectiveness of array structure in gain improvement of antenna is also 

investigated by designing 4 x 1 linear array. The comparison in antenna performance for 

single element and antenna array is listed in Table 4.5.  Figure 4.6 and Figure 4.7 show 2D 

polar plot and 3D far field plot of gain respectively.  

                                  

 

          

 

 

 

 

 

Number of elements fr  S11  BW  Gain  

  (GHz) (dB) (MHz) (dB) 

Single 2.4 -28.087 60 4.09 

2x1 2.395 -53.397 74 6.875 

4x1 2.401 -26.45 93.2 9.471 Univ
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Figure 4.6: Gain 2D polar plot at xz plane for antenna arrays 
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Figure 4.7: Gain 3D far field plot for antenna arrays 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

           The reflection coefficient, S11 is the best for 2x1 array configuration which denotes 

excellent impedance matching. Moreover, it is clearly noticed that bandwidth and gain 

increases as number of elements increases. The illustrations in Figure 4.6 show narrower 

main beam width of array antenna is obtained by increasing the number of elements. This 

further confirms the theory that higher gain or directivity can be achieved with smaller beam 
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Table 4.6: Performance analysis for different substrate materials 

area.  The comparison of radiation pattern between 2x1 array and 4x1 array antenna as shown 

in Figure 4.7 clearly reveals that the radiation gets more intensified at the center of a sphere. 

In this research, the proposed four elements array antennas are of linear configuration.  The 

rationale behind this selection is that 2x2 array is not a highly directional antenna as it exhibits 

two major lobes. The signal is directed to 27 degree with HPBW of 31.9 degree as depicted 

in Figure 4.5 (c). The disadvantage of such arrangement is that the power is not focused at 

one particular direction only but it is radiated in other direction as well. A high gain of 9.471 

dB is achieved with 4x1 compared to 7.482 dB by 2x2 array configuration.  

              At initial stage, the design and simulation process of antennas were carried out by 

using FR-4 substrate. In order to select the best configuration for antennas, the comparison 

were made by replacing the original substrate with RT Duroid 5880 and R0 3730. The 

simulation results for both materials are described in Table 4.6.  

 

Materials 
Number of fr  S11  BW  Gain  Directivity  η 

elements (GHz) (dB) (MHz) (dB) (dB) (%) 

RT Duroid Single 2.4 -33.028 48.6 6.667 7.239 92 

5880 2x1 2.401 -23.178 38.9 9.399 9.915 94.7 

  4x1 2.4 -15.297 37.6 12.12 12.57 96.4 

  Single 2.4 -31.697 37.6 6.283 7.119 88.3 

R0 3730 2x1 2.4 -18.13 46.2 8.425 9.114 92.4 

  4x1 2.4 -17.845 36.1 11.01 11.8 93.3 

 

4.3       Antenna Performance on the Human Body 

 

            The proposed antennas behavior are analyzed in the propinquity of simplified three- 

layer human body model. The thickness of each body tissue is set at 3 mm. The comparison 

between characteristics of the antenna in air and on the body is presented in Table 4.7.      
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Table 4.7: Comparison between antenna performance in free space and on-body 

 

 

 

 

 

 

 

  Number of  
Antennas Performances 

Material elements Free-space (In air) On the Human Body Gain Difference Gain Difference 

    

Fr 

(GHz) 

 

S11(dB)  BW(MHz) 

Gain 

(dB) 

Fr 

(GHz) S11(dB)  BW(MHz) 

Gain 

(dB)         (dB) (%) 

Rogers RT/ Single 2.4 -33.028 43.2 6.667 2.4 -17.161 36.8 7.009 0.342 105.1 

Duroid 2 x 1 2.401 -23.178 48.6 9.399 2.4 -25.284 53.8 9.23 -0.169 1.8 

5880 4 x 1 2.4 -15.297 38.9 12.12 2.4 -35.173 52.3 11.95 -0.17 1.4 

Rogers  Single 2.4 -31.697 37.6 6.283 2.4 -22.341 35.9 6.28 -0.003 0.005 

RO 3730 2 x 1 2.4 -18.13 46.2 8.425 2.4 -20.895 47 8.12 -0.305 3.62 

  4 x 1 2.4 -17.845 36.1 11.01 2.4 -13.394 33.1 10.84 -0.17 1.54 

FR4 Single 2.4 -28.087 60 4.09 2.412 -22.092 50.4 3.37 -0.72 17.6 

  2 x 1 2.395 -53.397 74 6.875 2.401 -43.187 70.7 6.452 -0.423 6.15 

  4 x 1 2.401 -26.45 93.2 9.471 2.4 -22.87 101.3 8.563 -0.627 6.82 
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            It is noticed that the reflection coefficient, S11 is shifted from 2.395 GHz to 2.401 

