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A B S T R A C T 

 

This research is a study of the dynamics of the heart valves and the blood using numerical 

computational technique. This numerical technique is known as the Arbitrary Lagrangian-

Eulerian (ALE) and is introduced in a finite element environment. By means of a mesh 

movement method, the ALE uses separate sets of reference systems to study the fluid-

structure interaction of the heart. The fluid domain is most conveniently described with 

respect to an Eulerian reference frame while a Lagrangian formulation is more appropriate 

for the structure domain. Due to the incompatibility factor of the two reference frames, 

coupling of the reference systems is carried out on an arbitrary computational grid which 

allows numerical modeling of the blood motion and the mechanical valves under 

physiological conditions defined by governing constitutive formulation. The use of 

graphical simulation in a time step fashion is an essential aid in obtaining realistic physical 

representation of the dynamic interaction. Results from the experimental simulations in 

comparison to physiological data have been encouraging. This geometrically simplified 

model albeit with much constraints has the capability to derive plausible velocity pattern of 

the flow in relation to the periodicity mechanics of the mitral and aortic valves in two 

cardiac cycles. 
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1 Introduction 

 
 
 
 

Chapter 1 
Introduction 

   
The important thing is not to stop questioning.  

Curiosity has its own reason for existing. 

 

Albert Einstein 
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1.1 Preface 

The goal of this chapter is to provide a preface to the research undertaken. In sequential 

order, the introduction begins by defining the objective of the research which is followed 

by a brief description on the research background and the research overview. The chapter is 

continued with revision on the research scope and an extension to the motivation that drives 

the development process through to completion. An outline of the organization of thesis 

and a short summary conclude the chapter.  

 

1.2 Research Motivation 

Accurate measurement of blood flow is usually invasive and very difficult to make in spite 

its important role to clinical or physiological diagnosis. Therefore, an alternative method 

capable of determining the flow of the cardiac output, non-invasively, will be beneficial to 

the study and prediction of the general flow pattern, particularly in the left part of the heart. 

In recent studies, computational methods are widely applied for vascular diagnosis by 

considering blood flow in alternative treatments for a particular cardiac case. An example 

of this is the measurement of blood velocity through the ventricle using advanced 

computational simulation which decreases the use of any cardiac catheterization, resulting 

in improvement to the evaluations of patients with a potential circulatory disorder. For this 

reason, it has been an objective of this research to come out with a simple simulation 

implementation that realistically depicts a two-dimensional description of the general flow 

pattern in the left ventricle of the heart. It is hoped that with such direction, the 2D virtual 

model would support the concern to development of non-invasive method to visualize 

blood flow and would open rooms for better qualitative and quantitative clinical diagnosis.  

 



 17 

1.3 Research Objective 

The objective of this research is to study the motion of blood flow and its dynamic relation 

to the movement of the heart valves in the left ventricle. One way to study the mechanics in 

the heart is by using a computational method known as the Arbitrary Lagrangian-Eulerian 

(ALE). The ALE is a common application in engineering used to solve problems pertaining 

to structural and fluid mechanic analyses and in this work, the approach is adopted to solve 

two problems; the fluid problem (i.e. the motion of the blood) and the structure problem 

(i.e. the movement of the valves). The method employs the use of reference frames to 

represent the classical Lagrangian and Eulerian systems. The Lagrangian reference frame is 

used to study the structure problem and the Eulerian reference is used to study the fluid 

problem.  

 

The Lagrangian reference frame investigates structural deformation by fixing its frame on 

the structure of interest. As the structure deforms, the frame deforms with it. The 

deformation captured by the frame is the structural movement of the valves. The Eulerian 

reference frame studies the motion of fluid by setting its frame on the fluid material and 

allows the fluid to cross through the frame to study the flow. Fluid has velocity and so, as 

the fluid flows through the frame, the Eulerian calculation measures the differing velocity 

in and out of each frame section. This measurement captures velocity information of the 

blood and it can be used to study the flow motion. In view of the fact that the mechanics in 

the heart requires an interaction between the valves movement and the blood flow, solution 

to the interaction is derived by setting the Lagrangian and Eulerian reference frames on a 

single computational grid. Coupling of both reference frames produces solution to the 

fluid-structure problem and a graphical simulation can be derived to display this dynamic 

interaction in the heart.  
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1.4 Research Background 

In modern studies of the fluid-structure interactions of the heart, several researchers around 

the world have been identified to incorporate the ALE approach in their work. A group of 

researchers from the Eindhoven University of Technology has developed tissue engineered 

heart valves by analyzing how the geometry and material properties influence the 

movement of artery and heart valves and the flow vicinity in the heart (de Hart et al. 2000). 

Simulations of valve dynamics in a simplified left ventricle flow model using the ALE 

method can be seen in (de Hart 2002). The ALE approach has also been used to study the 

fluid-structure analysis of the structural and the fluid dynamic behavior for 

cardiopulmonary bypass (Guadagni et al. 2001).  Another work incorporating the 

Lagrangian-Eulerian formulation to study the incompressible viscous flow on a finite 

element platform can be seen in (Hughes et al. 1981).  Fluid-solid interaction of the valves 

leaflets motions have been investigated by means of the ALE couplings to derive two-

dimensional model of the bi-leaflets valve (Cheng et al. 2003) and three-dimensional model 

of the bi-leaflets model (Cheng et al. 2004). Numerical analysis of fluid-solid interactions 

for blood flow on arterial structures is given careful attention in some works (Hose et al. 

1998, Rutten 1998). From these experimental works, additional information pertaining to 

the heart’s boundary positions and velocity information can be observed. It is reported that 

it has been over four decades, attempts have been made to obtain a constitutive relation for 

blood and in recent studies continuum models addressing the shear-thinning behavior and 

viscoelasticity of blood through complex mathematical derivations has been analyzed 

(Kyeleswarapu 1996). 
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Modeling of mechanical heart valves began 30 years ago with the two-dimensional (2D) 

immersed-boundary method of Peskin (Peskin 1972) and has continued to this day as 

methods have improved and computational power has increased. Huang et al. (1994) 

performed 2D, time-accurate simulations of a tilting-disk heart valve using a grid resolution 

of over 90,000 nodes with steady inflow conditions.  Three-dimensional analysis of a tilting 

disk valve under steady flow conditions has been performed (Shim and Chang 1997). 

Steady, 2D, finite-element and laminar simulations of a bileaflet valve has been created 

(King et al. 1994). In their 2D geometry, they assumed that the flow was symmetric 

between the two leaflets. (King et al. 1996, and King et al. 1997) later extended this work 

to 3D and performed laminar simulations using one-quarter of the valve geometry (i.e., 

assuming that the flow is symmetric with respect to both symmetry planes of the valve).  

 

Aluri and Chandran (2001) performed 2D and 3D simulations to investigate cavitations 

potential during the closure of a mechanical mitral valve using grids with 2048 nodes in 2D 

and 56,200 nodes in 3D. Lai et al. (2002) used a grid of 9830 nodes in 2D coupled with an 

arbitrary Lagrange-Euler solver to investigate the effect of leaflet-tip geometry on the 

pressure in the vicinity of the valve during closure. Rosenfeld et al. (2002) found that even 

in 2D, resolving the fine details of the flow near the leaflet required 80,000 nodes for grid-

independent solutions. de Hart (2002) simulated the fluid-structure interaction in the human 

aortic valve through both opening and closing phases using a Lagrange-multiplier-based 

fictitious-domain method coupled with a finite-element method for the fluid. In his 

simulation, only one-sixth of the valve cross-section was modeled using 20,000 degrees of 

freedom for the fluid and 6,500 degrees of freedom for the valve structure. 
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1.5 Research Overview  

The aim of this research is to simulate a simplified two-dimensional model of blood flow in 

the left ventricle of the heart by means of the Arbitrary Lagrangian-Eulerian (ALE) 

approach. Acquiring morphological information of the heart including its general and ultra 

structure of the anatomy is essential in understanding the geometric configurations of the 

organ being simulated. This is done through utilization of the reverse engineering method 

by scanning real porcine heart and reconstructs the scanned data into surface model. The 

most important feature of an ALE model is the insertion of partial differential equations 

(PDE) on the model boundaries. In order to achieve this target, creation of domains, 

subdomains and boundaries (with extensive definition of their points and edges in 2D solid 

modeling) is an important consideration.  

 

In modeling the coupling for the fluid-structure interaction, a mesh movement technique is 

introduced. In this technique, the fluid domain is identified to be conveniently described 

with respect to an Eulerian reference frame while a Lagrangian formulation is considered a 

more appropriate approach for the structure domain. The moving mesh for the Eulerian 

reference frame handles the fluid velocity and is usually known as the mesh velocity. The 

moving mesh for the Lagrangian reference frame handles the structure displacement and is 

called the mesh displacement. It has been identified that the general PDE for the mesh 

movement is based on the equation of motion used in continuum mechanics and for the 

most part they are taken from respective domains such as the solid and fluid mechanics. 

Implementation of field variables identified from these domains is utilized in commercially 

available software, FEMLAB, with the intention to handle the mesh displacement and mesh 

velocity described in the model. Time dependent solver is considered most appropriate in 
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deriving the solution to non-linear PDE problems where two-dimensional post processing 

and visualization is provided for the display of the simulation results on a computer screen.   

 

1.6 Research Scope 

In this research project, a simplified model of the left ventricle geometry will be created. 

The modeling geometry generated must be able to incorporate constraints from governing 

constitutive equations and solve for the time dependent problem. It would have been 

impossible to view the two-dimensional object without a graphical simulation. So a 

visualization program displaying the blood flow will be supplied for the system. In 

addition, the motion animation of the valves in the left part of the heart should be seen upon 

completion of system development. In summary, the scope of this research project is laid 

out as follows: 

 

 To review existing works on heart modeling with particular emphasis to the 

techniques and computational technologies used. 

 To implement the ALE method on a finite element platform and test for model 

convergence and accuracy of the system.  

 To review and study techniques involved in numerical and computational 

calculation of the fluid dynamics using the Navier-Stokes equations and its 

application in modeling the dynamic properties to the blood flow.  

 To grasp the basis of fundamental laws of physics (conservation of momentum, 

conservation of mass, balance equation, etc.) and the constitutive equations of the 

materials in order to derive the governing differential or integral equations. 



 22 

 To understand the environment in which the heart works in order to obtain 

meaningful boundary conditions. 

 To solve the boundary-valued problems (differential equations with appropriate 

boundary conditions) analytically or numerically. 

 To analyze data from existing physiological experiments and search for solution 

values to test the boundary-valued problems named.  

 To reformulate and resolve (when necessary) the mathematical problem so that the 

theory and simulated experiments corresponds to each other, that is they are testing 

the same hypotheses. 

 To compare the experimental results with corresponding theoretical ones. By means 

of this comparison, hypotheses made in the theory are to be justified, and, if they 

are, find numerical values of the undetermined coefficients in the constitutive 

equations.  

 To survey practical applications of the theory and experiments and search for 

possible method of enhancement to extend the simulated model in future works. 

 

1.7 Thesis Organization 

The thesis is organized into six separate chapters. Chapter 1 forwards a prologue to this 

thesis. Chapter 2 provides a critical look at the existing research that is significant to the 

work being carried out. The goal of this chapter is to compile the studies which are relevant 

to the research. This chapter has focused on the techniques of the Arbitrary Lagrangian-

Eulerian (ALE) approach and its mesh movement mechanism as these are the main 

methods featured in the theses. An overview of the heart anatomy has been thoroughly 

discussed with the inclusion of the cardiac mechanics particularly on the left part of the 
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heart. The methods analyzing the flow properties of the heart or the hemodynamics have 

been briefly revised.   

 

Chapter 3 is at the heart of this thesis. Careful details on the construction pertaining to the 

two-dimensional ALE modeling are presented. The methods involved in the study of the 

fluid-structure interaction in the left ventricle have been extensively discussed. Tools 

involved in the development processes are revised and with this, algorithm that is the 

backbone of the modeling is also weighted with interest.  

 

Chapter 4 delivers results from preliminary experimental work and the actual simulation 

work done. The numerical results have been illustrated with snapshots from the two-

dimensional graphical simulation. Analysis of each model experiment pertaining to certain 

goal is described. Verification of the simulated results is done through comparison with 

cited previous works. 

 

Chapter 5 provides the discussion on results stemming from implementations carried out in 

the analysis chapter. Theories used in the development are thoroughly investigated and 

discussion on several related issues highlighting the research contributions. Suggestion for 

future work is also presented at the end of the chapter. Chapter 6 ends the dissertation with 

a brief assessment of the whole research. 
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1.8 Summary 

This chapter forwards a preface to the dissertation by introducing the research objective 

and motivation. The research background is given special attention with inclusion of 

previous work done in similar areas of the research. The overview and scope provide an 

insight to the framework of the research. The chapter ends with a brief summary on the 

contents of each chapter of the thesis. 
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2 Literature Review 

 
 
 

 
 

Chapter 2 
Literature Review 

   
What we call the beginning is often the end 

And to make an end is to make a beginning. 

The end is where we start from… 

 

T. S. ELIOT, “Four Quartets” 
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2.1 Overview 

The literature review is a critical look at the existing research that is significant to the work 

being carried out. The goal of this chapter is to compile the studies which are relevant to 

the research. 

 

2.2 The Heart Anatomy  

The human heart is positioned in the thoracic cavity between the lungs. The usual weight of 

the human heart is normally about 0.5 % of the specimen. For an instance, the weight of the 

heart for a man of 70 kg is 350 g. The heart is enclosed within the pericardium, which is 

composed of two layers; the visceral and the parietal pericardium. The two pericardial 

layers are separated by a thin lubricating fluid film. The heart functions as a pump whose 

sole function is to perfuse the whole body with circulating blood. The mechanical pumping 

motion of the heart produces friction and the thin lubricating fluid film is reported to reduce 

this friction. The heart wall itself is composed of three layers: the outer layer or epicardium, 

the middle, muscular layer or myocardium, and the inner endothelial layer or endocardium.  
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Figure 2.1: Gross Anatomy of the Heart (Atlas of Echocardiography 1999) 

 

 

The human heart is divided into four chambers. The “upper” chambers of the heart, the 

atria, are anatomically separated from the “lower” chambers or ventricles by a fibrous ring. 

The four cardiac valves are situated within this ring. Based on the functional point of view, 

the heart is divided into right- and left-sided pumps, with the sole purpose is to propel 

oxygen deficient blood into the pulmonary circulation and oxygenated blood into the 

systemic circulation, in that order.  
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The direction of blood flow in the circulation is according to the illustration depicted in 

Figure 2.2; starting from the venae cavae, to the right atrium (RA), right ventricle (RV), 

pulmonary artery, lungs, pulmonary veins, left atrium (LA), left ventricle (LV), aorta, 

arteries, arterioles, capillaries, venules, veins, and back to the venae cavae.  

 

 

Figure 2.2: The sequence of blood flow in the circulation (Price and Wilson 1992) 

 

2.2.1 The Left Heart  

The left and right sided of the heart are separated by the septum (Figure 2.3). The left heart 

is composed of left atrium (LA) and the left ventricle (LV). The LA receives oxygenated 

blood from the lungs via the pulmonary veins and there are no valves that separate the 

pulmonary veins from the LA. Because of this reasoning, alterations in the LA pressure are 

reproduced into the pulmonary domain, and acute elevations in the LA pressure have been 

depicted as the cause to pulmonary clogging. The LA is a thin-walled, low-pressure 
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chamber. Blood flows from the LA into the LV through the mitral valve. The mitral valve 

is a bicuspid valve with two valve cusps or leaflets. The leaflets are delicate, yet durable. 

The cusps of the valve are attached to thin strands of fibrous tissue called chordae tendinae. 

The chordae tendinae tissue extends to the papillary muscles, which are the muscular 

projections arising from the ventricular wall. The mitral valve assures one-directional blood 

flow from LA to LV, i.e. the mitral valve prevents backflow from the LV into the LA 

during LV contraction and ejection. The thick musculature of the LV ensures the ability to 

develop high pressure during ventricular contraction. The LV and the aorta are separated by 

the aortic valve, consisting of three cuplike cusps, secured to a fibrous ring. The valve 

prevents backflow from the aorta into the ventricle during LV relaxation and filling.  

 

 

Figure 2.3: Anatomy of the human heart, aortic valve and mitral valve (Price and Wilson 1992) 
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2.2.2 The Cardiac Mechanics 

Figure 2.4 represents the pressure and the flow events during the cardiac cycle (Yellin 

1995). The cardiac cycle is the cycle of events that occurs as the heart contracts. The timing 

of the events can be situated within the cardiac cycle using the ECG diagram on top of the 

figure. The cardiac mechanics is divided into two major ventricular events; the systole and 

diastole. In the diastole phase, the heart ventricles are relaxed and the heart fills with blood. 

In the systole phase, the ventricles contract and pump blood into the arteries.  

 

2.2.2.1 Systole 

 

During ventricular systole, LV pressure is reported to rise from 0 to 120 mmHg. The 

moment it rises above the aortic pressure, the aortic valve is forced to open and blood is 

ejected from the LV into the arterial system. The volume ejected by each ventricle per 

minute is said to be the cardiac output (CO). Average cardiac output in humans during 

these resting conditions is 5-6 l/min (Chandran 1992). However, cardiac output is not the 

same to everyone; it varies to meet the demands of the peripheral tissues for oxygen and 

nutrients and may be as high as 30 l/min during peak exercise in trained athletes. The 

volume of blood ejected by each ventricle per beat is said to be the stroke volume (SV). 

During systole, there is approximately two thirds of the volume of blood in the ventricle is 

ejected at the end of each diastole (end-diastolic volume, EDV). This portion of ejected 

blood is known as the ejection fraction (EF; EF = SV/EDV). The residual ventricular 

volume, the one third left at the end of systole is referred to as the end-systolic volume 

(ESV). 

 

 

http://biology.about.com/library/organs/heart/bldiastole.htm
http://biology.about.com/library/organs/heart/blsystole.htm
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2.2.2.2 Diastole 

 

The diastolic portion of the heart cycle can be subdivided into four phases; the isovolumic 

relaxation, rapid or early filling (E-wave), diastasis (L-wave) and atrial contraction (A-

wave). In the first phase, between the time of aortic valve closure and mitral valve opening, 

LV pressure drops exponentially from the aortic pressure level to the pressure level existing 

in the LA. In the next phase, the early filling (E-wave) begins when pressure in the LV falls 

lower of that in the LA, forcing the mitral valve to open and the LV to begin filling. The 

early filling phase corresponds with and is reported to be dependent on continued LV 

relaxation. This phase ends the moment the pressure in the two chambers is equalized. 

Although this rapid filling comprises only about 30% of diastole, it accounts for up to 80% 

of LV filling volume. The third phase is the diastasis. Small amount of filling, if any, 

comes from pulmonary vein flow (L-wave). With increased heart rate this phase shortens 

more than the other three. The fourth phase, atrial contraction (A-wave), contributes for 

15% to 25% of LV filling volume under normal conditions but can contribute as much as 

40% if LV relaxation is impaired. 

 

Basically because relaxation is an energy consuming and therefore is considered an 

“active” process which commences during the second half of the ejection phase, sometimes 

the isovolumic relaxation phase and early filling phase are considered to be the end of 

systole (Brutsaert et al. 1993, Brutsaert and Sys 1989, Gillebert and Sys 1994). By this 

definition diastole only comprises diastasis and atrial filling. Consequently, in this 

definition diastole accounts for about 50% of the cardiac cycle at normal heart rates, 

contributing for only 15% to 25% of the LV volume. Although this approach offers some 

advantages in understanding cellular and mechanical events, it introduces a difficult 
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terminology for the clinician who, based on phenomenological evidence, is convinced that 

ejection ends with, and diastole commences after aortic valve closure. 

 

Figure 2.4: Pressure, flow and volume events during the cardiac cycle (Yellin 1995) 

 

2.2.3 The Windkessel Theory  

 

The simplest theory of the cardiovascular system is the Windkessel theory proposed by 

Otto Frank in 1899. The idea has been stated earlier by Hales (1733) and Weber (1850) in 

Fung (1981) and in the modern research the theory is re-introduced in Jacobsen (1999) and 

evaluated in both Jacobsen (1999) and, Adeler and Jacobsen (2001). The goal behind this 

theory is to model the after-load of the heart introduced to improve the outflow conditions 

at the aortic sink.  
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In this theory the aorta is represented by an elastic chamber, and the peripheral blood 

vessels are replaced by a rigid tube of constant resistance. Inflow to the aortic sink is 

supplied by the ventricle chamber during contraction where part of this inflow is sent to the 

peripheral vessels and part of it is used to distend the elastic chamber. The Windkessel 

model was introduced to improve the outflow conditions at the aortic sink. Originally, the 

outflow was determined by a linear resistance model (similar to the one for the atrial 

source), but this gave an unrealistic pressure.  

 

 

                            
  Inflow                                          Outflow 
                                                            Elastic 

                                                                       Chamber 

 Peripheral vessel 

 

 

Figure 2.5: Simple representation of the aorta in the Windkessel Theory 

 

Q is the inflow (cm³/sec) into this system from the heart. Part of this inflow is sent to the 

peripheral vessel and part of it is used to distend the elastic chamber. If P is the blood 

pressure (pressure form the aorta or the elastic chamber), the flow in the peripheral vessel is 

equal to p/R, where R is the peripheral resistance. For the elastic chamber, its change of 

volume is assumed to be proportional to the pressure. The rate of change of the volume of 

the elastic chamber with respect to time t is therefore proportional to dp/dt. Let the constant 

of proportionality be written as K and so on equating the inflow to the sum of the rate of 

change of volume of the elastic chamber and the outflow p/R, the differential equation 

governing to the pressure p is  

Rdt

dp
KQ


       (2.1) 
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A primary effect of the use of the Windkessel model is that to obtain a simulated aortic 

outflow profile which reproduces a characteristic feature of the measured one, namely that 

the upstroke has a duration of about one half of that of the downstroke. The normal 

pumping history of the heart; the periodicity and the steady state response of the aorta to a 

periodically beating heart are shown in Figure 2.6. The equation given is in good 

correlation to the experimental data on the total blood flow, Q with blood pressure p, 

particularly during the diastole. Hence, in spite of the simplicity of the underlying 

assumptions, the model is quite useful to study the ventricular activities on the heart. 

