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ABSTRACT 
 

The dripping dynamics of Newtonian liquids emanating from a tilted nozzle is studied.    

A high speed camera is employed to observe the drop breakup process.  The level of 

viscosity, flow rate, nozzle diameter, and nozzle inclination angle had been varied 

independently.  The drop break up time tb, which is the time interval between two 

subsequent drops, and the different modes of dripping have been identified.  The new 

experiments reveal that increasing the nozzle inclination angle results in lowering the 

drop breakup times for all viscosities and nozzle diameters investigated, suggesting that 

the surface tension forces cannot hold the drops longer despite the weakened effective 

gravitational pull.  This counter-intuitive finding is further corroborated by pendant drop 

experiments and computations.  In the modes of dripping, as the liquid flow rate 

increases, the system transitions from period-1(P1) dripping to limit cycle (LC) before 

showing chaotic (C) responses.  A phase diagram showing the transition between the 

different dripping modes for different nozzle inclination angle is constructed in the (We, 

Ka) space, where We (Weber number) measures the relative importance of inertia to 

surface tension force and Ka (Kapitza number) measures the relative importance of 

viscous to surface tension forces.  At low values of We and Ka, the system shows a 

transition from period-1 to limit cycle before chaos.  The limit cycle region narrows down 

with increase in inclination.  Further increase in the values of We and Ka gives a direct 

transition from period-1 to chaos.  The experimental volumes of primary drops by image 

analysis show good agreement with the volumes obtained from the correlation developed, 

showing a maximum of 15% error.  The experimental data obtained from image analysis 
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further suggest that, in the P1 regime the pendant drop volume varies such that the trend 

of the primary drop volume differs significantly from that of the breakup time. 
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ABSTRAK 
 

Dinamik penitisan cecair Newtonian berpunca daripada muncung condong dikaji. Sebuah 

kamera berkelajuan tinggi digunakan untuk memerhatikan proses pemecahan titisan. 

Tahap kelikatan, kadar aliran, diameter muncung, dan sudut muncung telah diubah secara 

bebas. Penurunan masa pemechan tb, iaitu selang masa di antara dua titik yang berikutan, 

dan pelbagai mod penitisan telah dikenalpasti. Ujikaji baru mendedahkan bahawa 

peningkatan sudut muncung cenderung menurunkan selang masa perpecahan titisan untuk 

semua kelikatan dan diameter muncung disiasat, seterusnya mencadangkan bahawa daya 

ketegangan permukaan tidak boleh memegang titisan lebih lama walaupun tarikan graviti 

berkesan yang lebih lemah. Penemuan lawan jangkaan ini disokong lagi oleh ujikaji 

titisan tergantung bebas dan pengiraan. Dalam mod penitisan, dengan kenaikan kadar 

aliran, sistem beralih dari kitaran-1 (P1) kepada kitaran terhad (LC) sebelum 

menunjukkan gejala huru-hara (C).  Gambar rajah fasa yang menunjukkan peralihan 

antara mod penitisan yang berbeza untuk sudut muncung yang berbeza dibina dalam 

ruang (We, Ka), di mana We (nombor Weber) mengukur kepentingan relatif inersia 

kepada daya tegangan permukaan dan Ka (nombor Kapitza) mengukur kepentingan relatif 

kelikatan ke daya ketegangan permukaan.  Pada kadar aliran cecair yang rendah dan 

kelikatan rendah, sistem ini menunjukkan peralihan daripada kitaran-1 kepada kitaran 

terhad.  Rejim kitaran terhad menjadi lebih sempit dengan peningkatan sudut muncung.  

Peningkatan dalam nilai-nilai Ka dan We memberikan peralihan terus dari tempoh-1 ke 

huru-hara.  Isipadu titisan utama melalui analisis imej ujikaji menunjukkan persetujuan 

yang baik dengan isipadu yang diperolehi daripada sekaitan yang dicadangkan, dengan 

menunjukkan ralat maksimum 15%.  Data ujikaji yang diperolehi daripada analisis imej 

mencadangkan bahawa dalam rejim P1, isipadu titisan tergantung berubah sedemikian  

sehingga pola isipadu titisan utama berbeza dengan ketara dengan masa perpisahan.
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1 Introduction 

1.1 Research Background 

 

Drop formation from a nozzle is phenomenon ubiquitous in nature and industries.  The 

phenomenon of drop breakup, drop collision, and drop formation involving free surface 

flow is not only beautiful, but also is a challenging physical problem for researchers.  The 

drop formation process in the nature has been observed and the richness in the physics of 

the drop formation has been identified which attracted the attention of scientist and 

engineers over the years.    

A drop may form when liquid accumulates at the lower end of a tube or other surface 

boundary.  Drop may also form by the condensation of a vapor or by atomization of a 

larger mass of liquid.  Rain drop formation is the best example of drop formation seen in 

the nature, where the liquid droplets formed from the condensation of atmospheric water 

vapor get precipitated, which later becomes heavy enough to fall under gravity.  Another 

example is the water in the form of small droplets that is generally seen on thin, exposed 

surfaces in the morning or evening as a result of water vapor condensation called dew.  

The large surface area of the exposed surface aids the radiation process cooling the 

exposed surface which helps in the condensations of the atmospheric moisture, resulting 

in the formation of droplets.  The drop formation resulting from the dripping of water 

from the roof and tap are also interesting examples which clearly show the individual 

events of detaching drops.   

The description of the flow and drop formation process shown in the Figure 1.1 would be 

more complicated than one might think.  Instead, it is much more useful to focus on the 
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individual events of drop formation, to gain some general insight into the dynamics which 

can help to investigate the global behaviour of the process.  

 

 

 

 

Figure 1.1 A dolphin in the New England Aquarium in Boston, Massachusetts; Edgerton 

(1977). [Adapted from Eggers (1997)] 

 

A simple way to form a drop is to allow liquid to flow slowly from the lower end of a 

vertical nozzle of small diameter. The surface tension of the liquid tries to minimize 

the liquid drop interfacial tension which allows the liquid volume to hang at the lower 

end of the nozzle.  This hanging drop is called pendant drop.  Later the pendant drop 

becomes unstable when drop volume exceeds a certain limit.  The drop later detaches 

under the influence of gravitation pull.  The detached drop is called as primary drop 

and the small drop volume produced during the detachment process which is 

undesirable for industrial application is called satellite drop.  This drop formation 

process from a vertical nozzle has been an interesting area because of many industrial 
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applications such as ink-jet printing (Le, 1998), silicone microstructure array (Laurell 

et al., 2001), emulsion formation (Sachs et al., 1994), 3D micro-printing (Walstra, 

1993), microencapsulation etc (Freitas et al., 2005).  

 

In most of the applications the most desired drop formation process should give 

uniform size distribution and fast production rate. Even though the drops generically 

results from the motion of free surfaces, it is not easy to predict their size distribution 

and the dynamics involved in the process. The key parameters which controls this 

drop formation process are physical properties of liquid, size and shape of nozzle, 

liquid ejection velocity etc.  The physical properties of the liquid consist of the surface 

tension, density and viscosity of the liquid.  Whereas the different shapes of nozzle 

can be flat nozzle or obliquely cut nozzle.  The slow drop formation can be observed 

at very low liquid ejection velocity, whereas at high velocity the liquid can eject as a 

column of the liquid which subsequently breaks into drops.  The detailed studies of 

the dynamics involved in the drop formation process were not possible before high-

speed digital cameras could be used for the photography in the experiments and 

powerful computers for the simulations. 

 

Drop formation thus results in an extremely broad spectrum of different droplet sizes.  

The distribution of sizes was first time noticed 200 years ago by Felix Savart (1833) 

in Paris.  He observed that the water jet emanating from a small diameter orifice 

separates in to tiny droplets in the span of perhaps a 1/100 
th

 of a second.  Drop 

formation sequences are shown in the Figure 1.2, where the jet of water is being 

ejected from a vertical nozzle with primary and satellite drop formation.  Generally 

the formation of droplet is periodic in nature, but sometimes with primary drop, a 
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smaller "satellite" drop is seen as a result of drop breakup process.  This satellite drop 

formation is undesirable because they are far more readily misdirected by 

aerodynamic and electrostatic forces and can thereby degrade the printing resolution.  

Yet another example is the formation of satellite drops during crop spraying.  The 

lighter satellite drops of herbicides or pesticides are more easily transported to the site 

other than that intended (spray drift).  Beside waste and inefficiency spray drift from 

pesticides and herbicide application exposes people and the environment to residues 

that causes undesired health and environmental effects (Dravid, 2006). 

 

Figure 1.2 Drop formation sequences showing primary and satellite drop. 

  

Thus the arrival of ink-jet printing technology, that the consequences of Savart's 

observations were fully appreciated.  Ink-jet printing has been implemented in many 

different designs and has a wide range of potential applications.  Ink-jet is a non-

impact dot-matrix printing technology in which droplets of ink are jetted from a small 

aperture directly on a targeted object on a specified media to create an image (Le, 

1998).  Thus the technical importance of the drop formation process and its 

continuous study from last 300 years (Eggers, 1997) led to intense development in 

ink-jet printing technology.  For example, in the printing applications of integrated 

circuits the ink is replaced by solder (Liu and Orme, 2001).  In biotechnology, 

thousands of DNA-filled water drops can be analyzed in parallel, by placing them in 

Satellite drop 

Primary drop 
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an array on a solid surface (Basaran, 2002).  All these techniques rely on the 

production of drops of well-controlled size, and satellite drops are highly detrimental 

to the quality of the product. 

Many liquid dosage forms in the pharmaceutical and biotech industries are based on 

micro droplets (Kippax and Fracassi, 2003).  The liquid pharmaceutical dosages in 

aerosol form are directly sprayed on affected areas.  The individual liquid drop sizes 

and the amount of the liquid dosage sprayed on the affected area decide the amount of 

drug absorbed, hence controlling these parameters becomes very important in the 

pharmaceutical industries.  The same efforts have been made to control the liquid 

drop size distribution and their velocities in the agricultural sprays in order to increase 

the efficiency (Lake, 1977).   

 

Fundamentally the process of drop formation can be broken down in to dripping, 

jetting and drop on demand.  The first two methods occur under the action of gravity, 

where dripping is the phenomenon of ejection of liquid from a nozzle to form droplets 

when flow rate is sufficiently low, while jetting is phenomenon at high flow rates in 

which liquid flows out as a continuous stream to form a jet which subsequently breaks 

up in to small droplets.  The third method i.e. drop on demand involves external 

electrical force to control the drop formation process.   

A Newtonian liquid having viscosity µ, density ρ, and surface tension σ, flowing 

through a nozzle of radius R, at flow rate Q is the most commonly investigated 

configuration for drop formation studies as shown in Figure 1.3.  For a vertical nozzle 

the dripping dynamics are governed by three dimensionless groups (Subramani et al., 

2006; and Basaran, 1995; Clasen et al., 2009): Weber number We= ρv
2
R/σ that 
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measures the relative importance of inertial to surface tension force, a Bond number 

G= ρgR
2
/ σ, where g is the acceleration due to gravity, that measures the relative 

importance of body force to surface tension force, and Kapitza number Ka= (µ
4
g/ 

ρσ
3
)
1/3 

or Ohnesorge number Oh=µ/(ρRσ)
1/2

, both measures the relative importance of 

viscous force to surface tension force.   

