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ABSTRACT

The spread of human immunodeficiency virus (HIV) infection and the resulting

acquired immune deficiency syndrome (AIDS) is a major health concern in many parts

of the world. Tourists may be exposed to health risks before, during and after leaving

their countries of origin. Unfortunately, knowledge about the health status of tourists is

often limited because they are often excluded from surveys. Tourism has been classified

as playing a pivotal role in the spread of HIV and AIDS epidemic. However, it has not

been well recognized that tourism is one of the leading activities contributing towards

the spread of HIV and AIDS. In this thesis, we developed a mathematical models for

HIV and AIDS epidemic to assess how the effect of outbound and inbound tourism

have affected the spread of HIV and AIDS incidences in Malaysia. Applying the next

generation matrix method to obtain the various basic reproduction numbers, the models

were calibrated to HIV and AIDS incidence data in Malaysia using a Markov chain

Monte Carlo (MCMC) approach to understand the impact of model-based estimation in

light of uncertain parameters on the spread of HIV and AIDS. The models dynamics

are analysed under these four scenarios: with the effect of outbound (Model I), inbound

tourism (Model II), condom as preventive measure (Model III) and new born babies

with HIV through sexual activities which runs through all the three models. The models

show distinctive characteristics of positive equilibrium which depicts that both locally and

globally are asymptotically stable under particular conditions. These confirmed the basic

reproduction numbers that were calculated based on the estimated parameters. The basic

reproduction numbers for Model I, Model II and Model III are 1.0262e-06, 7.8060e-01

and 7.1960e-01, respectively. Although, our results show that disease models are stable,

this indicates that HIV and AIDS continue to persist at equilibrium level. This is a good
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indicator from the public health point of view since the aim is to stabilize the epidemic

at the disease-free equilibrium and this will assist public health policy decision makers to

forecast and predict HIV/AIDS incidences. We further incorporate the use of condoms as

a preventive measure to ascertain its impact on the spread of HIV and AIDS incidence.

Thus, if condom as preventive measures are introduced, it reduces the HIV and AIDS

incidences. The results indicate that with the persistent inflow of inbound tourists into

the country, the disease status has increased. The results also suggest that the government

must put more control on illegal prostitution, unprotected sexual activity as well as to

emphasize the prevention policies that include safe sexual activity through tourism board

campaigns. They should encourage free health care medical examinations for outbound

Malaysian tourists after they have returned home. This will assist to reduce the rate of

outbound tourists unknowingly spreading HIV.

iv

Univ
ers

ity
 of

 M
ala

ya



ABSTRAK

Penyebaran jangkitan virus human immunodeficiency (HIV) dan akibatnya sindrom

kurang daya tahan (AIDS) merupakan masalah kesihatan utama di banyak tempat di du-

nia. Pelancong mungkin terdedah kepada risiko kesihatan sebelum, semasa dan selepas

meninggalkan negara asal mereka. Malangnya, pengetahuan mengenai tahap kesihatan

pelancong terhad kerana mereka sering dikecualikan daripada kaji selidik. Pelancongan

merupakan faktor penyumbang yang penting dalam penyebaran wabak HIV dan AIDS.

Walau bagaimanapun, ia tidak diiktiraf sebagai salah satu aktiviti utama yang menyebabk-

an penyebaran HIV dan AIDS. Dalam tesis ini, kami membina satu model matematik

untuk menilai kesan keluar dan masuk pelancong atas insiden penyebaran HIV dan AIDS

diMalaysia. Menggunakan kaedah penjanaan matriks seterusnya untuk mendapatkan pel-

bagai nombor pembiakan asas, model-model telah ditentukurkan kepada data insiden HIV

dan AIDS di Malaysia dengan menggunakan pendekatan rantaian Markov Monte Carlo

(MCMC) untuk memahami kesan anggaran berdasarkan model, di mana terdapat parame-

ter tidak tentu yang berkaitan dengan penyebaran HIV dan AIDS. Model-model dinamik

dianalisis di bawah empat senario: dengan kesan pelancong keluar (Model I), pelancong

masuk (Model II), kondom sebagai langkah pencegahan (Model III) dan bayi yang baru

lahir dengan HIV melalui aktiviti seksual yang melalui ketiga-tiga model. Model-model

menunjukkan ciri tersendiri keseimbangan positif yang menggambarkan kedua-dua tem-

patan dan global berasimptot stabil di bawah keadaan tertentu. Ini mengesahkan nombor

pembiakan asas yang dikira berdasarkan parameter anggaran. Nombor-nombor pembi-

akan asas untuk Model I, Model II dan III Model adalah 1.0262e-06, 7.8060e-01 dan

7.1960e-01, masing-masing. Walaupun keputusan kami menunjukkan bahawa model

penyakit adalah stabil, ini menunjukkan bahawa HIV dan AIDS berterusan pada tahap
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keseimbangan. Ini adalah petunjuk yang baik dari sudut pandangan kesihatan awam ke-

rana tujuannya adalah untuk menstabilkan wabak ini pada keseimbangan bebas-penyakit

dan ini akan membantu pembuat dasar kesihatan awam untuk meramal dan menjangkak-

an kejadian HIV/AIDS. Seterusnya, kami menggabungkan penggunaan kondom sebagai

langkah pencegahan untuk menentukan kesannya terhadap penyebaran kejadian HIV dan

AIDS. Jadi, jika kondom berkesan diperkenalkan sebagai langkah pencegahan, ia meng-

urangkan kejadian HIV dan AIDS. Keputusan menunjukkan bahawa dengan kemasukan

berterusan pelancong asing ke negara ini, status penyakit ini telah meningkat. Keputus-

an juga menunjukkan bahawa kerajaan perlu meletakkan lebih banyak kawalan ke atas

pelacuran haram, aktiviti seksual yang tidak dilindungi di samping menekankan dasar-

dasar pencegahan termasuk aktiviti seksual yang selamat melalui kempen oleh lembaga

pelancongan. Mereka perlu menggalakkan untuk pemeriksaan kesihatan percuma untuk

pelancong Malaysia yang keluar selepas mereka pulang ke negara ini. Ini akan membantu

untuk mengurangkan kadar pelancong keluar menyebarkan HIV tanpa disedari.
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CHAPTER 1: INTRODUCTION

1.1 Background of Study

Acquired Immunodeficiency Syndrome (AIDS) is caused as a result of Human Immun-

odeficiency Virus (HIV), which progressively damages immune system, preventing the

body’s ability to fight infections. In 2014, 36.9 million people were affected with HIV

globally (UNAIDS, 2014). The epidemic is increasing in frequency, magnitude, and

greatly increasing globally. HIV/AIDS imposes a substantial economic burden and puts

strain on the health care systems in many countries. The severity of HIV/AIDS has also

steadily increased, with a substantial increase in severe cases of HIV/AIDS since its emer-

gence in 1981. The fatality rate has remained relatively low in some developed countries

as compared to the rate in developing countries (UNAIDS, 2009; UNAIDS/WHO, 2010).

In 1993, the United Nations World Tourism Organisation (UNWTO) referred to

tourists as "the temporary visitors staying in a place outside their usual place of residence,

for a continuous period of at least 24 hours but less than one year, for leisure, business

or other purposes" (UNWTO, 1993). Generally, tourism is considered a rapid growing

industry across the globe (Bauer, 1999, 2007) and can be classified as domestic and inter-

national. International tourism has both incoming and outgoing economic implications on

the host country. The benefits promote development of a country. As such, the outgoing

represents the outbound tourists while incoming represents inbound tourists in this thesis.

The outbound tourism involves the movement of residents of a particular country

traveling to other countries for leisure, business or for other purposes. On the other hand,

the inbound tourism involves the activities of non-residents of a country, traveling to

other countries for leisure, business or for other purposes. The outbound and inbound

tourism stay in a particular country should not exceed a given period of one consecutive
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year (March, 1997; Song, Romilly, & Liu, 2000; Jonsson Kvist & Klefsjo, 2006; Peeters,

Szimba, & Duijnisveld, 2007).

The use of a mathematical model to determine the effect of tourism on HIV/AIDS

cases has not been studied. The few research works did not use mathematical models.

Many travellers who traveled during vacations are involved in sexual activity (Oppermann,

1999; Brennan, 2004; T. G. Bauer &McKercher, 2003). As they find these activities more

accessible and affordable compared to sexual services in their home country, the spread of

HIV and AIDS is equally inevitable (Sinka, Mortimer, Evans, &Morgan, 2003; Abdullah,

Ebrahim, Fielding, & Morisky, 2004). Tourism is directly linked to the numerous spread

of epidemics worldwide (Chen & Xiao, 2014; Kondgen et al., 2008; Figueroa et al., 1995;

Matos et al., 2013; Padilla et al., 2012; Rice et al., 2012).

Millions of children are born with HIV (Sugandhi et al., 2013). The HIV progression

rate and the contact rate between the sexually active population and HIV-positive individu-

als are significant (Nyabadza &Mukandavire, 2011; Steen, Wi, Kamali, & Ndowa, 2009).

However, the rate of HIV-positive newborns in Malaysia is negligible (Huang & Hussein,

2004; Azwa & Khong, 2012; Apenteng & Ismail, 2015); thus, this study agrees that HIV

is less commonly spread from mother to child during pregnancy, birth or breastfeeding

(Vogt et al., 2015; Moreira-Silva, Zandonade, & Miranda, 2015).

Regarding HIV and AIDS, control of the disease is achieved by providing effective

control measures and resources necessary to reduce transmission of the virus. Recent

evidence shows that HIV/AIDS can be successfully be controlled by using condoms to

reduce the transmission of HIV by at least 80–85% (Holmes, Levine, & Weaver, 2004;

Steen et al., 2009). Condom use, distribution, and education has played a pivotal role in

HIV prevention.

The epidemic models date back to the works of Kermack and McKendrick (1927,
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1932, 1933) in the early twentieth century. They formulated the Susceptible-Infected-

Removed (SIR) model for the compartmental spread of infectious diseases. On this

premise, the SIR model is modified in order to address the fundamental questions raised

in this thesis.

1.2 Problem Statement

Globally, Malaysia is positioned 11th and 2nd in the Southeast Asian countries for tourist

attractions (MTPB, 2013). For example, in 2014 alone, there were 27,437,315 tourists

that arrived in Malaysia which almost corresponded to the population of the country

(MTPB, 2013). Over time, the number of tourists in Malaysia has been increasing, hence

contributes to steady increase in the Malaysian economy (Tang & Tan, 2015). Though

the economy of Malaysia expands through tourism, the large number of tourists that came

in during same period brought in infectious diseases (Oppermann, 1992). As the tourists

arrived into the country, the Malaysia government was not aware of the HIV/AIDS status

of the tourists (Apenteng & Ismail, 2015). There is a need to determine, in clear terms,

who among the tourists that has HIV and AIDS.

Moreover, the unavailability of data to identify thosewho haveHIV among the tourists

is a constraint to the Malaysia government. This generates concern for the inability of the

government to control HIV/AIDS spread. Hence, increase in tourism that increases the

spread of HIV/AIDS is a problematic issue in the health sector. To solve the problem will

require determination of the parameters that would create data for further studies.

In the meantime, the number of Malaysians who travel abroad has also increased

over time. While many traveled with family on business, a proportion of these travellers

may be involved in sexual activities (Oppermann, 1992; Anders et al., 1999; Pocock &

Phua, 2011). Following the review of the existing literature, to our knowledge, there

are no mathematical models developed to investigate the effect of tourism on HIV/AIDS
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spread (Dwyer & Forsyth, 1993; Ketshabile, 2007; Bauer, 1999, 2007, 2008b; Padilla et

al., 2012). This had been caused by data constraint and over parametrization (Chu, Nie,

Cole, & Poole, 2009; Smith et al., 2009). Nevertheless, there are some empirical works

that used simulated or calibrated data to investigate the effect of tourism on HIV/AIDS

transmission. This has not addressed the issue of lack of data to determine the magnitude

of HIV/AIDS in Malaysia.

1.3 Main motivation

The motivation of this thesis is to investigate how tourism has affected the spread of

HIV/AIDS. This is because it has become one of the attributes that contributes to the

feared and devastating diseases which considerably affected human population. To our

best knowledge, no other studies with mathematical models have ever been done before

in Malaysia on tourism and HIV/AIDS. As such, this thesis adapted the modified version

of the SIR model, taking into account the movement from one compartment to the other.

This movement method is not found in panel data and time series analysis. We are equally

motivated that data constraints in Malaysia on the inbound tourist have made forecasting

of the effect of tourism on HIV/AIDS inconclusive (Apenteng & Ismail, 2015). Since

there has been no mathematical modelling on the forecast as well as data limitations, it

is presumed that the effect of condoms as a preventive measure and the new born babies

likely to be infected, could have been a significant error in the previous studies, requiring

an investigation. In so doing, this thesis assessed the effect of tourism on the spread of

HIV and AIDS in Malaysia.

1.4 Aims and Objectives

This section discusses aims and objectives which led to the achievement of this thesis.

The primary aim of this thesis is to construct mathematical models that can be used to

4

Univ
ers

ity
 of

 M
ala

ya



understand the effect of tourism on the spread of HIV and AIDS. It also demonstrates how

time-varying with various SIR models can be extended to include the effect of tourism,

HIV-positive newborn babies and condoms as a preventive measure. The available data

was used to determine the arbitrary number of parameters that contributes to the spread

of the disease in context of population inflows within the model. With the outcome of this

thesis, we presented policy recommendations on how tominimise the spread of HIV/AIDS

in Malaysia.

To address the aims outlined above, the specific objectives of the study are to:

1. Examine the effect of outbound tourism on the spread of HIV/AIDS in Malaysia.

2. Examine the effect of inbound tourism on the spread of HIV/AIDS in Malaysia.

3. Investigate the effect of implementing condom as prevention policies therapy and

HIV control strategy.

4. Investigate the effect of newborn babies HIV-positive on HIV/AIDS transmission.

1.5 Research Questions

The main objectives of this thesis lead us to a major question: Do the dynamics of tourism

influence the spread of HIV and AIDS incidences in Malaysia?

Based on the stated objectives, the thesis is designed to answer the following research

questions.

1. What are the effects of outbound and inbound tourism on the spread of HIV/AIDS

in Malaysia?

2. What is the effect of implementing condom as control strategy on HIV spread in

Malaysia?
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3. What is the effect of newborn babies with HIV-positive on HIV/AIDS transmission

in Malaysia?

1.6 Scope of the research

The thesis used data from the Ministry of Health, Malaysia. The first HIV case reported

in Malaysia was in 1986 (MoH, 2012a). From this information the thesis used a set of

data between (1986-2011). This is to validate the formulated models in this thesis. Why

Malaysia? This is because of its strategic place, attractive because of its people, climate

and culture which attract a high rate of tourists. As mentioned earlier, in 2010 alone,

over 24 million tourists came into Malaysia (MTCM., 2015), as shown in Figure 1.1.

The rationale behind studying the effects of tourism on HIV/AIDS spread is because it is

among the most increased pattern of tourist trend in Malaysia as depicted in the Figures

1.1 and 1.2 below.

Figure 1.1: Trend of tourists

Figure 1.2, shows the cumulative number of HIV and AIDS incidences in the

Malaysia.
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Figure 1.2: Trend of HIV and AIDS individuals in Malaysia

1.7 Justification for research

There are many examples of mathematical modelling of HIV/AIDS in epidemiological

modelling (Mukandavire, Garira, & Tchuenche, 2009; Nyabadza, Mukandavire, & Hove-

Musekwa, 2011; Apenteng & Ismail, 2015). These have being formulated based on

individual behaviour towards how to handle the spread of HIV and AIDS epidemic in

different countries as found in Chapter 2. However, none of these have addressed the

issues raised in Section 1.5 in the context of Malaysia. We assumed that the approach with

Markov chain Monte Carlo (MCMC) has the potential to supplement more mathematical

model formulation to eliminate the difficulties in these models. The MCMC technique is

employed to model infectious diseases mathematically in terms of parameter estimation

(Haario, Laine, Mira, & Saksman, 2006; Laine, 2008; Petzoldt & Soetaert, 2010; Apen-

teng & Ismail, 2015). However, current models in the literature often do not take into

consideration the effects of tourism on HIV and AIDS individuals, HIV/AIDS individuals

capable of having children and the possible effective control measure. The outcome from

these models could help to plan economic activities in the health sector of the Malaysia

economy. In view of this, there is a need to develop mathematical models that would

address the impact of tourists on HIV/AIDS transmission, and aimed at reducing HIV
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and AIDS disease in Malaysia. Furthermore, there is a need to determine the number of

tourists that are infected with HIV and AIDS. This mutually related phenomenon would

help to illuminate the various effects of tourism on HIV/AIDS in Malaysia. Finally,

the mathematical model formulated as adapted from SIR helped to forecast the trend of

inbound tourists and the new born babies infected with HIV/AIDS in Malaysia.

Moreover, this research thesis proceeded to address the research gaps in our epi-

demiological models. As such, this research would not only benefit Malaysia Tourism

Promotion Board (MTPB) but it would provide expert knowledge for other professionals

in HIV/AIDS healthcare research forum.

1.8 Overview of thesis

The thesis is classified into six chapters. Figure 1.3 describes the chapters involved in this

study.