 

 
  

 

 

                                  0                0t       
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Figure 2.6: Some Pulse Waves in the Beating Heart 

 

2.3 Dynamics of the Blood Flow (Hemodynamics) 

The term hemodynamics refers to the principles that govern blood flow in the 

cardiovascular system. These basic principles of physics are the same as those applied to 

the movement of fluids in general. The concepts of flow, pressure and resistance are 

applied to blood flow to and from the heart and within the blood vessels. 

 

2.3.1 Velocity of Blood Flow 

The velocity of blood flow is the rate of the displacement of blood per unit time. The blood 

vessels of the cardiovascular system vary in terms of diameter and cross-sectional area. 

These differences in diameter and area, in turn, have profound effects on velocity of flow. 



 35 

The relationship between velocity, flow, and cross-sectional area which depends on vessel 

radius or diameter is as follows: 

 

v = Q/A     (2.2) 

 

Where 

 

v = velocity of blood flow (cm/sec) 

Q = flow (ml/sec) 

A = cross-sectional area (cm²) 

 

Velocity of blood (v) is linear velocity and refers to the rate of displacement of blood per 

unit time. Thus, velocity is expressed in units of distance per unit time, which is cm/sec. 

Flow (Q) is the cross-sectional area of a blood vessel (e.g aorta) or a group of blood vessels 

(e.g. all of the capillaries). Area is calculated as A = πr², where r is the radius of a single 

blood vessel (e.g. aorta) or the total radius of group of blood vessels (e.g. all of the 

capillaries).  

 

2.3.2 Relationships between Blood Flow, Pressure, and Resistance 

Blood flow through a blood vessel or a series of blood vessels is determined by two factors: 

the pressure difference between the two ends of the vessel and the resistance of the vessel 

to blood flow. The pressure difference is the driving force for the blood flow, and the 

resistance is an impediment to flow. Blood flow (Q) is directly proportional to the size of 

the pressure difference ∆p or pressure gradient. The direction of blood flow is determined 
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by the direction of the pressure gradient and always is from high to low pressure. An 

example, during ventricular ejection, blood flows from the left ventricle in to the aorta (not 

in the other direction) because pressure in the ventricle is higher than pressure in the aorta. 

Furthermore, blood flow is inversely proportional to resistance (R) deriving the equation 

next; 

 

Q = ∆p/R      (2.3) 

 

Increasing resistance such as by vasoconstriction would decreases flow, and decreasing of 

resistance such as vasodilation increases flow. The major mechanism for changing blood 

flow in the cardiac mechanics is by changing the resistance of blood vessels. The flow, 

pressure and resistance relationship can be used to measure the resistance of the entire 

systemic vasculature, that is the total peripheral resistance, or it can be used in 

measurements of resistance in a single organ or single blood vessel. 

 

2.3.3 Resistance to Blood Flow 

The blood vessel and the blood itself constitute resistance to blood flow. The relationship 

between resistance, blood vessel diameter or radius and blood viscosity are described by 

the Poiseuille equation 

 

4

18

r
R




      (2.4) 

 

where 
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R = resistance 

  = viscosity of blood 

  l = length of blood vessel 

r  = radius of blood vessel   

 

 

The most important concepts expressed in the Poiseuille equations are as follows. First, 

resistance to flow is directly proportional to viscosity of the blood; as an example, as 

viscosity increases the resistance to flow also increases. Second, resistance to flow is 

inversely proportional to the fourth power of the radius of the blood vessel.  

 

2.3.4 Laminar Flow and the Reynold’s Number 

Ideally, blood flow in the cardiovascular and in the heart is laminar, or streamlined. In 

laminar flow, there is a parabolic profile of velocity within the blood vessel, with the 

velocity of blood flow highest in the center of the vessel and lowest toward the vessel 

walls. The parabolic profile develops because the layer of blood next to the vessel wall 

adheres to the wall, and, essentially, does not move. The next layer of blood (toward the 

center) slips past the motionless layer and moves a bit faster. Each successive layer of 

blood toward the center moves faster yet, with fewer adherences to adjacent layers. Thus 

the velocity of the flow at the vessel wall is zero, and the velocity at the center of the 

stream is maximal. Laminar blood flow conforms to this orderly parabolic profile.  
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2.3.5 Turbulent Flow 

When an irregularity occurs in a blood vessel (e.g. at the valves or at the site of a blood 

clot), the laminar stream is interrupted, and blood flow may become turbulent. In turbulent 

flow, the fluid streams do not remain in the parabolic profile but, instead, the streams mix 

radially and axially. More energy (pressure) is required to drive turbulent flow than to drive 

a laminar blood flow. Energy is wasted in propelling the blood radially and axially. 

Turbulent flow is often accompanied by audible vibrations called murmurs. 

 

The Reynold’s number is a dimensionless number that is used to predict whether blood 

flow will be laminar or turbulent. It considers a number of factors, including diameter of 

the blood vessel, mean velocity of flow, and viscosity of the blood. Thus 

 



dv
NR       (2.5) 

 

where 

RN  = Reynold’s number 

  = density of blood 

d = diameter of blood vessel 

v = velocity of blood flow 

  = viscosity of blood 
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If Reynold’s number is less than 2000, blood flow will be laminar. If Reynold’s number is 

greater than 2000, there is an increasing likelihood that blood flow will be turbulent. Values 

greater than 3000 always predict turbulent flow. The major influence on Reynold’s number 

in the cardiovascular system is changes in blood viscosity and changes in the velocity of 

blood flow. Inspection of the equation shows that decrease in viscosity cause an increase in 

the Reynold’s number. Likewise, narrowing of a blood vessel, which produces an increase 

in velocity of blood flow, cause an increase in the Reynold’s number.  

 

2.3.6 Newtonian Property 

Is blood a Newtonian fluid? A Newtonian fluid is one which exhibits the following 

property. The shear stress, or resisting force τ, and velocity gradient, or rate of deformation 

du/dy are linearly related by 

 

dy

du
                      2.6) 

 

where µ is the coefficient of viscosity. The question of whether blood is a Newtonian fluid 

is still standing. The composition of blood would seem to indicate that it is indeed not a 

Newtonian fluid. In fact, studies seem to indicate that plasma by itself is a non-Newtonian 

fluid. However, under certain restrictions, such as those imposed on this problem, it is 

sufficient to assume blood acts like a Newtonian fluid. Indeed, all modeling of pulsatile 

blood flow accepts this assumption. It is only when the scale of the problem is so reduced, 

as in capillary modeling, that the Newtonian fluid model breaks down. 
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2.4 Computational Fluid Dynamics (CFD) and the Navier-Stokes Equations 

2.4.1 CFD approach in Hemodynamics 

Blood in physiological conditions may be considered as incompressible. In the arteries, the 

flow can be considered a continuum. That is, the elements of blood seem to be continuous 

with each other, with no empty spaces in between. In fact, even though blood is composed 

of many different elements, the continuum hypothesis implies that every point in the fluid 

represents a fluid element, and that the properties at that point, represent the properties of 

that fluid element. 

 

Studying blood flow in arteries belongs to the multidisciplinary field of bioengineering 

(Bellhouse 1972).  It combines the knowledge base of engineering and medicine.  Blood 

flow in arteries is covered under hemodynamics (Fung 1997, Fung 1993). Beside 

theoretical work, experimental studies and clinical measurements advanced our 

understanding in the past two centuries.  

 

The equations are a set of coupled differential equations and could, in theory, be solved for 

a given flow problem by using methods from calculus (Batchelor 1967). But, in practice, 

these equations are too difficult to solve analytically. In the past, engineers made further 

approximations and simplifications to the equation set until they had a group of equations 

that they could solve. Recently, high speed computers have been used to solve 

approximations to the equations using a variety of techniques like finite difference, finite 

volume, finite element, and spectral methods hence bring forth this area of study called 

Computational Fluid Dynamics or CFD. With the development of modern computers, CFD 

was added, as an independent field, to theoretical and experimental studies of fluid motion, 
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also used potentially in numerical modeling of physical phenomena in the arterial flows as 

well. 

2.4.2 The Navier-Stokes equation 

The Navier-Stokes equation is a standard equation that describes the flow of continuum 

matter in fluid form - which can be a liquid like water, or a gas like the air.  The equation 

describes the change with time of the density and velocity of the fluid. Most traditional 

CFD algorithms require the solution of the Navier-Stokes (N-S) equations to handle to 

these continuum requirements. The details of the solution process depend upon the details 

of the flow to be solved. The solution process for an incompressible flow can be very 

different than that for a compressible flow. 

 

2.4.2.1 The Navier-Stokes Equation and the Incompressible flow 

In situations in which the density is approximately constant, the flow may be termed as 

incompressible. The Navier Stokes equation for fluid flow: 

 

Fpuu
t

u
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     (2.7) 

where 

0.  u  

    

 

are deduced for incompressible Newtonian flow. However, a generalized version of the 

Navier–Stokes equation which allow for variable viscosity in non-Newtonian fluids can be 

derived as follow: 
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where 

0.  u  

The following variables and parameters appear in the equations: 

  is the dynamic viscosity 

  is the density 

u  is the velocity field 

p  is the pressure 

F  is a volume force field such as gravity 

 

 

These applications are general enough to account for all types of incompressible flow such 

as the blood. These equations describe how the velocity, pressure, and density of a moving 

fluid are related. The equations were derived independently by G.G. Stokes, in England, 

and M. Navier, in France, in the early 1800's. The equations are extensions of the Euler 

Equations and include the effects of viscosity on the flow. The equation is actually a vector 

equation obtained by applying Newton's Law of Motion to a fluid element and is also 

called the momentum equation (further discussion in Section 2.7.6). It can be enhanced 

using the energy equation and the mass conservation equation (refer Section 2.7.5), which 

are also called the continuity equations. However the term Navier-Stokes equations are 

usually used to refer to all of these equations.  

 

http://www.grc.nasa.gov/WWW/K-12/airplane/pressure.html
http://www.grc.nasa.gov/WWW/K-12/airplane/fluden.html
http://www.grc.nasa.gov/WWW/K-12/airplane/state.html
http://www.grc.nasa.gov/WWW/K-12/airplane/eulereqs.html
http://www.grc.nasa.gov/WWW/K-12/airplane/eulereqs.html
http://www.grc.nasa.gov/WWW/K-12/airplane/airsim.html
http://www.cfd-online.com/W/index.php?title=Continuity_Equation&action=edit
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2.4.2.2 The Navier-Stokes Equation and Time Dependency 

 

The Navier-Stokes equation consists of a time-dependent continuity equation for 

conservation of mass, conservation of momentum and for the conservation of energy. There 

are several independent variables in the problem, the x and y spatial coordinates for the 

two-dimensional domain, or x, y, and z for a three-dimensional domain, and the time t. 

These components of the velocity vectors plus three other dependent variables; the pressure 

p, density r, and viscosity plays major factor in defining the equation. The u component is 

the velocity vector in the x direction, the v component is the velocity vector in the y 

direction, and the w component is the velocity vector in the z direction. All of the 

dependent variables are functions of all four independent variables. The differential 

equations are therefore partial differential equations (PDEs) and not the ordinary 

differential equations (ODEs).  

 

Notice that all of the dependent variables appear in each equation stated in the previous 

section. In order to solve a flow problem, there are at least five equations to be solved 

simultaneously; which are why it is called a coupled system of equations. There are 

actually some other equations that are required to solve this system.  

 

2.5 The Arbitrary Lagrangian Eulerian (ALE) Modeling 

ALE stands for Arbitrary Lagrangian Eulerian. It is an extensive numerical approach used 

to solve domains in engineering which require combination of both the classical 

Lagrangian and Eulerian reference frames and widely exercised on problems that analyze 

fluid structure interactions systems. It has been recognized that ALE has the capability to 

analyze fluid and structural motions when the material strain is large and where severe 

http://www.grc.nasa.gov/WWW/K-12/airplane/mass.html
http://www.grc.nasa.gov/WWW/K-12/airplane/conmo.html
http://www.grc.nasa.gov/WWW/K-12/airplane/thermo1f.html
http://www.grc.nasa.gov/WWW/K-12/airplane/function.html
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deformation of flexible structures take place. Both reference frames, the Lagrangian and the 

Eulerian, on their own, have also been recognized to solve most problems.  

 

2.5.1 The Lagrange Reference Frame 

The Lagrange reference frame is commonly used in solid mechanics. It sets up a reference 

frame by fixing a grid to the material of interest then as the material deforms the grid 

deforms with it. For an example, a solid structure with little material flexibility, that is, a 

structure which has a slight amount of deformation would typically uses the Lagrangian 

approach because as the grid deforms under a certain applied load or pressure, the pattern 

of deflection is synchronously mapped out by the Lagrangian grid according to the 

deformation. The grid would also define the exact displacement of each particle, which 

could be manipulated to beneficially track the order of motion or mechanics of the solid 

properties. Having to track the displacement of all particles allow each individual sections 

of the grid to always contain the same amount of  mass, and  thus the method has been 

recognized to automatically satisfy the conservation of mass.  

 

For more flexible structure with higher sense of elasticity, high pressure and load supply 

would result in a much larger deformation and could also reach the point of excessive 

distortion. Excessive distortion would chart the grid with critical deformation, where 

division of the grid plays a major role to determine the accuracy of the bending. Larger 

deformation has been identified to require smaller grid sections, as tracking severe bending 

would entail a finite measurement of the grid to accommodate the change. It is hence easier 

to track the regions predicted to have critical distortion with smaller grid sections. The 

definition of the size of the grid sections directly governs the design of the time steps as 
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they are based on the size of the smallest section of the grid. The particles of a structure or 

a solid model are usually in place and in a mode of unified attachment towards each other, 

giving opportunity for the Lagrangian grid to map the deformation.  

 

In the domain of fluid mechanics, it has been recognized that fluid particles do not stay as 

tight as the solid particles and that fluids are not cohesive. So if a grid is mapped out onto a 

fluid, finite size of grid sections would not be sufficient to track the motion of the fluid as 

the fluid particles will travel independent of each other and diverge in space. The 

movement would result in mapping of excessive distortion with the possibility of the 

individual grid sections that try to follow certain particle to overlap each other, providing 

an unreasonable prediction of the fluid motion. In short, the Lagrangian method is 

considered as not the easiest solution for a fluid mechanics problem.  

 

2.5.2 The Eulerian Reference Frame 

The Eulerian reference frame, which is fixed in space, is the typical framework used in the 

analysis of fluid mechanics problem. It allows for material with specified load or pressure 

to flow through the grid as it is with the Lagrangian frame, but this time without tracking 

the path to of any of the individual particle. In order to predict the flow of the fluid across 

the grid, the Eulerian approach solves the problem by measuring the net flow through a 

certain area. In the case of the Lagrangian, conservation of mass is directly preserved as all 

the grid sections has been initialized with equal amount of mass, for the Eulerian, 

conservation of mass is taken into account openly by measuring the flux in and out of each 

grid section. This feature guarantees a thorough tracking of the fluid in motion only that it 
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is not an elegant approach to adequately track the path of any element, particularly the fluid 

free surfaces.  

 

2.5.3 Coupling of the Lagrangian-Eulerian Reference System 

The arbitrary Lagrangian Eulerian (ALE) method combines the two classical approaches. 

Both reference frames are used to allow special design of two grids; one that is flexible and 

another that permits for material to flow through it. In reference to the word arbitrary, ALE 

in essence takes the best part of both frames and merges them into one. This is helpful in 

problems with large deformations as ALE is applicable to allow tracking of the particle 

material to some extent but when the grid deforms excessively and distorts the aspect ratio 

of the grid beyond an acceptable point, it switches the grid and measures the flux of the 

material during the adjustment. The significant difficulty of the ALE approach is deciding 

how much to allow a grid to deform and how much flux to allow. This is usually done by 

setting a limit on the distortion of a segment of a grid and once it deforms past the limit, 

then the part of the grid is remeshed.  

 

2.5.4 Controlling Equations in ALE 

The ALE requires the input of several variables in order to allow for numerical calculations 

of the model so that it closely resembles the real world situations. These numerical entities 

are the fundamental elements that control and make the governing equations to work. Size, 

boundary conditions, free surfaces and starting velocities, and several of the intrinsic 

characteristics of the material; the density, viscosity, strength, Young’s modulus, shear 

modulus, and bulk modulus are of important considerations. All these variables are to be 

put in a specific order to assure the accuracy of the controlling equations. The controlling 



 47 

equations have been identified as the properties that depict the movements of the computer 

model, hence become the main element that ensures the succinct of the ALE simulation.  

Several controlling equations have been considered in the fluid - structure modeling.  

 

2.5.5 Function of the Navier-Stokes Equation in the ALE 

The Navier Stokes equations have been used to track the conservation of momentum 

needed to monitor the fluid motion in the simulation (Baaijens 2001). The partial 

differential equations (PDEs) especially the Weak Form equations, is used to observe the 

conservation of mass which is crucial when there is large deformation and remeshing of the 

grid occurs. When there is no deformation and the mesh stays constant as can be seen in the 

Eulerian approach, there is no need for the conservation of mass since there is no mass flux 

and the mesh remain constant by default. There is also the boundary conditions that 

requires particular attention, as boundaries to the model accepts the initial condition values, 

allow for directions to the fluid flow and structural motions and they graphically outlines 

all two dimensional motion that took place in the simulation.  

 

2.5.6 Computational Grid Mapping 

The grid requires a standardize mapping with each of the individual elements to be 

homogenous and of the same material. In application to a finite element environment, this 

is important because the computer treats each individual element in the mesh as equal 

material all through out (refer to Section 2.8). The boundaries dividing the domains and 

subdomains of interest are also better seen with this approach as it is often difficult to 

determine where the boundary lies between the individual materials. Using partial 

differential equations, the controlling equations are then applied to both grids individually, 
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creating matrix equations that allows for insertion of material properties and initial 

boundary conditions. The mesh generated by the procedure may have hundreds of 

individual grid squares resulting in simultaneous solving of large matrices for a problem. 

This can lead to multiple days of computing time and is the reason to consider setting of 

small time steps to the finite element solver. 

 

2.6 The Balance Laws Formulation  

In the previous subsections, literature survey on the ALE modeling has been made 

comprehensive to ensure a general understanding of the approach taken in this project. The 

goal of this section is to apply and use the conceptual knowledge and represent a numerical 

overview on the ALE using the Balance Laws formulation which governs its mechanical 

behavior. Throughout the following explanation, formulation extracted from Knobbe 

(2004) is used to accentuate the mathematical principle of the method. 

 

2.6.1 Fundamentals Theory of the Balance Laws 

Basically, the ALE approach in a finite element environment is used for its numerical 

approximation to master balance laws for an arbitrary set of quantities (ф). Balance 

equations are equations that represent the fundamental physical laws. In the mechanical 

world, these include laws expressing conservation of mass, momentum, energy and some 

form of the second law of thermodynamics. Such balance equations hold for all materials, 

e.g., solids, fluids, viscoelastic material and rigid bodies. In a global balance law, the 

material time rate of change of the total amount of the property over a given body of 

material, is considered as balanced by the sum of the fluxes (jф), which cross the surface 

plus the sum of the body forces (σф).  In other words, it can be said that the time rate of 
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change of a quantity is equivalent to the actions of the surroundings on the surface of the 

volume (V) and the actions of the surroundings on the volume itself.  

 

  

Figure 2.7: Sample Body of Material Undergoing Deformation 

 

In Figure 2.7, V(X) is considered to be a volume of material at reference time t = 0. This 

may be an entire body of material, or a part of a larger body in its original state. At a later 

time step, the material body goes through a deformation and at this point the volume that 

this body takes at the time is υ(x, t). Following the global balance law, it has been stated 

that the only way the total amount of property ф can change is through an amount crossing 

its boundary (flux) or by a body force acting throughout the material. These quantities are 

taken as the input sources to the fluid – structure problem and they are entitled to changes 
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due to any combination based on the surface sources, i.e. the flux, and the volumetric 

sources, i.e. the body forces. 

 

2.6.2 Quantities representing the Balance Laws 

For each balance law they are different quantities representing {ф, jф, σф}. For the 

conservation of mass, the quantity being conserved is mass; the flux is zero (the definition 

of the body includes all the material), and the body force also zero. For the conservation of 

momentum, the quantity being conserved is linear momentum, the flux is force, and the 

body force is gravity.  

