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ABSTRACT

A simplified lightweight numerical model is proposed for predicting the hole geometry

in laser drilling of thin metal sheets. A 2D axisymmetric model for transient metal laser

drilling is adopted, and three different meshfree collocation methods are employed and

compared with each other in terms of computational efficiency and results accuracy.

Collocation discretization (i.e. strong-form) of meshless local Petrov-Galerkin (MLPG),

symmetric smoothed particle hydrodynamics (SSPH) and radial point interpolation

method (RPIM) is used to harness its advantages of significant reduction in

computational time and constructing global matrices in a straightforward manner over

their weak-form. The 2D domain is discretized into a finite number of particels, then

shape functions of the neighbors are obtained. Laser beam is assumed to be continuous

wave with Gaussian distribution, while particles are assumed to be removed upon

reaching the melting temperature under the effect of a highly pressurized assist gas.

MATLAB code is constructed for numerical simulation, and results are compared with

previously published relevant work. A good agreement is shown for each method with

little deviation of hole geometry prediction from each other. SSPH is chosen as the best

method for the proposed work since it is significantly superior to MLPG and RPIM in

terms of CPU time. Despite considering a fixed value for laser absorptivity, the proposed

numerical model is shown to be computationally efficient and accurate standalone

platform for predicting the penetration depth of laser drilling of thin metal sheets. The

computational efficiency of meshfree collocation methods is exploited to build a

lightweight standalone application with graphical user interface (GUI). This application

has the potential of integrating the present model into the front panel of typical laser

processing machines in order to provide an estimation of the keyhole geometry for

arbitrarily given process parameters and target metals, which saves unnecessarily

time-consuming and costly experimentation.
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ABSTRAK

Suatu Model Berangka Ringan Dipermudahkan telah dicadangkan untuk meramalkan

geometri lubang dalam penggerudian laser bagi kepingan logam nipis. Suatu model

simetri sepaksi 2D untuk penggerudian laser logam transien diguna pakai dan tiga

kaedah bebas-mesh kolokasi (penempatan bersama) berbeza digunakan dan

dibandingkan antara satu sama lain dari segi pengiraan kecekapan dan ketepatan

keputusan. Kolokasi pendiskretan (iaitu bentuk-kuat) daripada Petrov-Galerkin (MLPG)

tempatan tanpa-mesh, hidrodinamik zarah simetri terlicin (SSPH) dan jejarian kaedah

titik interpolasi (RPIM) telah digunakan. Kolokasian pendiskretan mempunyai kelebihan

pengurangan ketara dalam masa pengiraan komputesional dan membina matriks global

dengan cara yang terus-mudah berbanding bentuk yang lemah. Domain 2D

didiskretankan ke dalam beberapa zarah terhingga, maka bentuk fungsi jiran boleh

diperolehi. Pancaran laser dianggap sebagai gelombang berterusan dengan taburan

Gaussian, manakala zarah diandaikan akan dikeluarkan apabila mencapai takat suhu

lebur di bawah kesan gas bantuan bertekanan tinggi. Kod MATLAB dibina untuk

simulasi berangka dan keputusannya dibandingkan dengan kerja-kerja berkaitan yang

pernah diterbitkan sebelum ini. Satu keputusan yang sama bandingan ditunjukkan bagi

setiap kaedah dengan sedikit selisihan ramalan lubang geometri daripada satu sama lain.

SSPH dipilih sebagai kaedah terbaik untuk kerja yang dicadangkan kerana ia adalah

lebih baik daripada MLPG dan RPIM dari segi masa CPU. Walaupun

mempertimbangkan nilai tetap untuk keboleh-serapan laser, model berangka yang

ditunjukkan sebagai platfom tersendiri adalah cekap-komputeran dan tepat untuk

meramalkan kedalaman penembusan penggerudian laser bagi kepingan logam nipis.

Untuk kaedah kolokasian bebas-mesh, kelebihan mereka untuk mengendalikan apa-apa

masalah pemisahan domain dengan beban pengiraan minimum boleh dieksploitasi untuk

membina aplikasi yang berdiri sendiri lengkap dengan GUI. Aplikasi ini mempunyai

potensi untuk mengintegrasikan model sedia ada ke dalam panel hadapan mesin

pemprosesan laser biasa untuk menyediakan anggaran geometri lubang-kunci untuk
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anggar-wenang parameter proses yang diberi dan logam sasaran.
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CHAPTER 1: INTRODUCTION

1.1 Background

Laser beam machining (LBM) is considered to be one of the advanced machining

processs (AMPs). Due to its non-contact nature and microscale precision, LBM has

become vital to fulfill the strict requirements of final products size, material, operating

conditions, etc. For industrial lasers, considering the physical nature of the active

medium, there are gas and solid state lasers. Moreover, laser drilling can be done in

different approaches such as single pulse, percussion and trepanning. Analytical

modelling and numerical simulation help further understand the effect of process

parameters, melt expulsion, molten pool hydrodynamics and reflectivity/absorptivity.

For laser drilling, analytical modeling and numerical simulation have been pursued to

help in predicting the molten metal flow field, hole geometry and material removal rate

in addition to understanding the effects of process parameters.

Grid or mesh-based numerical methods have been commonly used as an essential tool in

solving problems in many fields of engineering and science such as computational fluid

dynamics (CFD) and computational solid mechanics (CSM). Finite difference method

(FDM) was heavily used for solving the governing partial differential equations for

simple geometries. Moreover, finite volume method (FVM) and finite element method

(FEM) succeeded in handling complex problems in both fields of fluid flow and solid

mechanics. Generally speaking, mesh-based approach relies on discretizing the physical

domain into finite number of elements with fixed number of nodes. Although

mesh-based numerical methods are well developed tools for the analysis of advanced

problem in both fluid and solid mechanics, there are some difficulties that limit their

applicability in, for example, high deformation and free surface problems. Massive

computational load and continuous re-meshing are associated with handling such

problems, yet the results may not be accurate enough.
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Consequently, the need for numerical approach to handle such problems with minimum

computational load and accurate enough results has been rapidly investigated and

pursued. Accordingly, meshfree methods have been introduced to handle such problems

by discretizing the whole physical domain into finite number of particles instead of

cells/nodes as in mesh-based methods. Each particle has both physical meaning and

properties of mass, velocity, temp, etc. The solution at each particle can be approximated

using a kernel function centered at the particle of interest. The kernel only allows a set of

the particle neighbors lying within the prescribed kernel radius of support to contribute

to the function value at the particle of interest.

1.2 Problem Statement

Since laser drilling is one of the most important AMPs, it is vital to understand the effect

of the process multiple parameters at the lowest possible cost. Therefore, its numerical

modeling and simulation aim to give insight into the output dependency on the process

parameters. Conventional mesh-based methods are have limitations in handling such

problems with severe deformation without massive computational load and numerous

re-meshing as in, for example, metal laser processing. Therefore, meshfree methods will

be addressed in this work of numerical simulation of metal laser drilling where they can

handle domain deformation/separation in a more computationally efficient and easier

way.

1.3 Scope of Study

This work aims to exploit the high potential of meshfree methods and apply them to the

simulation of metal laser drilling to harness their advantages of handling problems of

severe deformation and domain separation with minimum computational load.

Furthermore, a standalone application is developed in order to show the expected output

for a set of arbitrary input process parameters. Therefore, the application of meshfree

methods to the numerical simulation of metal laser drilling results in a lightweight

standalone application that can be seamlessly integrated inside the software of industrial

laser machines.
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1.4 Objective of Study

This study is going to:

• model and simulate the metal removal in laser drilling using different meshfree

collocation methods in order to estimate the transient development of the

laser-drilled hole shape and penetration time;

• validate the introduced numerical model against relevant published work and

experimental data;

• provide a fully functional standalone application that masks the proposed model

with a user-friendly graphical user interface (GUI).

1.5 Outline of the Thesis

This thesis is arranged into five main chapters as follows:

• In chapter 1, the research background, problem statement, study scope, objectives

and methodology are introduced.

• In chapter 2, previous work in both areas of metal laser drilling and meshfree

methods is reviewed where the mechanism of metal laser drilling is thoroughly

given.

• In chapter 3, the methodology is deeply discussed, and the mathematical

formulation of each meshfree method is thoroughly given. Additionally, the model

assumptions are given in addition to its underlying fundamental logic.

• In chapter 4, the model results and their validation against the previous relevant

work and the experimental data are comprehensively discussed.

• In chapter 5, the highlights of the present work are concluded, while future

recommendations are given for further development of the introduced model.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Since the introduction of first working laser in 1960 (Maiman, 1960), LBM has proven

to be one of the most important industrial processes. LBM has many advantages,

including, but not limited to, the absence of tools wear, materials processing with up to

nano-scale accuracy, drilling of high aspect ratio holes, feasible processing of wide range

of materials and alloys, and the short processing time (Yeo, Tam, Jana, & Lau, 1994;

Gower, 2000; Meijer, 2004; Ion, 2005; Dubey & Yadava, 2008; Schulz, Eppelt, &

Poprawe, 2013). Because it is a physically complex process, a lot of effort has been

devoted to develop analytical and numerical models of LBM to investigate and improve

as accurately as possible. For instance, FDM and FEM in addition to analytical models

were used/developed to construct numerical models to solve for the temperature

distribution and kerf/hole geometry (Modest, 1996; Cheng, Tsui, & Clyne, 1998; Kim &

Zhang, 2001; Kim, 2005; Kar, Rockstroh, & Mazumder, 1992; Ganesh, Bowley,

Bellantone, & Hahn, 1996; Ganesh, Faghri, & Hahn, 1997b, 1997a). Additionally,

thermal stresses are of great interest in LBM process since the rapid heating of the target

material results in thermally nonuniform deformation which is the main cause of residual

thermal stresses. Therefore, a plenty of numerical works quantitatively investigated such

a phenomena (Paek & Gagliano, 1971; Li & Sheng, 1995; Yilbas & Naqvi, 2003;

Akarapu, Li, & Segall, 2004; Arif, Yilbas, & Aleem, 2009; Harničárová et al., 2013;

Veres, Berer, & Burgholzer, 2013).

Most of engineering problems have been numerically simulated using mesh-based

numerical methods such as FEM, FDM and FVM. However, these mesh-based methods

may fail in converging to an accurate solutions in problems of discontinuities, sever

deformation and complex geometries because of the fixed topological connectivity

between the grid elements (Nguyen, Rabczuk, Bordas, & Duflot, 2008; Hua Li, 2013).

Consequently, continuous remeshing is indispensable to overcome such limitations,
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which leads to unfavourable heavy computational load. Nevertheless, the solution may

not be accurate enough, and it will degrade more in case of higher dimensionality,

discontinuity or deformation. Therefore, meshfree methods have been developed to

replace/be coupled with mesh-based methods for handling such engineering problems.

Briefly speaking, the domain of interest, in meshfree methods, is discretiszed into a set

of finite particles to solve for the field variable at them. Each particle is spatially and

physically defined by carrying properties of mass, velocity, temperature, etc. The main

advantage of meshfree methods is that no fixed geometrical connectivity is existent

which helps in handling problems of severe deformation and domain separation.

smoothed particle hydrodynamics (SPH) was the first and most popular meshfree

method. It was mainly developed to solve astrophysics problems (Gingold & Monaghan,

1977), then it was used in fluid dynamics and solid mechanics ones (Monaghan, 2005).

Later on, several meshfree methods have been thoroughly developed and pursued such

as element-free Galerkin (EFG), reproducing kernel particle method (RKPM) and

meshless local Petrov-Galerkin (MLPG) (Liu & Gu, 2005).

In the following sections, a thorough review is given on the numerical simulation of laser

drilling in terms of hole geometry, melt expulsion and molten pool hydrodynamics.

Additionally, the application of meshfree methods to laser drilling will be shed light on

to show the previous work that has been done and the potential future work that can be

pursued in this area.

2.2 Modeling and Simulation of Laser Drilling Process

A lot of work has been done in the area of modeling and simulation of laser drilling.

In this section, an overview of the previous work will be given. In von Allmen, 1976, a

numerical model was provided to estimate the drilling velocity of metal laser drilling while

considering both rates of liquid expulsion and evaporation. The model didn’t consider the

change of laser absorptivity or reflectivity. For the given experiment, it was found that

at low laser intensity, the drilling mechanism is a normal evaporation, and at certain high

intensity, the recoil pressure was high enough to expel the molten material and abruptly
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accelerate the drilling as depicted in Figure 2.1.

In Chan and Mazumder, 1987, a one-dimensional analytical model was constructed to

understand the damage caused by the laser-material interaction. The model shows that

the increase in laser energy results in reduction of liquid layer thickness and making the

evaporation the dominant drilling mechanism, while the converse holds true. A

two-dimensional axisymmetric model in Kar et al., 1992 was developed for material

laser-induced removal. The model considered the multiple reflections against the hole

walls and the shear stress-induced molten pool flow. It was shown that considering the

multiple reflections leads to estimating of higher cavity depth, thinner recast layer and

more cylindrical cavity. An effective absorptivity of fixed 85% value was presented to

account for the abrupt increase in laser absorption when the liquid layer progresses.

In Patel and Brewster, 1991b, 1991a, a theoretical model was developed for gas assisted

low power laser-metal interaction. The model was restricted to the low power laser

drilling where the drilling mechanism was assumed to predominantly be the liquid

expulsion. It was shown that the assist gas type affects the drilling time, while the higher

assist gas pressure is, the longer drilling time becomes until reaching a critical pressure

beyond which the pressure has no significant effect.

A novel mathematical 2D axisymmetric model was developed in Ganesh et al., 1996

while considering the molten pool hydrodynamics and material removal by expulsion

and evaporation. The novelty of model came from treating the molten pool as a

deformable free surface considering the impact of vapor gas dynamics on the

temperature and pressure over the melt surface. Moreover, the modeling of melt

resolidification was provided. While in Ganesh et al., 1997a, 1997b, the model in

Ganesh et al., 1996 was improved to account for the change in thermo-physical

properties with temperature. Additionally, the melting was considered to take place over

a temperature range, and the latent heat of fusion wasn’t neglected.
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Figure 2.1: Measured drilling velocity (solid line) and both calculated fictitious drilling

velocities (dashed lines) of pure evaporation (1/𝜌𝐿𝑣) and pure liquefaction
(1/𝜌𝐿𝑙) (von Allmen, 1976)

In Solana, Kapadia, Dowden, and Marsden, 1999, an analytical modeling of laser

drilling was given with consideration of laser attenuation due to its absorption by

material vapor. The model showed good agreement with experimental work in the region

of laser energy over which the liquid expulsion is the predominant mechanism. A

thermal model of melting vaporization in laser drilling was developed in Zhang and

Faghri, 1999. It was shown that the heat conduction losses to the solid material are small

and have no significant effect on the vaporization. However, the melt front location is

significantly affected by the heat conduction losses especially in case of low laser energy

and long pulse time. A hydrodynamic physical model of laser material-interaction was

developed in Semak, Damkroger, and Kempka, 1999 to simulate the temporal evolution

of melt surface profile and estimate the temperature field. It was shown that the recoil

pressure induces a significant convective heat transfer for absorbed laser intensities from

0.5 to 10 MW cm−2 which is the range of hydrodynamic drilling where the liquid

expulsion is the main drilling mechanism.

An analytical one-dimensional model of laser drilling was derived in Shen, Zhang, Lu,

and Ni, 2001. Temporal evolution of temperature was calculated before and after the

occurrence of melting. A discontinuity in temperature gradient was found and attributed
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to the latent heat of fusion. Additionally, materials with low thermal conductivity and

high melting and boiling temperatures can be drilled faster than those with high thermal

conductivity and low melting and boiling temperatures.

In Zhang, Yao, and Chen, 2001, an axisymmetric model was developed to track both solid-

liquid and liquid-vapor interfaces. Additionally, discontinuities in Knudsen layer were

considered. In this model, for high laser energy, a correction factor of plasma effect had to

be applied to make the numerical results of hole depth and drilling efficiency have good

agreement with experimental data since the plasma absorbs some incident laser energy

and leads to lower energy irradiating the target material as shown in Figure 2.2. Plasma

effect and vapor gas dynamics were shown to be significant at high incident laser energy.