GHz when 2x1 array antenna for FR-4. In addition, the S11 is greatly reduced from -53.397 

dB to -43.397 dB as the input impedance of antenna detuned from 50.07 Ω to 50.01 Ω. This 

clearly shows that antenna’s reactive field is very sensitive to the vicinity of the body. The 

existing models of RT Duroid 5880 and R0 3730 on-body antennas are redesigned to meet 

the requirement of 2.4 GHz ISM band.  

          It is also can be seen distinctly that radiation pattern and gain of the antennas are 

affected by the interaction. Antenna gain is naturally reduced due to absorption of power by 

the body tissues. However, gain increases by 0.342 dB for single element antenna for RT 

Duroid 5880 as a result of reflections from the body. The comparative study also reveals that 

RT Duroid 5880 results in low gain loss compared to FR-4 of the same thickness, 1.6 mm. 

Such performance is attributed by low loss tangent value of 0.0009 compared to 0.0025 for 

FR-4. Therefore, it can be concluded that RT Duroid 5880 is the best substrate material to 

design on-body antenna.  

 

4.3.1       Parametric Analysis of Variation in Body Tissue Thickness  

 

               The performance of the antenna configurations designed using RT Duroid 5880 are 

evaluated by placing them on the realistic body tissue. The parametric investigation is carried 

out by varying the thickness of a body tissue while keeping others constant at chest region. 

Table 4.8 and Table 4.9 verifies the effect of varying tissue thickness on single element 

antenna performance. 
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Table 4.8: Effect of varying skin and muscle thickness on single element 

antenna performance 

Table 4.9: Effect of varying fat tissue thickness on single element antenna 

performance 

 

 

 

 

 

                 From the extensive simulation results, it can be observed that the antenna gains 

are increased when placed onto the human chest. All the various thickness scenarios exhibits 

gain increment compared to free space setting which is 6.667 dB for single element antenna. 

There is no correlation between reflection coefficient, S11 and tissue thickness as only a slight 

variation trend for S11 and bandwidth is noticed. Besides that, the highest antenna gain is 

observed for fat tissue thickness of obese man and woman respectively. A rising trend is also 

revealed when the hypodermis layer thickness is set from 9 mm onwards. Such results show 

Body 

Tissue  Gender 

Layer 

Thickness  

Fr 

(GHz) S11(dB)  BW(MHz) 

Gain 

(dB) 

Type   (mm)         

Skin Adult 2 2.4 -17.159 36.5 7.033 

    3 2.4 -17.161 36.8 7.009 

    4.5 2.4 -16.948 36.2 6.943 

Muscle Adult 20 2.4 -16.64 35.7 6.832 

Body 

tissue  Gender BMI  

Layer 

thickness  Fr  S11 BW Gain  

type   Classification (mm) (GHz) (dB) (MHz) (dB) 

Fat 

Man Underweight 2 2.4 -17.242 36.7 7.064 

  Normal 4 2.4 -17.045 36.6 6.931 

  Overweight 10 2.4 -16.428 35.2 6.909 

  Obese 18 2.4 -16.76 36 7.353 

Woman Underweight 3 2.4 -17.161 36.8 7.009 

  Normal 9 2.4 -16.41 35.5 6.814 

  Overweight 15 2.4 -16.699 35.8 7.259 

  Obese 21 2.4 -16.816 36.2 7.383 
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Table 4.10: Effect of varying skin and muscle thickness on 2x1 array antenna 

performance 

Table 4.11: Effect of varying fat tissue thickness on 2x1 array antenna 

performance 

that reflection effect from the body is very strong as fat layer being less conductive separates 

the proximity between two highly conductive skin and muscle tissue.   