 

dVdSjndV
dt

d
zzzz ttt

   
 )()()(

.
  (2.9) 

 

where χ(ΩZ, t) is the spatial location of the body at time (t), dS is the surface of the body, 

and n is the elemental area that denotes the outward pointing normal direction to the 

surface (recall that n is a unit vector). The integration has been defined using the Eulerian 

framework over the body, because the quantities ф and σф are defined per unit of special 

volume and n . jф is defined per unit spatial area, but the time derivative is material 

(keeping χ fixed). Integrands in above equation depend on moving spatial coordinate y and 

time t. Since the body or material configuration (ΩZ) may move, the spatial volume 

occupied by the material χ(ΩZ, t) may change in time.  
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The material over which the global balance law is defined may consist of the entire body or 

certain parts of the body. The boundary however must enclose the same material 

throughout the deformation. It has been noted that the first term of the right hand side of the 

equation, which represents the flux of a quantity across the boundary, the symbol n is 

defined to be the unit vector out, a positive surface integral means that there is a net flux 

out, resulting in the decrease of the total amount of ф. The integration limits are determined 

by a moving material configuration ΩZ, where the corresponding spatial coordinates are 

specified by physical motion 

 

)(),( ztzy t 
     (2.10) 

 

2.6.3 Localizing the Balance Law  

The difficulty of using directly equation (2.9) is that it is an integral equation. Fortunately, 

for many materials, the balance law can be localized. The ALE formulation (Hughes et al 

1981) is used to attain an equivalent localized system of PDE equations for calculating 

domains with arbitrary moving boundaries. The system of PDEs is spatially discretized by 

a finite element method (i.e. the Galerkins method, Hughes 2000). These equations are 

integrated numerically with respect to time. In subsection 3.5.2, the governing concept of 

the ALE formulation has been explained. With the derivations of spatial motion ξ as 

additional degree of freedom and the physical motion χ, a physical velocity υ is introduced 

as material derivative which is the time derivative at constant material coordinate z of the 

physical motion. 
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    (2.11) 

 

Consequently, a spatial velocity   is also defined as time derivative at constant material 

coordinate x resulting in: 
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    (2.12) 

 

A generalized form of Reynolds Transport Theorem for an arbitrary region Ω(t) can be 

derived for the ALE formulation: 
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  (2.13) 

 

It is noted that the single term of the left hand side in equation (2.9) is broken into three 

terms. Material derivative of quantity ф is converted in a combination of local time 

derivative, volume dilatation (shown by divergence of spatial velocity) and convective 

flow. The equation changes the sequence of time differentiation and volume integration and 

since the integration is over an arbitrary volume, the integrand has to be equal to zero. This 

generates another set of PDEs of equation, i.e.: 
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 53 

In this equation, the term denoting volume dilatation is considered to be a source term, as a 

changing geometry results in a changing density Ф. The term (   ) denotes deviation of 

the physical velocity instead of the spatial velocity which depicts deformation of material 

configuration on the reference grid but not the spatial configuration. 

 

2.6.4 Balance Laws Assumptions  

Several assumptions are necessary to localize the balance laws: it is presumed that equation 

(2.14) holds for all possible volumes V(X), i.e. not just the entire body but also all parts of 

the body; domains and subdomains included. Another necessary assumption is to assume 

that the integrand is smooth or continuous. These hypotheses hold for many materials but 

not all – for example, if the material contains a discontinuity, such as a crack, then the 

integrand is not smooth and localization of the balance law will not be successful. Thus it is 

plausible for the project to use a solid model of the left ventricle albeit in two dimensional 

and with much simplification as the order of the PDE equations entail for perfect and 

continuous geometrical structure. The necessity to create a flawless solid model for the 

analysis made consideration for a three dimensional model of the left ventricle a 

complication since there would be a lot more simplification and modification to the 

structure which is expected to consume unnecessary time expenditure. If these assumptions 

are followed in the text, then equation (2.14) has justified a local balance law which is in 

the form of the equation below: 
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    (2.15) 
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2.6.5 Conservation of Mass  

For the conservation of mass the quantity being conserved is mass (whereby ф is density). 

In the localization process, it has been assumed that mass is conserved everywhere locally 

– therefore supposedly mass cannot disappear in one place and re-appear someplace else. 

Because of this the equation of mass is often called the continuity equation. Substituting ф 

= ρ (density) and jф = 0 (because the boundary is a material boundary no mass can cross 

the boundary), and σф = 0 (because it is assumed no mass is generated inside) into equation 

(2.15) generates the following continuity equation: 
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Equation (2.16) is the Eulerian form of the continuity equation and equation (2.17) is the 

same equation written in terms of the material time derivative. The continuity of the 

Eulerian form shows that there is a continuous change in the density of the flux, which 

indicates this approach to be compatible to represent the continuous flow of the blood in 

the left ventricle. 

 

Using the balance law, another continuity equation is derived: 
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In equation (2.18) it is shown that the total amount of mass is fixed in time, and this amount 

is equal to the amount at some reference time: 

 

 )( )(
00

XV XV
dVjjdV 

    (2.19) 

 

Assuming that the total amount of mass is constant over any sub-volume, as with the 

arguments discussed for equation (2.9), a continuity equation for the Lagrangian 

framework is obtained as follows: 

 

),(),()(0 tXjtXX  
    (2.20) 

 

The continuity in the formulation denotes a continuous deformation of the material 

configuration which indicates the approach is suitable to track the movement of the 

deforming valve leaflets due to input pressure from the blood flow.  

 

2.6.6 Conservation of momentum 

The Newton’s Second Law of motion has been implemented to conserve the momentum in 

the ALE model. Momentum can be defined as "mass in motion." A moving object such as 

the motion of the valve leaflets is considered to have momentum – it has its mass in motion 

(Cebeci and Bradshaw 1977). The amount of momentum which an object has is dependent 

upon two variables: how much mass is moving and how fast the mass is moving and these 

two are represented in the Newton’s Second Law as mass and velocity. The relationship 
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between an object's mass m, its velocity v, and the applied force F is F = mv. Velocity and 

force are vectors and in this law the direction of the force vector is the same as the direction 

of the velocity vector.  The force part of the Newton’s law has two components; body 

forces and surface forces both denoted using the symbols g and τ. The term g is usually the 

gravity vector, and τ represents the contact forces which is a function of the unit normal to 

the surface.  

 

2.6.7 Surface Traction and the Stress Tensor (Cauchy’s stress tensor)  

τ has units of force per unit area and it is a function of position

It is also a function of boundary dυ. In Figure 2.7, there is a depiction of a traction vector, τ 

acting at a material point 0X
. It has been considered 0X

 to be on the boundary of the body 

and the force the body experiences at the surface due to the pull on 0X
is called the traction 

vector. The governing theorem for the traction vector is as follows: 

 

τ = n . t      (2.21) 

 

Here, n indicates the normal direction in which the traction vector points. n in general also 

functions as the effect the external material has to orientate the surface since traction is a 

linear transformation of the unit surface normal.  
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2.7 Understanding the Finite Element Method  

This section describes the Finite Element Method (FEM), and it approximations to handle a 

PDE problem which has a finite number of unknown parameters. In order to solve the 

problem for each geometry objects, the FEM allows for discretization of the elements that 

makes up the object geometry into finite size partitions. The FEM incorporates the shape 

function to derive possible forms of the approximate solution. 

  

2.7.1 The Mesh 

The starting point for the finite element method is a mesh, a partition of the geometry into 

small units of a simple shape. In 1D the method partitions the subdomains into smaller 

mesh intervals. The endpoints of the mesh intervals are called mesh vertices. In 2D, the 

method partitions the subdomains into triangles, and these triangles are usually known as 

the mesh elements. Two-dimensional objects can have curved boundaries and so the 

triangular mesh elements are considered as an approximation in FEM. The sides of the 

triangles are called mesh edges, and their corners are called mesh vertices. A mesh edge 

must not contain mesh vertices in its interior. Similarly, the boundaries defined in the 

geometry are partitioned (approximately) into mesh edges (boundary elements) that must 

conform with the triangles if there is an adjacent subdomain. There might also be isolated 

points in the geometry and these are usually considered as the mesh vertices. 

 

Similarly, in 3D, the method partitions subdomains into tetrahedrons (mesh elements), 

whose faces, edges and corners are called mesh faces, mesh edges, and mesh vertices, 

respectively. It partitions boundaries in the geometry into triangular boundary elements 

(mesh faces) and it partitions geometry edges into mesh edges. The isolated geometry 
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vertices in the object are partitioned and considered as mesh vertices, which is sometimes 

known as the node-points. The mesh vertices are usually only a subset of the node points. 

The term mesh element is usually used to describe any of the mesh elements; mesh faces, 

mesh edges, or mesh vertices. When considering a particular d-dimensional domain in the 

geometry (that is, a subdomain, boundary, edge, or vertex), then its mesh elements is the d-

dimensional mesh elements contained in the domain. 

 

2.7.2 The Finite Elements 

After obtaining a mesh, approximations to the dependent variables is introduced. For the 

case of a single variable, u, the idea is to approximate u with a function that can be 

described with a finite number of parameters called degrees of freedom (DOF). Inserting 

this approximation into the weak form of the equation generates a system of equations for 

the degrees of freedom. 

 

2.7.2.1 A simple example: linear elements in 1D 

 

Assuming that a mesh consists of just two mesh intervals: 0 < x < 1 and 1 < x < 2, the 

linear elements means that on each mesh interval the continuous function u is linear. Thus, 

the only thing needed to know in order to characterize u uniquely is its values at the node 

points x1 = 0, x2 = 1, and x3 = 2. Denoting these as U1 = u(0), U2 = u(1), U3 = u(2), the 

degrees of freedom can be written as follows: 
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where  are in the form of piecewise linear functions. Namely,  is the function 

that is linear on each mesh interval, which is equal to 1 at the  node point, and equal to 0 

at the other node points. For example, 


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 


0

1
)(1

x
x  

where   

10  x  and 21  x  

 

The ϕi(x) are called the basis functions. The set of functions u(x) is a linear function space 

called the finite element space. For better accuracy, another finite element space 

corresponding to quadratic elements can be considered. Functions u in this space are 

second-order polynomials on each mesh interval. To characterize such a function, new 

node points are introduced at the midpoint of each mesh interval: x4 = 0.5 and x5 = 1.5. 

The corresponding degrees of freedom Ui = u(xi) is also introduced. Then, on each mesh 

interval, the second-degree polynomial u(x) is determined by the degrees of freedom at the 

endpoints and the midpoint. This in return derives: 
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where the basis functions now have a different meaning. Consequently, the function that is 

quadratic on each mesh interval is equal to 1 at the  node point, and equal to 0 at the 

other node points as seen in the next example.  
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In general, specification of a finite element space in the FEM is set by applying a set of 

basis functions. In order to simplify the description of these basis functions, the 

introduction of local coordinates (or element coordinates) is useful. A mesh element of 

dimension d in an n-dimensional geometry (whose space coordinates are denoted as x1,..., 

xn) can be considered.  

 

2.7.3 The Lagrange Element 

The preceding examples are special cases of the Lagrange element. The Lagrange element 

is usually considered with an order, a positive integer usually depicted using the symbol k. 

The function u in the finite element space are normally the piecewise polynomials of 

degree k. This indicates that, on each mesh element, u is a polynomial of degree k. In order 

to describe such function it is suffice to give its values in the Lagrange points of order k. 

These are the points whose local (element) coordinates are integer multiples of 1/k. For 

example, for a triangular mesh in 2D with k = 2, this means that there are node points at the 

corners and side midpoints of all mesh triangles. For each of these node points pi, there 

exists a degree of freedom Ui = u(pi) and a basis function ϕi. The restriction of the basis 

function ϕi to a mesh element is a polynomial of degree (at most) k in the local coordinates 

such that ϕi = 1 at node i, and ϕi = 0 at all other nodes. Thus the basis functions are 

continuous and the following constraint is derived: 
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The Lagrange element of order 1 is often called the linear element. The Lagrange element 

of order 2 is known as the quadratic element and all Lagrange elements are available with 

all types of mesh elements. 

 

2.7.4 Curved Mesh Element 

Using higher-order elements (that is, elements of an order > 1), is a good option since the 

solution has smaller error. However, the error also depends on how well the mesh 

approximates to the true boundary. In order to keep errors in the finite element 

approximation and the boundary approximation at the same level, it is wise to use curved 

mesh elements. Curve mesh elements are distorted simplexes that can be used to 

approximate a boundary better than ordinary straight mesh elements (if the problem’s 

boundary is curved). Mesh element is usually considered as the image of a standard 

simplex. For mesh elements that do not touch the boundary, they are straight and so there is 

no reason to make them curved. It is often better to use the same order k here as for the 

order of the (Lagrange) element. This is referred to as using isoparametric elements. The 

use of isoparametric elements means that u is not a polynomial in the global coordinates (if 

k > 1), but they exists only in the local coordinates. 
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2.7.5 Weak Constraints 

The boundary conditions in any fluid simulation are expressed either in terms of the fluid 

velocity at the boundary or the velocity gradient at the boundary. These are called Dirichlet 

and Neumann boundary conditions. A method for imposing a Dirichlet boundary condition 

for a fixed boundary in the FEM is by using the weak constraints. Weak constraints are 

representation of an alternative way to discretize Dirichlet conditions as opposed to the 

pointwise constraints described earlier. The idea is to regard the Lagrange multipliers µ(d) 

as field variables and thus approximate them with finite elements. This concept also 

introduces corresponding test functions ν(d). Multiplying the Dirichlet conditions with 

these tests functions and integrating them together can be useful to solve the case of a 

stationary problem in 2D: 

 

    (2.25) 

 

Sometimes the constraints can be modified to involve derivatives from dependent variables 

and with this, the Lagrange multiplier term can be improved with terms accounting for the 

dependence. These weak equations can be added to form a single equation. This treatment 

of the Lagrange multipliers as ordinary variables has thus produced a weak equation 
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without constraints. This can be useful if the Lagrange multipliers are of interest in their 

own right. It also makes it possible to modify the coupling term involving the Lagrange 

multiplier. The formulas just presented implement ideal constraints. In some situations, 

non-ideal constraints are useful, in particular, when the constraint involves non-tangential 

derivatives on the boundary. On the boundary, replaced the above Lagrange multiplier term 

by 

 

 

Using non-tangential derivatives in the constraint yields a better discretization because the 

Lagrange multiplier term (the constraint force) applies only on the actual boundary and not 

on the elements adjacent to the boundary. Both the non-ideal constraint and the ideal 

constraint variant of weak constraints are available when weak constraints are applied. 

Combining pointwise and weak constraints is beneficial if there are both types of 

constraints for some variable but if the constraints are in adjacent domains, the resulting 

discretization does not work. The pointwise constraints can be obtained from the (ideal) 

weak constraints formulation by using the basis functions: 

 

 

 

for the Lagrange multipliers and their test functions, that is, let 

 

    (2.26) 
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where δ is Dirac’s delta function. 

2.8 The Software FEMLAB 

FEMLAB is the engineering tool, first released in 1999, that performs equation-based 

multiphysics modeling in an interactive environment based on partial differential equations 

(PDEs).  

 

2.8.1 Advantages of the Software Package 

Solving PDEs is a challenge which requires time in order to set up the underlying 

equations, material properties, and boundary conditions for a given problem. The FEMLAB 

package provides a number of application modes that consist of predefined templates and 

user interfaces with equations and variables for specific areas of physics. Special properties 

allow the selection of, for instance, analysis type and model formulations. The application 

mode interfaces consist of customized dialog boxes for the physics in subdomains and on 

boundaries, edges, and points along with predefined PDEs. A set of application-dependent 

variables makes it easy to visualize and postprocess the important physical quantities using 

conventional terminology and notation.  

 

2.8.2 Predefined Boundary Conditions in FEMLAB 

FEMLAB offers predefined boundary conditions in the modeling. There are used regularly 

in the fluid dynamics problem and has been noted with high interest in the research being 

carried out. In the project direct use of these boundary conditions for two-dimensional 

problem have been applied in modeling the boundary of the ventricle wall, the valve 

leaflets, and also the inflow and outflow of the blood through the system.  
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2.8.2.1 Inflow / Outflow Velocity 

At an inflow or outflow boundary the fluid’s velocity field is specified as 

 

in 3D; in the 2D case, the last component is dropped. 

 

2.8.2.2 Outflow or Pressure  

Using the total stress tensor form, this boundary condition states that the total force on the 

boundary is a pressure force defined by p0: 

 

Using the viscous stress tensor form, the pressure is set to p0, and the viscous force is zero: 

 

 

This means that the implementation of the outflow condition for the total stress sensor form 

uses a Neumann boundary condition, which provides a better-posed problem than the 

Dirichlet boundary condition in the viscous stress tensor form. The latter boundary 

condition can still be useful, for example, if coupling of pressure to pressure field defined 

by another application mode is in an adjacent subdomain. An alternatively is to model the 

Dirichlet boundary condition for the pressure with direct implementation in the equation 

system by editing the boundary coefficients using the total stress tensor form. 
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2.8.2.3 Slip or Symmetry 

A slip condition means that the normal component of the velocity is zero 

 

and that the tangential component of the viscous force vanishes 

 

in 2D, and 

 

in 3D. This condition is equivalent to a symmetry boundary condition. 

 

 

 

2.8.2.4 No Slip 

A no-slip condition means that the fluid’s velocity equals that of the boundary, usually 

zero. This condition is normally use for static walls. 

 

 

 

2.8.2.5 Normal Flow or Pressure 

At a straight-out outflow boundary using the total stress tensor form, the normal component 

of the total force on the boundary is a pressure force defined by p0. Also, the tangential 

components of the velocity are zero. In 2D, this becomes: 
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In 3D, the boundary condition is: 

 

 

Using the viscous stress tensor form, the pressure is set to p0, and the tangential 

components of the velocity are zero. Also, the normal component of the viscous force is 

zero. In 2D this condition reads: 

 

 

2.8.2.6 Neutral 

FEMLAB treats a neutral boundary as if there were no boundary, which means that the 

total or viscous force vanishes. For the total stress formulation, this means that 

 

 

For the viscous stress formulation, 
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2.9 Conclusion 

The literature survey is an essential aid in understanding the many contributing areas for 

the research undertaken and knowledge from these domain expertises is included in the 

modeling and visualization in the project research. This chapter has focused on the 

techniques of the Arbitrary Lagrangian-Eulerian approach and its mesh movement 

mechanism as these are the main methods featured in the theses. An overview of the heart 

anatomy has been thoroughly discussed with the inclusion of the cardiac mechanics 

particularly on the left part of the heart. The methods analyzing the flow properties of the 

heart or the hemodynamics have been briefly revised. Although blood is extremely 

complex to be described in full detail, the basic principles presented are useful to capture 

the essential properties of blood flow. 
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3 Methodology 

 
 

Chapter 3 
Methodology 

   
I hear and I forget.  

I see and I remember. 

I do and I understand. 

 

Confucius 
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3.1 Overview 

The heart is considered as non-manufactured products or as an organic object. Recreation 

of the 3D shape of the heart is necessary to help with the understanding of its fundamental 

morphology, general and ultra structure of anatomy and to know its geometric 

configuration. A feasible approach to digitize the heart is by using the reverse engineering 

method. From raw heart data to digitized and reconstructed heart surface, the model is only 

then ready to be transferred to the finite element platform for the ALE analysis and 

modeling. The reconstructed heart provides the geometry that is the shape of the heart. In 

creating a model, the dynamic that is the physics have to be explored and incorporated 

virtually into the computer. 

 

3.2 Geometrical Modeling 

The main objective of this project is to simulate the blood flow pattern in the left ventricle 

of the heart, which requires extensive ALE modeling on the simplified 2D ventricle’s 

boundary. The model is supposed to show the simplified inner structure of the left ventricle 

with the right geometrical allocation of its chamber’s sub-domains and valves. In 

consideration of this, the data acquired should be able to give forth as much information of 

the organ aforementioned; with results that is applicable to use in later software 

environment for the ALE modeling. Regions of interest that is paid particular attention 

during the data acquisition are the chambers outer and inner structures and the valves. 
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3.3 Acquisition of the Heart Data 

A simplified surface model of the heart is needed for the purpose of preparation and 

acceptance of analysis in a finite element environment. Using the reverse engineering 

approach, raw data that represents the heart and essentially the left ventricle (LV) has been 

captured and used to recreate a sensible geometrical model that allows for visual 

penetration of its complex structure. Among expectations of the outcome from this session 

are for the model to encompass parameters that contributes to proper measurements of the 

fundamental aspect of the left ventricle such as the general structure of its walls in axial 

direction, diameter and shape of the ventricle valves (the mitral and the aortic), and the 

radius angle of those working valves that positions them at such in the chamber. The 

generated model is to be tuned in a format that will be recognized in finite element setting 

for the 2D ALE modeling. 

 

3.3.1 Reverse Engineering Processes 

The process of duplicating an existing component, subassembly, or product, without the aid 

of drawings, documentation, or computer model is known as reverse engineering. Reverse 

engineering can be viewed as the process of analyzing a system to identify the system's 

components and their interrelationships, create representations of the system in another 

form or a higher level of abstraction and to create the physical representation of that 

system. Reverse engineering enables the duplication of an existing part by capturing the 

component's physical dimensions, features, and material properties. Reverse engineering of 

mechanical parts involves acquiring three-dimensional position data in the point cloud 

using laser scanners or computed tomography (CT). Representing geometry of the part in 

terms of surface points is the first step in creating parametric surface patches.  
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A good polymesh is created from the point cloud using reverse engineering software. The 

cleaned-up polymesh, NURBS (Non-uniform rational B-spline) curves, or NURBS 

surfaces are exported to CAD packages for further refinement, analysis, and generation of 

cutter tool paths for CAM. Finally, the CAM produces the physical part. It can be said that 

reverse engineering begins with the product and works through the design process in the 

opposite direction to arrive at a product definition statement (PDS). In doing so, it uncovers 

as much information as possible about the design ideas that were used to produce a 

particular product. 

 

In this session, reconstruction of the inner left ventricle’s surface data for the ALE 

modeling in finite element software is described in graphical detail. This process has been 

identified with several major steps. Beginning with generation of point cloud data using a 

laser scanner, the scanned data is optimized to ensure the quality of the collected points by 

sampling and gap filling and finally ending with the creation of a surface wrap of the 

model.  