 

Figure 1.3  Drop formation from a vertical nozzle. 

 

The quantitative studies usually focus on the measurement of volumes of the liquid 

droplets (Subramani et al., 2006), the liquid thread length before breakup (Zhang and 

Basaran, 1995), and time interval between two drop breakups (Clasen et al., 2009). 
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1.2 Motivation 

 

As addressed before the increased technological applications of drop formation 

grabbed the attention of scientist to get enough inside in to the drop formation 

process.  Drop formation from a nozzle or an orifice has been the subject of numerous 

theoretical and experimental studies (Eggers, 1997).  Most of the attention to date has 

focused on studies of the drop formation from a vertical nozzle, where the studies are 

done either by changing the liquid properties or by changing the liquid flow rate 

(Zhang and Basaran, 1995; Ambravaneswaran et al., 2000).  In some of the studies the 

effect of nozzle size and shape is also studied (Zhang and Basaran, 1995; D'Innocenzo 

et al., 2004).  Though the large number of studies shows that there has been enough 

research done on the drop formation, but a lot is to be explored which is explained in 

the paragraph below. 

Despite the considerable amount of efforts devoted to droplet formation studies, there 

has been a little attention directed towards drop formation studies from an inclined 

nozzle.  In this system, the nozzle is inclined at an angle θ and liquid is passed 

through a nozzle to form small liquid droplets.  The introduction of asymmetrical 

perturbations, by tilting the nozzle at an angle  (Reyes et al., 2002) breaks the 

cylindrical symmetry and found strong changes in dripping dynamics when compared 

with those obtained from a vertical nozzle.  In the experiments on dripping from a 

tilted nozzle, it is showed that the inclination angle can constitute an effective control 

parameter by breaking the axis symmetry thus adding the asymmetric perturbations.  

However, previous studies are far from being comprehensive, thus unable to provide 

the proper explanations on the general behaviour of drop formation from a tilted 

nozzle.  
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However, so far, there are no reports on the general behaviour of different modes of 

drop formation from an inclined nozzle.  The reported data only showed the strong 

change in the dripping behaviour of an inclined nozzle even for small nozzle 

inclination angle θ = 5° (Reyes et al., 2002).  To this end it is highly desirable to know 

the details about the general behaviour of drop formation from an inclined nozzle.  
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1.3 Objectives of Present Work 

In this work, focus will be given on the drop formation study from an inclined nozzle 

and the results will be compared with its behaviour when nozzle is in vertical position.  

Some of the results will be further highlighted and compared with the computations.  

As the details about the general behaviour of drop formation process from an inclined 

nozzle is not provided before, the results obtained in this work will provide useful 

information.  The main objectives of this work are summarized as follow: 

 

a) To investigate the different dripping modes by investigating the drop breakup time 

tb, for different  and We values.  The different modes of dripping are shown on 

the phase diagrams which are constructed in (We, Ka) space for all G and    

values.  The effect of  on the formation of satellite drops is also highlighted in 

the phase diagram. 

 

b) To investigate the effect of We, Ka, G and    on the dripping time tb.  This 

finding was summarized in a correlation for the dimensionless breakup volume V 

over wide ranges of G, Ka and .   

 

c) To investigate the breakup volumes of the drop from tilted nozzle dripping 

experiments using image analysis.   
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1.4 Outline of the research approach 

 In Chapter 2, a literature review is presented.  A brief history of drop formation study 

presented followed by detailed review with their key findings and recent development in 

same area is given.   

 

 In Chapter 3, a brief introduction about the methodology is provided followed by the 

experimental setup with the fluid characterization and properties.  In the same chapter the 

experimental procedure is given followed by details on image analysis method and 

breakup time calculations. 

 

 In Chapter 4, results on different dripping modes for both vertical and inclined nozzle are 

presented and also the modes of dripping are shown on phase diagrams.  The effect of  

on drop breakup time in the P1 regime are presented for a wide range of parameters and 

results obtained on the same are corroborated with some experiments and computer 

simulations which later gives a correlation for drop breakup volume.  The breakup 

volumes of primary drops by image analysis also compared with that obtained from the 

correlation developed.  

 

 The conclusions are given in chapter 5. 
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2 Literature Review 

2.1 History of Drop Formation 

 

Early experiments of Savart ( 1833) demonstrated that the liquid jet flowing out from 

nozzle first decays in to small undulations and then droplets.  Savart illuminated the 

liquid jet as shown in Figure 2.1 by using a light source.  He simply assumed liquid jet as 

a circular cylinder and observed that the tiny undulations grow on liquid jet.  These 

undulations then grow large enough and results in to droplets.  Without photography, it 

was very difficult to make experimental observations, since the time scale at which the 

drop breakup occurs is very small.  Yet Savart was able to extract a remarkably accurate 

and complete picture of the actual breakup process using his naked eye alone.  The 

observations on drop breakup process are well summarized in Figure 2.2 (Eggers, 2006).  

To the left side of the figure, one sees a continuous jet of the liquid near the exit of 

nozzle.  Growing perturbations are seen next to the continuous jet until the point labelled 

as „a‟, where drops start breaking up.  The elongated liquid thread near  „a‟ later becomes 

part of the droplet.  Both primary and tiny satellite drops are visible in the figure.  The 

fast moments involved in the drop formation process were not clearly resolved in the 

figure. 

 

 

Figure 2.1 Drop breakup process of a liquid jet 6 mm in diameter showing main drops 

and satellite drops (Eggers, 2006). 
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Some of the Savart‟s observations are summarized as: (i) the liquid jet breakup is 

independent of direction of gravity, physical properties of liquid, the diameter of liquid jet 

and jet velocity; (ii) the tiny undulations always results from the perturbations received by 

the liquid jet from the nozzle tip when it emanates from nozzle.  Savart assumed that the 

drop formation process involves balance between inertial and gravity force. 

A few years later Plateau ( 1843) discovered that it‟s surface tension which causes liquid 

jet perturbations to reduce its surface area by collecting the liquid in to one sphere in 

order to maintain smallest surface to volume ratio.  Identification of the surface tension 

force was missing in Savart‟s study, however he made a reference to mutual attraction of 

molecules which prefers to form a sphere of the liquid, around which the oscillations take 

place.  But the crucial role of the surface tension was identified by Plateau only.  With 

this results it follows as well whether the perturbations imposed on the liquid jet will 

grow or not.  The perturbations that will undergo reduction of surface area favored by 

surface tension, and will thus grow. 

Following up on Plateau‟s insight, Rayleigh (Rayleigh, 1879, Rayleigh and Strutt, 1879) 

in 1879 studied the linear stability of liquid jet, where he noticed that, the surface tension 

has to work against inertia, which opposes fluid motion over long distance.  Rayleigh 

assumed an infinitely long, initially stationary, circular, inviscid liquid jet of radius r and 

the calculation made by this linear stability analysis allowed him to describe the initial 

growth of instabilities as they initiate near the nozzle and continuous length of jet.  

Rayleigh found that there is an optimal wavelength λ= 9r at which perturbations grow 

faster, and which sets the typical size of drops.  Rayleigh confirmed his theory within 3% 

with the data Savart got 50 years before. 
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Figure 2.2 Growing perturbations on a jet of water [adopted from (Eggers, 1997)] 
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In the second half of the 19
th

, many researchers had focus on the surface tension related 

phenomenon, whereas different parameters affecting on drop dynamics was studied in 

20
th

 century both experimentally and theoretically. 
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2.2 Drop formation dynamics 

When the flow rate is small, a pendant drop hanging at the nozzle tip can detach when a 

critical volume is reached resulting into primary drop.  A small volume of liquid drop can 

also results in the process of drop breakup giving satellite drop.  Conceptually, drop 

formation process can be divided into two stages: The first one corresponds to the growth 

of the liquid at the end of the nozzle tip and second one corresponds to the necking and 

breaking of the drop which may form only primary drop or both primary or satellite drop 

depending upon the experimental parameters.  A static description of the droplet breakup 

patterns, neck formation, shape and size of the droplets are useful in the study and given 

in the following subsections. 

2.2.1 Primary drop formation 

 

Historically, research on the drop formation was motivated mostly by engineering 

applications, hence the liquid drop shape and a size has given more attention in the study.  

When liquid is released slowly through a vertical nozzle, initially the surface tension 

forces are in balance with the gravitational force.  When inertia does not play any role, 

one can easily see that the hanging drop goes through a sequence of equilibrium shapes.  

These sequences of liquid drops are carefully studied by Worthington in 1881 

(Worthington, 1881).  Worthington noticed that, in the previous dripping experiments 

carried by Guthrie (1863), the drop sizes were calculated based on the weight of the 

droplets.  But this study lacks the most important information of the liquid drops i.e. 

shape and size of the droplet when it falls and goes thrugh the number of sequences.A 

simple experimental technique allowed Worthington to observe the drop sequences, but 

the observations are made without photographic technique hence the results were not 

quantitative in nature. 
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The first quantitative experiments were done by Haenlein (1931) in 1931 using different 

liquids having different densities, surface tension, viscosities, jet diameters and jet 

velocities.  The liquids tested were water, gas oil, glycerine and castor oil.  A simple 

apparatus was used to produce the liquid jet of 0.1 to 1 mm diameter with velocities 

ranging from 2 to 70 m/s.  The observations were made by using shadow pictures by 

means of electric spark.  Haenlein observed the disintegration time for different kinds of 

liquid jets, where he found different patterns of disintegration of liquid jet: drop formation 

without air influence, drop formation with air influence, formation of waves, and 

complete disintegration of jet.  These were the primary dripping experiments where the 

primary drops were quantitatively observed for different experimental parameters.  A step 

ahead, Ohnesorge (McKinley and Renardy, 2011) used sophisticated spark flash timing 

and variable exposure system, where the quality of the images and temporal resolution 

was improved.  The liquids of different physical properties were ejected from the nozzle 

at different flow rates.  Four important regimes were observed in the drop breakup 

process in his experiments namely: Slow dripping, breakup of cylindrical jet by 

axisymmetric perturbations, breakup by skew like perturbations, and atomization of jet.  

Takahashi and Kitamura (1969) also carried out the dripping and jetting experiments on 

liquids like water, kerosine, and glycerine surrounded air and immicible liquid and he 

observed that the break up pattern in both the system are analogous to each other. 

Takahashi observed that as the ejection velocity increased all the liquids shows dripping, 

laminar jetting, and turbulant flow patterns. 