Figure 1.3: Thesis structure

This thesis is organized into six chapters. Chapter one of the thesis presents the

introduction to this research study. It contains eight subsections. Section 1.1 presents
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the introduction and background for the study. Introduction of HIV/AIDS, definition of

inbound and outbound tourism and how they affect the spread of HIV/AIDS in Malaysia

through sexual activities, newborn babies transmission, and finally preventive policies.

Section 1.2 outlines the problem statement. The main motivations of this research are pro-

vided in Section 1.3, including the author’s personal motivation of interest and experiences

gained while conducting this research, and research questions. Details of the objectives

and research goals are provided in Section 1.4. The research design is described in Section

1.5, where the source of data and assumptions of the models are briefly introduced. The

challenges in mathematical modelling of HIV/AIDS disease are outlined in Section 1.6.

Section 1.7 takes into account the justification for conducting this research work. Finally,

the Section 1.8 outlines the structure of the study.

Chapter 2 gives a survey of literature. It focuses on SIR-type mathematical models.

Firstly, it gives a general description of HIV/AIDS in Malaysia and tourism. Secondly,

how congential transmission of HIV and preventive measures have impacted on the spread

of HIV/AIDS. Finally, SIR models and its extension to various mathematical models in

term of the HIV/AIDS epidemic.

Chapter 3 presents themethodology and design of this thesis. The various description

of SI A models with its theorems, the scope of the data being used, construction of the

mathematical models, and finally, the steps involved in the use of MCMC approach to

estimate the parameters.

In Chapter 4, we constructed a deterministic mathematical model to reflect the effect

of outbound and inbound tourism on HIV and AIDS cases. Conditions for local as

well as global stability of the equilibria are derived. The congenital transmission and

implementation of condoms as a control strategy on HIV spread were taken into account

Estimation of the models and discussion of findings characterize Chapter 5. Addi-
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tionally, all the parameters for each model that influence the spread of HIV and AIDS in

Malaysia were estimated.

Finally, Chapter 6 concludes the thesis by discussing the main findings in respect to

the parameters and their contributions to the spread of HIV/AIDS in Malaysia. Further,

the limitations of the study are discussed and policy recommendations were outlined.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter reviews prior research and various models that are relevant to the research

problems addressed in this work. First, a brief discussion of HIV/AIDS which relates to

sexually active and injection drug users (IDU). The effects of tourists in other parts of

the world as well in Malaysia, and modelling HIV/AIDS with preventive measures. The

general description of mathematical modelling which includes:

• a detail analysis of the SIR model with its extensions,

• a vivid description of how SIRmodel had beingmodified by deterministic approach,

• the used of MCMC techniques to estimate parameters.

2.2 Mathematical modelling on HIV/AIDS study

Prior mathematical models describing HIV transmission have concentrated mainly on

populations of specific sexual orientation, that is, homosexual or heterosexual. The

HIV/AIDS epidemic has hugely stimulated the use of mathematical models for describing

infectious diseases (Punyacharoensin et al., 2016; Silva & Torres, 2017). The dynamic

transmission of HIV infection and its eventual development into AIDS, has taken a central

role in many mathematical models. Various improvements have been made since the

initial HIV and AIDS models by Anderson (1986, 1988).

Many models have been developed to describe people who inject drugs (PWID)

(Paraskevis et al., 2013; Wilson & Zhang, 2011; Bramson et al., 2015; Iversen, Page,

Madden, & Maher, 2015; Li et al., 2015; Genberg, Astemborski, Vlahov, Kirk, & Mehta,

2015; West et al., 2015). Greenhalgh and Hay (1997) extended Kaplan’s model to demon-

strate the spread of HIV and AIDS among drug users. The authors assumed that a syringe
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used by an HIV-infected person cannot always be infected with HIV infection. Others

are iterative, Murray, Law, Gao, and Kaldor (2003) presented the impact of behavioural

changes on the prevalence of HIV among injecting drug users. Wilson and Zhang (2011)

developed a mathematical transmission model for HIV epidemics among men who have

sex with men (MSM) and PWID. They suggested that it would be good to incorporate

the evaluation of specific public health programmes in order to provide understanding of

the importance of the HIV epidemic. Blower, Hartel, Dowlatabadi, Anderson, and May

(1991) developed a mathematical model for heterosexuals and PWID of HIV individuals

in New York City. Their study was conducted to ascertain the partial rank correlation

coefficients of the key parameters. Wilson, Donald, Shattock, Wilson, and Fraser-Hurt

(2015) admitted that there is the need to improve health outcomes for PWID, this in-

cluded reducing the high and increasing rates of HIV to understand the cost effectiveness

of harm reduction programs. Paraskevis et al. (2015) presented how to use molecular

epidemiology to understand the outbreak of HIV among IDUs in Athens and Bucharest.

It was found that IDU were the driving force to spread the infections at the early

stages of the epidemic in Malaysia, which constituted 70-80% of all the reported cases

(Bazazi et al., 2015; MoH, 2012a). In 1994, the highest ratio of IDU/sexual mode of

transmission reached 12.2%, this pattern totally shifted sexual mode of transmission with

PWID/sexual transmission from 3.9% in 2000 to 0.3% in 2013, (UNGASS, 2010; MoH,

2012a). In 2013 alone, there were 3,393 reported cases of HIV representing nine cases

per day. Whereas in 2002, the disease had reached its peak with infected cases of 6,978

(MoH, 2012b).

As in many parts of the world, population movement, including tourism, has become

the most universally accepted, supported and lucrative tool for big business. It is a

successful business operation, generating considerable revenue and publicity for many
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countries worldwide. It is estimated that 50% of travellers engage in sexual practices

while abroad (Ericsson, Steffen, Matteelli, & Carosi, 2001). For example, in 2004, Cable

News Network (CNN) reported that 16,000 to 20,000 people are estimated to be child

sex victims in Mexico, largely in border, urban, and tourist areas (Courson, 2004). In the

United Kingdom, a study was conducted by Hawkes, Malin, Araru, and Mabey (1992)

involving 258 heterosexual travellers who attended the Hospital for Tropical Diseases in

London. Their study revealed that the rate at which foreigners acquired HIV infection was

33.2% as compared to the rate of 1.8% of locally acquired HIV infection.

However, the negative impact of tourism on the host countries, may be either direct or

indirect. For instance, the direct impact is the possible transmission of infectious diseases

from tourists into the destination countries populace (Bauer, 2008b). The sexual behavior

of tourists may impact on the host country in terms of the spread of infectious diseases

especially when there are unprotected sexual activities. The direct impact of tourism is

mainly to those where diseases are spread into the host country from the tourists who

either come with the disease from their home country or pick it up during their stay either

sexually or through drug use/share (Bauer, 2007, 2008b).

Tourism per se may not always increase sexual activity of the individual(s) involved,

but sexual behavior of the touristsmay have an impact on the host country in terms of spread

of infectious disease, especially when there are unprotected sexual activities. Child sex

tourism is now on the increase, virgin girls are given to tourists for unprotected sex, at times

without their knowledge (Bauer, 2008b). Specifically, travellers may not be controlled

or restricted in one way or other due to the movement of people coming overseas. The

morality of tourists, as a result, has become a problem of serious consequence. However,

the ramifications of HIV which trigger AIDS control efforts for international travellers are

a growing concern to the world (Lewis, 1989).
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Many travellers travel for affordability of sexual services to their travelling destination

(Abdullah, Fielding, Hedley, & Luk, 2002) and sex partners who travelled to Thailand

(Abdullah et al., 2004) who travelled to Thailand for sex tourism (A.Wilson, 2010; Ocha&

Earth, 2013). For instance, in Europe, there has been an increase of new HIV/AIDS cases

among immigrants (Sinka et al., 2003). This is no different fromAsia and Africa: migrant

labourers, long-distance truck drivers, and commercial sex workers with HIV infections

travel to other countries for greener pastures. Tourism has brought many benefits such

as foreign investment and is a source of income to many countries but it has also caused

negative impacts on some countries. For example Thailand (Ocha & Earth, 2013), which

is a hot spot for sex tourism, is not dangerous but rather it becomes dangerous when there

is unprotected intercourse.

Bauer (1999) analyzed the impact of tourism in developing countries on the health

of the local host communities and suggested that there is a need for more research.

For example in Peru, Bauer (2007), examined the sexual activities between the local

tourists in terms of AIDS. Apenteng and Ismail proposed a mathematical model to study

the impact of international travellers (tourists) on the spread of HIV and AIDS epidemic

using compartmental differential equation models inMalaysia (Apenteng& Ismail, 2015).

According to the authors, mathematical modelling has the potential of improving public

health sectors.

Qualitative studies conducted by Greene et al. (2015) have raised the question of how

HIV-positive mothers breastfeed their babies in Canada without transmitting the infection

to their newborn children. At the same time, the mortality trend of children born with HIV

has been increasing. In the case of Brazil, the available data and evidence were presented

in studies by Moreira-Silva et al. (2015) found that the cause of death among children

born with HIV is due to their late diagnosis. There have been several studies conducted
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on mother-to-child infection in HIV/AIDS (Drake, Wagner, Richardson, & John-Stewart,

2014; Gourlay et al., 2015; Mulugeta et al., 2015; Okawa et al., 2015; Palombi et al.,

2015; Vogt et al., 2015), and there is a need to rethink how the introduction of treatment

for children infected by their mothers is considered (Sugandhi et al., 2013).

2.3 HIV/AIDS in Malaysia and tourism

Since 1986 when the first HIV/AIDS case made its debut in Malaysia, HIV/AIDS has

spread widely ever since, becoming a significant problem and one of the country’s most

serious health and development challenges (MoH, 2012a). According to the population

census in 2014, Malaysia’s total population was estimated at 30.4 million people and

with one of the fastest growing economies in South-East Asia (DoS, 2014). The country

is challenged with one of the most deadly diseases in the world with alarming cases of

HIV/AIDS incidence (MoH, 2011; UNICEF, 2014). In 2013, World Health Organiza-

tion (WHO) declared that in Asia-Pacific region, Malaysia hass the fifth fastest-growing

infection rate (WHO, 2013). This epidemic is far above 5%, and it is prevalent among

Most-at-Risk Populations (MARPs), especially PWID, Sex Workers (SW), Transgender

(TG) and Men who have sex with men (MSM) populations (MoH, 2012a).

There are many advantages of tourism to local economies and Malaysia is an in-

creasingly favourite destination in the Southeast Asia. In 2014 alone, there was a total

of 27,437,315 tourist arrivals generating MYR 72.0 billion to the Malaysian economy

(MTCM., 2015). While there are many advantages of tourism to local communities,

studies suggest that tourism areas may become ecologies that heighten HIV vulnerability.

Exposure to tourism can promote behaviours such as commercial and transactional sex

(Oppermann, 1999). Sexual contact alone does not provide evidence of a higher risk for

HIV transmission, alcohol and drug use in tourism areas are also major sources of evi-

dence that such contact may involve a particularly high risk (Bishop & Robinson, 1998).
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Clancy (2002) revealed that most of these sex workers prefer foreign tourists due to the

money involved. The author further explained that at times, the sexual activities of these

tourists involved unprotected sex which had a high risk of HIV infection.

Furthermore, most tourists that are involved in these activities, are from regions

where HIV prevalence is high. For example, the rate of sex workers who use condoms

is also low given that they come from disadvantaged backgrounds. Due to this activity,

there are a lot of children born to foreign travellers, with no financial support and with a

high risk of HIV (Bauer, 2008a).

2.4 Congenital transmission of HIV

Congenital transmission is the same as vertical transmission infection, that is, from the

mother to the fetus, during pregnancy or after childbirth. HIV-infected mothers transfer

HIV to their newborn babies through breastfeeding. Chang et al. (2015) came out that

2.3% infection rate of HIV was attributable to breastfeeding in Malawi. In China the

rate of maternal-to-child transmission of HIV is 8.1% alone (Wang et al., 2015). This is

not different from South Africa, infected HIV mothers were put on antiretroviral therapy

in order to prevent the unborn babies from getting HIV (Manicklal et al., 2014). The

risk for mother-to-child transmission of HIV has consistently increased in HIV infected

women (King, Ellington, & Kourtis, 2013). The infection rate of mother-to-child in

the United States between ages 12-49 is 1.6 representing 1.7 of the basic reproduction

number (Colugnati, Staras, Dollard, & Cannon, 2007). Mukandavire and Garira (2007)

formulated a sex structured HIV/AIDS model for mother-to-child effects of HIV infection

due to breastfeeding. Townsend et al. (2008) analysed the effect of different strategies to

prevent mother-to-child transmission in the United Kingdom and Ireland. No other studies

of this mother-to-child HIV transmission with mathematical models has ever been done

before in Malaysia.
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Sharing injecting drug equipment has also contributed to the spread ofHIV (Saraswati

et al., 2015; Coffin, Rowe, & Santos, 2015). The World Health Organization (WHO)

estimated that globally there are 16 million of PWID and out of this, 3 million of them are

living with HIV (Burns, 2014). For instance, 80% of all HIV infected cases are a result

of drug use, in some parts of Eastern Europe and Central Asia (HRI, 2012).

2.5 Preventive measures

In recent times, advances in treatments in HIV/AIDS have become a major concern to

many countries. For instance, the government of Thailand introduced 100% condom

program, whereas in Tanzania, a community based education program was introduced to

minimize the spread of HIV/AIDS (Bertozzi et al., 2006). The United Nations played

an important role in implementing preventive measures on the spread of HIV/AIDS. The

UNAIDS held its 38th meeting on 1st July 2016 at Geneva and came out with good

development goals to end the HIV/AIDS by 2030 (UNAIDS, 2016).

Many researchers have comeoutwith several preventativemeasures forHIV (Pinkerton

& Abramson, 1997; Adih & Alexander, 1999). One method of HIV prevention is the use

of condoms, which prevent individuals who are susceptible from getting HIV (Manhart &

Koutsky, 2002). Pickles et al. (2013) proposed a mathematical model of HIV by targeting

high-risk groups with prevention programmes in South India. Cabezas, Fornasini, Dard-

enne, Borja, and Albert (2013) proposed a framework to estimate HIV/AIDS prevalence,

by means of a validated questionnaire, and prevention measures with working sectors in

Ecuador. However, there has been effective preventive measures against HIV infection

(Mclean & Blower, 1993; Schmitz, 2000; Velasco-Hernandez, Gershengorn, & Blower,

2002; Moghadas, Gumel, McLeod, & Gordon, 2003; Blower, Bodine, & Grovit-Ferbas,

2005; Nishimura &Martin, 2011). Nyabadza andMukandavire (2011) presented a simple

deterministic model for HIV/AIDS by incorporating the use of condoms, sexual partner
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acquisition, behavior change and treatment. The results suggested that HIV/AIDS could

be controlled.

Recently, many mathematical models have been developed to analyse the control

strategies in the past (Negredo et al., 2015; Levine, Leskowitz, & Davis, 2015; Sripan

et al., 2015; Nyabadza et al., 2011; Abdullah et al., 2002). Mathematical analyses of a

different strains of HIV/AIDS at population based levels with antiretroviral treatment have

been modeled (Bhunu, Garira, & Magombedze, 2009; Eaton & Hallett, 2014; Falconer,

Sandberg, Reichard, & Alaeus, 2009; Jansson, Kerr, & Wilson, 2014; Tamizhmani,

Ramani, Grammaticos, & Carstea, 2004; Wilson & Zhang, 2011). Greenhalgh, Doyle,

and Lewis (2001) formulated a mathematical model of how the use of condoms can

minimize HIV in San Francisco and USA. They suggested that the use of condoms has

important implications for control of the disease to reduce the spread of HIV.

Antiretroviral medication (drug treatment) is recommended for all individuals with

HIV, irrespective of the duration the individual has been infected with the virus (Eaton

& Hallett, 2014; Nosyk et al., 2015; Duber et al., 2015). Kamarulzaman and Altice

(2015) admitted that there is a need for taking into account treatment readiness attitudes

to reduced HIV spread among PWID in Malaysia. There is evidence showing that when

effective treatment is introduced to HIV positive individuals, it delays the progress from

HIV to AIDS (Cai, Li, Ghosh, & Guo, 2009; Cai, Guo, &Wang, 2014). In contrast, Eaton

and Hallett (2014) proposed that early-stages of HIV treatment does not necessarily mean

a long-term individual life span. Huo and Feng (2013) presented how to use the global

stability to analysis the spread of HIV model with treatment.

2.6 Modelling with SIR models and extension

The next section addresses some of themodified SIRmodels. This thesis took into account

some of the SIR modified on deterministic models and its importance. Over the past three
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hundred years, researchers from various disciplines have used mathematical models to

address issues, challenging the understanding of the spread of infectious diseases. This

has been beneficial in many ways, for instance, empirical results have helped to improve

public-health questions with regard to basic transmission of diseases.

The use of differential equations became important in early 1900s. Ross (1911)

developed mathematical a model for malaria. The work of Ross was extended by Kermack

and McKendrick in 1926 to obtain epidemic threshold results. Kermack and McKendrick

(1927) formulated the SIR model which has become the central fundamental system in

epidemiological modelling. The fundamental SIR model was based on deterministic

differential equations. Subsequently, the model was given a stochastic dimension by

Isham (1988, 1993) with the introduction of natural birth and death rates as demographic

features. Since then there have been several modifications of the SIR model that have been

developed over the years by changing the assumptions (Inaba, 2007; Bhunu, Mushayabasa,

Kojouharov, & Tchuenche, 2011; Mukandavire et al., 2011; Naresh, Tripathi, & Sharma,

2011; Z. Wang, Fan, Jiang, & Li, 2014; Witbooi, 2013; Apenteng & Ismail, 2014; Biswas,

Paiva, & de Pinho, 2014).