Figure 2.2: Effect of plasma correction factor where its application results in better

agreement with the experimental data (Zhang, Yao, & Chen, 2001)

Two mathematical formulations in Verhoeven, Jansen, Mattheij, and Smith, 2003 were

derived to solve for depth and temperature in laser-induced melting problem. One

formulation employed Stefan condition, while the other used physical quantity enthalpy.

The enthalpy method showed several advantages over the Stefan condition. In enthalpy

method, the domain doesn’t change with time so no tight restriction is imposed on the

time step. Moreover, enthalpy method doesn’t explicitly need the location of solid-liquid

interface. Finally, enthalpy method is appropriate in case of alloys where the melting
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takes place over a temperature range since the Stefan condition approach needs a distinct

melting temperature.

In Ng, Crouse, and Li, 2006, a one-dimensional analytical model was developed based on

that of Semak and Matsunawa, 1997; Low, Li, and Byrd, 2002. This model incorporated

the oxidation effect of O2 assist gas and took into consideration the effect of pulse width

variation, while the recoil pressure formulation considered the hole variable depth. The

model predicted, in good agreement with the experimental data, velocity of melt ejection,

drilling velocity and the contributions of both melt ejection and evaporation to the overall

drilling rate.

Pulsing mode of percussion laser drilling was investigated theoretically and

experimentally in Salonitis, Stournaras, Tsoukantas, Stavropoulos, and Chryssolouris,

2007. The theoretical model considered only melting not vaporisation, which makes it

suitable for addressing low to medium laser intensities. It was found the time needed for

reaching the melting temperature is dependent on the pulsing frequency, and the

maximum keyhole depth is independent of the pulsing frequency. In Harp, Dilwith, and

Tu, 2008, fiber laser was investigated to find its feasibility of producing micro holes

using microseconds pulses. Its performance was found to be as high as that of

nanosecond laser in addition to holes with higher depth per pulse.

The work in Shidfar, Alinejadmofrad, and Garshasbi, 2009 introduced a conjugate

gradient method (CGM)-based algorithm for predicting the melt depth. The laser

processing was treated as an inverse heat conduction problem with unknown moving

interface, and CGM was used to solve this inverse problem. In Collins and Gremaud,

2011, a simple axisymmetric mathematical model of laser drilling was introduced and

reduced to one-dimensional after cross-sectional averaging. The model considered the

regime of high laser fluence at which the evaporation is the main ablation mechanism,

and the liquefaction played a secondary role. The model simulated the progress of

solid-vapor interface while considering Knudsen layer discontinuities.
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The model developed in Semak et al., 1999 was thoroughly investigated in Semak and

Miller, 2013. The beam penetration was considered as melting through the target

material or drilling through (due to evaporation and melt ejection). A wide range of laser

pulse parameters (absorbed energy, pulse width, repetition rate and sample thickness)

was studied to understand their effects for broad laser applications. The work in Zhang,

Li, Chen, and Mazumder, 2013a gave a thorough experimental study of GG17 glass laser

drilling. Additionally, a FEM model on ANSYS software was introduced. This study

shed light on the effect of multiple reflections across keyhole walls and beam defocusing

on the temporal evolution of the keyhole. Moreover, the drum-shaped profile of keyhole

was examined in view of beam defocusing and reflections on the wall as depicted in

Figure 2.3. This profile was attributed to the change of laser intensity with recessing

keyhole front as shown in Figure 2.4.

In Zhang, Shen, and Ni, 2013b, 2014, a two-dimensional transient numerical model was

established to simulate the long pulse (of order of milliseconds) laser drilling. The model

considered the phase change of both melting and evaporation, gravity, recoil pressure

and Marangoni effect, while a modified level-set method was employed to track the

liquid-vapor interface. Laser pulse width and influence were investigated to understand

their effects on the dynamic progress of keyhole and expelled melt. In order to better

understand the laser drilling efficiency, an analytical and numerical study of laser drilling

was provided in Pastras, Fysikopoulos, Stavropoulos, and Chryssolouris, 2014. The

efficiency was defined as the ratio of removed volume to the energy consumed for

removing this volume. It was shown that the efficiency increases with laser power and

decreases with pulse duty and frequency. A theoretical model was developed in Yang,

Chen, and Zhang, 2016 to understand the effect of melt flow on the material removal in

laser drilling. It was found that its effect is dependent on the target material properties

and may be ignored in some cases.
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Figure 2.3: Simulation result shows a drum-shaped profile of the keyhole (Zhang, Li,

Chen, & Mazumder, 2013a)

Figure 2.4: Variation of laser intensity with depth along a certain radial position

(𝑥 = 0.35 mm) (Zhang, Li, Chen, & Mazumder, 2013a)
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2.3 Meshfree Numerical Methods

2.3.1 Introduction to Meshfree Methods

Numerical simulation has been extensively used for solving problems in engineering and

science. Grid- or mesh-based numerical methods have been commonly used as an

essential tool in many fields such as CFD and CSM. FDM was heavily used for solving

the governing partial differential equations for simple geometries. Moreover, FVM and

FEM succeeded in handling complex problems in both fields of fluid flow and solid

mechanics. Generally speaking, mesh-based approach relies on discretizing the physical

domain into a finite number of elements/cells with fixed number of nodes. Although

mesh-based numerical methods are well established tools for the analysis of advanced

problem in both fluid and solid mechanics, there are some difficulties that limit their

applicability in, for example, high deformation and free surface problems. Massive

computational load and continuous re-meshing are associated with handling such

problems, yet the results may not be accurate enough.

Consequently, the need for numerical approach to handle such problems with minimum

computational load and accurate enough results has been rapidly investigated and

pursued. Accordingly, since its introduction for astrophysics problems (Lucy, 1977;

Gingold & Monaghan, 1977), meshfree methods have been introduced to handle such

problems by discretizing the whole physical domain into finite number of particles,

instead of cells/nodes as in mesh-based methods, as depicted in Figure 2.5. Each particle

has both physical meaning and properties of mass, velocity, temp, etc. For example, in

meshfree methods of local approximation, the solution at each particle can be

approximated using a kernel/weight function centered at the particle of interest. The

kernel function only allows a set of the particle neighbors lying within the prescribed

kernel radius of support to contribute to the function value at the particle of interest (Li

& Liu, 2002; Liu & Gu, 2005; Shaofan Li, 2007; Nguyen et al., 2008; Liu, 2009; Hua Li,

2013; Niraula, Han, & Wang, 2015).

Advantages of meshfree methods can be summarized as follows:
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Figure 2.5: Meshfree discretization and the approximation field variable

1. Severe deformation can be easily handled without losing the accuracy as no fixed

topological connectivity between the particles is existent.

2. Meshfree methods are favorable when dealing with material separation and

discontinuities.

3. In certain domain area of interest, particles density can be increased for more

accuracy as in h-adaptive methods.

4. Geometrically complex domains are easy to model without difficulties.

SPH is considered to be one of the first meshfree methods after its introduction in 1977.

It was first developed for astrophysical problems (Lucy, 1977; Gingold & Monaghan,

1977; Rosswog, 2009; Springel, 2010), then, because of its potential to solve applied

mechanics problems, it has been employed in solving different engineering problems. In

other words, SPH has proven itself a potential numerical method for simulating

problems of metal cutting and machining (Limido & Espinosa, 2006; Limido, Espinosa,

Salaün, & Lacome, 2007; Espinosa et al., 2008; Su, Zhang, Hou, & Wang, 2008;

Calamaz et al., 2009; Jianming, Na, & Wenjun, 2010; Limido et al., 2011; Zahedi, Li,

Roy, Babitsky, & Silberschmidt, 2012),sloshing (Iglesias, Rojas, & Rodríguez, 2004;

Souto-Iglesias, Delorme, Pérez-Rojas, & Abril-Pérez, 2006; Vorobyev, Kriventsev, &

Maschek, 2011; Shao, Li, Liu, & Liu, 2012), dam break (Chang, Kao, Chang, & Hsu,
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2011; Kao & Chang, 2012; Razavitoosi, Ayyoubzadeh, & Valizadeh, 2014), droplet

deformation and splashing, (Zhang, Zhang, & Zheng, 2008; Xiong & Zhu, 2010) and

multiphase fluid flow (Wang et al., 2016).

2.3.2 Classification of Meshfree Methods Formulation

In terms of formulation and discretization, meshfree methods can be categorized into

global/local weak-form, combination of weak-form and collocation, and collocation

methods. In global weak-form methods (e.g. EFG), a set of background cells are

required to evaluate the integrals when using Galerkin weak-form over the global

domain (Belytschko, Lu, & Gu, 1994). However, the need for background cells for

global integration makes this kind of methods not truly meshfree ones. Therefore, to

avoid using background cells, local weak-form methods were developed such as MLPG

(Atluri & Zhu, 1998). In this kind of methods, the integration is evaluated locally over a

quadrature domain which can be the same local domain where the test function is

defined. Although they are computationally heavy and not easy to implement,

weak-form methods are advantageous because of their high stability and accuracy

especially in problems of derivative boundary conditions.

Employing Dirac delta as a test function, MLPG collocation method is produced where

the difficult local integration is removed, thus the computational load is dramatically

reduced (Atluri, 2004). Collocation or strong-form meshfree methods are based on direct

discretization of the governing and boundary equations at the field nodes using some

collocation techniques to form a set of discretized equations. The group of typical

strong-form meshfree methods includes, but not limited to, SPH, generalized finite

difference method (GFDM) (Liszka & Orkisz, 1980), finite point method (FPM) (Oñate,

Idelsohn, Zienkiewicz, & Taylor, 1996) and collocation methods (Zhang, Song, Lu, &

Liu, 2000). Strong-form meshfree methods has several advantages of easy

implementation, computation efficiency and being truly meshfree methods without the

need of background cells. Nevertheless, strong-form meshfree methods have limitations

in their employment due to the inherent sensitivity of particles distributions and low
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accuracy especially in problems of derivative boundary conditions.

2.3.3 Coupled Meshfree/Mesh-Based Methods

As previously said, meshfree methods are prominent computational tools when it comes

to handling problems of severe deformation, complex geometries and domain separation.

However, Meshfree methods are not the right choice when mild distortions are

encountered since they are more computationally expensive than FEM. Therefore, FEMs

are always of primary interest because of their high accuracy and less computational load

in the absence of problems where extensive remeshing is needed. However, both

advantages and disadvantages of meshfree and FEMs have drawn the attention of

coupling between them. In such approach, the FEM can be employed at everywhere over

the domain of interest, while its nodes are replaced by meshfree particles where FEM

fails to converge. A lot of work has been done in this area and some of it can be found in

Comas-Cardona, Groenenboom, Binetruy, and Krawczak, 2005; Fernández-Méndez,

Bonet, and Huerta, 2005; Vuyst, Vignjevic, and Campbell, 2005; Rabczuk, Xiao, and

Sauer, 2006; Campbell, Vignjevic, and Patel, 2008; Wang and Yang, 2009;

Groenenboom, 2009; Zhang, Qiang, and Gao, 2011.

2.3.4 Meshfree Simulation of Laser Drilling

Since their introduction, meshfree methods have been rapidly gaining more attention

towards engineering problems. However, their application in simulating laser drilling is

still not quite enough. Because laser drilling is a thermal ablation process, careful

attention should be paid towards the previous work in the area of solving heat transfer

problems using meshfree methods to understand how they can be applied to such

problems (Chen, Beraun, & Carney, 1999; Cleary & Monaghan, 1999; Jeong, Jhon,

Halow, & van Osdol, 2003; Qian & Batra, 2004; Singh, 2004; Liu, Zhang, & Lu, 2005b;

Singh, 2005; Wu & Tao, 2008; Zhang, Ouyang, & Zhang, 2009; Ahmadi, Sheikhy,

Aghdam, & Nourazar, 2010; Dai, Wu, & Tao, 2011; Li, Chen, & Kou, 2011; Mugan,

2012; Fu, Chen, & Qin, 2012; Dai, Zheng, Liang, & Wang, 2013; Mirzaei & Schaback,

2013; Liang, Sun, Xi, & Liu, 2015; Zhang & Xiang, 2015). For laser drilling, up to the
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author knowledge, few contributions have been introduced in this field.

In Muhammad, Rogers, and Li, 2013, an SPH-based platform (SPHysics) was used in

simulating the laser drilling process of thin stainless steel coronary stent. The model

considered hydrodynamics of the molten pool, penetration depth and ejection velocity of

expelled particles in addition to the prediction of recast and spatter formation. On the

other hand, in Kim, 2011, 2012, isoparametric finite point method (IFPM) was used in

both strong and weak forms to simulate the metal laser drilling process. In this work, the

laser drilling was simulated by finding the boundary shape that satisfied the heat balance

through iterative scheme, however, the full-depth penetration wasn’t clearly addressed

using IFPM.

2.4 Conclusion

In summary, mesh-based numerical methods have been extensively employed and

investigated in the area of numerical modeling and simulation of laser drilling process.

However, after a thorough search of the relevant literature, meshfree methods seem to

have not satisfactorily been investigated and employed as much as the mesh-based

methods in this area despite their huge advantage of handling problems with severe

deformations and domain separation, such as laser drilling, with less computational

resources. This computational efficiency, for such problems, comes from the fact that

meshfree methods discretize the domain into a finite number of particles without fixed

topological connectivity between them, thus no computationally expensive remeshing is

required as in case of mesh-based methods.

Therefore, this work novelty and main contribution is to construct a robust meshfree

numerical model that can predict the transient keyhole geometry and penetration time for

generic metal laser drilling. Accordingly, three widely-used meshfree collocation

methods (MLPG, radial point interpolation method (RPIM) and symmetric smoothed

particle hydrodynamics (SSPH)) will be employed in this work and compared to each

other in terms of results accuracy and computational efficiency. In the next chapter, the
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mathematical formulations of the present laser drilling model and aforementioned

meshfree collocation methods will be rigorously given.
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CHAPTER 3: METHODOLOGY

3.1 Introduction

In this chapter, laser drilling mechanism is explained, and its numerical model

assumptions are comprehensively provided. Moreover, the mathematical formulations of

MLPG, RPIM and SSPH are thoroughly given in detail in order to discretize the

governing equation and its boundary conditions equations. MATLAB algorithm of the

numerical model is explained, and its standalone application with GUI is introduced.

Figure 3.1 shows the main steps taken, during this work, in the construction and

validation of the present model.

Laser Mechanism and Model Assumptions
• Mechanism of generic metal laser drilling process is explained.
• Model assumptions are introduced for the present work of laser drilling

of thin metal sheets.

Mathematical Formulation and Meshfree Discretization
• Heat conduction governing equation and boundary conditions are given

for a two-dimensional axisymmetric model.
• Different meshfree collocation methods are introduced, and their dis-

cretization is shown.
• All the discretized equations are put in a single matrix-form transient

equation to be solved over the simulation time.

Results and Discussion
• The model numerical results are validated against previous work.
• Additional set of experiments is done to further verify the present model

validity.
• Comprehensive discussion of the results validation is provided.

Figure 3.1: Flowchart of model construction and validation
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3.2 Laser Drilling Mechanism and Mathematical Formulation

3.2.1 Mechanism of Metal Laser Drilling

Figure 3.2 shows the conventional metal laser drilling mechanism. In such a process, the

metal is rapidly heated by the laser beam until reaching the melting temperature, while

pressurized assist gas expels the molten metal away from he processed work-piece.

Moreover, the assist gas protects the metal from the surrounding in addition to reducing

the dross and recast.

Figure 3.2: Mechanism of Fusion Laser Drilling

3.2.2 Assumptions of Numerical Model

During model construction, the following assumptions are considered:

1. Laser beam is continuous of Gaussian power distribution and vertically downward.

2. The radius of laser beam is constant and has value of the beam waist.

3. Laser irradiation is considered to be a surface heat flux not volumetric heat source.

4. The processed metal is isotropic with thermos-physical properties independent of

temperature.
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5. The molten metal does not show hydrodynamic behavior and is removed upon

reaching the melting temperature.

6. Removed metal does not absorb the laser energy and is transparent.

7. Heat convection coefficient has single value for both convection and radiation

losses.