 

3.3.1.1 Generation of Points Cloud data 

 

An external scanner, GOM ATOS II was utilized to allow for generation of point data by 

hand-scanning the physical heart. The white-light scanning device, sometimes called a 3D 

scanner, collected the “raw” (x,y,z) point data on the left ventricle and directly mapped the 

points into Software Version 5, a platform that employs point data manipulation. The 

points are then stored as ASCII text files in the order they were entered, relative to the local 

coordinate system. During the digitizing process, the white light signal transmitted keeps 

track of the distance between the coordinate points. The generated sequences of points were 
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organized in a fairly random form, called point clouds of data. The distance was initially set 

to 0.01 inches but it was later reset to 1.0mm, adjustment made so as to accommodate the 

varied attention on simpler to more complex structure of the left ventricle. Further 

discussion on the topic is prepared in Section 2.9.7 of the literature review. The single 

arrow markings in both Figure 3.1 and Figure3.2 indicate the similar location of the mitral 

valve in both outer and inner left ventricle, where the inner structure is a sub domain of the 

outer. 

 

 

Figure 3.1: Generations of points cloud data of the outer layer of the left 
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Figure 3.2: Generation of points cloud data of the inner layer of the left 

 

To accurately scan all its sides, the organ is realigned each time it is moved. Three 

alignments points have been used as reference points so that the physical organ can be 

repositioned easily during the digitizing process. This is to be done when there are regions 

of the heart that could not be reached from the original position and when greater detail is 

needed in a particular region. The next figure presents more view of the outer side of the 

left ventricle that has been captured.  
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                      (a)       (b) 

Figure 3.3: More views on the outer side of the left ventricle. (a) Top half of the outer left ventricle and (b) 

bottom half of the outer left ventricle 

 

 

In Figure 3.3(a), the top half of the outer left ventricle is shown with two rings depicting 

the location of the aortic valve (left) and the mitral valve (right). Note that the aortic ring is 

much smaller than the mitral’s, suggesting the valves to be of different diameter size and 

perhaps structure. In Figure 3.3(b), the bottom half of the outer left ventricle can be seen. 

 

Among regions of the structure that are given considerable attention during this digitizing 

session are the valves themselves. The two working valves have been scanned separately 

from the ventricle’s chamber body in order to gain better view of their geometrical 

structures. They are aligned and scanned thoroughly using the same method as scanning the 

left ventricle illustrating the points cloud obtained on the front view of the aortic cylinder, 

the front view of the mitral cylinder, the top view of the aortic semilunar and the top view 

of the mitral bicuspid. Results from the scan are shown next. 
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     (a)           (b) 

    
     (c)            (d) 

Figure 3.4: Generation of point clouds data on the left ventricle valves. (a) the aortic cylinder, (b) the mitral 

cylinder, (c) aortic semilunar valve and (d) mitral bicuspid valve. 

 

Both valves, the aortic and the mitral, are noted to have been different in terms of structural 

representation, having the opening of the aortic valve to be semi lunar in shape, and the 

mitral valve consisting two segmented regions of unequal size. Again the difference here is 

considered to directly affect their functional aspect particularly to accommodate the blood 

inflow from the left auricle into the ventricle’s chamber and the blood outflow from the 

ventricle through the aortic valve. Since the recreation is targeted on just the basic shape of 

the inner left ventricle for use in a fast-moving, dynamic simulation, the accuracy of the 

scanning is not critical and the data size sampled was kept to be minimal. A summary of 

the number of points collected from the digitizing process are as depicted in Table 3.1 

below. 
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Table 3-1: Number of points sampled for each structure scanned. 

Geometrical Structure Points Cloud Collected 

Outer Left Ventricle (full) 260705 

Top half of the Left Ventricle 12853 

Bottom half of the Left Ventricle 4706 

The Aortic Valve 87610 

The Mitral Valve 59886 

The Inner Left Ventricle 3375 

 

3.3.1.2 Optimizing Scan Data 

 

Optimization of the scanned data has been proposed to eliminate data that is not sufficiently 

captured. One of the problems encountered during the scanning process was to get the 

scanning beam to squarely face the heart at all times. The organic heart comprises of 

mostly rounded and free-form features so the resulting scans are at times prone to having 

overlapping data of scanned regions. Preservation of best data was adequately maintained 

by eliminating data parallel to the scan beam.  

 

Scanning is also considered to be a ‘noisy’ operation and at times a certain amount of error 

is introduced to the scanned data. This is due to factors such as small vibrations in the 

scanning device, low accuracy of scanner calibration, or inadequate preparation of the 

physical object’s surface. The noise is identified by rough, uneven appearance on the 

surface model. Two errors have been mainly discovered to occur during the process: 

Gaussian noise and salt and pepper noise. The latter one occurs mostly at the valve edges, 

where the laser beam of the scanner hits two surfaces, resulting in a mean and erroneous 

data value. Noise reduction is carried out to reduce the noise with respect to the heart’s 

surface curvature. At a minimum reduction it is observed that noise in the curvature regions 

of the valve is higher as compared to reduction of noise at other smoothness, resulting in 

clearer depiction of the valve edges at medium and maximum reduction. It has also been 
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noted that high noise reduction has lead to large lost of data in the flatter regions suggesting 

that highest reduction is not necessarily convenient in order to maintain the quality of the 

data.   

 

           

          (a)    (b)    (c) 

Figure 3.5: Results of noise reduction on the heart’s surface curvature at (a) minimum noise reduction, (b) 

medium noise reduction and (c) maximum noise reduction 

 

3.3.1.3 Sampling 

 

A smaller set of points is often easier to work with. To sample points is to choose a smaller 

set of point representative of the original scan data. Two methods proposed for point 

sampling are the curvature and the uniform sampling. Uniform sampling, uniformly lessens 

the number of points in a point set. Subdivision of the model space into equally sized 

cubical cells deletes all but one from each cell. It is still however maintains the accurate 

representation of the point cloud model. 

 

The model recreated is expected to have a clear delineation of its wall edges and sub 

domains for later boundary modeling. In consideration of this, sampling of the heart’s 

curves is also considered a necessity. Curvature sampling samples points based on the 
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model surface curvature so as to produce an accurate wrap model with fewer points; points 

that lie in a high curvature region remain in order to maintain the accuracy of the surface 

curves, and points in flat regions requiring less detail have a large number of points that is 

deleted. Having points in a point set reduced, has practically lessened the storage space 

used, leading to an increase in the processing speed. Figure 3.6 portrays the curvature 

sampling at (a) 30, (b) 65 and (c) 100 sample percentage, showing that points on curved 

areas are more prominent after sampling is done. 

 

           

          (a)             (b)    (c) 

Figure 3.6: Results from curvature sampling on the surface model at (a) 30% curvature sample, (b) 65% 

curvature sample and (c) 100% curvature sample 

 

3.3.1.4 Surface Wrapping  

 

The wrap operation is done to construct a polygonal surface as seen in Figure 3.7. The 

process of surface wrapping takes the inner left ventricle model after curvature sampling, 

joins disconnected surfaces, and removes interior and overlapping surfaces. The main 

benefit of this process is that it drastically reduces time spent on surface preparation. The 

curvature samples obtained have been organized in accordance to three groups of points 
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distance measurements, 10mm, 5mm and 2mm. All samples were plot in xyz global 

coordinate. 

 

At 10mm point distance, Figure 3.7(a), the model is seen with rough plotting that outlines 

the model’s edges but lacking the data to wrap the surface. At 5mm point distance, Figure 

3.7(b), the chamber’s body has enough points data for generation of a surface wrap, but the 

valves is left with considerable holes after wrapping. At 2mm point distance, Figure 3.7(c), 

the points in the model are tightly connected to each other, with regions of the valves well 

covered and model has better chance to have a better quality surface wrap.  

       
(a)    (b)    (c) 

Figure 3.7: Results from polygonal surface reconstruction at (a) 10mm point distance, (b) 5mm point 

distance and (c) 2mm point distance 

 

These point distance samples are then wrapped for surface creation. Figure 3.7(a) shows 

wrap surface at 10mm point distance resulting in poor surface wrapping of the model. 

Figure 3.7(b) shows wrapping at 5mm point distance, the chamber’s body surface is seen in 

a better shape but the regions of the valves have a number of holes that needs a lot of 

patching and repair. Figure 3.7(c) shows wrapping at 2mm point distance, well determined 
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point sampling has lead to better preparation for a surface wrap of the inner left ventricle 

model. 

 

           

         (a)     (b)     (c) 

Figure 3.8: Results from surface wrapping on the left ventricle data. (a) Surface wrapping at 10mm point 

distance, (b) surface wrapping at 5mm point distance and (c) surface wrapping at 2mm point distance point 

distant 

 

3.3.1.5 Filling up the holes 

 

Regions with missing data in the model are filled to close the gaps that may have been 

introduced during the scanning process. When the scan data is wrapped, these holes or gaps 

can appear in the surface of the model. The operation constructs a polygonal structure to fill 

the hole, and both the hole and the surrounding region are remeshed so the polygonal 

layout is organized and continuous. Some of the holes were filled up manually by marking 

the beginning and ending vertices of the hole. Some segments of the hole or boundary edge 

were filled partially, to clean up the boundary edge of an open surface, where there’s no 

need for a complete closure of the particular surface. After holes are filled up, the number 

of points decreases whereas the number of triangles in the model has increased. A 

curvature based filling has been opted to ensure the polygonal structure used to fill holes in 
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high-curvature regions and is curved to match the surrounding area. For regions with flatter 

polygonal surface, flat filling is used which is more suitable for planar regions. 

 

Figure 3.9(a) shows the left ventricle surface wrapped polygonal model. The valves are 

highlighted in yellow, and the ventricle’s chamber in blue. The model’s top view, Figure 

3.9(b), provided an insight to the structure of the valves opening, located both at the 

cylindrical base. The semi lunar aortic and the bicuspid of the mitral’s can clearly be seen 

in the wrapped surface model. 

 

       

(a)    (b) 

Figure 3.9: The left ventricle surface model. (a) model front view and (b) model top view 

 

 

The resulting 3D surface model reconstructed from these tasks is used in the creation of a 

2D solid model of the heart. It is a heavy requirement for the ALE modeling especially in a 

finite element environment. A simple 3D rendition of the model is available for display 

purposes (Refer to Appendix A). 
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3.3.2 Data Measurements 

The surface model of the left ventricle has further been analyzed to get the measurements 

on some of the important boundaries. The ALE modeling requires an approximation of the 

diameters of certain section of the left ventricle. The aortic and mitral’s are among those 

that were paid close inspection. Using these spatial information solid modeling for the ALE 

analysis can be carried out. The software measures regional shape of the left ventricle in 

terms of radial distance from a long axis (center axis) constructed from the centroid in 

between both the aortic and the mitral annulus to the most distant point on the left ventricle. 

Regional shape is analyzed as radial distance to the ventricular surface from the center axis. 

For orientation the centroid of the aorta at the level of the aortic valve is placed at 90 

degrees. The left ventricle is then divided into several segments. Regional shape in each 

segment is calculated as the mean radial distance of the points lying within that segment to 

the center axis.  

 

Figure 3.10(a) denotes the wrap surface of the inner left ventricle model with arrow 

markings indicating regions of interest that are to be considered for diameter and length 

measurements. Figure 3.10(b) shows the location for calculation of the crease angle 

between the aortic and the mitral valves. It has been discovered that the cylindrical part of 

the two valves are in a certain mode of angular attachment towards each other contributing 

to the manner in which the ejection fraction of the blood from the mitral’s inflow and out to 

the aortic occurs. The crease angle computed shows a slanting of about 27.87 degree 

separation of the two working valves. 
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             (a)    (b) 

Figure 3.10: Regions of interest considered for the left ventricle measurements. (a) length and diameter 

measurements and (b) the crease angle calculation 

 

Measurement is done using CAD software, which computes the distance between two 

manually defined points, singled out as labeling of [1] and [2] on the model. Color coded 

lines appear on the models with labels next to each line. The color corresponds to the axes 

in the model coordinates and provides an understanding of the distance on each of the axes. 

Highlighted in yellow is the distance with values of the axes calculated in millimeter.  Note 

that the diameters obtained on the chamber’s body are largest at the centre, with smaller 

width at the top and bottom of the body. It is a rather justified indication that a simplified 

version of the ventricle’s body for the ALE solid boundary modeling should take the shape 

approximation of an oval. The detail measurements can be referred in Appendix B.  
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3.4 Solid Modeling  

The preceding section discussed the reconstruction of the physical heart into a three 

dimensional surface model and during the process, important knowledge on the anatomy of 

interest has been gathered and thoroughly explained. The information then collected is now 

used for the creation of a two-dimensional (2D) solid geometrical model of the heart. This 

2D solid geometry model has been identified as a strong requirement to cater to the many 

constraints a surface model has. A 3D surface model without doubt has enough attributes to 

give a good physical representation of the heart but it is not directly applicable to handle 

the complex mathematical and physical formulation of the ALE modeling especially in a 

finite element environment. The most important feature of an ALE model is the insertion of 

partial differential equations (PDE) on the model boundaries. In order to achieve this target, 

creation of domains, subdomains and boundaries; with extensive definition of their points 

and edges made 2D solid modeling of the geometrical heart an important consideration.  

The 3D surface model would not be able to accommodate to these requirements and even if 

it could cater to the sort of meshing a finite element solver needs there is still a great need 

of a powerful computational supply to guarantee a complete calculation of the PDE 

equations in all three dimensions.  

 

It has been a trade to simplify the properties of the solid geometry as complex geometrical 

representation would require a much harder effort to simulate since the main element to a 

simulation is the computation of the governing equations on the solid modeling. It would 

be wonderful to represent the left ventricle as a 3D model instead of 2D yet it is an 

unfortunate that the complex mathematical formulation needed in the calculation would 

delay the variables design resulting in a much longer computing hours and resources. The 
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coming subsections will first lay out the creation of the 2D solid modeling of the heart, and 

on with the ALE modeling, on the proposed finite element platform, FEMLAB.  

 

3.4.1 2D Solid Modeling in FEMLAB 

FEMLAB (Finite Element Method Laboratory) is a finite element platform which 

comprises tailored modeling solutions for several existing engineering domains; structural 

mechanics, chemical engineering and electromagnetics. The software facilitates modeling 

of all physical phenomena based on partial differential equations (PDEs), such as heat 

transfer, wave propagation and fluid flow. The model equations, or physics, are applicable 

in a ready-to-use form, or freely specified to suit any type of physical phenomenon such as 

linear, non-linear or time dependent analysis and simulations. Several problems can be 

combined and coupled in a single model, also called multiphysics, providing a very 

straightforward modeling process with a minimum of non-realistic assumptions. 

 

3.4.2 Modeling of Curves and Solid Objects 

 

The goal of this section is to describe the solid geometrical modeling in FEMLAB. The 

concepts of solid modeling and boundary modeling are to be explained. In FEMLAB two 

dimensional solid modeling and boundary modeling is the fundamental element for the 

creation of 2-D geometry objects. A hierarchical inheritance structure of the 2D geometry 

classes in FEMLAB is laid out as follows: 
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Figure 3.11: Hierarchical Inheritance Structure of the 2D Geometry Classes 

 

In the hierarchical structure it can be seen that a 2D geometry object in FEMLAB contains 

object of the class geom2, solid2, curve2 or point2, all called as solid object, curve object, 

or point object respectively. Some of these objects on their own contain several other 

objects of a lower hierarchy; the solid has rect2, ellip2, square2 and circ2, and the curve 

object is represented by rect1, square1, ellip2 and circ1. The class geom2 is a super class of 

all 2D geometry classes. It is a hybrid object that combines the features of a solid object, 

curve object and point object. Recreation of the 2D left ventricle model in the project uses 

these features to handle both the boundary modeling and solid modeling required. 

Implementation of both modeling on the heart model is explained in the next subsections.  

 

3.4.2.1 Curves / Boundary Modeling 

 

Curves are considered as objects which represent the outline boundaries to solid objects. In 

the physical world the curves of an object are seen as lines with certain degree of 

proportionality; they could take the form of straight lines or arcs of circular or elliptical 

geom2 

solid2 curve2 point2 

rect2 ellip2 

square2 circ2 

rect1 

square1 circ1 

ellip1 
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attributes, and mathematically, they are read as production of a well constructed set of 

rational Bezier curves. A rational Bezier curve is a parameterized curve on the form 
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are the Bernstein basis functions of degree n. ),( iii yxb   are the controlling vertices, and 

iw  are the weights which should always be positive real numbers to get a properly defined 

rational Bezier curve. The maximum degree n of the curves is provided using a special 

function “fldegree”. A rational Bezier curve has a direction defined by increasing 

parameter t. This direction is used to uniquely determine subdomain number to the left and 

to the right of a curve.  

 

The software package used to model the curves and solid objects utilizes a special draw 

mode that offers several ready-made functions of lines and arcs on a two dimensional grid 

axes as the platform. The spatial grid and axes has been used for the modeling with an 

equal x and y spacing, adjustment made to the settings so as to get the right view to model 

the geometry of interest. Using specified points as reference perimeter to denote the 

location of the start and end point of certain lines or arcs, lines are created using the line 

option and curves are modified using the 2
nd

 and 3
rd

 degree Bezier curves. The default 

names for the points are PT1, PT2, PT3, etc. and for the Bezier curves; B1, B2, B3, etc. and 
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these markings appeared on each of the created lines and arcs. Figure 3.12 shows some of 

the examples of the functions used in the early creation of the curves model. In Figure 

3.12(a), B1 indicates a straight line in between two specified points, PT1 and PT2. In 

Figure 3.12(b), B2 is a boundary with a straight line from PT3 and PT5 and a 2
nd

 degree 

Bezier arc pulled in the direction of another point, PT4. PT6, PT7, PT8 and PT9 in Figure 

3.12(c) define the reference perimeters for the creation of the arcs and curves on B3. The 

aforementioned boundaries are highlighted in red for clarity.  

 

 
                       (a)        (b)           (c)  

 

Figure 3.12: Example of functions used in the curves modeling. 

 

These lines and arcs of curves went through further manipulation to get the right depiction 

for the geometrical representation of the left ventricle model. The surface model studied in 

the previous section has been compared to create a simplified version of the domain. Figure 

3.13 shows the result of a comprehensive curve and boundary modeling of the two-

dimensional replica of the left ventricle model. Stitching of the conjoining ends of the 

curves has been done to form several closed domains; B1 represents the boundary to the 

mitral cylinder, B2 is the boundary model to the ventricle’s chamber body, and B3 

represents the boundary to the aortic cylinder. In the figure, the two working valves of the 

left ventricle is described with boundary B4 and B5, both representing simplification 

modeling of the mitral and the aortic valves respectively. These isolated domains have been 
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constructed part by part using the information gathered on the geometry and careful 

comparison has been made with the corresponding domains identified in the surface model. 

The mitral valve on the right has been tilted according to the identified crease angle with 

the centroid of the aortic cylinder fixed at 90 degree for better orientation. These free 

boundaries have been assembled in such manner before they are coerced and laid on each 

other for the formation of solid objects. Explanation on the solid modeling of the left 

ventricle is carried out in Section 3.4.2.2. 

 

 

Figure 3.13: Boundary modeling of the left ventricle model with five different closed domains created 

separately. 

 

Figure 3.14 provides an example of the modeling done to create the aortic cylindrical 

boundary, depicted as B3 in Figure 3.9. In Figure 3.14(a), a four-sided geometric shape 

(B1) created using the line functions and an elliptic curve (B2) has been used to roughly 

plot the boundary for the cylinder. The boundaries are split into several smaller regions; 

B3, B4, B5, B6, B7, B8, B9, B10 as seen in Figure 3.14(b). Three of the boundaries; B4, 
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B9, and B10 is deleted in Figure 3.14(c) resulting in the boundary model described in 

Figure 3.14(d). The geometry has been observed to have two curves; B7 and B8, protruding 

outside the cylinder body, which require further modifications to cut both boundaries into 

halves. In order to solve the problem, two additional lines have been added to part the 

excessive boundaries from the main region of the cylinder body as seen in Figure 3.14(e). 

Splitting of the elliptic curves and the new lines has introduced several new curves and 

lines sections; B5, B10, B11, B12, B13, B14, and B15, as seen in Figure 3.14(f). Leaving 

only the surrounding cylinder base that is described by B4, B8 and B9, and two of the 

elliptic curves; B13 and B14, all of the other unwanted boundaries have been deleted in 

Figure 3.14(g). The final product is depicted in Figure 3.14(h), a boundary model labeled as 

B3. 

 

     

         (a)                 (b)   (c)            (d) 

    

         (e)      (f)   (g)            (h)  

Figure 3.14: The curves modeling of the aortic cylinder 
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3.4.2.2 Solid Modeling 

A solid object is allowed to have a boundary part and an interior part. It has been 

considered for the solid object created to consist of internal borders that separate internal 

subdomain as solid object always contain one or more subdomains. These subdomains are 

important to the ALE modeling as it is where specification of different material properties 

in different regions of a solid are made. Additional points and borders can be used to 

control the distribution of the mesh inside a solid object. This is useful for the post 

processing purposes. The boundary of a solid, including the borders, consist a number of 

edge segments. A solid is completely defined in terms of its boundary, and optimally its 

internal borders, and as such, it is said to have a boundary representation.  For example, a 

primitive solid rectangle or a solid square has a boundary that consists of 4 line segments 

and one subdomain. A primitive solid circle or solid ellipse has a boundary that consists of 

4 circular or elliptical arcs, and a single subdomain.  