2.6.1 Stochastic models

Metapopulation gives a good understanding of how to develop spatial models. In spatial

models, metapopulation gives a useful description framework by partitioning the popula-

tion due to the geographical location of the hosts (Keeling, 1999). In all disease modelling

the mode of infection is very significant. In case of subpopulations of spatial models the

rate of infection can be calculated by summing up the prevalences. The subpopulation of

stochastic modelling of infection is always reduced as compared to that of deterministic

models. The concept of spatial modelling consists of different methods (Ingemar, 2002).

The correlations between subpopulations are also taken into account. For example, posi-
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tive correlations are synchronous and negative correlations are asynchronous (Anderson,

1988; Keeling, 1999).

For example, when the interactions between populations are too small the effective

dynamic nature of spatial aspect becomes unimportant (Ferguson et al., 2003). In contrast,

when the interaction is too large, the effective dynamics are synchronized, which indicates

that the subpopulations are well mixed population and once again the spatial aspect

becomes unimportant. The degree of knowledge is about the behaviour of the disease and

how the scale is chosen. There are two types of scales which play very significant roles

in spatial models. These are: 1) the scales of interaction, and 2) the scale of simulation.

These two are important because in spatial models the interaction or the neighbourhood

is very necessary.

To assess the scale of the individuals who are involved in the interaction, the in-

dividuals are then divided and the larger scale at which the simulations are performed

can be based on the simulated results (Keeling & Rohani, 2008). Hohle and Feldmann

(2007) use stochastic epidemic models to describe how disease transmission can be mod-

elled spatially. On the other hand, deterministic models do not depend on individual

randomness.

2.6.2 Deterministic models

Compartmental models are known as deterministic models (Wanduku & Ladde, 2012;

Kaddar, Abta, & Alaou, 2011). Deterministic models suit large populations. One of the

advantages of deterministic modelling is that it is efficient when it comes to sensitivity

analysis as compared to stochastic modelling. For instance, the SEIR model consists of

four compartments represented by the Susceptible, Exposed (infected), Infectious, and

Recovered or Removal (d’Onofrio, 2002; Biswas et al., 2014; Liu, Bai, & Wang, 2014;

Artalejo, Economou, & Lopez-Herrero, 2015).

20

Univ
ers

ity
 of

 M
ala

ya



Numerous studies have examined how to forecast the spread of HIV and AIDS cases

from an epidemiological data point of view. De Gruttola and Mayer (1988) assessed

how to implement a fitted model of HIV epidemic of heterosexual in the United States.

Hyman and Ann Stanley (1989) generated mathematical models based on the underlying

transmissionmechanisms ofAIDS,whichwere used to understand and anticipate its spread

in different populations. Romieu, Sandberg, Mohar, and Awerbuch (1991) presented work

demonstrating how to model the spread of AIDS in Mexico City. The goal of their work

was to provide a conceptual framework to help understand the transmission dynamics of

infection and give a reasonable estimation for the short-term prediction of the cumulative

number of AIDS cases. Mathematical modeling of the spread of AIDS has become even

more useful in the modern era of AIDS research.

Merli, Hertog, Wang, and Li (2006) presented an exploration of the implications

of patterns of sexual behavior for the spread of HIV in China; this model reflected the

uncertainty surrounding key parameters, and the analyses used showed a range of possible

outcomes. Kakeshashi (1998) formulated a mathematical model to describe the spread of

HIV/AIDS among adult commercial sex workers in Japan, which was used to analyze the

effect of HIV-infected commercial sex workers introduced into a population without HIV.

de Arazoza and Lounes (2002) outlined how a non-linear model could be used to develop

an epidemic with contact tracing, specifically in Cuba. The authors suggested that to

control the spread of HIV/AIDS, the target group must be in contact with individuals who

carry HIV. Nishiura (2007) studied predictions of AIDS incidence in the United States

and Japan. The studies failed to predict AIDS incidence in both countries. Similar work

was done in South Africa by Nyabadza et al. (2011) to forecast the trend of HIV/AIDS

epidemic.
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2.6.3 The use of MCMC for parameter estimation

Kim formulated a simple continuous model for the transmission of HIV, although this

model failed to take into account the demographical parameters that have a significant

impact on modeling the spread of HIV (Kim, 2009). Furthermore, most of these pre-

vious models have serious drawbacks. For instance, most of these models have failed

to demonstrate how the impact of AIDS causes the death of HIV-infected individuals.

These models also typically describe changes in time, therefore are referred to as dynamic

models, where time is the independent variable. Similar work was conducted by Haario

et al. (2006), the authors proposed various strategies to combine two quite powerful ideas

in the MCMC, in which they used adaptive metropolis samplers and delayed rejection

to study the spread of algae. Apenteng and Ismail (2015) studied model fitting by using

MCMC approach to estimate AIDS after HIV infection in Malaysia. They estimated that

without the intervention of antiretroviral medication (drug treatment), the rate at which an

individual will fully developed AIDS after HIV infection class is 0.99/year.

There has been several papers about modelling HIV with contributing factors that

might have its impact on the spread. Unfortunately, there is little understanding of how to

model the impact of tourism on the spread of HIV in public health fields. This makes it

necessary to understand the pattern of tourists on the spread of HIV/AIDS.

2.7 Chapter summary

This chapter has provided an adequate survey of important models in support of this

research work. Moving forward, evidence will be demonstrated of inadequate modelling

of tourists on the spread of HIV and AIDS cases. This has led to a recent shift in the un-

derstanding of how to model the impact of tourists on HIV and AIDSmathematically with

the MCMC approach to estimate the parameters involved. This move is appropriate, given

that, most of these models presented in the literature may be considered epidemiologist
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driven.
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CHAPTER 3: RESEARCHMETHODOLOGY AND DESIGN

3.1 Introduction

The use of mathematical models to examine infectious diseases is of considerable fun-

damental importance to obtain information such as the underlying mechanisms, which

influence the spread of the disease. These models predict and identify the behaviour of the

strains of the disease. Therefore, some simplification is needed to reduce the complexity

of the models. Our approach here is to formulate mathematical models for the effect of

tourists on HIV/AIDS spread. Mathematical models are powerful tools for investigating

human infectious diseases, for example, HIV and AIDS. They indeed could contribute

to the understanding of the dynamics of disease which can provide valuable information

for public health policy makers (Bramson et al., 2015; Luboga, Galukande, Mabweijano,

Ozgediz, & Jayaraman, 2010; Padilla et al., 2012).

The mathematical modelling of HIV/AIDS epidemic in this thesis is concerned with

the infection processes, mainly from person-to-person contact within a population through

sexual activity. It will be interesting to build a simple model to study the effect of tourists

on the spread of HIV and AIDS.

Mathematical models assist the understanding of the effects of tourism on the spread HIV

and AIDS through the following:

• Empirical results frommathematical models are easily compared with observational

data to validate and test for accuracy of the model strengths and weaknesses.

• Models can be used to understand and forecast epidemics according to different

scenarios due to intervention programs.

There is a need to model the effects of tourism patterns, babies born with HIV and

condom use on the spread of HIV and AIDS to understand how the spread of HIV/AIDS
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could be minimized. For example, recent events in Malaysia indicate that there is an

increase in tourism issues in the country that could pose a high risk for the spread

of disease. Relatively few research has been done on how tourism has impacted on

HIV/AIDS in various countries. However, no work had been done in Malaysia.

Against this backdrop, Malaysia has become a tourist destination for people from

all over the world. This according to literature, has been attributed to the spate of rapid

infrastructure development in Malaysia (Narayanan, 1992; Kassim, 1998; Pillai, 1998;

Hugo, 2011; Nah, 2012; Tan & Gibson, 2013; Hafiz, Jamaluddin, Zulkifly, & Othman,

2014; Nair, Chiun, & Singh, 2014; Ramdas &Mohamed, 2014; Shaffril et al., 2015; Tang

& Tan, 2015). While the inflow of people has led to improvements inMalaysia’s economic

development, it has also led to an increased spread of HIV/AIDS in the country.

3.2 Data

The primary data sources for this studywas collected from the report produced byMinistry

of Health (MoH) (MoH, 2012a). These data were collected and collated by MoH from

various resources such as related ministries, universities, NGOs and prisons. The data

consist of the number HIV and AIDS yearly incidences reported between 1986 to 2011

for Malaysia. In 1986, the Malaysian population was 16,329,400. There were only 3 HIV

cases and 1 AIDS case in 1986, representing I (0) = 3 and A(0) = 1 respectively (MoH,

2012a). Hence, there were 16,329,396 individuals who are susceptible to infection in

1986. The total number reported case of HIV/AIDS in 2011 alone since 1986 was 94,841,

17,686 and 14,986 are HIV infections, living with AIDS and were deaths related to

HIV/AIDS, respectively, thus giving reported number of people living with HIV (PLHIV)

of 79,8552. The annual number of reported new HIV cases by the MoH has been on a

steady decline from a peak (epidemic) of 6,978 in 2002. In 2011, there were 3,479 new

cases reported to the MoH, approximately halve of what was reported in 2002 with an
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average of 9 new cases each day (MoH, 2012a). This was repeated in 2013 alone 3,393

new HIV infections detected with an average of 9 new cases per day (MoH, 2014). The

trends of HIV and AIDS incidences are shown in Figure 1.2. In 1986, the total number

of tourists in Malaysia was 3.2 million (Bujang, 2005). The tourist data an illustrated in

Figure 1.1, is used to estimate the number of HIV and AIDS cases of inbound tourists. To

simplify our proposed model and due to data availability, we neglect the various stages in

HIV infections: acute HIV infection and clinical latency, in order to make the proposed

model more tractable.

3.3 Construction of mathematical model

We construct a population-based compartmental epidemic model which integrates knowl-

edge of tourism regarding its effect on HIV and AIDS disease. In a population-based

compartmental epidemic model, it is assumed that the total population size in each com-

partmental level is differentiable with respect to time. Thus, the transformation rates

form one compartment level to another compartmental level can be expressed in terms of

derivative with respect to time. In view of this, we intend to build a mathematical model

that will reflect the effects of tourism on the spread of HIV and AIDS disease. There is a

need to estimate the unknown parameters of the model by fitting it into the epidemiolog-

ical data from Malaysia, with the optimal values of epidemiological parameters, derived

from the population based compartmental predictions that give the best-fit to the data. A

Bayesian approach was used to estimate the parameters involved (Paraskevis et al., 2003)

via the MCMC method (O’Neill, 2002; Xun, Cao, Mallick, Maity, & Carroll, 2013; Xiao

et al., 2013). With the reason that every model is based on parameters that have the most

effect and least effect on the disease.

As described previously, the mathematical models in this thesis will be formulated

by expanding the SIR models (Kermack & McKendrick, 1927, 1932; Anderson, 1988,
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1986; Kermack & McKendrick, 1991). We replaced the removal class by AIDS class,

which then becomes Susceptible-Infected-AIDS as SI A.

When formulating a mathematical model, it is necessary to follow a number of

procedures to assure it’s suitability for the scientific problem and taking into account all

the important information in order to address it. Figure 3.1 depicts the steps that were

involved in the formulation of these models that were followed to develop the models in

the proceeding chapter.

Figure 3.1: Description in the formulation of the models

From Figure 3.1, these models will be proved for mathematical correctness which

will be described in Chapter 4. Adjusting and modifying the parameters of the formulated

models provides a better understanding that could be used to analyse the problem by

fitting into a real data. Bayesian inference plays a very important role when considering

the uncertainties in the estimation of unknown parameters. The models that will be

presented are meant to fit epidemiological data from Malaysia. It is therefore possible to

demonstrate the validity of the models. The models will prove to be mathematically sound
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through validations that would be used to test real data. Using mathematical models we

can save time. We plot estimated parameters for different scenarios much more quickly

than the time the disease might actually take to run its course in the population (Hyman

& Ann Stanley, 1989; Romieu et al., 1991; Mukandavire et al., 2011).

In order to calibrate the models, MCMC will be used to estimate the parameters

involved (Putter, Heisterkamp, Lange, & de Wolf, 2002). The MCMC approach is

more useful in dealing with the non-linearity and interdependency of parameters through

their application to a model describing the dynamics of HIV (Petzoldt & Soetaert, 2010).

MCMC is one of the most important techniques used to estimate parameters to supplement

mathematical modeling in order to calibrate parameter unpredictability (Haario et al.,

2006; Apenteng, 2009; Laine, 2008). This has never been donewith HIV/AIDSmodelling

in Malaysia. For more details of these models see Chapter 4 also described in Sections

4.2, 4.5 and 4.7.

3.4 Parameter estimation

The general strategy for model calibration is to define the parameters related to the history

of HIV. The empirical results of the analysis will adapt similar approaches used by O’Neill

(2002), Haario et al. (2006), Petzoldt and Soetaert (2010) and Apenteng and Ismail (2015)

to obtain the posterior probability density for the unknown estimated parameters due to

lack of information. Bayesian inference approaches allow the prior information to be

inferred from the uncertainties in each of the models.

Construction of an epidemiological model is a very complicated task. As illustrated

in Figure 3.1, the problem clearly cannot be statistical solved. However, to validate the

model and in order to predict the observations, statistical approaches are able to inform

the possible solutions by fitting the set of models into a given epidemiological data set

with the prior information that is available. Let’s consider a brief description as to how

28

Univ
ers

ity
 of

 M
ala

ya



the concepts of the model would be determined by the Bayesian framework (for details

see (Laine, Tamminen, Kyroa, & Haario, 2007)). Let x represent the unknown variable

of the main primary interest, and θk for the unknown parameters with set of k in the

model. The aim is to observe epidemiological data y to estimate the unknowns x, θk . In

order to apply the Bayesian inference we assign a prior probability by considering all the

unknown parameters as, p(x, θk, k). By applying the conditional probabilities rules, the

prior probability becomes:

p(x, θk, k) = p(x |θk, k)p(θk |k)p(k). (3.1)

where p(x |θk, k) is the probability of unknown variables, p(θk |k) is the model parameter

in each model, and finally p(k) is the prior probability of the difference models.

There is a need to build the likelihood function p(y |x, θk, k) in order to determine

the noise in the distribution of the epidemiological data sets. By using the Bayes formula,

the joint posterior distribution is the product of the likelihood and the prior:

p(x, θk, k |y) =
p(y |x, θk, k)p(x |θk, k)p(θk |k)p(k)

p(y)
. (3.2)

Where p(y) is the unconditional probability of the epidemiological data set which is the

normalizing constant that makes the probability distribution.

3.4.1 Markov Chain Monte Carlo Method

MCMC has become very effective when applied to non-linear models by taking into

account both the uncertainty in the model parameters and in the model output. This thesis

will discuss its algorithms theories, and give a realistic complexity connection of how the
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MCMC could be used to estimate parameters for predictions.

3.4.2 Why use MCMC?

MCMC is a statistical tool that has been in existence since Monte Carlo techniques

received considerable attention (Brooks, Gelman, Jones, & Meng, 2011; Rubinstein &

Kroese, 2011). It is an established method that enhances samples drawn from a target

density that is only known up to proportionality due to the following reasons:

• It permits a huge amount of modelling flexibility that represents the true dependent

structures in the data, rather than those that are simple to compute. Analytically

it enable one to choose a convenient distributional form or the infectious periods,

so that the integrals can be explicitly evaluated (Pritchard, Stephens, & Donnelly,

2000; O’Neill, 2002; Salakhutdinov & Mnih, 2008).

• The second point, themethods enable analysis of very complicatedmodels (of all the

model parameters involved) (Huelsenbeck, Ronquist, et al., 2001; O’Neill, 2002).

• The third point of MCMC is that, in combination with the Bayesian approach and

MCMC it is unbiased to the sample size (Besag & Green, 1993; Huelsenbeck et al.,

2001).

There aremanyBayesian inference viaMCMC techniques. In this thesiswewill adapt

the use of Metropolis-Hastings algorithms from Gibbs sampling. Which will represent a

good description of this study.

3.4.3 Metropolis-Hastings algorithm

There are many ways to construct a Markov chain with stationary distribution π. Perhaps

the simplest is the Metropolis-Hastings algorithm. The algorithms that lie behind MCMC

and generate the samples. The Metropolis algorithm was later generalized by Hastings
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(1970).

• Initialize by choosing starting point X1

• Choose a new candidate at Xn = x, randomly propose a new position Xn+1 = y

according to a proposal density q(y |x) that depends on the previous point of the

chain.

• Accept the candidate with probability

min
(
1,
π(y)q(x |y)
π(x)q(y |x)

)
. (3.3)

If rejected, repeat Xn+1 = x . Go back to steps 2. The point may still be accepted, with

the probability that is given by the ratio of π values.

