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ABSTRACT

Quantification of the cartilage degeneration as well as the meniscus degeneration

and displacement requires segmentation of various parts of the knee joints in the two-

dimensional ultrasound images in order to provide a direct measurement of the cartilage

thickness and the meniscus area and position, respectively. The goal in the knee cartilage

ultrasound image segmentation is to locate the boundaries of a monotonous hypoechoic

band between hyperechoic lines of the soft tissue-cartilage interface and of the cartilage-

bone interface. Hence, the true thickness between the two interfaces can be computed

based on the segmented images. Meanwhile, the goal in segmenting the meniscus ul-

trasound image is to locate the femoral condyle, the meniscus, and the tibial plateau si-

multaneously. This thesis presents active contour models for knee cartilage and meniscus

ultrasound image segmentation. Cartilage boundary segmentation using locally statistical

level set method (LSLSM) and cartilage thickness estimation using the normal distance are

presented. In addition, multiple active contours using scalable local regional information

on expandable kernel (MLREK) have been proposed to capture multiple, separate objects

of the femoral condyle, the meniscus, and the tibial plateau. Segmentation performance

is then validated using Dice coefficient and Hausdorff distance metrics. Segmentation

results of the presented methods are compared to the existing active contour methods in

the attempt of segmenting the knee cartilage and meniscus in the ultrasound images, which

show an improvement on the segmentation performance offered by the proposed methods.

The choice of various parameters in MLREK in response to the segmentation outcome

is then investigated. A demonstration on how to choose the threshold value to adapt the

kernel size in order to successfully reach the boundary concavity is given. The ability

of multiple contours in preventing merging and overlapping in the shared boundaries of
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separate regions is shown. A flexibility in setting each contour with different parameter

values for multiple structure segmentation is also illustrated. MLREK has shown to per-

form multiple object segmentation all at once in an ultrasound image. Application of the

presented methods to segment a set of the knee cartilage and meniscus ultrasound images

illustrates a good and consistent segmentation performance. The reproducibility of the

ultrasound-based cartilage thickness measurements using intraclass correlation coefficient

and agreement between pairs of the measurements by the normal distance and the manual

measurement using Bland-Altman analysis are determined. The cartilage segmentation

possible with LSLSM has allowed the obtained segmentation results to be used for making

the cartilage thickness computation. The robustness of the methods described against vari-

ous thickness of the cartilage and various shapes and areas of the multiple objects indicates

a potential of the methods to be applied for the assessment of the cartilage degeneration

as well as the meniscus degeneration and displacement. The cartilage degeneration and

the meniscus degeneration and displacement typically seen as changes in the cartilage

thickness and the meniscus area and position can be quantified over time by comparing

the cartilage thickness and the meniscus area and position at a certain time interval.

iv

Univ
ers

ity
 of

 M
ala

ya



ABSTRAK

Pengkuantitian degenerasi rawan lutut dan degenerasi serta sesaran meniskus memer-

lukan pensegmenan pelbagai bahagian pada imej ultrabunyi sendi lutut untuk memberikan

ukuran terus pada ketebalan rawan lutut dan kawasan serta kedudukan meniskus. Matla-

mat pensegmenan imej ultrabunyi rawan lutut adalah untuk mendapatkan sempadan jalur

hipoekoik senada antara garisan antara muka hiperekoik tisu lembut dengan rawan lutut.

Dengan demikian, ketebalan sebenar di antara kedua antara muka boleh diukur berdasark-

an imej yang disegmentasi. Matlamat pensegmenan imej ultrabunyi meniskus termasuk

segmentasi imej ultrabunyi meniskus untuk mendapatkan pelbagai objek serentak pada

lutut seperti kondil femur, meniskus, dan tibia plateau. Kajian ini akan membentangkan

mengenai model kontur aktif untuk pensegmenan imej ultrabunyi rawan lutut dan menis-

kus. Pensegmenan rawan lutut menggunakan locally statistical level set method (LSLSM)

dan pengiraan ketebalan rawan menggunakan jarak normal akan dibentangkan. Selain

itu, beberapa kontur aktif yang menggunakan maklumat tempatan boleh skala pada kernel

boleh kembang (MLREK) dicadangkan untuk pensegmenan pelbagai objek berasingan

kondil femur, meniskus, dan tibia plateau. Kemudian prestasi pensegmenan disahkan

menggunakan metrik pekali Dice dan jarak Hausdorff. Prestasi segmentasi model kon-

tur aktif yang kami cadangkan dibandingkan dengan model kontur aktif yang sedia ada

dalam pensegmenan imej ultrabunyi rawan lutut dan meniskus yang menunjukan pening-

katan keputusan pensegmenan ditawarkan oleh model yang dibentangkan. Kemudian

kesan pilihan pelbagai parameter dalam metodologi yang dicadangkan terhadap hasil

pensegmenan turut disiasatkan. Bagaimana nilai ambang harus dipilih untuk menyesua-

ikan saiz kernel untuk berjaya mencapai sempadan cekung ditunjukkan. Pelbagai kontur

boleh menghalang penggabungan dan pertindihan di sempadan bersama pada wilayah
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berasingan ditunjukkan. Pilihan fleksibel dalam memberikan nilai-nilai parameter yang

berbeza untuk setiap kontur apabila membahagikan pelbagai objek juga digambarkan.

MLREK telah menunjukkan dapat melaksanakan pensegmenan serentak pelbagai objek

kondil femur, meniskus, dan tibia plateau dalam imej ultrabunyi. Penggunaan kaedah

yang dibentangkan untuk pensegmenan satu set imej ultrabunyi rawan lutut dan menis-

kus menunjukan hasil pensegmenan yang baik dan konsisten. Kebolehulangan daripada

pengukuran ketebalan rawan lutut berdasarkan imaej ultrabunyi ini menggunakan pekali

korelasi intrakelas dan persetujuan antara pasangan ukuran oleh jarak normal dan pe-

ngukuran manual menggunakan analisis Bland-Altman diukur. Pensegmenan rawan lutut

dimungkinkan dengan LSLSM telah membenarkan keputusan pensegmenan digunakan

untuk membuat pengiraan ketebalan rawan lutut. Keteguhan kaedah yang dibentangkan

terhadap pelbagai ketebalan rawan lutut, bentuk, saiz, dan kedudukan daripada pelbagai

objek menunjukkan potensi penggunaan kaedah untuk penilaian degenerasi rawan lutut

dan degenerasi serta sesaran meniskus. Degenerasi rawan lutut dan degenerasi serta

anjakan meniskus biasanya dilihat sebagai perubahan dalam ketebalan rawan lutut dan

kawasan serta kedudukan meniskus boleh diukur mengikut masa dengan membandingkan

ketebalan rawan lutut dan kawasan serta kedudukan meniskus di beberapa selang masa.
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CHAPTER 1: INTRODUCTION

This chapter introduces the background that leads to the development of the knee cartilage

segmentation and thickness computation and the meniscus segmentation in the ultrasound

images. An overview on several medical imaging modalities that are used for assessing

the structure of the knee joint, particularly for the knee cartilage degeneration and the

meniscus degeneration and displacement is given. The advantages and disadvantages

of these medical imaging systems are also discussed. Ultrasound imaging that offers

an excellent alternative to other imaging systems is highlighted in Section 1.1. The

importance and the goals in segmenting the knee cartilage and meniscus in the ultrasound

images are identified and stated in Section 1.2. Some of the problems inherent in these

ultrasound images are identified. Speckle noise and intensity bias available due to physical

constraint in the ultrasound image acquisition are discussed. The objectives and scope

of work of this thesis are stated in Section 1.3 and Section 1.4, respectively. Section 1.5

provides an organizational layout and overall picture of the thesis.

1.1 Background

Osteoarthritis (OA) is the most prevalent form of arthritis and rheumatic diseases. It

causes major implications for individual and public health care globally (World Health

Organization, 2002). In general, OA has been strongly associated with ageing, causing

pain and disability. This disease is also attributable to overweight and obesity in addition to

heavy physical activities. The disease has affected more females than males of adults and

elderly (Jackson, Simon, & Aberman, 2001). It is known that the knee is the commonest

joint in the lower limb to be affected by OA that is most studied (Pereiraya et al., 2011).

Degenerative change in the cartilage is one of the primary features of the knee OA

disease (Kazam et al., 2011). Since X-rays are useful to visualize the two-dimensional
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Figure 1.1: (Left) Normal joint space between the femur and the tibia. (Right)

Decreased joint space due to damaged cartilage and bone spurs. (Arthritis of the

Knee, 2017).

(2-D) structure of the bony features, it has been utilized in providing an assessment of

the joint space width (JSW) for the knee OA screening and diagnosis (Roemer, Crema,

Trattnig, & Guermazi, 2011). The JSW assessment, easily obtained from weight bearing

knee projections, is often used to indicate joint space narrowing in order to determine

the stage of the knee OA progression. However, the JSW assessment shows an indirect

sign of the cartilage thickness provided by the measurement of the joint space width

between the femur and the tibia (see Figure 1.1). It has shown a weak sensitivity to change

(Buckland-Wright, 1994). In addition, cartilage loss that occurs on the other contact areas

cannot be observed in these X-ray images (Hunter et al., 2006). Since X-rays lack in

the depiction of the soft tissue, its ability to visualize other OA appearance features is

limited. Although computed tomography (CT) is superior to X-rays due to a tomographic

evaluation of soft tissues and bone, the contrast of the soft tissue in CT scans is limited to

provide the depiction of the cartilage (W. P. Chan et al., 1991). Both imaging modalities

have limitations of radiation exposure, where CT is more expensive than X-rays.

It is known that the joint space is not only shared by the cartilage, but also by

the meniscus. As depicted in Figure 1.2(a), this concave-shaped pad of fibro-cartilage
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(a)

(b)

Figure 1.2: Schematic of (a) normal structure of the knee joint and (b) the knee joint

affected by osteoarthritis (What is arthritis?, 2014)

is located in between the layers of the cartilage in the femoral condyle and the tibial

plateau. It is found that the degeneration and displacement in the meniscus contribute to

the progression of the knee OA as well (Amin et al., 2005; Hunter et al., 2009). According

to recent research findings, the knee OA is recognized to affect the whole joint structure

and causes changes in the surrounding bony structure and soft tissues, including synovial

fluid, synovium, ligament, cartilage, meniscus, and bone (see Figure 1.2(b)). In order to

provide a complete and accurate assessment of structural and symptomatic progression,

the entire structures of the knee joint are necessary to be visualized (Braun & Gold, 2012).

Magnetic resonance imaging (MRI) allows a precise depiction of the entire joint

structures, including bone, soft tissues, and synovial fluid. MRI has shown to be more

reliable and sensitive than X-rays and CT in depicting changes in the knee joint caused
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by OA. It has been used as a diagnostic tool particularly for the purpose of the knee

OA assessment (Iagnocco, 2010). In contrast to the 2-D X-ray images, MRI provides

three-dimensional (3-D) imaging of the knee joint for identification of changes in intra-

and extra-articular structures. As it demonstrates an excellent imaging quality, in recent

years, there have been considerable developments for bone, cartilage, and meniscus seg-

mentation in the 3-D MRI images for the purpose of knee OA characterization (Shan,

Zach, & Niethammer, 2010; Dodin, Pelletier, Martel-Pelletier, & Abram, 2010; Fripp,

Crozier, Warfield, & Ourselin, 2010; Folkesson, Dam, Olsen, Pettersen, & Christiansen,

2007; Tang, Millington, Acton, Crandall, & Hurwitz, 2006; Fripp et al., 2009; Boniatis,

Panayiotakis, & Panagiotopoulos, 2008; Swanson et al., 2010). However, high cost, low

availability, and high time consumption of the equipment have limited the routine clinical

use of MRI (Naredo et al., 2009; Moller et al., 2008). It is also known that MRI is not

suitable to be used for patients with metal implants.

Among other medical imaging modalities, ultrasound imaging is considered to be

non-invasive, radiation-free, portable, real-time, cost effective, and widely accessible.

It has been frequently used for a wide-range clinical application. While MRI has a

comprehensive role in the assessment of the intra-articular structures, ultrasound imaging

provides a complementary evaluation of the extra-articular structures (Kazam et al., 2011).

Although the visualization of deeper articular structure and subchondral bone is prevented

by the nature of sound, it has demonstrated its ability in depicting more appearance

features of the knee OA than X-rays and CT (Abraham, Goff, Pearce, Francis, & Birrell,

2011), such as cartilage loss (Saarakkala et al., 2012), meniscal tears (Acebes, Romero,

Contreras, Mahillo, & Herrero-Beaumont, 2013), ligament damage (Iagnocco, 2010), and

synovial proliferation (Iagnocco, 2010) involved in the pathogenesis and progression of

the knee OA (Oo & Boo, 2016). These advantages possessed by ultrasound imaging over
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X-rays, CT, and MRI promote the routine clinical use of ultrasound imaging in addition

to conventional imaging modalities and offer an excellent alternative to help diagnose or

monitor the presence of the knee OA disease non-invasively (Moller et al., 2008).

1.2 Problem Statement

For the purpose of the assessment of the cartilage degeneration and the meniscus degen-

eration and displacement, segmentation of several parts of the knee joint from the 2-D

ultrasound images is an important step in order to provide a direct measurement of the

cartilage thickness and the meniscus area and position.

The degeneration in the cartilage is typically seen as the changes in the cartilage

thickness. Segmentation is a necessary task in order to provide the thickness computation

of the knee cartilage in the ultrasound images. As shown in Figure 1.3(a), the femoral

condylar cartilage in ultrasound images is depicted as a monotonous hypoechoic band

between the two interfaces of the soft tissue-cartilage and the cartilage-bone (Kazam et

al., 2011). When segmenting the knee cartilage from the ultrasound images, it is important

to locate the boundaries of these two interfaces that represents cartilage region. Therefore,

the cartilage thickness between the two interfaces can be computed based on the segmented

images. Segmenting the cartilage from surrounding tissues is difficult due to the boundary

between different tissues is not sufficiently distinct. The segmentation algorithm should

be insensitive to various cartilage shape and thickness.

The degeneration and displacement in the meniscus are typically seen as the changes

in the meniscus area and position, respectively. The meniscus degeneration can be

determined through the measurement of the deformation in the meniscus area. In order

to determine the meniscus displacement, it is required to measure the relative location

of the meniscus to the femoral condyle and the tibial plateau (see Figure 1.3(b)). While

segmentation of the meniscus could only determine the meniscus area, simultaneous
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Figure 1.3: (a) The femoral condylar cartilage and (b) the medial meniscus of the

knee joint captured in the 2-D ultrasound images

segmentation of three separate objects of the femoral condyle, the meniscus, and the

tibial plateau could determine the meniscus position. Therefore, the goal in the meniscus

ultrasound image segmentation is to simultaneously capture the three objects in order to

determine the area and position of the meniscus. The segmentation algorithm should

locate not only the meniscus, but also the femoral condyle and the tibial plateau. It should

be able to prevent merging and overlapping in the shared boundaries of these multiple

objects. As a result, segmentation of the multiple objects can be achieved all at once in

a single image. As the meniscus may resemble a concave shape, it should penetrate into

the boundary concavity and be robust in segmenting objects of different shapes.

Due to the imperfection in the ultrasound image acquisition, speckle and intensity

inhomogeneity that occur in the ultrasound images tend to reduce the image contrast.

While speckle noise appears as dense, bright and dark granular objects in close proximity

throughout the image, intensity inhomogeneity causes a slowly changing intensity contrast

where the same tissue region may exhibit contrast variations at several locations and the
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intensity distributions between different tissues are overlapped significantly. Speckle noise

and intensity bias hampered the ultrasound images can cause large variations in image

intensities. Spatial intensity variation caused by these multiplicative noises tends to vary

the contrast of the object, obscure important details, and make the object difficult to be

distinguished in the captured image. They reduce image quality and interpretation, thus,

complicate the segmentation task in the ultrasound images. It is desirable to preserve the

important details in the ultrasound images that are hampered by the speckle noise and

intensity bias. Due to these difficulties, the knee cartilage segmentation and thickness

computation and the meniscus segmentation in the 2-D ultrasound images pose a consid-

erable challenge, clinical value, and contribution to the fields of biomedical engineering,

medical imaging, and image processing.

1.3 Objectives

The main aim of this thesis is the development of image segmentation algorithms to

overcome some challenges available in the knee cartilage and meniscus ultrasound images

as an initial step for the quantification of the cartilage degeneration and the meniscus

degeneration and displacement. The specific objectives of this thesis are listed below:

1. To develop image segmentation and thickness computation methods in addressing

the challenging problems arising in the 2-D knee cartilage ultrasound images.

2. To develop an image segmentation method in dealing with the unique problems

associated with the meniscus ultrasound images.

3. To validate the performance of the cartilage segmentation and thickness computation

methods and the meniscus segmentation method on real clinical data sets.
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1.4 Scope of Work

The scope of this research work includes:

1. The segmentation and thickness computation of the knee cartilage and the segmen-

tation of the meniscus are performed in the 2-D ultrasound images.

2. The performances of the presented methods are compared to other existing methods

in the attempt of segmenting the knee cartilage and meniscus ultrasound images.

3. The investigations on several parameters in the presented method are conducted to

evaluate their effects on the segmentation accuracy.

4. The performances of the presented methods on real clinical data sets are validated

using qualitative and quantitative evaluation metrics.

1.5 Thesis Outline

Chapter 2 provides a brief overview of underlying theory of curve evolution to regulate

contour propagation, its implementation using the level set method, and the advantages and

disadvantages of the existing active contour models, which are broadly categorized into

individual structure segmentation, multiple structure segmentation, and joint segmentation

and bias estimation. This chapter also provides an overview on some existing techniques

for computing the cartilage thickness.

Chapter 3 explains the methodologies on how to obtain the short-axis knee cartilage

and the medial meniscus in the 2-D ultrasound images. The knee cartilage boundary

segmentation using locally statistical level set method (LSLSM) and thickness computation

using the normal distance method for the 2-D ultrasound images are presented. Multiple

active contours using scalable local regional information on expandable kernel (MLREK)

for the meniscus ultrasound image segmentation are presented. This chapter also describes
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qualitative and quantitative segmentation evaluations using Cohen’s κ statistics and two

validation metrics of Dice similarity coefficient (DSC) and Hausdorff distance (HD) that

are used to quantify the segmentation performance, respectively.