 

Formation of solid objects is done by using Boolean operations, a method that is considered 

suitable for rapid generation of complex geometries. Three major operations; union, 

intersection and difference are used on a set of primitive solid objects - square, rectangle, 

circle and ellipse. Objects that are formed as a combination of primitives are called 

composite solid objects. A composite object can have any number of boundary curves of 

different kind, e.g., lines or arcs. The actual number of boundary curves depends on how 

the composite solid was created. Composite solid objects have also been created using 

boundary modeling. The operators +, *, and – are used to form the set of points for the 

resulting composite object. The operators; +, the set union operator, and *, the set 

intersection operator, have the same precedence. The operator -, the set difference operator, 
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has higher precedence. The precedence has been controlled by using parentheses. The 

resulting composite object is the set of points for which the set formula evaluates to true. 

By default, the set formula contains the union of all selected objects. Each geometry object 

is automatically given a unique name by the GUI. The default names of the circles are C1, 

C2, C3, etc; R1, R2, R3, etc., for rectangles; and E1, E2, E3, etc. for ellipses. Squares, 

although a square is just a special case of a rectangle, are named SQ1, SQ2, SQ3, etc. 

Composite objects are named CO1, CO2, CO3, etc. The name is displayed on the objects 

itself. Any names can be used as long as the object is not left blank. Alteration of the names 

and the geometrical properties of the objects can be done by editing them during the 

drawing.  

 

In this section, formation of the solid modeling of the left ventricle from the boundary 

model is described. Coercing all curves object into solids has been done to each separated 

boundary B1, B2, B3, B4, and B5 individually. The function coerce to solid is a tool 

utilized to make sure the solid objects created are non-empty, since an object of the class 

curve consists only a boundary, which can either be open or closed. Figure 3.15(a) depicts 

the solid coercing done on the model’s closed boundaries. All solid objects created are by 

default components of the class composite object, indication done using the symbol CO. In 

the figure, CO1 is the solid form of the boundary B1, CO2 represents the solid form of B2, 

CO3 the solid form of B3 and so forth. The solid models are then attached together using 

the union Boolean formulation resulting in the model described in Figure 3.15(b).  
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         (a)                        (b) 

Figure 3.15: Solid Modeling of the Left Ventricle Model 

 

 

Figure 3.16(a) shows the use of three rectangular objects; R1, R2, and R3 to create the 

model’s prototype valves, with R2 and R3 tilted to several degrees according to the angle in 

which the sides of the valves stand. In Figure 3.16(b), the primitives have been patched and 

overlaid on top of each other using the function union to form a composite object, CO7 as 

seen in Figure 3.16(c). Splitting of the object using the function intersection and difference, 

as described in Figure 3.16(d) into singular divisions is important in order to distinguish the 

domains apart from each other for ease of manipulation. Unnecessary parts on the model 

are selected and are seen in red in Figure 3.16(e). These objects are dismissed by deleting 

them one by one resulting in the geometry in Figure 3.16(f). The lines inside the geometry 

are identified as interior boundaries and have been erased to form a simplified version of 

the left ventricle valves, represented as CO5 in the Figure 3.16(g). 
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       (a)            (b)      (c)           (d) 

   
         (e)                 (f)       (g) 

Figure 3.16: The solid modeling of the aortic valve 

 

 

3.4.2.3 Subdomains and the Split Operation 

 

When using the union operation, internal borders will partition the resulting solid into 

subdomains. These subdomains can be used to specify different material properties of the 

model. It is possible to split a solid with more than one subdomain into collection of 

minimal solids that consists of only one domain each. This operation has been used on the 

solid valve, seen to contain only singular domain in Figure 3.16(g), for the creation of the 

simplified valve leaflets. In a 2D representation of the left ventricle, it has been identified 

that the motion assumed to mimic the opening and closing of the valve’s leaflets is a 

continuous linear horizontal movement of lefts and rights from the valve’s boundary edges 

towards the centre of the valve’s orifice and vice versa. In the design framework, the valve 

has been considered to have two subdomains, with each solid domain representing specific 

moving boundary conditions to cater to the periodic opening and closing of the leaflets. 

The illustration in Figure 3.17(a) indicates the conceptual design of the subdomains using 

boundary modeling. A vertical boundary line is used to split the valve into two subdomains, 
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with each subdomain defined by three boundary edges and the line splitting in the middle. 

B3, B4, B1 and B6 represent the first subdomain on the left and B3, B5, B2 and B7 

represent the other on the right. Both boundary subdomains are coerced into solid models 

as seen in Figure 3.17(b). In the simulation, certain boundary calculation will force the 

specified material properties of the solid subdomains in a mode of horizontal movement; 

from boundary B1 right towards the center, B3, synchronously with the movement of 

boundary B2 to the left reaching the center B3, the motion indicating the closing of the 

valve. Periodically, another set of boundary calculation will reverse the movement of the 

solid properties from the centroid axis, B3, out to the right reaching the boundary B2, and 

to left towards the boundary B1, indicating the opening of the valve.  

       
(a)         (b) 

Figure 3.17: (a) Conceptual design of the subdomains using boundary modeling and (b) coercion of the 

boundary subdomains into solid 

 

 

The simplification of the left ventricle using two – dimensional boundary and solid model 

created is considered ready for use as basic in the ALE modeling on FEMLAB. The 

approach in discussion is specifically and extensively laid out in the next section to model 

the blood flow and the movement of the mechanical valves leaflets. Starting with the 

conceptual settings of the Lagrange and Eulerian reference grids, the manipulation of the 

controlling equations on geometry curves and domain boundaries using partial differential 
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equations,  the insertion of the field variables and PDE equations to represent mesh 

displacement and mesh velocity, the initialization of boundary conditions, the meshing of 

the solid domains and subdomains for integration of the time steps, and finally the 

explanation on the type of solver used on the two-dimensional problem.  

 

3.5 Modeling ALE on the Left Ventricle  

The opening and closing behavior of the valve is a delicate interaction not only between the 

blood flow and geometrical and stiffness properties of the heart valve leaflets, but also, the 

interaction must consider the influence of the aortic and mitral’s roots and walls stiffness 

properties, which can change the characteristics of the inflow and the outflow of the blood 

in the ventricle chamber considerably. Numerical analysis of the opening and closing 

behavior is complicated by the two - dimensional finite motion of the very flexible leaflets 

in a compliant system of fluid and structure. In modeling the mesh movement in this fluid-

structure interaction, the fluid domain is identified to be conveniently described with 

respect to an Eulerian reference frame while a Lagrangian formulation is considered a more 

appropriate approach for the structure domain.  

 

However, these formulations are conceptually incompatible on a single domain; they are so 

differing individually as to be incapable of harmonious combination or coexistence 

together. The reason being is because of the characteristics in which both reference frames 

behaves; the Eulerian sets a fixed grid, non-movable, that only allows for flux to flow 

through it, prediction of the flow done by measuring the net flow across a certain region, 

while the Lagrangian sets a similar grid only this time the grid is fixed to another movable 

reference frame together with a material of interest and then as the material deforms the 
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grid deforms with it. Another character that is defining to the diversity of the two grids is 

the way they handle the controlling equations that govern the model. For example, in the 

case of the Lagrangian, conservation of mass is directly preserved as all the grid sections 

has been initialized with equal amount of mass, but for the Eulerian, conservation of mass 

is taken into account openly by measuring the flux in and out of each grid section (further 

discussion on the matter of mass conservation can be referred to in Section 2.7.5 of the 

literature review). And so, in order to solve this problem, the use of an Arbitrary Lagrange - 

Eulerian (ALE) formulation is introduced.  

 

The word arbitrary in itself brings forth the meaning of a value or a quantity of function 

that is introduced into the solution of a problem. The arbitrary function alternately switches 

any value or form derived from a solution so that the solution may be made to meet special 

requirements according to the physics of a problem. One example of the physical problem 

analyzed in the project is the expansion of the aortic and mitral boundaries caused by 

internal fluid pressures. In the fluid domain, the internal fluid pressures are initialized and 

calculated on the fluid mesh using the net flow method and the result is shared with the 

structure domain to see its impact on the boundaries. The result from the impact is then 

used to update the internal fluid pressures and the process iterates until the system reach a 

state of convergence. This back and forth characteristic of the physical problem invokes a 

continuous adaptation of the fluid mesh and requires for a special method such as the 

arbitrary to monitor the changes in the domain without having to do modification to the 

topology geometry. However, with respect to the large leaflet motion immersed within the 

computational fluid domain it is generally difficult to adapt the fluid mesh in such a way 

that a proper mesh quality is maintained without changing the topology. In the matter of 

controlling the mesh quality, which is also a rather important physical issue, the arbitrary 
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behavior of the ALE is considered beneficial as it can direct the system to perform 

remeshing on a particular area with decreasing mesh quality.  

 

In this project the software package FEMLAB is identified as a prime preference for the 

reason that it supply for both Lagrangian and Eulerian settings, carries the idea of 

association between moving meshes from both fluid and structure domains in the ALE 

modeling, provides facility to handle coupling between the reference systems, allows for 

separate and combined PDE calculations (when necessary) on the multiple boundaries and 

domains of the geometry, sets the mesh in a finite element environment, and utilizes a 

predefined time-dependent solver for the PDEs calculation which provide solution to the 

proposed physical problem. The finite element platform utilized by FEMLAB is also 

identified most appropriate as the base to model the mesh movement.  

 

3.5.1 Modeling Mesh Movement for the ALE 

The software package FEMLAB utilizes the finite element environment and the ALE to 

form the basis of the moving mesh method. Two methods; mesh displacement and mesh 

velocity, have been suggested for the determination of the mesh movement. It has been 

identified that the general PDE for the mesh movement is based on the equation of motion 

used in continuum mechanics and for the most part there are taken from respective domains 

such as the solid and fluid mechanics. Implementation of field variables identified from 

these domains is utilized in FEMLAB with the intention to handle the mesh displacement 

and mesh velocity in the model.  
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Mesh displacement is defined as function of the Cartesian spatial coordinate and time. An 

analogy used to describe mesh displacement is to assume the mesh to have isotropic and 

elastic-like behavior, which is similar to the refined theory of solid mechanics. In order to 

demonstrate the techniques used in the project, the valve structure has been programmed 

with density and a Neo–Hookean hyperelastic behavior summarized in Table 3.2 below. 

 

Table 3-2: Field Variables Representing Properties of the mesh Displacement 

Mesh Displacement Field Variables Values 

Density (ρ) 960Kg/m³ 

Coefficient (u) 6204106 N/m² 

Bulk Modulus  20u 

Poisson Ratio (v) 0.45 

Elastic Modulus 1.017N/m² 

 

By means of the generalized Hooke’s law, the stress-strain relationship in the linear elastic 

behavior is numerically computed using the (Cauchy) stress tensor. The value of the stress 

tensor which is gained from the properties of the valve structure (as depicted in the Table 

3.2) is used as input for the PDE equation that governs the mesh displacement. Mesh 

displacement is the method used to control the plane strain of the reference grid, which 

basically tracks where the mesh moves and the method is done by specifying the 

displacements using the surface tractions. Surface tractions are the load properties that 

tracks the movement made by a body that moves on the ALE grid. The tractions are given 

by properties such as the Poisson’s ratio (nu), body force in x – direction (Kx), body force 

in y – direction (Ky), and density (rho), all acting as loads that affect the constrained 

movement of the structure.  
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Mesh velocity on the other hand is fundamentally used to track how fast the mesh is 

moving, movement identified as fluid motion of the blood with the velocity of the mesh 

observed by computing the net flux of the blood across the grid on specific areas. The fluid 

in the model is a blood-like substance with a density and dynamic viscosity in similar 

comparison to the discussion in Section 2.3 of the literature review. In brief, the properties 

are shown in Table 3.3. 

 

Table 3-3: Field Variable Representing the Mesh Velocity 

Mesh Velocity Field Variables Values 

Density  1060Kg/m3 

Dynamic Viscosity  0.0054Pa-1s 

 

 

These initial loads for the mesh velocity are taken in the FEMLAB computation to help 

solve the partial differential equations on the original mesh. The generated results are 

boundary conditions that are used to set new inputs which serve the goal of producing a 

new set of mesh coordinate. Based on physics programmed for the boundary conditions in 

the new mesh, FEMLAB again solves the PDE at a different time step with new sets of 

displacement loads and velocity net flux. At each time step, adjustment to the mesh is done 

and along the process, creation of new mesh coordinates is completed which would record 

new movements to the mesh.  

 

The process is iterated until it satisfies every time step specified. Consequently this would 

result in a constant mapping of change of the domain boundaries which depicts the 

deformation or distortion of the problem geometry. It can also be said here that the 

interaction between fluid and structure of the model comes from the coupling of the mesh 
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velocity and mesh displacement which are computed from the physics of the boundary 

conditions that governs the mesh movement problem. In the next subsection, determination 

of the left ventricle boundary conditions used to solve the PDE for the mesh movement is 

discussed.  

 

3.5.2 Coupling of Reference System for the Mesh Movements 

The basis of an arbitrary Lagrangian – Eulerian (ALE) formulation is the use of three 

separate coordinate systems:  

(i) The Eulerian reference system which is fixed in space for the mesh velocity ( f ).  

(ii) The Lagrangian reference system which moves with the material for the mesh 

displacement ( s ).   

(iii) The computational reference system ( g ) which can move arbitrarily in space. 

 

Using solid modeling previously explained in section 3.4, the two - dimensional ventricle 

model is spatially discretized into triangular mesh containing information on the points, 

curves and edges. These points are considered an essential requirement to track the material 

in the Lagrangian system by using its point coordinates as reference on the movable grid. 

These material points are identified on the other two grids using their position vectors in 

both the Eulerian grid and the arbitrary reference grid. The governing concept of the ALE 

formulation is to let both Eulerian configuration and Lagrangian configuration moves and 

deforms independently over a fixed referential configuration.  
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This introduces the spatial motion   as the resulting degree of freedom generated by the 

Eulerian system. Consequently, it also introduces physical motion   of the deforming 

solid material by the Lagrangian system. These two properties are created at any 

occurrence of movement or deformation on the two working grids but they are independent 

of each other, as it is emphasized that both spatial and physical motions have different 

spatial coordinates albeit being mapped onto the same arbitrary configurations.  Figure 3.18 

denotes the relation between various configurations and motions.  

 

In order to track the physical movement of the material, physical quantities in the fluid–

structure problem are defined with respect to the connection between the Eulerian and the 

Lagrangian systems, but this only cater to solving the physics of the problem. Simulation of 

a computational solution to the fluid–structure problem can only be made available by 

manipulation of a computational grid, and so in the case of this project the arbitrary grid 

has been identified to provide the base for this simulation. Linking the Eulerian system to 

the arbitrary grid and map the end result of the fluid – structure problem as a finite element 

formulation of the interaction can only be obtained if the Eulerian reference system is in 

direct relation to a computational reference system.   
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Figure 3.18: Relation between moving configurations and motions 

 

In Figure 3.18, three grid configurations are shown; at the top left is the material 

configuration (PZ) which denotes the Lagrangian reference system, spatial configuration 

(PY) on the right hand side of the figure signifies the Eulerian reference system, and at the 

bottom, referential configuration (PX) is the arbitrary grid where all movement and 

deformation from both Lagrange and Eulerian systems are referred and mapped onto.  

 

Several sample points, sP , fP  and gP  has been used to illustrate the spatial relationship 

shared by the points. The three points are actually similar in the sense that they represent 

identical spatial configuration in the problem only that having been referred in three 

different systems does not allow them to have the same spatial coordinates. In other words, 
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a material point in the Lagrangian system is identified with its position vector fP  in the 

Eulerian system and gP  in the computational reference system (the computational grid).  

 

B1, B2 and B3 are examples of changes that occurred in the systems. B2 demonstrate a 

change or deformation in the spatial configuration of fluid properties tracked by the 

Eulerian system, resulting in generation of spatial motion . The information gathered from 

the spatial motion is sent to the awaiting Lagrangian system, and at the same time step it is 

also sent to the fixed computational grid for reference mapping. The Lagrangian system 

accepts the spatial motion information and uses it to calculate and observe the impact made 

by the fluid on the structure of the deforming solid material geometry. Subsequently this 

introduces physical motion   with information on the deformation shown in the figure as 

B1 and this information is also mapped on the fixed computational grid for reference 

mapping. On the fixed grid, both B1 and B2 are mapped in accordance to their vector 

positioning and seen as B3 on the topology of the arbitrary grid. Three simple equations 

explain the coupling between the systems, which shows the representations of the domain 

derivatives in relation to each other.  

 

These relations portrayed in the modeling are all based on the laws of continuum 

mechanics, such governing laws used are the balance laws which becomes the principle in 

deriving the PDEs for Eulerian and Lagrangian continuity equations in the conservation of 

mass, and Newton’s second law that explains the conservation of momentum in the model. 

A more elaborate and comprehensive numerical explanation is laid out in Section 2.4.2.1 in 

the literature review. 
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3.5.3 PDE for the Mesh Movement 

The aim of this section is to introduce several PDEs used in the ALE formulation to handle 

moving boundaries in a fluid – structure problem. In the preceding section, it has been 

explained that coupling of the reference systems for the mesh movement requires   for the 

systems to be related to each other. The connection between the reference systems has been 

identified to follow the laws of continuum mechanics in order to derive the PDEs for both 

the Eulerian and Lagrangian equations. In accordance to the modeling for the left ventricle 

model, three PDEs; the Navier Stokes equations, Balance equations, and Weak form 

equations have been identified as most suitable for the task. The numerical account of the 

Navier Stokes and the Weak are laid out next, with description of the balance equation 

extensively covered in Section 2.7 of the literature review. 

 

In FEMLAB, the formation of the ALE model is carried out by representing field variables 

as the mesh displacement and mesh velocity. A mapping from an original domain   to the 

deformed domain   is considered and defined by  

 

x(X,Y,t), y(X,Y,t), X,Y    , x,y      , t   R+                    (3.1) 

 

with Jacobian inverse 
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Using the PDEs, FEMLAB solves the equations on the original mesh (of the original 

domain) but adjusts the equations to account for the mesh movements. The method covers 

situations in which the topology of the geometry does not change during the simulation and 

a suitable PDE for the mesh velocity exists, hence deriving the Navier Stokes equations in 

written form as 

 



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in the moving coordinate system, where  ),( YX  is the mesh velocity and ^ denotes a 

test function. The deformed velocity derivatives can be expressed using the original 

velocity derivatives 
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The integration of the Weak equations on the original domain derives a set of equations 

that can be solved on the fixed mesh.  
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
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For the moving boundaries of the valve leaflets, a prescribed moving boundaries 

formulation has been used to solve for the mesh velocity using the Poisson’s equation in 

the moving coordinate system. The following equation is used:  
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                                                where,     x
dt

dx
  

and,    y
dt

dy
   on    

 

with initial condition YyXx  , . Solving movement in the moving coordinate systems 

makes the problem nonlinear with higher degree of freedom but often allows for larger 

mesh movements. This consequently provides a velocity field for the boundary. 
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3.5.4 Schematic Representation of the Mesh Movement Method 

 

In this section, a schematic representation of the ALE method is offered. The idea is to 

scheme out the solution procedure between the passing interface of the fluid, structure and 

the arbitrary (computational) domain. Several constants have been identified as key 

elements to the model; surface traction, initial loads in the form of velocity, viscosity, and 

pressure data, all which are considered as boundary conditions to the three grid domains 

discussed in previous subsections.  

 

In a physical problem where the goal is to monitor physical deformation made by fluid on a 

solid structure, the fluid domain is given the initial push. At the initial time step, the 

velocity field in the fluid domain f  is computed using inflow velocity which generates 

information on the pressure fp  that is expected to press on the solid boundary. The 

interface software passes the pressure data as boundary conditions into the solid 

domain s .  
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In the structure problem, the deformation of the solid domain s  is computed by 

calculating the traction vector using the pressure data obtained. This in return generates 

new boundary conditions for the structure in the form of boundary position (displacement) 

su and velocity information sv . This information has been considered in the Balance and 

Weak Form calculation to update the movement of the material in the solid domain. Both 

su  and sv  are then sent to the grid deformation problem and the fluid problem respectively. 

The grid accepts su  from the solid domain and uses it as reference to map the deformation 

for the simulation.  

 

During the deformation mapping, the weak form calculation derives the grid’s velocity gv  

and at the same time the computational grid is updated with new boundary positions. 

Derivation of gv  from the computational grid and sv  from the solid calculation are 

considered necessity in the ALE modeling as velocity information  is essential to update the 

Navier Stokes equations for the fluid problem. This process iterates until it has satisfied all 

time step specification.  

 

Additionally, to ensure full convergence, there is a facility in FEMLAB to assist for 

relaxation of pressure, displacement or both. There is also automatic remeshing of the fluid 

domain when the distorting mesh is too large and violates the quality constraints set for the 

model. This feature is necessary for systems such as the heart valves that feature severe 

topological distortion of the leaflets boundaries.  
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Figure 3.19: Schematic Presentation of the ALE Method 
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3.5.5 Assumptions for the Mesh Movement Method 

Several important assumptions have been identified to model the suggested mesh motion in 

accordance to the laws of physics. Mesh motion is a degree of freedom generated when the 

ALE approach is used. It is expected that the degree of freedom is proportional to the 

capacity of movement of the mesh. Higher degree of freedom indicates a bigger capacity 

for the mesh to deform which allows for the ALE formulation to handle more delicate 

movement problem. 

 

(i) The first assumption is to ensure that the mesh motion is governed by a law of 

dynamics, which should be close in similarity to continuum mechanics (i.e. 

balance law, Eulerian and Lagrangian continuity equations, Newton’s second 

law, Cauchy’s tensor law).  

(ii) The second assumption is to identify that linear momentum of mesh elements is 

defined as parallel to linear momentum of a material volume.  