3.4.4 Why the Metropolis-Hastings algorithm works

We let p(dx, dy) denote the transition kernel of the chain. Then p(dx, dy) is approximately

the probability that the chain jumps from a region dx to a region dy. p(dx, dy) is calculated

as follows:

p(dx, dy) =q(dy |dx)
(
π(dy)q(dx |dy)
π(dx)q(dy |dx)

∧ 1
)

(3.4)

=
π(dy)
π(dx)

q(dx |dy) ∧ q(dy |dx) (3.5)

π(dx)p(dx, dy) =π(dy)q(dx |dy) ∧ q(dy |dx) (3.6)
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Thus

π(dx)p(dx, dy) =π(dy)p(dy, dx) (3.7)∫
dy∈S

π(dx)p(dx, dy) =
∫

dy∈S
π(dy)p(dy, dx) (3.8)

π(dx) =
∫

dy∈S
π(dy)p(dy, dx) (3.9)

This last equation (3.9) shows that π is a stationary distribution for the Markov chain. The

choice of proposal q(y |x) ∼ N (0, σ2) (Gaussian proposal) is fairly arbitrary. We chose

the Metropolis-Hastings, MCMC is almost always used for multi-dimensional problems

because it is possible to update each component separately as for example given a target

density π(x1, x2, . . . , xn).

Perhaps themost successful of these simulation algorithms is theMetropolis-Hastings

algorithm. This algorithm belongs to a set of MCMC approaches that generate samples.

A similar approach was performed by Petzoldt and Soetaert, we shall take the prior

distribution for the parameters to θ and independent variable t (for details see (Petzoldt &

Soetaert, 2010; Apenteng & Ismail, 2015)). Similarly, we set y to represent our system of

non-linear equations of our models. We set the prior distribution for the parameters to θ

and independent variables to t (for information see (Petzoldt & Soetaert, 2010)). We also

assumed that ξ is the additive and the independent Gaussian error, with unknown variance

σ2. These terms can be defined as follows:

y = f (t, θ) + ξ (3.10)

ξ ∼N (0, σ2) (3.11)
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The posterior for the parameters is estimated as (Laine, 2008)

p
(
θ |y, σ2

)
∝ exp

[
−0.5

(
SS(θ)
σ2

)]
ppri (θ) (3.12)

where SS is the sum of squares function SS(θ) =
∑ (

yi − f (t, θ)i
)2 and ppri (θ) is the

prior distribution of the parameters. To obtain proper results from the MCMC method, a

constrained least squares approach is necessary to provide initial estimates of (θi). If the

non-informative prior is constant for all of the values of ppri (θ), this can be ignored. For

the reciprocal of the error variance σ2, a gamma distribution is used:

ppri
(
σ−2

)
∼ Γ *

,

n0
2
,

n0S2
0

2
+
-

(3.13)

The reciprocal of the error variance at each MCMC step is sampled from a gamma

distribution (Gelman et al., 2013) as follow:

p
(
σ−2 |

(
y, θ

))
∼ Γ *

,

n0 + n
2

,
n0S2

0 + SS (θ)
2

+
-

(3.14)

where n0 and n input arguments to the function and the number of observations, respec-

tively (Petzoldt & Soetaert, 2010).

3.4.5 R package Flexible Modeling Environment (FME)

The set of differential equations are solved using the R package Flexible Modeling En-

vironment (FME) (Petzoldt & Soetaert, 2010). FME is a package designed for inverse

modelling, sensitivity and Monte Carlo analysis. This is because starting with good pa-

rameters is very important. In this thesis, the potential of FME for inverse modelling

is demonstrated by means of three different models: first, a simple three compartment

dynamic model from outbound tourists who are infected with HIV and AIDS, and returns
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home without the knowledge of their status for Model I; second, the four compartment

dynamic model inbound tourists with outbound tourists in order to estimate the number of

HIV and AIDS cases of inbound tourists respectively; and finally, condoms as preventive

measure intends to reduce infection with outbound and inbound tourists. Also, in order

to fit the proposed models to the data, we adapt the following functions approaches from

Petzoldt and Soetaert (2010).

• The proposed models are formulated.

• Try an initial guess for the parameters that fits the data best.

• Plot model and data.

• modCost estimates residuals of the model output versus the data and calculates

model cost (sums of squared residuals).

• sensFun calculates the local sensitivity of the model output to the parameter values,

which determines the effect on model outcome as a function of an appropriate

parameters on a time series probability density function.

• modFit it uses the output of modCost to find the best-fit parameters for nonlinear

model-data fitting. It calls the functions from R’s built-in minimization routines

such as optim, nls, nlminb, and a pseudo-random search algorithm (Price1977).

• modMCMC performs a Markov Chain Monte Carlo simulation (Bayesian analysis)

method to derive the data dependent probability distribution of the parameters. It

uses the metropolis hastings (MH) algorithm, adaptive metropolis (AM) algorithm

and including a delayed rejection (DR) procedure (Haario et al., 2006; Laine, 2008).

• sensRange estimates the effect of the parameter uncertainty on the model output

which gives predictive envelopes of the proposedmodel (Petzoldt & Soetaert, 2010).
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3.5 Chapter summary

Throughout this chapter we have shown how SIR-type models can be extended to study

the spread of HIV/AIDS and howMCMC approach is used to supplement the construction

of the models by estimating the parameters involved. For instance, these will help us to

examine the following: The effect of outbound and inbound tourists who are infected with

HIV/AID. The effect of newborn babies with HIV-positive on HIV/AIDS transmission.

And how to implement the use of condoms as a preventive measure. In the proceeding

Chapter, we will study how the models will be constructed to analysis all the mathematical

models that are involved as well as addressing these matters.
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CHAPTER 4: DESCRIPTION OF THE MODELS

4.1 Introduction

In this chapter we present three models by modifying the standard SIR model studied by

(Kermack & McKendrick, 1927). That is, we replace the R compartment by an A. This

compartment contains individuals that have AIDS. Since there is no cure or recovery for

HIV patients, individuals with HIV either remain infected or progress to AIDS. Hence,

we constructed three different models for HIV and AIDS cases that capture Malaysian

returnees, foreigners and prevention.

Model I considers inclusion of outbound tourism. The outbound tourists are the

Malaysian citizens that returned home with an infection of HIV. The Model I focus is to

examine the probability of susceptability of the returnees who traveled outside Malaysia

for other activities.

While Model I looked at the Malaysian returnees, Model II takes into account the

non-Malaysian tourists referred to as inbound tourism. We used the model to examine the

effect of the inbound tourism on the spread of HIV/AIDS in Malaysia. As such we focus

on quantifying the volume of the susceptible individuals as well as establish number of

infected HIV and AIDS of these non-Malaysia tourists. This is necessitated with the fact

that Malaysia government was not aware of the infection status during their arrival.

After examination of the objectives relating to Model I and II, we constructed the

third model which captures the preventive measure. In this Model III, we introduced

the use of condoms as a preventive measure. This is necessary as it will reduce the risk

of susceptible individuals from getting HIV. In each of the models, we introduced and

estimated the possibility of infected HIV and AIDS individuals having babies. Since the

parents of these children are infected with HIV/AIDS, the possibility of spreading the
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disease needs be examined. Thus, we added the newborn babies variable into the three

models estimated.

4.2 Model I (with outbound tourism)

4.2.1 Key Model I assumptions

In this section, we are only concerned with how outbound tourism is affecting the spread

of HIV. These are susceptible outbound tourists who return home with an HIV infection.

For HIV/AIDS disease, once an individual becomes infected, that the individual remains

infectious for life. Let N be the total population, then individuals can be classified as

S representing susceptible, I represents HIV and A represents AIDS. Susceptible stage:

The susceptible are at risk of acquiring HIV/AIDS. The susceptible compartment has a

recruitment rate b (birth rate). This is independent of vertical transmission and makes

it unstable. Let µ be the natural death rate for the all compartments. Infected stage:

We subdivide such individual into those diagnosed with HIV (I (t)) and AIDS (A(t)), at

time t and they are assumed to be sexually active. It assumes that infected HIV/AIDS

newborn babies enter the HIV class at the rate of b(I + A) for which we assume that I,

and A are capable of having children (Apenteng & Ismail, 2015). ρ denote the probability

that a susceptible outbound tourist returns home with an HIV infection. The rate that

HIV individuals enter the AIDS class is represented by α. β is the contact rate between

susceptible individuals and HIV-infected individuals. It is assumed that AIDS individuals

are given an additional disease-induced mortality rate: d > 0 for A(t).

We present the simplest HIV diseasemodels where individuals classified as a sexually

active population. This form of a susceptible–HIV–AIDS (SI A) model can be used to

model HIV/AIDS disease based upon the assumption that once an individual becomes

infected, that individual remains infectious for life, as shown in Fig.4.1.
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Figure 4.1: Flow diagram of an SI A model with outbound tourists.

The deterministic systems of nonlinear differential equations describing the SI A

models of HIV/AIDS disease with demographics (birth and death) is of the form:

dS
dt
= b + ρS − β

I
N

S − µS (4.1)

dI
dt
= b(I + A) + β

I
N

S − (µ + α)I (4.2)

dA
dt
= αI − (µ + d)A (4.3)

4.3 Basic properties

4.3.1 Invariant region

Since the model is tractable and epidemiologically meaningful in the human population

the variables of the various compartments and the parameters are assumed to be positive

for all t ≥ 0. The model system (4.1)-(4.3) will therefore be analysed in a suitable feasible

region Ψ of biological interest. From (4.1)-(4.3), we have the following lemma on the

region which is restricted to Ψ.
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Lemma 4.1. The feasible region Ψ defined by

Ψ =
{
(S(t), I (t), A(t)) ∈ R3

+ : N (t) < b
µ−ρ

}
with initial condition S(0) ≥ 0, I (0) ≥ 0,

A(0) ≥ 0 is positive for (4.1)-(4.3).

Proof 4.1. By adding (4.1)-(4.3), we obtain

dN
dt
= b + (ρ − µ)N + (b − ρ)I + (b − ρ − d) A, (4.4)

in the absence of disease free. We assume that N (t) ≤ M for all t ≥ 0, where M = b
µ−ρ+ε.

ε represents the error, where ε > 0.

Suppose that the assumption is not true then there is a t1 ≥ 0, such that

N (t1) =
b

µ − ρ
+ ε (4.5)

N (t) =
b

µ − ρ
+ ε t < t1 (4.6)

dN (t1)
dt1

≥ 0 (4.7)

dN (t1)
dt1

≤ b + (ρ − µ)N (t1) (4.8)

= −b < 0 (4.9)

Equation (4.9) is contradiction indicating that the assumption is true. Therefore, N (t) ≤ M

for all t ≥ 0.

4.3.2 Positivity of solutions

For (4.1)-(4.3), it is important to show that all the state variables are non-negative so that

the solutions of the system with positive initial conditions remain positive for all t > 0.

We state the following lemma (following Lemma of (Huo & Feng, 2013)), we have

Lemma 4.2. If S(0) ≥ 0, I (0) ≥ 0, A(0) ≥ 0, the solutions S(t), I (t), A(t) for
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(4.1)-(4.3) are positive for all t ≥ 0.

Proof 4.2. Under the given conditions, it is easy to prove that the solutions of the

(4.1)-(4.3) are positive; if not, we assume a contradiction that there is a first time t1, such

that

S(t1) = 0,
dS
dt

< 0, I (t) ≥ 0, A(t) ≥ 0, 0 ≤ t ≤ t1, (4.10)

there exists a t2

I (t2) = 0,
dI (t2)

dt
< 0, S(t) ≥ 0, A(t) ≥ 0, 0 ≤ t ≤ t2, (4.11)

there exists a t3

A(t3) = 0,
dI (t2)

dt
< 0, S(t) ≥ 0, A(t) ≥ 0, 0 ≤ t ≤ t3 (4.12)

From (4.10), we have

dS(t1)
dt

= (b + ρ) > 0, (4.13)

which is a contradiction meaning that S(t) ≥ 0, t ≥ 0.

From (4.11), we have

dI (t2)
dt

= b(I (t2) + A(t2)) + β
I (t2)

N
S(t2) − (α + µ + d)I (t2) ≥ 0, (4.14)

which is a contradiction meaning that I (t) ≥ 0, t ≥ 0. Similar approach can be shown

that A(t) ≥ 0 for all t ≥ 0.

Therefore, the solutions S(t), I (t), A(t) of (4.1)-(4.3) remain positive for all t > 0.

40

Univ
ers

ity
 of

 M
ala

ya



4.4 Analysis of the Model I

In this section, we want to find the existence and stability of the equilibrium points of the

model system (4.1)-(4.3). It is important to determine whether the disease is epidemic

or endemic; to determine this, the equilibrium point of the disease model where there is

disease free equilibrium must be determined. There is one disease free equilibrium E0

and one endemic equilibrium E∗ for (4.1)-(4.3).

4.4.1 Equilibrium solutions

4.4.1.1 Disease free equilibrium and the reproduction number R0

Model I has a disease free equilibrium given by

E0 =

(
b

µ − ρ
, 0, 0

)
(4.15)

Moreover, to explore whether the disease will continue to spread, we determine

the stability of the disease-free equilibrium point. The reproduction number R0 is a

threshold value that can be used to determine the stability of the disease-free equilibrium

(van den Driessche & Watmough, 2005; Jones, 2007; Silva & Torres, 2013; Diekmann,

Heesterbeek, & Roberts, 2010; Roberts & Heesterbeek, 2007). We write the right-hand

side of system (4.1)-(4.3) as F − V with the following equations:

F =



β I
N S

0



(4.16)

V =



−b(I + A) + (µ + α)I

−αI + (µ + d)A



(4.17)
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Then, we consider the Jacobian matrices associated with F and V :

JF =



β S
N 0

0 0



(4.18)

JV =



α + µ − b −b

−α (µ + d)



(4.19)

The spectral radius of the matrix JF × J−1
V =

{
βS
N

} { (µ+d)
(µ+d)(α+µ−b)−αb

}
. The basic

reproduction number of the system for disease free is obtained as

R0 =

{
βb

(µ − ρ)N

} {
(µ + d)

(µ + d)(α + µ − b) − αb

}
. (4.20)

4.4.1.2 Existence of the endemic equilibrium

If R0 > 1, then Model I has a unique endemic equilibrium E∗ = (S∗, I∗, A∗). From (4.3)

we get

A∗ =
αI∗

µ + d
(4.21)

By submitting (4.21) into (4.2), and solving for I∗,

b
(
I∗ +

αI∗

µ + d1

)
+ β

I∗

N
S∗ − (α + µ + d)I∗ = 0 (4.22)

b(α + µ + d)I∗ + β
I∗

N
S∗(µ + d) − (µ + d1)(α + µ)I∗ = 0 (4.23)

(µ + d)(α + µ)I∗ − b(α + µ + d)I∗ = β
I∗

N
S∗(µ + d) (4.24)

(µ + d)(α + µ − b) − αb = β
S∗

N
(µ + d) (4.25)
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By simple simplification of the algebraic expression,we obtain:

S∗ =
N {(µ + d)(α + µ − b) − αb}

β(µ + d)
(4.26)

Substituting (4.26) into (4.3), we obtain I∗:

b −
(
β

I∗

N
− (µ − ρ)

)
S∗ = 0 (4.27)(

β
I∗

N
− (µ − ρ)

)
S∗ = b (4.28)

β
I∗

N
− (µ − ρ) =

b
S∗

(4.29)

β
I∗

N
− (µ − ρ) =

βb(µ + d)
{N (µ + d)(α + µ − b) − αb}

(4.30)

β
I∗

N
=

βb(µ + d)
{N (µ + d)(α + µ − b) − αb}

+ (µ − ρ) (4.31)

I∗ =
N
β

(µ − ρ) +
βb(µ + d)

(µ + d)(α + µ − b) − αb
(4.32)

Substituting (4.33) into (4.21), we obtain A∗:

A∗ =
{

α

µ + d

} {
N
β

(µ − ρ) +
βb(µ + d)

(µ + d)(α + µ − b) − αb

}
(4.33)

4.4.2 Local stability of the equilibria

Theorem 4.3. The disease free equilibrium E0 is locally asymptotically stable for R0 < 1

and unstable otherwise.

Proof 4.3. The stability of the endemic equilibrium is determined using the eigen-

values of the characteristic equation of the corresponding Jacobian matrix, J (S, I, A) =

J (E0), which is given by:
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J (E0) =



−β I
N − µ −β S

N 0

β I
N b(µ + d + α) + β S

N (µ + d) − (µ + d)(α + µ − b) b

0 α −(µ + d)


(4.34)

J (E0) =



−µ −
β(b+ρ)
µN 0

0 βb
N (µ−ρ) − [(µ + d1)(α + µ − b) − αb] b

0 α −(µ + d)



(4.35)

The matrix J (E0) has the following eigenvalues λ1 = −µ < 0, λ2 = −(µ + d) < 0,

λ3 =
βb

N (µ−ρ) −
(
(µ + d)(α + µ − b) − αb

)
. For local asymptotically stable, if λ3 < 0, that

is, if βb
N (µ−ρ) <

(
(µ + d)(α + µ − b) − αb

)
holds, which is equivalent to

βb
N (µ − ρ)

(
(µ + d)(α + µ − b) − αb

) = R0 < 1 (4.36)

4.4.3 Global stability

Theorem 4.4. If R0 ≤ 1, then there exist disease free equilibrium E0 and it is globally

asymptotically stable on Π.