 

 

             

 

 

 

                            

               As previously stated, the 2x1 array configuration is remodeled to match the input 

impedance back to 50 Ω. Only a slight change occurs to the reflection coefficient, S11 value 

as a consequence of variation in tissue thickness. Additionally, no change occurs to the 

bandwidth. Therefore, near field of 2x1 array antenna is less sensitive to the varying nature 

of body tissue. However, its radiation property is slightly affected because of deviation in 

gain value.  

Body Tissue  Gender Layer Thickness  Fr (GHz) S11(dB)  BW(MHz) Gain (dB) 

Type   (mm)         

Skin Adult 2 2.4 -25.388 53.8 9.266 

    3 2.4 -25.284 53.8 9.23 

    4.5 2.4 -25.098 53.8 9.293 

Muscle Adult 20 2.4 -25.202 53.7 9.346 

Body tissue  Gender BMI  Layer thickness  Fr  S11 BW Gain  

type   Classification (mm) (GHz) (dB) (MHz) (dB) 

Fat 

Man Underweight 2 2.4 -25.353 53.8 9.283 

  Normal 4 2.4 -25.218 53.8 9.207 

  Overweight 10 2.4 -25.558 53.8 9.518 

  Obese 18 2.4 -26.007 53.8 9.566 

Woman Underweight 3 2.4 -25.284 53.8 9.23 

  Normal 9 2.4 -25.455 53.8 9.5 

  Overweight 15 2.4 -25.962 53.8 9.549 

  Obese 21 2.4 -25.947 53.8 9.57 
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Table 4.12: Effect of varying skin and muscle thickness on 4x1 array antenna 

performance 

Table 4.13: Effect of varying fat tissue thickness on 4x1 array antenna 

performance 

 

 

Body 

Tissue  Gender 

Layer 

Thickness  

Fr 

(GHz) S11(dB)  BW(MHz) 

Gain 

(dB) 

Type   (mm)         

Skin Adult 2 2.4 -35.435 52.3 11.95 

    3 2.4 -35.173 52.3 11.95 

    4.5 2.4 -34.912 52.3 11.93 

Muscle Adult 20 2.4 -35.081 52.3 11.91 

 

  

 

 

                 

 

 

 

 

            

                  Similar trend is observed for reflection coefficient, S11  and bandwidth of 4x1 

array antenna. The antenna still provides S11 <- 10 dB with bandwidth of 52.3 MHz compared 

to 38.9 MHz at free space. The gain value slightly decreased by the range from 1.4 % to 1.6 

% when the skin thickness increases. The slightest variation in gain is recorded for 

hypodermis thickness of obese woman which is 0.5 %.  

 

 

Body 

tissue  Gender BMI  

Layer 

thickness  Fr  S11 BW Gain  

type   Classification (mm) (GHz) (dB) (MHz) (dB) 

Fat 

Man Underweight 2 2.4 -35.135 52.3 11.96 

  Normal 4 2.4 -35.175 52.3 11.94 

  Overweight 10 2.4 -34.568 52.3 11.89 

  Obese 18 2.4 -34.239 52.3 12.02 

Woman Underweight 3 2.4 -35.173 52.3 11.95 

  Normal 9 2.4 -34.679 52.3 11.89 

  Overweight 15 2.4 -34.253 52.3 11.97 

  Obese 21 2.4 -34.34 52.3 12.06 
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Table 4.14: Impact of modification at transmission line on array antenna 

performance for RT Duroid 5880 

 

 

 

Table 4.15: Simulated antenna gain on the body 

 

 

 

4.3.2       Analysis of Gain Improvement Methods for On-body Antennas 

 

                As described in chapter 3, preliminary investigation is carried out by placing the 

antennas on three-layer tissue of same thickness. The transmission line of the on-body 

antennas is altered to minimize the attenuation of reflection coefficient, S11 and gain. 

Numerical analysis of the improvement is presented in Table 4.14. 

 

 

               

 

 

 

                     Table 4.15 describes the variation in simulated gain when the skin and fat tissue 

thickness is set for 3 mm respectively and muscle tissue as 20 mm. Antenna performance on 

the body is further investigated with a 8x1 array configuration for comparison purposes. It is 

observed that more gain losses are incurred by increasing the complexity of the antenna. 