3.2.3 Mathematical Formulation of Laser Drilling

Following the previous assumptions, the governing equation is the conventional heat

conduction equation with Robin boundary conditions. For uniform Gaussian distribution

of laser intensity, 2D axisymmetric model in cylindrical coordinates is considered. As a

result, the governing equation of transient heat conduction for field particles is written as

𝜌 𝐶𝑝
𝜕𝑇
𝜕𝑡

= 𝑘 (1
𝑟

𝜕𝑇
𝜕𝑟

+ 𝜕𝑇2

𝜕𝑟2 + 𝜕𝑇2

𝜕𝑧2 ) in Ω. (3.1)

with boundary conditions

𝑘 𝜕𝑇
𝜕𝑛𝑙

= 𝑞𝑙 𝑛𝑧 + ℎ𝑎 (𝑇𝑎 − 𝑇) on Γ𝑙,

𝑘𝜕𝑇
𝜕𝑟

= ℎ𝑎 (𝑇𝑎 − 𝑇) on 𝑟 = 𝑙𝑟,

−𝑘𝜕𝑇
𝜕𝑧

= ℎ𝑎 (𝑇𝑎 − 𝑇) on 𝑧 = 0,

𝜕𝑇
𝜕𝑟

= 0 on 𝑟 = 0.

(3.2)

where 𝑞𝑙 = 𝛼𝑙 𝑃𝑙
𝜋𝑟𝑏

2 𝑒−2( 𝑟
𝑟𝑏

)
2

is the absorbed laser heat flux.

Figure 3.3 depicts the domain governing equation with its Robin boundary conditions

for the present problem, while Figure 3.4 elaborates the boundary condition of the laser-

irradiated surface.

Before solving the governing equation subjected to the given boundary conditions,

variables need to be grouped into dimensionless groups/variables so that they can almost
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Figure 3.3: Governing equation and boundary conditions

have the same order, which helps in increasing the solution accuracy. Moreover,

non-dimensionalization reduces the variables number and provides a clear idea about the

impact of the variables on each other in the same group. Additionally, for each value of

dimensionless group, different combinations of its variables values can exist which gives

an economic expression of the experimental or numerical work (Steen & Mazumder,

2010). Consequently, the following dimensionless variables (as given in Kim, 2011) are

introduced

𝑟∗ = 𝑟
𝑟𝑏

,

𝑧∗ = 𝑧
𝑟𝑏

,

𝐵𝑖 = ℎ𝑎
𝑟𝑏
𝑘

,

𝑑𝑡∗ = 𝑑𝑡 𝜆
𝑟2

𝑏
,

𝑇∗ = 𝑇 − 𝑇𝑎
𝑇𝑚 − 𝑇𝑎

,

𝑁𝑘 = 𝑘 (𝑇𝑚 − 𝑇𝑎)
𝑟𝑏 𝛼𝑙 𝐼𝑙

(3.3)

where 𝐼𝑙 = 𝑃𝑙
𝜋𝑟2

𝑏
is the laser beam intensity. The governing and boundary conditions

equations in dimensionless variables (after dropping asterisk for convenience) are:
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Figure 3.4: Boundary condition of laser-irradiated surface

𝜕𝑇
𝜕𝑡

= (1
𝑟

𝜕𝑇
𝜕𝑟

+ 𝜕𝑇2

𝜕𝑟2 + 𝜕𝑇2

𝜕𝑧2 ) in Ω ,

𝜕𝑇
𝜕𝑛𝑙

= 𝑒−2𝑟2

𝑁𝑘
𝑛𝑧 − 𝐵𝑖𝑇 on Γ𝑙,

𝜕𝑇
𝜕𝑟

= −𝐵𝑖𝑇 on 𝑟 = 𝑙𝑟,

𝜕𝑇
𝜕𝑧

= 𝐵𝑖𝑇 on 𝑧 = 0,

𝜕𝑇
𝜕𝑟

= 0 on 𝑟 = 0.

(3.4)

The temperature and its spatial derivatives in Equation (3.4) will be approximated by

MLPG, RPIM and SSPH, thus entailing the derivation of shape functions as follows in

the subsequent sections. For each method, the whole domain Ω is assumed to be

discretized into 𝑁 particles with 𝑛 neighboring particles of arbitrary particle 𝐱 inside its

support domain with radius ℎ as shown in Figure 3.5.
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Figure 3.5: Support domain of arbitrary particle 𝐱 and its neighboring particles

3.3 Mehsfree Collocation Methods

3.3.1 Meshless Local Petrov-Galerkin (MLPG)

For both global and weak-form methods methods, the moving least square (MLS)

approximation technique is widely used for constructing shape functions for a set of

neighboring particles inside the support domain defined for the particle of interest. MLS

approximation was introduced as a mathematical tool for surface construction and data

fitting (Lancaster & Salkauskas, 1981; Lancaster & estutis Šalkauskas, 1986). In heat

transfer problems, MLS was used in approximating the temperature field for both strong

and weak form meshfree methods (Singh, 2004; Wu, Shen, & Tao, 2007; Wu & Tao,

2008; Ahmadi et al., 2010). However, MLS approximation does not provide shape

functions with Kronecker delta function property. As a result, special treatment is

required in imposing essential boundary conditions for weak form methods such as

Lagrange multiplier method (Lu, Belytschko, & Gu, 1994), transformation method

(Atluri, Kim, & Cho, 1999), penalty approach (G.R. Liu & Reddy, 2002) or direct

interpolation method (Liu & Gu, 2005). On the other hand, for weighted least square
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Figure 3.6: Approximated temperature 𝑇ℎ(𝐱𝐢) and the nodal temperature 𝑇(𝐱𝐢) in MLS

approximation

(WLS) approximation, which can be viewed as a special case of MLS, the polynomials

coefficients are constant and not function of the point of interest. Consequently, WLS

shape functions are piecewise and the approximation is not moving continuously over

the entire domain unlike in the case of MLS. Therefore, MLS has been always of

primary interest in approximating the field variable for global weak-form methods.

MLS local approximation

For 2D axisymmetric problem with the whole domain discretized into 𝑁 particles, at an

arbitrary particle 𝐱 = (𝑟, 𝑧) with 𝑛 neighboring particles in its local support domain, its

temperature 𝑇(𝐱) can be approximated (as shown in Figure 3.6) by

𝑇ℎ (𝐱) =
𝑚

∑
𝑗=1

𝑃𝑗 (𝐱) 𝑎𝑗 = 𝐏𝐓 (𝐱) 𝐚 (𝐱) (3.5)

where 𝐏(𝐱) is the polynomial basis function which has 𝑚 monomials. To ensure

completeness, monomials are obtained from Pascal’s triangle. For example, 𝐏(𝐱) can be

linear, quadratic, or cubic basis when 𝑚 = 3, 𝑚 = 6, or 𝑚 = 10, respectively, as follows

𝐏𝑇(𝐱) = [1, 𝑟, 𝑧] , 𝑚 = 3

𝐏𝑇(𝐱) = [1, 𝑟, 𝑧, 𝑟2, 𝑟𝑧, 𝑧2] , 𝑚 = 6

𝐏𝑇(𝐱) = [1, 𝑟, 𝑧, 𝑟2, 𝑟𝑧, 𝑧2, 𝑟3, 𝑟2𝑧, 𝑟𝑧2, 𝑧3] , 𝑚 = 10.

(3.6)

In Equation (3.5), coefficient vector 𝐚(𝐱) is given by
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𝐚 (𝐱)𝑇 = { 𝑎1 (𝐱) 𝑎2 (𝐱) ⋯ 𝑎𝑚 (𝐱) }. (3.7)

In order to determine 𝐚(𝐱), the weighted discrete 𝐋2 norm, where 𝑊𝑖(𝐱) is the neighbor

weight, is given as

𝐽 =
𝑛

∑
𝑖=1

𝑊𝑖(𝐱) [𝐏𝑇(𝐱𝐢)𝐚(𝐱) − 𝑇𝑖]
2

(3.8)

and minimized by differentiating with respect to 𝐚(𝐱)

𝜕𝐽/𝜕𝐚(𝐱) = 0. (3.9)

This results in the following set of equations

𝐀(𝐱) 𝐚(𝐱) = 𝐁(𝐱)𝐓𝐬, (3.10)

where 𝐓𝑠 is the vector of neighboring particles temperatures

𝐓𝑠 = [ 𝑇1 𝑇2 ⋯ 𝑇𝑛
]

𝑇

, (3.11)

and matrices 𝐀(𝐱) and 𝐁(𝐱) are defined by

𝐀 (𝐱)(𝑚×𝑚) =
𝑛

∑
𝑖=1

𝑊𝑖(𝐱) 𝐏 (𝐱𝐢) 𝐏𝐓 (𝐱𝐢) (3.12)

and

𝐁(𝐱)(𝑚×𝑛) = [ 𝑊1(𝐱) 𝐏(𝐱𝟏) 𝑊2(𝐱) 𝐏(𝐱𝟐) ⋯ 𝑊𝑛(𝐱) 𝐏(𝐱𝐧) ] . (3.13)

By solving Equation (3.10) for 𝐚(𝐱)

𝐚(𝐱) = 𝐀−1(𝐱) 𝐁(𝐱) 𝐓𝐬 (3.14)

and substituting into Equation (3.5), the approximated temperature can be obtained

𝑇ℎ(𝐱) =
𝑛

∑
𝑖=1

𝜙𝑖(𝐱)𝑇𝑖 = 𝚽𝑇(𝐱)𝐓𝐬 (3.15)

25

Univ
ers

ity
 of

 M
ala

ya



where

𝚽𝑇(𝐱) =
(1×𝑚)

⏞𝐏𝑇(𝐱)
(𝑚×𝑚)

⏞𝐀−1(𝐱)
(𝑚×𝑛)

⏞𝐁(𝐱)

= { 𝜙1(𝐱) 𝜙2(𝐱) ⋯ 𝜙𝑛(𝐱) }
(1×𝑛)

(3.16)

is the vector of local shape functions associated with the neighboring particles of particle

(𝐱).

In other words, the shape function can be written as

𝜙𝑖(𝐱) =
𝑚

∑
𝑗=1

𝑃𝑗(𝐱) (𝐀−𝟏(𝐱) 𝐁(𝐱))𝑗𝑖 = 𝐏𝑇(𝐱) (𝐀−𝟏 𝐁) , (3.17)

while its spatial derivative can be given by

𝜙𝑖,𝛾(𝐱) =
𝑚

∑
𝑗=1

𝑝𝑗,𝛾(𝐀−𝟏𝐁)𝑗𝑖 + 𝑝𝑗 (𝐀−𝟏𝐁,𝛾 + 𝐀−𝟏
,𝛄 𝐁)

𝑗𝑖
, (3.18)

where 𝛾 denotes the spatial derivative, and 𝐀−1
,𝛾 is defined as

𝐀−1
,𝛾 = −𝐀−𝟏 𝐀,𝛾 𝐀−𝟏. (3.19)

WLS local approximation

As follows, WLS approximation is briefly introduced while keeping the same matrices

notations as in MLS. For an arbitrary particle 𝐱 in axisymmetric two-dimensional domain,

its temperature field 𝑇 (𝐱) can be approximated by polynomial basis:
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𝑇(𝐱) ≈ 𝑇ℎ(𝐱) =
𝑚

∑
𝑗=1

𝑃𝑗(𝐱) 𝑎𝑗 = 𝑎1 + 𝑎2𝑟 + 𝑎3𝑧 + ⋯ + 𝑃𝑚(𝐱) 𝑎𝑚

= { 1 𝑟 𝑧 ⋯ 𝑃𝑚(𝐱) }

⎧
{
{
{
{
{
{
⎨
{
{
{
{
{
{
⎩

𝑎1

𝑎2

⋮

𝑎𝑚

⎫
}
}
}
}
}
}
⎬
}
}
}
}
}
}
⎭

= 𝐏𝐓 𝐚
(3.20)

where 𝑎𝑗 (𝑗 = 1 … 𝑚) are the coefficients to be calculated, while𝐏 is the monomial basis

vector as given in Equation (3.6).

To find the value of 𝐚 in Equation (3.20), 𝑛 neighboring particles are searched for within

the local support domain radius of point (𝐱). Satisfying Equation (3.20) at all the

neighboring particles leads to the following set of equations:

𝐓𝑠 = 𝐏𝑚(𝑛×𝑚)
𝐚

(𝑚×1)
(3.21)

where the polynomial moment matrix, 𝐏𝑚, is defined by

𝐏𝑚 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑟1 𝑧1 ⋯ 𝑃 (𝐱1)

1 𝑟2 𝑧2 ⋯ 𝑃 (𝐱2)

⋮ ⋮ ⋮ ⋱ ⋮

1 𝑟𝑛 𝑧𝑛 ⋯ 𝑃 (𝐱𝑛)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦(𝑛×𝑚)

, (3.22)

Equation (3.21) is solved for 𝐚 using the WLS by minimizing the weighted discrete 𝐋2

norm

𝐽 =
𝑛

∑
𝑖=1

𝑊𝑖 [𝑇ℎ(𝐱𝐢) − 𝑇(𝐱𝐢)]
2

(3.23)
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where 𝑊𝑖 (𝑖 = 1, 2, … , 𝑛) is the weight associated with each neighboring particle. The

minimization

𝜕𝐽/𝜕𝐚 = 0 (3.24)

leads to the following equation

𝐏𝑇
𝐦 𝐖 𝐏𝐦 𝐚 = 𝐏𝑇

𝐦 𝐖 𝐓𝑠 (3.25)

where 𝐖(𝑛×𝑛) is the diagonal matrix of neighboring particles weights.

By following 𝐀 and 𝐁 definitions in Equations (3.12) and (3.13), Equation (3.25) can be

written as

𝐚 = (𝐏𝑇
𝑚 𝐖𝐏𝑚)−1 (𝐏𝑇

𝑚 𝐖) 𝐓𝑠 = 𝐀−1 𝐁 𝐓𝑠. (3.26)

By substituting Equation (3.26) into Equation (3.20), the approximate temperature 𝑇ℎ(𝐱)

can be calculated by

𝑇ℎ(𝐱) = 𝐏𝑇(𝐱) 𝐚 = 𝐏𝑇(𝐱) 𝐀−1 𝐁 𝐓𝑠 = 𝚽𝑇 𝐓𝑠, (3.27)

where 𝚽 is the vector of local shape functions and defined by

𝚽𝑇 = 𝐏𝑇(𝐱) 𝐀−1 𝐁 = { 𝜙1 𝜙2 ⋯ 𝜙𝑛
}

(1×𝑛)

, (3.28)

while its spatial derivative is given as

𝚽𝑇
,𝛾 = 𝐏𝑇

,𝛾(𝐱) 𝐀−1 𝐁 = { 𝜙1 𝜙2 ⋯ 𝜙𝑛
}

(1×𝑛)

, (3.29)

It can be clearly seen that the main difference between MLS and WLS is the coefficients

vector 𝐚 is function of the point 𝐱 in MLS (in Equation (3.14)) unlike in the case of WLS

(in Equation (3.26)). This comes from the dependence of the neighboring particle weight

function 𝑊𝑖(𝐱) on the location of point (𝐱). This leads to continuous temperature
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approximation over the whole domain when MLS is used in case of global weak-form

methods (e.g. EFG). Moreover, it means that the approximated temperature field is

ensured to be continuous over the entire domain when the neighboring nodes enter/leave

the local support domain. However, the present work uses a direct collocation

strong-form not a global weak-form method, which makes this global compatibility not

an issue (Liu & Gu, 2005). Additionally, for both MLS and WLS, the number of

neighboring particles in the support domain 𝑛 should be sufficiently higher than the

number of monomials 𝑚 in order to ensure the well condition of matrix 𝐀 (in

Equations (3.14) and (3.26)) and the existence of its inversion.

Weight functions

It can be noticed that the matrices 𝐀 and 𝐁 depends on the weight/kernel function.

Therefore, their smoothness depends on that of the used weight function. For the present

simulation, three different popular weight functions are tested for both MLS and WLS

approximations in the present model. The three weight functions are

Cubic spline (Monaghan, 2005)

𝑊 (𝑑) = 1
6

⎧
{{{
⎨
{{{
⎩

(2 − 2 𝑑)3 − 4 (1 − 2 𝑑)3 , 0 ≤ 𝑑 < 0.5

(2 − 2 𝑑)3 , 0.5 ≤ 𝑑 ≤ 1

0, 1 < 𝑑

, (3.30)

Quartic spline (Wu & Tao, 2008)

𝑊 (𝑑) =
⎧
{
⎨
{
⎩

1 − 6 𝑑2 + 8 𝑑3 − 3 𝑑4, 0 ≤ 𝑑 ≤ 1

0, 1 < 𝑑
, (3.31)
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Gaussian (Tsai et al., 2012)

𝑊 (𝑑) = 1
1 − 𝑒−4

⎧
{
⎨
{
⎩

𝑒−4 𝑑 − 𝑒−4, 0 ≤ 𝑑 ≤ 1

0, 1 < 𝑑
, (3.32)

where 𝑑 = ‖𝐱−𝐱𝐢‖
ℎ is the normalized Euclidean distance between the particle of interest

and its neighbor.