A fascinating demonstration of Shi and Brenner (Shi et al., 1994) by experiments and 

computations, using the one dimensional equation developed by Eggers and DuPont 

(1994), that liquid thread or liquid neck can spawn a series of smaller necks with even 
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thinner diameters was a very important contribution in the study of secondary necks.  In 

the study, the different shapes of hanging drops for different liquid viscosities close to 

drop breakup were focused, where they observed the dramatic change in primary drop 

shape for different viscosities.  As the value of viscosity increases the neck of the liquid 

drop elongates and forms structure that is not seen in case of pure water.  They observed 

some secondary neck formations at the break up points for high viscosity liquids which 

occurs by initial thinning near the drop followed by rapid extension of the neck upward 

away from the drop as shown in the figure 2.3 (a-c).  As the liquid neck becomes 

sufficiently thin, it undergoes finite amplitude instabilities may be due to the thermal 

noise.  As a result of this, a secondary neck grows on a primary neck having self-similar 

form.  These observations were experimentally possible by high speed photography 

where they could see the multiple stages of necking process before actual break up.  

Simulation results on the same also shows that the near the bottom of the long neck there 

is a region where the thickness of the neck decreases forming a secondary neck. 



18 

 

 

Figure 2.3  Secondary neck formations for water glycerol mixture (85%).  (A) The 

elongated liquid thread forms a secondary neck just above the primary drop (B) A 

magnified region near breakup point (C) Same region as in (B), very near to breakup 

process (Shi et al., 1994). 

 

A detailed experimetal study by Zang and Basaran (1995) investigated the effect of all 

relevant parameters on the drop breakup length for first time in the study.  Figure 2.4 

shows the evolution of liquid thread connecting the main drop and the remaining liquid 

for water.  It is very clear from the figure that during necking the portion of main drop 
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takes spherical shape and the remaining liquid thread looks like a liquid cone.  Later the 

liquid thread thins, and at certain neck diameter it detaches from the spherical drop which 

later oscillates in vertical direction by changing its shape as seen in Figure 2.3 (l, m).  

However the braking process can result in to formation of satellite drop as seen in Figure 

2.3(m).  Comparisons of the primary drop breakup volume measured in the experiments 

are compared with predicted volume obtained from the empirical model of Scheele and 

Meister (1968). The volumes measured experimentally are smaller than the predicted and 

more deviation is seen at higher flow rates with maximum relative deviation of 25%, 

showing relatively good agreement between experimental and predicted volume.  In same 

study Zhang and Basaran obtained a detailed phase diagram for different viscosity, flow 

rate and nozzle radius.  The phase diagram details about main drop, satellite drop size and 

neck length. 

 

 
 

Figure 2.4  Drop shapes of water dripping from a nozzle of diameter 0.16 cm at the liquid 

flow rate 1ml/min, taken at different time intervals (Zhang and Basaran, 1995). 

 

The predictions of the computations made by Wilkes et al. (1999) made by using a 3D, 

axisymmetric or 2D finite element algorithm have been shown to agree with couple of per 
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cent with the experimental results which confirms the high degree of accuracy in the 

calculations.  The volumes of the drops are found to mostly affected by the interplay 

between gravity and surface tension force.  The computed shapes of the drop are overlaid 

on experimental shapes of the drops showing a very good agreement in figure 2.5.  In the 

same study, the algorithm developed is used for calculating limiting length and primary 

drop volume for a wide range of parameter space spanned by relevant dimensionless 

group. 

 

Figure 2.5  Computed shapes of drops, solid white curves, overlaid on experimentally 

recorded images of identical drops of glycerine–water mixtures at near the drop breakup.  

The viscosity of the liquid increases from left to right (Wilkes et al., 1999). 
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2.2.2 Satellite drop formation 

 

In the drop formation process, the primary drop does not form alone in some cases, a 

undesirable form of a small drop volume also results in the breakup process called 

“satellite drop”.  These satellite drops actually decay the printing quality, as drop of 

different size are deflected differently by an electric field.  Hence understanding the cause 

of satellite drop formation and possible control has been attracted the attention of 

researchers in the field of drop formation. 

The satellite drop formation was first observed by Savart in 1833 (Eggers, 2006).  Figure 

2.1 given in the above sub section 2.1, shows that the small satellite drops in between two 

primary drops results during the liquid jet breakup.  Later Plateau (1849) also included 

some experimental sketches as shown in the figure 2.6 for oil suspended in to water 

alcohol mixture.  The nonlinear dynamics of drop liquid jet breakup of a viscous liquid 

first goes through the elongation of the liquid thread and then tiny perturbations grows 

forming minima at many places.  The final stage of the breakup includes the formation of 

primary and satellite droplets where he observed that the satellite drop is not alone formed 

at the center of two primary drop, but also even smaller satellite drops are formed at right 

and left of the satellite drop which indicates that the final stage of the breakup is much 

more complicated that one would think.  Without photography and with air as media 

surrounding the drop, it was very difficult to observe the existence of the satellite drops in 

the dripping experiments.  Having these difficulties did not escape the attentive eyes of 

Guthrie (Guthrie, 1863) in satellite drop observation.  The kind of drops he observed were 

the one which moves upward once they formed as a result of pinch off process. 
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Figure 2.6  Breakup sequences of oil column suspended in a mixture of water and alcohol 

(obtained from (Eggers, 2006)).The small perturbations grow on liquid cylinder which 

grows giving minima and maxima on the liquid thread to result in to three small satellites 

at each breakup. 

 

The stroboscopic method used by Lenard (1887) enabled him to take an entire sequence 

to see the dynamics near the drop breakup with the time resolution that would otherwise 

be impossible to achieve.   These sequences first time showed the appreciable results for 

satellite drop formation.  In the satellite drop formation: first liquid neck breaks near to 

the primary drop, but before it snap back it also thins near the pendant drop which later 

breaks forming the satellite drop. These sequences are shown in the figure 2.7. 
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Figure 2.7  A sequence of drop formation from a pipette, where both satellite and primary 

drops are visible (Lenard 1887, obtained from ref (Eggers, 2006)). For the first time, the 

sequence of events leading to satellite formation can be appreciated. 

 

 

A detailed study on nonlinear effect of liquid jet breakup and complex behaviour of the 

satellite drop formation was experimentally was by Goedde &Yuen (1970).  Figure 2.8 

taken from their paper shows that the process of satellite drop formation is very 

complicated.  The observations showed that the first breakup always happens at lower end 

of the liquid thread as it gets more time to thin as shown in the figure 2.8 (a-d).  Later 

experimental results showed that there is a quite possibility that the ligament first breaks 

at upper end of the liquid thread.  The other observation that they made was that the 

satellite drop size increases with decreasing wave number which can help reducing the 

satellite drop formation simply by adjusting the amplitude of applied disturbance.  The 

experimental results on satellite drop size were concluded by Rutland & Jameson (1971), 

where they showed that the satellite drop size actually increases with decrease in wave 

number.  The results on satellite drop size by the disturbance amplitude contradicted the 

findings of Goedde &Yuen (1970), showing that the satellite drop size is unaffected by 

the disturbance amplitude. 
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Figure 2.8  Typical sequences of drop formation for water and glycerine (Goedde and 

Yuen, 1970). 

 

A new experimental results on satellite drop breakup revealed that the liquid thread may 

break at upper side of ligament first, lowers side of ligament side or simultaneously at 

both the end (Pimbley and Lee, 1977).  The best example of ligament breaking first at 

upper side of the liquid thread is shown in the figure 2.9, taken from their paper.  Another 

observation they made was that the satellite drop may merge forward or backward 
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depending upon the disturbance amplitude.  If the satellite is formed by breakup of liquid 

thread due to breakup at both the ends simultaneously then the satellite drop speed 

remains equal to the speed of primary drop and this condition of breakup is called 

“infinite satellite condition”. 

This is the first reported experimental observation that contradicts the observations made 

by Goedde and Yuen (1970) that the liquid thread always breaks at lower end in the 

satellite drop formation process. 

 

Figure 2.9  Stroboscopic microphotograph of liquid thread breaking at upper end of the 

liquid jet (From Pimbley & Lee, 1977.) 

 

In the later part of the twentieth century, the effects of different experimental parameters 

like nozzle dimensions, flow rate, rheological properties, and physical properties of the 

liquid on the satellite and primary drop formation was investigated.  The next subtopic 
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gives the literature review on the effect of these parameters on the drop formation 

dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

2.3 Effects of experimental parameters on drop formation 

 

2.3.1 Physical properties of the liquid 

 

The physical properties of the liquids like viscosity, surface tension, and density can have 

some effect on the drop formation dynamics.  As the viscosity of the liquid is varied, the 

changes in liquid drop shape were investigated both experimentally and computationally 

(Shi et al., 1994).  Figure 2.10 shows photographic events of the shape and length of the 

liquid length change near the drop breakup for different viscosities.  The viscosity of the 

liquid increases from A-E in figure 2.10, where A and E represents pure water and pure 

glycerol respectively.  By mixing the water with glycerol, the viscosity of the liquid can 

be varied by 10
3
 times and the surface tension was not varied more than 15% so that the 

effect of viscosity was more visible.  As seen in the figure 2.10, the liquid thread length 

increases as the viscosity of the liquid increases from A-E.  Also they observed that, as 

the value of viscosity increases the neck of the liquid drop elongates and forms structure 

that is not seen in case of pure water.  Another distinct feature observed for high viscosity 

liquid drop, as discussed earlier, the high viscosity liquid shows secondary neck 

formations at the break up points which occurs by initial thinning near the drop followed 

by rapid extension of the neck upward away from the drop.  The simulation results 

obtained for drop shapes were found to be very similar to the photographic events 

obtained near the drop breakup. 

Building on the previous findings of Shi et al. (1994), Zhang and Basaran (1995) 

demonstrate the important role played by viscosity on the necking and drop breakup 

dynamics of the forming drop.  Aside from the noticeable difference in the size of the 
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drop near to the drop breakup, Zhang and Basaran demonstrate the variation of 

dimensionless drop  

 
 

Figure 2. 10  Shapes of liquid drop from a nozzle having diameter 1.5 mm close to break 

up times for the liquids with increasing viscosity from A to E (Guthrie, 1863).  The 

liquids are water glycerol mixtures having viscosities 0.01 P (A), 0.1 P (B), 1 P (C), 2 P 

(D), 12 P (E). 
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elongation i. e. neck length with relative time for pure water and 85% water glycerol 

mixture.  In the same study the drop volumes and neck lengths for 20%, 50%, 70%, and 

80% water glycerol solutions are investigated.  Viscosity plays a very important role in 

stabilizing the grooving drop which makes possible larger drop elongation by damping 

and it eliminating the interfacial oscillations, but has virtually no effect on drop size.  The 

finding here on the drop stabilizing due to viscosity has found to have two important 

aspects in the drop formation.  First, viscosity promotes the damping of interfacial 

oscillations remained on pendant due to the breakup of previous drop and second, the 

viscosity keeps the about to fall primary drop nearly spherical in shape.  These 

observations are important in the area of polymer beads formation, where the drop 

sphericity has a prime importance. 