Chapter 4 presents qualitative and quantitative evaluations of the cartilage segmenta-

tion and thickness computation and the meniscus image segmentation in the 2-D ultrasound

images. The performances of LSLSM and two other level set methods in the attempt of

segmenting a real knee cartilage ultrasound image are evaluated using DSC and HD met-

rics. Both qualitative and quantitative evaluations of the three different level set methods

on a set of the knee cartilage ultrasound images are performed. The statistics, reproducibil-

ity, and agreement of cartilage thickness measurements based on a set of the segmented

images using the normal distance are determined and interpreted. Next, segmentation

results, convergence properties, computational times of MLREK and other existing active

contour methods in their attempt of segmenting the meniscus of the ultrasound image are

illustrated using DSC metric. Quantitative evaluations of the sensitivity of each parameter

in MLREK to the segmentation results are illustrated using DSC and HD metrics. Seg-

mentation performance of MLREK when applied into a set of the meniscus ultrasound

images is validated using both quantitative evaluation metrics.

In Chapter 5, this thesis is finally concluded and some recommendations to guide

future works and to further extend the thesis are given.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, a review on some of the existing active contour models as one of the image

segmentation algorithms that is widely applied in addressing medical image segmentation

problems is provided. In Section 2.1.1, the theory of curve evolution to control the con-

tour propagation and its implementation using the level set method are reviewed. Several

existing active contour methods and their advantages and disadvantages are explained. In

general, they can be further categorized into three classes according to their segmentation

purposes: single object segmentation, multiple object segmentation, and joint segmen-

tation and bias estimation and organized into three sections. In Section 2.1.2, the active

contour models for the individual structure segmentation are further classified into two

categories: local and global active contour models. An overview on the extension of

the active contour models in addressing the multiple region segmentation and the joint

segmentation and intensity bias correction are given in Sections 2.1.3 and 2.1.4, respec-

tively. In addition, an overview on some existing computational approaches for estimating

the cartilage thickness is presented in Section 2.2. Section 2.3 provides a formulation of

features required to solve the problems associated with the knee cartilage segmentation

and thickness computation and the meniscus segmentation in the 2-D ultrasound images.

2.1 Active Contour Models

Image segmentation is an important task for the purpose of an image understanding. It is

often considered as the most difficult step in any automatic image processing systems. In

principle, the task of a segmentation algorithm is to partition a given image into meaningful

regions that are homogeneous based on the region it represents. It is started with the

determination of the distinctive feature that describes each region and differentiates that

region with other region. This image feature needs to be captured using a statistical
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method or some other methods. However, the noise generated due to the imperfection in

the image acquisition tends to obscure the captured images thus corrupt the image quality.

It makes the segmentation algorithm difficult to distinguish the object, especially when

parts of the object region are occluded.

Segmentation algorithms based on active contour methods have grown significantly.

These methods have been broadly applied to deal with segmentation problems in the

medical images. The segmentation process is started by setting an initial position of the

contour. These techniques evolve a smooth and closed contour that separates an image

into distinct regions. The contour propagates from its initial position until it arrives at the

targeted object boundary within the image domain. The final segmentation outcomes are

guaranteed to be continuous closed boundaries with possibly sub-pixel accuracy. These

active contour based segmentation methods that fall into the class of variational methods

seek to solve complex problems via optimization. In general, an energy functional is

associated with the contour’s smoothness and the image features. The energy is optimized

by solving a gradient flow equation to regulate the contour motion. Such that when the

contour coincides with the boundaries, the function should reach its optimum point. The

optimization problems yields several benefits. For example, the minimization problem

described variationally is easy to understand by analyzing the energy formulation. The

solution to the energy minimization does not depend on the implementation of the energy

functional where a particular energy minimization framework will result in an identical

segmentation outcome.

2.1.1 Theory of Curve Evolution

In general, the evolution of the active contours can be tracked either by the Lagrangian

parameterized control points or by the Eulerian level set methods. The contour in Lan-

grangian approach is parameterized discretely in a set of control points distributed at the
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evolving contour. The contour front is deformed by advancing the control points to the

new locations to update the contour position. This approach that is worked explicitly

with a parametrized curve is considered as a parametric active contour. Meanwhile, the

level set method tracks the curves in a fixed coordinate system of the Eulerian framework.

The contour is evolved using geometric measures, i.e., curvature and normal vectors. As

opposed to the parametric active contour, the level set method can handle the topological

change automatically. Implemented implicitly through level sets, this approach is often

called as the geometric active contour. Active contour models for the knee cartilage and

meniscus ultrasound image segmentation presented in Chapter 3 are implemented in the

level set formulation.

Via minimization the energy functional E(C), the propagating contour C(s, t) =[
x(s,t)
y(s,t)

]
evolves within an input image, I defined on the image domain,Ω, where s ∈ [0, 1]

parameterizes the contour points, and t ∈ [0,∞) represents a set of curves at different time

evolutions. A variational approach is formulated for the evolution of a contour, C that

minimizes the energy functional E(C) and eventually segments the image. Denote F(C)

as an Euler-Lagrange equation where the condition for C to minimize E(C) is that the first

derivative of E(C) with respect to the contour C is zero, F(C) = 0. The following partial

differential equation is to compute the steady state solution to the condition.

∂C

∂t
= F(C). (2.1)

In this curve evolution equation, F(C) is seen as the force to push the contour front

or the velocity acting in the propagation of the contour C. The force, F has the component

Fn̂ that directs the contour front in the normal direction and the tangent component Ft̂

that navigates the flow along the contour. The component Fn̂ has the role to navigate the
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contour front in the outward or inward direction. This component regulates the evolution

of the curve and influences the change in the geometry of the contour. Since the component

Ft̂ does not change the geometry of the contour, the equation of the curve evolution has

only the component of the normal direction such as

∂C

∂t
= Fn̂, (2.2)

The Euclidean curve shortening flow in the equation (2.3) is an example that the

motion of the contour is influenced by the local properties of the contour, i.e., the curvature

along the contour, κ and the unit normal vector of the contour, n̂.

∂C

∂t
= −κn̂, (2.3)

Since the Euclidean arc length of the contour decreases most rapidly, this gradient descent

flow has a smoothing effect on the contour. Hence, this flow is used to regulate the

smoothness of the contour and enforces a jagged contour become smoother. If the contour

is evolved under this flow only, it will shrink, forming a circle shape, and then a point. At

the end, the contour will vanish.

Another flow demonstrates the motion of the contour under constant speed that grows

and shrinks the contour, given by

∂C

∂t
= ωn̂, (2.4)

whereω is a constant. This constant flow corresponds to the minimization of the contour’s

area. If ω is negative, the contour evolves in an outward direction. If ω is positive, the

contour will move inward.

Starting with the position of an initial contour, C0 and the evolution equation as
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defined in the equation (2.1), the level set technique is used to track the contour as it

propagates. The propagating contour C(t) ⊂ Ω is implicitly represented by the level set

function at time, t. The contour is embedded in the zero level of a function φ(x) : Ω→ℜ

whereℜ is the Real numbers.

C(t) = {x ∈ Ω : φ(x, t) = 0} with C0 = φ(x, t = 0), (2.5)

where C0 is the initial contour. Given an initial level set function φ(x, t = 0), the function

φ(t) is evolved to move its zero level set based on the motion of the contour.

In the two-phase case, the image domain Ω is partitioned into two separate regions

Ω1 andΩ2. In this case, a level set function φ that has positive sign inside the contour and

negative sign outside the contour is used to represent a partition of the image domain Ω

into the two regions Ω1 and Ω2, given by

inside(C) = Ω1 = {x ∈ Ω : φ(x, t) > 0}, (2.6)

outside(C) = Ω2 = {x ∈ Ω : φ(x, t) < 0}, (2.7)

The image pixels that are in the interior, exterior, and on the contour are represented

with the following the membership functions, Mi. For instance, the image regions inside

or on the contour are represented by the function M1(φ) = H(φ). The image pixels outside

the contour are represented by the function M2(φ) = 1 − H(φ). The pixels that are on

the contour C are represented by the first derivative of H(φ), the Dirac delta function

δ(φ) = H′(φ). To facilitate numerical implementation, the regularized Heaviside function

Hǫ (φ), (1−Hǫ (φ)), and the derivative of the Heaviside function, the smoothed Dirac delta

function δǫ (φ), are often used to represent the regions inside, outside, and around the

contour, respectively. Hǫ (φ) and δǫ (φ) are computed by the equations (2.8) and (2.9) with
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ǫ = 1 as in (T. F. Chan & Vese, 2001), respectively.

Hǫ (φ) =
1

2

(
1 +

2

π
arctan

(
φ

ǫ

))
, (2.8)

δǫ (φ) =
1

π

(
ǫ

ǫ2
+ φ2

)
. (2.9)

By defining that the level set function, φ has positive values inside the contour and

negative values outside the contour, the unit normal vector of the contour, n̂ will push the

contour inward as given by

n̂ =
∇φ

|∇φ|
, (2.10)

In addition, the curvature of the contour, κ is defined by

κ = div(n̂) = div
( ∇φ
|∇φ|

)
, (2.11)

where div(·) represents the divergence. This term affects the contour’s smoothness. The

curvature of the contour is positive if the unit normal vectors diverge. Meanwhile, the

curvature is negative when the unit normal vectors converge.

2.1.2 Single Object Segmentation

There have been several active contour models proposed for the purpose of single ob-

ject segmentation. They can be further categorized into local and global active contour

methods. In segmenting the desired boundary, the global models consider entire image

intensities (T. F. Chan & Vese, 2001; Li, Kao, Gore, & Ding, 2008), whereas the local

models employ either local edge pixels (Casseles, Kimmel, & Sapiro, 1997) or local in-

tensity pixels (Lankton & Tanenbaum, 2008; Darolti, Mertins, Bodensteiner, & Hoffman,

2008). A brief summary of existing models that use edge information, global regional in-
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tensity information, and local regional intensity information is provided. The edge-based,

the global regional, the local regional active contour methods are briefly described and its

advantages and disadvantages are discussed in this section.

The object’s edge is one of the image features that is often applied to partition the

image. For instance, geodesic active contour (GAC) relies on discontinuity between

distinct regions. GAC computes the image gradient priory and uses the obtained edge

pixels as the boundary candidates. In GAC, the arc length of the curve is represented as

a line integral, LC =

∮
|C′(s)| ds =

∮
dr . The length element dr is weighted by an edge

indicator, g given in (2.13). Casseles et al. (1997) expressed the energy functional of GAC

as follows

EGAC(C(s)) =

∫ 1

0

g(∇I(C(s)))dr,

=

∫ 1

0

g(∇I(C(s))) |C′(s)| ds,

(2.12)

where

g(|∇I |) =
1

1 + |∇Gσ ∗ I |p
, p = 1 or 2, (2.13)

where∇ denotes the gradient operator and ∗ is the convolution operator. Since the force on

the contour front is regulated by such image gradient, the contour will propagate gradually

either in the inward or outward direction. The contour will finally converge at the strong

edges when the magnitude of the motion forces, g(|∇I |), gives the smallest value.

The image gradient or edge map is non-zero at rapid intensity changes, supposedly

the actual boundaries that separate distinct regions. Spatial intensity variation such as

non-uniform background may disappear while rapid intensity change is converted into

the edges. The edge-based models do not consider the global information of the image

intensity. When strong edge pixels exist, a satisfactory segmentation outcome can still
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be obtained in the presence of non-uniform or heterogeneous textures. However, not

only the boundaries but also the noises attribute as rapid intensity changes. To reduce

the sensitivity to noise, σ of the Gaussian smoothing function may be tuned with larger

values. However, it results in the blurring the true boundaries, making the contour pass

through noises and weak boundaries. These turn out to be complicated problems because

solving one usually leads to another problem.

The energy functional in the equation (2.12) is minimized by searching the path of

the shortest length
∮

dr , which also takes into account the image features. The evolution

equation of GAC is expressed as

∂C

∂t
= g(|∇I |)κn̂ − (∇g(|∇I |) · n̂)n̂, (2.14)

GAC added the balloon force or constant motion termω into its formulation and expressed

the level set formulation as follows

∂φ

∂t
= g(|∇I |)|∇φ|div

(
∇φ

|∇φ|

)
+ ∇g(|∇I |) · ∇φ + ωg(|∇I |)|∇φ|,

= g(|∇I |)|∇φ|(κ + ω) + ∇g(|∇I |) · ∇φ,

(2.15)

Since the value of g is never zero at the edges that have a large variation, the contour may

not completely stop at the intended boundary. The gradient term ∇g · ∇φ that is naturally

incorporated in the GAC has a strong attraction to drive the contour towards the real

boundary. This gradient term prevents the contour from surpassing the weak edges. The

term ∇g helps the contour to stop exactly at the middle of the edge pixels. Nonetheless,

this gradient term evolves the contour with a slow convergence and a small capture range.

In order to gain a faster convergence and a larger capture range, an additional balloon

force ω is placed into the formulation of GAC. The term ωg(|∇I |)|∇φ| has a role to
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inflate or deflate the contour at a constant velocity. The value of this constant velocity

will determine the speed of the contour motion while its sign will control the inward

or outward direction of the contour motion. However, this constant flow introduces an

undesired property, i.e., sensitivity to initial contour placement. If the sign of ω is set

as positive, the initial contour has to be placed outside the object so that the contour

will deflate. If the sign of ω is negative, then the initial contour needs to be put entirely

inside the object so that the contour will inflate. If the constant ω is removed, the initial

contour can be placed both inside and outside the object. The contour will grow and

shrink simultaneously, however, with a slower convergence and a small capture range.

To overcome these classical drawbacks of the edge-based methods, i.e., sensitivity

to noise and initial contour placement, the region-based models use statistics of several

pixels within regions as a force to attract the contour to the boundary. Since these models

rely on the regional statistics, they are less sensitive to the noise and the placement of the

initial contour than the edge-based models.

Mumford and Shah (1989) proposed the piecewise smooth model that provides a

theoretical framework for global regional image segmentation. This framework is later

independently implemented using the level set method (Osher & Sethian, 1988) by Tsai,

Yezzi, and Willsky (2001); Vese and Chan (2002). The piecewise smooth model of

Mumford and Shah assumes smooth and slowly varying region; whereas, its simplification,

the piecewise constant model of T. F. Chan and Vese estimates the regions by constants

intensity averages on either image regions delimited by the contour. The minimization

of this energy is obtained when the regions are optimally estimated by the means. Later,

J. A. Yezzi, Tsai, and Willsky (2002) added the regional variances to the model’s statistics.

Michailovich, Rathi, and Tannenbaum (2007) minimize the probability density functions

of intensity histograms on two sides of the contour. Note that the aforementioned models
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utilize the global intensity fitting function and the regional statistics both sides the contour

as a clue to find the boundary. Hence, they are called as the global region-based models.

In general, the energy functional E(φ) is comprised of the contour’s smoothness and

the image features. The energy functions ei that represent an image partition are combined

with Mi to be incorporated into the level set formulation. The total energy functional can

be expressed as

E(φ) = ν

∫
Ω

|∇Hǫ (φi(x))|dx +

∫
Ω

2∑
i=1

ei(x)Mi(φ(x))dx, (2.16)

where ν is a constant to regulate the contour’s smoothness.

Minimization of the energy functional E is equivalent to solving the gradient flow

equation given by

∂φ

∂t
= δǫ (φ)

[
νdiv

(
∇φ

|∇φ|

)
− e1 + e2

]
, (2.17)

where div(·) represents the divergence and δǫ is the smoothed delta function defined in

the equation (2.9).

T. F. Chan and Vese (2001) proposed active contours without edges (ACWE) under

the assumption of the statistically homogeneous image intensities. The image is segmented

into two disjoint regions delimited by the contour approximated by the piecewise constant

intensities for i = 1, 2. The functions ei for this method is defined by

eACWE
i (x) = |I(x) − µi(y)|

2 , (2.18)

where µi are the constants of the intensity means of the image pixels I(x) either side of

the contour given by

µi(y) =

∫
Ω

Mi(φ(x))I(x)dx∫
Ω

Mi(φ(x))dx
, i = 1, 2. (2.19)
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ACWE utilizes the global intensity fitting function and the entire image intensities

to partition the image. This method also assumes intensity homogeneity of the image to

be segmented. The assumption of the piecewise constant intensity in each region is not

applicable to segment images corrupted by intensity inhomogeneities.

To deal with intensity inhomogeneity,Li et al. (2008) presented region-scalable fitting

(RSF) model using sliding fixed-scale Gaussian kernels into image regions on either side

of the contour. The scalable kernel allows approximation of means intensity at a certain

regional scale from small to large scale. Utilizing entire image feature on either region

of the contour, the region-scalable data fitting function behaves as a gravitational field to

partition the image into several regions represented by the contour. While ACWE estimates

the image intensities in the entire domain and does not have a choice to approximate the

intensities in the local region, RSF provides the choice of the scale in the local region and

in the entire image domain. The functions ei of RSF in (Li et al., 2008) is given below

eRSF
i (x) =

∫
Ω

K(y − x) |I(x) − µi(y)|
2 dy, (2.20)

where µi for i = 1, 2 are weighted intensity means in a neighborhood of y, whose the size

is proportional to the scale of the kernel function K . A truncated Gaussian function is

chosen as the kernel function.

µi(y) =

∫
Ω
(I(x)Mi(φ(x)) ∗ K(y − x))dx∫
Ω
(Mi(φ(x)) ∗ K(y − x))dx

. (2.21)

RSF relies only on the local intensity means to cope with intensity inhomogeneity.