Proof 4.4. Given that R0 ≤ 1, then there exists only one disease free equilibrium

E0 =
(

b
(µ−ρ), 0, 0

)
. By considering this, we defined our Lyapunov function of V (S, I, A) :

R3
+as

V =ϕI + A (4.37)
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By differentiating (4.38) with respect to time and substituting (4.2)-(4.3), and (4.21), we

obtain:

dV
dt
=ϕ

dI
dt
+

dA
dt

(4.38)

=ϕ

{
b
(
I +

αI
µ + d

)
+ β

I
N

S − (α + µ)I
}
+ αI − (µ + d)A (4.39)

=ϕ

{
b(µ + d + α) + β

I
N

S(µ + d1) − (µ + d)(α + µ)I
}
+ (µ + d) {αI − (µ + d) A}

(4.40)

=ϕ

{
β

S
N

(µ + d) − (µ + d)(α + µ − b) − αb
}

I + (µ + d) {αI − (µ + d) A} (4.41)

=ϕ
(
(µ + d)(α + µ − b) − αb

) {
βS(µ + d)

N {(µ + d)(α + µ + d − b) − αb}
− 1

}
I

+ (µ + d) {αI − (µ + d) A}

(4.42)

Since at disease free equilibrium S = b
µ−ρ and by using ϕ =

1
(µ+d)(α+µ−b)−αb

dV
dt
=(R0 − 1)I + (µ + d) {αI − (µ + d) A} (4.43)

≤0 (4.44)

Note that, dV
dt = 0 only when I = A = 0. Thus, substituting I = A = 0 into (4.1) shows

that S = b
µ−ρ as t → ∞. Hence, the maximum invariant set of

{
S, I, A) ∈ Ψ| dV

dt ≤ 0
}
is

singleton set {E0}. Therefore, the global stability of E0 when R0 ≤ 1 follows from the

LaSalle’s invariance principle (see details in (LaSalle, 1968)).

Theorem 4.5. If R0 > 1, then there exists an endemic equilibrium E∗ (addition

with the disease free equilibrium) and it is globally asymptotically stable, provided the
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following conditions are satisfied.

β
I∗

N∗
S∗ + (µ − ρ)S∗ =(µ + d)(α + µ − b) − αb,

β
I∗

N∗
S∗ + (µ − ρ)S∗ =b(µ + d) + (1 − b)(α + µ)I∗,

αI∗ =(µ + d) A∗,

A∗ =
αI∗

µ + d
.

Proof 4.5. Let us consider the following positive definite function about E∗

V =
1
2

(S − S∗)2 + x
(
I − I∗ − I∗ln

I
I∗

)
+

1
2

(A − A∗)2 (4.45)

dV
dt
=(S − S∗)

dS
dt
+ x

(
I − I∗

I

)
dI
dt
+ (A − A∗)

dA
dt

(4.46)

=(S − S∗)
{

b + ρ − β
I
N

S − µS
}

+ x
(

I − I∗

I

) {
b(I + A) + β

I
N

S − (µ + α)I
}
+ (A − A∗) {αI − (µ + d) A}

(4.47)

=(S − S∗)
{

b(µ + d) − (µ + d) β
I
N

S − (µ + d)(µ − ρ)S
}

+ x
(

I − I∗

I

) {
b(µ + α)I + (µ + d) β

I
N

S − (µ + d)I (µ + α)I
}

+ (µ + d)(A − A∗) {αI − (µ + d) A}

(4.48)

=(S − S∗)
{

b(µ + d) − (µ + d) β
I
N

S − (µ + d)(µ − ρ)S
}

+ x
(

I − I∗

I

) {
(µ + d) β

I
N

S − (µ + d)(µ + α − b)I + αbI
}

+ (µ + d1)(A − A∗) {αI − (µ + d)A}

(4.49)

=(S − S∗)
{

(µ + d) β
I
N

S∗ + (µ + d)(µ − ρ)S∗ − (µ + d1) β
I
N

S − (µ + d)(µ − ρ)S
}

+ x(I − I∗)
{

(µ + d) β
S∗

N
− (µ + d) β

S∗

N

}
− (µ + d)2(A − A∗)2

(4.50)

46

Univ
ers

ity
 of

 M
ala

ya



dV
dt
= − (2µ + d)(S − S∗)2 +

β

N
(S − S∗)2(I∗ − I) + x(µ + d1)

β

N
(I − I∗)(S − S∗)

− (µ + d1)2(A − A∗)2

(4.51)

= − (2µ + d −
β

N
)(S − S∗)2(I∗ − I) + x(µ + d)

β

N
(I − I∗)(S − S∗)

− (µ + d)2(A − A∗)2
(4.52)

≤0 (4.53)

Note that, dV
dt = 0 only at {E∗}, when S ≤ S∗, I ≤ I∗ and A ≤ A∗. By applying

LaSalle’s invariance principle (LaSalle, 1968), with the initial conditions in Ψ, every

solution of (4.1)-(4.3) approaches E∗ at as t → ∞ whenever R0 > 1. Therefore, the

endemic equilibrium E∗ is globally asymptotically stable in Ψ whenever R0 > 1.

4.5 Model II (Inbound with outbound tourists)

We extend the simplest HIV and AIDS model of Model I (outbound tourists) with the

impact of inbound tourism, international tourists who visit Malaysia and are sexually

active as shown in Figure 4.2.

4.5.1 Key Model II assumptions

Let T denote the inbound tourism compartment of individuals who come from different

parts of the world to Malaysia. This is necessary because, their HIV/AIDS status is

unknown upon their arrival. Although there is a need for real demographic data for one to

know the proportion of tourists recruited into each of the aforementioned compartmental

levels (Figure 4.2) due to their susceptability, HIV and AIDS status. In view of this, there

is a need to know the percentage of inbound tourists who are susceptible, infected with

HIV and AIDS. We assumed that some of them are susceptible, infected with HIV and
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AIDS, and here δ, δ1, and δ2 are the fractions of these individuals recruited into S(t),

I (t)and A(t), respectively (as indicated by red line in Figure 4.2). It is also assumed that

the number of days inbound tourists stay in Malaysia at the rate of σ from S(t), I (t)and

A(t).

Figure 4.2: Flow diagram of HIV transmission with inbound tourism.

The model takes the following form

dS
dt
=b + ρS + δT − β

I
N

S − (µ + σ)S (4.54)

dI
dt
=b(I + A) + δ1T + β

I
N

S − (µ + α + σ)I (4.55)

dA
dt
=αI + δ2T − (µ + σ + d) A (4.56)

dT
dt
= − (δ + δ1 + δ2)T − µT (4.57)

Lemma 4.6. The feasible region Π defined by

Π =
{
(S(t), I (t), A(t),T (t)) ∈ R4

+ : N (t) < b
µ+σ−ρ

}
with initial condition S(0) ≥ 0,

I (0) ≥ 0, A(0) ≥ 0 , T (0) ≥ 0 is positive.
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Proof 4.6. By adding (4.55)-(4.58), we obtain

dN
dt
= b − (µ + σ − ρ)N + (b − ρ)I + (b − ρ − d) A, (4.58)

The proof is similar to the simple model I. In the absence of HIV/AIDS, the feasible

region for inbound tourists Π of (4.55)-(4.58) is defined by Π = b
µ+σ−ρ . This region is

positively invariant under model (4.55)-(4.58), hence the system is both epidemiologically

and mathematically well-posed. Therefore, it is sufficient to study the dynamics of the

model in Π.

4.6 Analysis of the Model II

Similarly, it is important to determine whether the disease is epidemic or endemic. There

is one disease-free equilibrium E01 and one endemic equilibrium E∗1 for (4.55)-(4.58).

4.6.1 Equilibrium solutions

4.6.1.1 Disease free equilibrium and the reproduction number R01

Model II has a disease-free equilibrium given by

E01 =

(
b + δT

µ + σ − ρ
, 0, 0, 0

)
(4.59)

We calculate the reproduction number R01 for Model II. We write the right-hand side
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of system (4.55)-(4.58) as F − V with the following equations:

F =



β I
N S

0



(4.60)

V =



−b(I + A) + (µ + α + σ)I

−αI + (µ + σ + d)A



(4.61)

Then, we consider the Jacobian matrices associated with F and V :

JF =



β S
N 0

0 0



(4.62)

JV =



α + µ + σ − b −b

−α (µ + σ + d)



(4.63)

The spectral radius of the matrix JF × J−1
V =

{
βS
N

} { (µ+σ+d)
(µ+d)(α+µ+σ−b)−αb

}
. The basic

reproduction number of the system for disease free is obtained as

R01 =

{
β(b + δT )

(µ + σ − ρ)N

} {
(µ + σ + d)

(µ + σ + d)(α + µ + σ − b) − αb

}
. (4.64)

50

Univ
ers

ity
 of

 M
ala

ya



4.6.1.2 Existence of the endemic equilibrium

If R01 > 1, system (4.55)-(4.58) has a unique endemic equilibrium E∗1 = (S∗, I∗, A∗,T∗).

From (4.58) we get

b(µ + σ + d + α)I + bδ2T + δ1T (µ + σ + d) + β
I
N

S(µ + σ + d)

−(µ + σ + d)(µ + α + σ)I =0

(4.65)

bδ2T + δ1T (µ + σ + d) + β
I
N

S(µ + σ + d) − (µ + σ + d)(µ + α + σ − b)I + αbI =0

(4.66)

bδ2T + δ1T (µ + σ + d) + β
I
N

S(µ + σ + d) − {(µ + σ + d)(µ + α + σ − b) − αb} I =0

(4.67)

{
(µ + σ + d)(µ + α + σ − b −

βS
N

) − αb
}

I =bδ2T + δ1T (µ + σ + d) (4.68)

From (4.55), we have

I∗ =
N
β

{
(b + δT )

S
− (µ + σ − ρ)

}
(4.69)

By substituting (4.69) into (4.68)

bδ2T + δ1(µ + σ + d)T =
{

(µ + σ + d)(µ + α + σ − b −
βS
N

) − αb
}

N
β

{
(b + δT )

S
− (µ + σ − ρ)

}
(4.70)
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bδ2T + δ1(µ + σ + d)T = {(µ + σ + d)(µ + α + σ − b − αb)}
N
β

{
(b + δT )

S
− (µ + σ − ρ)

}
− (b + δT ) − S(µ + σ − ρ)

(4.71)

bδ2T + δ1(µ + σ + d)T = {(µ + σ + d)(µ + α + σ − b − αb)}
N
βS

(b + δT )

− (µ + σ + d)(µ + α + σ − b − αb)
N
β

− (b + δT ) − S(µ + σ − ρ)

(4.72)

(µ + σ − ρ)S2 + (b + δT )S − bδ2T S − δ1(µ + σ + d)T S

−(µ + σ + d)(µ + α + σ − b − αb)
N
β

S

+ {(µ + σ + d)(µ + α + σ − b − αb)}
N
β

(b + δT ) =0

(4.73)

Equation (4.73) become quadratic equation

X =
−B ±

√
B2 − 4AC
2A

(4.74)

From (4.74) where

A =(µ + σ − ρ),

B =(b + δT ) − bδ2T − δ1(µ + σ + d)T − (µ + σ + d)(µ + α + σ − b − αb)
N
β
,

C = {(µ + σ + d)(µ + α + σ − b − αb)}
N
β

(b + δT )
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Now S∗ becomes,

S∗ =
F + Y − (b + δT ) +

√
(F + Y − (b + δT ))2 − 4D(µ + σ − ρ)

2(µ + σ − ρ)
(4.75)

where

Y =bδ2T − δ1(µ + σ + d)T,

D = {(µ + σ + d)(µ + α + σ − b − αb)}
N
β

(b + δT ),

F =δ1(µ + σ + d)T − (µ + σ + d)(µ + α + σ − b − αb)
N
β

By substituting (4.75) into (4.69) and (4.58), we obtain I∗ and A∗, respectively

I∗ =
N
β




(b + δT )2(µ + σ − ρ)

F + Y − (b + δT ) +
√

(F + Y − (b + δT ))2 − 4D(µ + σ − ρ)
− (µ + σ − ρ)




(4.76)

A∗ =
αI∗

(µ + σ + d)
+

δ2T
(µ + σ + d)

(4.77)

T∗ =
(µ + σ + d)A∗ + αI∗

δ2
(4.78)

4.6.2 Local stability of the equilibria

In this section we determine the local equilibrium of Model II. Note that at equilibrium,

equation (4.56) becomes

A =
αI + δ2T
µ + σ + d

(4.79)

Theorem 4.7. The disease free equilibrium E01 is locally asymptotically stable for

R01 < 1 and unstable otherwise.
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Proof 4.7. The stability of the endemic equilibrium is determined using the eigen-

values of the characteristic equation of the corresponding Jacobian matrix, J (S, I, A,T ) =

J (E01), which is given by:

J (E01) =



−β I
N − µ −β S

N 0 −δ

β I
N β S

N (µ + σ + d) − H 0 −δ1

0 α −(µ + σ + d) −δ2

0 0 0 −(δ + δ1 + δ2 + µ)



(4.80)

where H = [(µ + σ + d)(α + µ + σ − b) − αb]

J (E01) =



−µ −
βb

(µ+σ−ρ)N 0 −δ

0 βb
N (µ+σ−ρ) − H b −δ1

0 α −(µ + σ + d) −δ2

0 0 0 −(δ + δ1 + δ2 + µ)



(4.81)

The matrix J (E01) has the following eigenvalues λ1 = −µ < 0, λ2 = −(µ + σ + d <

0,λ3 = −(δ+ δ1+ δ2+ µ) < 0, λ4 =
βb

N (µ+σ−ρ) − {(µ + σ + d)(α + µ + σ − b) − αb}. For

local asymptotically stable, if λ4 < 0, that is, if

βb
N (µ+σ−ρ) < {(µ + σ + d)(α + µ + σ − b) − αb} holds, which is equivalent to

βb(µ + σ + d)
N (µ + σ − ρ) {(µ + σ + d)(α + µ + σ − b) − αb}

= R01 < 1 (4.82)
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4.6.3 Global stability

Theorem 4.8. If R01 ≤ 1, then there exist disease free equilibrium E01 is globally

asymptotically stable on Π.

Proof 4.8. Given that R01 ≤ 1, then there exist only one disease free equilib-

rium E01 =
(

b
µ+σ−ρ, 0, 0, 0

)
. By considering this, we define a Lyapunov function of

V (S, I, A,T ) : R4
+as

V =φI + A (4.83)

dV
dt
=φ

dI
dt
+

dA
dt

(4.84)

=φ

{
b(I + A) + δ1T + β

I
N

S − (α + µ + σ + d)I
}
+ αI + δ2T − (µ + σ + d1) A

(4.85)

=φ

{
b(µ + σ + α + d)I + bδ2T + (µ + σ + d)δ1T + β

I
N

S(µ + σ + d) − (α + µ + σ + d)I
}

+ αI + (µ + σ + d)A − αI − (µ + σ + d) A

(4.86)

dV
dt
=φ {(α + µ + σ − b) − αb}

{
b {(µ + σ + α + d)δ1 + δ2}T

(α + µ + σ + d − b) − αb
(4.87)

+

(
βS(µ + σ + d)

N
[
(α + µ + σ − b) − αb

] − 1
)

I
}

(4.88)

=φ {(α + µ + σ − b) − αb}
{

b {(µ + σ + α + d1)δ1 + δ2}T
(α + µ + σ − b) − αb

+ (R0 − 1)I
}

(4.89)

=φ {(α + µ + σ − b) − αb}



b {(µ + σ + α + d)δ1 + δ2}
{ (µ+σ+d) A−αI

δ2

}

(α + µ + σ − b) − αb
+ (R01 − 1)I




(4.90)
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Since at disease free equilibrium S = b+δT
µ+σ−ρ and by letting φ =

1
(µ+d1)(α+µ−b)−αb

dV
dt
=(R0 − 1)I +

b {(µ + σ + α + d)δ1 + δ2}
{ (µ+σ+d1)A−αI

δ2

}

(α + µ + σ − b) − αb
(4.91)

≤0 (4.92)

Note that, dV
dt = 0 only when I = A = 0. Thus, substituting I = A = 0 into (4.55) shows

that S = b
µ+σ−ρ as t → ∞. Hence, the maximum invariant set of

{
S, I, A,T ) ∈ Π | dV

dt ≤ 0
}

is singleton set {E0}. Therefore, the global stability of E01 when R01 ≤ 1 follows from the

LaSalle’s invariance principle (see details in (LaSalle, 1968)).

Theorem 4.9. If R01 > 1, then there exists an endemic equilibrium E∗1 (addition

with the disease-free equilibrium) and it is globally asymptotically stable, provided the

following conditions are satisfied.

β
I∗

N∗
S∗ + µ + σS∗ =b(µ + σ + d),

β
I∗

N∗
S∗ =(µ + d)(α + µ − b) − αb − bδ2T∗,

αI∗ =(µ + d)A∗.