Zhang and Basaran (1995) in the same study investigated the effect of surface active 

agent on the drop formation dynamics.  By just adding different concentration of the 

surface active agent like triton, can change the surface tension of the liquid by keeping 

density and viscosity of the liquid virtually constant.  So the role played by surface 

tension in the dynamics of the drop formation was easily identified.  The drop breakup 

volume of the pure water and 0.01 and 0.05 % triton solution is compared.  The results 

accords well with the intuition that at low flow rate the breakup volume of primary drops 

decrease with increase in surfactant concentration.  Consequently, because of the 

reduction in the volume of the primary drops, the limiting length also decreases with 

increase in surfactant concentration.  The similar experiments are performed for the high 

flow rates and the surface dilation occurs at high rate giving increasing primary drop 

breakup volume and breakup length values as surfactant concentration increases.  The 

volumes of satellite drops also compared in the same study.  The volume of satellite drops 

found to increase with increase in surfactant concentration.  The well-known facts about 
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the surfactant are that the surfactant greatly damp and suppress the surface waves 

stabilizing the growing and stretching liquid thread.  This leads to increase in the liquid 

volume of a thread and hence satellite drop volume. 

2.3.2 Liquid rheology 

 

Rheology of the liquid may complicate the drop formation, when it is compared to its 

Newtonian counterparts.  The rheology of the fluid can be changed by addition of micron 

size particles to the Newtonian liquid.  Furbank and Morris (2004) studied the particles 

effect on drop formation, where the particles used were in micron size suspended in 

viscous liquid.  The density of particles and the surrounding liquid was matched to make 

the system neutrally buoyant so that one can neglect the settling effect.  The suspensions 

were investigated for different volume fractions and dripping experiments were 

performed for three different nozzle sizes. The typical drop formation process for a 

neutrally buoyant suspension system from a nozzle is shown in the Figure 2.11.  The 

dripping behaviour for low volume fraction ɸ shows the similar behaviour as that of pure 

liquid, but at high volume fraction ɸ the dripping behaviour is markedly different.  The 

addition of particles in the liquid suppress the number of satellite drop formation at higher 

volume fraction, but few satellite drops were still noticed having size much larger than in 

pure liquids.  The dripping to jetting transition was observed at small flow rate for a fine 

value of volume fraction, but at high volume fraction ɸ the transition becomes less abrupt 

and difficult to identify. 
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Figure 2. 11  Typical drop formation process for a neutrally buoyant suspension system 

from a nozzle of diameter d=0.32 cm. The surrounding liquid is silicone oil and the 

suspended particles has diameter d=212-250 µm (Furbank and Morris, 2004). 

 

Cooper-White et al.(2002) investigated the effect of liquid elasticity on dripping 

dynamics, where two types of fluids having similar viscosity,density, and surface tension 

but different elasticity were studied for dripping experiments. The results showed similar 

behaviour till the formation of lower pinch region for all types of liquids regardless of 

elasticity, which gives proper justification for importance of capillary and inertial forces 

before lower pinch occures.  But once the lower pinch is occurred, the break up time for 

elastic liquid is increased compared to Newtonian liquid. This break up time increases 

with increase in fluid elasticity.  Later in 2008 Li and Sundararaj (2008) studied the 

breakup mechanism for viscoelastic liquid drop.  They found that the drop size of a 

viscoelastic fluid determines the drop breakup mechanism and also the critical point 

where the mechanism changes.  The small drops break in the direction which is 

perpendicular to the flow direction and large drops break along the flow direction.  
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Breakup of capillary jet of dilute polymer solution showing gobbling phenomenon which 

is the result of the dynamic interaction of capillary breakup in a falling viscoelastic jet 

with a large terminal drop that serves as a sink for the mass and momentum of the 

incoming fluid is studied.  The gobbling phenomenon which is observed near the 

transition from dripping to jetting and the thinning process of the ligament connecting the 

main drop and pendant drop for a viscoelastic polymer solution is explained (Clasen et 

al., 2009).  The high speed photography technique used to observe the gobbling 

phenomena showed that the gobbling is actually a form of delayed dripping process and 

the thinning process of the ligaments that are subjected to a constant axial force is driven 

by surface tension and resisted by the viscoelasticity of the dissolved polymeric 

molecules. 

The later work of Clasen et al. (2011) focus on the dispensing behaviour of rheologically 

complex fluids and its behaviour is compared with their Newtonian counterparts.The 

properties of liquid that they varied are fluid viscosity, elsticity, and the degree of shear 

thinning.  The drop break up mechanism, drop volumes, and break up times have been 

observed using high-speed video-microscopy.  To predict the thinning and dispensing 

behaviour of rheologically complex fluids, different nondimensional groups which 

defines the relative importance of different forces involved, that is, the Ohnesorge, elasto-

capillary number, and Deborah number have been defined. With the different values of 

these nondimensional numbers in the experiments one can to identify the dominant 

mechanism resisting breakup and its corresponding critical dimensionless number.  These 

critical values also allow one to identify the filament life times.  German and  Bertola 

(2010) experimentally investigated the formation and detachment of liquid drops from a 

capillary nozzle for Newtonian fluids of variable viscosity, shear-thinning fluids, and 

viscoplastic or yield-stress fluids.  The experimental results showed that the behaviour of 
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Newtonian and shear-thinning drops is qualitatively similar, and leads to the formation of 

spherical drops, viscoplastic drops exhibit strongly prolate shapes and a significantly 

different breakup dynamics of the capillary filament.     

 

2.3.3 Liquid flow rate 

 

The complexity in the dripping behaviour can be seen by increasing the flow rate of the 

dispensing liquid.  The different modes of dripping seen in the experiments include 

period-1 dripping where every drop is of equal size, period-n (n=2,3,4…..) dripping 

where every n-th drop is identical, and higher odd-period or chaotic mode of dripping 

(Subramani et al., 2006; Zhang and Basaran, 1995; Clasen et al., 2009; Ambravaneswaran 

et al., 2000; Scheele and Meister, 1968; Wilkes et al., 1999).  Wilkes et al. (1999) studied 

low viscosity Newtonian fluids at low flow rate, where the dripping behaviour changes 

from Period-1 to some complex dripping, chaotic responses and then at high flow rates 

the transition takes place from complex dripping to jetting.  But high viscosity liquids 

shows direct transition from simple dripping to jetting as flow rate increases.   

Ambravaneswaran et al. (2004) investigated this transition at different flow rates and at 

different viscosities.  For constant viscosity and constant nozzle size, the different 

regimes of drop formation are explained in Figure 2.12 where the flow rate is increasing 

from left to right.  At low flow rate the dripping with satellite drop formation is observed 

and with increasing flow rate the observed region is the dripping region without satellite 

drop formation (Figure 2.12 (b)) which can be simply a Period-1 or complex dripping or 

chaotic behaviour.  Further increase in flow rate gives jetting behaviour in the system 

where the droplets detach from the end of long liquid thread as shown in Figure 2.12 (c).  

In the same study, phase diagrams were constructed in (We, Ka) space shows the 
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transition between different modes of dripping.  As an extension of this work, the critical 

We for transitions from one mode to another were estimated by scaling arguments and 

shown to accord well with simulations (Subramani et al., 2006).  Initially the phase 

diagram developed in (We, Oh) space was constructed for a moderate value of G=0.5 

(Subramani et al., 2006), but the reponse if the value of G varies was unknown.  This 

unexplored dripping dynamics for a wider range of G was later studied by Subramani et 

al. (2006).  It was found that at high values of G, the dripping dynamics is richer and 

tends to become chaotic at lower values of We.  In the same study they found that, at very 

low flow rates, a tiny satellite drop often follows the primary drop.  If the viscosity of the 

dispensing liquid is increased (high Oh), the dripping behaviour simplifies to either P1 

with satellites or jetting (Subramani et al., 2006).  A detailed phase diagram showing 

transitions from complex to simple dripping and jetting in the (We, Oh) space had been 

reported (Subramani et al., 2006).   

 

 
Figure 2.12  Different regimes of drop formation, (a) Dripping with satellite formation, 

(b) Dripping without satellite drop formation, (c) Jetting, The flow rates increases from 

left to right (Scheele and Meister, 1968). 

 



35 

 

2.3.4 Nozzle geometry 

 

If the liquid wets the entire thickness of the nozzle, the radius of the contact circle equals 

the outer radius of the nozzle in all the experiments.  Even if R is considered as a radius 

of contact circle, it is important to know the effect of ratio Ri/R (where Ri is the inner 

radius of the nozzle) on the drop formation dynamics.  The variation of drop volume and 

drop breakup length with Ri/R is investigated by keeping flow rate and viscosity constant 

(Zhang and Basaran, 1995).  As ratio Ri/R decreases i.e. as the thickness of the nozzle 

increases, the elongation of drop at drop breakup increases giving increased length of the 

liquid thread and hence the drop breakup volume decreases.  The further decrease in the 

ratio Ri/R diminishes the effect of wall thickness on drop volumes and liquid thread 

length at some critical value of Ri/R>0.2.  At this critical value, the drop volumes, liquid 

thread length and even the shapes of the liquid drops are found within experimental error 

to be identical to those obtained when the nozzle has virtually zero thickness.  This 

finding helps to choose the proper nozzle in the experiments where one can simply 

neglect the effect of wall thickness. 

 

The critical role of nozzle geometry was investigated by changing the two parameters in 

the experiments: first the inner nozzle diameter and second the nozzle shape 

(D‟Innocenzo et al., 2002).  The dripping dynamics found to be almost similar for 

relatively large values of the inner nozzle width.  In addition, radical changes in the 

dripping dynamics were found when the nozzle shape changes from a flat tip to a 

bevelled shape.  Dripping dynamics of relatively narrow internal diameter changes 

considerably for different nozzle shapes.  In particular, the observation shows that the 

inner diameter can have a control parameter to change the dripping dynamics of the 

nozzle.  A very useful finding on nozzle thickness showed that, the wall dimension of the 



36 

 

nozzle influences substantially the dripping behaviour, for the nozzles with a ratio of 

thickness of the wall to inner radius ≤ 0.2.  The satellite drop formation for beveled tips 

nozzle is found to be notable reduced.  As an extension of this work a detailed study on 

the effect of different nozzle geometry on dripping behaviour is done by D‟Innocenzo et 

al. (2004).  Two types of nozzle geometries, flat and obliquely shaped cut tip nozzle he 

considered for dripping experiments.  For same flow rate and viscosity the dripping 

behaviour for these two different nozzles is compared.  The obtained result shows the 

dramatic change in the dripping behaviour when nozzle shape changes from flat to 

obliquely cut shape.  They found that the added degree of freedom produces a transversal 

oscillation of a pending drop, which couples with a vertical oscillation which is the result 

of the break off of the previous drop.  As a result of that the dripping times are found to 

be shortened and dripping patterns are more regularize.  This results into the decreased 

frequency of the vertical oscillations of the residue and reduced contact circle.  They 

observed a very complex liquid flow patterns and eddies of different amount. The 

frequency of drop oscillations decreased going from the flat nozzle tip to the bevelled 

nozzle tip and to the obliquely cut nozzle (D‟Innocenzo et al., 2004).  It was claimed that 

this was due to wetting characteristics of the liquid with the wall of the nozzle as it 

determines three phase contact line affecting the dripping time series behaviour 

(D‟Innocenzo et al., 2004). 
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2.3.5 Nozzle inclination 

 

The introduction of asymmetrical perturbations, by tilting the nozzle at an angle  with 

the vertical breaks the cylindrical symmetry and induced strong changes in dripping 

dynamics (Reyes et al., 2002).  The topological considerations to characterize heteroclinic 

scenario uniquely from the time series of the dripping faucet experiment are used to 

investigate the influence of the nozzle inclination, representing symmetry breaking in the 

system, and generating heteroclinic tangle.  In the experiments on dripping from a tilted 

nozzle, the measured time (Tn) between the n
th

 and (n+1)th drop were plotted, giving time 

return maps for different nozzle inclination angle .   The obtained time return maps 

showed that even for small inclination angle =5°, the system symmetry breaks and 

dripping behaviour changes dramatically.  The results showed strong changes in the 

attractor topology, suggesting that inclination angle can be an effective control parameter 

for the dripping dynamics (Reyes et al., 2002).
 