These findings raise intriguing questions regarding the usefulness of array structure for body 

centric communication. The simulated gain with presence of human body is stated in Table 

4.15.  

 

 

No. of elements Configuration Fr (GHz) S11(dB)  BW(MHz) Gain (dB) 

 2 x 1 Original 2.4 -26.776 52.4 9.18 

    Curved edge 2.4 -25.284 53.8 9.23 

4 x 1 Original 2.4 -19.574 46.7 11.93 

    Curved edge 2.4 -35.173 52.3 11.95 

Number of Gain (dB) 

elements Free-space (On air) On the Human Body Difference (dB) Difference (%) 

Single 6.667 6.832 0.165 102.5 

2x1 9.399 9.346 -0.053 0.56 

4x1 12.12 11.91 -0.21 1.73 

8x1 15.07 14.32 -0.75 4.98 
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Table 4.16: Gain improvement for  the first design of 2x1 array antenna  

 

 

 

 4.3.2.1       Improvement Results for First Proposed Design of 2x1 Array Antenna 

 

          Table 4.16 summarizes the simulated gain obtained through implementation of 

modification technique for the first proposed antenna structure.             

 

 

 

 

 

 

 

  

                   Alteration done to transmission line structure compared to standard transmission 

line and the feed length improves the current path resulting in gain enhancement by 0.113 

dB. Additional improvement is made with the placement of a circular parasitic ring adjacent 

to the T-junction which yields a gain increment of 0.015 dB. The logic behind this is that the 

fringing fields at antenna edges facilitates the emission of microstrip patch antenna. Thus, 

parasitic elements should be placed near to the radiation edge to produce an electromagnetic 

coupling. It is observed that hexagon ring made of aluminum provides better gain of 0.083 

dB compared to the copper hexagon ring with 0.022 dB.  

               An improvement is also noticed with removal of square slot from the substrate 

under the radiator reducing dielectric losses. Two identical parasitic strips are added to the 

array design which leads to gain enhancement by 0.104 dB. The array structure is further 

Modification method Gain (dB) 

Original 9.346 

Feed = 22mm 9.434 

Parasitic ring (circle) 9.449 

Hexagon ring (copper) 9.471 

Modified Transmission Line 9.496 

Square slot 9.574 

removal (substrate)   

Hexagon ring  9.657 

(aluminium)   

Modification Gain (dB) 

Ground dimension 9.687 

Parasitic strip 9.791 

Patch slit 9.816 

Strip slit 9.911 

Extend slot (removal) 9.924 

Strip - Octagon slit 1 9.964 

Strip - Octagon slit 2 10.02 
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Figure 4.8: Current distribution for  the first proposed design 

Figure 4.9: Influence of spacing between the radiating elements on S11 

modified by slit loading in the two patches and the parasitic strips. Figure 4.8 displays the 

surface current distribution of the array antenna with parasitic elements and slits. 

 

                  

                 

                   It is clearly noticeable that the current from the radiator is induced into the 

parasitic strips. In addition, slit creation at the edges of the patch and the parasitic strips 

disturbs the current flow path leading to gain increment. The current that flows in the same 

direction is now concentrated at the slit region. The gap between the patches and the parasitic 

strips have been picked as a parameter to be investigated. Figure 4.9 and Figure 4.10 

demonstrate the impact of the spacing on S11 and current distribution respectively.  
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(a) d = 4 mm (b) d = 6 mm 

(c) d = 9 mm (default) 
(d) d = 11 mm 

Figure 4.10: Influence of spacing, d on current distribution 

d  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           The most obvious finding to emerge from the results is that detection of stronger 

interaction between the elements when the parasitic strip is closely placed with the radiator. 

The highest current strength is recorded when the spacing is 4 mm while the lowest is for the 

spacing of 9 mm. As a consequence, the resonant frequency is slightly shifted for both 

spacing of 4 mm and 6 mm as shown in Figure 4.8. In contrast, no changes is noticed for S11 

when the parasitic strips are placed farther away but variation in gain is visible. For a spacing 

of 9 mm, the gain at 2.4 GHz is 10.02 dB whereas 9.916 dB for a spacing of 11 mm.  