3.3.2 Radial Point Interpolation Method (RPIM)

Due to their dimensionality-independence, easy implementation and integration-free

properties, radial basis function (RBF) collocation methods have proved to be a reliable

tool in solving partial differential equations (PDEs), multi-variate scattered data

processing, machine learning and neural networks (Wang & Liu, 2002a; Chen, Fu, &

Chen, 2014). Their applications in solving PDEs have been widely reported in fields of

solid mechanics and fluid dynamics (Kansa, 1990a, 1990b; Liu, Zhang, Gu, & Wang,

2005a; Gerace, Divo, & Kassab, 2006; Divo & Kassab, 2007; Dai et al., 2011; Divo &

Kassab, 2014; Mavrič & Šarler, 2015). On the other hand, due to the solution accuracy

and convergence sensitivity to the shape parameters in RBFs, attention and effort have

been given to evaluate the optimal shape parameters (Wang & Liu, 2002b; Huang, Lee,

& Cheng, 2007; Fornberg & Piret, 2008; Cheng, 2012; Iurlaro, Gherlone, & Sciuva,

2014).

At an arbitrary point 𝐱 with 𝑛 neighboring particles in its support domain for 2D problem,

temperature 𝑇 (x) can be approximated by both 𝑛 RBFs and 𝑚 polynomials

𝑇 (𝐱) =
𝑛

∑
𝑖=1

𝑅𝑖 (x) 𝑎𝑖 +
𝑚

∑
𝑗=1

𝑃𝑗 (x) 𝑏𝑗 = 𝐑 (𝐱)𝐓 𝐚 + 𝐩 (𝐱) 𝐛 (3.33)

where 𝑎𝑖 & 𝑏𝑗 are coefficients to be calculated, 𝑃𝑗 (𝐱) is linear polynomial basis and𝑅𝑖 (x)

is the RBF where the two commonly used RBFs, Multi-quadrics RBF (MQ-RBF) and

Exponential/Gaussian RBF (EXP-RBF), are defined by
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𝑅𝑖 (𝝃) = [𝜉𝑖 + (𝛼𝑚𝑑𝑐)
2]

𝑞
and

𝑅𝑖 (𝝃) = exp [−𝛼𝑒( 𝜉𝑖
𝑑𝑐

)
2

]
(3.34)

respectively, where 𝜉𝑖 = √(𝑟 − 𝑟𝑖)
2 + (𝑧 − 𝑧𝑖)

2
is the Euclidean distance, 𝑑𝑐 is the

characteristic length which is equal to the average particles spacing within the support

domain, and 𝛼𝑚, 𝑞 and 𝛼𝑒 are shape parameters (Liu & Gu, 2005).

In order to evaluate the coefficients 𝑎𝑖 & 𝑏𝑗, Equation (3.33) is applied at each particle in

the support domain which leads to the matrix form

𝐓𝐬 = 𝐑𝟎 𝐚 + 𝐏𝐦 𝐛 (3.35)

where the vector of all the particles temperatures in the local support domain is

𝐓𝐬 = [ 𝑇1 𝑇2 ⋯ 𝑇𝑛
]

𝑇

, (3.36)

the moment matrix of RBFs is

𝐑𝟎 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑅1 (𝜉1) 𝑅2 (𝜉1) ⋯ 𝑅𝑛 (𝜉1)

𝑅1 (𝜉2) 𝑅2 (𝜉2) ⋯ 𝑅𝑛 (𝜉2)

⋮ ⋮ ⋱ ⋮

𝑅1 (𝜉𝑛) 𝑅2 (𝜉𝑛) ⋯ 𝑅𝑛 (𝜉𝑛)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦(𝑛×𝑛)

, (3.37)

the polynomial moment matrix is
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𝐏𝐦 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑟1 𝑧1 ⋯ 𝑃 (𝐱1)

1 𝑟2 𝑧2 ⋯ 𝑃 (𝐱2)

⋮ ⋮ ⋮ ⋮ ⋮

1 𝑟𝑛 𝑧𝑛 ⋯ 𝑃 (𝐱𝑛)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦(𝑛×𝑚)

, (3.38)

the vector of RBFs coefficients is

𝐚 = { 𝑎1 𝑎2 ⋯ 𝑎𝑛
}

𝑇

, (3.39)

the vector of polynomials coefficients is

𝐛 = { 𝑏1 𝑏2 ⋯ 𝑏𝑚
}

𝑇

. (3.40)

The augmented polynomials need to satisfy the following requirement

𝑛

∑
𝑖=1

𝑃𝑗 (𝐱𝑖) 𝑎𝑖 = 𝐏𝑇
𝐦𝐚 = 𝟎, 𝑗 = 1, 2, … , 𝑚 (3.41)

where 𝑚 is the number of monomials. Combining both Equation (3.35) and

Equation (3.41), the following equations set is obtained

�̃�𝐬 =
⎡
⎢
⎢
⎢
⎣

𝐓𝐬

𝟎

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝐑𝟎 𝐏𝐦

𝐏𝑇
𝐦 𝟎

⎤
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝐆

⎡
⎢
⎢
⎢
⎣

𝐚

𝐛

⎤
⎥
⎥
⎥
⎦⏟

𝐚𝟎

= 𝐆 𝐚𝟎 (3.42)

where

𝐚𝟎 = { 𝑎1 𝑎2 ⋯ 𝑎𝑛 𝑏1 𝑏2 ⋯ 𝑏𝑚
}

𝑇

= 𝐆−𝟏�̃�𝐬 (3.43)

and

�̃�𝐬 = { 𝑇1 𝑇2 ⋯ 𝑇𝑛 𝟎(1×𝑚)
}

𝑇

(3.44)
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Equation (3.33) can be written as:

𝑇 (𝐱) = [𝐑 (𝐱) 𝐏 (𝐱)] 𝐆−𝟏�̃�𝐬 = �̃� (𝐱) �̃�𝐬 (3.45)

where

�̃� (𝐱) = { 𝜙1 𝜙2 ⋯ 𝜙𝑛 𝜙𝑛+1 ⋯ 𝜙𝑛+𝑚
} . (3.46)

According to the particles temperatures, the shape functions vector 𝚽 (𝐱) is obtained as

𝚽 (𝐱) = { 𝜙1 𝜙2 ⋯ 𝜙𝑛
} (3.47)

and Equation (3.45) can be written as

𝑇 (𝐱) = 𝚽 (𝐱) 𝐓𝐬 =
𝑛

∑
𝑖=1

𝜙𝑖𝑇𝑖. (3.48)

Additionally, the temperature spatial derivatives can be calculated by

𝑇,𝛾 (𝐱) = 𝚽,𝜸 (𝐱) 𝐓𝐬 =
𝑛

∑
𝑖=1

𝜙𝑖,𝛾𝑇𝑖 (3.49)

where 𝛾 denotes the spatial derivative of the shape function.

Since the introduction of polynomials is for completeness (Wertz, Kansa, & Ling, 2006),

only the pure radial basis functions will be used in the present work for local

approximation. For MQ-RBFs introduced in Equation (3.34), the shape parameters were

investigated in Wang and Liu, 2002b; Liu and Gu, 2005 showing their influence on the

condition number of matrix 𝐆 or 𝐑 (for pure radial RBF) in Equation (3.42), and hence

the accuracy of the interpolation. It was reported that the shape parameter 𝑞 heavily

affects the matrix condition number, and its value of 1.03 is the optimal for the reported

solid mechanics problems and will be used here. On the other hand, a careful attention

should be paid in selecting the shape parameter 𝛼𝑚 value, since higher values increase

the interpolation accuracy while degrades the solution stability due to the badly

conditioned moment matrix 𝐑 and vice versa.

33

Univ
ers

ity
 of

 M
ala

ya



3.3.3 Symmetric Smoothed Particle Hydrodynamics (SSPH)

In Zhang and Batra, 2008, SSPH method was introduced as a new meshless approach for

approximating the field variables and their derivatives using only the coordinates of the

domain particles. In this method, two main advantages can be obtained over the other

meshfree methods such as MLS and modified smoothed particle hydrodynamics

(MSPH). First, local nodal field variable and its spatial derivative can be derived with

inverting a symmetric matrix. Therefore, huge amount of computational load and time

can be significantly saved. Second, this method does not depend on the spatial

derivatives of the kernel function for approximating the nodal field variable and its

spatial derivative. Thus, a broader class of kernel functions can be addressed without

limitation. In other words, different shape functions can be derived for approximating

the domain function and its derivatives. In this way, the spatial derivatives of the trial

solution from different shape functions yield more accurate solution than that derived

from differentiating the shape functions.

The SSPH solution of elastic problems was discussed in Zhang and Batra, 2008 and

compared to those of MLS and RKPM with different six kernel functions. SSPH yielded

promising accurate solution compared to MLS and RKPM against the exact solution.

While in Batra and Zhang, 2007, both weak and strong forms of SSPH were proposed

for addressing the elastic problems while monitoring the required CPU time for both

forms. In summary, strong form consumes less computational resources with less

accurate results, while reverse holds for the weak form. Additionally, SSPH was

introduced in the solution of two-dimensional heat transfer problems while noting the

less accurate results for non-homogeneous problems (Mugan, 2012).

For two arbitrary points 𝐱 = {𝝃, 𝐱(𝑖)} in the domain, the Taylor series expansion of

temperature at point 𝐱(𝑖) can be expressed by

𝑇 (𝝃) = 𝑇 (𝐱(𝑖)) + 𝜕𝑇
𝜕𝑥(𝑖)

𝛼
(𝜉𝛼 − 𝑥(𝑖)

𝛼 ) + 1
2

𝜕2𝑇
𝜕𝑥(𝑖)

𝛼 𝜕𝑥(𝑖)
𝛽

(𝜉𝛼 − 𝑥(𝑖)
𝛼 ) (𝜉𝛽 − 𝑥(𝑖)

𝛽 ) + ⋯ (3.50)
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where repeated indices 𝛼 and 𝛽 are summed over their ranges (i.e. 𝑟, 𝑧), and third and

higher order terms are neglected.

In matrix notation, Equation (3.50) can be rewritten as

𝑇 (𝝃) = 𝐏 (𝝃, 𝐱) 𝐐 (𝐱) (3.51)

where

𝐐 (𝐱) = [𝑇(𝑖), 𝑇(𝑖)
𝑥1

, 𝑇(𝑖)
𝑥2

, 1
2

𝑇(𝑖)
𝑥1𝑥1

, 1
2

𝑇(𝑖)
𝑥2𝑥2

, 𝑇(𝑖)
𝑥1𝑥2

, ]
𝑇
, (3.52)

𝐏 (𝝃, 𝐱) =

⎧
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
⎩

1, 𝜉1 − 𝑥(𝑖)
1 , 𝜉2 − 𝑥(𝑖)

2 , 𝜉3 − 𝑥(𝑖)
3 ,

(𝜉1 − 𝑥(𝑖)
1 )

2
, (𝜉2 − 𝑥(𝑖)

2 )
2
, (𝜉3 − 𝑥(𝑖)

3 )
2
,

(𝜉1 − 𝑥(𝑖)
1 ) (𝜉2 − 𝑥(𝑖)

2 ) ,

(𝜉2 − 𝑥(𝑖)
2 ) (𝜉3 − 𝑥(𝑖)

3 ) ,

(𝜉3 − 𝑥(𝑖)
3 ) (𝜉1 − 𝑥(𝑖)

1 )

⎫
}
}
}
}
}
}
}
}
⎬
}
}
}
}
}
}
}
}
⎭

, (3.53)

𝑇𝑖 = 𝑇 (𝐱(𝑖)) , 𝑇𝑥𝛼𝑖 = 𝜕𝑇
𝜕𝑥𝛼

(𝐱(𝑖)) , 𝑇𝑥𝛼𝑥𝛽𝑖 = 𝜕2𝑇
𝜕𝑥𝛼𝜕𝑥𝛽

(𝐱(𝑖)) (3.54)

𝐐 (𝐱) is the matrix of unknown temperature and its spatial derivatives at point (𝑖). In

search of a symmetric matrix to be solved, both sides of Equation (3.51) are right

multiplied with kernel function 𝑊 (𝝃, 𝐱) and 𝐏(𝝃, 𝐱)𝑇

𝑇 (𝝃) 𝑊 (𝝃, 𝐱) 𝐏(𝝃, 𝐱)𝑇 = 𝐏 (𝝃, 𝐱) 𝐐 (𝐱) 𝑊 (𝝃, 𝐱) 𝐏(𝝃, 𝐱)𝑇

= [𝐏(𝝃, 𝐱)𝑇𝑊 (𝝃, 𝐱) 𝐏 (𝝃, 𝐱)] 𝐐 (𝐱)
(3.55)

Equation (3.55) is evaluated at each neighboring particle inside the kernel compact

support, and both sides are summed over all the neighboring particles. For 𝑁 (𝐱)

neighboring particles, Equation (3.55) can be written as
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𝑁(𝐱)

∑
𝑗=1

𝑇 (𝝃𝑔(𝑗)) 𝑊 (𝝃𝑔(𝑗), 𝐱) 𝐏(𝝃𝑔(𝑗), 𝐱)𝑇

=
𝑁(𝐱)

∑
𝑗=1

[𝐏(𝝃𝑔(𝑗), 𝐱)𝑇𝑊 (𝝃𝑔(𝑗), 𝐱) 𝐏 (𝝃𝑔(𝑗), 𝐱)] 𝐐 (𝐱)

(3.56)

where 𝑔(𝑗) is the global index of the neighboring particle, and 𝝃𝑔(𝑗) is its coordinate.

With the following definitions

𝐇 (𝝃, 𝐱) =

[𝐏𝑇 (𝝃𝑔(1), 𝐱) , 𝐏𝑇 (𝝃𝑔(2), 𝐱) , ⋯ , 𝐏𝑇 (𝝃𝑔(𝑁(𝐱)), 𝐱)] ,

𝐖 (𝝃, 𝐱) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑊 (𝝃𝑔(1), 𝐱) 0 ⋯ 0

0 𝑊 (𝝃𝑔(2), 𝐱) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 0 𝑊 (𝝃𝑔(𝑁(𝐱)), 𝐱)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝐅(𝐱) (𝝃, 𝐱) =

[𝑇 (𝝃𝑔(1)) , 𝑇 (𝝃𝑔(2)) , … , 𝑇 (𝝃𝑔(𝑁(𝐱)))]𝑇

(3.57)

Equation (3.56) can be rewritten as

𝐇 (𝝃, 𝐱) 𝐖 (𝝃, 𝐱) 𝐅(𝐱) (𝝃, 𝐱) = 𝐇 (𝝃, 𝐱) 𝐖 (𝝃, 𝐱) 𝐇𝑇 (𝝃, 𝐱) 𝐐 (𝝃, 𝐱) . (3.58)

With the definition of symmetric matrix 𝐂 (𝝃, 𝐱) = 𝐇 (𝝃, 𝐱) 𝐖 (𝝃, 𝐱) 𝐇𝑇 (𝝃, 𝐱) and
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𝐃 (𝝃, 𝐱) = 𝐇 (𝝃, 𝐱) 𝐖 (𝝃, 𝐱), Equation (3.58) will be

𝐂 (𝝃, 𝐱) 𝐐 (𝝃, 𝐱) = 𝐃 (𝝃, 𝐱) 𝐅(𝐱) (𝝃, 𝐱) (3.59)

and 𝐐 (𝐱) can be expressed as

𝐐 (𝐱) = 𝐂(𝝃, 𝐱)−1 𝐃 (𝝃, 𝐱) 𝐅(𝐱) (𝝃, 𝐱)

= 𝐊(𝐱) (𝝃, 𝐱) 𝐅(𝐱) (𝝃, 𝐱)
(3.60)

where

𝐊(𝐱) = 𝐂(𝝃, 𝐱)−1 𝐃 (𝝃, 𝐱) (3.61)

is the local shape function matrix and 𝐅(𝐱) (𝝃, 𝐱) is the vector of temperature values at

neighboring particles. Equation (3.60) can be written as following

𝑄𝑖 (𝐱) =
𝑁(𝐱)

∑
𝑗=1

𝐾(𝐱)
𝑖𝑗 𝐹 (𝐱)

𝑗 , 𝑖 = 1, 2, ⋯ , 6 (3.62)

𝐐 (𝐱) has the approximated temperature value and its spatial derivatives;

𝐐 (𝐱) = [𝑇ℎ, 𝑇ℎ
,𝑟, 𝑇ℎ

,𝑧, 1
2𝑇ℎ

,𝑟𝑟, 1
2𝑇ℎ

,𝑧𝑧, 𝑇ℎ
,𝑟𝑧]𝑇

, where comma denotes spatial derivative, and

superscript ℎ denotes approximated value.