Proof 4.9. Let us consider the following positive definite function about E∗1

V =
1
2

(S − S∗)2 +
1
2

(T − T∗)2 + x
(
I − I∗ − I∗ln

I
I∗

)
+

1
2

(A − A∗)2 (4.93)

dV
dt
=(S − S∗)

dS
dt
+ (T − T∗)

dT
dt
+ x

(
I − I∗

I

)
dI
dt
+ (A − A∗)

dA
dt

(4.94)

=(S − S∗)
{

b + ρ − β
I
N

S − µS
}
+ (T − T∗) {−(δ + δ1 + δ2 + µ)}

+ x
(

I − I∗

I

) {
b(I + A) + β

I
N

S − (µ + α + d)I
}
+ (A − A∗) {αI − (µ + d)A}

(4.95)
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dV
dt
=(S − S∗)

{
b(µ + σ + d) − (µ + σ + d) β

I
N

S

−(µ + σ + d)(µ + σ)S}

+ (S − S∗)(µ + σ + d)δT + (T − T∗)(µ + σ + d) {−(δ + δ1 + δ2 + µ)}

+ x(µ + σ + d)
(

I − I∗

I

) {
bδ2T + β

I
N

S −
(
(µ + α + σ − b) − αb

)
I
}

+ (µ + σ + d1)(A − A∗) {αI − (µ + σ + d)A}

(4.96)

=(S − S∗)(µ + σ + d)
{
β

I∗

N
S∗ + (µ + σ − ρ)S∗ − (µ + σ + d) β

I
N

S − (µ + σ − ρ)S
}

+ (µ + σ + d)T
{
(S − S∗)δ − (T − T∗)(δ + δ1 + δ2 + µ)

}
+ x(µ + σ + d)

(
β

I
N

S − β
I∗

N
S∗

)
+ (µ + σ + d)(A − A∗) {(µ + σ + d)A∗ − (µ + σ + d)A}

(4.97)

= − (µ + σ)(S − S∗)2(µ + σ + d) +
β

N
S∗(I∗ − I)(S − S∗)(µ + σ + d)

+ (µ + σ + d)T
{
(S − S∗)δ − (T − T∗)(δ + δ1 + δ2 + µ)

}
x(µ + σ + d)

β

N
(I − I∗)(S − S∗) − x(µ + σ + d)

β

N
(S − S∗)2

− (µ + σ + d)2(A − A∗)2

(4.98)

= − (S − S∗)2(µ + σ + d)
{

(µ + σ) − x
β

N

}
− (µ + σ + d)2(A − A∗)2

+
β

N
S∗(I∗ − I)(S − S∗)(µ + σ + d)(1 + x)

+ (µ + σ + d1)T
{
(S − S∗)δ − (T − T∗)(δ + δ1 + δ2 + µ)

}
(4.99)

≤0 (4.100)

Note that, dV
dt is negative definite showing that V is a Lyapunov function only at

{
E∗1

}
,

when S ≤ S∗, I ≤ I∗, A ≤ A∗ and T ≤ T∗. By applying LaSalle’s invariance principle

(LaSalle, 1968), with the initial conditions in Π, every solution (4.55)-(4.58) approaches
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E∗1 at as t → ∞ whenever R01 > 1. Therefore, the endemic equilibrium E∗1 is globally

asymptotically stable in Π whenever R01 > 1.

4.7 Model III (condom as preventive measure with inbound and outbound tourism)

We extend Model II (inbound with outbound tourists) by incorporating preventive mea-

sures, as shown in Figure 4.3. Since as at now there is no specific cure for HIV/AIDS

we introduced condoms as a preventive measure. Why condoms? This is because when

a condom is correctly used it gives 100% protection against HIV infection. It serves as a

physical barrier that assists an individual to minimize the risk of getting the HIV infection

sexually (Adih & Alexander, 1999; Holmes et al., 2004; Wilton, 2013).

4.7.1 Key Model III assumptions

Taking into consideration that we are modelling disease transmission, assume that we

put condoms as an intervention with protection η then the reduction in risk becomes

βp = (1 − η) β. The main point here is to protect the susceptible population who are

not infected since they are capable of reducing the risk of infection. In this context we

further assumed that the range is between 0 < η < 1, depicting that this does not include

0 and 1 because 0 would mean that condoms as a preventive measure become useless or

meaningless and 1 implies that condoms as a preventive measure are comprehensively

effective (Nyabadza et al., 2011). In view of this they need to be protected.

The model takes the following form

dS
dt
=b + ρS + δT − (1 − η) β

I
N

S − (µ + σ)S (4.101)

dI
dt
=b(I + A) + δ1T + (1 − η) β

I
N

S − (µ + α + σ)I (4.102)

dA
dt
=αI + δ2T − (µ + σ + d) A (4.103)

dT
dt
= − (δ + δ1 + δ2)T − µT (4.104)
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Figure 4.3: Flow diagram of HIV transmission with tourism and condom as inter-
vention.

From (4.101)-(4.104) depict the similar property of (4.1)-(4.3) and (4.55)-(4.58) that all

the compartment and the parameters are non-negative for all time. We now prove the

positivity of (4.101)-(4.104).

Theorem 4.10. The solutions for S(t), I (t), A(t), T (t) of (4.101)-(4.101) with the

initial condition S(0) > 0, I (0) > 0, A(0) > 0, T (0) > 0 are positive for all t > 0.

Proof 4.10. We use similar approach by (Mukandavire et al., 2009). Assume that

T = sup {t ≥ 0 : S > 0, I > 0, A > 0,T > 0in[0, t]}. When T > 0, and if T < ∞ then one

of S(T ), I (T ), A(T ), T (T ) must be equal to zero. From (4.105), we have

d
dt

{
S exp

[∫ t

0
(1 − η)

β

N
du + (µ + σ − ρ)t

]}
=

[b + δT] exp
[∫ t

0
(1 − η)

β

N
du + (µ + σ − ρ)t

] (4.105)

Hence,

S(T ) exp
[∫ T

0
(1 − η)

β

N
du + (µ + σ − ρ)T

]
− S(0) =∫ T

0
[b + δT] exp

[∫ u

0
(1 − η)

β

N
dv + (µ + σ − ρ)u

]
du

(4.106)
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Therefore,

S(T ) =S(0) exp
[
−

∫ t

0
(1 − η)

β

N
du + (µ + σ − ρ)T

]

+

{
exp

[
−

∫ t

0
(1 − η)

β

N
du + (µ + σ − ρ)T

]}
×

{∫ T

0
[b + δT] exp

[∫ u

0
(1 − η)

β

N
dv + (µ + σ − ρ)u

]
du

}
> 0.

(4.107)

For I (t), we obtain,

d
dt

{
I exp

[∫ t

0
(1 − η)

β

N
du + (α + µ + σ)t

]}
=

[b(I + A) + δ1T] exp
[∫ t

0
(1 − η)

β

N
du + (α + µ + σ)t

] (4.108)

Hence,

I (T ) exp
[∫ T

0
(1 − η)

β

N
du + (µ + σ − ρ)T

]
− I (0) =∫ T

0
[b(I + A) + δ1T] exp

[∫ u

0
(1 − η)

β

N
dv + (α + µ + σ)u

]
du

(4.109)

Therefore,

I (T ) =I (0) exp
[
−

∫ t

0
(1 − η)

β

N
du + (α + µ + σ)T

]

+

{
exp

[
−

∫ t

0
(1 − η)

β

N
du + (α + µ + σ)T

]}
×

{∫ T

0
[b(I + A) + δ1T] exp

[∫ u

0
(1 − η)

β

N
dv + (α + µ + σ)u

]
du

}
> 0.

(4.110)

Similarly, it can be shown that T > 0, and A > 0 for all t > 0 and this completes this

proof.
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4.8 Analysis of the Model III

Similarly, it is important to determine whether the disease is epidemic or endemic. There

is one disease free equilibrium E02 and one endemic equilibrium E∗2 for (4.101)-(4.104).

4.8.1 Equilibrium solutions

4.8.1.1 Disease free equilibrium and the reproduction number R02

The Model III has a disease-free equilibrium given by

E02 =

(
b + δT

µ + σ − ρ
, 0, 0, 0

)
(4.111)

We calculate the reproduction number R02 for Model III. We write the right-hand side of

system (4.101)-(4.104) as F − V with the following equations:

F =



(1 − η) β I
N S

0



(4.112)

V =



−b(I + A) + (µ + α + σ)I

−αI + (µ + σ + d)A



(4.113)

Then, we consider the Jacobian matrices associated with F and V :

JF =



(1 − η) β S
N 0

0 0



(4.114)

JV =



α + µ + σ − b −b

−α (µ + σ + d)



(4.115)

61

Univ
ers

ity
 of

 M
ala

ya



The spectral radius of the matrix JF × J−1
V =

{ (1−η) βS
N

} { (µ+σ+d)
(µ+σ+d)(α+µ+σ−b)−αb

}
. The basic

reproduction number of the system for disease-free is obtained as

R02 =

{
(1 − η) β(b + δT )

(µ + σ − ρ)N

} {
(µ + σ + d)

(µ + σ + d)(α + µ + σ − b) − αb

}
. (4.116)

4.8.1.2 Existence of the endemic equilibrium

If R02 > 1, from (4.101)-(4.104) has a unique endemic equilibrium E∗2 = (S∗, I∗, A∗,T∗)

by solving (4.101)-(4.104) simultaneously. From (4.104) we get

b(µ + σ + d + α)I + bδ2T + δ1T (µ + σ + d) + (1 − η) β
I
N

S(µ + σ + d)

−(µ + σ + d)(µ + α + σ)I =0
(4.117)

bδ2T + δ1T (µ + σ + d) + (1 − η) β
I
N

S(µ + σ + d)

−(µ + σ + d)(µ + α + σ − b)I + αbI =0
(4.118)

bδ2T + δ1T (µ + σ + d) + (1 − η) β
I
N

S(µ + σ + d)

− {(µ + σ + d)(µ + α + σ − b) − αb} I =0
(4.119)

{
(µ + σ + d)(µ + α + σ − b − (1 − η) β

S
N

) − αb
}

I =bδ2T + δ1T (µ + σ + d)

(4.120)

From (4.103), we have

I =
N

(1 − η) β

{
(b + δT )

S
− (µ + σ − ρ)

}
(4.121)
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By substituting (4.69) into (4.120)

{
(µ + σ + d)(µ + α + σ − b − (1 − η) β

S
N

) − αb
}

N
(1 − η) β

{
(b + δT )

S
− (µ + σ − ρ)

}
= bδ2T + δ1(µ + σ + d)T

(4.122)

bδ2T + δ1(µ + σ + d)T =
{(µ + σ + d)(µ + α + σ − b − αb)} N

(1 − η) β

{
(b + δT )

S
− (µ + σ − ρ)

}
− (b + δT ) − S(µ + σ − ρ)

(4.123)

bδ2T + δ1(µ + σ + d)T = {(µ + σ + d)(µ + α + σ − b − αb)} (1 − η) β
N
S

(b + δT )

− (µ + σ + d)(µ + α + σ − b − αb)
N

(1 − η) β

− (b + δT ) − S(µ + σ − ρ)

(4.124)

(µ + σ − ρ)S2 + (b + δT )S − bδ2T S − δ1(µ + σ + d)T S

−(µ + σ + d)(µ + α + σ − b − αb)
N

(1 − η) β
S

+ {(µ + σ + d)(µ + α + σ − b − αb)}
N

(1 − η) β
(b + δT ) =0

(4.125)

Equation (4.125) become quadratic equation

X =
−B ±

√
B2 − 4AC
2A

(4.126)
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From (4.126) where

A =(µ + σ − ρ),

B =(b + δT ) − bδ2T − δ1(µ + σ + d)T − (µ + σ + d)(µ + α + σ − b − αb)
N

(1 − η) β
,

C = {(µ + σ + d)(µ + α + σ − b − αb)}
N

(1 − η) β
(b + δT )

Now S∗ becomes,

S∗ =
F + Y − (b + δT ) +

√
(F + Y − (b + δT ))2 − 4D(µ + σ − ρ)

2(µ + σ − ρ)
(4.127)

where

Y =bδ2T − δ1(µ + σ + d)T,

D = {(µ + σ + d)(µ + α + σ − b − αb)}
N

(1 − η) β
(b + δT ),

F =δ1(µ + σ + d)T − (µ + σ + d)(µ + α + σ − b − αb)
N

(1 − η) β

By substituting (4.127) into (4.103) and (4.104), we obtain I∗ and A∗, respectively

I∗ =
N

(1 − η) β




(b + δT )2(µ + σ − ρ)

F + Y − (b + δT ) +
√

(F + Y − (b + δT ))2 − 4D(µ + σ − ρ)
− (µ + σ − ρ)




(4.128)

A∗ =
αI∗

(µ + σ + d)
+

δ2T
(µ + σ + d)

(4.129)

T∗ =
(µ + σ + d) A∗ + αI∗

δ2
(4.130)
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4.8.2 Local stability of the equilibria

Equation (4.101)-(4.104) becomes

dS
dt
=b + ρS + δT − (1 − η) β

I
N

S − (µ + σ)S (4.131)

dI
dt
=b(µ + σ + α)I + bδ2T + δ1T + (1 − η) β

I
N

S(µ + σ) − (µ + σ)(µ + α + σ)I

(4.132)

dA
dt
=αI + δ2T − (µ + σ + d)A (4.133)

dT
dt
= − (δ + δ1 + δ2)T − µT (4.134)

Note that at equilibrium, equation (4.104) becomes

A =
αI + δ2T
µ + σ + d

(4.135)

Theorem 4.11. The disease-free equilibrium E02 is locally asymptotically stable for

R02 < 1 and unstable otherwise.

Proof 4.11. The stability of the endemic equilibrium is determined using the eigen-

values of the characteristic equation of the corresponding Jacobian matrix, J (S, I, A,T ) =

J (E02), which is given by:

J (E02) =



−β I
N − µ −(1 − η) β S

N 0 −δ

β I
N (1 − η) β S

N (µ + σ + d) − H 0 −δ1

0 α −(µ + σ + d) −δ2

0 0 0 −(δ + δ1 + δ2 + µ)



(4.136)
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where H = [(µ + σ + d)(α + µ + σ − b) − αb]

J (E02) =



−µ −
βb
µN 0 −δ

0 (1−η) βb
N µ − H b −δ1

0 α −(µ + σ + d1) −δ2

0 0 0 −(δ + δ1 + δ2 + µ)



(4.137)

Thematrix J (E02) have the following eigenvalues λ1 = −µ < 0, λ2 = −(µ+σ+d < 0,λ3 =

−(δ + δ1 + δ2 + µ) < 0, λ4 =
(1−η) βb

N (µ+σ−ρ) − {(µ + σ + d)(α + µ + σ − b) − αb}. For local

asymptotically stable, if λ4 < 0 that is (1−η) βb
N (µ+σ−ρ) < {(µ + σ + d1)(α + µ + σ − b) − αb}

holds, which is equivalent to

(1 − η) βb(µ + σ + d)
N (µ + σ − ρ) {(µ + σ + d)(α + µ + σ − b) − αb}

= R02 < 1 (4.138)

4.8.3 Global stability

Theorem 4.12. If R02 ≤ 1, then there exists disease-free equilibrium E02 is globally

asymptotically stable on Ω.

Proof 4.12. Given that R02 ≤ 1, then there exists only one disease-free equilib-

rium E02 =
(

b
µ+σ−ρ, 0, 0, 0

)
. By considering this, we define a Lyapunov function of

V (S, I, A,T ) : R4
+as

V =φI + A (4.139)

dV
dt
=φ

dI
dt
+

dA
dt

(4.140)
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dV
dt
=φ

{
b(I + A) + δ1T + (1 − η) β

I
N

S − (α + µ + σ + d)I
}

+ αI + δ2T − (µ + σ + d1)A

(4.141)

=φ

{
b(µ + σ + α + d)I + bδ2T + (µ + σ + d)δ1T + (1 − η) β

I
N

S(µ + σ + d)
}

− φ(α + µ + σ + d)I + αI + (µ + σ + d) A − αI − (µ + σ + d) A

(4.142)

=φ {(α + µ + σ − b) − αb}
{

b {(µ + σ + α + d)δ1 + δ2}T
(α + µ + σ + d − b) − αb

+

(
(1 − η) βS(µ + σ + d)

N
[
(α + µ + σ − b) − αb

] − 1
)

I
} (4.143)

=φ {(α + µ + σ − b) − αb}
{

b {(µ + σ + α + d1)δ1 + δ2}T
(α + µ + σ − b) − αb

+ (R02 − 1)I
}

(4.144)

=φ {(α + µ + σ − b) − αb}



b {(µ + σ + α + d)δ1 + δ2}
{ (µ+σ+d) A−αI

δ2

}

(α + µ + σ − b) − αb
+ (R02 − 1)I




(4.145)

Since at disease free equilibrium S = b+δT
µ+σ−ρ and by letting φ =

1
(µ+σ+d)(α+µ−b)−αb

dV
dt
=(R02 − 1)I +

b {(µ + σ + α + d)δ1 + δ2}
{ (µ+σ+d)A−αI

δ2

}

(α + µ + σ − b) − αb
(4.146)

≤0 (4.147)

Note that, dV
dt = 0 only when I = A = 0. Thus, substituting I = A = 0 into (4.55) shows

that S = b
µ+σ−ρ as t → ∞. Hence, the maximum invariant set of

{
S, I, A,T ) ∈ Π | dV

dt ≤ 0
}

is singleton set {E02}. Therefore, the global stability of E02 when R02 ≤ 1 which follows

the LaSalle’s invariance principle (see details in (LaSalle, 1968)).

Theorem 4.13. If R02 > 1, then there exists an endemic equilibrium E∗2 (addition

with the disease-free equilibrium) and it is globally asymptotically stable, provided the
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conditions are satisfied by using the following:

(1 − η) β
I∗

N∗
S∗ + µ + σS∗ =b(µ + σ + d) + (1 − b)(α + σ + µ + d)I∗,

β
I∗

N∗
S∗ =(µ + d)(α + µ − b) − αb − bδ2T∗,

αI∗ =(µ + d) A∗.