 

d 
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Table 4.17: Gain Enhancement for the second design of 2x1 array 

antenna  

 

 

 

(a) Right (b) Double 

Figure 4.11: Orientation of the parasitic ring 

4.3.2.2       Improvement Results for Second Proposed Design of 2x1 Array Antenna 

 

                  Gradual increment in gain is noticed when multiple parasitic strips are added to 

the array design. The gain improvement data are listed in Table 4.17.               

    

  

 

  

 

                   These results further support the idea of gain enhancement with multiple parasitic 

elements as described in [35] and it is important to mention that no change occurs at the S11 

graph. Further study is done to analyze the influence of position and dimension of the 

parasitic elements on antenna’s gain. Alignment of the parasitic ring on the right side of the 

feed line as shown in Figure 4.11 does not influence the gain. However, a change is noticed 

with the placement of double parasitic ring. 

 

  

 

 

 

 

No. of parasitic strips Gain (dB) 

Without 9.701 

1 9.808 

2 9.918 

3 9.953 

4 10.13 
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(a) L = 36 mm (b) L = 38 mm 

(c) L = 40 mm (d) L = 42 mm 

Figure 4.12: Influence of length, L on current distribution 

Table 4.18: Influence of length, L on the gain 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

  

 

          

 

Length (mm) S11 (dB) Gain (dB) 

36 mm -33.105 9.943 

38 mm -33.962 10 

40 mm -72.666 10.13 

42 mm -18.03 7.485 
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            A gain value of 10.13 dB is obtained when the hexagon ring is placed on the right 

side which shows that the parasitic ring can be placed either on the left or right side of the 

feed. In contrast, double hexagon ring degrades the antenna gain to 10.11 dB. Progressive 

improvement of gain can be seen when the length of the third and fourth parasitic strip is 

increased by +2.0 mm. Nevertheless, this could also degrade the antenna performance as the 

gain is drastically decreased when the strip is lengthened to 42 mm.  

 

4.3.2.3       Improvement Results for the Proposed Design of 4x1 Array Antenna 

 

                  Similar approaches also have been implemented to enhance the 4 elements array 

antenna performance. Modification of the transmission line has increased the gain by 0.32 

dB to 12.23 dB. Next, two square slot is cut from the substrate and a parasitic strip is placed 

parallel to the fourth patch which contribute to a gain of 12.47 dB. However, significant 

improvement results are not observed compared to those of 2x1 array antenna. These finding 

highlights the challenges and complexity of increasing array elements.  

 

4.3.3       Final Performances of the Antenna 

 

               In the previous section, several approaches have been addressed and numerically 

analyzed to overcome the degradation of the performance for both 2x1 and 4x1 array antenna. 

It is clearly observed that the dimension and position of the parasitic elements are crucially 

important in enhancing the antenna function. Figure 4.13 represents the comparison of S11 of 

the antenna in free space and on the body while Table 4.19 outlines the overall antenna 

performance.  
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(a) 2 x 1 array antenna 

(b) 4 x 1 array antenna 

Figure 4.13: Simulated reflection coefficient, S11  of the antenna in free 

space and onto human body  
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Table 4.19: Simulated overall antenna performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of Antenna Performances fr  S11  BW  Gain  Directivity  η 

elements   (GHz) (dB) (MHz) (dB) (dB) (%) 

2x1 

Free space 2.401 -23.178 38.9 9.399 9.915 94.7 

On-body(initial) 2.4 -25.202 53.7 9.346 10.02 93.3 

On-body(first design) 2.401 -34.511 53.6 10.02 10.36 96.7 

On-body (second design) 2.4 -72.666 55.2 10.13 10.49 96.6 

  Free space 2.4 -15.297 37.6 12.12 12.57 96.4 

4x1 On-body(initial) 2.4 -35.081 52.3 11.91 12.45 95.7 

  On-body(proposed) 2.402 -23.785 43.8 12.47 12.85 97 
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CHAPTER 5: CONCLUSION 

 

5.1 Summary 

 

               The main purpose of this research is to design single element and array antennas that 

can be located on the body for 2.4 GHz ISM band application. Array antenna provides high 

gain to overcome attenuation at path loss at longer distance. This is beneficial for body centric 

communications to stabilize the antenna performance. Since the research only involves 

simulation process, all the objectives had been achieved, which will be described as follows.  