Weight functions

For the local approximation in this work, the following three different kernel functions

from Zhang and Batra, 2008 will be used, and their numerical results will be compared

with each other:

Cubic B-Spline

𝑊 (𝑑) = 𝐺
𝑙𝛽𝑠

⎧
{{{
⎨
{{{
⎩

1 − 1.5 𝑑2 + 0.75 𝑑3, 0 ≤ 𝑑 < 1

(2 − 𝑑)3/4, 1 ≤ 𝑑 < 2

0, 𝑑 ≥ 2

(3.63)
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Quartic Spline

𝑊 (𝑑) = 𝐺
𝑙𝛽𝑠

⎧
{
⎨
{
⎩

1 − 1.5 𝑑2 + 𝑑3 − 3
16𝑑4, 0 ≤ 𝑑 < 2

0, 𝑑 ≥ 2
(3.64)

Revised Super Gauss

𝑊 (𝑑) = 𝐺
(𝑙𝑠

√
𝜋)𝛽

⎧
{
⎨
{
⎩

(4 − 𝑑2) 𝑒−𝑎 𝑑2 , 0 ≤ 𝑑 < 2

0, 𝑑 ≥ 2
(3.65)

where 𝑑 = 𝑟𝑖𝑗
ℎ , 𝑟𝑖𝑗 is the Euclidean distance between the particle of interest i and its

neighbor j, and 𝑙𝑠 = 1
2ℎ is the smoothing length. Following the discussion in Zhang and

Batra, 2008, the value of 𝐺 is not important in SSPH method, since it cancels out on both

sides of Equation (3.56) and will be taken as unity here, 𝛽 is the problem dimensionality

which is two in this axisymmetric case, 𝑙𝑠 will take both values of {1.2Δ, 1.5Δ} to be

tested and 𝑎 in Super Revised Gauss function can be taken as 1.6.

3.4 Discretization of System Equations

After getting the shape functions, the governing equation and boundary conditions in

Equation (3.4) can be discretized as follows:

𝑛

∑
𝑖=1

𝜙𝑖
𝜕𝑇𝑖
𝜕𝑡

=
𝑛

∑
𝑖=1

(1
𝑟

𝜙𝑖,𝑟 + 𝜙𝑖,𝑟
2 + 𝜙𝑖,𝑧

2) 𝑇𝑖 in Ω

𝑛

∑
𝑖=1

𝜙𝑖,𝑛𝑙
𝑇𝑖 = 𝑒−2𝑟2

𝑁𝑘
𝑛𝑧 − 𝐵𝑖

𝑛

∑
𝑖=1

𝜙𝑖 𝑇𝑖 on Γ𝑙,
𝑛

∑
𝑖=1

𝜙𝑖,𝑟𝑇𝑖 = −𝐵𝑖

𝑛

∑
𝑖=1

𝜙𝑖 𝑇𝑖 on 𝑟 = 𝑙𝑟,
𝑛

∑
𝑖=1

𝜙𝑖,𝑧𝑇𝑖 = 𝐵𝑖

𝑛

∑
𝑖=1

𝜙𝑖 𝑇𝑖 on 𝑧 = 0,
𝑛

∑
𝑖=1

𝜙𝑖,𝑟𝑇𝑖 = 0 on 𝑟 = 0.

(3.66)

In matrix form for the entire domain, the foregoing set of equations is written as:

𝐌 �̇� + 𝐊 𝐓 = 𝐅 (3.67)
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where 𝐓 is the temperature vector of the whole domain particles, 𝐌 is the mass matrix,

𝐊 is the stiffness matrix and 𝐅 is the force vector. Crank-Nicolson method is used to

temporally solve this transient equation in an iterative scheme. As a result, the solution

is unconditionally stable irrespective of the time step size with second order accuracy in

time. Therefore, the temperature temporal iterative scheme can be written as:

𝐓𝑡+Δ𝑡 = [𝟐 𝐌 + Δ𝑡 𝐊]−𝟏 [(𝟐 𝐌 − Δ𝑡 𝐊) 𝐓𝑡 + Δ𝑡 (𝐅𝑡 + 𝐅𝑡+Δ𝑡)] (3.68)

3.5 Model Logic and Laser Absorptivity

3.5.1 Model Scheme Pseudocode and Flowchart

The model scheme is translated into the pseudocode, and its flowchart is depicted in

Figure 3.7.

MATLAB model algorithm

Define domain particles in terms of metal properties and location

% Loop over time steps %
foreach time step do

Calculate normal vector �̂� direction cosines at each laser-irradiated boundary

particle

% Loop over existing domain particles %
foreach domain particle do

Search for and loop over neighboring particles

% Loop over neighboring particles %
foreach neighboring particle do

calculate shape functions

Assemble global mass matrixM, stiffness matrixK and force vector F

Calculate global temperature vector Tt+t in Equation (3.68)

Remove molten particles and resizeM,K and F

3.5.2 Laser Absorptivity

The material laser absorptivity is vital in a proper mathematical modeling of laser

micromachining. Its value increases with higher temperature of the target material,
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Start New
Time Step

Loop over Existent
Domain Particles

Search for
Neighboring

Particles within
Support Domain

Start Loop over
Neighboring Particles

Calculate Neighbors
Shape Functions

End Loop over
Neighboring Particles

Assemble Global
Stiffness Matrix
and Force Vector

End Loop over
Domain Particles

Solve Global
System Equation

Remove Molten
Particles

then
Resize Global

Matrices and Vectors

End of
Time Steps?

End

Yes

No

Figure 3.7: Flowchart of the model logic
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shorter laser beam wavelength, deeper processed hole and thicker oxidation layer. For

most metals at room temperature, the laser absorptivity is low, while it increases

substantially with temperature with abrupt increase at the melting temperature (Xie, Kar,

Rothenflue, & Latham, 1997; Bergström, 2008).

In Zhang and Faghri, 1999, the estimation of laser absorptivity proper value for numerical

simulation of laser processing was thoroughly discussed. The absorptivity was assumed

to take a value of unity in Ganesh et al., 1997a, 1997b (as cited in Zhang and Faghri,

1999) due to deep processed holes, high temperature and formation of plasma. However,

a value of 0.85 was recommended in Kar et al., 1992 in a 2D axisymmtric simulation of

laser drilling. This value was also called an effective absorptivity and considered in the

simulation in Zhang and Faghri, 1999, and it will be used in the present work.

3.5.3 Model Standalone Application

Since the model is based on the employment of meshfree collocation methods, it is

believed to have low computational load compared with mesh-based numerical methods.

Therefore, it is viable and beneficial to convert the present model into a lightweight

standalone application to be easily integrated into a GUI of a typical industrial laser

machine. Such an integration can help identify the process parameters limitations and

output instead of the costly experimentation. The GUI of this standalone application is

shown in Figure 3.8, and more details on its code can be found in Appendix A.
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CHAPTER 4: RESULTSAND DISCUSSION

4.1 Introduction

After constructing the numerical model as previously shown, this chapter shows the

validation of the present model against a relevant mehsfree published work in addition to

a set of experimental data collected from laser drilling of stainless steel and aluminum

sheets.

4.2 Validation Against Previous Work

4.2.1 Simulation Parameters

The present model will be validated against the experimental and numerical work of dry

process introduced in Muhammad et al., 2013 using the same material and laser properties

in addition to absorptivity of 85%. Moreover, the particle size, in Muhammad et al., 2013

of 5 μm, will result in discretizing the domain into 341 particles (11 × 31) in the present

model. The simulation is done on PC with Intel Core i7 @ 2.50GHz and 8GB RAM,

while its results compared with each other in terms of CPU time, bottom surface hole

radius (denoted by exit radius), the percentage of removed volume by assuming the the

total volume to be removed is the cylinder of radius 𝑟𝑏 and metal thickness height.

For MLPG, both MLS and WLS will be used in locally approximating the temperature

field in the present model for each weight function, quadratic and cubic polynomial

bases, and different support domain radii. In case of RPIM, the condition number of

matrix R is an indication of the solution accuracy and stability, so it will be calculated at

a test particle in the center of the processed domain at the first time step. Monitoring of

condition number will give a clear idea about its dependence on the increase/decrease in

support domain neighboring particles in addition to the shape parameter value. Table 4.1

shows the material properties and laser beam parameters, while Table 4.2 shows the

domain characteristics and simulation parameters.
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Table 4.1: Thermo-physical properties of stainless steel 316L (Muhammad, Rogers, &

Li, 2013)

Density 7950 kg m−3

Specific heat 470 J kg−1 K−1

Thermal conductivity 20 W m−1 K−1

Coefficient of heat convection 20 W m−2 K−1

Melting temperature 1723 K

Table 4.2: Domain characteristics and simulation parameters

Ambient temperature 300 K

Initial temperature 300 K

Domain dimensions 50 × 150 μm2

Number of particles 341

Laser absorptivity 0.85

Laser power 100 W

Beam radius at focal point 25 μm

Time step 0.10 μs

Total simulation time 150 μs

4.2.2 Simulation Results

In Figure 4.1, the experimental work was conducted by applying a single pulse laser for

three different pulse durations (𝑡 = {50, 100, 150} μs). On the other hand, for the

simulation results, results of MLPG are listed in Tables 4.3 to 4.8 for different weight

functions, support domain radii, and quadratic (𝑚 = 6) and cubic (𝑚 = 10) polynomial

bases, while for those of RPIM, Tables 4.9 and 4.10 show the results for different values

of shape parameters 𝛼𝑚 and 𝛼𝑒, and support domain radius ℎ in both cases of MQ-RBF

(𝑞 = 1.03) and EXP-RBF. Finally, for SSPH, Table 4.11 shows the results given from

two different smoothing length values ℎ = {1.2Δ, 1.5Δ} and the three aforementioned

kernel functions.
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Figure 4.1: Experimental penetration depth at different single pulse durations (a) 𝑡 = 50
μs, (b) 𝑡 = 100 μs and (c) 𝑡 = 150 μs (Muhammad, Rogers, & Li, 2013)

4.2.3 MLPG Simulation Results

For the present model, both MLS and WLS show high sensitivity to the choice of weight

function, polynomial basis, and support domain radius. This sensitivity leads to the

simulation failure several times (blank cells in Tables 4.3 to 4.8). This model sensitivity

may be alleviated by employing the local weak form, considering other weight functions,

or addressing other basis functions, however, this will not be investigated in the present

work.

The best results, in terms of removed volume and exit radius, can be obtained using MLS

by choosing cubic spline weight function, cubic polynomial basis, and support radius ℎ =

3.5Δ as given in Table 4.4. Similarly, for WLS, the best results can be given by choosing

Gaussian weight function, cubic polynomial basis, and support radius ℎ = 3.1Δ as given

in Table 4.8. In either case, both removed volume and bottom surface radius are the same.

However, WLS outperforms MLS in terms of computational load, since the calculations

of shape functions spatial derivatives are more computationally expensive in case of MLS

as comparatively seen in Equation (3.18) and Equation (3.29).

As previously said, the global compatibility of MLS is not an issue in case of collocation

method, which makes WLS the best choice for its comparatively dramatic rection in CPU

time (55.92%). Therefore, the simulation results of WLS using Gaussian weight function,

cubic polynomial basis, and support radiusℎ = 3.1Δ is considered to be themost optimum

choice.
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Table 4.3: Cubic spline weight function with quadratic polynomial basis

h=2Δ h=2.1Δ h=2.5Δ h=2.9Δ h=3Δ

MLS

CPU Time s — 235 322 401 460

Exit Radius μm — 7.50 7.50 2.50 2.50

Removed Volume % — 77.33 74.67 71 69.67

WLS

CPU Time s — — 192 230 261

Exit Radius μm — — 2.50 2.50 2.50

Removed Volume % — — 68.33 66.33 65.67

Table 4.4: Cubic spline weight function and cubic polynomial basis

h=3Δ h=3.1Δ h=3.5Δ h=3.9Δ h=4Δ

MLS

CPU Time s — 463 574 673 726

Exit Radius μm — 7.50 12.50 7.50 7.50

Removed Volume % — 79.33 79.67 78 78

WLS

CPU Time s — — 319 378 403

Exit Radius μm — — 12.50 7.50 7.50

Removed Volume % — — 78.33 76.67 77.33

4.2.4 RPIM Simulation Results

It can be seen from Tables 4.9 and 4.10 that both MQ-RBF and EXP-RBF give nearly

the same results in terms of exit radius and percentage of removed metal volume.

However, EXP-RBF greatly outperforms MQ-RBF from the computational load point of

view with significant reduction of CPU time around 25% to 40%. However, for the

matrix R condition number, EXP-RBF results in constructing R with huge condition

number compared to MQ-RBF especially for low values of 𝛼𝑒. Additionally, the

increase in support domain particles number (higher ℎ) leads to a significantly higher

condition number of R which may deteriorate the solution accuracy and stability, if

numerous number of neighboring particles is injudiciously chosen.

As seen in the first column of Table 4.10 where 𝛼𝑒 = 0.003 and ℎ = 4Δ, R condition
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Table 4.5: Quartic spline weight function and quadratic polynomial basis

h=2Δ h=2.1Δ h=2.5Δ h=2.9Δ h=3Δ

MLS

CPU Time s 243 223 — — —

Exit Radius μm 7.50 7.50 — — —

Removed Volume % 76.67 76 — — —

WLS

CPU Time s 137 — 205 225 263

Exit Radius μm 7 — 2.50 2.50 2.50

Removed Volume % 76 — 66.33 65.67 65.67

Table 4.6: Quartic spline weight function and cubic polynomial basis

h=3Δ h=3.1Δ h=3.5Δ h=3.9Δ h=4Δ

MLS

CPU Time s — — — — —

Exit Radius μm — — — — —

Removed Volume % — — — — —

WLS

CPU Time s — — 332 391 399

Exit Radius μm — — 7.50 7.50 7.50

Removed Volume % — — 78 76.67 75.33

number is too high that the simulation stopped after a few time steps due to the

aggressive solution instability driven by the massive condition number which supports

the foregoing discussion in Section 3.3.2. Generally speaking, for the present problem,

EXP-RBF can be chosen as the best selection of RBF (in terms of CPU time and

removed volume percentage) with shape parameter 𝛼𝑒 = 0.03 and ℎ = 2Δ.

4.2.5 SSPH Simulation Results

It can be seen that the three kernel functions show slight deviation from each other,

however, for the present case, the Cubic B-Spline with 𝑙𝑠 = 1.2Δ gives the most

accurate result compared with the experimental work in the shortest computational time.

According to the previous results, the three meshfree methods show nearly the same
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Table 4.7: Gaussian weight function and quadratic polynomial basis

h=2Δ h=2.1Δ h=2.5Δ h=2.9Δ h=3Δ

MLS

CPU Time s — — 313 393 442

Exit Radius μm — — 12.50 12.50 7.50

Removed Volume % — — 78.33 77.67 76

WLS

CPU Time s — — 197 223 249

Exit Radius μm — — 2.50 2.50 2.50

Removed Volume % — — 69.67 67 67

Table 4.8: Gaussian weight function and cubic polynomial basis

h=3Δ h=3.1Δ h=3.5Δ h=3.9Δ h=4Δ

MLS

CPU Time s — — 574 674 —

Exit Radius μm — — 12.50 12.50 —

Removed Volume % — — 77.67 77.67 —

WLS

CPU Time s — 253 313 361 396

Exit Radius μm — 12.50 12.50 7.50 7.50

Removed Volume % — 79.67 78.33 76.67 76.67

agreement with the previous numerical and experimental work in terms of drilled hole

geometry. However, for computation efficiency, SSPH is superior for its significantly

low CPU time 72 s compared to 253 s for MLPG (WLS) and 114 s for RPIM

(EXP-RBF). Therefore, in the present work, SSPH is optimally chosen to be used in this

meshfree model of metal laser drilling for its efficient computing aspect.