Proof 4.13. Let us consider the following positive definite function about E∗2

V =
1
2

(S − S∗)2 +
1
2

(T − T∗)2 + x
(
I − I∗ − I∗ln

I
I∗

)
+

1
2

(A − A∗)2 (4.148)

dV
dt
=(S − S∗)

dS
dt
+ (T − T∗)

dT
dt
+ x

(
I − I∗

I

)
dI
dt
+ (A − A∗)

dA
dt

(4.149)

=(S − S∗)
{

b + (1 − b)(I + A) − (1 − η) β
I
N

S − (µ + σ − ρ)S
}

+ (T − T∗) {−(δ + δ1 + δ2 + µ)}

+ x
(

I − I∗

I

) {
b(I + A) + (1 − η) β

I
N

S − (µ + α + d)I
}

+ (A − A∗) {αI − (µ + d) A}

(4.150)

=(S − S∗) {b(µ + σ + d) + (1 − b)(µ + σ + d + α)I + (1 − b)δ2T }

− (S − S∗)
{

(µ + σ + d) β
I
N

S − (µ + σ + d)(µ + σ − ρ)S
}

+ (S − S∗)(µ + σ + d)δT + (T − T∗)(µ + σ + d) {−(δ + δ1 + δ2 + µ)}

+ x(µ + σ + d)
(

I − I∗

I

) {
bδ2T + (1 − η) β

I
N

S −
(
(µ + α + σ − b) − αb

)
I
}

+ (µ + σ + d1)(A − A∗) {αI − (µ + σ + d)A}

(4.151)
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dV
dt
=(S − S∗)(µ + σ + d)

{
(1 − η) β

I∗

N
S∗ + (µ + σ − ρ)S∗

−(µ + σ + d)(1 − η) β
I
N

S − (µ + σ − ρ)S
}

+ (µ + σ + d)T
{
(S − S∗)δ − (T − T∗)(δ + δ1 + δ2 + µ)

}
+ x(µ + σ + d1)

(
β

I
N

S − (1 − η) β
I∗

N
S∗

)
+ (µ + σ + d1)(A − A∗) {(µ + σ + d) A∗ − (µ + σ + d) A}

(4.152)

= − (µ + σ)(S − S∗)2(µ + σ + d) +
β

N
S∗(I∗ − I)(S − S∗)(µ + σ + d)

+ (µ + σ + d1)T
{
(S − S∗)δ − (T − T∗)(δ + δ1 + δ2 + µ)

}
x(µ + σ + d)

(1 − η) β
N

(I − I∗)(S − S∗) − x(µ + σ + d1)
(1 − η) β

N
(S − S∗)2

− (µ + σ + d)2(A − A∗)2

(4.153)

= − (S − S∗)2(µ + σ + d)
{

(µ + σ) − x
(1 − η) β

N

}
− (µ + σ + d)2(A − A∗)2

+
β

N
S∗(I∗ − I)(S − S∗)(µ + σ + d)(1 + x)

+ (µ + σ + d1)T
{
(S − S∗)δ − (T − T∗)(δ + δ1 + δ2 + µ)

}
(4.154)

≤0 (4.155)

Note that, dV
dt is a negative definite showing that V is a Lyapunov function only at

{
E∗2

}
,

when S ≤ S∗, I ≤ I∗, A ≤ A∗ and T ≤ T∗. By applying LaSalle’s invariance principle

(LaSalle, 1968), with the initial conditions in Ω, every solution in (4.101)-(4.104) ap-

proaches E∗2 at as t → ∞ whenever R02 > 1. Therefore, the endemic equilibrium E∗2 is

globally asymptotically stable in Ω whenever R02 > 1.

4.9 Chapter summary

This chapter provided mathematical analysis by determining the disease-free equilibrium,

the various basic reproduction numbers, by performing the sensitivity analysis on the basic

reproduction numbers showing existence and stability of the endemic equilibrium for both
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local and global stability. The proceeding chapter will analyse the results based on the

estimated parameters by performing the simulations using the HIV and AIDS incidence

data between 1986 and 2011 in order to vilify the proposed models.
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CHAPTER 5: MODEL VALIDATION

5.1 Introduction

This chapter illustrates how the models are calibrated to the Malaysia incidence data of

HIV and AIDS from 1986 to 2011 (MoH, 2012a), as described in Section 3.2. The

calibration of these models are based on the parameters relating to the assumptions in

Model I, Model II and Model III (see details in Chapter 4). The parameters relating to

modeling of the disease, the start time of the epidemic, the trend and magnitude of spread

of the disease are estimated using Bayesian approach by MCMC (Robert & Casella, 2011;

Apenteng & Ismail, 2015) see details in Chapter 3. These techniques enable analyse of

very complicatedmodels that give posterior summaries such asmeans, medians, variances,

credible intervals and are all easily obtained for individual parameters involved in the joint

distributions of the parameters (O’Neill, 2002). All the models are subject to assumptions

relating to the effects of tourists on HIV and AIDS.

5.2 Estimated model parameters

In this section, we estimate the unknown parameters involved in Model I, Model II and

Model III by using the details in Chapter 3. There are 6, 10 and 11 parameters estimated

for Model I, Model II and Model III, respectively. The parameters that described the

proposed models are taken into account. After the fitting the model into the data to

obtain the approximate best-fit parameters by optimizer (Section 3.4.5) that uses. In

order to determine the estimated parameters the proposed models were linearized to

obtain the approximate best-fit parameters by optimizer (Section 3.4.5). MCMCwas used

to get the uncertainty in the estimated parameters. The MCMC chain length perform

40000 iterations, with different initial parameter starting points. In order to minimize the

correlation it is necessary to ensure that constraints on parameters are commonly satisfied.
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5.3 Analysis of the results for Model I

This section discusses Model I, investigating the spread of HIV and AIDS incidences,

taking into account citizens of Malaysia who leave the country and who upon returning

are infected with HIV. Six parameters were estimated in this model.

5.3.1 Sensitivity analysis

There are various parameters present in the proposed Model I and the values of these

parameters will directly affect the dynamics of the HIV and AIDS, taking into account

outbound tourism. We carry out a sensitivity analysis to determine which parameters are

more important by finding which parameter has the higher sensitivity value as shown in

Table 5.1. Based on these summary statistics shown in Table 5.1, it is clear that parameter

β, the contact rate has the highest sensitivity value. This is due to the flow of outbound

tourism that moved to the susceptible compartment as compared to the remaining four

parameters. When L1 =
∑
|Si j |
n and L2 =

√∑
(S2

i j )
n are the L1 norm, this condition is

referred to as the least absolute deviation, and the L2 norm is known as the least square.

The mean represents the mean of the sensitivity functions, the Min represents the minimal

value of the sensitivity functions, andMax represents themaximum value of the sensitivity

functions.

Table 5.1: Summary of sensitivity values

Value Scale L1 L2 Mean Min Max
β 2.0e+00 2.0e+00 7.4e+00 1.1e+00 7.4e+00 0.0000 9.8e+00
α 5.0e-02 5.0e-02 4.9e-01 7.5e-02 3.1e-02 -0.7549 8.3e-01
µ 2.0e-01 2.0e-01 8.0e+00 1.3e-01 -8.0e+00 -14.3613 0.0e+00
b 1.3e-01 1.3e-01 1.6e+00 2.6e-01 1.6e+00 0.0000 3.6e+00
ρ 9.0e-08 9.0e-08 2.4e-06 3.8e-07 2.4e-06 0.0000 4.1e-06
d 1.0e-03 1.0e-03 1.5e-03 3.1e-04 -1.5e-03 -0.0057 0.0e+00

Table 5.2 shows all the six estimated parameters involved inModel I. The transmission

coefficient of susceptible individuals andHIV-infected individuals β is 1.9704 for a portion
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of susceptible individuals being infected with HIV. The progression rate α is 8.376159e-

02/year which gives an average of 12 years. It is estimated that the percentage of outbound

tourists that are in the susceptible group who returns home with an infection of HIV

without the knowledge of their status, ρ is 3.569704e-06.

Table 5.2: Model I parameters definitions and their estimated parameters

Parameter Definition Estimated Parameter
β Contact rate between S and I 1.970413e+00
α Rate of progression to AIDS 8.376159e-02
µ Natural death rate 1.732356e-02
b Natural birth rate 1.593382e-02
ρ Percentage of outbound tourists 3.569704e-06
d Disease-induced mortality due to AIDS 1.724533e-01

Figure 5.1 depicts an overlay of annually reported HIV case counts and simulations

with fitted parameters during the 25-year (1986-2011) calibration period. The black line

incorporates the estimated parameters. The highest peak infection rate occurred during

year 16, which corresponded to 2002, when there were 6978 infected individuals. The

reported data was used to parameterize Model I in order to obtain a good fit. We did not

obtain a better fit, however, Figure 5.1 gives a good indication for public health that the

disease is under control with the basic reproduction number of 1.026218e-06. This result

shows that the spread of HIV/AIDS is stable.
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Figure 5.1: The fitted growth curve to the incidence values of HIV and AIDS popu-
lations with ρ.

The following figures show the simulations from the MCMC approach for each

parameter. From Figure 5.2, the trace of the MCMC chain (grey line) show that the chain

has converged. The last figure also shows the error variances for each observed variable.

74

Univ
ers

ity
 of

 M
ala

ya



Figure 5.2: MCMC parameter values.

Table 5.3 shows a summary of mean, 25, 50 and 75% percentiles of the posterior

distributions representing the 95% credible intervals.
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Plotted pairs of the MCMC samples for the six parameters show a pairwise relation-

ship of correlation coefficient between the upper panel, the lower panel, and the marginal

distribution for each six parameters showing on the diagonal. In Figure 5.3, the pair plots

show a strong relation between parameters ρ and b, and µ with r2 > 0.85.

Figure 5.3: Pairs plot of the MCMC samples for the six parameters.

Figure 5.4 shows the sensitivity range of annually reported HIV cases based on

parameter distribution as generatedwith theMCMCmethod during the 25-year calibration

period (1986-2011). The light grey area represents the minimum and maximum model

response at each time step, and the dark grey area (Mean ±sd) illustrates the mean model

response plus/minus one standard deviation. Among the compartment populations, the

variance increases in the following order: I > S > A. The large variance is due to either

the uncertainties in the model or noise in data collection.
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Figure 5.4: Sensitivity range of yearly reported HIV and AIDS cases. Predictions
take the form of credible regions.

5.4 Summary of Model I

Model I shows how a mathematical model can be used to model the effect of outbound

tourists on the spread of HIV/AIDS. The results suggest that the percentage of outbound

tourists ρ, and individuals who are infected with HIV after returning home increases the

HIV persistence in Malaysia.

5.5 Analysis of the results for Model II

This section discusses the extension of Model I with the inflow of inbound tourists who

arrive in Malaysia. In Model I, there were six parameters involved. An additional four

parameters are added to make a total of ten parameters. These are a fraction of inbound

tourists δ, δ1, and δ2 that are recruited into S(t), I (t)and A(t), respectively, and to ascertain

the number of days the tourists stay in Malaysia which is represented by σ at the S(t),
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I (t)and A(t).

5.5.1 Sensitivity analysis

There are ten parameters in Model II in relation to the inflow of inbound tourists, which

directly affect the HIV and AIDS incidence. We carried out a sensitivity analysis to

determine which parameter is more important by finding the parameter that has the

highest sensitivity value as show in Table 5.4 below. It is clear that parameter b (natural

birth rate) has the least effect on the output variables while the transmission coefficient of

susceptible individuals and HIV-infected individuals, β has the highest sensitivity value.

This result suggests that even with the inflow of tourists and outflow of citizens to other

countries the contact rate between S and I remains the most significant parameter.

Table 5.4: Summary of sensitivity values

Value Scale L1 L2 Mean Min Max
β 1.7e+00 1.7e+00 7.9e+00 1.2e+00 7.9e+00 0.0e+00 1.2e+01
α 3.9e-02 3.9e-02 4.7e-01 7.4e-02 -2.2e-02 -1.0e+00 7.1e-01
µ 1.4e-01 1.4e-01 7.0e+00 1.2e+00 -7.0e-01 -1.4e+01 0.0e+00
σ 1.0e-05 1.0e-05 4.8e-04 8.0e-05 -4.8e-04 -9.9e-04 0.0e+00
δ 9.0e-04 9.0e-04 6.2e-03 1.0e-03 6.2e-03 -6.0e-04 1.3e-02
δ1 1.0e-07 1.0e-07 5.9e-02 8.6e-03 5.9e-02 0.0e+00 6.9e-02
δ2 1.0e-06 1.0e-06 5.9e-02 2.4e-02 5.9e-02 -8.2e-07 7.2e-01
ρ 1.0e-04 1.0e-04 3.6e-03 5.9e-04 3.6e-03 0.0e+00 7.4e-03
d 1.0e-03 1.0e-03 1.3e-03 3.1e-04 -1.3e-03 -6.0e-03 1.8e-09
b 9.0e-08 9.0e-08 1.1e-06 1.9e-07 1.1e-06 0.0e+00 2.7e-06
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The Table 5.5 below shows the results of the ten estimated parameters used in Model

II. Among the parameters, the contact rate between susceptible individuals and HIV-

infected individual β is 7.442e-01 for a portion of susceptible individuals being infected

with HIV. This is due to the fraction inflow of inbound tourists δ, that of 9.976e-02 were

recruited into the susceptible stage. The progression rate α is 9.076e-02/year which gives

an average of 11 years. The fraction rate of inbound tourist recruited to HIV and AIDS,

δ1 is 3.189e-05 and δ2 is 2.781e-06, gives the estimated number of HIV and AIDS cases

of inbound tourists that came to Malaysia from 1995-2011 as shown in Table 5.7 and 5.8,

respectively.

Table 5.5: Model II parameters definitions and their estimated parameters

Parameter Definition Estimated Parameter
β Contact rate between S and I 7.442e-01
α Rate of progression to AIDS 9.076e-02
µ Natural death rate 1.387e-02
σ Number of days inbound tourists leave Malaysia 8.297e-04
δ Fraction of inbound tourists recruited into S 9.976e-02
δ1 Fraction of inbound tourists recruited into I 3.189e-05
δ2 Fraction of inbound tourists recruited into A 2.781e-06
ρ Percentage of outbound tourists 5.860e-02
d Disease-induced mortality due to AIDS 7.200e-01
b Natural birth rate 1.304e-02
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Figure 5.5 depicts a fitted graph of Model II for reported HIV and AIDS incidence

in Malaysia. Although we did not obtain a better fit. The basic reproduction number for

Model II is 0.7806267. However, the result shows that the spread of HIV/AIDS is stable.

There is an increase in the basic reproduction number from 1.026218e-06 in Model I to

0.7806267 in Model II. This is due to the inflow of inbound tourists who are not citizens

of Malaysia but contributed to spread of HIV/AIDS.

Figure 5.5: The fitted growth curve to the incidence values of HIV and AIDS popu-
lations with δ, δ1&δ2.
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The following figures show the simulations from the MCMC approach for each

parameter.

Figure 5.6: MCMC parameter values.

From Figure 5.6, the trace of the MCMC chain (grey line) show that the chain has

converged. The last figure also shows the error variances for each observed variable.

Table 5.6 show a summary of mean, 25, 50 and 75% percentiles of the posterior

distributions representing the 95% credible intervals of each of the estimated parameters.
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Figure 5.7, pairs plotted of the MCMC samples for the ten parameters. Which shows

a pairwise relationship of correlation coefficient between the upper panel, the lower panel,

and the marginal distribution for each ten parameters showing on the diagonal. The pairs

plotted show a strong relation between parameters ρ and σ, and µ and σ, δ and δ1 with

r2 > 0.85.

Figure 5.7: Pairs plot of the MCMC samples for the ten parameters.
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Figure 5.8 shows the sensitivity range of annually reported HIV cases based on

parameter distribution as generatedwith theMCMCmethod during the 25-year calibration

period (1986-2011). The light grey area represents the minimum and maximum model

response at each time step, and the dark grey area (Mean±sd) illustrates the mean model

response plus/minus one standard deviation. Among the compartment population, the

variance increases in the following order: I > A > T > S. The large variance is due to

either the uncertainties in the model or noise in data collection.

Figure 5.8: Sensitivity range of yearly reported HIV and AIDS cases. Predictions
take the form of credible regions.
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5.6 Summary of Model II

Model II demonstrates how to model the effects of the inflow of tourists on the spread

of HIV/AIDS in Malaysia. From the estimated parameters of δ1 and δ2 obtained from

Model II, we are able to estimate the numbers of tourists who come to Malaysia with HIV

and AIDS. Prior to the estimation of Model II, there was no available data to explain the

status of inbound tourists in Malaysia. Consequently, we have been able to estimate the

status of HIV and AIDS in Model II as presented in Table 5.7 and 5.8 below. We use

parameter values of δ1 and δ2 to indicate the rate of tourists recruited to HIV and AIDS

compartments respectively to calculate the number of tourists according to their health

status (HIV/AIDS).
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5.7 Analysis of the results for Model III

This section discusses the extension of Model II with the addition of condoms as a

preventive measure. There is an additional parameter, making a total of eleven parameters

inModel III. This is η as the rate of sexually active people using condoms, which is used to

investigate the effect of the control strategy between susceptible and infected HIV/AIDS

population. This is because the susceptible individuals are at risk of HIV infection.

5.7.1 Sensitivity analysis

We carried out a sensitivity analysis to determine the most important parameter that is

used in the model. This can be achieved by finding the parameter that has the highest

value of sensitivity. It is clear that b (birth rate) has the least effect on the output variables

while β (the contact rate) has the highest sensitivity value. This means that it has more

impact on the spread of HIV/AIDS as shown in Table 5.9 below.