Despite the rich dynamics of dripping from a tilted nozzle, we failed to uncover any other 

articles in the English literature.  Due to the limited range of parameters studied 

previously (Reyes et al., 2002), the more general behaviour of dripping from a tilted 

nozzle remains unknown.  The main goal of this paper is to develop a comprehensive 

picture of the dripping dynamics from a tilted nozzle.  In order to achieve that goal, (a) 

dripping dynamics will be explored through the study of the breakup time bt , which is the 

time interval between two subsequent drop breakups, and (b) dripping phase diagrams for 

different values of  will be constructed. 
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3 Research Methodology 
 

3.1 Introduction 

 

The experiments are designed to obtain the quantitative information on the drop breakup 

time and the drop breakup volume.  Attention is also paid in the experiments to the 

satellite drop formation for different experimental conditions.  The experiments are 

performed by varying liquid viscosity, flow rate, nozzle size, and nozzle inclination angle. 

3.2 Experimental setup 

 

The experimental setup is depicted in figure 3.1.  It consists of a nozzle through which 

liquid flows to form drops.  The liquid was delivered to the nozzle by using a 

MeditechJZB-1800D Syringe Pump which is capable of providing range of flow rate 

from 0.00167 to 30 mL/min with an accuracy of ±2%.  Stainless steel dispensing nozzles 

(P-30619-06, P-30619-01, and P-30619-07) were obtained from Cole-Parmer.  The outer 

radii of the nozzles are 0.625 mm (N1), 1.00 mm (N2), and 1.96 mm (N3).  The ratio of 

the inner radius to outer radius is <0.2, hence the effect of nozzle thickness on the 

interface dynamics can be safely neglected (Zhang and Basaran, 1995).  A protractor is 

provided to adjust the tilt angle of the nozzle.  A transparent shield is provided to reduce 

draft that can perturb the drop formation process. 

The high speed camera is Casio EX-FH100 capable of recording 30 to1000 frames per 

second.  A planar white LED backlight measuring 10 cm  10 cm (model LFL-Si100-W-

IP65) with adjustable brightness was obtained from Falcon Illumination (M) Pte. Ltd.  

The sharpness of the images can be adjusted via the intensity of the backlight, the focal 

http://www.coleparmer.com/Product/Disposable_filler_nozzle_SS_needle_and_polycarbonate_base_1_32/EW-30619-06
http://www.coleparmer.com/Product/Disposable_filler_nozzle_SS_needle_and_polycarbonate_base_1_32/EW-30619-06
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length and digital zoom of the camera.  All parts of apparatus except the syringe pump 

were kept on a 0.3m×0.3m×0.06m aluminium optical base plate inside the transparent 

shield.   

 

Figure 3.1  Schematics of the experimental setup. 

 

3.3 Fluid Characterization 

 

Mixtures of water and glycerol were chosen because their surface tension and densities 

are almost similar to that of pure water, but their viscosities can be made to vary three 

orders of magnitude.  The 99% pure glycerol obtained from R and M Chemicals, CAS 

NO [56-81-5], and used as obtained.  Distilled water was used to the make water glycerol 

mixtures.  The physical properties of these water glycerol mixtures are taken from the 

literature (Physical properties of glycerine and its solution. 1967) and are listed in Table 
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3.1. Silicone oil (Dow Corning® 111 Valve Lubricant and Sealant) was used to prevent 

wetting of the outer nozzle surface.   

The image captured by using just water-glycerol mixtures showed a color gradient within 

the drop area, which was inconvenient for the subsequent automated image analysis.  To 

minimize the colour gradient within the drop area, methylene blue dye was added in the 

water glycerol mixture.  Analyzing the images for the dyed solution showed that 0.5 wt% 

was the minimum required.  The surface tensions of the dyed water-glycerol solutions 

were measured using Langmuir Blodgett trough from KSV instruments.  The viscosity 

measurements were carried using an ARES rheometer equipped with the cup and bob 

geometry.   The liquid densities were measured using the known volume of liquid using a 

weighing balance, AND model GF-300.  All the physical property measurements for the 

dyed water-glycerol mixtures were performed at 25±1°C.  The measurement errors for 

density, surface tension and viscosity were within ±1% accuracy.  These measurements 

showed that the effect of dye on the physical properties of the water-glycerol solutions 

could be safely neglected within experimental error. 

Table 3.1  Physical properties of water glycerol mixtures (Physical properties of glycerine 

and its solution. 1967). 

Solution Wt. % 

glycerol 

ρ (kg/m
3
) µ (mPa.s) σ (mN/m) 

S0 

S20 

S40 

S80 

0 

20.0 

40.0 

80.0 

1000 

1044 

1095 

1205 

1 

1.5 

3.2 

45.9 

72 

69.5 

68.4 

64.7 
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3.4 Experimental procedure 

 
The experimental run began with applying a thin layer of silicone oil on the outer wall of 

the nozzle.  This pinned the liquid to the outer sharp edge of the nozzle tip even at 

inclined positions.  The verticality of the nozzle was checked with two perpendicularly 

mounted pendulums.  Following this, the tilt angle was adjusted using a protractor.  The 

prepared solution was drawn into the syringe and any bubble present in the syringe or 

tube was purged off.  A desired flow rate was then set on the syringe pump.  The drop 

formation sequences were recorded at 240-420 frames per second depending upon the 

liquid flow rate.  The recorded videos were first converted into images with the ImageJ 

software (ImageJ software, retrieved on 10 August 2012), then analyzed using an 

algorithm written in MATLAB
TM

 software to detect the drop breakup and to calculate the 

breakup time between two successive drops. 

In this work, the experiments were performed at different values of We (5×10
-4

 to 0.45) 

by varying the liquid flow rate Q, Ka (3.22×10
-4

 to 0.0526) by changing the viscosity µ of 

the liquid, G (0.053 to 0.70) by using three different nozzle radius R, and  (0°, 30°, and 

60°).  All the experiments were carried out at room temperature (25±1°C).  
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3.5 Image Analysis Methods  

 

3.5.1 Breakup Time Calculations 

 

The images so retrieved are analyzed using an algorithm written in MATLAB (Appendix 

A.1) software to detect the drop breakup and to calculate the breakup time tb between two 

successive drops.  The MATLAB algorithm takes the images of a set of experiments.  

These images are first read in to the MATLAB, which are later converted in to black and 

white (BW) images.  MATLAB reads these images in three dimensional matrix forms, 

where each pixel value in the corresponding direction is assigned to the row and columns 

of the matrix.  The images we have are the two dimensional images, which has the pixel 

values in „x‟ and „y‟ direction only, which assigns these values in column vector and row 

vector of the matrix respectively, and the third dimension of the matrix is always kept 

constant.  Once the images are converted in to BW image, there are only two different 

pixel values, that is „1‟ and „0‟ as shown in Figure 3.2 (b), where pixel value „1‟ 

corresponds to the dark part of the image and „0‟ corresponds to the bright part of the 

image.  We have intensity threshold, which has to be given before we convert a RGB 

image to BW image.  Deciding the value of intensity threshold is very important in the 

process as it decides the part of the image which has to consider as black or white, hence 

it needs some trial and error experiments.  Once the images are converted in to BW form, 

the drop break up is detected on the basis of intensity difference near nozzle area.  If the 

intensity difference values are changed from 1-1-1 (Figure 3.2 (a)) to 1-0-1 (Figure 3.2 

(b)), then the very first image is detected as drop breakup image.   
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(a)                        (b) 

 

Figure 3.2  Image analysis of drop breakup process.  Intensity value „1‟ represents black 

part and „0‟ represents white part of the image. 

 

Some of the sequences of drop formation from a vertical nozzle are shown in the Figure 

3.3, where the image sequence (c) and (f) represents the drop breakup instant and hence 

drop breakup image on the basis of intensity difference criteria explained in the previous 

paragraph.  Once the drop breakup image numbers are detected, the breakup time tb is 

calculated on the basis of image number and frame rate of the camera.  The time interval 

between these two image sequences ((c) and (f)) represents the drop breakup time tb.  

 

.… ….. …. …. ….   

(a)  (b)  (c)  (d)  (e)  (f) 
 

Figure 3.3  Drop breakup sequences. The time interval between sequence (c) and (f) is the 

breakup time tb (Resolution: 0.21 mm/pixel). 

 

 

 

 

1 

1 

0 

1 

1 

1 
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3.5.2 Primary Drop Volume Calculation 

 

3.5.2.1 For the Vertical Nozzle 

 

The volumes of primary drops are also measured using the same images obtained for the 

tb calculations using a MATLAB code (Appendix A.2).  For the experiments from a 

vertical nozzle, the liquid drop is symmetric in shape.  So the images of the liquid drops 

from one fixed angle using just one camera are taken as shown in Figure 3.4.  The drop 

breakup images initially detected were further sent to MATLAB for volume calculation.  