4.2.6 Effect of Support Radius Length

It is worth noting that unnecessarily long support radius deteriorates the solution

accuracy and degrades the computational efficiency. On one hand, for solution accuracy,

unnecessarily higher number of neighboring particles leads to suppressing the laser high

temperature gradient by including the further particles with lower temperatures. On the

other hand, for computational efficiency, more neighboring particles means bigger-sized
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Table 4.9: Simulation results for MQ-RBF shape parameter 𝛼𝑚 = {3, 4, 5, 6}

𝛼𝑚 = 3 𝛼𝑚 = 4 𝛼𝑚 = 5 𝛼𝑚 = 6

h=2Δ

CPU Time s 152 157 151 158

Exit Radius μm 12.50 12.50 12.50 12.50

Removed Volume % 78.33 78.33 78.33 77.67

Condition Number (R) ×106 0.33 1.70 7.14 24.86

h=3Δ

CPU Time s 227 227 225 231

Exit Radius μm 12.50 12.50 12.50 12.50

Removed Volume % 78.33 78.33 77.67 77.67

Condition Number (R) ×107 0.27 2.18 14.44 78.70

h=4Δ

CPU Time s 291 301 295 304

Exit Radius μm 12.50 12.50 12.50 12.50

Removed Volume % 78.33 77.67 77 77

Condition Number (R) ×108 0.09 0.97 8.90 68.34

Table 4.10: Simulation results for EXP-RBF shape parameter

𝛼𝑒 = {0.003, 0.01, 0.02, 0.03}

𝛼𝑒 = 0.003 𝛼𝑒 = 0.01 𝛼𝑒 = 0.02 𝛼𝑒 = 0.03

h=2Δ

CPU Time s 113 108 113 114

Exit Radius μm 12.50 12.50 12.50 12.50

Removed Volume % 77.67 77.67 77.67 78.33

Condition Number (R) ×108 303 2.40 0.15 0.03

h=3Δ

CPU Time s 147 145 149 153

Exit Radius μm 7.50 7.50 12.50 12.50

Removed Volume % 76 67 77 77

Condition Number (R) ×1012 503 0.3480 0.0050 0.0004

h=4Δ

CPU Time s — 180 177 180

Exit Radius μm — 7.50 7.50 7.50

Removed Volume % — 76 76 76

Condition Number (R) ×1014 2420 2.60 0.009 0.0003
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Table 4.11: SSPH simulation results for different values of smoothing length and kernel

functions

Cubic Revised
Quartic

B-Spline Super Gauss

𝑙𝑠 = 1.2Δ
Computational Time s 72 82 73

Exit Radius μm 12.50 12.50 7.50

Removed Volume % 77 77 75.33

𝑙𝑠 = 1.5Δ
Computational Time s 103 94 93

Exit Radius μm 2.50 2.50 2.50

Removed Volume % 67 70.33 65.67

local matrices and vectors for calculating the shape functions in addition to the decrease

in number of zeros elements in the global matrices, which means more memory has to be

allocated for more calculations to be carried out.

4.2.7 Estimation of Penetration Depth

Figure 4.2 shows the drilled metal penetration depth at the same irradiation processing

time of those used in the experimental work 𝑡 = {50, 100, 150} μs. In Figure 4.1, laser

drilling exhibits full penetration by the end of the processing time 𝑡 = 150 μs. On the

other hand, for the same processing time, the present model shows partial penetration as

depicted in Figure 4.2. This deviation from the experimental data can be attributed to the

model assumptions of fixing the laser absorptivity value, molten pool hydrodynamics and

pressurized assist gas effect.

In Figure 4.3, the present model penetration depth is graphed with the experimental and

numerical ones from Muhammad et al., 2013. It can be noted that the experimental

penetration depth exponentially develops with time because of higher laser absorptivity

at deeper holes and higher temperature. The experimental data, before reaching

full-depth penetration, is interpolated (as depicted by green dashed line, Expr. Intp., in

Figure 4.3) to give clear insight into the exponential behavior shown by penetration

depth development. Consequently, the present numerically calculated depth reaches the
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Figure 4.2: Transient development of the hole penetration depth

bottom surface at nearly the same time as the interpolated experimental data exhibits,

which shows the good accuracy of simulation results.

4.2.8 Variation of Laser Absorption

For the experimental work in Figure 4.3, the metal is removed at slow rate in the early

stage (i.e. 𝑡 = [0, 50] μs). This slow rate comes mainly from the low absorptivity at

low temperature and depth. However, later on, the depth develops exponentially with

time due to the abrupt increase in absorptivity with higher temperature and deeper depth

(Bergström, 2008). In particular, stainless steel laser absorptivity can lie in the range 𝛼𝑙 =

[35%, 56%] according to the surface texture/roughness (Bergström, Powell, & Kaplan,

2007).

To shed the light on the impact of laser absorptivity variation on the ablation pace, an

arbitrary value of 𝛼𝑙 = 40% will be tested to account for laser ablation at room

temperature and compared with the first experimental set of laser pulse 𝑡 = [0, 50] μs.

The simulation result in Figure 4.4 shows very good agreement with the experimental

data where the penetration depth is monitored and plotted every 5 μs. This proves that

the laser absorptivity has low value in the early processing time of laser ablation, while it

abruptly increases with time because of higher temperature and depth. For more
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Figure 4.3: Numerically calculated penetration depth (SPH (Muhammad, Rogers, & Li,

2013) and SSPH) with experimental work (Muhammad, Rogers, & Li, 2013)

and its interpolation

simulation accuracy over the whole processing time, the laser absorptivity can be

formulated as a function of penetration depth, metal temperature, laser beam multiple

hole reflections, and the molten pool hydrodynamics.

Figure 4.4: SSPH numerical result of absorptivity 𝛼𝑙 = 0.4 against experimental and
numerical work of SPH and SSPH(𝛼𝑙 = 0.85) for 𝑡 = [0, 50] μs
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Table 4.12: Thermo-physical properties of SS304 and AA5083 (Dowden, 2001; Achebo

& Oghoore, 2012; Ezazi, Yusof, Sarhan, Shukor, & Fadzil, 2015)

SS304 AA5083

Density [kg m−3] 7900 2650

Specific heat [J kg−1 K−1] 450 900

Thermal conductivity [W m−1 K−1] 15 120

Melting temperature [K] 1698 850

4.3 Validation Against Experimental Data

4.3.1 Experimental Setup

In order to further verify the model accuracy, a set of experiments is conducted on two

thin sheets of stainless steel SS304 and one thin sheet of aluminum alloy AA5083, and

Table 4.12 shows the thermo-physical properties of both metals.

The experiments are conducted to validate the model estimation of penetration time. In

order to do this, two photocells are mounted on the top and bottom surfaces of each

sheet. The machine operator arbitrarily chooses a drilling time sufficient for laser beam

to penetrate the bottom surface without necessitating a full penetration since the

comparison between the experimental data and the numerical results is done in terms of

the time required for the laser beam to merely penetrate the bottom surface without

paying attention to the final hole profile/geometry. Both photocells are illuminated by

the laser beam hitting the top surface and penetrating the bottom surface, while the

output analog voltages of photocells are monitored and saved by an oscilloscope as

depicted in Figure 4.5. On the other hand, the metal sheets are used in their as-received

state.

The experiments are conducted on a CW CO2 laser machine LVD Axel 3015 S shown in

Figure 4.6, while the experiments parameters are given in Table 4.13. The machine always

guarantees that the focal radius lies on the irradiated metal top surface, which increases

the quality of the drilling by eliminating the effect of beam defocusing. Different levels of
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Pressurized
Assist Gas

Expelled
Particles

Photocell
Terminals

(a) Experimental setup

10 kΩ 10 kΩ

12V

Output to
Oscilloscope

(b) Photocells circuit schematic

Figure 4.5: Schematic of experimental setup and photocells circuit

Figure 4.6: Industrial CO2 laser machine (LVDAxel 3015 S) used in the experiments

laser power are used, and for each level of laser power, a set of three experiments is done

in order to make sure of the experimental reproducibility. Highly pressurized Nitrogen

assist gas is used to make sure that the metal particles are immediately expelled once they

are melted.

4.3.2 Experimental Data

Figures 4.7 to 4.9 show the output voltages of top surface photocell (VT) and bottom

surface photocell (VB) for the metal sheets and laser powers as given in Table 4.13, and

penetration time 𝑡𝑝 is illustrated in each graph. Figures 4.7(a) to 4.7(c), Figures 4.8(a)

to 4.8(c) and Figures 4.9(a) to 4.9(c) show the output voltages for the three experiments

done for the sake of ensuring the experimental reproducibility for any given sheet and
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Table 4.13: Experiments parameters for metal sheets of SS304 and AA5083

SS304 AA5083

Thickness [μm] 500 1000 1000

Power Levels [W] 1500 1500 2500

Focal Radius [μm] 150

Assist Gas

Pressure
[bar] 10

laser power. Top and bottom surfaces of the holes are depicted in Figures 4.10 to 4.12 and

Figures 4.13 to 4.15, respectively.
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Figure 4.7(a)

55

Univ
ers

ity
 of

 M
ala

ya



0 500 1000 1500 2000

0.35

0.4

0.45

0.5

0.55

0.6

8

10

12

14

16

tp = 1500 µs

Time [µs]

V
T

V
B

VT VB

Figure 4.7(b)
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Figure 4.7(c)

Figure 4.7: Output voltages for 500 μm thick SS304 sheet and 1500 W laser power
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Figure 4.8: Output voltages for 1000 μm thick SS304 sheet and 1500 W laser power

0 500 1000 1500 2000 2500 3000 3500

0.1

0.2

0.3

0.4

0.5

0.6

8

10

12

14

16

tp = 3050 µs

Time [µs]

V
T

V
B

VT VB

Figure 4.9(a)
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Figure 4.9(b)
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Figure 4.9: Output voltages for 1000 μm thick AA5083 sheet and 2500 W laser power
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(a) (b) (c)

Figure 4.10: Holes top surfaces of 500 μm SS304 sheet

(a) (b) (c)

Figure 4.11: Holes top surfaces of 1000 μm SS304 sheet

(a) (b) (c)

Figure 4.12: Holes top surfaces of 1000 μmAA5083 sheet

(a) (b) (c)

Figure 4.13: Holes bottom surfaces of 500 μm SS304 sheet
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(a) (b) (c)

Figure 4.14: Holes bottom surfaces of 1000 μm SS304 sheet

(a) (b) (c)

Figure 4.15: Holes bottom surfaces of 1000 μmAA5083 sheet

In Figures 4.10 to 4.12, compared to aluminum, all the top surfaces of stainless steel

sheets have a significant amount of spatter proportional to the incident laser power,

which can be attributed to the higher boiling temperature and viscosity in addition to the

lower laser power which wasn’t sufficient to significantly evaporate some molten metal.

This significant accumulation of spatter during the ablation led to the remarkable

fluctuations of the top surface photocell output voltage 𝑉𝑇, as shown in Figures 4.7

and 4.8, since the spatter accumulated in the midway between the photocell and the hole

center, and caused some scatter, reflection and/or obscuration of the laser beam before

reaching the photocell. However, on the other hand, the dross-free bottom surfaces, as

shown in Figures 4.13 to 4.15, made the output voltage of bottom surface photocell, 𝑉𝐵

in Figures 4.7 and 4.8, change almost monotonically without these significant

fluctuations. It is noteworthy that there is some difference in the penetration time

between one experiment and another, and it may be a result of the existence of some

surface contamination in addition to unavoidably inhomogeneous surface roughness and

microstructure over the metal sheet.
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Table 4.14: Domain characteristics and simulation parameters

SS304 AA5083

Ambient temperature [K] 300

Initial temperature [K] 300

Domain width [μm] 300 1000

Number of particles

in radial direction
25 27

Particle size [μm] 12.50 38.46

Focal radius [μm] 150

Time step [μs] 1 0.50

Table 4.15: Penetration time 𝑡𝑝 in [μs] for the experimental data and simulation results

SS304 AA5083

Thickness [μm] 500 1000 1000

First Experiment 1600 3450 3050

Second Experiment 1500 3350 3270

Third Experiment 1830 3450 3100

Simulation Results 1605 3205 3235

4.3.3 Simulation Results

SSPH is used for simulation using the same properties and parameters of both metal sheets

and laser beam of every experiment in Table 4.13. Simulation parameters are given in

Table 4.14. Both experimental data and model results are compared with each other in

terms of penetration time as given in Table 4.15. For laser absorptivity of SS304, as

previously discussed, a value of 𝛼𝑙 = 85% is used. On the other hand for aluminum

alloys, the absorptivity is generally known to be very low. Therefore, a value of 𝛼𝑙 = 15%

is arbitrarily taken forAA5083 to be higher than that of ?? in order to account for the high

surface temperature and multiple beam reflections against the keyhole walls.
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Figure 4.16: Percent error of the predicted penetration time 𝑡𝑝

The percent error of the predicted penetration time is given by

%𝐸𝑟𝑟𝑜𝑟 = 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

× 100 (4.1)

and shown in Figure 4.16 for all sheets of SS304 and AA5083. Accordingly, it can be

seen that present model shows good agreement with the experimental data of different

thicknesses and metals. This can prove the model robustness and potential for further

improvements to simulate as closely as possible the physically complex process of metal

laser drilling.
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CHAPTER 5: CONCLUSIONAND FUTURE

RECOMMENDATIONS

5.1 Conclusion

In the present work, a simplified numerical model was built for simulating the metal

removal in laser drilling using meshfree collocation methods in order to overcome the

difficulties faced by mesh-based methods when handling such problems of severe

deformation and domain separation. The model results were compared with a relevant

meshfree published work in addition to a set of experimental data. Three different

meshfree methods, (meshless local Petrov-Galerkin (MLPG), symmetric smoothed

particle hydrodynamics (SSPH) and radial point interpolation method (RPIM)) were

considered and compared with each other in terms of the prediction of penetration depth

and hole geometry.

For MLPG, both moving least square (MLS) and weighted least square (WLS) were

used for approximating the temperature field. WLS showed its advantage of

significantly lower computational time without substantial superiority for MLS due to

the used collocation method. Additionally, MLPG showed instability and high sensitivity

to the support domain radius value, which needs further investigation. RPIM with its

dimensionality-independence did show also dramatic reduction in computational load

compared to MLPG with the same predicted hole geometry. For SSPH, the simulation

computation load was dramatically reduced in comparison with MLPG. The prediction

of hole geometry was almost the same as that of MLPG. Considering the CPU time of

both SSPH and RPIM, SSPH managed to significantly reduce the CPU time by 36%,

which made it the optimal method for the present model in terms of computational

efficiency.

When validated against a relevant meshfree published work, the model results showed

the significant impact of the estimation of laser absorptivity on the prediction of
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penetration depth and hole geometry. For the present work considering thin metal sheets,

the approximation of laser absorptivity to be a constant value led to a good agreement

with the experimental data especially when the target metal is heated up with the

formation of molten pool. However, in the early stage of drilling, the absorptivity is low

and responsive to the temperature rise.

A set of experiments was conducted to further validate the model accuracy of predicting

the penetration time. Two thicknesses of thin stainless steel sheets and one thin

aluminum sheet are used for experimental validation. The experiments were repeated

three times to ensure the reproducibility. The model prediction of penetration time was

in good agreement with the experiments data.

In addition to the construction and validation of the present model, it was turned into a

standalone application. This standalone application can be easily integrated into a

graphical user interface (GUI) of an industrial laser machine since it is lightweight and

not computationally expensive for such problems.

5.2 Recommendations for Future Work

The present model with its assumptions shows good agreement with the experimental data

in case of thin metal sheets. However, this work can be extended in several ways in order

to get as close as possible to the physical complexity of metal laser drilling:

• Laser abosprtivity should be modeled to account for the progress of the keyhole

front and the target metal temperature.

• Molten pool hydrodynamics should be considered especially when themetal is thick

and/or the assist gas pressure is not high enough to effectively expel the molten

particles.

• The choice of particle size needs to be investigated and treated as a function of the

target metal thermo-physical properties and metallurgy.
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• Thermal deformation and stresses have to be considered and modeled for thick

sheets.