(iii) The third is to control the variables that act as the body force to the model. The 

underlying idea is that a region with larger variables production should have a 

refined mesh, while a region with less variables production could do with 

coarser mesh.  

(iv) The fourth assumption is to assume that traction can be used to act as the 

resisting force to the motion or deformation of the mesh elements. In this case, 

the traction is allowed to have values from the material or solid reference 

system or it can be changed to have values from the fluid reference system 

depending on the mode of resistance similar to either mechanical domain.  
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The fourth assumption deals with the issue of selecting the form for surface traction. It can 

be summarized that the two mesh approaches, selects the surface traction according to the 

physics of the problem. This resulted in the different forms of PDE settings on the 

geometry’s boundaries for the mesh movement. The mesh displacement method utilizes the 

weak form formulation to handle the stress-strain relationship parallel to elastic materials in 

solid mechanics and the mesh velocity method exercises the Navier Stokes equation to 

derive surface traction based on an analogy to fluid mechanics. 

 

3.5.6 Setting the Boundaries Physics for the Mesh Movement  

In the preceding subsection, it has been identified that boundary conditions plays an 

important role in ensuring the convergence of the PDE calculations. Boundary conditions 

define the interface between the model geometry and its surroundings. When specifying 

boundary and interface conditions, the software differentiates between exterior and interior 

boundaries. An exterior boundary is an outer boundary of the modeling domain, while an 

interior boundary represents the dividing interface between two subdomains in the 

modeling domain. If an equation is deactivated in one domain, the interior boundary 

between the active and inactive domain becomes an exterior boundary for its variable for 

the reason that the interior boundary is then on the outside of the modeling domain for 

those fields. This in return voids the boundaries of the inactive domains. Figure 3.19 

illustrates these boundaries. 
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Figure 3.20: Interior and Exterior Boundary of a Domain 

 

 

In accordance to the physics that defines the ALE modeling with its mesh movement 

problem, FEMLAB allows for settings of the model boundaries by specifying each line of 

the boundary in the model geometry with a suitable physical condition. In this setting, the 

boundaries are arbitrarily numbered analogous to the illustration depicted in Figure 3.21. 

Boundaries denoting the simplified aortic and mitral valves are highlighted in Figure 3.22 

for better observation.  

 

Figure 3.21: Boundaries Marked with Number 

 

 

     Exterior    Interior 

    Boundary    Boundary 
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Figure 3.22: Closer Examination of the Valve Boundaries 

 

Adjustments to each corresponding boundary lines begin with entering the appropriate 

conditions as shown in Table 3.4. The reasoning behind every condition set upon each 

numerically marked boundary for the mesh movement is specific to the physiological 

attributes identified. Refer to Section 2.8.2 for further explanation. 

 

Table 3-4: Boundary Settings for the Mesh Movement 

 

Boundary 

1,15,17-21, 

23-24,27, 

29, 31-32 

 

22 

 

30 

 

2,4,25-26 

 

16,28 

 

Type 

 

No Slip 

Inflow / 

Outflow 

Velocity 

Outflow / 

Pressure 

Inflow / 

Outflow 

Velocity 

Inflow / 

Outflow 

Velocity 

x-velocity ( 0u ) 0 0 0 pin_vel pin_vel2 

y-velocity ( 0v ) 0 32*s*(1-s) 32*s*(1-s) 0 0 

Pressure ( 0p ) 0 1.0 1.0 0 0 
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3.5.7 Setting the Mesh on the Left Ventricle Model 

The starting point for the finite element method is a mesh which is considered as a partition 

of the geometric model into small units of simple shape. The software FEMLAB facilitates 

a method called the Delaunay algorithm to generate 2D mesh on a solid model. For a 2D 

geometry such as the left ventricle model, the software utilizes partitioning of the 

subdomains into mesh elements which are in the form of infinitesimal triangular-shape 

units. These elements are considered as approximation for the reason that each boundary 

created can be curved in shape. The sides of the triangles are called mesh edges, and their 

corners are mesh vertices. A mesh edge must not contain mesh vertices in its interior 

similar to the boundaries which are defined in the geometry into partitions of mesh edges. 

These boundary elements must be conformed to all the existing triangles for every adjacent 

subdomain. Any isolated points in the domain geometry are also considered as mesh 

vertices.  

 

The shape of the geometry and various mesh parameters determine the number of mesh 

elements. Using the mesh parameter features supplied by the software, specification of 

local mesh-element sizes is allowed to control the mesh distribution. All mesh parameters 

aim at prescribing the maximum allowed mesh element size, which indicates that the size 

of a mesh element must not be larger than the minimum prescribed local element size 

determined by all mesh parameters. 
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Table 3-5: Mesh Parameters Settings for the Geometry 

Mesh Parameters Example Values 

Predefines Mesh Sizes Normal 

Maximum Element Size 1 (by Default) 

Maximum Element Size Scaling Factor 0.3 

Element Growth Rate 1.3 

Mesh Curvature Factor 0.25 

Mesh Curvature Cut Off 0.0003 

Optimize Quality On 

Refinement Method Regular 

 

The maximum element size field dictates the maximum allowed element size which by 

default is 1/15th the size of the geometry. The maximum element size scaling factor comes 

into play when there is no maximum element size specified. Such as the case presented in 

Table 3.5, the software multiplies the maximum element size (which is 1 by default) by this 

scaling factor. The element growth rate determines the maximum rate at which the element 

size can grow from a region with small elements into a region with larger elements. The 

value must be greater or equal to one. The default value is 1.3, which means the element 

size can grow by a 30% approximation from one element to another.  

 

The mesh curvature factor determines the size of boundary elements compared to the 

curvature of the geometric boundaries. The curvature radius multiplied by the curvature 

factor, which must be a positive scalar, gives the maximum allowed mesh size along the 

boundary. A lower value gives a finer mesh along curved boundaries. In the project this 

curvature factor is set as 0.25, lower than the software default value of 0.3 indicating finer 

mesh is used along the left ventricle curved boundaries. The parameter in the mesh 

curvature cut off prevents the generation of many elements around small curved parts of the 

geometry. This value, also a positive scalar, is set at 0.0003 by which a lot smaller than its 
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default value of 0.001. When the radius of curvature is smaller than the product of the mesh 

curvature cut off value times the maximum axis parallel distance in the geometry, the 

software considers the radius of curvature as being this product.  

 

The optimize quality is set to function to control if FEMLAB carries out quality 

optimization during mesh initialization. It has been discovered that when trying to solve a 

problem that does not converged, or having solved a problem where the solution does not 

seem to properly resolved, there is often a need for resolving the problem using a finer 

mesh. In these situations it is sometimes easier to refine the existing mesh than to generate 

the mesh from scratch using finer mesh setting such as the mesh refinement method. The 

regular refinement method divides each element into four elements of the same shape in 

2D. Figure 3.21 demonstrate the result of various mesh distribution considered in the 

project.  

 

In order to initialize mesh for the left ventricle geometry, several mesh settings available in 

FEMLAB are studied. In Figure 3.23, several different type of mesh have been tested on 

the model. Each figure represents a specific allocation of mesh structure starting with the 

extremely coarse mesh depicted in Figure 3.23(a), up until the extremely fine mesh in 

Figure 3.23(h). In the early stages of the development, all eight settings have been 

implemented as a uniform distribution on the model on the Figure 3.24 summarized the 

elements generated for each mesh settings. 
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          (a) Extremely Coarse                (b) Extra Coarse            (c) Coarser 

             with 36 elements                 with 102 elements                  with 276 elements 

 

 
                                (d) Coarse                       (e) Normal                              (f) Fine 

            with 426 elements                  with 950 elements                    with 36 elements 

 

 
                                 (g) Finer                               (h) Extra Fine                     (i) Extremely Fine 

          with 3164 elements                 with 10708 elements              with 42754 elements 

 

Figure 3.23: Varied Settings Available for the Mesh; Coarsest to Finest. 
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Figure 3.24: Several Different Mesh Settings for the Model 

 

The Figure 3.25 next is used to show the mesh initialized on the left ventricle model. A 

coarser mesh has been used in most parts of the model; the domains of the aortic and mitral 

cylinders and the conical domain of the ventricle chamber. In order to maintain the mesh 

quality on areas expected to encompass a rather large deformation, estimation figured for 

the valve leaflet distortions, remeshing of the subdomains of the working valves has been 

employed with a more predefined mesh.  

 

The base (coarser) mesh has been identified to comprise 222 boundary elements, 2247 

number of elements and it is programmed with a minimum element quality of 0.4804. The 

predefined mesh, which can also be referred to as extended mesh, provides the left ventricle 

model with a total of 10482 numbers of degrees of freedom. This is an indication that areas 

in the model with finer mesh particularly the valve domains are considered to experience 

large toleration for deformation or distortion of its geometrical structures. 
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Figure 3.25: Meshing of the Left Ventricle Model 

 

 

Remeshing of the valve domains, however, have been discovered to introduce artificial 

diffusivity, a finite element discretization difficulty mostly identified in hyperbolic problem 

such as the blood flow. It has been observed that detection of large diffusivity may prevent 

the solution from converging and with this reasoning a streamline diffusion technique has 

been used in the project to address the stabilization issue.  

 

3.6 Solving the model 

As noted, the underlying mathematical structure in FEMLAB is a system of PDEs and in 

solving the PDEs, FEMLAB utilizes the finite element method. In the project, simultaneous 

coupling of the three reference system described in Section 3.5.4 requires for the software 

to run the finite element analysis together with adaptive meshing and error control using a 

variety of numerical solvers. In order to reduce the complexity of the calculation the time 
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dependent solver in FEMLAB has been chosen for its unique feature and ability to mix 

domains of different space dimensions in the same problem, therefore simplifying the time 

dependency issue in the ALE model. 

 

3.6.1 The time dependant solver 

The goal of this section is to examine the time dependant solver, which is most appropriate 

in deriving the solution to non-linear PDE problems. The left ventricle model being 

simulated in the project is considered a non-linear problem basically for the two following 

reasoning; the first being the coefficients or material properties utilized in the model 

contains a dependable variable, i.e. the time (t), and secondly, having to exercise the Navier 

Stokes formulation among the underlying PDEs has always been considered as nonlinear 

unless the formulation takes in zero pressure (p=0) as input value, resulting in a special 

case of the linear Stokes formulation. .  

 

In the time dependant solver, the output time is specified as vector using the syntax in the 

form of 0t : t : nt . The symbol 0t  is used to denote the initial time which is considered as 0 

by default and nt  is the notation applied to show the last output time. Within this length the 

time step t  can be designed and programmed in accordance to the dynamics of the model.  

The time stepping in the model is designed to follow this equation: 

 

dxxttxtx  )()(    for    ttt                                 (3.8) 
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It is sometimes essential for accuracy or performance to set the absolute and relative 

tolerance as they determine the limit for the error estimation in each integration step. It is 

also with benefits that the absolute tolerance is set to be smaller than the displacements for 

the reason that the displacements in most structural mechanics are considered small.  

 

3.6.2 Settings for the time dependent solver 

Several points discussed in Section 3.6.2 is summarized in the next table. Highlighted in 

the table are parameters used in setting the time dependent solver.  

 

Table 3-6: Settings for the Time Dependant Solver 

Parameter Value 

Times 0:0.02:1.5 

Relative Tolerance 0.001 

Absolute Tolerance 0.00010 

Initial Time Step 0.0010 

Maximum Time Step 1.0 

Load Constraint On 

Constraint Constant On 

Mass Constant On 

Jacobian Constant On 

Constraint Jacobian Constant On 

 

The syntax 0:0.02:1.5 represents a vector of times starting at 0 with step 0.02 up to 1.5. The 

relative tolerance is set to be 0.001 with absolute tolerance defined at a very small scale of 

0.00010.  The absolute and relative tolerances determine the limit for the estimated error in 

each integration step. For accuracy of convergence, the initial time step of 0.0010 is set and 

with every 0.02 step, the solver calculates the PDEs and solves the equations for the 

Eulerian and Lagrangian domains. It has been identified that for coarser mesh, a bigger 

initial time may be used but it must be in accordance to the times settings of 0 to 1.5. Hence 
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determining the maximum time step as 1.0 and anything exceeding that limit would have 

been too big in ratio comparison to the decided times. In the setting, all constraints and 

constants is made available by setting them on.  

 

3.7 Postprocessing and Visualization 

For post processing, FEMLAB provides tools for plotting and postprocessing any model 

quantity or parameter to help analyze the results obtained from the time-dependent solver. 

Several tools for plotting have been utilized to study the parametric behavior in various 

experimental work (refer Section 4.2) and in the left ventricle simulations (refer Section 

4.3). 

 

In addition, animation has been utilized as it can be used to reveal the dynamics in a 

solution. Cross sectional of plots is considered important to the project as it can be used to 

interpolate within a domain for the reason to extract mesh-independent plots, and at the 

same time extend these plots in time or along parametric solutions. These domain plots 

supply for all the graphical figures shown in the Results and Analysis chapter and caters for 

the computation of numerical integrals of the model quantities. 

  

3.7.1 2D Postprocessing and Visualization  

In the project, standard plots in 2D have been identified to visualize the solution as part of 

the geometry. As explained in the previous section, the solution can appear as a 

combination of the various 2D plots – a surface, a contour, a deformed plot, a streamline 

plot, etc. These standard plots have been animated in time or along parametric solution and 

they are identified in this documentation as follows: 
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 Surface plots 

 Contour plots  

 Arrow plots 

 Streamline plots 

 Deformed shape plots 

 Cross-section point plots 

 

 
       (a)Surface Plot              (b)Contour Plot     (c)Arrow Plot 

Figure  3.26: The Surface, Contour and Arrow Plot for the 2D Visualization and Postprocessing 

 

 

Figure 3.26(a) shows the surface plot which is the default plot in the 2D visualization tool 

displaying quantity parameter as colored two-dimensional feature. In Figure 3.26(b), a 

contour plot is seen to describe a display of quantity parameter as a set of colored contour 

lines with constant values. In Figure 3.26(c), a 2D arrow plot visualizes a 2-component 

vector quantity on the domain. In this setting, the distribution of the arrows in position are 

done by explicitly locating the arrow coordinates using either a space-separated list of 

coordinate vector, for example 0:10:100 or logspace(-1,1,30). The arrows can also be 

specified by independently positioning them as proportional or normalized in the x and y 

directions which help determine whether the plot gives arrows a length proportional to the 

magnitude of the vector field or a normalized length. Red is the default color for the arrow.   
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Figure 3.27: The Streamline Plot 

 

As described in Figure 3.27, 2D streamlines visualize a vector quantity on subdomains of 

the model and it has been identified to be particularly important in visualizing blood flow 

in the project. The vector quantity visualized in the plot is defines the streamline 

appearances in similar order to the arrow plot specifications. Increasing the streamline 

starting points above its default value of 20 increases the total amount of the streamlines in 

a subdomain which is used in the blood flow modeling to highlight the difference in flow 

rate across a domain or subdomains in the left ventricle model. The following attributes 

highlights the streamline algorithm which further describes the function’s effect. 

 

 Calculation of streamlines is initialized by selecting a set of starting points which is 

controlled by the streamline start points and the number of start points. 

 The algorithm then finds the vector of the given vector field at these points by 

interpolation which normalizes the vector field. 

 The algorithm next integrates the points along the direction of the vector using the 

integration tolerance. 

 At the new position, the algorithm finds vector values by interpolation and performs 

another integration. 
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This process stops if: 

 It reaches a predetermined number of integration steps which is controlled by the 

maximum number of integration steps entry. 

 The points end up outside the geometry. 

 The points reach a “stationary point” where the vector field is zero. The stationary 

stop tolerance can be reset to control the empty vector field. 

 The algorithm has used a predetermined amount of “time” for integrating. For this 

matter, the maximum integration time can be reset with another specification. 

 

It is also possible to visualize a vector field by deforming the geometrical shape (refer to 

Figure 3.28). This plot type is considered primarily extended for visualizing the x and y 

displacements (noted using the symbol u and v) particularly for problem in structural 

mechanics. In the project this attribute is used to highlight the deformation defined by the 

Lagrange multiplier in the ALE simulation of the left ventricle model. Scaling of the 

deformation is set to 10% of the geometric domain.  

 

 
                      (a)Deformed Surface               (b)Deformed Contour              (c)Deformed Arrow 

Figure 3.28: 10% Deformation of the  Surface, Contour and Arrow Plot for the 2D  Visualization and 

Postprocessing. 
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The 2D point cross-section plot is used to visualize a quantity in one or several point in 

time, along a parameter range, or for several eigenvalues. The plots are necessary to 

describe current plotted scalar or quantity based on the model’s surface or contour data, 

resulting in presentation of the parameter in graphical order (refer to Section 4.3.2, Figure 

4.14). 

 

3.8 Conclusive Remarks 

Careful details on the construction pertaining to the two-dimensional ALE modeling have 

been presented. The methods involved in the study of the fluid-structure interaction using 

mesh movement to depict the deforming leaflets under pressure from the blood flow in the 

left ventricle have been extensively discussed. Several important techniques deriving the 

tools involved in the development processes are revised and with this, algorithm that is the 

backbone of the modeling has been highlighted with interest.  
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4 Results and Analysis 
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…For I Dreamt Last Night of Bloody Turbulence 

 

William Shakespeare, “Troilus and Cressida” 
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4.1 Overview 

In this chapter, comprehensive descriptions of the experimental results are first analyzed 

followed by a representation of the results obtained from the left ventricle simulation. 

Several important theories have been identified as important through the literature review, 

and these theories have been made practice in the methodology to generate several 

preliminary experimental works. Information gathered from each investigational model are 

extracted individually pertaining to several modeling scope discussed in the methodology 

several and the knowledge gained are merged together in the development process to help 

form a plausible simulation model of the heart’s left ventricle.  

 

4.2 Experimental Results 

4.2.1 Incompressible Laminar Flow 

Ideally, blood flow in the heart is laminar, or streamlined. In laminar flow, there is a 

parabolic profile of velocity within a blood vessel, and in the case of this project the blood 

vessels identified are the aortic and mitral cylinders. The velocity of the blood is depicted 

highest in the center of the vessel and lowest toward the vessel walls. A thorough 

discussion on the matter can be referred to in Section 2.3.4 of the literature review. In the 

earliest stage of the development, an experimental test has been carried out to simulate the 

incompressible and laminar attribute of the blood flow across a tube and a curved domain. 

Results of the tests are shown as follows: 
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Figure 4.1: Laminar Flow in a Tube 

 

   

Figure 4.2: Laminar Flow Pass a Curved Domain 

 

 

The two figures in representation described fluid as blood-like substance with a density of 

1060Kg/cm³ and dynamic viscosity of 0.005Nsec/m². In Figure 4.1 the flow is designed to 

cross a tube-like channel and in Figure 4.2 the flow is seen to pass through a curved-like 

domain. The goal of these experiments is to examine the physics of the planes in relation to 

the passing incompressible yet a steady blood flow. Specifying an inflow of s*(1-s) 

velocity, the blood is depicted to enter from the inlet boundary (indicated using arrow 

markers) with a parabolic velocity profile, passes through the two geometrical plane 

channels respectively and leaves through the outlet boundary in the absence of external 

forces.  
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The model computes the blood’s velocity components u = (u, v) in the x- and y-directions 

and its pressure p in the region defined by the geometry in the preceding figure. The PDE 

model for this application uses the stationary incompressible Navier-Stokes equations 

numerically tracked in Eulerian fashion based on the governing equation discussed in 

Section 2.5.2 

 

  Fpuuu
t

u
 .2 




  

where 

0.  u  

 

This first equation represents the balance of momentum from Newton’s second law (refer 

Section 2.7.6). The other relationship is the equation of continuity, where zero on the right-

hand side states that the blood is incompressible. In this model, boundary conditions have 

been modified so that the average velocity at the inlet is of average 0.544 m/s. In order to 

obtain a corresponding parabolic velocity profile, the (u, v) = (6Vmeans(1-s), 0) has been 

set where s is a boundary parameterization variable that runs from 0 to 1 along the 

boundary. The fluid nature of the blood is predicted to always stay stationary at the walls, 

so (u, v) = (0, 0) is the appropriate boundary condition set along the boundary. At the exit 

boundary, it has been assumed that a constant static pressure, p = 0, is most suitable for the 

experiment. Despite the fact that it is a steady - state flow model, the experimental work 

has been identified to require initial conditions for the reason that the incompressible 

Navier-Stokes equations are nonlinear. In order to achieve a numerical solution, the 

nonlinear solver has been picked to solve the equations iteratively. 
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The result from this experiment shows the benefit use of the Navier Stokes equation as 

proposed in the methodology (refer to Section 3.53) to handle the incompressible and 

laminar aspect of the flow. Using a simple geometry to describe the steady state flow, 

information gained from this prototype is imported in later model as basics for the 

simulation of the blood flow particularly in the cylindrical domains of the mitral and aortic 

valves. 

 

4.2.2 Incompressible Turbulent Flow  

When an irregularity occurs in a blood vessel particularly at the valves or at the site of a 

blood clot, the laminar stream of the blood flow is disrupted and at this point the blood flow 

may become turbulent. In turbulent flow the fluid streams do not remain in the parabolic 

profile but instead the streams mix radially and axially. More energy is needed to drive 

turbulent flow than to drive laminar blood flow. Turbulent flow is normally estimated using 

the Reynolds number method, a dimensionless number used to predict the pattern of the 

blood flow; either it will be laminar or turbulent.  