These images are initially converted in to BW format and value of one pixel is initially 

calculated by the dimensions of a reference object (In our experiments the nozzle 

diameter was the reference dimension to convert pixels into centimeters).  To measure the 

drop volume for each image, initially we assumed each drop as a symmetric shape akin to 

an ellipsoid.  The drop is then divided in two vertical sections along the major axis as 

shown in figure 3.5.  Each vertical section has „n‟ number of radius equal to the number 

of pixels on a vertical axis.  The radius is measured by calculating the number of pixels 

on a horizontal line representing a radius at a particular location.  The different radii are 

shown in figure 3.5.  At the same position, the value of the radius used for volume 

calculations is the average values for two radii.  By using combined Simpsons 1/3 rd and 

3/8 th rule for numerical integration over the entire asymmetric shape, the volume for a 

drop from one angle is calculated.  For the same experiments, the error in the 

measurement is calculated by weighing 10 drops from the similar experiments.  The 

average weight of the 10 drops (14 mg) was then converted to volume via the density of 

the water-glycerol solution.  The error between the weighed drop volumes and volumes 

obtained from image analysis was within 3%.    
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Figure 3.4 Experimental setup for vertical nozzle dripping experiments for volume 

measurements 
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Figure 3.5 Volume measurement method for a axisymmetric drop 

 

3.5.2.2 For an Inclined Nozzle 

 

In the experiments of dripping from a inclined nozzle, the images of drop sequences are 

taken from two angles placed at 90° to each other so that even if the drop is asymmetric in 

shape, we can measure the drop diameters from two different angles to have more 

accurate estimates of the volumes of the drops.  These two drop breakup images taken 

from two different angles are detected and sent to the MATLAB programme (Appendix 

A.2) for volume calculations.  The method of volume calculation is similar to the method 

mentioned above for vertical nozzle, but for inclined nozzle experiments there are two 

images at same instant.  Though these two images are taken from two different angles as 

shown in figure 3.6, the major axis of the asymmetric drop shape is a vertical axis which 

is clearly understood in figure 3.7 snapshots taken for similar drops from two different 

angles.  As vertical axis is common in both the images, the two images can be easily 



47 

 

correlated for the volume calculations.  These two images are analyzed the same way 

mentioned above and the average volume of these two images is taken to be the volume 

of asymmetric drop.  The volumes obtained from the image analysis for asymmetric drops 

was verified with the volume calculated from a drop weighing method and found to be 

within a maximum of 5% error. 

 

Figure 3.6 Experimental setup for vertical nozzle dripping experiments for volume 

measurements. 
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Figure 3.7 Images taken from two cameras kept at 90° to each other. 

 

Angle-1 Angle-2 
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4 Results and Discussion 
 

In the section below, the different modes of dripping for a vertical nozzle are identified on 

the basis of drop breakup times and their evaluation with total time.  Some other 

approaches to identify the dripping modes are also given.  Similarly the dripping modes 

for different  are identified and a phase diagram for each  value in (We, Ka) space is 

given in the following section.  In the next section, a similar phase diagram showing the 

effect of on satellite drop formation is constructed.  Later the effect of  on dripping 

time is also shown section followed by the computational approach to confirm the 

obtained results.  The drop volume measurements for primary drops and its comparison 

with drop breakup time is given in the following sub section. 

 

4.1 Dripping modes 

 

Experiments with a vertically oriented nozzle illustrate the various dripping modes 

observed.  The breakup time, 
bt  was made dimensionless using capillary time 

3R  .  

Throughout the remainder of this report, a variable with a tilde designates a dimensional 

variable while one without denotes the dimensionless counterpart of the same variable.  

Fig. 4.1 shows the variation of the dimensionless breakup time tb, with drop numbers.  As 

depicted in Fig. 4.1, values of tb decreases with increase in Weber number.  Based on this, 

three different dripping regimes were encountered, namely period-1 (P1), limit cycle 

(LC), and chaos (C).  At low Weber numbers, every droplet had the same tb value, and 

this mode was denoted as the period-1 dripping (P1).  At moderate Weber numbers, the tb 
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trajectory repeated itself, showing low amplitude and low frequency oscillations around 

the average.  This was denoted as the limit cycle (LC) behaviour.  The chaotic (C) 

behaviour was seen at high Weber numbers, where the tb trajectory did not repeat itself, 

showing disorderly long term evolution.  

 

Figure 4.1 Variation of the dimensionless dripping time with drop number. Three 

different dripping behaviors are seen as We increased, namely P1 ( We=0.05), LC 

( We=0.15), and C ( We=0.30). Here G=0.057, Ka=0.000562 
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Figure 4.2 Variation of the dimensionless dripping time with drop number. Three 

different dripping behaviors are seen as We increased, namely P1 ( We=0.05), LC 

( We=0.15), and C ( We=0.30). Here G=0.057, Ka=0.000562 

 

Figure 4.3 Variation of the dimensionless dripping time with drop number. Three 

different dripping behaviors are seen as We increased, namely P1 ( We=0.05), LC 

( We=0.15), and C ( We=0.30). Here G=0.057, Ka=0.000562 
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Raising the angle of tilt to = 30
o
and 60

o
, at constant We, Ka, and G, the evolution of tb 

with drop number and the time return map is shown in Fig.4.2 and 4.3 respectively.  The 

features remain qualitatively identical.  This is notable as the extent of asymmetry in the 

liquid meniscus is significant at this inclination.  It suggests that inclination probably 

exerts higher order effects on the dripping dynamics.  Nevertheless, comparing Figs. 4.1 

and 4.3, the values of tb for the P1 regime decrease noticeably with an increase in , 

whereas the values for tb for the LC and the C modes of dripping are relatively 

independent of .  Since the flow rate remains identical, the droplets formed from the 

inclined nozzle in the P1 regime must be smaller than their counterparts in the vertical 

case.  This opens up another avenue to regulate drop volumes. 

The breakup time data obtained here for different experimental parameters can be 

analyzed in different ways to identify the dripping behaviour.  Some of the efforts made 

to analyze the same are given in subsections below. 

4.1.1 Time series analysis 

 

To extract more meaningful statistical results from the data of drop breakup time, the time 

series analysis is used.  This is the first ever attempt made to identify the nature of the 

phenomenon represented by the sequence of observations.  In the time series analysis, 

MATLAB algorithm for Fast Fourier Transform (FFT) (Appendix A.3) to compute the 

Discrete Fourier Transform (DFT) is used to convert time data to frequency.  The FFT 

allows us to look at the data in frequency domain rather than in the time domain  

(Bloomfield, 2004).  The converted frequency domains are analyzed here to find out the 

dominant frequency that may be present in the data and the patterns obtained may allow 
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us to identify and decide more efficiently the modes of dripping.  If the obtained plots 

shows any patterns, one can easily predict whether the time series obtained in dripping 

experiments are of periodic nature (P-n, where n=1,2,….n) or chaotic in nature.    

Following three FFT plots for time data are for P1, LC, and C behaviour respectively. 

 

Figure 4.4 FFT plot for time data having P1 behaviour. Here We=0.05,G=0.057, 

Ka=0.000562 
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Figure 4.5  FFT plot for time data having LC behaviour. Here We=0.15,G=0.057, 

Ka=0.000562 

 

Figure 4.6 FFT plot for time data having C behaviour. Here We=0.3,G=0.057, 

Ka=0.000562 
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The FFT plots for P1, LC, and C time series data shown in figure 4.4, 4.5, and 4.6 

respectively shows one dominant frequency peak.  For P1 and LC plot, the plot has two 

sub frequency peaks.  The plots clearly do not show the frequency patterns to identify the 

modes of dripping.   

The data points for breakup time data are not equally spaced.  So the more accurate FFT 

method for non-equally spaced data points is Lomb Scargle method (Ruf, 1999) which 

estimates a frequency spectrum based on a least squares fit of sinusoid called power 

spectral density (PSD) normalized over frequency.  A MATLAB algorithm is used to 

obtain the periodogram for the same method (lomb.m file Appendix A.4).  The plots 

given in Figure 4.7 (a-f) shows the Lomb Scargle periodogram for P1 (a, b), LC (c, d), 

and C (e, f) behaviour respectively.  

 

Figure 4. 7 a Lomb Scargle periodogram for P1 behaviour. Here G=0.057, Ka=0.000562 
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Figure 4.7 b Lomb Scargle periodogram for P1 behaviour. Here G=0.057, Ka=0.000562 

 

Figure 4.7 c Lomb Scargle periodogram for LC behaviour. Here G=0.057, Ka=0.000562 



57 

 

  

Figure 4.7 d Lomb Scargle periodogram for LC behaviour. Here G=0.057, Ka=0.000562 

 

Figure 4.7 e Lomb Scargle periodogram for C behaviour. Here G=0.057, Ka=0.000562 
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Figure 4.7 f Lomb Scargle periodogram for C behaviour. Here G=0.057, Ka=0.000562 

 

Although Lomb Scargle periodogram showed in Figure 4.7 (a-f) represents P1 (a, b), LC 

(c, d), and C (e, f) behaviour, there are no clear evidences or patterns which helps to 

identify the same behaviour from these plots.  To further examine these , the first 

dominating frequency is plotted against We in figure 4.8, which shows that the first 

dominating frequency value increases as We increases.  Similar plot for the second 

dominating frequency is shown in figure 4.9, which shows that the frequency becomes 

much higher at high We but for low We, there are no specific patterns and hence it does 

not give any idea of the dripping mode.  Based on these observations, it could be 

concluded that the Lomb Scargle periodogram does not assist in the identification of 

dripping modes.  An alternative way to identify the dripping behaviour is to plot the time 

return maps from the breakup time data, as given in the following sub-section.  
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Figure 4.8 First dominating frequency vs We obtained from Lomb Scargle periodogram. 

 

Figure 4.9 Second dominating frequency vs We obtained from Lomb Scargle 

periodogram. 
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4.1.2 Time return maps 

 

The time return maps are the plots of time tn vs. tn+1, where nature of the plot helps to 

investigate the periodicity of the time series data. Each point on the time return map is 

determined by the ordered pair (tn, tn+1) for some n value. Previous researchers (Shaw, 

1984; k Martien et al., 1985; D'Innocenzo and Renna, 1996, Subramani et al., 2006) have 

used the time return maps to identify the structures and patterns from the simple plot to 

define the dripping behaviour.  The time return map responses for the same data given in 

Figure 4.7 (a-f) are given below figure 4.10 for different modes of dripping. 

      

 (a)                                                          (b) 
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     (c)                                                          (d)                

 

      (e)                                           (f)              

 

     (g)                                                          (h) 
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(i)                                                           (j) 

 

(k) 

Figure 4.10  Time return maps showing P1 (a-f), LC (g-i), and C (j-k) behaviour.  Here 

G=0.057, Ka=0.000562. 

 

The time return maps have shown in the figure 4.10 (a-k), represent the trajectories of 

periodic orbits.   In figure 4.10 (a-f), all the points are clustered together, ideally forming 

only one point, represents the P1 behaviour.  The spread between the data points is within 

±10% of the average for P1 regime.  For the limit cycle regime, the spread between the 

data points is more than 10% of average value, but the trajectories repeat itself giving an 

encircled regime on time return map as shown in figure 4.10 (g-i).  At high Weber 
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number, the points are scattered rather randomly giving C mode of dripping as shown in 

figure 4.10 (j-k). 

The time return maps are shown to give good predictions about the modes of dripping, 

hence are used in the investigation of modes of dripping for rest of the experimental data.  

To facilitate discussions, the transition from P1 to LC is deemed to occur at We =WeLC, 

and the transition from LC to C occurs at We =Wec.  These two Weber numbers can be 

pin-pointed experimentally.  As the value of Ka changes, the corresponding values of 

WeLC and Wec also change.  The loci of these transitional We are plotted against Ka as a 

dripping mode phase diagram next. 