Table 5.9: Summary of sensitivity values

Value Scale L1 L2 Mean Min Max
β 1.7e+00 1.7e+00 7.6e+00 1.1e+00 7.6e+00 0.0e+00 1.1e+01
α 3.9e-02 3.9e-02 4.7e-01 7.3e-02 -1.9e-02 -9.7e-01 7.0e-01
µ 1.4e-01 1.4e-01 6.8e+00 1.1e+00 -6.8e+00 -1.4e+01 0.0e+00
σ 1.0e-05 1.0e-05 4.7e-04 7.7e-05 -4.7e-04 -9.4e-04 0.0e+00
δ 9.0e-04 9.0e-04 5.9e-03 9.8e-04 5.9e-03 -6.2e-04 1.2e-02
δ1 1.0e-07 1.0e-07 6.0e-02 8.8e-03 6.0e-02 0.0e+00 6.9e-02
δ2 1.0e-06 1.0e-06 6.2e-02 2.5e-02 6.2e-02 -1.2e-06 7.2e-01
ρ 1.0e-04 1.0e-04 3.4e-03 5.7e-04 3.4e-03 0.0e+00 6.9e-03
d 1.0e-03 1.0e-03 1.4e-03 3.1e-04 -1.4e-03 -6.2e-03 2.4e-09
b 9.0e-08 9.0e-08 1.1e-06 1.8e-07 1.1e-06 0.0e+00 2.6e-06
η 3.0e-02 3.0e-02 2.3e-01 3.5e-02 -2.3e-01 -3.4e-01 0.0e+00

Table 5.10 shows all the eleven estimated parameters used inModel III. The inclusion

of the use of condoms as a preventive measure helped us to observe the effectiveness in

the control of HIV and AIDS in Model III. The results show that the introduction of

condoms as a preventive measure produces 0.35 which represents 35% of the susceptible

individuals. The 35% are individuals that are protected from HIV infection as a result
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of the use of condoms during sexual activity. In addition, the contact rate between the

susceptible and infected individuals changed in Model III as a result of the introduction of

the condoms. The contact rate between the susceptible and the HIV infected individuals in

Model II is 7.442e-01 while in Model III, it is 1.196e+00. This implies that the condoms

introduced, allow for increase in safe sexual activity among the HIV/AIDS infected and

the susceptible.

From Table 5.10 above, we wish to report the fraction of the inbound tourists with

HIV which reduces the spread of HIV when condoms are introduced. The results show

a fraction of inbound tourists δ1 of 4.079e-05 in Model II which reduces to 3.89e-05

in Model III. This gives a total of 19% decrease for the inbound tourists in Malaysia.

Similarly, the results of the inbound tourists infected with AIDS gives the fraction δ2 of

5.900e-07 in Model II reducing to 2.781e-06 in Model III. This represents a 2.191e-04

reduction of HIV and AIDS. This has positive impact by minimizing the risk of getting the

HIV infection sexually of the use of condom as preventive measure rate η by 3.475e-01,

as shown in Figures 5.13 and 5.14, respectively.

Table 5.10: Model III parameters definitions and their estimated parameters

Parameter Definition Estimated Parameter
β Contact rate between S and I 1.196e+00
α Rate of rate progression to AIDS 9.494e-02
µ Natural death rate 1.345e-02
σ Number of days inbound tourists leave Malaysia 7.017e-04
δ Fraction of inbound tourists recruited into S 8.575e-02
δ1 Fraction of inbound tourists recruited into I 4.079e-05
δ2 Fraction of inbound tourists recruited into A 5.900e-07
ρ Percentage of outbound tourists 3.646e-02
d Disease-induced mortality due to AIDS 2.985e-01
b Natural birth rate 1.340e-02
η The use of condom as preventive measure 3.475e-01

Figure 5.9 depicts a fitted graph of Model III for reported HIV and AIDS incidence in

Malaysia. The basic reproduction number calculated forModel II is 0.7806267. Indicating
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that the spread of HIV/AIDS is stable. This gives a good indication for public health that

the disease is under control. There is a decrease in the basic reproduction number of

Model II from 0.7806267 to 0.7195585 for Model III.

Figure 5.9: The fitted growth curve to the incidence values of HIV and AIDS popu-
lations with condom, η.

90

Univ
ers

ity
 of

 M
ala

ya



The following figures show the simulations from the MCMC approach for each

parameter.

Figure 5.10: MCMC parameter values.

From Figure 5.10, the trace of the MCMC chain (grey line) show that the chain has

converged. The last figure also shows the error variances for each observed variable.

Table 5.12 shows a summary of mean, 25, 50 and 75% percentiles of the posterior

distributions representing the 95% credible intervals of each of the estimated parameters.
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Figure 5.11: Pairs plot of the MCMC samples for the eleven parameters.

Figure 5.11 shows plotted pairs of the MCMC samples for the eleven parameters with

a strong relation between parameters ρ and µ, and σ and δ, and between α and δ2, and

finally between β and η with r2 > 0.85.
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Figure 5.12: Sensitivity range of yearly reported HIV and AIDS cases. Predictions
take the form of credible regions.

Figure 5.12 shows the sensitivity range of annually reported HIV cases based on

parameter distribution as generated by the MCMC method during the 25-year calibration

period (1986-2011). The light grey area represents the minimum and maximum model

response at each time step, and the dark grey area (Mean±sd) illustrates the mean model

response plus/minus one standard deviation. Among the compartment populations, the

variance increases in the following order: I > A > T > S. The large variance is due to

either the uncertainties in the model or noise in data collection.

5.8 Summary of Model III

Model III demonstrates how important it is to include a preventive measure such as the

use of condoms in modeling HIV/AIDS (Greenhalgh et al., 2001; Moghadas et al., 2003;

Wilton, 2013; Holmes et al., 2004; Deb et al., 2009). Before a comparison ismade between
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the results of the control of the Model II (without the inclusion of the use of condoms as

a preventive measure) and Model III to show the use of condoms as a preventive measure

for HIV and AIDS individuals in Model III. These are shown in Figure 5.13 and 5.14,

respectively.

Figure 5.13: A graph of HIV individuals with and without condom as preventive
measure.

The curves of the compartments in Figure 5.13 show the effect of condoms in reducing

the number of HIV individuals and the period of infection, by decreasing the number of

susceptible individuals who are getting infected with HIV.
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Figure 5.14: A graph of AIDS individuals with and without condom as preventive
measure.

The curves of the compartments in Figure 5.14 depict the effect of the condoms in

reducing the number of HIV individuals and the period of infection, there is a decrease

in the number of AIDS individuals since there is a reduction of susceptible individuals

getting HIV.

It is important to note that in the Model III, there is a reduction in the spread of

the HIV as compared to the output of Model II. The Figure 5.12 shows that the use of

condoms of the Model III starts at 1995. The condoms were more effective in 2004 which

led to the reduction in the spread of HIV in the country. Similarly, Figure 5.13 shows

that the introduction of condoms in Model II that produces model III has efficient results.

Starting with 2004, there is a reduction in the death rate among individuals with AIDS.
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5.8.1 Results and discussion of the newborn babies of HIV

In reality, we observed that both the inbound and outbound tourists are likely to have

children in the course of entry into Malaysia. To enhance the robustness of the three

models (Model I, II and III), we estimated for the children born with HIV/AIDS in all the

three models. As such, we take parameter values of b from Table 5.2, 5.5 and 5.10 and

we calculate the newborn babies with HIV (b(I + A)) by using the infected individuals

of HIV and AIDS (MoH, 2012a). Figure 5.15, shows the results of newborn babies with

HIV.

Figure 5.15: Different level of newborn babies of HIV.

Figure 5.15 reports the trends of the number of children born with infected HIV

for Model I, Model II and Model III. We can observe that in 1986, there was not much

prevalence of HIV. The trend begins to grow exponentially from 1989 to 2002. By 1990,

the number of children born with HIV was 239 in Model I, 122 in Model II and 26 in

Model III. However, there was a drastic decline of infection of HIV/AIDS from 2003

to 2010. This might be due to the implementation of the harm reduction program by

Malaysian government (Wolfe, Carrieri, & Shepard, 2010; Kamarulzaman, 2009) . In

conclusion, the inflow of inbound tourists (Model II) shows that there was a higher rate

of newborn babies with HIV as compared to outbound tourists (Model I) followed by
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preventive measure (Model III). This indicates that the inflow of inbound tourists has

more effect on the spread of HIV/AIDS than outbound tourists and when there is the

introduction of condoms in Malaysia.
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CHAPTER 6: DISCUSSIONS AND CONCLUSIONS

6.1 Introduction

This chapter presents the summary of findings as estimated in the formulated model in

this thesis. It covers the discussion of the findings of the models’ estimated parameters.

Finally, it presents the conclusion and policy recommendation for the Malaysia public

healthcare sector.

6.2 Discussions

This thesis assessed the effects of tourismon the spread ofHIV andAIDS inMalaysia using

the SI A model. In the previous work such as in the work of Bauer (1999, 2007, 2008b)

and Ketshabile (2007), mathematical modelling were not applied in the estimation of

HIV/AIDS. In our case, we developed mathematical modeling to analyse different factors

that contribute to the spread of HIV and AIDS subject to potential control strategies.

We conducted comprehensive sensitivity analysis in order to find the global and local

parameters that have highest attribute impact on HIV and AIDS disease. Modeling a

complex system like HIV and AIDS, several assumptions are required to make the analysis

tractable. As such, we assumed that there were sexual interactions between the susceptible

and HIV-infected populations. We also assume that a fraction of infected newborn babies

moved directly to the HIV class to increase the growth of the total population. If R0 < 1,

then an endemic of HIV/AIDS occurs, and if R0 > 1, then the disease becomes epidemic.

From the analysis of the estimated models, the reproduction numbers are used to

determine whether the disease is epidemic or endemic. The three estimated models have

the basic reproduction numbers of 1.0262e-06, 0.7806 and 0.7196 respectively. The

implication of the outcome is that the number of HIV and AIDS cases is still stable

within the Malaysian population. This is a good indicator from the public health point
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of view since the aim is to stabilize the epidemic at the disease-free equilibrium. It

also indicates that the rate of HIV infection will increase faster than expected. The

disease stability further implies that HIV will continue to infect the susceptible population

because the rate of transmission was very high among HIV- and AIDS-infected tourists.

Furthermore, Model III compromises of inbound tourists, outbound tourists and condoms

as a preventive measure with less reproduction numbers, which is good for prediction as

compared to Model II which excludes condoms. Whereas the result from Apenteng and

Ismail (2015) without preventive measure, inbound and outbound tourists show that the

number of HIV cases and AIDS cases is still epidemic within the Malaysian population.

In Model I, there were some significant differences in the estimated parameters

relevant to the public health sector. Potentially, the inclusion of the parameters provides a

practical andmore effectiveway to explain an epidemiologicalmodel of outbound tourism.

On the other hand, our results further suggest that the percentage of outbound tourists ρ,

individuals who are not aware of their HIV status after returning home, increased thereby

increasing the HIV spread in Malaysia. In addition, we estimated the numbers of inbound

tourists with HIV and AIDS, (Table 5.7 and 5.8 respectively) inModel II.We evaluated the

various stages of inflow of inbound tourists in respect of HIV and AIDS status and found

that HIV and AIDS inMalaysia which increased the incidence cases. Firstly, we estimated

the inbound tourists for HIV. The result shows a proportion of 4.079e-05 that carry the

HIV infection each year. This proportion contributed significantly to the spread of HIV in

Malaysia. Secondly, we estimated the inbound tourists for AIDS. There is a proportion of

5.9006e-07 representing the actual AIDS carriers among the inbound tourists. Estimating

the proportion of tourists who enter into each of the aforementioned compartmental levels

as well as their level of susceptibility to HIV and AIDS is important, however, there is

need to obtain real demographic data. This will provide necessary knowledge regarding
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the total number of inbound tourists who arrive in Malaysia annually.

We have ascertained that the inbound tourism that has a significant impact on the

spread of HIV and AIDS in Malaysia, the outcome of the estimated model indicates

fractions of inbound tourists of δ1 and δ2 recruited into HIV and AIDS respectively. It is

also important to note that an addition of inbound tourists had the highest reproduction

number of 0.78060 which is closed to 1 which would make it epidemic/unstable. This

means that the inflow of inbound tourists has increased the spread of HIV/AIDS in the

order of Model II, Model III, then followed by Model I.

In Model III, we introduced condoms used as an preventive variable to establish

effectiveness. Condoms were incorporated as a preventive measure. The rationale is to

project considerable reduction among the susceptible population contacting HIV. One can

see that the control strategy is more important in our estimated Model III. The Model

III result indicates an preventive measure rate of 3.475e-01. This requires an immediate

campaign of condoms as a control against HIV/AIDS. With this intervention, the basic

reproduction number value of 0.7806 in Model II brought the spread of HIV/AIDS

to 0.7196 in Model III. In our estimation, sensitivity analysis of the three models is

examined to ascertain the importance of each of the estimated parameters. It turns out

that the transmission coefficient β has the highest sensitivity value and the most sensitive

parameter. This indicates that there is a higher contact rate between susceptible and

confirmed HIV individuals and that the susceptible individuals are easily infected with

virus.

Specifically, this thesis has some key strengths to contribute to the body of knowledge.

First, we developed mathematical models on HIV and AIDS epidemic to assess the effect

of outbound and inbound tourism on the spread of HIV and AIDS incidence in Malaysia.

Second, we conducted a comprehensive sensitivity analysis using the epidemiological
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incidence data. The sensitivity analysis helped to address the inherent uncertainties

associated with the parameter values which in turn helped to determine the parameters

that have the highest effect on the spread of HIV and AIDS disease. Outbound tourism

have impact on the spread of HIV/AIDS, since this will give an idea of their status to

the policy makers. Inbound tourism have impact on the spread of HIV/AIDS, which

gives insightful idea, since the Malaysia government do not know their status. Use of

condom have reduced the spread of HIV. It is important to put newborn babies with HIV

on treatment therapy. It also helped us to determine the HIV and AIDS status of the

inbound and outbound tourists with necessary models. Based on the analysis, a number of

conclusions are drawn which are useful for public health and policy makers. For example,

Model I, Model II and Model III provide a useful illustration of the effect of tourism on

the spread of HIV and AIDS.

As such, the continuous lines in Figure 5.1, 5.5 and 5.9 in Chapter 5 represent the

outputs for Models I, II and III. The small red-like dots represent the data points in each of

the models. There were few data points that fit poorly to the models’ outcome. However,

the overall models’ solutions and the data are a good fit, suggesting that the estimated

parameters as shown in Table 5.2, 5.5 and 5.9 are reliable (Samsuzzoha, Singh, & Lucy,

2013).

Although we acknowledge the strengths of this research thesis, there are number of

challenges regarding the controlling and preventing travelers spreading HIV/AIDS. These

challenges have contributed to the spread of HIV/AIDS epidemic in Malaysia. The main

limitation of our study is the simplifying assumptions, which are a typical characteristic

of modeling that does not come from the statistical domain. We acknowledge the absence

of movements of tourism of multiple entries to infected HIV individuals as well as AIDS

individuals. We did not consider the proportion of newborn babies with HIV/AIDS
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who are susceptible. Equally, we did not take into account the most-at-risk populations

(MARPs) for the target group of susceptible individuals who could easily become infected

by sex workers and their clients, men who have sex with men, and prisoners, due to lack

of epidemiological data. The available data was used, that is, annual data and very limited

with only 26 data points and therefore very difficult to get good estimates to establish

statistical significance. Although, the use of condoms is considered, the cost-effectiveness

was not. Based on the insights gained during the period of this research work, the

limitations that are outlined in this thesis are all interesting future research areas.

6.3 Conclusion and recommendation

As per the preceding discussions in this chapter, the inbound and outbound tourists have

impacted on the spread of HIV and AIDS in Malaysia. There is significant contribution

from the children born with HIV to the spread of HIV and AIDS in Malaysia. Finally, we

conclude that the use of condoms among the inhabitants of Malaysia reduces the spread

of the disease.

Consequentially, mathematical models applied in this research work can be used

not only to understand tourism patterns on HIV/AIDS dynamics but also to predict

epidemiological parameter values in Malaysia. Based on the findings, the estimated

models helped to predict the spread of HIV/AIDS incidence in Malaysia based on the

inflow of tourists to Malaysia and citizens of Malaysia to other countries on. Furthermore,

we recommend that national based HIV/AIDS support and healthcare programmes should

be implemented by the government in collaboration with the Malaysian Tourism Board to

reduceHIV/AIDS. Educating the general public on the importance of safe sexual activities.

We equally recommend that there should be an intensive campaign about the use of

condoms. This will control the spread of the disease among the susceptible population.

In addition to condom as preventive measure, there should be other effective measures
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that could aid the minimization of the spread of the HIV and AIDS epidemic among the

inbound tourists. Finally, the public healthcare policy makers need to be proactive towards

introducing more control strategies to curtail the epidemic.

This research thesis will be of benefit to the tourism board and HIV/AIDS healthcare

professionals. While this research work presents a consolidation of the aforementioned

contributions above, more finely detailed outputs are found in the following published

and submitted works as outlined in the LIST OF PUBLICATIONS AND PAPERS PRE-

SENTED.
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