In order to distinguish regions that have the same intensity means, but different variances,

the local Gaussian distribution fitting (LGDF) method uses a Gaussian distribution of the

local image intensities where the means and variances are different. L. Wang, He, Mishra,
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and Li (2009) expressed the function ei of LGDF as follows

eLGDF
i (x) =

∫
Ω

K(y − x)

(
|I(x) − µi(y)|

2

2σ2
i

+

log(2πσ2
i
)

2

)
dy, (2.22)

where the local intensity means, µi for i = 1, 2 are defined by

µi(y) =

∫
Ω
(K(y − x)I(x)Mi(φ(x)))dx∫
Ω
(K(y − x)Mi(φ(x)))dx

, (2.23)

and the variances σ2
i

are given by

σ2
i =

∫
Ω

K(y − x) |I(x) − µi(y)|
2 Mi(φ(x))dx∫

Ω
K(y − x)Mi(φ(x))dx

. (2.24)

The robustness of global region-based methods to contour initialization tends to locate

whole image structures where different positions of the initial contour will evolve into an

identical final contour location (T. F. Chan & Vese, 2001; Li et al., 2008). The sensitivity

of the local active contour methods to contour initialization limits the initial contour to be

put near the object (Casseles et al., 1997; Lankton & Tanenbaum, 2008). This condition

allows segmentation of objects with different locations by putting different initial contour

positions. Therefore, locating an object boundary from surrounding objects is allowed

using these local active contour methods. As the image noise causes fault edges, it often

impedes the edge-based active contour methods to converge into the desired boundary.

The insensitivity of the regional active contour methods against image noises is more

likely to produce satisfactory result as it uses pixel intensities instead of edge pixels.

As opposed to global active contour methods that may produce poor segmentation

due to overlapped probability densities in images with intensity homogeneity between the

foreground and the background, the local regional active contours reduce the overlapping
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distribution, analogously to the local edge assumption. Several active contour methods

using the local regional descriptor have been proposed such as localizing region-based

active contour (LRAC) (Lankton & Tanenbaum, 2008) and local region descriptors (LRD)

for active contour evolutions (Darolti et al., 2008). LRAC and LRD employ local regional

statistics within fixed-radius balls and fixed-scale square windows distributed on the

evolving contour, respectively. These local regional models try to locate the boundaries

by gradually deforming the contour similar to those in the edge-based models.

The function ei of LRAC in (Lankton & Tanenbaum, 2008) is written as

eLRAC
i (x) =

∫
Ω

B(y − x)δǫ (φ(y)) ·
��I(x) − µB

i (y)
��2 dy, (2.25)

where B(y − x) is the ball mask with radius r centered at the contour, defined as

B(y, x) =



, 1, | |y − x| | < r

0, otherwise,

(2.26)

and the local intensity averages µi inside and outside of the contour localized by B(y − x)

at a point x given by

µB
i (y) =

∫
Ω

B(y − x) · Mi(φ(x)) · I(x)dx∫
Ω

B(y − x) · Mi(φ(x))dx
, i = 1, 2. (2.27)

LRAC and LRD estimate local intensity, but do not accommodate any scale choice to

measure region with various sizes. In LRAC, the scale has to be manually set according to

the distance between the locations of the initial contour and the object. If the scale is too

small and the initial contour is put further from the nearest boundary, the contour may not

be able to penetrate into the boundary concavity. As the meniscus resembles a concave

shape, LRAC may have problems in completely penetrating the boundary. To cope with
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the local minima problem, LRD added the constant motion and two segmenter functions.

However, it requires the initial contour to be put entirely within the object of interest.

Later, Phumeechanya, Pluempitiwiriyawej, and Thongvigitmanee (2010) proposed

active contour using local regional information on extendable search line (LRES). LRES

utilizes extendable search lines to reach the boundary concavity. Phumeechanya et al.

(2010) expressed the function ei of LRES as follows

eLRES
i (x) =

∫
Ω

L(y, x)δǫ (φ(y)) ·
��I(x) − µL

i (y)
��2 dy, (2.28)

where L(x, y) is the search line spread at the contour front given by

L(y, x) =




1, (y, x) is on the search line ,

0, otherwise,

(2.29)

and the local intensity averages µi in both sides of the contour localized by L(y − x)

defined by

µL
i (y) =

∫
Ω

L(y, x) · Mi(φ(x)) · I(x)dx∫
Ω

L(y, x) · Mi(φ(x))dx
, i = 1, 2. (2.30)

LRES has a flexibility to extend the search line reaching the intended boundary where

the intensity statistics is estimated on the adaptive-length search lines. However, the area

of the search lines is not proportional to the image size. Insufficient statistics computed

within the lines may drive the contour to the wrong direction. In addition, it needs more

computational cost to form and extend two line regions either side of the contour.

Another active contour is driven by local region-scalable force with expandable

kernel (LREK) (Faisal & Pluempitiwiriyawej, 2012). It utilizes pixel intensity values

within scalable kernels distributed on the contour front. The kernels expand gradually

until a boundary is detected. Therefore, the kernels are to drive the contour to reach the
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object’s boundary. The function ei of LREK is defined by

eLREK
i (x) =

∫
Ω

K(‖y − x‖)δǫ (φ(y)) × |I(x) − µ
K
i (y)|

2dy. (2.31)

where the kernel function is chosen as the uniform kernel. The intensity averages within

the interior and exterior areas of the expandable kernel K(y − x) are given by

µK
i (y) =

∫
Ω

K(‖y − x‖)Mi(φ(x))I(x)dx∫
Ω

K(‖y − x‖)Mi(φ(x))dx
. (2.32)

In LREK, one kernel region is used to form inner and outer regions split by the

contour line. Thus, instead of two local regions, only one kernel region needs to be

expanded. This helps LREK to arrive at the object’s boundary faster than some other

models. Moreover, the scalability of the kernel region to the image area results in a

proportional computation in both small and large images.

2.1.3 Multiple Object Segmentation

The active contour models have been extended to handle multiple structure segmentation

using global regional information (Vese & Chan, 2002; Brox & Weickert, 2006). For

instance, the framework in (Vese & Chan, 2002) represents N = 2n regions using n-

level set functions. In the case of N = 4, two level set functions φ1 and φ2 are used

to define M1(φ1, φ2) = H(φ1)H(φ2), M2(φ1, φ2) = H(φ1)(1 − H(φ2)), M3(φ1, φ2) =

(1 − H(φ1))H(φ2), and M4(φ1, φ2) = (1 − H(φ1))(1 − H(φ2)) to give a four-phase level

set formulation. The level set functions partition the image into two subdomains. An

additional constraint is not necessary to handle junctions between multiple contours as the

junctions itself represent the regions to be segmented.

The level set functions φ1, · · · , φn are denoted by a vector valued function Φ =
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(φ1, · · · , φn). Therefore, the membership functions Mi(φ1, · · · , φn) are expressed as Mi(Φ).

For the multiphase case (N > 2), the energy E(Φ) is expressed in the following multiphase

level set formulation

E(Φ) = ν

∫
Ω

|∇Hǫ (Φ(x))|dx +

∫
Ω

N∑
i=1

ei(x)Mi(Φ(x))dx, (2.33)

where ei for i = 1, · · · , N is defined as in the equation (2.18).

The energy minimization of E(Φ) with respect to variable Φ = (φ1, · · · , φn) is

performed by solving the following gradient flow equations:

∂φ j

∂t
= νδǫ (φ j)div

(
∇φ j

|∇φ j |

)
−

N∑
i=1

∂Mi(φ j )

∂φ j

ei . (2.34)

In the case that the number of regions is a power of two, this multiphase level set

method adopts the property of the two-phase level set method. It implicitly respects the

constraint of separate regions and thus does not need coupling forces. When the number

of the regions is not a power of two, a particular region has twice weights. It will produce

empty regions, which does not fit with the piecewise constant model.

Instead of assigning n-level set functions to segment N = 2n regions, multiple level

set functions are used to deal with multi structure segmentation where a disjoint level set

function φ j is assigned to represent every region Ωi. This multiphase level set method

requires a coupling force to consider the constraint of separate regions. Such that the

regions are not overlapping each other and the pixels are not assigned to any region.

The coupled level set approach for multiphase motion in (Zhao, Chan, Merriman,

& Osher, 1996) added a constraint to handle junctions formed in between multiple level

set functions. The constraint of separate regions is combined by means of a Lagrangian

multiplier, λ. The third term is placed in addition to the length and area terms in their
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energy functional. In the gradient flow equation, the third term prevents the growth of

the overlapping regions between the adjacent contour. As this term forces the junctions to

disappear, the neighbouring contours share the boundary.

E(Φ) = ν

∫
Ω

|∇Hǫ (Φ(x))|dx+

∫
Ω

N∑
i=1

ei(x)Mi(Φ(x))dx+
λ

2

∫
Ω

(Hǫ (Φ(x)) − 1) dx, (2.35)

where ei for i = 1, · · · , N is defined as in the equation (2.18).

∂φ j

∂t
= νδǫ (φ j)div

(
∇φ j

|∇φ j |

)
−

N∑
i=1

∂Mi(φ j)

∂φ j

ei − λδǫ (φ j)

(
n∑

k=1

Hǫ (φk ) − 1

)
, (2.36)

where λ is a Lagrange multiplier and 1 ≤ j < k ≤ n.

In (Brox & Weickert, 2006), each object’s region is assigned by one level set function.

Each level set function φ j is evolved such that every point in the domain is inside the

contour. To achieve this goal, every φ j evolves according to

∂φ j

∂t
= δǫ (φ j)

(
ei(φ j) − max

δǫ (φ j )>0,k, j

(
ei(φk), ei(φ j) − 1

))
, (2.37)

where ei is defined as in the equation (2.18).

The coupled contours are allowed to compete with adjacent contours at an interface.

The contours interact with themselves when only one contour and no competing region

nearby exists. The neighboring contours move simultaneously based on the strongest

retreat force. In the situations where there are no other contours in the surrounding, a

balancing term e j − 1 will direct the contour towards the empty region with a constant

velocity. Thus, it allows the contour to grow, but prevent overlaps. When the number of

regions is not a power of two, there are no empty regions and no varying weights for the

length constraint. This behavior is suitable to be used by the global region-based models.
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Lankton and Tanenbaum (2008) formulated the multiple level set scheme using the local

region descriptor for multiple region segmentation. Inspired by the work of Brox and

Weickert, Lankton and Tanenbaum (2008) modified the multiple level set scheme using

the assumption of competing region. It is realized by combining the advance and retreat

forces given as follows

∂φ j

∂t
= δǫ (φ j)

(
max

δǫ (φ j )>0,k, j

(
e1(φ j ) + e2(φk)

)
+ min
δǫ (φi)>0,k, j

(−e1

(
φ j) − e2(φk)

))
, (2.38)

where ei for i = 1, 2 is defined as in the equation (2.25).

This formulation consists of advance and retreat competing components. The con-

tours propagate based on the relative magnitude of the advance component and the retreat

component. The advance component has a positive value to grow the contour outward

along its normal. On the other hand, the retreat component has a negative value to grow

the contour in the inward direction. The advance force of one contour competes with the

corresponding retreat forces of the adjacent contours and vice versa. Thus, the coupled

contours will interact at the interface and move simultaneously based on the strongest

force, while uncoupled contours will keep evolving.

2.1.4 Joint Segmentation and Intensity Bias Estimation

Spatial intensity variation that cause changes in the image intensity may complicate

the task of image segmentation. When spatial intensity variation caused by intensity

inhomogeneity is considered and not the one caused by speckle, the problem of intensity

inhomogeneity can be addressed similar to the intensity bias correction in MRI images

(Xiao, Brady, Noble, & Zhang, 2002). It is applied retrospectively in the acquired images

and also often combined with the segmentation methods, for which, several active contour

methods have been extended to handle simultaneous multiphase segmentation and bias
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estimation of MRI images (Li et al., 2011; K. Zhang, Zhang, & Zhang, 2010; K. Zhang,

Zhang, Lam, & Zhang, 2016; X.-F. Wang, Min, Zou, & Zhang, 2015; X.-F. Wang, Min,

& Zhang, 2015; Mukherjee & Acton, 2015) where its implementation in total variational

model offers even more efficient performance (H. Zhang, Ye, & Chen, 2013). Li et al.

(2011); K. Zhang et al. (2010, 2016) used the multiple level set framework in (Vese &

Chan, 2002) to represent the subregions.

To segment images corrupted by intensity bias, the energy proposed by Li et al. (2011)

is formulated according to the multiplicative noise model of intensity inhomogeneity. To

form separable clusters, image intensities I are defined in a local region and approximated

by mean bci, which are the product of the bias field and constants, respectively. An energy

functional is formed by integrating the local clustering criterion with the membership

functions, Mi. This energy functional represents an image partition and the bias field

that considers the intensity inhomogeneity. The kernel function, K , chosen as a truncated

Gaussian function, defines the local region at a certain scale. This method is referred as

the locally weighted K-means variational level set method (WKVLS). WKVLS defines

its energy functional E in the first row of the equation (2.39). It can also be computed

using the equivalent expression given in the second row of the equation the (2.39).

eWKVLS
i (x) =

∫
Ω

K(y − x) |I(x) − b(y)ci |
2 dy,

= I21K − 2ci I(b ∗ K) + c2
i (b

2 ∗ K).

(2.39)

Via energy minimization of the energy functional E , estimation of the membership

functions Mi, the bias field b that estimates the intensity inhomogeneity, and the constants

ci that approximate the true image pixels in each region are obtained. Therefore, image

segmentation and bias field correction are performed together, where the results are given

by the level set function φ and the restored bias field b, respectively. Meanwhile, the
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multiplicative components of the image I: the variables ci and b that minimize E are

accordingly defined by

ci(x) =

∫
Ω
(b(y) ∗ K(y − x))I(x)Mi(φ(x))dy∫
Ω
(b2(y) ∗ K(y − x))Mi(φ(x))dy

, (2.40)

and

b(y) =

∑N
i=1(I(x)Mi(φ(x)) ∗ K(y − x))∑N

i=1(Mi(φ(x)) ∗ K(y − x))
. (2.41)

K. Zhang et al. (2010, 2016) proposed statistical variational multiphase level set

method (SVMLS) for joint MRI tissue segmentation and bias estimation. The energy is

derived according to Gaussian distributions of local image intensity and multiplicative

noise model. Local intensities within a neighborhood are approximated by Gaussian

distributions with mean bci and variance σ2
i
. The kernel function, K , is set as a uniform

function. This is to ensure the intensities involved only in the local neighborhood. The

energy functional E of SVMLS is written as follows

eSVMLS
i (x) =

∫
Ω

K(y − x)

(
|I(x) − b(y)ci |

2

2σ2
i

+

log(2πσ2
i
)

2

)
dy. (2.42)

Via energy minimization of the energy functional E with respect to the constants, ci,

the restored bias field, b, and the variances, σi, the variables φ, ci, b, and σi are jointly

estimated during the evolution of φ. Each variable is defined by

ci(x) =

∫
Ω
(b ∗ K)IMi(φ)dy∫
Ω
(b2 ∗ K)Mi(φ)dy

, (2.43)

b(y) =

∑N
i=1

ci
σ2
i

(IMi(φ) ∗ K)

∑N
i=1

c2
i

σ2
i

(Mi(φ) ∗ K)

, (2.44)
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and

σ2
i =

∫
Ω

K(y − x) |I(x) − b(y)ci |
2 Mi(φ(x))dx∫

Ω
K(y − x)Mi(φ(x))dx

. (2.45)

Both methods were essentially designed to simultaneously estimate the multiplicative

bias field while segmenting MRI images. While these intensity-based segmentation tech-

niques are generally insensitive to noise, the use of local image intensity and simultaneous

intensity bias estimation help to cope with the intensity inhomogeneity. But different from

WKVLS, where each cluster approximates the intensities by the local intensity means,

SVMLS assumes the local intensities to be Gaussian distributed to optimize the means and

the variances. SVMLS is more general than WKVLS that assumes Gaussian distributions

with a fixed variance. WKVLS ignores the variance component that is taken into account

in SVMLS, which helps to distinguish different tissues more accurately. Although devel-

oped for another imaging modality, SVMLS is suitable and can be adapted as a technique

for locating the cartilage boundary in the ultrasound images. It has been explained in (Xiao

et al., 2002) that the underlying assumption of the multiplicative noise model is related to

the classic reflection imaging equation of ultrasound physics of image formation.

2.2 Cartilage Thickness Computation

Ultrasound imaging has been used to measure the thickness and detect the degenerative

change in the cartilage (Aisen et al., 1984) in patients with knee pain (Kazam et al.,

2011), osteoarthritis, and rheumatoid arthritis (Iagnocco, Coari, & Zoppini, 1992) where

the measurement of the cartilage thickness was performed manually by drawing the

perpendicular line between hyperechoic lines of the soft tissue-cartilage interface and of

the cartilage-bone interface (Kazam et al., 2011; Naredo et al., 2009).

Several computational approaches have been proposed for estimating the cartilage

thickness in 3-D MRI images (Fripp et al., 2010; Tang et al., 2006; Solloway, Hutchison,
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Waterton, & Taylor, 1993). The thickness computation was performed on the 3-D cartilage

surface obtained from a 3-D reconstruction of segmented sagittal knee cartilage slices

or a direct 3-D MRI cartilage segmentation. Vertical distance is a simple thickness

measurement providing z-directional distance between points on the upper and lower

surfaces (Heuer, Sommer, III, & Bottlang, 2001). Proximity method computes the closest

neighbour on corresponding surface. It reflects the distance that is closest from each point

on a given surface to the point on the opposing surface (Fripp et al., 2010; Maurer, Qi,

& Raghavan, 2003). Another class of methods defines the thickness relative to a central

axis. The thickness is treated as the distance between the points on the medial axis that

is perpendicular to the axis intersected with the upper and lower surfaces (Solloway et

al., 1993). This method generates the normal to an average surface of the two surfaces

and then calculates the distance between two points where the vector intersects the two

surfaces (Solloway et al., 1993). Hence, it does not measure a true normal thickness (Tang

et al., 2006). In (A. Yezzi & Prince, 2003), the length of streamlines approaching the

opposing boundary from a normal direction is defined as the thickness. Instead of using

the streamlines, the normal distance calculates the thickness from the length of the straight

line of the normal vectors among the two surfaces (Tang et al., 2006). It provides the true

normal thickness from one surface to another that yielded the most accurate estimation

(Heuer et al., 2001).