 

4.2 Phase diagram  

 

The phase diagrams shown in figure.4.11 (a)-(c) identify the location in the parameter 

space where the dynamics changes from one mode to another.  For a vertical nozzle 

(figure 4.11 a), at low values of Ka, both WeLC and Wec rise sharply as the value of Ka 

increases.  For high values of Ka, the trajectories of WeLC and Wec converge, i.e. the 

transition occurs directly from P1 to C without exhibiting a LC regime.  This is known as 

the “simple dripping” region in the computational phase diagram of Subramani et al. 

(Subramani et al., 2006) when G=0.3.  Noting that Ka=(Oh
4
G)

1/3
, their corresponding 

value of Ka for such “simple dripping” regime is 0.67, nearly an order of magnitude 

larger than ours.  Further, in their work, the P1 region narrows down prior to the “simple 

dripping” regime, whereas ours do not exhibit this narrowing.  Certainly, keeping the P1 

region wide at high values of Ka avails greater flexibility for applications.  These 
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differences in the phase diagram highlight the very considerable effect of the value of G 

on the dripping dynamics, also illustrated by the same authors.
 

 

The phase diagrams for an inclined nozzle look similar to that of the vertical nozzle.  

However, on closer examination, three significant and potentially useful features can be 

distilled.  First, the values of Wec decrease dramatically with  especially for Ka ~ 10
-3

, 

suggesting that the asymmetry favors chaotic dripping.  This is in line with the findings of 

Reyes et al. (Reyes et al., 2002), which showed that even at  = 5
o
, the dripping dynamics 

for low viscosity water turns very complicated.  Second, the locus of WeLC is not so 

strongly affected by  at low values of Ka.  It suggests that P1 and LC regimes are 

influenced more by viscous damping than by asymmetry.  A consequence of these two 

observations is that the LC regime shrinks noticeably with increase in .  Conceivably at 

even larger values of , the LC region might vanish.  However, we could not pursue that 

in our experiments as the liquid started to wet the outer wall of the nozzle at large 

inclinations despite the use of a dewetting agent. 

 

At high values of Ka, however, the interaction of asymmetry with strong viscous damping 

raises the values of WeLC, leading to the third observation: The values of We for direct 

transition from P1 to C increase with .  This avails an operating option to move the 

chaotic dripping of a very viscous liquid into the well-defined P1 region simply by tilting 

the nozzle.  The modest increase in the values of this direction transition We against the 

corresponding values for the vertical nozzle suggest that the effect of  is most likely a 

higher order effect and thus difficult to deduce from scaling arguments, as was done for 

the jetting transition (Subramani et al., 2006). 
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Figure 4.11 An experimental phase diagram in (We, Ka) space at =0° (a), =30° (b), 

=60° (c), showing transitional Weber numbers WeLC Wec. Here G=0.062. 
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4.3 Effect of nozzle inclination on drop breakup time at low Weber 

number 

 

Further insight into the dripping dynamics of an inclined nozzle can be gained by 

examining the drop breakup times tb for different nozzle inclination angle .  As shown in 

figure 4.12, the value of tb at a given We decreases with increasing .  As discussed 

earlier, the tb values are unaffected by  in the LC regime, but the number of repeating 

trajectories for the LC regime at a given total time decreases with increase in  as shown 

in figure 4.13.  The observation in figure 4.12 was further investigated at other values of 

We, as represented by closed symbols in figure 4.14 (a).  Clearly the values of tb decrease 

with increasing  when G=0.053.  As the tb values in figure 4.14 are the average values 

with a maximum of 10% spread (the value of spread decreases with increase in 

viscosity), it is critical to determine if two sets of data at different angles were indeed 

statistically different.  Assuringly, using the Student‟s t-test, the probability of having 

indistinguishable values of tb (as the angle changed) is very low (p value approximately 

10
-8

).  Analogous behaviour is found even at ten times greater value of G (G=0.52) shown 

by open symbols in figure 4.14 (b) as well as for different viscosities of the liquids, as in 

figure 4.14 (c) and (d).  In short, tb decreases with increasing  for all values of G, We, 

and Ka investigated. 
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Figure 4.12 Breakup time tb at different angle of inclination  for P1 behaviour.  The 

experiments were performed at G=0.057, Ka=0.000562 and We=0.05.  
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Figure 4.13  Breakup time tb at different angle of inclination  for LC behaviour.  The 

experiments were performed at G=0.057, Ka=0.000562 and We=0.15.  
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Figure 4.14 Breakup times as a function of Weber number.  Here S0, S20 and S80 

represent 0% (a, b), 20% (c), and 80% (d) glycerol by weight respectively.  N1 represents 

the nozzle of OD 1.25 mm, and N3 is the largest nozzle of OD 3.92 mm. 
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Table 4.1 Magnitude of the slopes of the lines obtained from Fig. 4.14 

 0° 30° 60° G 

S0N1 0.5 0.5 0.5 0.053 

S20N1 0.5 0.5 0.5 0.057 

S80N1 0.5 0.5 0.5 0.071 

S0N2 0.5 0.5 0.4 0.52 

S20N2 0.5 0.5 0.4 0.56 

S80N2 0.4 0.4 0.4 0.70 

 

 

Figure 4.14 suggests that m

bt We .  To examine the variability of the values of the slope 

-m due to the 10% scatter inherent in the data points (representing averages), two lines 

representing the worst-case scenario were drawn as follows: first a line connecting the 

minimum (-10%) tb at the lowest We and the maximum (+10%) tb at the highest We; 

second a line connecting the maximum (+10%) tb at the lowest We with the minimum (-

10%) tb at the highest We.  The magnitudes of slopes for such two lines for each 

experimental set are in between 0.4 and 0.6, suggesting that the values of the slopes in 

figure 4.14 are accurate to the first significant digit only.  Recognizing this observation, 

Table 4.1 collects the magnitudes of the slopes for all the lines in figure 4.14.   Most of 

the values are approximately 0.5, suggesting 
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0.5

1
bt

We
       (4.1) 

            

Equation (4.1) leads to a rather counter-intuitive finding.  It can be rewritten in the 

dimensional form as, 
1

bt
v

  , where v  is the velocity of the emanating fluid.  

Rearranging and multiplying both sides by the internal cross sectional area A of the 

nozzle results in bAvt AK , where K is the proportionality constant dependent on G, Ka 

and .  The left hand side is approximately the volume V  of the detached liquid droplet; 

this approximation is very good when the volume of pendant drop does not change 

significantly.  Random sampling of the recorded images suggested that this assumption is 

very reasonable.  This relationship offers a startling conclusion that the detached drop 

volume in P1 dripping is rather independent of the flow rate.  It also avails a very 

convenient route to obtain the experimental drop volumes without analyzing the 

complicated asymmetric drop images. 

To compactly quantify this finding, by making V dimensionless with the volume of an 

equivalent sphere based on the outer nozzle radius R, a power law correlation was tested: 

 

32 4

1V (cos )
cc c

c G Ka       (4.2) 

The choice of cosine of  was mainly suggested by the component of gravity along the 

axis of the nozzle.  A nonlinear least squares regression of Eq. (4.2) using all data points 

in the P1 regime yielded the coefficients: 
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   1 0.02 0.37V 1.3 (cos )G Ka       (4.3) 

       

The dimensionless volumes V of the liquid droplets predicted are within 10% of 

experiments, as plotted in figure 4.15.  A similar regression analysis that included We 

gave a very small (0.009) exponent for We, without any significant improvement in the 

accuracy of predictions, further justifying its omission in Eq. (4.3).  It is noteworthy that 

figure 4.14 covers the widest ranges of parameters than previously reported, with  up to 

60
o
, Ka spanning three orders of magnitude and G one order of magnitude.  Eq. (4.3) is 

also significant as the first ever correlation for the droplet volume for P1 dripping from a 

tilted nozzle.  Further, it includes dripping from a vertical nozzle as a special case, valid 

beyond vanishingly small values of Weber number (unlike the correlation in Yildirim et 

al.) (Yildirim et al., 2005).  It also shows that the 1/G dependence as hinted in figure 7 of 

Ambravaneswaran et al. (Wilkes et al., 1999) remains valid for dripping from a tilted 

nozzle. 
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Figure 4.15 Predicted volume V vs experimental volume Vexp.  The dashed lines represent 

±10% error in volume.  Here 0.0005≤We≤0.1, 3.22×10
-4

≤ Ka ≤ 5.26×10
-2

 and =0°, 30°, 

60°.   
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4.4 Interrogating the origin of the effect of the angle of tilt on tb 

 

As the angle of inclination increases, the component of gravity along the axis of the 

nozzle decreases.  Intuitively this should result in a decrease in the driving force for drop 

formation as the gravitational pull on the emanating liquid has been weakened.  At low 

flow rates in which the inertial force is not dominating, surface tension forces should then 

resist drop detachment for a longer time, giving an increased value of the breakup time tb, 

and hence an increased drop volume.  In contradiction, the experimental results showed 

that the tb values decreased with increasing .  This suggests that despite the weaker axial 

component of gravity, the surface tension force is being weakened even more by the 

asymmetric air-liquid interface.  To probe the detailed interplay between these forces will 

require a full 3-dimensional unsteady state simulation of the free surface motion which is 

out of the scope of this work.  In lieu of this, an alternative approach was pursued as 

described below. 

 

A pendant drop, which is pinned to the end of a nozzle, assumes a stable shape as long as 

the drop volume is below a critical value, beyond that it becomes unstable leading to its 

deformation and eventual breakup.  At low Weber numbers typical of P1 dripping, the 

key forces remain gravity and surface tension, whether the nozzle is tilted or not.  Inertial 

forces come into play only in the necking of the droplet in the last moments (Wilkes et 

al., 1999), often comprising just a small fraction of the overall breakup time.  This 

similarity suggests that the drop formation process in slow P1 dripping is closely related 

to the limits of stability of a static pendant drop.  Specifically, we hypothesize that if the 
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largest volume of the static pendant drop that could be supported with a tilted nozzle 

becomes smaller, the corresponding dynamic drop formation should also require a shorter 

breakup time.   

Here, the largest volume for a stable pendant drop pinned to the nozzle tip is denoted as 

the critical volume, Vc.  The value of Vc was determined experimentally as follows.  An 

incremental volume of liquid was pushed very slowly with the syringe pump to form a 

pendant drop at the tip of a nozzle, followed by a long pause to observe its stability.  

More volume was added if the drop was stable.  The stable shapes of the drops were 

recorded in the camera and the pendant drop volumes calculated using the image analysis 

tool in MATLAB.  The last stable volume was assigned as Vc.  The experiments were 

done at =0°, 30° and 60°.   