 

Using the same definition as the previous experimental work, another prototype is modeled 

with a slight change to the geometry configuration. Narrower inlet and outlet channels have 

been designed and this time a wider diameter channel is allocated in the middle as the 

connector in between. Taking into accounts the density and viscosity of the blood as 

defined in the previous section, the result is presented and analyzed in the next figures. 
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Figure 4.3: Incompressible Flow with Occurrence of Turbulent 

 

 

 

Figure 4.4: Occurrence of Turbulent in the Flow 

 

In this flow prototype the blood is seen to enter as inlet from the left hand side and leave 

the geometry at the farthest right boundary. At the inlet, with the same specification of    

s*(1-s) as velocity inflow, the blood current is seen to have the highest velocity along the 

center of the inlet boundary until it reaches the middle chamber, a bigger and much wider 

channel in diameter comparison. Here, part of the inflow is sent to the other peripheral 

channel on the right and part of it is used to inflate the middle chamber.   

 

For such a fluid flow particularly the kind presented in the middle chamber of the 

experimental model, a velocity field with a boundary layer of thickness ≈ 1/√Re (i.e., Re 

being Reynolds number) can be expected at the walls. In order to resolve this steep solution 

gradient a few rows of elements is needed across the layer. It has been observed that for 

flow with bigger Reynolds number, the elements in the interior of the channel can be much 



 135 

larger than those nearer to the walls. The model is then set up to solve the problem on a 

fixed isotropic mesh. The given input data is seen to correspond to a Reynolds number of 

 

389
10.79.1

23.1.0052.0.2.544.0
Re

5



 

 

In order to show a clearer representation of the thickening boundary layer near the inner 

wall of the middle chamber, another mode of exemplary model normally known as the 

back step flow is used to elaborate the problem. The backward facing step is an interesting 

case for the studies of the performance and solution strategy of a turbulence model. In this 

experimental case, the flow is subjected to a sudden increase of cross-sectional area, 

resulting in a separation of flow starting at the point of expansion. Spatial variations in the 

velocity field cause production of turbulence outside the wall region and its interaction with 

the mean flow influences the size of the separation bubble. The size of the bubble, or the 

re-attachment length, is one of the quantities that must be predicted accurately by a 

turbulent model.  
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Figure 4.5: Backstep Flow with Vmean = 0.1 

 

 

 

Figure 4.6: Backstep Flow with Vmean = 1.0 

 

 

Figure 4.7: Backstep Flow with Vmean = 0.5 

 

 

 

The preceding figures show the velocity fields in a streamline plot. A circular motion 

depicted behind each steps can be identified as recirculation regions which has the potential 

to expand with increasing Reynolds number. Three different experimental velocity values 

have been used to aid the experiment and the results have been recorded in the three figures 

presented. The distance from the step to the stagnation point where the flow reattaches to 

the lower wall is called the reattachment length. Using three different specifications of 

average velocity mean for all three experiments, the backstep flow in Figure 4.5 is seen 

with the shortest length of recirculation behind the step, accumulating to a low Reynolds 

value. 
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Increasing the velocity mean with a maximum value as seen in Figure 4.6 has created in 

generation of eddy or current flow which is observed to cross the outflow boundary, the 

ordeal indicating that there is an inflow through the assumed outflow boundary. This 

finding calls for the inclusion of more of the downstream region in the computational 

domain to get a reliable solution. For this matter the averaging velocity is rechecked and 

another mean value has been set to shorten the recirculation region, which in fact explains 

why the computational domain in the model presented in Figure 4.7 is slightly shorter than 

the one in Figure 4.6. A dimensionless number quantifying the recirculation region is the 

reattachment length divided by the step height. According to experimental data, this 

quotient is approximately 7.93 at a Reynolds number of 389.  

 

4.2.3 Incompressible Flow with Pressure 

The preliminary models tested in previous sections have idealized another experimental 

work to test for the incompressibility aspect of the flow in relation to the inclusion of the 

pressure factor. Including the pressure factor is necessary since there is a high relationship 

between blood flow, pressure and resistance (refer Section 2.3.2). As stated in the literature 

review, blood pressures are considered not equal throughout the cardiovascular system else 

the blood would not flow, since the flow requires a driving force (i.e., a pressure 

difference). The pressure difference has been identified as the driving force for blood flow, 

and the resistance is an impediment to flow.   
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Figure 4.8: Flow with Pressure 

 

In the experimental model depicted in Figure 4.8, the blood is seen to flow through a vessel 

like tube with two inlets and a channel outflow. A parabolic profile has been used to define 

the two end inlets but this time the incompressible profile is handled with the inclusion of 

the parameter pressure. The outflow channel in the middle has been defined without any 

pressure resulting in a difference of pressure distribution for the model. In this experimental 

simulation the blood is seen to travel in a steady state behavior along the vessel and out into 

the middle channel in a direct proportion to the size of the pressure difference or pressure 

gradient. This in return indicates that the direction of blood flow is governed by the 

direction of the pressure gradient which has always been defined as high to low. The result 

is comparable to the studies of the cardiovascular physiology; it has been observed that 

during ventricular ejection, blood flows from the left ventricle into the aorta (not in the 

other direction) because pressure in the ventricle is higher than the pressure in the aorta.  
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Figure 4.9: Pressure Flow with Resistance 

 

 

Another preliminary work has been carried out to test the resistance theory. Defining the 

geometry as depicted in Figure 4.9, the geometry is modeled with two inlets of similar 

pressure. At the left hand side of the geometry, the blood is noticed to flow in a steady state 

from the inlet along the horizontal channel and is expected to leave through the outflow 

channel on the right. In order to test the resistance of the flowing velocity another inlet with 

the same pressure is created in between. Using a vertical tube half the size smaller, this 

second inlet carries a doubling pressure (due to the size) and gives forth a velocity flow in a 

normal direction towards the incoming flow from the left, resulting in a slight disruption of 

the parabolic profile of the flow. This small interference proves that blood flow is inversely 

proportional to resistance. It is clearly seen here in the experiment that increasing resistance 

would decreases flow and decreasing resistance would increases flow.  
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In order to handle the incompressibility factor for the model, the Navier-Stokes equation 

has been defined with Lagrange p2-p1 elements to stabilize the pressure. The 2nd-order 

Lagrange elements (p2) model the velocity components while linear elements (p1) model 

the pressure. These default element settings provide one order higher Lagrange elements 

for the velocity components than for the pressure. As this is a common benchmark problem 

in computational fluid dynamics, there has been no known exact solution, but experimental 

data is available (Gresho et al. 2000) making it possible to check the accuracy of the FEM 

solution. 

 

4.2.4 The Stress Tensor Test 

The stress tensor represents any force that the boundary exerts on the fluid. In a fluid flow 

example there can also be internal stresses due to the fluid pressure in addition to the stress 

resulting from viscous forces. The choice of stress tensor form directly affects the boundary 

conditions since boundary conditions depend on its pressure condition and different 

implementations provide different pressure settings. In order to simulate an application of 

stress tensor in an incompressible flow as proposed in the methodology (refer to 

Section3.51), a neutral boundary condition can be used to set the viscous or full stress 

tensor for the flow. In this experimental Navier Stokes case, the pressure drop is modeled 

by setting the pressure at the outlet as equal to the pressure at the inlet minus a pressure 

drop. Using the momentum and continuity equations laid out in the literature review (refer 

Section 2.7.6), this formulation is derived for the model: 
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Here, p is the density, u=(u,v) is the velocity field, p is the pressure, and n is the dynamic 

viscosity. A pressure drop from the left to the right boundary of the geometry drives the 

flow in the channel. At the walls, a no-slip boundary condition, u=0 has been set followed 

by the settings of three symmetric boundary conditions between the left and the right 

boundary of the geometry section. The velocities u,v are continuous and the pressure drops 

by a constant ∆p from the left to the right boundary. The results show the expected flow 

behavior for the problem.  

 

 

Figure 4.10: Incompressible Flow Pass Periodic Boundaries 

 

In the geometry, an introduction of two periodic boundaries is necessary to better test the 

incompressible flow with a defining stress tensor condition. When using periodic 

boundaries, the boundary conditions need to fulfill the constraints imposed by the settings 
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for the periodicity. In this model the viscous stress tensor formulation is used resulting in 

definition of the neutral boundary condition as follows: 

 

  FuuuupI
t

u T  ).())((. 



  

where  

0.  u  

 

Extending the experiment further, it has been identified that there is a possibility to alter the 

fluid flow so that it uses the full stress tensor formulation. The reason is that with the full 

stress tensor formulation, the neutral boundary condition can be designed as 
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In order to account for the full tensor stability, a new geometrical model has been designed 

with new boundary conditions and new periodic boundaries configurations. As seen in the 

following figure, the full stress tensor condition is seen to help stabilize the development of 

the velocity field and viscous layer as the fluid encounters two periodic walls. These 

boundaries have been designed at a very close proximity at the lateral boundaries forming a 

tight flow channel in the middle of the geometry.  
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Figure 4.11: Flow Pass Tight Channel 

 

 

Setting the average velocity of 14*s*(1-s) at the inlet, Figure 4.11 shows the fluid flow 

from the top boundary passed through the tight channel in the middle and into the 

hemispherical-shape chamber. A difference in the velocity profile in the model implies that 

the pressure profile is also periodic and having periodicity in the pressure indicates a 

pressure difference to the Navier Stokes model. This allows for the pressure properties to 

be discontinuous in the fluid flow. 

 

4.2.5 The Poisson Test 

The Poisson equation is identified as an important asset to solve for the mesh displacement 

in the moving coordinate system (refer to Section 3.51) of the ALE. Therefore general 

understanding of the Poisson properties is considered important in the experimental test 

being conducted. In this experimental model a Poisson equation has been programmed on a 

disc-like geometry to study the effect of pressure distribution on the mesh displacement of 

the model boundaries. Specifying a Neo-Hookean hyperelastic behavior as stated in Table 
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3.2 (refer to Section 3.5.3); the disc is given several different set of pressure constraints 

weighting at the center of the disc. Six different timestep plots are used to show the disc 

boundary movement in relation to the pressure gradient. Another circular boundary with a 

fixed mesh has been designed at the outer layer of the disc to show better depiction of the 

deformation. The results generated from the test are shown in the next figure. 

 

 

 

 

    
        (a)              (b)     (c) 

 

     
        (d)   (e)    (f) 

Figure 4.12: Results from the Poisson Test. 

 

 

Figure 4.12 shows the disc at zero initialization of pressure. Note that the boundary of the 

disc stays static over time. Figure 4.12(a) is the result of the test at the first timestep. With a 

pressure different of 0.05, the moving boundary of the disc is seen to move discretely 

towards the outer layer in the second timestep. Positive development of the pressure shows 

further deformation of the boundary seen in Figure 4.12(c). Figure 4.12(d) is the 

deformation of the disc boundary leveling the fixed outer layer boundary. In Figure 4.12(e) 
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and Figure 4.12(f) higher pressure distribution has resulted in distortion of the moving 

boundary passed the fixed boundary.  

 

4.2.6 The ALE Test 

The results gained from Section 4.21, Section 4.2.2, Section 4.2.3 and Section 4.2.4 have 

been considered as valuable to the development of the left ventricle model as they supply 

sufficient knowledge on the major properties used in the ALE methodology; fluid flow 

tracked in Eulerian fashion and structural deformation depicted using the Lagrangian 

multipliers. In accordance to the extensive modeling presentation compiled in Section 3.5 

of the methodology chapter, an experiment to simulate the ALE on a test model has been 

configured with the goal to study the mesh movement developed on the grid settings and to 

observe the domain deformation generated by the fluid-structure interaction.  

 

Domain equations (Eq.3.1 to Eq.3.7) in Section 3.5 have been utilized to study the effects 

of mesh movement in a prescribed moving boundary. This experiment considers two cases. 

In the first case, the mesh velocity is prescribed and in the second case, the mesh velocity is 

left to vary freely. In this structural deformation, an incompressible inflow is seen to pass 

cross the disc-like geometry with a hole in the middle. The inflow and outflow of the fluid 

in the structure has been graphically expressed using the arrow and streamline markers, 

ensuing in experimental results as depicted in the following figures.  
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a) Results of the Mesh Movement in a Prescribed Moving Boundary 

 

 
(a)    (b)     

Figure 4.13: Mesh Movement in a Prescribed Moving Boundary 

 

Figure 4.13(a) shows the mesh displacement and the mesh velocity at the initial stage of the 

simulation. A circular disc-like geometry with a moving smaller circular domain is 

designed to move according to the following pattern:  
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Figure 4.13(b) represents the mesh movement on the prescribed moving boundary. In this 

case, the mesh displacement of the inner circular domain is recorded to move following the 

path of the stream flow. Comparing the velocity information from the two figures indicates 

that there is no major velocity change in the fluid domain; a suggestion that the mesh 

displacement has not affect the mesh velocity throughout the experiment. 
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b) Results of the Mesh Movement in a Free Moving Boundary 

In the case of the free moving boundary, the mesh displacement is designed to be in a fixed 

coordinate system. The reason being is to simplify the equation for the mesh and to allow 

for smaller mesh movements. At the boundary, the wall has been implemented without any 

surface tension to minimize the constraints to the model under examination. These 

constraints have been implemented in a weak form by means of the Lagrange multipliers 
|  

and 
| . The corresponding weak terms 

|XY  and 
 |Y are added to the weak form of the 

PDE for the mesh movement.  

 

 

 

(a)    (b)    (c) 

      

(d)    (e) 

Figure 4.14: Mesh Movement in a Free Moving Boundary 
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The mesh displacement and mesh velocity at the initial phase can be seen in Figure 4.14(a). 

At the inlet on the left, the motion of the fluid is triggered by an initial velocity of a 

constant 1.0 and dynamic viscosity of 0.005Nsec/m². In Figure 4.14(b), Figure 4.14(c) and 

Figure 4.14(d) the flow is seen to move freely at the free boundary carrying the effect of the 

mesh velocity on the deforming boundary. Figure 4.14(e) shows a different domain plot to 

illustrate the pressure distribution on this simplified ALE model. In the plot, the pressure 

property is observed to depend mostly on the depth of the fluid. 

 

4.3 Simulation Results 

4.3.1 Incompressible Blood Flow through the Left Ventricle Model 

The influence of the Neo-Hookean elasticity particularly of the walls or boundaries of the 

working valves has posed attention to the analyzed result relating to the calculation of the 

dimensionless parameter identified as an approximation of 500 Reynolds numbers, which 

corresponds to typical values in major arteries (Pedrizzetti et al., 1998). The flow dynamics 

analyzed in the rigid vessel of the ventricle chamber is seen to contribute to the 

instantaneous systolic and diastolic flow fields of the left ventricle model. The boundary 

layer of the mitral valve, developed during the acceleration, separates during systole and 

produces a small recirculating cell immediately at the downstream of the ventricle 

chamber. The separation phenomenon corresponds to the roll-up of the boundary layer and 

the formation of the vortex structure eventually traveling downstream (Pedrizzetti 1996).  
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                    (a) 0.20 sec               (b) 0.30 sec       (c) 0.40 sec 

 
                    (d) 0.50 sec  (e) 0.60 sec      (f) 0.70 sec 

 
                   (g) 0.80 sec              (h) 0.90 sec       (i) 1.0 sec 

Figure 4.15: Velocity Profile in the Systolic and Diastolic Phase of the Left Ventricle Two Dimensional 

Simulation 
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Results of the two-dimensional left ventricle simulation are laid out in extensive graphical 

representation in Figure 4.15. Using nine different plots, the velocity profile in the systolic 

and diastolic phase in the one second simulation time is observed with the timestep 

separated at approximately 0.1sec per plot. Figure 4.15(a) and Figure 4.15(b) shows the left 

ventricle simulation before initialization and at the first point of initialization. At this 

beginning, a positive separation of vorticity indicates a persistent negative shear forces in 

the portion of wall downstream of the enlargement. The same flow fields are reported in 

Figure4.15(c), Figure 4.15(d) and Figure 4.15(e).  It can be observed that during systole the 

ventricle chamber is inflated with the incoming inflow from the mitral valve, pressuring the 

chamber to dilate and with that the flow is seen to accelerate at a maximum velocity profile 

throughout the chamber.  

 

Figure 4.15(f), Figure 4.15(g), Figure 4.15(h) and Figure 4.15(i) shows the blood flow 

profile during diastole. At diastole the boundary layer is thicker because of deceleration and 

the streamlines show about a zero net flow. The deceleration decreases the flow rate 

indicating vessel shrinks, not seen in the simulation but is assumed to increase the actual 

discharge and bulk velocity from the ventricle chamber out into the aortic. During the 

acceleration, the synchronous deformation of the wall leads to a less extended separated 

region, while the contraction of the vessel during the deceleration phase of the imposed 

diastolic pulse tends to diminish the value of the negative tangential stress. 
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(a) 0.70 sec              (b) 0.80 sec 

Figure 4.16: Blood Flow through the Left Ventricle Chamber during Early Systolic Phase 

 

 

The flow during two instants of the early filling phase are shown above to show the 

behavior of the fixed mitral valve corresponding to those in both Figure 4.16(a) and Figure 

4.16(b). During the accelerating stage, the conical chamber of the ventricle is bounded by a 

circular vortex which then rolls up into a vortex structure. In this phase the entering 

velocity inflow is seen with a central, approximately irrotational core surrounded by the 

vorticity layer. Despite the strong idealization of the model, the picture shows correct major 

features illustrating flow in the left ventricle during systole. 
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4.3.2 Simplified Valve 

The motions of the leaflet boundaries in the valves play major role in depicting the velocity 

distribution in the left ventricle. Comprehensive description of the deforming mitral leaflet 

boundaries at early systolic phase is followed by a presentation on the deforming aortic 

leaflet boundaries at diastolic phase. The subsequent results are accessible for examination. 

 

4.3.2.1 Deformation of the Mitral Leaflets 

 

    

      (a)0.02sec                (b)0.06sec              (c)0.10sec         (d)0.14sec 

    

      (e)0.18sec                  (f)0.20sec                         (g)0.22sec                      (h)0.24sec 

    

      (i)0.28sec       (j)0.30sec                 (k)0.34sec            (l)0.36sec 

Figure 4.17: Closing Movement of the Mitral Leaflets during the Left Ventricle Contraction. 
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The starting results in Figure 4.17(a), Figure 4.17(b), Figure 4.17(c) and Figure 4.17(d) 

indicates the motion of the valve leaflets at early mitral flow. Wider inflow has been 

identified at this phase. In the second order of the row, Figure 4.17(e), Figure 4.17(f), 

Figure 4.17(g) and Figure 4.17(h) shows the movement of the leaflets at mid diastole. Here, 

the inflow is seen to decrease and semi closure of the mitral valve is seen. Figure 4.17(i), 

Figure 4.17(j), Figure 4.17(k) and Figure 4.17(l) reveals the flow pattern during the mitral 

valve closure. 

 

4.3.2.2 Deformation of the Aortic Leaflets 

 

 

(a)0.36sec  (b)0.40sec  (c)0.48sec  (d)0.52sec 

 

(e)0.56sec  (f)0.60sec  (g)0.64sec  (h)0.68sec 

 

(i)0.72sec  (j)0.74sec  (k)0.76sec  (l)0.78sec 

Figure 4.18: Closing Movement of the Aortic Valve Leaflets during the Left Ventricle Filling. 
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Figure 4.18(a), Figure 4.18(b), Figure 4.18(c) and Figure 4.18(d) denote full opening of the 

aortic leaflets at early ventricle contraction resulting in wider inflow of blood through the 

flow channel. Figure 4.18(e), Figure 4.18(f), Figure 4.18(g) and Figure 4.18(h) are the 

motion of the leaflets during the mid closure of the leaflets. In the last order of the row, 

Figure 4.18(i), Figure 4.18(j), Figure 4.18(k) and Figure 4.18(l) illustrate the motion of the 

leaflets during the aortic closure. In both closing motion of the valves, the lateral leaflets 

have been observed to gradually move towards the center of the valve resulting in thinning 

of the flow channels through the valve. The continuous thinning of the flow channels is 

identified to induce acceleration to the velocity profile of the flow. Further analysis on the 

velocity profile of the blood flow throughout the left ventricle chamber is presented next. 

 

4.3.2.3 Velocity Profile in the Left Ventricle 

 

The velocity field is visualized through a velocity vector field plot. Simplification of the 

plot is done by plotting only a subset of the full velocity field. In the upper left corner of 

each velocity field there is a plot in unit size vector corresponding to a length of 1.5 cm and 

a velocity of 1 m/s. In relation to flow velocity, the leaflets boundary configurations are 

also plotted. Figure 4.18 shows a plot of the velocity field and the aortic boundary 

configuration at the same twelve equidistant times as in Figure 4.17. Even though velocity 

vectors are seen to cross the heart boundary, this does not mean that fluid is leaking 

through the walls. Rather, this is a consequence of the heart boundary moving with the 

fluid velocity. 
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Using information gained from the velocity field, velocity time profiles at given positions is 

computed; this is the time variation of the velocity over a given line segment or at a given 

point focusing on velocity time profiles at the mitral valve, between the mitral leaflet 

boundaries, and across the aortic outflow. The mean velocity time profiles are calculated as 

the mean velocity over a line segment relative to the moving left ventricle boundary. It is 

also important to look at the velocity time profile of the centre velocity, which is simply the 

velocity component normal to the line segment at the centre point of the line segment. The 

centre velocity is reported as the velocity relative to the computational grid, i.e. in a 

reference frame fixed in space.  

 

Figure 4.19 shows the velocity time profile of the mean velocity through the mitral valve 

and between the mitral leaflet boundaries during 2 heart cycles. Figure 4.20 shows the 

velocity time profile of the mean velocity across the aortic outflow during 2 heart cycles. 

From the velocity field flow data is obtained over a given line segment. Flow is computed 

by the mean velocity over the line segment multiplied by the length of the line segment. 