2.3 Summary

The two-phase case of SVMLS or referred as the locally statistical level set method

(LSLSM) is considered to address single object segmentation and bias field estimation in

the 2-D knee cartilage ultrasound images. LSLSM is applied in segmenting the cartilage

boundary from the surrounding tissues that is not sufficiently distinct and hampered by

spatial intensity variation caused by speckle and intensity inhomogeneity. Since the energy
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functional of LSLSM is derived from Gaussian distributions of local image intensity and

multiplicative noise model, LSLSM is suitable to cope with a noisy and bias-corrupted

image. The variance component of the Gaussian distribution helps to distinguish different

tissues between the cartilage interfaces more accurately. The normal distance is adopted

as a technique for computing the cartilage thickness in the 2-D ultrasound images, which

provides the true normal thickness and the most accurate estimation. The cartilage

thickness between the two interfaces is measured by averaging the normal distance along

the 2-D segmented cartilage area.

To deal with the meniscus ultrasound image segmentation that requires simultaneous

segmentation of the femoral condyle, the meniscus, and the tibial plateau, a multiple

active contours framework that uses scalable local regional information on expandable

kernel or called multiple LREK active contours (MLREK) is applied. Using scalable

local regional information on expandable kernel, the kernel is of adaptive scale in order to

prevent multiple contours being stuck locally in a homogeneous region and thus navigate

the contours towards the object’s boundaries of different shape and size. The use of

local region descriptor helps to cope with speckle noise that varies the contrast of the

object’s boundary. To handle multiple structure segmentation, an additional constraint in

multiple level set framework is employed to prevent merging and overlapping between the

neighboring contours in the shared boundaries of separate regions.
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CHAPTER 3: MATERIALS AND METHODS

This chapter presents active contour based segmentation algorithms designed to address

challenging problems available in the knee cartilage and meniscus ultrasound images.

A summary on the ultrasound image acquisition protocols in order to obtain the knee

cartilage and meniscus images is provided. In addition, the normal distance as a technique

for computing the cartilage thickness in the ultrasound images is presented.

In Section 3.1, the knee cartilage boundary segmentation using the locally statistical

level set method (LSLSM) and thickness computation using the normal distance method

in the 2-D ultrasound images are presented. A summary of the methodologies on how

to obtain short-axis views of the knee cartilage in the 2-D ultrasound images is given in

Section 3.1.1. LSLSM applied in locating the cartilage boundary in a noisy and bias-

corrupted image is described. The energy functional of LSLSM derived from Gaussian

distributions of local image intensity and multiplicative noise model that consists of an

image partition and an intensity bias estimation is explained in Section 3.1.2. To suppress

the overlapped intensity distribution in the image, image intensities are defined within

a neighbourhood at a certain scale. The local intensities are estimated by the spatially

varying means and variances of the Gaussian distributions. To accomplish the joint

segmentation and bias field estimation, the means are estimated by the product of the bias

field and the piecewise constants. The energy functional to be minimized is expressed

in the equivalent form of the convolution operation. The minimization process of the

energy functional that iterates between the estimation of the variables and the evolution of

the contour is described. Meanwhile, the minimization of the energy functional and the

derivation of its variables from the equivalent expression of the energy functional are given.

These variables are also expressed in the form of the convolution operation. In Section

3.1.3, the normal distance adopted as a technique for computing the cartilage thickness in
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the 2-D ultrasound images is explained. The cartilage thickness is automatically computed

by averaging the normal distance along on the 2-D segmented cartilage area. The true

thickness between the two interfaces of the cartilage is computed by estimating the length

of normal vectors between its upper and lower boundaries. Finally, the section is concluded

by providing the summary on the knee cartilage segmentation and thickness computation

methods for the 2-D ultrasound images.

In Section 3.2, a multiple active contours framework or called as multiple LREK

active contours (MLREK) for the meniscus ultrasound image segmentation is presented.

In Section 3.2.1, the methodology to obtain ultrasound images of the meniscus in the

knee joint is described. In Section 3.2.2, an active contour with adaptive-scale kernels to

direct the evolving contour to reach the boundary concavity is described. The local image

intensity within the kernels distributed on the contour front is employed. The kernels

along the contour front expand gradually to reach the intended boundary within the image

domain. To prevent the contour being trapped in a homogeneous region, the kernel is

defined one at a time at the contour point and its scale is adaptable during the evolution

process. During the segmentation process, the scale of the kernel varies for each contour

point and depends on the distance of the contour point to the suspected boundary. The

estimation of the scale is influenced by the local image intensity on the zero level of

the contour. Next, the multiple level set formulation is provided to allow simultaneous

multiple structure segmentation without merging and overlapping between neighbouring

contours in dealing with unique challenges in the meniscus ultrasound images. The overall

evolution process of MLREK is finally explained. Finally, the section is concluded by

summarizing the meniscus ultrasound image segmentation method.

In Section 3.3, both qualitative and quantitative segmentation assessments using

Cohen’s κ statistics and two validation metrics of DSC and HD are explained, respectively.
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The Cohen’s κ statistics is used to express an inter-observer agreement for the segmentation

quality of the cartilage area observed by two experts. While DSC metric indicates the area

similarity between two comparing contours, HD metric tells the shape difference between

the contour pair.

3.1 Cartilage Segmentation and Thickness Computation

In this section, the methodology in order to obtain the knee cartilage of the ultrasound

images and the demographic information on the subject involved in this research are

explained and detailed below. The locally statistical level set method applied to the

cartilage boundary segmentation is described. The normal distance used to estimate the

cartilage thickness based on the segmented images is then described.

3.1.1 Cartilage Ultrasound Image Acquisition

An ultrasound image acquisition protocol to capture the cartilage of the knee joint is

described in this subsection. The Toshiba Aplio MX ultrasound machine is utilized with

a 2-D linear array, 8-12 MHz multifrequency transducer (PLT-805AT). In order to obtain

short-axis views of the femoral condylar cartilage on the trochlear notch, the subject

were scanned in vivo in the supine position with the knee joint fully flexed (120◦). The

transducer was put transversely to the knee joint and perpendicular to the bone surface,

just above the superior margin of the patella (Kazam et al., 2011; Naredo et al., 2009).

Ten subjects (male, age range: 23-27 years, mean age: 24.75 ± 2.18) were recruited. The

written consent was obtained prior to the ultrasound scanning. Four different scans of

the cartilage were obtained from both left and right knee joints with repositioning of the

ultrasound probe between acquisitions. The images were stored in DICOM format at a

resolution of 0.1316 × 0.1316 mm. The musculoskeletal sonography was performed by

a professional sonographer. The study received ethics approval from the University of
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Malaya Medical Ethics Committee (MECID No. 20147-396) as attached in Appendix A.

3.1.2 Locally Statistical Level Set Method

The energy functional of LSLSM derived from Gaussian distributions of local image

intensity and multiplicative noise model is explained in Section 3.1.2.1. It is composed of

an image partition and an intensity bias estimation. The energy functional to be minimized

is expressed in its equivalent form of convolution operation. Meanwhile, the minimization

of the energy functional and the derivation of the variables from the equivalent expression

of the energy functional are given in Section 3.1.2.2. The minimization problem is solved

by iterating between two main tasks: the first task is concerned with the evolution of the

level set function and the second task is dealt with the estimation of the variables. The

variables are estimated in the energy minimization with respect to each variable. Using

calculus of variations, the main energy functional is minimized, resulting in the gradient

flow equation for the evolution of the level set function.

3.1.2.1 Energy Functional

The two-phase case of SVMLS or referred as the locally statistical level set method

(LSLSM) is considered to address individual structure segmentation and bias field es-

timation in the knee cartilage ultrasound images. The energy functional of LSLSM is

derived based on Gaussian distributions of local image intensity and multiplicative noise

model. Intensity inhomogeneity associated with a component of an observed image I is

often modelled as the following multiplicative noise model

I = bJ + η, (3.1)
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where J is the true image to be restored, b is an unknown bias field that approximates the

intensity bias and η is refereed as the additive noise.

The true image, J is assumed as a piecewise constant. The bias field, b is to

vary slowly. The additive noise, η is under the assumption of the Gaussian distribution

with zero-mean. The distribution of image intensities I are approximated by Gaussian

distributions with spatially varying means µi and variances σ2
i
. The intensity distribution

in each local region is attributed to a Gaussian model. The intensity corresponding to

each neighbourhood is given by

p(I(x)|µi, σi) =
1√

2πσ2
i

exp

(
−
|I(x) − µi |

2

2σ2
i

)
, (3.2)

To accomplish the joint segmentation and bias field estimation, the means of the Gaussian

distributions as the centres of the clusters µi are approximated by multiplication of the bias

field b(y) and the image signal within the window J estimated by a piecewise constant ci

for i = 1, . . . , N, where N is the number of regions.

p(I(x)|b, ci, σi) =
1√

2πσ2
i

exp

(
−
|I(x) − b(y)ci(y)|

2

2σ2
i

)
. (3.3)

The energy functions ei is defined by

ei(x) =

∫
Ω

− log(p(I(x)|b, ci, σi))dy, (3.4)

By substituting the equation (3.3) to the equation (3.4), the energy functions ei become

ei(x) =

∫
Ω

|I(x) − b(y)ci |
2

2σ2
i

+

log(2πσ2
i
)

2
dy, (3.5)
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In the attempt of reducing the overlapped intensity distribution in the image, image

intensity is defined within a neighbourhood at a certain scale to form disjoint clusters.

ei(x) =

∫
Ω

K(y − x)

(
|I(x) − b(y)ci |

2

2σ2
i

+

log(2πσ2
i
)

2

)
dy, (3.6)

The energy functions ei in the equation (3.6) is computed using the equivalent expression

as follows

ei(x) =
1

2σ2
i

(
I21K − 2ci I(b ∗ K) + c2

i (b
2 ∗ K)

)
+

1

2
log(2πσ2

i )1K, (3.7)

where ∗ denotes convolution operator and 1K is defined as
∫

K(y − x)dy.

A uniform kernel function K is defined by

K(z) =




a for |z| ≤ ρ,

0 for |z| > ρ,

(3.8)

where a is a positive constant such that
∫

K(z) = 1. Only image intensities I(x) in a

neighborhood of y are effectively involved in the energy functions ei in the equation (3.7).

The scale of the kernel function K controls this neighborhood size. The choice of the

small scale for the neighborhood enables to handle intensity inhomogeneity since the

image intensities are only involved in a local neighbourhood centered at the point y.

The energy functions, ei that consist of an image partition and a bias field estimation

are combined with membership function Mi(φ(x)) to be incorporated into the level set

formulation. Therefore, the total energy function is defined by

E(φ) = ν

∫
Ω

|∇Hǫ (φ(x))|dx +

∫
Ω

2∑
i=1

ei(x)Mi(φ(x))dx, (3.9)
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with the first term being the regularization term to compute the arc length of the zero level

set where its relative strength is controlled by the parameter ν. The variables ci , b, and σi

will be jointly estimated through minimization of the energy functional E .

In the two-phase case (N = 2), each region is represented by the membership

functions M1(φ) = Hǫ (φ) and M2(φ) = 1 − Hǫ (φ), where the Heaviside function, H and

the Dirac delta function, δ are computed by the equations (2.8) and (2.9), respectively.

3.1.2.2 Minimization of the Energy Functional

Via minimization of the energy functional, image segmentation and estimation of the bias

field are performed together by estimating the membership functions Mi(φ), the restored

bias field b, and the piecewise constants approximating the image intensity in each region

ci for i = 1, 2. The minimization process of the energy functional iterates between the

estimation of the variables and the evolution of the level set function. The variables

derived from the equivalent expression of the energy function are expressed in the form

of the convolution operation. The level set function φ and the restored bias field b are the

results of the image segmentation and the intensity bias estimation, respectively.

In the iterative process, the energy minimization with respect to each variable φ, ci,

b, and σi is obtained. The minimization problem is solved by iterating between two steps.

In step one, the level set function is fixed, or equivalently the contour C, and then all these

variables are estimated. In step two, the variables ci , b, and σi for i = 1, 2 are fixed, and

then the level set function is evolved, so that the energy functional E is minimized.

In step one, the variables ci , b andσi are estimated. Keeping φ fixed, the first variation

of E is taken with respect to the variables, and then equate the resulting expressions to

zero, then solve the variables. It is easy to express these optimal variables ci, b, and σi
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that minimize E by

ci(x) =

∫
Ω
(b ∗ K)IMi(φ)dy∫
Ω
(b2 ∗ K)Mi(φ)dy

, (3.10)

b(y) =

∑2
i=1

ci
σ2
i

(IMi(φ) ∗ K)

∑2
i=1

c2
i

σ2
i

(Mi(φ) ∗ K)

, (3.11)

σ2
i =

∫
Ω

(
I21K − 2ci I(b ∗ K) + c2

i
(b2 ∗ K)

)
Mi(φ)dx∫

Ω
(Mi(φ) ∗ K) dx

. (3.12)

In step two, assuming that all parameters are known, the level set function φ is evolved,

hence the contour C, so that it minimizes the energy functional. Using the standard gradient

descent method, the minimization of E(φ, ci, b, σi) with respect to φ for fixed ci, b, and σi

is obtained. It is achieved by computing the gradient flow equation
∂φ

∂t
= − ∂E

∂φ
where ∂E

∂φ

is the Gâteaux derivative of E . The gradient flow equation corresponding to the energy

functional in the equation (3.9) has been derived in Appendix B.

∂φ

∂t
= δǫ (φ)

[
νdiv

(
∇φ

|∇φ|

)
− e1 + e2

]
. (3.13)

To keep the level set evolution stable, after each iteration of the equation (3.13), the

level set function is diffused by the following formulation (K. Zhang, Zhang, Song, &

Zhang, 2013):

φn+1
= φn

+ ∆t · ∆φn, (3.14)

where φn is the level set function obtained from the n-th iteration of the equation (3.13)

and ∆t is the diffusion strength where ∆ denotes the Laplacian operator.
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3.1.3 Normal Distance

The normal distance (Heuer et al., 2001) is adapted as a technique for estimating the

cartilage thickness in the short axis knee cartilage of the 2-D ultrasound images. While

the thickness computation in (Fripp et al., 2010; Tang et al., 2006; Solloway et al., 1993)

was performed in the 3-D cartilage surface, in this work, it is performed in the 2-D cartilage

segmented area. The normal distance is used to compute the true normal thickness of

the cartilage from one boundary to another in the segmented images. The thickness

computation is performed by evenly spacing m points along the boundary, then taking

the normal vector from the boundary points (xi, yi), and the perpendicular line is created

from (xi, yi) to the intersection points of the upper or lower boundary of the cartilage. The

distance between two points from the normal vector of the upper (or lower) boundary to

the intersection of the line with the lower (or upper) boundary is utilized to compute the

cartilage thickness ti for each point, respectively. The average thickness of the cartilage t̄

is taken from the mean of the thicknesses at all m boundary points.

3.1.4 Summary

The cartilage segmentation and thickness computation methods for the 2-D ultrasound

images have been presented. LSLSM is applied in segmenting the cartilage boundary from

the surrounding tissues that is not sufficiently distinct and hampered by spatial intensity

variation caused by speckle and intensity inhomogeneity. The energy functional of LSLSM

derived from the Gaussian distributions of local image intensity and multiplicative noise

model is suitable to cope with a noisy and bias-corrupted image and thus distinguish

different tissues between the cartilage interfaces. Therefore, the thickness between the

cartilage interfaces can be measured based on the segmented images.

The energy functional of LSLSM represents an image partition and a bias field
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estimation. The image intensity is defined within a neighbourhood at a certain scale. It

is approximated by the means and variances of the Gaussian distributions. The means

are approximated by multiplication of the bias field and the piecewise constants. The

segmentation and estimation of the bias field are performed together by estimating the

membership functions, the variances, the restored bias field, and the piecewise constants.

The results of the image partition and the bias field estimation are given by the level set

function and the restored bias field.

The minimization of the energy functional and the derivation of the variables from

the equivalent expression of the energy functional are given. An equivalent expression

in the form of convolution operation is used to compute the energy functional and its

variables. The minimization of the energy functional with respect to the level set function,

the piecewise constants, the bias field, and the variances is performed in the iterative

process. The minimization problem is solved by iterating between two steps. In step one,

the piecewise constants, the bias field, and the variances are estimated. By minimizing

the energy functional with respect to each variable, these variables are updated during the

level set evolution. In step two, assuming that these variables are known and fixed, the

minimization of the energy functional with respect to the level set function is obtained.

The level set function is evolved so that the energy functional is minimized.

The normal distance as a technique for computing the cartilage thickness in the 2-D

ultrasound images has been described. The cartilage thickness is measured by averaging

the normal distances along the segmented cartilage area. The thickness computation

is performed by taking the normal vector from the cartilage boundary and creating the

perpendicular line from upper (or lower) boundary to the intersection points in the lower

(or upper) boundary, respectively. The thickness is treated as the distance between two

points from the normal vector of the upper (or lower) boundary to the intersection of the
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line in the lower (or upper) boundary for all boundary points, respectively.

3.2 Meniscus Ultrasound Image Segmentation

In this section, the methodology on how to obtain the knee meniscus of the ultrasound

images and demographic information on the subject involved in this research are explained

below. A segmentation framework for use in ultrasound imaging, which utilizes multiple

active contours to simultaneously segment separate structures in an meniscus ultrasound

image is presented.

3.2.1 Meniscus Ultrasound Image Acquisition

An ultrasound image acquisition protocol to capture the meniscus in the knee joint is

described in this subsection. The Philips ClearVue 550 ultrasound system is utilized with

a 2-D, 12 MHz (L12-4) broadband linear array transducer. The high frequency probe is

desirable to observe superficial periarticular and intraarticular structures (Naredo et al.,

2005). The medial side of the anterior view of the knee joint was scanned in vivo to

capture the medial meniscus. The subject laid down in the supine position with the knee

flexed 90◦. Nineteen subjects (15 males and 4 females, age range: 18-55 years, and mean

age: 31.20 ± 14.41) were recruited with an informed consent. A professional sonographer

performed the ultrasound image acquisition. The study received ethics approval from the

University of Malaya Medical Ethics Committee (MECID No. 20147-396) as attached in

Appendix A.