            In the beginning stage, all the single and multi-elements antennas are designed using 

three different substrate material for free-space application. Then, the antennas performance   

are evaluated for on-body environment. The preliminary results showed that the material with 

low loss tangent is less sensitive to the human body coupling effect. It is a measure of 

dissipative energy in that material.    

           The antenna performance designed using low loss material are then investigated on 

the actual thickness of the human body in accordance with specific body parts. Such 

investigations are very important as the human anatomy is unique and proper characterization 

of on-body antenna is crucial. It is observed that 2x1 array and 4x1 array antenna’s near field 

performance are stable as only slight variation is observed for S11 and bandwidth. Besides 

that, a gradual increase in gain is observed as the thickness of the fat layer of both man and 

woman increases. However, gain of array antenna decreases with increment in the number 

of elements when subjected to variation in muscle thickness. This describes the sensitivity of 

multi-elements configuration to a highly conductive muscle tissue.  
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               The last stage involves reducing the impact of the human body with simple gain 

enhancement techniques for 2x1 and 4x1 array antenna. The results revealed that the 2x1 

array on-body antenna gain is increased by 7.2 % for the first design and 8.4 % for the second 

proposed design. However, it is only managed to increase the antenna gain by 4.7 % for the 

4x1 array on-body antenna. This highlights the complexity of increasing array elements for 

low frequency applications. However, this scenario will be different for millimeter wave 

frequencies as array configurations are required to overcome high attenuation losses.   

 

5.2 Future Work  

 

             Fabrication and measurement process need to be carried out to validate the 

performance of the antenna by simulation.  Besides that, further study of the material 

selection is important to improvise the antenna performance on the body. Recent 

advancement in material engineering introduce materials such as textiles and silicon based 

polymers such as PDMS, which can be used to develop the flexible antenna design. However, 

the dielectric constant and conductivity of the materials need to be measured as they are not 

easily documented.  

             In this research, the performance of the antenna is evaluated at chest region of a 

human body. However, it is also important to study the interaction of radio wave at different 

body parts to encourage suitable antenna design according to application and impact to the 

user’s health.  

                Lastly, Specific Absorption Rate (SAR) need to be determined by simulation and 

measurement for the on-body antennas. The electromagnetic absorption by the body tissues 

should not exceed the threshold level set by IEEE or ICNIRP guidelines. However, accurate 

density value of the body tissues need to be known in order to evaluate the SAR. 
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RT/duroid® 5870 and 5880 glass microfi ber reinforced PTFE 
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• Low moisture absorption
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Standard Thickness Standard Panel Size Standard Copper Cladding Non-Standard Copper Cladding

0.005” (0.127mm)          0.031” (0.787mm)
0.010” (0.254mm)          0.062” (1.575mm)
0.015” (0.381mm)          0.125” (3.175mm)
0.020” (0.508mm)
Non-standard thicknesses are available

18” X 12” (457 X 305mm)
18” X 24” (457 X 610mm)
Non-standard sizes are 
available up to 18” X 48” 
(457 X 1219 mm)

½ oz. (18μm) and 1 oz. (35μm) 
electrodeposited and rolled copper foil

¼ oz. (9 μm) electrodeposited copper foil  
½ oz. (18μm), 1 oz. (35μm) and 2 oz. (70μm) 
reverse treat copper foil
2 oz. (70μm) electrodeposited  and rolled copper 
foil

Thick metal claddings may be available based on dielectric and plate thickness. Contact 
customer service for more information on available non-standard and custom thicknesses, 
claddings and panel sizes

The information in this data sheet is intended to assist you in designing with Rogers’ circuit materials.  It is not intended to and does not create any warranties express or 
implied, including any warranty of merchantability or fi tness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular 
purpose.  The user should determine the suitability of Rogers’ circuit materials for each application.
These commodities, technology and software are exported from the United States in accordance with the Export Administration regulations. Diversion contrary to U.S. law prohibited. 

RT/duroid, Helping power, protect, connect our world and the Rogers’ logo are trademarks of Rogers Corporation or one of its subsidiaries. 

© 2017 Rogers Corporation, Printed in U.S.A. All rights reserved. Revised 1306 060117 Publication #92-101

[1]  Specifi cation values are measured per IPC-TM-650, method 2.5.5.5 @ ~10GHz, 23°C. Testing based on 1 oz. electrodeposited copper foil.  er values and tolerance reported by 
IPC-TM-650 method 2.5.5.5 are the basis for quality acceptance, but for some products these values may be incorrect for design purposes, especially microstrip designs.  We 
recommend that prototype  boards for new designs be verifi ed for desired electrical performance.