This gives a flow in the dimension of area per time, which is the natural dimension of flow 

in a 2D model.  
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Figure 4.19: Velocity time profile of the mean velocity (cm/s) through the mitral valve and between the 

leaflet boundaries. 

 

 

Figure 4.20: Velocity time profile of the mean velocity (cm/s) across the aortic outflow and into the aortic 

cylinder. 
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4.3.2.4 Periodic Motion of the Leaflets 

 

The movements of the simplified valve leaflets are in general governed by the ALE 

modeling described in Section 3.5 but further extension to the mesh movement displacing 

certain boundaries is considered a necessity to account for the periodic behavior of the 

valves. Specifying a discontinuous function known as the Heaviside Step Function to cater 

for the time-stepping problem of the leaflets, emulating the step in asynchronous order is 

possible by manipulating the boundaries according to a sinusoidal function of time. Results 

from the valve simulations are laid out as follows. 

 

 

Figure 4.21: Periodic Flow due to the Periodic Motion of the Mitral and Aortic Valve Leaflets 
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Figure 4.21 denotes a plot of the flow rates passing through the mitral and aortic valves as 

well as the total flow rate over time. The blue line indicates the flow passed the mitral 

during systolic and the red line is the representation of the flow rate passing the aortic valve 

during the left ventricle dilation. The purple line (dashed) at the top of the graph is the sum 

of the flow in the ventricle chamber.  

 

4.4 Conclusive Remarks 

Velocity profile deriving the phenomenon involved in the blood flow of left ventricle is 

briefly revised. The mesh movement exercised using ALE method depicting the opening 

and closing movement of the mitral and aortic valves have been thoroughly investigated. 

Discussion on periodic behavior of the valves in relation with the corresponding fluid-

structure interaction in the model is also illustrated in the chapter.  
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5 Discussion 
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5.1 Overview 

A basic framework research to study the dynamics of blood flow in the left ventricle has 

been covered in detailed in Chapter 3 and Chapter 4. Arbitrary Lagrangian–Eulerian 

method is the manner employed to incorporate the leaflet motion in the simulation. Forces 

exerted by the fluid on the leaflets are computed and applied to the leaflet equation of 

motion to predict the leaflet position or displacement. Relative large velocities are 

computed in the valve flow region during the ventricle filling and the resulting large wall 

stresses controlled using stress tensor techniques can be seen during the ventricle filling 

duration. Results stemming from these implementations are thoroughly investigated 

following description on several related issues and techniques in the visualization of the 

mathematical model. 

 

This chapter highlights the model assumptions concerning to the physiological aspects of 

the left ventricle architecture. Accuracy and convergence matter of the finite element model 

is also weighted with interest along discussions on the mesh generation used in the ALE 

model, utilization of weak constraints in the mesh movement design and the stabilization 

technique opted to stabilize the blood flow streams in the simulation. The hardware 

limitations are given a section with contribution highlights and suggestions for future 

direction of the project concludes the chapter. 
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5.2 The Left Ventricle Architecture Limitation 

A presentation of framework analyzing point-sampled geometry on a discrete surface data 

stemming from 3D acquisition devices has been presented. A finite number of possibly 

noisy samples have been identified to provide incomplete information about the underlying 

surface captured for the reconstruction of the left ventricle. Using adaptive re-sampling 

method to optimize the scanned data in the presence of noise has help to capture a plausible 

geometrical configuration of the left ventricle from unstructured cloud of samples points, 

where each point is a discrete sample of certain shape attributes such as positions, surface 

normal, color or material properties.  

 

High level information about the scanned left ventricle is retrieved by creating a rendition 

that is meaningful, particularly in terms of physiological view. Specific geometrical 

processing algorithms have been utilized in the rendering to obtain a continuous 3D surface 

defined by triangle meshes and collections of spline-patches computed from the given point 

data. Having obtained such a distinct surface model all subsequent processing then directly 

operates on this representation without any reference to the origin of the data. 
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5.3 Discussion on the ALE Modeling                                                                                                             

Prior to the 3D surface reconstruction of the left ventricle, it has been possible to acquire 

sufficient information on the left ventricle based on comparison with various works, (de 

Hart et al. 2000 and Hughes et al. 1981). In regards to this matter, the information gathered 

has been identified as satisfactory and can be considered as useful to understand the 

ventricle’s fundamental morphology, general and ultra structure of anatomy and its 

geometric configuration. Originally it is hoped that the 3D model could be used as a strong 

base for the left ventricle simulation but it was later recognized that the 3D model is 

computationally too demanding to cater for the many processing algorithm for the ALE 

modeling, particularly in a finite element environment. A 2D solid model has been derived 

from the 3D surface model and used in the project as a preliminary prototype which will 

later be extended to three-dimension. This will be possible if there is enough computational 

power.  

 

5.3.1 Analyzing the Finite Element Convergence and Accuracy 

The beauty of utilizing the finite element as a platform for the ALE modeling is the 

accessibility to analyze the model convergence and accuracy. Mesh movement methods 

comprising techniques to track the motion of the fluid and boundary in Lagrangian and 

Eulerian fashion, technically, are considered with high level of difficulty. The 

characteristics of the partial differential equations (PDEs) form the shape of the mesh 

movement modeling and selection of suitable PDEs in the methodology can improve model 

convergence and help reach an accurate solution. 
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5.3.2 The Mesh Generation 

Attachment of boundary conditions, load conditions, and material properties to element and 

nodes is an essential part of generating a mesh. Analyzing the stress quality to determine 

displacement constraints is a simpler matter if assignment of boundary conditions is done 

on a solid geometry rather than to individual elements and nodes. For this reason, selection 

of vertices, edges and faces instead of elements and nodes to designate locations of 

boundary conditions is a better option instead of using elements and nodes. The elements 

and the nodes are too fine grain of entities to handle in large scale mesh model. 

Assumptions made in accordance to the observation of the valve motion during the 

ventricular activities are weighted heavily in the interest to select the most optimized 

meshing for the left ventricle model. 

 

5.3.3 Usage of Weak Constraints 

In this project, it is important that the finite element model accurately capture local 

variations in the solution such as the stress concentrations, pressure distributions, volume 

forces and parabolic profile of the flow velocity. Each property has been tested using 

several specific experimental works and the results obtained have been compared to values 

from several reliable sources of data. A handful of equations and extended parameters have 

been attempted in modeling the physical attribute of the non-linear problem and it is always 

wise in the development to start the solution process in accordance to these patterns: 
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 Utilize the general or the weak solution form to handle coupling of variables as they 

provide exact Jacobians and are considered best suited for nonlinear PDEs. 

 Supply the model with the best possible initial value. 

 Ensure that the boundary conditions are consistent. In doing solid modeling, 

boundaries adjacent to each other must be of similar attribute and values. Failure to 

do so would include problem in solving the physics of the boundaries as their 

matrix dimension does not agree to each other.  

 Use the time-dependent solver and set appropriate time span so that the solution 

reaches a steady state which generally results in a smoother convergence. 

 

5.3.4 Coupling of Variables 

The coupling of variables is the key design behind the periodic conditions of the valve 

leaflets motions unfortunately the Jacobian elements introduced in the weak form equations 

as matrix in the computational domain, is usually large but sparse. Further observation 

indicates that the Jacobian solution at each node in the mesh is directly affected by the 

degree of freedom from the neighboring mesh elements. Introducing coupling variables 

help create non-local dependencies which release the sparsity of the Jacobian matrix and 

benefit the memory use and CPU time consumptions.  

 

5.3.5 Artificial Stabilization Techniques 

An artificial stabilization technique is a necessary supplement to the ALE modeling 

particularly in the fluid mechanics problem where diffusive terms are introduced through 

the viscosity of the blood properties. This is the same information contained in the 

dimensionless Reynolds number used to predict occurrence of turbulence in the flow 
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model. For the Navier Stokes equation employed in the ALE system, the use of streamline 

diffusion has helped to stabilize the streamlines plot in the model for better quality 

postprocessing and visualization of the left ventricle simulation.   

5.4 Hardware Limitations 

The model simulated in this project has been used for comparison with physiological 

experiments and for this matter it is important to determine at which point the model 

becomes periodic. Expansion of simulation time is considered beneficial to study the 

periodic behavior of the left ventricle cycles. In order to predict the appropriate cycle 

number for the simulation, the length of computation time is a factor to consider. In 

reference to the development process, completion of two cycles of the left ventricle takes 

approximately 4½ hours to compute on a 1GB Pentium IV Processor. Due to the 

complexity of the numerical model, many simulations are needed before the correct setting 

of the model is achieved. This explains the requirement for a short computation time.  

 

5.5 Assumptions on the Left Ventricle Model 

It can be deduced that the study of several principles governing the blood flow; velocity of 

flow, pressure and resistance relationships, are with strong benefit to modeling the physics 

of the ALE, also in selecting appropriate PDEs for the flow and moving boundaries. Thus, 

the following assumptions have been derived for the left ventricle model: 

 

 Velocity of blood flow is proportional to the rate of volume flow and inversely 

proportional to the cross-sectional area of the inlet boundary. Having the larger 

cross-sectional inlet boundary between the two valves, velocity is depicted to be 
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lower in wider flow channel such as the mitral valve and higher in narrower flow 

channel such as the aortic. 

 

 Blood flow is proportional to the size of the pressure gradient and is inversely 

proportional to the resistance of the blood vessels, vessels identified in the project 

as the valve cylinders and the ventricle chamber. 

 

 Resistance to blood flow is assumed to be proportional to the viscosity of blood and 

the inlet length and inversely proportional to the inlet radius. 

 

Pursuing these assumptions, the velocity profiles at the mitral valve and aortic outflow 

tracked from the ALE simulation is discovered to match reasonably well in comparison to 

fundamental physiology measurements. The timing of the velocity profiles is seen to be in 

good agreement, whereas the shape and maximum values of the velocity curves show some 

difference. The best agreement for the mitral velocity profile is at the beginning of the heart 

cycle, while the best agreement for the aortic profile is from the beginning until maximum 

outflow velocity. 

 

5.6 Evaluating the blood flow in the left ventricle model 

Obtaining a mathematical evaluation of the flow model requires further investigations to 

the available physiological data. In the project, flow properties of the blood has been 

thoroughly investigated using results from the ALE model and the assumptions in 

presentation have been derived based on comparison with agreeing physiological data. The 

work of Yellin (1995) on pressure, flow and volume events during the cardiac cycle has 
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been used to evaluate the pattern of blood flow particularly during the mitral inflow and the 

aortic outflow in this research.  

 

Using information from the completed left ventricle simulation, two graphs have been 

specifically derived to show the pattern of the aortic outflow (seen in Figure 5.1(a)) and the 

pattern of the mitral inflow (refer to Figure 5.1(b)). Using 15 streamlines to plot the blood 

flow pattern in each plot, both graphs are compared to the graph obtained from that work 

(Yellin).  

 

       
(a) (b) 

Figure 5.1: Blood flow pattern in (a) the Aortic Outflow and (b) the Mitral Inflow 

 

 

Figure 5.2: Flow Events in the Cardiac Cycle from Yellin (1995) 
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The data depicted in Yellin’s work is a result stemming from an electrocardiogram (ECG) 

monitoring of the electrical pulses in the left ventricle. Further explanation on the work on 

cardiac mechanics has been discussed in Section 2.2.2. The ECG has been used in that 

research to reflect the total or summated timing within the event of the ventricular activities 

during the cardiac cycle and is reported to coincide with experimental data on a normal 

heart.  

 

5.6.1 Evaluating the Aortic Outflow 

Figure 5.1(a) depicts the velocity pattern of the aortic outflow for the left ventricle model. 

Based on the graph in Figure 5.2, direct comparison can be made between both aortic 

patterns. Reading the graph from left to right, the aortic outflow in the physiological 

experiment is seen to have two velocity peaks and is separated with a gap in between. This 

pattern explains the differing velocity peaks which pass through the aortic from the 

ventricle and out to the arteries. The first peak on the left indicates the velocity of the flow 

during the early ventricular filling, which means that the aortic valve leaflets are closing 

and that the flow passing through the aortic is decreasing. The gap in between represents 

the pattern at the time the valve is fully closed. The flat pattern in the graph indicates that 

there is no flow passing through the aorta during the ventricular diastole. Towards the end 

of the ventricular filling, i.e. the last phase of the diastole, pressure accumulated in the 

ventricle chamber forces the aortic leaflets to open and ejects the blood out into the aorta. 

This high velocity profile outflow is shown in the graph after the gap and is also seen in the 

graph from the simulated results.  
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The problem with the aortic outflow in the simulated result (i.e. Figure 5.1(a)) is at the 

closing stage of the aortic leaflets due to the ventricular filling. It has been identified in the 

simulation that the above-mentioned problem may arise due to insufficient convergence of 

the aortic leaflets. In the development, the Heavyside step function has been applied on the 

mesh displacement in the leaflets domain. However the step function was unable to unite 

the cross-link between the simplified leaflets of the valve, resulting in a delay in the closing 

stage of the aortic valve during ventricle dilation. For this reason, the blood is allowed to be 

ejected out through the aortic valve in longer period, consequently deriving a higher peak 

velocity in the simulation in comparison to the available physiological experiment. 

 

5.6.2 Evaluating the Mitral Inflow 

Figure 5.1(b) shows the velocity pattern of the mitral inflow for the left ventricle model. 

Based on the graph in Figure 5.2, direct comparison can be obtained between the mitral 

inflow pattern from the simulation and the mitral inflow pattern from the physiological 

experiment. Three stages of the mitral activities can be seen in Figure 5.2; the E-wave that 

depicts the rapid or early filling phase, the L-wave that shows the diastasis and the A-wave 

which represents the flow pattern during the atrial contraction. When the pressure in the left 

ventricle falls lower of that in the left atrium, the mitral valve is forced to open and the 

blood is allowed to fill the ventricle chamber. In this early filling phase, the inflow from the 

left atrium is considered with high pressure resulting in high velocity profile of the inflow 

through the mitral’s orifice. Similar pattern is identified from the charted graph derived 

from the simulation work. The gap in between the two velocity peaks in the graph identical 
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to the gap for the aortic outflow discussed in Section 5.5.1 carries similar information. It 

depicts the closing stage of the mitral valves during the end-ventricular filling. The only 

different is the work by Yellin (1995) accounts for the small amount of filling from the 

pulmonary vein flow, i.e. the L-wave or the diastasis. In this work, the L-wave was not 

considered and does not fall within the scope of the research. However, in future work, it 

would be an added advantage to the result, if the diastasis analysis is included. At the end 

of the ventricle contraction, the mitral valve is again opened to allow inflow for the 

ventricle filling. Similar to the pattern in the aortic outflow, this high velocity profile inflow 

is shown in the graph after the gap and it has been encouraging to see comparable results in 

the graph from the simulated results.  

 

5.7 Contribution Highlights 

The 2D ALE model presented in this thesis supports the study to investigate the blood flow 

in the left ventricle and its interaction with the structure and function of the valves provided 

that the limits of the model are kept in mind. The detailed flow of the blood inside the left 

ventricle ALE model should not be used for investigations before the model is further 

improved particularly with respect to the vortex pattern in the ventricle chamber. Based on 

the comparison between the mitral velocity profiles, it is justified to use the ALE model to 

investigate the early filling in the ventricle chamber in relation to the influence of flow 

from the mitral valve. It is also a fair justification that investigations involving the aortic 

outflow profiles are beneficial in the studies pertaining to responses of the left ventricle to 

different physiological cases such as reaction to an increased pressure and resistance in the 

outflow, or, responses of flow to stiffer boundaries that depicts the ventricular and valve 

walls. Assessment to these problems limits the expectation to obtain complete simulation of 
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the flow field in the left ventricle but properties such as the form of the velocity profile and 

the motion of the valve leaflets during a cycle can be obtained from the simulated model. 

5.8 Suggestions for future work 

It is supposed that the 2D ALE model presented in this thesis is fairly reasonable in 

understanding the blood flow in the left ventricle of the heart. In consequence to the 

limitations discussed in the previous section, suggestions for future work for the developed 

model should include investigations and simulations similar to the following scenarios: 

 

 Diastolic function. The investigations presented in this thesis could be extended by 

simulating a higher stiffness property at certain part of the ventricular wall due to an 

infarction. 

 

 Aortic valve stenosis. This narrowing of the aortic valve can be better simulated by 

introducing one or several cross links in between the three aortic valve leaflets 

which would allow for better closure during the ventricle dilation. 

 

 Mitral valve regurgitation. This is backflow of blood from the ventricle to the 

atrium (through the mitral domain) due to mitral valve deficiency and has the 

potential to be simulated by introducing bending resistance in the mitral leaflets, 

which would cause them not to close. Bending resistance can be introduced by the 

procedure described in Peskin and McQueen (1989) on modeling prosthetic heart 

valves. 
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 Blood as micro-polar fluid. A more realistic way to depict the motion of blood flow 

is to model blood as micro-polar fluid. The entire pathway of the bloodstream in the 

left ventricle; which starts from the mitral valve, through the ventricle chamber and 

out of the aortic valve, can be set with periodic conditions and modified Navier-

Stokes equations to account for rotational effects of blood cells. The main challenge 

here would be to control the blood micro-rotation using specific fluid pressure and 

vorticity. 

 

The results presented in this thesis support the idea of computational models as a tool for 

understanding the blood flow or hemodynamics in the left ventricle of the heart. However, 

since the intra-ventricular flow pattern is in real time, a three dimensional, future works 

should eventually be performed with a 3D virtual model. It is understood that this would 

not have to be a computationally demanding model of the entire heart, like the model of 

Peskin and McQueen (1980). Instead, a simpler 3D model of the left side of the heart 

would be enough to meet the demands of a hemodynamic tool. The work presented here 

has shown that an anatomically simplified 2D ALE model can, within limits, has the ability 

to predict physiologically correct flow patterns. Thus a simplified 3D ALE model in vision 

should also be able to comprehend such task and perhaps furthermore. Detailed evaluation 

and validation on such virtual 3D model can be well examined with comparison to 

dependable sources of data for example the MR (magnetic resonance) velocity data. Upon 

completion of such implementation, the model could be utilized for investigations 

incorporating similar cases presented in this thesis and those suggested above in reference 

to the future work. 
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6 Conclusion 

 
 
 

 
 

Chapter 6 
Conclusion 

   
The Noblest Pleasure is The Joy of Understanding. 

 

Leonardo Da Vinci 
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6.1 Assessment  

This thesis has reviewed the basic framework used to derive a model of blood flow in the 

left ventricle by means of a two-dimensional ALE modeling. In addition, simplification of 

the valves to represent the mitral and the aorta in the left part of the heart has been 

considered a major priority in the construction process. Emphasizing blood regulation 

through the left ventricle, the flow is assumed to be incompressible, non-Newtonian, and is 

depicted to have parabolic velocity profile. The valves, albeit with much simplifications, 

played very important role in determining the pattern of flow in the ventricle chamber. In 

accordance to these parametric demands the working valves have been designed with a 

periodic behavior similar to physiological data obtained from various sources.   

 

It is clear that the interaction between theory and experiments must be iterative. In 

successive investigations, there is hope for each process to converge and with that an 

understanding of the problem is expected to achieve both qualitatively and quantitatively. 

With such understanding, prediction of changes in the flow pattern in the left ventricle can 

be derived with conviction pertaining to changes to various anomalies such as difference to 

boundary conditions or the material properties. In the early phase of the development 

acquiring information about the constitutive equation best suited for the model is a tiring 

but weighted as most important for without the constitutive laws, no reliable analysis can 

be done.  

 

On the other hand, without the solution of boundary valued problems the constitutive laws 

cannot be determined. For these very reasoning, resulting experiments are recognized with 

high degree of difficulty and often the case of nonlinearities as with the work in this 
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project. With each modeling case, the results are optimized to yield to the desired 

agreements else new analyses based on a different starting point would have become a 

necessity.  
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A P P E N D I X    A 

3D rendition of the left ventricle model: 

 

Figure A.1: 3D Rendition of the Left Ventricle (Front View) 

    

(a) (b) 

FigureA.2: The rendered Left Ventricle showing (a) the aortic tricuspid leaflets and (b) the mitral tricuspid 

leaflets 
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A P P E N D I X    B 

Data measurements on the major boundaries from the reconstruction of 3D left ventricle 

surface model which have been used in modeling the solid geometry of the left part of the 

heart.  

 

   
(a)                  (b)             (c) 

Figure B.1: The measurement studies the length of the aortic cylinder, diameter of the cylinder opening and 

diameter of the semilunar valve at the orifice.  (a) Length of the aortic cylinder is computed to be 21.706mm. 

(b) Diameter of the cylindrical opening is computed to be 17.000mm. (c) At the base, the diameter of the 

semilunar valve is computed as 10.180mm. 

 

 

   
(a)                  (b)               (c) 

Figure B.2: The measurement studies the length of the mitral cylinder, diameter of the cylindrical opening 

and diameter of the mitral valve at the orifice. (a) Length of the mitral cylinder is computed to be 20.842mm. 

(b) Diameter of the cylindrical opening is calculated to be 18.367mm. (c) Diameter of the mitral valve at the 

orifice is calculated to be 14.845mm. 
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       (a)                                      (b)           (c)            (d) 

Figure B.3: The measurement studies the vertical length of the chamber and three curvature diameters that 

are significant to the shape of the body. (a) The length of the body from the base to the ventricle’s apex is 

computed to be 45.644mm. (b) Diameter of the body near the base of the valves is calculated to be 

38.917mm. (c) Diameter of the body in the middle part of the chamber is computed to be 36.351mm. (d) 

Diameter of the body near the ventricle’s apex is calculated to be 29.388mm. 