3.2.2 Multiple LREK Active Contours

The multiple LREK active contours (MLREK) for segmentation of the meniscus in the

ultrasound image are presented. In Section 3.2.2.1, an active contour with the variable-

scale kernel to drive the contour to reach the boundary concavity is described. The scalable

local regional information defined as a weighted mean intensity within scalable kernels
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distributed on the propagating contour is explained. A strategy to adapt the scale of the

kernel to avoid the contour being trapped locally in a homogeneous region is explained.

In Section 3.2.2.2, a framework for multiple active contours to address multiple structure

problems is described. The multiple level set formulation with additional constraint

is provided to allow simultaneous multiple region segmentation. It includes a strategy

to prevent merging and overlapping between neighboring contours. Finally, the overall

evolution process of this multiple active contours framework with the variable-scale kernel

is explained in Section 3.2.2.3. After setting a number of parameters, the evolution process

starts with estimation of the kernel size for each contour point. Then, the contour motion,

its smoothness, and other contours motion are enforced by each of their corresponding

terms. The entire process is repeated for another iteration. It will stop when the contours

arrive at the boundary or once the iteration numbers have reached its maximum number.

3.2.2.1 Scalable Local Regional Information

A scalable local regional (SLR) information is defined as an image’s weighted intensity

mean within the scalable kernel. The SLR energy function eSLR
i

is defined by

eSLR
i (x) =

∫
Ω

K(‖y − x‖)δǫ (φ(y)) × |I(x) − µi(y)|
2dy. (3.15)

The local intensity region is masked using the kernel function. The uniform kernel,

Ku(d) = a is chosen where a is a positive constant. d = ‖x − y‖ is L2-norm distance

between the contour points x and other points y within the kernel support. It takes into

account image intensity within the distance, d from the contour. It does not consider

spatial intensity variation outside d. Each kernel is divided by the contour line into two

regions to sample intensity averages of the inner and outer regions within the kernel µi for
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i = 1, 2, given by

µi(y) =

∫
Ω

K(‖y − x‖)Mi(φ(x))I(x)dx∫
Ω

K(‖y − x‖)Mi(φ(x))dx
. (3.16)

A strategy to avoid the contour from being confined locally in a homogeneous region

is explained. The scale of each kernel dq, q = 1, 2, . . . ,m is defined at the points along

the contour line q, where m denotes the pixel numbers. For each iteration, the number

of the kernels relies on the pixel numbers on the contour line. Initially, the scale of the

kernel is set to dq = dinitial pixels. The scale adaptation process is enabled by gradually

adding ∆d pixels to d for each contour point. It depends on the comparison between the

absolute difference of an intensity threshold, thres and µ1 or µ2. This comparison tells

whether the kernel lies entirely on the homogeneous region or has arrived at the boundary.

thres = [L × τ] represents a small intensity value of the input image where τ ⊆ [0, 1] and

L = 255 for the 8-bit grayscale images. The value of thres should be set close to zero to

indicate the difference between µ1 and µ2. If the difference is less than thres where µ1 is

about the same as µ2, it implies that the kernel is still in the homogeneous area. In this

case, the scale of the kernels will expand gradually. This process is repeated iteratively

until the kernel has arrived at the nearest boundary. Once it crosses the boundary, there

is a significant difference between µ1 and µ2 in which the difference is larger than the

threshold. It means that the kernel has found its optimal scale, thus the SLR energy

function eSLR
i

will determine the motion of the contour line to reach the boundary.

Using the local version of the Chan-Vese energy (T. F. Chan & Vese, 2001), the

SLR energy function eSLR
i

in the equation (3.15) reaches its optimum point when the

image pixels within the kernel at each contour point I(x) is optimally estimated by the

local intensity averages µi. It acts as a force to inflate or deflate the contour locally. It is

influenced by the difference between I(x) and µ1 or µ2. If the value of I(x) is closer to µ1

than µ2, the negative sign of eSLR
i

will grow the contour. If I(x) is about the same value
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as µ2 and far different from µ1, the positive sign of eSLR
i

will shrink the contour. When

the value of I(x) is about the same either with µ1 or µ2, eSLR
i

will not produce any motion

force and the contour will finally converge at the intended boundary.

The total energy function expressed using the level set formulation is written in the

equation (3.17). The first term of the equation (3.17) is the contour’s length regulation

term that serves to smoothen the contour. In the second term of the equation (3.17), the

function eSLR
i

is combined with membership function Mi(φ) for i = 1, 2.

E(φ) = ν

∫
Ω

|∇Hǫ (φ(x))|dx +

∫
Ω

2∑
i=1

ei(x)Mi(φ(x))dx, (3.17)

where ν is a weighing parameter of the contour’s smoothness.

Using the standard gradient descent method, the energy functional E(φ) in the equa-

tion (3.17) is minimized with respect to the level set function φ by solving the gradient

flow equation
∂φ

∂t
= − ∂E

∂φ
. ∂E
∂φ

is derived using the Gâteaux derivative where the derivation

is given in more detail in Appendix C. It is performed by substituting φ with φ + ξψ,

where ψ denotes a tiny change perpendicular to φ weighted with a small number ξ. The

corresponding gradient flow equation is written in the equation (3.18). It consists of the

contour’s smoothness term that calculates the arc length of the zero level set and the SLR

force that drives the contour.

∂φ

∂t
= δǫ (φ)

[
νdiv

(
∇φ

|∇φ|

)
− e1 + e2

]
, (3.18)

where div(·) denotes the divergence.
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3.2.2.2 Multiple Level Set Formulation

The previous level set formulation in Section 3.2.2.1 is for the two-phase case (N = 2)

using a level set function. To allow simultaneous multiple region segmentation, the

energy functional is re-formulated into a n-active contours framework. To deal with

multiple object regions (N > 2), multiple level set functions φ1, . . . , φn are employed.

Multiple contours are embedded in the n-level set functions (φ j)
n
j=1

where each object’s

region is represented by one level set function.

The previous single level set energy function in the equation (3.17) is converted into

the following multiple level sets formulation, considering the required number of contours,

n is known.

E(φ1, . . . , φn) = ν

∫
Ω

n∑
j=1

|∇Hǫ (φ j (x))|dx +

∫
Ω

2∑
i=1

n∑
j=1

ei(x)Mi(φ j (x))dx. (3.19)

To deal with segmentation of multiple structure with shared boundaries, an additional

constraint is needed to avoid the zero level contour overlaps with its neighbouring contour.

The strategy in (Zhao et al., 1996) is modified to be utilized with the scalable local regional

information. Therefore, the additional constraint is placed as the third term in the total

energy function. The multiple level set formulation of MLREK’s energy is written using

a vector value notation Φ = (φ1, . . . , φn) as follows

E(Φ) = ν

∫
Ω

|∇Hǫ (Φ(x))|dx +

∫
Ω

2∑
i=1

ei(x)Mi(Φ(x))dx −

∫
Ω

Hǫ (Φ j(x))Hǫ (Φk(x))dx.

(3.20)

Minimization of the MLREK’s energy function in the equation (3.20) with respect

to Φ resulted in the gradient equation flow in equation (3.21) for φ j ; j = 1, . . . , n. The

corresponding gradient flow equation evolving every level set function φ j is given in the
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equation (3.22).

∂φ j

∂t
= νδǫ (φ j)div

(
∇φ j

|∇φ j |

)
−

2∑
i=1

∂Mi(φ j)

∂φ j

ei + δǫ (φ j)
©­«

n∑
k, j

Hǫ (φk )
ª®
¬
, (3.21)

∂φ1

∂t
= δǫ (φ1)

(
νdiv

(
∇φ1

|∇φ1 |

)
− e1 + e2 +

n∑
k,1

Hǫ (φk)

)
,

...

∂φn

∂t
= δǫ (φn)

©­
«
νdiv

(
∇φn

|∇φn |

)
− e1 + e2 +

n∑
k, j

Hǫ (φk)
ª®¬
.

(3.22)

In equation (3.21), the first term is the contour smoothing force, the second term is the

SLR force, and the third term is the area term of the regularized Heaviside functions. The

third term is used to prevent the neighbouring contours from creating overlapping regions.

When updating the contour φ j , other contours (φk)
n
k, j

are represented by their area terms

∑n
k, j Hǫ (φk(y)) where Hǫ (φ) is computed according to the equation (2.8). This strategy

thus avoids the evolving contours from surpassing each other in the shared boundaries of

disjointed regions.

3.2.2.3 Evolution Process

The evolution process of MLREK begins by setting the number of iterations, l, multiple

positions of initial contours C0, the initial scale of the kernel, dinitial, the additional scale

of the kernel, ∆d, and the threshold value, thres. Each contour Cj is embedded in the zero

level set function φ j ; j = 1, . . . , n where n is the number of the contours. For j = 1, . . . , n,

the value of d j , ∆d j , and thres j can be different and is not necessarily set to be similar for

each function φ j .

As the energy is minimized by an iterative process, the zero level of contours φ j is

updated at each time step p = 1, . . . , l. For every contour point q = 1, . . . ,m, dq = dinitial is
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set. The means µi for i = 1, 2 are computed using the equation (3.16). Then, the condition

|µ1 − µ2 | < thres is checked where |. | denotes absolute value. If the condition is true,

dq = dq+∆d is set, µ1 and µ2 are proceeded to be updated, and the condition is returned to

be checked. It will be repeated until the condition is not met, and then eSLR
i

proceeds to be

computed. All of these processes are iteratively repeated for every kernel on the contour

point. Then, the contour φ j is navigated towards the boundary using the equation (3.15).

Its smoothness is enforced by the second term of the equation (3.21). Meanwhile, other

contours (φk)
n
k, j

are described by their area terms
∑n

k, j Hǫ (φk(y)). Another contour’s

evolution starts by re-initializing dq to dinitial and repeating the whole process. Then, all

contours are evolved by one iteration and will be reiterated until the contours converge to

the boundary or a maximum number of iterations is reached. The entire evolution process

is illustrated in Algorithm 1.

Algorithm 1 MLREK’s evolution process

Set l, d j , ∆d j , thres j , and φ j for j = 1, . . . , n;

m is number of points in φ;

for p← 1, l do ⊲ Loop until l iteration numbers

for j ← 1, n do ⊲ Loop for n contours

for q← 1,m do ⊲ Loop for m contour points

Set dq = dinitial ⊲ Set initial kernel’s scale

Compute µi according to (3.16)

while |µ1 − µ2 | < thres do

Set dq = dq + ∆d ⊲ Expand the kernel

Update µ1 and µ2

end while

Compute eSLR
i

according to (3.15)

end for

Evolve φ j according to (3.21)

end for

end for

3.2.3 Summary

The meniscus ultrasound image segmentation method has been presented. An active

contour that uses scalable local regional information on expandable kernels is utilized.
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The local image information is defined as intensity values of the pixels on a set of scalable

kernels distributed along the evolving contours. It is used to direct the contour’s front

towards the intended boundary within an image domain. The contour line divides each

kernel into two regions that are inside and outside the contour to measure the intensity

profiles at image pixels on both sides the contour. The use of the local region descriptor

helps to cope with speckle noise that varies the contrast of the object’s boundary. A

strategy inside the variational level set method is used to adapt the scale of the kernels to

successfully reach the concave parts. The variable scale kernel is designed to avoid being

trapped in homogeneous regions during the segmentation process. The scale of these

kernels varies for each contour point and is dependent on the distance of the contour point

to the nearest boundary. These kernels expand gradually until a boundary is detected. The

support of each kernel is defined one at a time in each contour point. The estimation of

the kernel size is influenced by the local image intensity on the zero level of the contour.

The multiple active contours framework utilized the scalable local regional (SLR)

information is presented to deal with the multiple structure problem in the meniscus

ultrasound images. Multiple level set functions are used to embed the multiple contours

where each level set function represents one object’s region to be segmented. To prevent

the multiple level set functions from merging and overlapping each other, an additional

constraint placed as the third term in the energy functional is used to regulate the multiple

contours. Hence, simultaneous segmentation of separate objects of the femoral condyle,

the meniscus, and the tibial plateau can be performed all at once in a single image.

The optimal kernel scale is estimated based on the distance of the contour point to

the nearest boundary. After the optimal scale for each contour point is obtained, the SLR

force navigates the contour towards the object boundary. The smoothness of the contour

is regulated by the contour’s smoothing term. Meanwhile, other contours are described

50

Univ
ers

ity
 of

 M
ala

ya



by their area terms. Another contour evolution starts by estimating the kernel size and

repeating the entire process. Then, all contours are deformed gradually by one iteration.

The contours will be iteratively evolved until arrive at the boundary when the intensity

profile within the kernel is optimally approximated by their local means. The contour

evolution will also be stopped when a maximum number of iterations has been reached.

3.3 Evaluation of Segmentation Accuracy

In order to evaluate the segmentation results, qualitative and quantitative segmentation

assessments are performed using Cohen’s κ statistics and two validation metrics of DSC

and HD, respectively. Over all available data sets, the manual outlines as ground truth

data were compared against the segmentation results obtained by the algorithms to be

evaluated qualitatively and quantitatively.

3.3.1 Qualitative Assessment

The overall segmentation quality of the cartilage anatomical structure in ultrasound im-

ages are validated by two experts. The segmentation quality of the cartilage area was

assessed by differentiating the boundaries between the soft tissue-cartilage interface and

the cartilage-bone interface, which categorized as follows: Grade 1: excellent segmen-

tation quality, with excellent differentiation of the boundaries between the two interfaces

and no significant overlap segmentation areas. Grade 2: good segmentation quality, with

good differentiation of the boundaries between the two interfaces and only small overlap

segmentation areas. Grade 3: poor segmentation quality, with poor differentiation of

the boundaries between the two interfaces and some overlap segmentation areas. Grade

4: bad segmentation quality, with bad differentiation of the boundaries between the two

interfaces and large overlap segmentation areas.

Inter-observer agreement for the segmentation quality of the cartilage area obtained by
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LSLSM is expressed as the Cohen’s κ statistics (Cohen, 1960). The observed agreement,

the chance agreement, and the κ statistics for agreement between two observers were

calculated. The observed agreement is the number of occasions of complete agreement

between observers divided by the total number of occasions. The chance agreement is

the probability that the observers will provide the same response to an observation. The

kappa coefficient is defined as the observed agreement, which is above and beyond that

due to chance. Different ranges for kappa values characterise the degrees of agreement. A

kappa value of less than 0 implies poor agreement (agreement worse than that of chance

alone), 0.00 to 0.20 slight agreement (agreement equal to that of chance alone), 0.21 to

0.40 fair agreement, 0.41 to 0.60 moderate agreement, 0.61 to 0.80 substantial agreement

and 0.81 to 1.00 almost perfect agreement (Landis & Koch, 1977).

3.3.2 Quantitative Assessment

In order to examine the segmentation performance of the active contour models for the

knee cartilage and meniscus ultrasound image segmentation, the contours obtained from

the presented active contour models are compared against those traced manually by an

expert or called gold standard. The segmentation performance is quantified using two

different metrics of DSC (Dice, 1945) and HD (Huttenlocher, Klanderman, & Rucklidge,

1993) to measure the area similarity and the shape difference, respectively. DSC metric

is used to compare the similarity between the areas of the segmented contour (A) and of

the reference contour (B). It measures the ratio between twice of the common region of

both comparing contours and the sum of their individual regions, given by

DSC(A, B) =
2|A ∩ B |

|A| + |B |
, (3.23)
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This metric indicates the relative locations and sizes of the compared contours. The value

is bounded in [0, 1] and the value of 1 implies that the contour pair has the same location

and size (or area).

HD metric is used to compare the shape difference rather than the area similarity of

the contour pair. It computes the boundary mismatch between two comparing segmented

boundaries. HD in equation (3.24) is defined as the largest of all the distances of each

point in X that is nearest to any point in Y .

HD(X,Y) = max
(
max
x∈X

min
y∈Y
‖x − y‖,max

y∈Y
min
x∈X
‖x − y‖

)
, (3.24)

where X and Y are two sets of points extracted from the segmented and reference bound-

aries of A and B, respectively. The small value of dH implies a minimal shape difference

between two comparing contours.
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CHAPTER 4: RESULTS AND DISCUSSION

In this chapter, some results and their interpretations on the cartilage segmentation and

thickness computation and on the meniscus segmentation in the 2-D ultrasound images

are presented and organized into two sections. Some advantages and disadvantages of

different active contour models when applied to the knee cartilage and meniscus ultrasound

images are pointed out and discussed.

In Section 4.1, the results and discussion on the cartilage segmentation and thickness

computation in the 2-D ultrasound images are provided. In Section 4.1.1, the segmenta-

tion performances and computational times of LSLSM and other level set methods in the

attempt of segmenting a real knee cartilage ultrasound image are compared and discussed.

The segmentation results of different level set methods are evaluated using validation

metrics of DSC and HD. In Section 4.1.2, the segmentation performances of the three

different level set methods when applied to a set of the knee cartilage ultrasound images

are discussed. Both qualitative and quantitative evaluations are performed to compare

the segmentation results obtained by the algorithms and performed manually by an ex-

pert. The cartilage thickness measurement on a set of the segmented images using the

normal distance is evaluated in Section 4.1.3. The statistics and reproducibility of this

ultrasound-based cartilage thickness measurement and the agreement between pairs of the

measurements by the normal distance and the manual measurement are determined.

In Section 4.2, several results on the meniscus ultrasound image segmentation are dis-

cussed. In Section 4.2.1, the segmentation results, convergence properties, computational

times of MLREK and other existing active contour methods in their attempt of segmenting

the meniscus of the ultrasound image are compared and discussed. The segmentation per-

formances and convergence rates of different active contour models are illustrated using

DSC metric. In Section 4.2.2, the responses of varying several parameters in MLREK

54

Univ
ers

ity
 of

 M
ala

ya



to the segmentation results are further studied and interpreted. Quantitative evaluation of

the sensitivity of each parameter in MLREK to the segmentation accuracy is illustrated

using both DSC and HD metrics. The effects of threshold value selection in response to

the segmentation results as well as convergence properties are investigated. The ability of

the presented multiple level set framework in avoiding merging and overlapping between

the neighbouring contours is discussed. The accuracy improvement achieved by assign-

ing different choices of scale parameters for each zero level contour in multiple region

segmentation is discussed. In Section 4.2.3, the segmentation performance of MLREK

when applied into a set of the meniscus ultrasound images is presented and discussed. The

segmentation results are validated using quantitative evaluation metrics of DSC and HD.