[2]  Typical values should not be used for specifi cation limits, except where noted.
[3]  SI unit given fi rst with other frequently used units in parentheses.
[4]  The design Dk is an average number from several different tested lots of material and on the most common thickness/s. If more detailed information is required, please contact 

Rogers Corporation. Refer to Rogers’ technical paper “Dielectric Properties of High Frequency Materials” available at http://www.rogerscorp.com.

PROPERTY
TYPICAL VALUES

DIRECTION UNITS[3] CONDITION TEST METHOD
RT/duroid 5870 RT/duroid 5880

[1]Dielectric Constant, r  
Process

2.33
2.33 ± 0.02 spec.

2.20
2.20 ± 0.02 spec.

Z
Z

N/A
C24/23/50
C24/23/50

1 MHz IPC-TM-650 2.5.5.3
10 GHz IPC-TM 2.5.5.5

[4]Dielectric Constant, r 
Design

2.33 2.20 Z N/A 8 GHz - 40 GHz
Differential Phase Length 

Method

Dissipation Factor, tan  0.0005
0.0012

0.0004
0.0009

Z
Z

N/A
C24/23/50
C24/23/50

1 MHz IPC-TM-650, 2.5.5.3
10 GHz IPC-TM-2.5.5.5

Thermal Coeffi cient of r -115 -125 Z ppm/°C -50 - 150°C IPC-TM-650, 2.5.5.5

Volume Resistivity 2 X 107 2 X 107 Z Mohm cm C96/35/90 ASTM D257

Surface Resistivity 2 X 107 3 X 107 Z Mohm C/96/35/90 ASTM D257

Specifi c Heat 0.96 (0.23) 0.96 (0.23) N/A
J/g/K

(cal/g/C)
N/A Calculated

Tensile Modulus

Test at 
23 °C

Test at 
100 °C

Test at 
23 °C

Test at 
100 °C

N/A

MPa 
(kpsi)

A ASTM D638

1300 (189) 490 (71)
1070 
(156)

450 (65) X

1280 (185) 430 (63) 860 (125) 380 (55) Y

ultimate stress
50 (7.3) 34 (4.8) 29 (4.2) 20 (2.9) X

42 (6.1) 34 (4.8) 27 (3.9) 18 (2.6) Y

ultimate strain
9.8 8.7 6.0 7.2 X

%
9.8 8.6 4.9 5.8 Y

Compressive Modulus

1210 (176) 680 (99) 710 (103) 500 (73) X

MPa 
(kpsi)

A ASTM D695

1360 (198) 860 (125) 710 (103) 500 (73) Y

803 (120) 520 (76) 940 (136) 670 (97) Z

ultimate stress

30 (4.4) 23 (3.4) 27 (3.9) 22 (3.2) X

37 (5.3) 25 (3.7) 29 (5.3) 21 (3.1) Y

54 (7.8) 37 (5.3) 52 (7.5) 43 (6.3) Z

ultimate strain

4.0 4.3 8.5 8.4 X

%3.3 3.3 7.7 7.8 Y

8.7 8.5 12.5 17.6 Z

Moisture Absorption 0.02 0.02 N/A %
.062” (1.6mm)

D48/50
ASTM D570

Thermal Conductivity 0.22 0.20 Z W/m/K 80°C ASTM C518

Coeffi cient of
Thermal Expansion

22
28

173

31
48

237

X
Y
Z

ppm/°C 0-100°C IPC-TM-650, 2.4.41

Td 500 500 N/A °C TGA N/A ASTM D3850

Density 2.2 2.2 N/A gm/cm3 N/A ASTM D792

Copper Peel 27.2 (4.8) 31.2 (5.5) N/A
pli (N/
mm)

1 oz  (35mm) 

EDC foil

after solder 
fl oat

IPC-TM-650 2.4.8

Flammability V-0 V-0 N/A N/A N/A UL94

Lead-Free Process 
Compatible
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Antenna Grade Laminates

RO3730™ laminates have the excellent thermo-mechanical properties and electri-

cal characteristics that antenna designers need. The laminates have a dielectric 

constant (Dk) of 3.0 and a loss tangent (Df) of 0.0013 measured at 2.5 GHz. These 

values allow antenna designers to realize substantial gain values while minimiz-

ing signal loss.  Materials are available with a demonstrated low PIM performance, 

with values better than -154 dBc (measured using Rogers’ internal test method).