• Plasma formation is inevitable for high laser power in the absence of assist gas

pressure. Therefore, its shield should be modeled to properly estimate the amount

of laser energy hitting the target metal irradiated surface.

66

Univ
ers

ity
 of

 M
ala

ya



REFERENCES

Achebo, J. I. & Oghoore, O. (2012). Numerical computation of melting efficiency of

aluminum alloy 5083 during CO2 laser welding process. In Materials with

complex behaviour II (Vol. 16, pp. 601–617). Springer Nature.

Ahmadi, I., Sheikhy, N., Aghdam, M., & Nourazar, S. (2010). A new local meshless

method for steady-state heat conduction in heterogeneous materials. Engineering

Analysis with Boundary Elements, 34(12), 1105–1112.

Akarapu, R., Li, B. Q., & Segall, A. (2004). A thermal stress and failure model for laser

cutting and forming operations. Journal of Failure Analysis and Prevention, 4(5),

51–62.

Arif, A., Yilbas, B., & Aleem, B. A. (2009). Laser cutting of thick sheet metals: Residual

stress analysis. Optics & Laser Technology, 41(3), 224–232.

Atluri, S. N., Kim, H.-G., & Cho, J. Y. (1999). A critical assessment of the truly meshless

local petrov-galerkin (mlpg), and local boundary integral equation (lbie) methods.

Computational Mechanics, 24(5), 348–372.

Atluri, S. N. & Zhu, T. (1998). A new meshless local petrov-galerkin (MLPG) approach

in computational mechanics. Computational Mechanics, 22(2), 117–127.

Atluri, S. N. (2004). The meshless method (mlpg) for domain & bie discretizations. Tech

Science Press Forsyth.

Batra, R. C. & Zhang, G. M. (2007). SSPH basis functions for meshless methods, and

comparison of solutions with strong and weak formulations. Computational

Mechanics, 41(4), 527–545.

Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free galerkin methods. International

Journal for Numerical Methods in Engineering, 37(2), 229–256.

Bergström, D., Powell, J., & Kaplan, A. (2007). The absorptance of steels to nd:YLF and

nd:YAG laser light at room temperature. Applied Surface Science, 253(11),

5017–5028.

67

Univ
ers

ity
 of

 M
ala

ya



Bergström, D. (2008). The Absorption of Laser Light by Rough Metal Surfaces (Doctoral

dissertation, Luleå University of Technology).

Calamaz, M., Limido, J., Nouari, M., Espinosa, C., Coupard, D., Salaün, M., …

Chieragatti, R. (2009). Toward a better understanding of tool wear effect through

a comparison between experiments and SPH numerical modelling of machining

hard materials. International Journal of Refractory Metals and Hard Materials,

27(3), 595–604.

Campbell, J., Vignjevic, R., & Patel, M. H. (2008). A coupled FE-SPH pproach for

simulation of structural response to extreme wave and green water loading. In

Offshore technology conference (19429-MS). Society of Petroleum Engineers

(SPE).

Chan, C. L. & Mazumder, J. (1987). One-dimensional steady-state model for damage by

vaporization and liquid expulsion due to laser-material interaction. Journal of

Applied Physics, 62(11), 4579.

Chang, T.-J., Kao, H.-M., Chang, K.-H., & Hsu, M.-H. (2011). Numerical simulation of

shallow-water dam break flows in open channels using smoothed particle

hydrodynamics. Journal of Hydrology, 408(1-2), 78–90.

Chen, J. K., Beraun, J. E., & Carney, T. C. (1999). A corrective smoothed particle

method for boundary value problems in heat conduction. International Journal

for Numerical Methods in Engineering, 46(2), 231–252.

Chen, W., Fu, Z.-J., & Chen, C. (2014). Recent advances in radial basis function

collocation methods. SpringerBriefs in Applied Sciences and Technology.

Springer Berlin Heidelberg.

Cheng, C., Tsui, Y., & Clyne, T. (1998). Application of a three-dimensional heat flow

model to treat laser drilling of carbon fibre composites. Acta Materialia, 46(12),

4273–4285.

Cheng, A.-D. (2012). Multiquadric and its shape parameter—a numerical investigation

of error estimate, condition number, and round-off error by arbitrary precision

computation. Engineering Analysis with Boundary Elements, 36(2), 220–239.

Cleary, P. W. & Monaghan, J. J. (1999). Conduction modelling using smoothed particle

hydrodynamics. Journal of Computational Physics, 148(1), 227–264.

68

Univ
ers

ity
 of

 M
ala

ya



Collins, J. & Gremaud, P. (2011). A simple model for laser drilling. Mathematics and

Computers in Simulation, 81(8), 1541–1552.

Comas-Cardona, S., Groenenboom, P., Binetruy, C., & Krawczak, P. (2005). A generic

mixed FE-SPH method to address hydro-mechanical coupling in liquid

composite moulding processes. Composites Part A: Applied Science and

Manufacturing, 36(7), 1004–1010.

Dai, B., Zheng, B., Liang, Q., & Wang, L. (2013). Numerical solution of transient heat

conduction problems using improved meshless local petrov–galerkin method.

Applied Mathematics and Computation, 219(19), 10044–10052.

Dai, Y. J., Wu, X. H., & Tao, W. Q. (2011). Weighted least-squares collocation method

(WLSCM) for 2-D and 3-D heat conduction problems in irregular domains.

Numerical Heat Transfer, Part B: Fundamentals, 59(6), 473–494.

Divo, E. A. & Kassab, A. J. (2014). A locally-integrated meshless (lim) method applied to

advection-diffusion problems. In International conference on heat transfer, fluid

mechanics and thermodynamics. Proceedings of the 10th International Conference

on Heat Transfer, Fluid Mechanics and Thermodynamics.

Divo, E. & Kassab, A. J. (2007). An efficient localized radial basis function meshless

method for fluid flow and conjugate heat transfer. Journal of Heat Transfer, 129(2),

124.

Dowden, J.M. (2001). Themathematics of thermalmodeling:An introduction to the theory

of laser material processing. Chapman and Hall/CRC.

Dubey, A. K. & Yadava, V. (2008). Laser beam machining—a review. International

Journal of Machine Tools and Manufacture, 48(6), 609–628.

Espinosa, C., Lacome, J. L., Limido, J., Salaun, M., Mabru, C., & Chieragatti, R. (2008).

Modeling high speedmachiningwith the sphmethod. 10th International LS-DYNA

users conference, (3), 9–20.

Ezazi, M.,Yusof, F., Sarhan,A.A., Shukor, M. H.A., & Fadzil, M. (2015). Employment of

fiber laser technology to weld austenitic stainless steel 304l with aluminum alloy

5083 using pre-placed activating flux. Materials & Design, 87, 105–123.

69

Univ
ers

ity
 of

 M
ala

ya



Fernández-Méndez, S., Bonet, J., & Huerta, A. (2005). Continuous blending of SPH with

finite elements. Computers & Structures, 83(17-18), 1448–1458.

Fornberg, B. & Piret, C. (2008). On choosing a radial basis function and a shape parameter

when solving a convective pde on a sphere. Journal of Computational Physics,

227(5), 2758–2780.

Fu, Z.-J., Chen, W., & Qin, Q.-H. (2012). Three boundary meshless methods for heat

conduction analysis in nonlinear FGMswith kirchhoff and Laplace transformation.

Adv. Appl. Math. Mech. 4(05), 519–542.

Ganesh, R. K., Bowley, W. W., Bellantone, R. R., & Hahn, Y. (1996). A model for laser

hole drilling in metals. Journal of Computational Physics, 125(1), 161–176.

Ganesh, R., Faghri, A., & Hahn, Y. (1997a). A generalized thermal modeling for laser

drilling process—i. mathematical modeling and numerical methodology.

International Journal of Heat and Mass Transfer, 40(14), 3351–3360.

Ganesh, R., Faghri, A., & Hahn, Y. (1997b). A generalized thermal modeling for laser

drilling process—II. numerical simulation and results. International Journal of

Heat and Mass Transfer, 40(14), 3361–3373.

Gerace, S., Divo, E., & Kassab, A. (2006). A localized radial-basis-function meshless

method approach to axisymmetric thermo-elasticity. In 9th AIAA/ASME joint

thermophysics and heat transfer conference (June, pp. 1–15). American Institute

of Aeronautics and Astronautics (AIAA).

Gingold, R. A. & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: Theory and

application to non-spherical stars. Monthly Notices of the Royal Astronomical

Society, 181(3), 375–389.

Gower, M. C. (2000). Industrial applications of laser micromachining. Opt. Express, 7(2),

56.

G.R. Liu, X. C. &Reddy, J. (2002). Buckling of symmetrically laminated composite plates

using the element-free galerkin method. Int. J. Str. Stab. Dyn. 02(03), 281–294.

Groenenboom, P. H. (2009). Hydrodynamics and fluid-structure interaction by coupled

SPH-FE method. Journal of Hydraulic Research, 48(extra), 000.

70

Univ
ers

ity
 of

 M
ala

ya



Harničárová, M., Valíček, J., Öchsner,A., Grznárik, R., Kušnerová, M., Neugebauer, J., &

Kozak, D. (2013). Predicting residual and flow stresses from surface topography

created by laser cutting technology. Optics & Laser Technology, 52, 21–29.

Harp, W., Dilwith, J., & Tu, J. (2008). Laser ablation using a long-pulsed, high-fluence,

CW single-mode fiber laser. Journal of Materials Processing Technology, 198(1-

3), 22–30.

Hua Li, S. S. M. (2013, February 22). Meshless methods and their numerical properties.

CRC PR INC.

Huang, C.-S., Lee, C.-F., & Cheng, A.-D. (2007). Error estimate, optimal shape factor,

and high precision computation of multiquadric collocation method. Engineering

Analysis with Boundary Elements, 31(7), 614–623.

Iglesias, a. S., Rojas, L. P., & Rodríguez, R. Z. (2004). Simulation of anti-roll tanks and

sloshing type problems with smoothed particle hydrodynamics. Ocean

Engineering, 31(8-9), 1169–1192.

Ion, J. (2005). Laser Processing of Engineering Materials: Principles, Procedure and

Industrial Application. Butterworth-Heinemann.

Iurlaro, L., Gherlone, M., & Sciuva, M. D. (2014). Energy based approach for shape

parameter selection in radial basis functions collocation method. Composite

Structures, 107(2), 70–78.

Jeong, J., Jhon, M., Halow, J., & van Osdol, J. (2003). Smoothed particle

hydrodynamics: Applications to heat conduction. Computer Physics

Communications, 153(1), 71–84.

Jianming, W., Na, G., & Wenjun, G. (2010). Abrasive waterjet machining simulation by

SPHmethod. International Journal of AdvancedManufacturing Technology, 50(1-

4), 227–234.

Kansa, E. (1990a). Multiquadrics—a scattered data approximation scheme with

applications to computational fluid-dynamics—i surface approximations and

partial derivative estimates. Computers & Mathematics with applications, 19(8),

127–145.

71

Univ
ers

ity
 of

 M
ala

ya



Kansa, E. (1990b). Multiquadrics—a scattered data approximation scheme with

applications to computational fluid-dynamics—ii solutions to parabolic,

hyperbolic and elliptic partial differential equations. Computers & Mathematics

with Applications, 19(8), 147–161.

Kao, H.-M. & Chang, T.-J. (2012). Numerical modeling of dambreak-induced flood and

inundation using smoothed particle hydrodynamics. Journal of Hydrology,

448-449, 232–244.

Kar, A., Rockstroh, T., & Mazumder, J. (1992). Two-dimensional model for laser-induced

materials damage: Effects of assist gas and multiple reflections inside the cavity.

Journal of Applied Physics, 71(6), 2560–2569.

Kim, M. J. (2011). Meshfree isoparametric point interpolation method (ipim) for

evaporative laser drilling. Applied Mathematical Modelling, 35(6), 2639–2649.

Kim, M. J. (2012). Meshfree isoparametric finite point interpolation method (ifpim) with

weak and strong forms for evaporative laser drilling. Applied Mathematical

Modelling, 36(4), 1615–1625.

Kim, M. J. (2005). 3D finite element analysis of evaporative laser cutting. Applied

Mathematical Modelling, 29(10), 938–954.

Kim, M. J. & Zhang, J. (2001). Finite element analysis of evaporative cutting with a

moving high energy pulsed laser. Applied Mathematical Modelling, 25(3),

203–220.

Lancaster, P. & Salkauskas, K. (1981). Surfaces generated by moving least squares

methods. Mathematics of Computation, 37(155), 141–158.

Lancaster, P. & estutis Šalkauskas, K. (1986). Curve and surface fitting : An introduction.

London: Academic Press, 1986, 1.

Li, K. & Sheng, P. (1995). Plane stress model for fracture of ceramics during laser cutting.

International Journal of Machine Tools and Manufacture, 35(11), 1493–1506.

Li, Q.-H., Chen, S.-S., & Kou, G.-X. (2011). Transient heat conduction analysis using

the MLPG method and modified precise time step integration method. Journal of

Computational Physics, 230(7), 2736–2750.

72

Univ
ers

ity
 of

 M
ala

ya



Li, S. & Liu, W. K. (2002). Meshfree and particle methods and their applications. Applied

Mechanics Reviews, 55(1), 1.

Liang, Y., Sun, Z., Xi, G., & Liu, L. (2015). Numerical models for heat conduction and

natural convection with symmetry boundary condition based on particle method.

International Journal of Heat and Mass Transfer, 88, 433–444.

Limido, J. & Espinosa, C. (2006). A new approach of high speed cutting modelling: SPH

method. Journal de Physique …, 134, 1195–1200.

Limido, J., Espinosa, C., Salaün, M., & Lacome, J. L. (2007). SPH method applied to

high speed cutting modelling. International Journal of Mechanical Sciences,

49(7), 898–908.

Limido, J., Espinosa, C., Salaun, M., Mabru, C., Chieragatti, R., & Lacome, J. (2011).

Metal cutting modelling SPH approach. International Journal of Machining and

Machinability of Materials, 9(3/4), 177.

Liszka, T. & Orkisz, J. (1980). The finite difference method at arbitrary irregular grids and

its application in applied mechanics. Computers & Structures, 11(1-2), 83–95.

Liu, G. R.&Gu,Y.T. (2005).An introduction tomeshfreemethods and their programming.

An Introduction toMeshfreeMethods and Their Programming. Berlin/Heidelberg:

Springer Science + Business Media.

Liu, G. R., Zhang, G. Y., Gu, Y. T., & Wang, Y. Y. (2005a). A meshfree radial point

interpolation method (RPIM) for three-dimensional solids. Computational

Mechanics, 36(6), 421–430.

Liu, G.-R. (2009, September 22). Mesh free methods. Taylor & Francis Inc.

Liu, Y., Zhang, X., & Lu, M.-W. (2005b). A MESHLESS METHOD BASED ON

LEAST-SQUARES APPROACH FOR STEADY- AND UNSTEADY-STATE

HEAT CONDUCTION PROBLEMS. Numerical Heat Transfer, Part B:

Fundamentals, 47(3), 257–275.

Low, D. K. Y., Li, L., & Byrd, P. J. (2002). Hydrodynamic physical modeling of laser

drilling. Journal of Manufacturing Science and Engineering, 124(4), 852.

73

Univ
ers

ity
 of

 M
ala

ya



Lu, Y., Belytschko, T., & Gu, L. (1994). A new implementation of the element free

galerkin method. Computer Methods in Applied Mechanics and Engineering,

113(3-4), 397–414.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The

Astronomical Journal, 82, 1013.

Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature, 187(4736), 493–494.

Mavrič, B. & Šarler, B. (2015). Local radial basis function collocation method for linear

thermoelasticity in two dimensions. International Journal of Numerical Methods

for Heat & Fluid Flow, 25(6), 1488–1510.

Meijer, J. (2004). Laser beam machining (LBM), state of the art and new opportunities.

Journal of Materials Processing Technology, 149(1-3), 2–17.

Mirzaei, D. & Schaback, R. (2013). Solving heat conduction problems by the direct

meshless local petrov-galerkin (DMLPG) method. Numerical Algorithms, 65(2),

275–291.

Modest, M. F. (1996). Three-dimensional, transient model for laser machining of

ablating/decomposing materials. International Journal of Heat and Mass

Transfer, 39(2), 221–234.

Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on Progress in

Physics, 68(8), 1703–1759.