The reproducibility and agreement between DSC measures of the segmentation results of

the femoral condyle, the meniscus, and the tibial plateau are determined and discussed.

Finally, each section is concluded by the summary of the knee cartilage segmentation and

thickness computation and the meniscus segmentation in the ultrasound images.

4.1 Cartilage Segmentation and Thickness Computation

4.1.1 Comparison with Other Level Set Methods

In this section, a comparison of different level set methods in their attempt of segmenting

a real knee cartilage ultrasound image is provided. In this experiment, LSLSM was

compared to the two methods without and with multiplicative component estimation, i.e.,

LGDF and WKVLS, respectively. A brief summary of the two segmentation methods

is provided. Similar to LSLSM, LGDF also assumes spatially locally varying mean

and variance of a Gaussian distribution. While WKVLS and LSLSM were essentially

designed to simultaneously estimate the multiplicative bias field while segmenting the

images, LGDF can only be used for segmentation since it does not estimate multiplicative
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component. However, WKVLS ignores the variance component that is taken into account

in LSLSM, which helps to distinguish different tissues more accurately.

All the methods were implemented in MATLAB R2014a in an Intel (R) Xeon (R),

2.00 GHz, 32 GB RAM with the following parameter settings. Small kernel’s radius

ρ = 5 is chosen to provide more accurate boundary location. For grayscale images with

intensity range [0, 255], the constant ν was set to 0.001 × 2552. It was chosen to be small

when segmenting objects of any size. The time steps for level set evolution ∆t1 and for

regularization ∆t2 were set as ∆t1 = 0.01 for LGDF, ∆t1 = 0.1 and ∆t2 = 0.1 for WKVLS,

and ∆t1 = 0.01 and ∆t2 = 0.01 for LSLSM. Image size is 420 × 150 pixels.

(a) Initial contour (b) Final contour of LGDF

(c) Final contour of WKVLS (d) Final contour of LSLSM

Figure 4.1: The segmentation results of three different level set methods in segment-

ing the knee cartilage of the ultrasound image. The red circle with 10 pixels radius

represents the initial contour. The green lines represent the final contours.

Figure 4.1 illustrates the segmentation results of the three related level set methods

that are applied to the cartilage boundary segmentation. Figure 4.1 depicts (a) the initial

contour, the final contours of (b) LGDF, (c) WKVLS, and (d) LSLSM. The initial and

the final segmentation contours are coloured in red and green, respectively. The initial

contour is in circle shape with 10 pixels radius and placed just around the center of the

images. These three segmentation algorithms are generally able to distinguish different
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tissues in the presence of noise and intensity inhomogeneity. This is due to the use of local

image intensity defined in a local neighborhood that suppresses the overlapping intensity

distribution. With the multiplicative component estimation, WKVLS and LSLSM are

able to reduce the non-uniform textures and then locate the boundaries between different

tissues correctly as seen in Figures 4.1(c) and (d). Without the multiplicative component

estimation, LGDF produces an unstable segmentation result where misclassified contours

inside the object and some unnecessary contours around the object appear in the final

contours as shown in Figure 4.1(b). Both models yield satisfying segmentation results,

while LSLSM that considers the variance component obtained a better result than WKVLS.

(a) (b)

(c) (d)

Figure 4.2: (a) Manual segmentation of the cartilage. Cartilage regions extracted

from the segmented images by (b) LGDF, (c) WKVLS, and (d) LSLSM.

DSC and HD metrics were computed from the manual outline and the isolated

cartilage region as depicted in Figure 4.2. The cartilage region was extracted from its

surrounding tissues in the final contours using the connected-component labelling. This is

to ensure that the validation metrics of DSC and HD are computed based on the cartilage

region and not affected by segmentation of the surrounding tissues. DSC and HD measures

for the segmentation outcomes of LGDF, WKVLS, and LSLSM in Figures 4.1(b), (c),

and (d) are summarized in the first, second, and third rows of the matrices
[

0.9027
0.9148
0.9423

]
and
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[
6.8557

7
6.3246

]
, respectively. We observed that the DSC value obtained by LSLSM is higher

than the ones obtained by WKVLS and LGDF while HD value obtained by LSLSM is

smaller than the ones obtained by WKVLS and LGDF. DSC and HD metrics confirm

satisfying segmentation performance of LSLSM depicted in Figure 4.1. In addition,

the total computational time for the contour evolution of LGDF, WKVLS, and LSLSM

required for 500 iterations are 55, 14, and 13 seconds, respectively.

4.1.2 Cartilage Ultrasound Image Segmentation

Figure 4.3: Left and right columns represent segmentation results obtained by

LSLSM for the left and right knee cartilages of five subjects.

In this subsection, the three different level set methods were applied to segment a

set of the knee cartilage of the ultrasound images. Figure 4.3 depicts a subset of 10
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segmentation outcomes of the cartilages from total data sets of 80 images. The data sets

consist of different scans of the cartilage acquired from ten subjects; both left and right knee

joints were imaged four times each with repositioning of the ultrasound probe between

acquisitions. The initial contour is depicted in red circle with 10 pixels radius and placed

just around the center of the images. The green lines represent the final segmentation

contours. The final contours were subsequently used to isolate the cartilage region from

its surrounding tissues as illustrated in Figure 4.2(b). The connected-component labelling

is used to remove other tissue regions in the binary image. The manual outlines as ground

truth data were compared against its isolated cartilage region obtained by the algorithm to

be evaluated qualitatively and quantitatively. An expert segmented the cartilage manually

from each ultrasound image scan. The segmentation results of LGDF, WKVLS, and

LSLSM were evaluated qualitatively and quantitatively over the total data sets of 80

images. While the qualitative assessment is performed using Cohen’s κ statistics, the

quantitative assessment is performed using validation metrics of DSC and HD.

The number of observed agreements is 67 images (83.75% of the observations), as

grade 1 (excellent) in 39 images (48.75%), as grade 2 (good) in 21 images (26.25%), as

grade 3 (poor) in 5 images (6.25%), as grade 4 (bad) in 2 images (2.5%). The number

of agreement due to chance is 32.05 images. An overall segmentation quality for all 10

subjects rated by two experts indicates a substantial agreement with κ = 0.73.

Figures 4.4 and 4.5 illustrate a quantitative comparison of LGDF, WKVLS, and

LSLSM validated using DSC and HD values over the total data sets of 80 images, respec-

tively. Figure 4.4 shows the computed DSC values for 80 images fall in the range between

0.84 and 0.94, 0.29 and 0.95, and 0.82 and 0.95 for LGDF, WKVLS, and LSLSM, respec-

tively. The higher value of DSC metric indicates that the two comparing contours have

a good agreement in size and location, which correspond to more accurate segmentation
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Figure 4.4: DSC measures over 80 images comprised of four repeated scans of the

cartilage of the left and right knee joints obtained from ten subjects.

results. The computed HD values in Figure 4.5 are ranging from 4.47 to 8.83, 5.39 to

19.10, and 4.69 to 8.25 pixels for LGDF, WKVLS, and LSLSM, respectively. Smaller HD

values correspond to the least difference in shape between the two comparing contours.
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Figure 4.5: HD measures over 80 images comprised of four repeated scans of the

cartilage of the left and right knee joints obtained from ten subjects.

The mean and standard deviation of DSC and HD values for all methods over the

total data sets of 80 images are summarized in Table 4.1. It indicates that LSLSM

obtained higher average value for DSC metric for all available data sets than LGDF and

WKVLS. Meanwhile, the average value for HD metric obtained by LSLSM is smaller than

obtained by LGDF and WKVLS. It implies that LSLSM provides a good area similarity
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and a minimally different contour shape, which illustrates the satisfactory segmentation

outcomes for all available data sets.

Table 4.1: Statistics of the Evaluation Metrics

Methods DSC HD (pixels)

LGDF 0.90 ± 0.02 6.33 ± 0.62

WKVLS 0.73 ± 0.14 8.32 ± 2.17

LSLSM 0.91 ± 0.01 6.21 ± 0.59

The segmentation errors were mainly due to the overlapped intensity distribution

between different tissues. The boundary between different tissues is not sufficiently

distinct, particularly around the interfaces of soft tissue-cartilage and cartilage-bone. The

variances of the Gaussian distributions that are taken into account in LGDF and LSLSM

helps to distinguish the two interfaces more satisfactorily. Although WKVLS considers

the multiplicative component, it does not take into account the variance component,

thus tends to misclassify the two interfaces. In addition, the degree of inhomogeneity

is varied between the scanned images. These may be the cause of the less satisfactory

segmentation performance indicated by DSC values below 0.8 and HD values above 7

pixels in the graphs. The overall DSC and HD metrics shown in the graphs have illustrated

the satisfactory segmentation outcomes of LSLSM for all available data sets.

4.1.3 Cartilage Thickness Computation

The cartilage thickness is computed based on the segmented images using the normal

distance (Heuer et al., 2001). Images of cartilage acquired from the ten subjects are used;

different scans of the cartilage of both left and right knee joints were imaged four times each

as described in Section 3.1.1. The cartilage images were firstly segmented using LSLSM

method described in Section 3.1.2. The final contours generated by the segmentation

algorithm were subsequently used to isolate the cartilage from its surrounding tissues.
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The connected-component labelling is used to remove surrounding tissue regions from

the final contour results. Figure 4.2(a) illustrates an example of an isolated region of the

cartilage extracted from the segmentation outcome. Using this isolated cartilage ensures

the thickness measurements are performed in the cartilage region only. The cartilage

thickness was calculated for each sample using the normal distance described in Section

3.1.3. The normal distance computes the true thickness of the cartilage by estimating

the length of boundary normal vectors between the upper and lower boundaries of the

cartilage (Tang et al., 2006; Solloway et al., 1993) as illustrated in Figure 4.2(d). The

thickness measurements were made at every pixel on the upper and lower boundaries.

The obtained measurements of the cartilage thickness ranged from 1.35 mm to 2.72

mm, 1.36 mm to 2.45 mm, 1.33 mm to 2.17 mm, 1.68 mm to 2.39 mm, and 1.35 mm

to 2.42 mm for the manual thickness measurement, the normal distance on the cartilage

area segmented by the manual outline, LGDF, WKVLS, and LSLSM, respectively. It

reflects the robustness of the segmentation algorithms to various cartilage thickness. The

statistics such as mean, standard deviation, and the intraclass correlation coefficient (ICC)

in Table 4.2 were computed to determine the accuracy and reproducibility of the cartilage

thickness computation using the normal distance. ICC values were determined from the

thickness measurements of the four repeated scans for all methods. Higher value of ICC

indicates a good reproducibility between the measurement sets.

The cartilage thickness computed by the normal distance on the cartilage area seg-

mented by (b) the manual outline, (c) LGDF, (d) WKVLS, and (e) LSLSM was compared

to the results obtained by the manual measurement using Bland-Altman plot (Bland &

Altman, 1999). The manual measurement is provided by drawing the perpendicular line

between the hyper-echoic lines at the soft tissue-cartilage interface and at the cartilage-

bone interface (Kazam et al., 2011), (Naredo et al., 2009). In each knee joint, three
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(a)

(b) (c)

(d) (e)

Figure 4.6: (a) Manual thickness measurement of the cartilage. Thickness compu-

tation of the cartilage using the normal distance on the cartilage area segmented by

(b) the manual outline, (c) LGDF, (d) WKVLS, and (e) LSLSM.

separate measurements were performed at three locations, i.e., the trochlear notch, two-

thirds lateral (two-thirds of the distance from the trochlear notch to the convexity of the

lateral trochlea), and two-thirds medial (two-thirds of the distance from the trochlear notch

to the convexity of the medial trochlea) as illustrated in Figure 4.6(a). The average value

is taken from the manual measurement at the three locations.

Table 4.2: Cartilage Thickness Measurement Results

Methods Image Mean ICC

Manual Measurement Original Image 2.02 ± 0.13 0.95

Normal Distance

Manual Outline 2.00 ± 0.13 0.94

LGDF 1.83 ± 0.10 0.91

WKVLS 2.06 ± 0.09 0.85

LSLSM 1.97 ± 0.11 0.92

Figures 4.7, 4.8, 4.9, and 4.10 illustrate Bland-Altman plots for the thickness mea-

surements obtained manually and by the normal distance on the cartilage area segmented
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by the manual outline, LGDF, WKVLS, and LSLSM, respectively. Bland-Altman plots

illustrate a good agreement of the cartilage thickness obtained by two measurement meth-

ods. The mean differences for all pairs of the thickness measurements were 0.02 ± 0.17,

0.19 ± 0.20, −0.04 ± 0.22, and 0.05 ± 0.18 mm for the manual outline, LGDF, WKVLS,

and LSLSM, respectively. Small mean difference indicates no significant bias for both

methods. It can also be observed that nearly all differences between measurements by the

two methods lie within the 95% limit of agreement (Mean±1.96 SD), i.e., 0.34 to −0.31,

0.59 to −0.20, 0.39 to −0.48, and 0.39 to −0.29 mm for the manual outline, LGDF,

WKVLS, and LSLSM, respectively. Meanwhile, there were only several differences

between measurements by both methods that fall outside the limits of agreement.
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Figure 4.7: Bland-Altman plot for the thickness measurements obtained manually

and by the normal distance on the cartilage area segmented by the manual outline.
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Figure 4.8: Bland-Altman plot for the thickness measurements obtained manually

and by the normal distance on the cartilage area segmented by LGDF.

4.1.4 Summary

LSLSM was compared to the other two level set methods without and with multiplicative

component estimation in the attempt of segmenting a real knee cartilage ultrasound image.

Without multiplicative component estimation, LGDF fails to properly distinguish different

tissues in the presence of noise and intensity bias. Meanwhile, simultaneous multiplicative

bias field estimation helps WKVLS to cope with intensity inhomogeneity. It is shown that

WKVLS produced more stable segmentation result than LGDF. As LSLSM considers the

variances of Gaussian distributions of local image intensity in the multiplicative compo-

nent estimation, LSLSM demonstrated to segment cartilage boundary more accurate than

WKVLS, which ignored the variance component. It shows that using the energy derived

from Gaussian distributions of local image intensity and multiplicative noise model helps

to distinguish the boundary between different tissues that is not sufficiently distinct more

65

Univ
ers

ity
 of

 M
ala

ya



1.4 1.6 1.8 2 2.2 2.4 2.6
−0.5

0

0.5

1

0.39

− 0.48

Thickness Mean

T
hi

ck
ne

ss
 D

iff
er

en
ce

 

 
Bias
Mean +/− 1.96SD

Figure 4.9: Bland-Altman plot for the thickness measurements obtained manually

and by the normal distance on the cartilage area segmented by WKVLS.

satisfactorily in the noisy and bias-corrupted image. LSLSM obtained higher DSC value

and smaller HD value than WKVLS and LGDF. It indicates that LSLSM has a higher area

similarity and a minimally different shape compared toWKVLS and LGDF. In addition,

it is shown that LSLSM required less computational time than WKVLS and LGDF. These

results show that LSLSM yielded more satisfactory results than other level set methods in

term of segmentation accuracy and computational time.

The segmentation performances of LGDF, WKVLS, and LSLSM when applied

to a set of the real knee cartilage ultrasound images were evaluated qualitatively and

quantitatively. Two experts assessed the overall segmentation quality of the cartilage

anatomical structure in ultrasound images by differentiating the boundaries between the

soft tissue-cartilage interface and the cartilage-bone interface. Inter-observer agreement

for the segmentation quality of the cartilage area is expressed by the Cohen’s κ statistics.
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Figure 4.10: Bland-Altman plot for the thickness measurements obtained manually

and by the normal distance on the cartilage area segmented by LSLSM.

The κ coefficient of 0.73 indicates a substantial agreement of the cartilage segmentation

quality for all ten subjects rated by two experts. Next, two quantitative evaluation metrics

of DSC and HD are adopted to examine the segmentation outcomes obtained by the

three level set methods opposed to the gold standard obtained manually by an expert.

To quantify area similarity between two comparing segmentation regions, DSC metric

is used to compute the relative locations and sizes of the contour pair. Meanwhile, HD

metric indicates the boundary mismatch between two comparing segmented boundaries.

LSLSM was successfully applied in segmenting a set of the real knee cartilage in the 2-D

ultrasound images. The average values of DSC metric for LGDF, WKVLS, and LSLSM

over the total data set of 80 images were 0.91 ± 0.01, 0.73 ± 0.14, and 0.90 ± 0.02,

respectively. The average values of HD metric for LGDF, WKVLS, and LSLSM over the

total data set of 80 images were 6.33 ± 0.62, 8.32 ± 2.17, and 6.21 ± 0.59, respectively.
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The two metrics indicates LSLSM had a very good agreement between the two compared

contours. While the overall average value for DSC metric obtained by LSLSM was higher

than the ones obtained by LGDF and WKVLS, the overall average value for HD metric

obtained by LSLSM was smaller than the ones obtained by LGDF and WKVLS. While

DSC metric is seen as a global measure of the area similarity between the contour pair,

HD metric is more sensitive to local shape differences between the contour pair. It can be

concluded that these evaluation metrics indicate LSLSM had a very good segmentation

performance. The overall statistics illustrate quantitatively very good and consistent

quality of the segmentation outcomes for all available data sets.

The satisfactory segmentation results are making the true thickness between two

interfaces of the cartilage possible to be computed based on the 2-D segmented cartilage

images using the normal distance. The obtained measurements of the cartilage thick-

ness on a set of segmented cartilage areas indicate the robustness of the segmentation

algorithm in segmenting various cartilage thickness. ICC value computed from a subset

of the four repeated measurements demonstrates a good reproducibility of the thickness

measurements. Bland-Altman plots demonstrate a good agreement between the thickness

measurements obtained by the normal distance and the manual measurement. It can be

observed that nearly all differences between measurements by both methods fall within the

limit of agreement and there is no significant bias for the two methods. The measurement

obtained by the normal distance does not differ much to the manual measurement, which

is seen as gold standard.