RO3730 materials can be fabricated into printed circuit boards using standard 

PTFE circuit board processing techniques as described in the application note, 

“Fabrication Guidelines for RO3730 High Frequency Circuit Materials.”

Cladding is 1 ounce rolled annealed copper (35 μm thick).  RO3730 

laminates are manufactured under an ISO 9002 certifi ed quality system.

Features and Benefi ts

RO3730 reinforced woven fi ber 
glass with optimized glass and 
fi ller loading.

• Improved mechanical rigidity
• Easier handling and 

processing versus non-
reinforced PTFE products

• Lower Dissipation factor

Low PIM
• Reduced signal interference

Low Loss
• Improved antenna gain

Economically priced
• Volume manufacturing

Environmentally friendly
• Lead-free process compatible
• RoHS compliant

Regional fi nished goods 
inventories

• Short lead-time / quick 
inventory turn.

• Effi cient supply

Some Typical Applications:

• Base Station Antennas
• RFID Antennas
• WLAN Antennas
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The information in this data sheet is intended to assist you in designing with Rogers’ circuit material laminates. It is 
not intended to and does not create any warranties express or implied, including any warranty of merchantability or 
fi tness for a particular purpose or that the results shown on this data sheet will be achieved by a user for a particular 
purpose. The user should determine the suitability of Rogers’ circuit material laminates for each application.
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NOTES:
[1] Typical values are a representation of an average value for the population of the property. For specifi cation values contact Rogers 

Corporation. 
[2] The design Dk is an average number from several different tested lots of material and on the most common thickness/s. If more detailed 

information is required please contact Rogers Corporation or refer to Rogers’ technical reports on the Rogers Technology Support Hub at 
http://www.rogerscorp.com/acm/technology.

Standard Thickness Standard Panel Size Standard Copper Cladding

0.030” (0.762mm)
0.060” (1.524mm)

24”X18” (610mm X 457mm)
24”X54” (610mm X 1.37m)

Rolled Copper Foil: 1 oz. (1RD/1RD)

Data Sheet
  

Property
[1]Typical 

Value
Direction Units Condition Test Method

Dielectric Constant, 
r

Process
3.00 ± 0.06 Z 10 GHz/23°C IPC-TM-2.5.5.5

[2]Dielectric Constant, 
r

Design
2.93 Z 8 GHz - 40 GHz

Differential
Phase Length

Method

Dissipation Factor,  0.0016
0.0013

Z
10 GHz/23°C
2.5GHz/23°C

IPC-TM-650, 2.5.5.5

Volume Resistivity 107 MΩ•cm COND A IPC-TM-650, 2.5.17.1

Surface Resistivity 107 MΩ COND A IPC-TM-650, 2.5.17.1

Flexural Strength
9 (1.3)
8 (1.2)

X
Y

MPa (kpsi) IPC-TM-650, 2.4.4

Dimensional Stability
0.02
0.03

X
Y

mm/m 
(mils/inch)

IPC-TM-650, 2.4.39A

Coeffi cient of Thermal 
Expansion

11 X

ppm/°C IPC-TM-650, 2.1.4112 Y

65 Z

PIM <-154 dBc

Td 500 °C ASTM D3850

Thermal Coeffi cient of 
r 
- TcDK -22 ppm/°C -50°C to +150°C

Thermal Conductivity 0.45 W/m/°K D24/23 IPC-TM-650 2.6.2.1

Moisture Absorption 0.04 % D48/50 ASTM D570

Specifi c Gravity 2.1 gm/cm3 23°C ASTM D792

Copper Peel Strength
1.8

(10.5)
N/mm 
(pli)

10 sec. 550°F 
Solder Float

IPC-TM-650 2.4.8

Flammability V-0 UL94

Lead-Free Process 
Compatible

YES

For more information about RO3000 Series 
High Frequency Laminates, scan the QR code below
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