Mugan, A. K. A. (2012). Solutions of two-dimensional heat transfer problems by using

symmetric smoothed particle hydrodynamics method. Journal of Applied &

Computational Mathematics, 01(04), 10–15.

Muhammad, N., Rogers, B. D., & Li, L. (2013). Understanding the behaviour of pulsed

laser dry and wet micromachining processes by multi-phase smoothed particle

hydrodynamics (sph) modelling. Journal of Physics D-Applied Physics, 46(9),

095101.

Ng, G., Crouse, P., & Li, L. (2006). An analytical model for laser drilling incorporating

effects of exothermic reaction, pulse width and hole geometry. International

Journal of Heat and Mass Transfer, 49(7-8), 1358–1374.

74

Univ
ers

ity
 of

 M
ala

ya



Nguyen, V. P., Rabczuk, T., Bordas, S., & Duflot, M. (2008). Meshless methods:A review

and computer implementation aspects.Mathematics and Computers in Simulation,

79(3), 763–813.

Niraula, P., Han,Y., &Wang, J. (2015). Comparison of meshfree and mesh-based methods

for boundary value problems in physics. J. Phys.: Conf. Ser. 640, 012067.

Oñate, E., Idelsohn, S., Zienkiewicz, O. C., & Taylor, R. L. (1996). A FINITE POINT

METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO

CONVECTIVE TRANSPORT AND FLUID FLOW. International Journal for

Numerical Methods in Engineering, 39(22), 3839–3866.

Paek, U. &Gagliano, F. (1971). Thermal analysis of laser drilling processes. IEEE Journal

of Quantum Electronics, 7(6), 277–277.

Pastras, G., Fysikopoulos, A., Stavropoulos, P., & Chryssolouris, G. (2014). An approach

to modelling evaporation pulsed laser drilling and its energy efficiency. The

International Journal of Advanced Manufacturing Technology, 72(9-12),

1227–1241.

Patel, R. S. & Brewster, M. Q. (1991a). Gas-assisted laser-metal drilling - experimental

results. Journal of Thermophysics and Heat Transfer, 5(1), 26–31.

Patel, R. S. & Brewster, M. Q. (1991b). Gas-assisted laser-metal drilling - theoretical

model. Journal of Thermophysics and Heat Transfer, 5(1), 32–39.

Qian, L. F. & Batra, R. C. (2004). Three-dimensional transient heat conduction in a

functionally graded thick plate with a higher-order plate theory and a meshless

local petrov-galerkin method. Computational Mechanics, 35(3), 214–226.

Rabczuk, T., Xiao, S. P., & Sauer, M. (2006). Coupling of mesh-free methods with finite

elements: Basic concepts and test results. Communications in Numerical Methods

in Engineering, 22(10), 1031–1065.

Razavitoosi, S. L., Ayyoubzadeh, S. A., & Valizadeh, A. (2014). Two-phase SPH

modelling of waves caused by dam break over a movable bed. International

Journal of Sediment Research, 29(3), 344–356.

Rosswog, S. (2009). Astrophysical smooth particle hydrodynamics. Elsevier BV. arXiv:

0903.5075

75

Univ
ers

ity
 of

 M
ala

ya

http://arxiv.org/abs/0903.5075


Salonitis, K., Stournaras,A., Tsoukantas, G., Stavropoulos, P., & Chryssolouris, G. (2007).

A theoretical and experimental investigation on limitations of pulsed laser drilling.

Journal of Materials Processing Technology, 183(1), 96–103.

Schulz, W., Eppelt, U., & Poprawe, R. (2013). Review on laser drilling i. fundamentals,

modeling, and simulation. Journal of Laser Applications, 25(1), 012006.

Semak, V. V., Damkroger, B., & Kempka, S. (1999). Temporal evolution of the

temperature field in the beam interaction zone during laser material processing.

Journal of Physics D: Applied Physics, 32(15), 1819–1825.

Semak, V. V. & Miller, T. F. (2013). Simulation of laser penetration efficiency. Journal of

Physics D: Applied Physics, 46(38), 385501.

Semak, V. & Matsunawa, A. (1997). The role of recoil pressure in energy balance during

laser materials processing. Journal of Physics D: Applied Physics, 30(18),

2541–2552.

Shao, J., Li, H., Liu, G., & Liu, M. (2012). An improved SPH method for modeling liquid

sloshing dynamics. Computers & Structures, 100-101, 18–26.

Shaofan Li, W. K. L. (2007, March 7). Meshfree particle methods. Springer.

Shen, Z., Zhang, S., Lu, J., & Ni, X. (2001). Mathematical modeling of laser induced

heating and melting in solids. Optics & Laser Technology, 33(8), 533–537.

Shidfar, A., Alinejadmofrad, M., & Garshasbi, M. (2009). A numerical procedure for

estimation of the melt depth in laser material processing. Optics & Laser

Technology, 41(3), 280–284.

Singh, I. V. (2005). Heat transfer analysis of composite slabs using meshless element free

galerkin method. Computational Mechanics, 38(6), 521–532.

Singh, I. (2004).A numerical solution of composite heat transfer problems using meshless

method. International Journal of Heat and Mass Transfer, 47(10-11), 2123–2138.

Solana, P., Kapadia, P., Dowden, J. M., & Marsden, P. J. (1999). An analytical model for

the laser drilling of metals with absorption within the vapour. Journal of Physics

D: Applied Physics, 32(8), 942–952.

76

Univ
ers

ity
 of

 M
ala

ya



Souto-Iglesias, a., Delorme, L., Pérez-Rojas, L., & Abril-Pérez, S. (2006). Liquid

moment amplitude assessment in sloshing type problems with smooth particle

hydrodynamics. Ocean Engineering, 33(11-12), 1462–1484.

Springel, V. (2010). Smoothed particle hydrodynamics in astrophysics. Annual Review of

Astronomy and Astrophysics, 48(1), 391–430. arXiv: 1109.2219

Steen, W. M. & Mazumder, J. (2010). Laser material processing (4th). Springer Science

+ Business Media.

Su, C. S. C., Zhang, Y. Z. Y., Hou, J. H. J., & Wang, W. W. W. (2008). Numerical

simulation and analysis for metal cutting processes based on FEM and SPH. In

2008 asia simulation conference - 7th international conference on system

simulation and scientific computing (pp. 1325–1328). IEEE.

Tsai, C. L., Guan, Y. L., Batra, R. C., Ohanehi, D. C., Dillard, J. G., Nicoli, E., &

Dillard, D. A. (2012). Comparison of the performance of SSPH and MLS basis

functions for two-dimensional linear elastostatics problems including quasistatic

crack propagation. Computational Mechanics, 51(1), 19–34.

Veres, I. A., Berer, T., & Burgholzer, P. (2013). Numerical modeling of thermoelastic

generation of ultrasound by laser irradiation in the coupled thermoelasticity.

Ultrasonics, 53(1), 141–149.

Verhoeven, J., Jansen, J., Mattheij, R., & Smith, W. (2003). Modelling laser induced

melting. Mathematical and Computer Modelling, 37(3-4), 419–437.

von Allmen, M. (1976). Laser drilling velocity in metals. Journal of Applied Physics,

47(12), 5460–5463.

Vorobyev, A., Kriventsev, V., & Maschek, W. (2011). Simulation of central sloshing

experiments with smoothed particle hydrodynamics (SPH) method. Nuclear

Engineering and Design, 241(8), 3086–3096.

Vuyst, T. D., Vignjevic, R., & Campbell, J. (2005). Coupling between meshless and finite

element methods. International Journal of Impact Engineering, 31(8), 1054–1064.

Wang, Y.-F. & Yang, Z.-G. (2009). A coupled finite element and meshfree analysis of

erosive wear. Tribology International, 42(2), 373–377.

77

Univ
ers

ity
 of

 M
ala

ya

http://arxiv.org/abs/1109.2219


Wang, J. G. & Liu, G. R. (2002a). A point interpolation meshless method based on radial

basis functions. International Journal for Numerical Methods in Engineering,

54(11), 1623–1648.

Wang, J. & Liu, G. (2002b). On the optimal shape parameters of radial basis functions

used for 2-D meshless methods. Computer Methods in Applied Mechanics and

Engineering, 191(23-24), 2611–2630.

Wang, Z.-B., Chen, R., Wang, H., Liao, Q., Zhu, X., & Li, S.-Z. (2016). An overview of

smoothed particle hydrodynamics for simulating multiphase flow. Applied

Mathematical Modelling, 40(23-24), 9625–9655.

Wertz, J., Kansa, E., & Ling, L. (2006). The role of the multiquadric shape parameters

in solving elliptic partial differential equations. Computers & Mathematics with

Applications, 51(8), 1335–1348.

Wu, X., Shen, S., &Tao,W. (2007). Meshless local petrov-galerkin collocation method for

two-dimensional heat conduction problems. Computer Modeling in Engineering

and Sciences, 22(1), 65.

Wu, X.-H. & Tao, W.-Q. (2008). Meshless method based on the local weak-forms for

steady-state heat conduction problems. International Journal of Heat and Mass

Transfer, 51(11-12), 3103–3112.

Xie, J., Kar, A., Rothenflue, J. A., & Latham, W. P. (1997). Comparative studies of metal

cutting with high-power lasers. In XI international symposium on gas flow and

chemical lasers and high-power laser conference (p. 764). SPIE-Intl Soc Optical

Eng.

Xiong, H.-b. & Zhu, J. (2010). Study of droplet deformation, heat-conduction and

solidification using incompressible smoothed particle hydrodynamics method.

Journal of Hydrodynamics, 22(5), 150–153.

Yang, Y., Chen, Z., & Zhang, Y. (2016). Melt flow and heat transfer in laser drilling.

International Journal of Thermal Sciences, 107, 141–152.

Yeo, C., Tam, S., Jana, S., & Lau, M.W. (1994). A technical review of the laser drilling of

aerospace materials. Journal of Materials Processing Technology, 42(1), 15–49.

78

Univ
ers

ity
 of

 M
ala

ya



Yilbas, B. S. & Naqvi, I. Z. (2003). Laser heating including the phase change process

and thermal stress generation in relation to drilling. Proceedings of the Institution

of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(7),

977–991.

Zahedi, A., Li, S., Roy, A., Babitsky, V., & Silberschmidt, V. V. (2012). Application of

smooth-particle hydrodynamics in metal machining. Journal of Physics:

Conference Series, 382, 012017.

Zhang, G.M. &Batra, R. C. (2008). Symmetric smoothed particle hydrodynamics (SSPH)

method and its application to elastic problems. Computational Mechanics, 43(3),

321–340.

Zhang,M.Y., Zhang, H., &Zheng, L. L. (2008). Simulation of droplet spreading, splashing

and solidification using smoothed particle hydrodynamics method. International

Journal of Heat and Mass Transfer, 51(13-14), 3410–3419.

Zhang, W., Yao, Y., & Chen, K. (2001). Modelling and analysis of UV laser

micromachining of copper. The International Journal of Advanced

Manufacturing Technology, 18(5), 323–331.

Zhang, X., Song, K. Z., Lu, M. W., & Liu, X. (2000). Meshless methods based on

collocation with radial basis functions. Computational Mechanics, 26(4),

333–343.

Zhang, X. H., Ouyang, J., & Zhang, L. (2009). Matrix free meshless method for transient

heat conduction problems. International Journal of Heat andMass Transfer, 52(7-

8), 2161–2165.

Zhang, X. & Xiang, H. (2015). A fast meshless method based on proper orthogonal

decomposition for the transient heat conduction problems. International Journal

of Heat and Mass Transfer, 84, 729–739.

Zhang, Y., Li, S., Chen, G., & Mazumder, J. (2013a). Experimental observation and

simulation of keyhole dynamics during laser drilling. Optics & Laser

Technology, 48, 405–414.

Zhang, Y., Shen, Z., & Ni, X. (2013b). Numerical simulation of melt ejection during the

laser drilling process on metal by millisecond pulsed laser. In S. Kaierle, J. Liu,

& J. Cao (Eds.), 2nd international symposium on laser interaction with matter

(LIMIS 2012) (Vol. 8796, Limis 2012, p. 87962I). SPIE-Intl Soc Optical Eng.

79

Univ
ers

ity
 of

 M
ala

ya



Zhang, Y., Shen, Z., & Ni, X. (2014). Modeling and simulation on long pulse laser drilling

processing. International Journal of Heat and Mass Transfer, 73, 429–437.

Zhang, Y. & Faghri, A. (1999). Vaporization, melting and heat conduction in the laser

drilling process. International Journal of Heat and Mass Transfer, 42(10),

1775–1790.

Zhang, Z., Qiang, H., & Gao, W. (2011). Coupling of smoothed particle hydrodynamics

and finite element method for impact dynamics simulation. Engineering

Structures, 33(1), 255–264.

80

Univ
ers

ity
 of

 M
ala

ya



LIST OF PUBLICATIONS

Abidou, D., Yusoff, N., Nazri, N., Awang, M. O., Hassan, M.A., & Sarhan, A.A. (2017b).

Numerical simulation of metal removal in laser drilling using radial point interpolation

method. Engineering Analysis with Boundary Elements, 77, 89–96

Abidou, D., Yusoff, N., Nazri, N., Awang, M. O., Hassan, M.A., & Sarhan, A.A. (2017c).

Numerical simulation ofmetal removal in laser drilling using symmetric smoothed particle

hydrodynamics. Precision Engineering

Abidou, D., Sarhan, A. A., Yusoff, N., Nazri, N., Awang, M. O., & Hassan, M. A.

(2017a). Numerical simulation of metal removal in laser drilling using meshless local

petrov-galerkin collocation method. Applied Mathematical Modelling

81

Univ
ers

ity
 of

 M
ala

ya


	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Abbreviations
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Scope of Study
	1.4 Objective of Study
	1.5 Outline of the Thesis

	CHAPTER 2: LITERATURE REVIEW
	2.1 Introduction
	2.2 Modeling and Simulation of Laser Drilling Process
	2.3 Meshfree Numerical Methods
	2.3.1 Introduction to Meshfree Methods
	2.3.2 Classification of Meshfree Methods Formulation
	2.3.3 Coupled Meshfree/Mesh-Based Methods
	2.3.4 Meshfree Simulation of Laser Drilling

	2.4 Conclusion

	CHAPTER 3: METHODOLOGY
	3.1 Introduction
	3.2 Laser Drilling Mechanism and Mathematical Formulation
	3.2.1 Mechanism of Metal Laser Drilling
	3.2.2 Assumptions of Numerical Model
	3.2.3 Mathematical Formulation of Laser Drilling

	3.3 Mehsfree Collocation Methods
	3.3.1 Meshless Local Petrov-Galerkin (MLPG)
	3.3.2 Radial Point Interpolation Method (RPIM)
	3.3.3 Symmetric Smoothed Particle Hydrodynamics (SSPH)

	3.4 Discretization of System Equations
	3.5 Model Logic and Laser Absorptivity
	3.5.1 Model Scheme Pseudocode and Flowchart
	3.5.2 Laser Absorptivity
	3.5.3 Model Standalone Application


	CHAPTER 4: RESULTS AND DISCUSSION
	4.1 Introduction
	4.2 Validation Against Previous Work
	4.2.1 Simulation Parameters
	4.2.2 Simulation Results
	4.2.3 MLPG Simulation Results
	4.2.4 RPIM Simulation Results
	4.2.5 SSPH Simulation Results
	4.2.6 Effect of Support Radius Length
	4.2.7 Estimation of Penetration Depth
	4.2.8 Variation of Laser Absorption

	4.3 Validation Against Experimental Data
	4.3.1 Experimental Setup
	4.3.2 Experimental Data
	4.3.3 Simulation Results


	CHAPTER 5: CONCLUSION AND FUTURE RECOMMENDATIONS
	5.1 Conclusion
	5.2 Recommendations for Future Work

	REFERENCES
	APPENDIX A: GUI MATLAB CODE OF STANDALONE APPLICATION
	A.1 Main file
	A.2 Initialization
	A.3 Toggle Buttons Callbacks
	A.3.1 Domain Toggle Callback
	A.3.2 Laser Toggle Callback
	A.3.3 Metal Toggle Callback
	A.3.4 Method Toggle Callback
	A.3.5 Simulation Toggle Callback

	A.4 Dropdown Menus Callbacks
	A.4.1 Metal Selection Dropdown Menu
	A.4.2 Method Table Dropdown Menus

	A.5 Run Button Callback