The knee cartilage boundary segmentation possible with LSLSM has allowed the

obtained segmentation results to be used for making the thickness computation of the

cartilage in the 2-D ultrasound images. The obtained results show the accuracy and repro-

ducibility of the segmentation and thickness estimation methods. The methods described
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in this work are useful to characterize the normal cartilage in the ultrasound images.

The robustness in segmenting and computing various cartilage thickness demonstrated in

this work indicate a potential application of the methods for the assessment of the knee

cartilage degeneration.

4.2 Meniscus Ultrasound Image Segmentation

4.2.1 Comparison with Other Active Contour Models

(a) (b) (c)

(d) (e) (f)

Figure 4.11: The segmentation results of the meniscus (green):(a) initial contour,

final contour for (b) RSF (σK = 17), (c) GAC (α = 0), (d) LRAC (r = 10), (e) LRES

(s = 15,∆s = 5, thres = 5), and (f) LREK (d = 10,∆d = 5, thres = 3).

In this subsection, the performance of LREK was compared to other active contour

models in segmenting the meniscus ultrasound images. From the existing global regional,

edge-based, and local regional active contour models, RSF, GAC, LRAC and LRES were

picked, respectively. All the methods were implemented in MATLAB R2014a in an Intel
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(R) Xeon (R), 2.00 GHz, 32 GB RAM. As depicted in Figure 4.11, the meniscus that has

a shape with deep concavity is located in the upper-middle of the femoral condyle and

the tibial plateau. The initial contour was placed similarly for all tested methods as in

Figure 4.11(a). Figure 4.11(b)-(f) depict the final contours of RSF, GAC, LRAC, LRES,

and LREK overlaid on the original image. Image size is 288 × 364 pixels. To evaluate

the segmentation accuracy and convergence speed, the segmentation result of LREK in

Figure 4.11(f) is used as the reference to compute DSC metric over 1000 iterations as

plotted in Figure 4.12, where x and y-axes represent the iteration number and DSC metric,

respectively. The computational time required by different active contour models is also

presented in the Table 4.3.

With the scale of Gaussian kernelσK = 17, RSF considers local intensity and handles

non-uniform intensity well. Convolving the local window to the entire image leads to

partitioning the brighter intensity as the object while the darker one as the background. It

is unable to locate the meniscus as the only desirable object among other surroundings.

Active contours with local information are sensitive to initial contour positions,

which are required to be placed near the object. This limitation, on the other hand, gives

advantages in obtaining a particular object among other undesired objects, depending on

its initial position. They do not have a tendency to capture the entire object as opposed to

RSF that partitions the image into bright and dark intensities.

To navigate the contour towards the object’s edge, GAC relies on the image gradient.

The speckle, often considered as false edge points, may prevent GAC from reaching the real

boundary. Balloon force (α = 0) can grow the contour either inward or outward direction

with a small capture range and slow convergence, which impedes from penetrating into the

boundary concavity of the meniscus. Another choice of α can help to gain a larger capture

range, but making it sensitive to initial position. The contour may also pass through weak
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boundaries, particularly in the images with low contrast.

As active contours using local regional descriptors employ pixel intensity instead

of edge pixels, they are more robust against noise (Lankton & Tanenbaum, 2008). They

de-emphasize the role of image noise by computing intensity statistics within the local

window. The contour can still evolve towards the boundary even though in the presence of

noise. LRAC provides a more complete boundary than GAC although some areas are still

excluded as the segmentation outcomes. In the shared boundaries between the femoral

condyle and the meniscus, the contour evolves reaching the left part of the meniscus.

Meanwhile, it only arrives at the half boundary of the upper part. With r = 10, the

distance between the contour as the center of the circle and the boundary is too far. The

problem of limited capture range prevents the contour from evolving into the middle

area of the meniscus, which is considered as a homogeneous area. LRES, which utilizes

extendable search lines for handling concave parts, is able to segment only into half of the

meniscus area. In such low contrast images, the contour is confined in the middle area

of the meniscus as shown in Figure 4.11(e). This is because the statistics on the long,

thin search line may not reliably describe the local intensity to generate enough force to

penetrate the other part of the meniscus.

RSF, GAC, LRAC, LRES, and LREK are set to iterate for 1000 iterations, their

DSC values are plotted in Figure 4.12, and their computational times are summarized in

Table 4.3. According to Figure 4.12, they converge at approximately 50, 100, 750, 150,

and 700 iterations. Instead of locating the meniscus, RSF partitions the entire image.

LREK converges faster than LRAC, yet gives more complete boundaries. Although its

initial scale is set to 10 pixels similar to that of LRAC, the feature of expandable kernels

results in a large capture range to propagate into the concave boundary of the meniscus

as confirmed by the higher DSC values in Figure 4.12. Some other models result in less
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Figure 4.12: Convergence properties (from bottom up) of RSF, GAC, LRAC, LRES,

and LREK active contours in segmenting the meniscus.

Table 4.3: Computational Time of Different Active Contour Methods

Methods Total Time (s)

RSF 1,070

GAC 1,958

LRAC 215

LRES 7,630

LREK 232

complete boundaries due to their inability to move into the concave shape, thus giving

smaller DSC values. With the speed of 7.63 seconds per iteration, LRES produces time

consuming performance. It requires more computational steps to form two separate line

regions inside and outside the contour and also to extend each of them as compared to

LREK that just uses one kernel to form two local regions split by the contour line and to

be expanded. This helps LREK to converge towards the intended boundary more rapidly

than LRES. In addition, the scalability of the kernel to image size leads to a proportional

computation in either small or large images. The total computational time required for

RSF, GAC, LRAC, LRES, and LREK to converge are 54, 196, 161, 1,144, and 162

seconds, respectively.
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4.2.2 Further Evaluations of the Proposed Method

In this subsection, the effect of several parameters of the proposed method in the segmenta-

tion results is further evaluated. In Section 4.2.2.1, the effects of threshold value selection

in response to segmentation results as well as convergence properties are investigated. It

was followed by a demonstration on how the presented multiple level set framework can

avoid merging and overlapping between the neighbouring contours in Section 4.2.2.2. In

Section 4.2.2.3, different choices of scale parameters that can be assigned for each zero

level contour in multiple region segmentation and the accuracy improvement that can be

achieved are shown.

4.2.2.1 Analysing the Threshold Value

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.13: (a)-(h) Show segmentation results of LREK active contour on the

meniscus (green) with thres = 3, 5, 7, 9, 11, 13, 15, and 17, respectively. Parameters

d = 10, ∆d = 5, and l = 1000.

Another experiment is performed to investigate the choice of the threshold value thres,

a key parameter in adapting the kernel size, in response to the segmentation accuracy. The

performance of the single level formulation with various threshold values in segmenting
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a concave object of the meniscus is tested. Eight different values of thres are tested from

3 to 17 while setting other parameters as d = 10 and ∆d = 5 and their final contours are

plotted in Figure 4.13. Image size is 288 × 364 pixels. DSC metric is computed using the

segmentation result in Figure 4.13(a) as the reference. The corresponding DSC values of

these eight results are plotted over the number of iterations in Figure 4.14.

Figure 4.14 shows that the smallest value results in a more complete boundary of

the meniscus. Meanwhile, the higher value of this parameter results in a less complete

boundary. The two highest threshold values take the shortest time to converge at the same

speed, however, into the least accurate segmentation. Two groups of intermediate values

converge into two different speeds and segmentation accuracies. The first group with

larger values converge faster, but into a less accurate outcome than the second group with

smaller values. The smallest threshold value gives the lowest speed, but the most accurate

outcome. This is because the contour requires more time to penetrate into the concave

boundary. In essence, this experiment illustrates that the smallest threshold value enables

the adaptation of the kernel size in order to detect the nearest boundary. The bigger value

results in less ability of the kernel to expand and penetrate particular areas. Hence, the

user may select a small threshold value to enable this feature and vice versa.

4.2.2.2 Multiple Region Segmentation

This experiment demonstrates multiple object segmentation using individual and multiple

level set formulation without and with the additional constraint according to equations

(3.17), (3.19), and (3.20), respectively. The goal is to partition image pixels into separate

objects of the femoral condyle (FC), the meniscus (M), and the tibial plateau (TP). In

Figure 4.15(b), each initial contour is placed in each object. For the result in Figure

4.15(d), three initial contours are embedded in a single level set function φ. Although the

final contours are shown to locate each object with different positions, they do not provide
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Figure 4.14: Convergence properties of LREK active contour for different threshold

values in segmenting the meniscus.

a complete separate boundary between the meniscus and the tibial plateau. As multiple

objects reside close to each other, merging between adjacent contours occurs in the shared

boundaries, which is undesirable in this case.

To capture three separate object’s regions, n = 3 is used to embed three initial

contours using triple level set function (φi)
3
i=1

as in Figure 4.15(e)-(f). Three sets of

zero level of the contours φ1, φ2, and φ3 to segment the femoral condyle, the meniscus,

and the tibial plateau boundaries are accordingly coloured as red, green, and blue and

overlaid on the original images. Although multiple initial contours overlapped with one

another, the final contours in Figure 4.15(e) are positioned on each object without any

merging between the adjacent contours. However, the neighbouring contours create an

overlapping region in the shared boundaries between the meniscus and the tibial plateau

where the contrast is low. Hence, the framework with additional constraint is used to

prevent multiple contours from overlapping with each other as depicted in Figure 4.15(f).

The corresponding area terms of the Heaviside function of these triple level set functions

φ1, φ2, and φ3 are
∑

p,1 Hǫ (φp) = Hǫ (φ2) + Hǫ (φ3),
∑

p,2 Hǫ (φp) = Hǫ (φ1) + Hǫ (φ3), and
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(a) Original image (b) Initial contours (c) Manually traced contours

(d) Final contours of the sin-

gle level set

(e) Final contours of the mul-

tiple level set without con-

straint

(f) Final contours of the mul-

tiple level set with constraint

Figure 4.15: Simultaneous segmentation of the femoral condyle (red), the meniscus

(green), and the tibial plateau (blue) with parameters (d = 15 and ∆d = 3) for (c),

(dFC = dTP = 8, dM = 15, and ∆dFC = ∆dM = ∆dTP = 3) for (d) and (e), thres = 3,

and l = 1100.

∑
p,3 Hǫ (φp) = Hǫ (φ1) + Hǫ (φ2), respectively. Within one time step, these triple level set

functions are updated. When evolving φ1, another two level set functions φ2 and φ3 are

described by their Heaviside functions Hǫ (φ2) and Hǫ (φ3), respectively, and vice versa.

As a result, the multiple contours are evolved simultaneously to the desired boundaries of

the femoral condyle, the meniscus, and the tibial plateau in a single image without any

merging and overlapping between the neighbouring contours. This is confirmed by DSC

and HD values computed from the segmented and manually traced contours in Figure

4.15(c) using single and multiple level set formulation without and with the additional

constraint, which are summarized in the first, second, and third rows of the matrices[ − − −
0.9155 0.7731 0.9430
0.9061 0.7734 0.9434

]
and

[ − − −
5.5678 5.9161 5.4772
5.5678 6.4807 4.8990

]
, respectively.
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4.2.2.3 Multiple Scale Parameters

Various parameters are demonstrated to be assigned differently for each zero level contour.

Figure 4.15 shows that different scales for each zero level contour in Figure 4.15(e)-(f) may

increase segmentation accuracy compared to Figure 4.15(d) that produces a less accurate

result. This is because the parameters’ values cannot be set to be different for those three

contours, which are embedded in a single level set function.

(a) (b) (c)

(d) (e) (f)

Figure 4.16: (a) Original image, (b) initial, (c) the manual outline, and final contours

on the femoral condyle (red), the meniscus (green), and the tibial plateau (blue) (d)

with dFC = dM = dTP = 13 and ∆dFC = ∆dM = ∆dTP = 5, (e) with dFC = dM = 12,

dTP = 13, ∆dFC = 5, and ∆dM = ∆dTP = 3, and (f) with dFC = dM = 12, dTP = 13,

∆dFC = ∆dM = 3, and ∆dTP = 5. Parameters thres = 3 and l = 700. Image size is 288

× 364 pixels.

In Figure 4.16, different choices of scale parameters in the presented multiple level

set framework are compared. Similar choice of scale parameters for each zero level

contour (d = 13 and ∆d = 5) may not produce an accurate segmentation for every
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object as some excluded areas are found in the segmentation outcome in Figure 4.16(d).

With different scales for each zero level contour, some improvements are observed on the

femoral condlye and the meniscus boundaries in Figure 4.16(e). However, the contour

on the femoral condyle are splitting and developing new areas due to the scale step being

too large, i.e., ∆dFC = 5. On the other hand, the corner area in the upper left of the

tibial plateau is excluded because the scale step is too small (∆dTP = 3). Therefore,

∆dFC = 3 for the femoral condyle and ∆dTP = 5 are set for the tibial plateau to improve

the segmentation accuracy. Meanwhile, the choice of ∆dM to be 3 or 5 is shown to

produce no effect on the meniscus part. In addition, although two initial contours between

the femoral condyle and the meniscus created an overlap region, the region vanishes

after the contours have evolved. DSC and HD values for the segmentation results in

Figure 4.16(d), (e), and (f) summarized accordingly in the first, second, and third rows

of the matrices
[

0.8724 0.7902 0.9244
0.8691 0.8543 0.9153
0.9137 0.8543 0.9245

]
and

[
4.2426 4.8990 4.8990
4.3589 4.5826 4.4721
4.2426 4.5826 4.8990

]
confirm that different scale

parameters assigned to the multiple objects of different size and shape can improve the

segmentation accuracy.

In summary, the value of d affects the accuracy of contour placement on the boundary

once the kernel has found the boundary. As long as the kernel contains enough information,

the position is least affected and generally accurate. In addition, the value of∆d determines

the gradual increase of the kernel scale when expanding in order to detect the nearest

boundary. If the value of this parameter is too large, it results in sudden changes to the

scale and causes splitting contours developing new areas despite the main contour still

capturing the boundary. However, if the value is too small, the contour is unable to reach

some of the object region. Hence, a proper choice of both scales will result in a gradual

expansion of the kernel and an accurate contour placement in the boundary.
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4.2.3 Meniscus Ultrasound Image Segmentation

Figure 4.17: A subset of 12 segmentation outcomes of the femoral condyle (red),

the meniscus (green), and the tibial plateau (blue) that represents variation in size,

shape, and position of the objects.

In this subsection, an application of the proposed framework to segment a set of real

meniscus ultrasound images is presented. Figure 4.17 depicts a subset of 12 segmentation

outcomes that represents variation in size, shape, and position of the objects from datasets

of 70 images. The data sets that consist of 3, 4, and 5 images were available from 10, 5,

and 4 subjects, respectively. For these datasets, thres = 3, l = 1000, dFC, dM, and dTP

are set to be 8, 10, 12, 13, 14, or 15, and ∆dFC, ∆dM, and ∆dTP to be 3 or 5. Although

Figure 4.17 has indicated visually satisfactory results, a precise assessment to quantify the

segmentation performance is of great concern. Over the total datasets of 70 images, DSC

and HD metrics are computed from contours obtained by MLREK and traced manually

by the expert as shown in Figure 4.18 and 4.19, respectively. Each contour of the objects
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was segmented separately.
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Figure 4.18: DSC measures of the femoral condyle, the meniscus, and the tibial

plateau over 70 images.

DSC values in the graph vary from 0.72 to 0.96. The value above 0.7 indicates that

the two compared regions have a close similarity in area and location one and another

(Zijdenbos, Dawant, Margolin, & Palmer, 1994). The value greater than 0.8 indicates a

better similarity area, which provides more satisfactory and less inaccurate segmentation

outcomes. Meanwhile, HD values are ranging from 2.65 to 8.78 pixels where a smaller

value indicates that two compared shapes differ minimally each other. These values are

quite small compared to image size of 288 × 364 pixels. Such a range in DSC and HD

values may be influenced by the low-contrast areas and weak boundaries that are excluded

in the segmentation outcomes. It may be caused by the scatter distribution of speckle

noise that varies the contrast of the object ranging from low to high intensity changes.

Although the local model suffers sensitivity to initialization and scale parameters (Lankton

& Tanenbaum, 2008), the results have demonstrated the robustness against various shapes,

sizes, and positions of the objects.

The mean of DSC and HD measures for all objects in Table 4.4 falls in the range of
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Figure 4.19: HD measures of the femoral condyle, meniscus, and tibial plateau over

70 images.

0.88 and 0.94 and of 4.41 and 5.80 pixels, demonstrating a good segmentation quality.

Meanwhile, the standard deviation for DSC metric is between 0.02 and 0.04 and for HD

metric is between 0.83 and 0.97 pixels, indicating that MLREK provides consistent out-

comes. ICC values in Table 4.4 computed from DSC values of a set of three segmentation

results indicate a good reproducibility of the segmentation results of the femoral condyle,

the meniscus, and the tibial plateau. Despite these good and consistent outcomes confirm

the visually pleasing results in Figure 4.17 and reflects a good agreement with its ground

truth, an in-depth study of the framework application for assessment of the meniscus de-

generation and displacement is very interesting for future work. For example, DSC values

below 0.8, which have more than 20% area discrepancy may not be accurate for use in the

area quantification, particularly for the degeneration detection.

Table 4.4: Statistics of the Measures

Femoral Condyle Meniscus Tibial Plateau

DSC 0.91 ± 0.05 0.88 ± 0.04 0.94 ± 0.02

HD (pixels) 5.35 ± 0.91 4.41 ± 0.97 5.80 ± 0.83

ICC 0.8990 0.7040 0.8989
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Figures 4.20, 4.21, and 4.22 illustrate Bland-Altman plots for DSC measures of the

femoral condyle, the meniscus, and the tibial plateau, respectively. Bland-Altman plots

depicted in the graphs illustrate a good agreement between two segmentation results of the

three objects. The mean differences for all pairs of the measurements were 0.006± 0.034,

0.006 ± 0.057, and 0.004 ± 0.015 for the femoral condyle, the meniscus, and the tibial

plateau, respectively. The mean difference is near zero indicating no significant bias for

both measurements. It can also be observed that the data points fall within the 95%

confidence interval (Mean±1.96 SD), i.e., 0.07 to −0.06, 0.12 to −0.11, and 0.03 to −0.03

the femoral condyle, the meniscus, and the tibial plateau, respectively. Meanwhile, there

were only several differences that fall outside the limits of agreement.
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Figure 4.20: Bland-Altman plots for DSC measures of the femoral condyle.
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Figure 4.21: Bland-Altman plots for DSC measures of the meniscus.

4.2.4 Summary

The presented active contour model was compared to other related active contour models

in the attempt of segmenting the meniscus ultrasound images. While other methods failed

to penetrate into boundary concavity, the presented model segmented the desired structures

satisfactorily. Instead of locating the meniscus only, RSF partitions the image according

to brighter and darker intensities. Speckle noise, often considered as false edge points,

impedes GAC from reaching the concave boundary of the meniscus. The problem of

limited capture range prevents LRAC from penetrating into the middle area of the meniscus

as a result it is excluded as the segmentation outcome. In the low contrast images, the

statistics on the extendable search line is unable to generate enough force to move LRES’s

contour into the concave parts of the meniscus, hence, is confined in the middle area of

the meniscus. Evaluation outcomes also include an examination of the convergence speed

and the computational time required for the contour evolution. It shows an improvement
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Figure 4.22: Bland-Altman plots for DSC measures of the tibial plateau.

achieved by the presented method in terms of segmentation results, computational time,

and convergence speed. RSF, GAC, LRAC, LRES, and LREK converge at approximately

50, 100, 750, 150, and 700 iterations consuming computational time of 53.52, 195.79,

161.18, 1, 144.49, and 162.47 seconds, respectively. In other words, LREK propagates

into the concave shape of the meniscus providing more complete boundaries, efficient

computation, and faster convergence.

Further evaluation was performed by investigating the choice of various parameters in

MLREK and their responses to the segmentation results. It was conducted by examining

the effect of the threshold value, the algorithm’s ability to simultaneously segment an

image with multiple structures, and the effect of assigning various parameters for each

zero level contour on the segmentation results. First, the effects of the threshold value

selection in response to the segmentation accuracy as well as convergence properties are

investigated. Our experiment with varying the threshold value illustrates how it should be
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chosen to adapt the kernel size in order to successfully reach the concave parts. It shows

that the smallest threshold value enables in adapting the kernel size in order to detect

the nearest boundary. Meanwhile, the bigger value results in less ability of the kernel

to expand and penetrate particular areas. Hence, the user may select a small threshold

value to enable this feature and vice versa. Second, a demonstration of the algorithm’s

ability to simultaneously segment multiple structures using single and multiple level set

formulation with and without an additional constraint is conducted. When a single level

set function is used to embed multiple initial contours, merging between adjacent contours

occurs in the shared boundaries of multiple objects that reside closely each other. Next,

the multiple contours are embedded in multiple level set functions where each level set

function represents one object’s region. Although there is no merging between multiple

contours, the neighbouring contours overlapped each other in the shared boundaries. On

the other hand, the multiple level set framework with additional constraint demonstrated

to prevent merging and overlapping between the adjacent contours, and thus performed

simultaneous segmentation of separate objects all at once in a single image. Third, a

flexible choice in assigning different parameter settings in this multiple active contours

framework is illustrated. Different choices of scale parameters can be assigned for each

zero level contour in multiple structure segmentation. Different scales for each zero

level contour are shown to increase segmentation accuracy compared to multiple contours

embedded in a single level set function that produce a less accurate result due to the scale

parameters cannot be set to be different for each zero level contour. An improvement

in the segmentation accuracy can be achieved by assigning different scale parameters for

each level set function when segmenting multiple structures of different size and shape.

A precise assessment to quantify the segmentation performance is demonstrated

through the application of MLREK in segmenting over a set of 70 real meniscus ultra-
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sound images. The segmentation outcomes obtained by the algorithm were examined by

comparing to the manual segmentation obtained by the expert using both DSC and HD

metrics. DSC and HD values for each image were reported for the each of these anatomical

regions.DSC metrics for the femoral condyle, the meniscus, and the tibial plateau have the

overall average values of 0.91± 0.05, 0.88± 0.04, and 0.94± 0.02, respectively. HD met-

rics for the femoral condyle, the meniscus, and the tibial plateau have the overall average

values of 5.35±0.91, 4.41±0.97, and 5.80±0.83 pixels, respectively. It can be concluded

that the overall average value of DSC and HD metrics for the three objects for the total

data set of 70 images indicates a very good and consistent segmentation performance.

It shows that the segmentation outcomes have a good agreement with the manual seg-

mentation. Meanwhile, ICC value computed from DSC values of three repeated scanned

images indicates a good reproducibility of the segmentation results of the three structures.

Bland-Altman plot demonstrates a good agreement between the segmentation results from

two repeated scan images. Nearly all data points between the two methods fall within the

limit of agreement where the bias is near zero. It implies that the segmentation results

between two repeated scanned images does not differ each other.

The experimental results showed that MLREK was successfully applied in segment-

ing the desired multiple objects over a set of real meniscus ultrasound images. Simul-

taneous segmentation of the multiple objects achieves an acceptable level of accuracy.

The validation metrics computed for the three objects demonstrate MLREK had a very

good segmentation performance and an excellent agreement between two comparing con-

tours. The robustness and accuracy of MLREK in locating the desired multiple objects

of the femoral condyle, meniscus, and tibial plateau with various shapes, sizes, and po-

sitions have indicated a potential application of MLREK for assessment of the meniscus

degeneration and displacement in an ultrasound image.
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CHAPTER 5: CONCLUSION AND FUTURE WORK

In this chapter, conclusion and future work of this thesis are discussed. The conclusion of

this thesis is given in Sections 5.1, which will be elaborately discussed in Sections 5.1.1

and 5.1.2. Some recommendations on possible directions to guide research works in the

future are given in Section 5.2.

5.1 Conclusion

The cartilage segmentation and thickness computation methods and the meniscus seg-

mentation method for the 2-D ultrasound images have been presented in this thesis. The

performance of the cartilage segmentation and thickness computation methods and the

meniscus segmentation method on real clinical data sets have been evaluated qualitatively

and quantitatively.

5.1.1 Cartilage Segmentation and Thickness Computation

The knee cartilage boundary segmentation using LSLSM and thickness computation

using the normal distance in short axis knee cartilage of the 2-D ultrasound images

have been presented. The energy functional derived from Gaussian distributions of local

image intensity and multiplicative noise model has allowed LSLSM to cope with speckle

noise and intensity bias thus capture the monotonous hypoechoic band between the two

interfaces of the soft tissue-cartilage and the cartilage-bone that represents the cartilage

region. The cartilage thickness is then automatically computed by averaging the normal

distances along the segmented cartilage area.

When LSLSM was compared to the other two level set methods without and with

multiplicative component estimation in the attempt of segmenting a real knee cartilage

ultrasound image, it shows that LSLSM yielded a better segmentation result than other

methods. Inter-observer agreement expressed by the κ coefficient indicates a substantial
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agreement of the cartilage segmentation quality for all ten subjects rated by two experts.

The overall statistics of the evaluation metrics of DSC and HD illustrate that LSLSM had

a very good and consistent quality of the segmentation outcomes for the total data set of

80 images. The obtained measurements of the cartilage thickness on a set of segmented

cartilage area indicates the robustness, reproducibility, and agreement of the segmentation

algorithm in segmenting various cartilage thickness.

The knee cartilage boundary segmentation possible using LSLSM has allowed the

obtained segmentation results to be used for computing the cartilage thickness in the 2-D

ultrasound images. The robustness in segmenting and computing cartilage of various

thickness demonstrated in this work indicates a potential application of the methods for

the assessment of the knee cartilage degeneration in an ultrasound image. It can be applied

to assess the cartilage degeneration typically seen as the cartilage thinning where changes

in the cartilage thickness can be quantified over time by comparing the true thickness at

a certain time interval. The assessment of the cartilage degeneration using the methods

described needs to be investigated further and is left for future work.

5.1.2 Meniscus Ultrasound Image Segmentation

The multiple LREK active contours (MLREK) have been presented to address simulta-

neous segmentation of the femoral condyle, the meniscus, and the tibial plateau. The use

of local region descriptor helps to provide a desired segmentation result in the presence

of spatial intensity variation caused by the multiplicative noise. In order to successfully

penetrate into the boundary concavity, the scale of the local region for each contour point

is adaptable during the segmentation process and is dependent on the distance of this point

to the nearest boundary. The multiple level set formulation is provided to segment multiple

regions of interest without merging and overlapping between neighboring contours.

When the presented active contour model was compared to other related active
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contour models in the attempt of segmenting meniscus ultrasound images, it shows an

improvement in terms of segmentation performance, computational time, and convergence

speed offered by the presented method. Further evaluation was performed by investigating

the choice of various parameters in MLREK and their responses to the segmentation

results. Our experiment with varying the threshold value illustrates how it should be

chosen to adapt the kernel size in order to successfully reach the concave parts. The

multiple active contours framework with the additional constraint demonstrates to prevent

merging and overlapping and performs simultaneous segmentation of separate objects all

at once in a single image. A flexibility in assigning different parameter settings for each

zero level contour in this framework shows an improvement in the segmentation accuracy

when segmenting multiple objects of different size and shape. When MLREK was applied

in segmenting the femoral condyle, the meniscus, and the tibial plateau for the total data

set of 70 images, the validation metrics DSC and HD computed demonstrate a very good

and consistent segmentation performance, reflecting that the segmentation outcomes have

a good agreement with the manual segmentation.

Simultaneous segmentation of the three objects on a set of the meniscus ultrasound

images has demonstrated the robustness of the segmentation algorithm to shape variations

of the objects. While the focus of this work was on the segmentation of the meniscus in the

ultrasound images, the overall statistics indicates a potential application of the framework

for the assessment of the meniscus degeneration and displacement in an ultrasound image.

It can be applied to assess the meniscus degeneration and displacement typically seen as

the changes in the meniscus area and position. Thus, the changes in the meniscus area

and position can be quantified over time by comparing the meniscus area and position

before and after the degeneration or displacement occurred. An in-depth study of the

framework application for the assessment of the meniscus degeneration and displacement
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is interesting for future work.

5.2 Future Work

Several interesting and worth pursuing research topics that will extend the work in this

thesis are described in the following subsections.

5.2.1 Assessment of the Knee Cartilage Degeneration

Once the cartilage in the ultrasound images has been segmented, a diagnostically useful

parameter that characterizes the cartilage such as the cartilage thickness can be measured,

which can tell how much the degeneration is progressed in the cartilage. This parameter

is useful to characterize normal or pathological cartilage with assistance from medical

experts in providing descriptive knowledge about the signs of cartilage abnormality. The

cartilage segmentation and thickness computation methods could be clinically useful as

part of ultrasound scanning routine of the knee joint to produce data that may yield

diagnostically significant trends in the cartilage degeneration. In principle, the cartilage

segmentation and thickness computation are an important initial step in order to quantify

the cartilage degeneration. Segmentation of the cartilage on a set of real knee cartilage

ultrasound images has demonstrated the robustness against various shapes and sizes of the

object. Early diagnosis and monitoring of the disease progression is possible by measuring

the cartilage thickness before and after the degeneration. Change in the cartilage thickness

can be quantified over time through the comparison of the true thickness at a certain time

interval. In order to compare cartilage thickness before and after the degeneration, the

assessment of the cartilage degeneration requires at least two (or more) observations of

the degeneration occurrence. As the cartilage degeneration may occur in a subject after

a long period of time, i.e., six month intervals, monitoring this occurrence in the patient

would spend some time too.
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Although segmentation and the thickness computation of the normal cartilage in the

ultrasound images still pose a considerable challenge and clinical value, the inclusion of

different grade of cartilage degeneration and other pathological change in the cartilage to

investigate the performance of the segmentation and thickness computational techniques

to various degeneration progression could also guide future work. Future improvement

also includes reducing or eliminating two user interactions involved in this work, i.e., the

contour initialization and the extraction of the cartilage region from surrounding tissues.

The incorporation of the joint shape-intensity prior constraint in (J. Wang, Cheng, Guo,

Wang, & Tamura, 2016) to LSLSM could potentially increase the robustness in capturing

the shape and thickness variations in the cartilage.

5.2.2 Registration of the short axis view of 2-D ultrasound image of the knee carti-

lage to the 3-D MRI volume

The cartilage segmentation and thickness computation in the 2-D ultrasound images are

limited to a specific view taken by the 2-D ultrasound probe. It has limitations compared

to the one performed in the 3-D MRI images reconstructed from the 2-D image stack.

In order to describe precisely the relation between the thickness computation in the 2-D

ultrasound short axis knee cartilage image plane and the 3-D cartilage surface obtained

from the 3-D reconstruction of the 2-D MRI segmentation of para-sagittal knee cartilage

slices or a direct 3-D MRI segmentation, the thickness measurements performed in the

2-D cartilage boundary and the 3-D cartilage surface need to be compared. The 2-D

ultrasound short axis knee cartilage image plane is seen as the projected image plane

from the real 3-D MRI volume of the knee joint. The thickness measurement using the

perpendicular line in the 2-D cartilage boundary may not be seen perpendicular between

upper and lower surfaces in the real 3-D cartilage surface. Hence, spatial registration of

the 2-D ultrasound image plane to the 3-D MRI volume can provide a precise comparison
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of the thickness measurements. A rigid-body geometrical transformation can be applied

to spatially align the 2-D ultrasound planar image into the 3-D MRI volumetric data. A

prior knowledge of the orientation of the ultrasound probe in the acquisition protocol with

respect to 3-D axes of the knee joint of the subject can be used to determine the position

of the 2-D ultrasound image plane in the 3-D MRI volumetric data. A cross-sectional

2-D MRI image plane, which has the same orientation with the 2-D ultrasound image

plane, is interpolated from the 3-D MRI volume. Thus, the thickness measurement in

the interpolated cross-sectional 2-D MRI and the 2-D ultrasound planar images can be

compared more precisely.

5.2.3 Assessment of the Meniscus Degeneration and Displacement

Once the femoral condyle, the meniscus, and the tibial plateau in the ultrasound images

have been segmented, some diagnostically useful parameters that characterize the menis-

cus including the area and position of the meniscus can be extracted, which tell how much

the degeneration and displacement are progressed in the meniscus, respectively. These

parameters are useful to characterize normal or pathological meniscus with assistance

from medical experts in providing descriptive knowledge about the signs of meniscus

abnormality. In principle, the multiple structure segmentation of the femoral condyle,

the meniscus, and the tibial plateau is an important step in order to determine the area

and position of the meniscus where the measurement accuracy will highly rely on the

segmentation accuracy itself. The methods could be clinically useful as part of ultrasound

scanning routine of the knee joint to produce data that may yield diagnostically significant

trends in the meniscus degeneration and displacement. Simultaneous segmentation of the

multiple objects on a set of real knee meniscus ultrasound images has demonstrated the

robustness against various shapes, sizes, and positions of the objects. Early diagnosis

and monitoring of the disease progression is possible by measuring the meniscus area
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and position before and after the degeneration and displacement. Change in the meniscus

area and position can be quantified over time by comparing the area and position at a

certain time interval. Further investigation on the relative comparison of the meniscus

area or position before and after the degeneration or displacement requires two (or more)

observations of its occurrence. As the degeneration or displacement usually takes place in

the subject after a long period of time, i.e., six month intervals, monitoring this occurrence

in the patient would spend some time too.

Although segmentation of the normal meniscus in the ultrasound images still poses

a considerable challenge and clinical value, the inclusion of another specific pathological

change in the meniscus to investigate the performance of the segmentation algorithm to

various grade of the meniscus degeneration and displacement could also guide future

work. As a typical characteristic of energy minimizing local active contour methods,

this method requires user initialization, however, due to the various applications of the

ultrasound imaging for the diagnosis of the degenerative diseases, a fully automatic

segmentation algorithm is desirable. Future improvements include making the algorithm

more independent to the user by automating the setting of the parameters and by eliminating

the dependency on the position of the initial curve. The use of the adaptive scale kernel

and multiple active contours framework discussed in this thesis is not restricted to the

meniscus ultrasound image applications specifically, or even the ultrasound images in

general. It can benefit to other applications and assist in improving the accuracy and

convergence of other methods as well.

5.2.4 Registration of the 2-D ultrasound image of the meniscus to the 3-D MRI

volume

It is known that ultrasound imaging produces a low image quality compared to MRI that

provides an excellent image quality where some parts of the meniscus may be occluded
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when captured by the ultrasound imaging. Since the accuracy of the measurement of

the meniscus area would rely on the segmentation accuracy, it is interesting to compare

the accuracy of meniscus segmentation between both imaging modalities. In order to

provide a quantitative relation between the measurement of the meniscus area in the 2-D

ultrasound image plane and the real 3-D MRI volume, the measurement of the meniscus

area performed in the 2-D ultrasound image plane and the 3-D MRI volume need to be

compared. Since the 2-D meniscus ultrasound image plane is seen as a projected image

plane from the real 3-D MRI volume of the knee joint, spatial registration of the 2-D

ultrasound image plane to the 3-D MRI volume is necessary to provide a quantitative

comparison on the measurement of the meniscus area. A rigid-body geometrical trans-

formation can be applied to spatially align the 2-D ultrasound planar image into the 3-D

MRI volumetric data. A prior knowledge of the orientation of the ultrasound probe in the

acquisition protocol with respect to 3-D axes of the knee joint of the subject can be used

to determine the position of the 2-D ultrasound image plane in the 3-D MRI volumetric

data. A cross-sectional 2-D MRI image plane, that matches with the orientation of the 2-D

ultrasound image plane, is interpolated from the 3-D MRI volume. Thus, the segmentation

accuracy and the area measurement of the meniscus in the interpolated cross-sectional

2-D MRI and the 2-D ultrasound planar images can be compared quantitatively.
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