 

A computational approach was made to further cross-check the experimental results 

obtained on pendant drop stability.  Simulations were performed with Surface Evolver 

(SE) (SEFIT software, retrieved on 10 July 2013), an open source software.  In SE 

computations, a pendant drop of prescribed volume was pinned to a unit circle on a 

ceiling.  The orientation of the gravity () can be varied in the simulations.  The 

experimental Bond number was used for the simulation.  An incremental volume was 

added until the pendant drop was destabilized and detached over simulated time.  The 

value of Vc was then refined by using a smaller volume (decrements of about 2% of the 

total volume) that resulted in a stable pendant drop.  The simulations were repeated for 

=0°, 30° and 60°.  The associated shapes of the pendant drops at Vc for different are 

shown in figure 4.16 (a-c).  The asymmetry in the shape of the drops due to nozzle 

inclination is apparent mainly near the contact line.   
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Figure 4.16 Stable drop shapes pinned on a circular roof at different , side view, at 

G=0.06.  The roof is in the X-Y plane and gravity is acting along the vertical downward 

direction. 

 

The values of Vc from both experiments and simulations were made dimensionless using 

the volume Vo of an equivalent sphere with the corresponding nozzle radius, then plotted 

against  as shown in figure 4.17.  The error bars demarcate uncertainties in edge 

detection of the experimental images of the pendant drops.  The agreement between 

experiments and simulations is very good.  The experimental values were understandably 

below those of simulations as the theoretical limit could be attained only under zero 

perturbations.  The most critical observation is that the dimensionless critical drop 

volume decreases with an increase in .  It strongly suggests that the increasing 

asymmetry of the gas-liquid interface has a pronounced weakening effect on the capillary 

forces in resisting the pull of gravity. We suspect that the component of gravity 

perpendicular to the nozzle axis contributes in a subtle manner, e.g. by opening up a 

“second front” in the tussle with capillary forces.  In experiments involving small flow 

rates, the same effects carry over, resulting in shorter breakup times. 
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Figure 4.17  Experimental and computed variation of the dimensionless critical volume 

Vc/Vo with . 
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4.5 Volume of primary drops from image analysis 

 

A number of theoretical and experimental predictions on drop volume of primary drops 

detaching from a vertical nozzle is available and already mentioned in the literature 

review.  In this section a comparison of volume obtained from a correlation developed in 

previous subsection and volume obtained from image analysis is made for P1 regime.  

Also for all three modes of dripping, the volume of individual drops obtained from image 

analysis is compared with drop breakup time in another subsection.  Here the volume 

comparison is done for three different nozzle inclination angles. 

 

4.5.1 Comparison of drop volume obtained from correlation developed and 

from image analysis 

 

A correlation developed in section above represented by equation 4.3, gives the 

dimensionless volume V.  In the equation 4.3, the dimensionless volumes are actually the 

average volumes for a particular We.  Hence the volumes used in image analysis 

calculations are also the average volumes for same We.  These volumes are made 

dimensionless with the volume of an equivalent sphere based on outer radius R.  Figure 

4.18 compares the volume Vimg obtained from image analysis and predicted volume V 

obtained from equation 4.3 for θ=0˚ for different We values in P1 regime.  The open 

square represents dimensionless volume obtained from image analysis and closed 

diamond represents predicted dimensionless volume from equation 4.3.  Although the 

experimental method of measuring drop volume i.e. image analysis method always have 

error in the measurements (errors are ≤5% and are smaller than the marker size in the plot 
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4.18), the predicted values of drop volume are relatively good agreement with the 

experimental results, with a maximum relative deviation of 15%.  Similar plots for 

inclination angle θ=30˚, and 60˚ are shown in the same figure (figure 4.18 b and 4.18 c 

respectively) also having maximum relative deviation of 15% in the experimental and 

predicted dimensionless drop volumes.  The values measured in the experiments are 

consistently smaller than that of predicted and their deviation decreases at high We value 

within P1 regime. 
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Figure 4.18 Predicted volume V and image analysis volume Vimg change with We in P1 

regime for θ=0˚ (a), θ=30˚ (b), θ=60˚ (c).The experiments were performed at G=0.057 

and Ka=0.000562. 
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The plots given in this subsection compares the average volumes in P1 regime for 

experiments and predictions.  As the P1 regime represents the mode of dripping where the 

drop breakup time are within 10% of its average value, comparison of average values of 

volume for experiments and prediction may not have much error in the measurements.  

For LC and C mode of dripping, the breakup times are always more than 10% of its 

average value, so we cannot simply take average of volumes and compare it.  It is very 

important to know the volume of every single drop in LC and C regime and how it 

changes with the drop breakup time tb.  In next subsection, the volumes of every single 

drop measured by image analysis method are plotted with drop number for all three 

modes of dripping.  On the same plot, the breakup time tb with drop number is 

overlapped, so that we can compare the change in volume and tb, with drop number. 

4.5.2 Comparison of breakup time and drop volume with drop number 

 

Although the nature of drop formation process is qualitatively similar from one situation 

to the next, as shown by the experimental observations made on drop elongation and 

breakup by Zhang and Basaran (Zhang and Basaran, 1995), drop breakup volume vary 

considerably with the various parameters.  Large breakup time tb indicates that, the drop 

is taking long time to break.  In that case the primary drop volume should have increased.  

Similarly the primary drop volume should have decreased if the tb values are small.  The 

variation of the drop breakup time tb and drop breakup volume Vimg with the drop number 

is qualitatively expected to be similar.  In contradiction to the above statements, the drop 

breakup time tb  and drop breakup volume Vimg does not always show similar variation 

with the drop number is shown in the paragraph below.   
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Figure 4.19 (a-f) represents the tb vs drop number (in subplot-1) and Vimg, vs drop number 

(in subplot-2) for P1 regime for a vertical nozzle.  For P1 regime the drop breakup time tb 

and drop breakup volume Vimg plots do not accord well with each other.  Also another 

interesting feature is that the spread in drop volume Vimg is always smaller (≤ 5% of 

average) than the spread in tb (≤ 10% of average) values.   

 

 

Figure 4.19 a Comparison of drop breakup time tb and volume Vimg with drop number for 

P1 mode. Here G=0.057, Ka=0.000562, and θ=0˚. 
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Figure 4.19 b Comparison of drop breakup time tb and volume Vimg change with drop 

number for P1 mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 

 

Figure 4.19 c Comparison of drop breakup time tb and volume Vimg with drop number for 

P1 mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 
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Figure 4.19 d Comparison of drop breakup time tb and volume Vimg with drop number for 

P1 mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 

 

Figure 4.19 e Comparison of drop breakup time tb and volume Vimg change with drop 

number for P1 mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 
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Figure 4.19 f Comparison of drop breakup time tb and volume Vimg with drop number for 

P1 mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 

 

For moderate We, the similar plots are shown for LC regime as represented by figure 4.20 

(a-c).  In the LC regime, the drop breakup time tb and drop breakup volume Vimg change 

with drop number visually look in good agreement.  This trend is further examined at the 

end of this section.  In LC regime also, the spread for volume Vimg change is small 

(≤10%of average) compared to spread in tb values (≥10%of average) for lower We values.  

As We increases within the LC regime the spread in both Vimg and tb values is ≥10% of 

average.   
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Figure 4.20 a  Comparison of drop breakup time tb and volume Vimg with drop number for 

LC mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 

 

Figure 4.20 b Comparison of drop breakup time tb and volume Vimg with drop number for 

LC mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 
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Figure 4.20 c Comparison of drop breakup time tb and volume Vimg with drop number for 

LC mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 

 

Further increasing the We gives the chaotic regime of dripping, for which the similar plots 

are shown in figure 4.21.  There is good agreement between the variation of drop breakup 

time tb and drop breakup volume Vimg with drop number except at a few points in the 

chaotic mode of dripping.   
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Figure 4. 21 Comparison of drop breakup time tb and volume Vimg  with drop number for 

C mode.  Here G=0.057, Ka=0.000562, and θ=0˚. 

 

Similar behaviour is noticed for θ=30˚ and θ=60˚ as shown in figure 4.22 (a-c) and figure 

4.23 (a-c) respectively.  This indicates that the observations made for comparison of 

volume and tb are independent of nozzle inclination angle θ.  Here only one sample figure 

for all three modes of dripping i.e.  P1 (a), LC (b), and C (c) are shown in figure 4.22 and 

figure 4.23. 
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Figure 4.22 Comparison of drop breakup time tb and volume Vimg with drop number for 

P1 mode (a), LC mode (b), and C mode (c).  Here G=0.057, Ka=0.000562, for θ=30˚. 
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Figure 4.23 Comparison of drop breakup time tb and volume Vimg with drop number for 

P1 mode (a), LC mode (b), and C mode (c).  Here G=0.057, Ka=0.000562, for θ=60˚. 
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Figure 4.24 Comparison of pendant drop and primary drop volume 

 

Table 4.2 Correlation function f values. 

We F 

θ=0° θ=30° θ=60° 

0.001 -6.5×10
-4

 -1.1×10
-4 

 

-1.6×10
-4

 

0.003 -4.7×10
-4

 -8.5×10
-4

 

 

-2.8×10
-4

 

0.005 -5.8×10
-4

 -5.0×10
-4

 

 

-8.4×10
-4

 

0.01 -2.3×10
-4

 -6.8×10
-4

 -1.9×10
-3

 

0.02 -3.9×10
-4

 -2.9×10
-4

 -6.3×10
-3

 

0.05 -6.7×10
-4

 -5.5×10
-4

 -5.7×10
-2

 

0.1 3.5×10
-3

 6.0×10
-3

 6.4×10
-3

 

0.15 1.2×10
-2

 4.8×10
-3

 6.1×10
-3

 

0.2 1.6×10
-2

 4.9×10
-2

 2.6×10
-3

 

0.25 1.8×10
-2

 3.6×10
-2

 1.7×10
-3

 

 

These figures for all nozzle inclination angles clearly show that the trend of volume in the 

dripping experiments is not in synchrony with the drop breakup time for P1 mode of 

dripping. This difference in the P1 mode indicates that the pendant drop does not have the 

same volume every time the primary drop detaches from it.  It is challenging to obtain 
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experimental evidence for this hypothesis, because the pendant drop is very small 

compared to the main drop as shown in figure 4.24, and a difference in one pixel alone 

can add major error to the volume measurement.    To quantify the observed trends 

between the volumes and breakup times for LC and C modes of dripping, a cross 

correlation function f , similar to the evaluation of Reynolds stress in turbulence, is 

defined as (Pope, 2000), 

      f       (4.4) 

Where α = tb-tavg is breakup time fluctuation and β = V-Vavg is breakup volume 

fluctuation, where tavg and Vavg are average breakup time and average breakup volume 

respectively.  Here both α and β are normalized against mean breakup time and mean 

breakup volume respectively.  Function f is a averaged value over total experimental time.  

A positive value of f indicates that the breakup time and breakup volume are moving in 

the same direction with time and a negative value indicates that they are moving in 

opposite directions.  The negative but very small value of f indicates that they are not very 

well correlated, and if any, their trend is in opposite direction.  Zero value of function f 

simply indicates that the breakup time and breakup volume does not move in synchrony.  

Table 4.2 gives the values of f for different values of We and θ.  The small negative 

values at low We indicates that the correlation is much weaker in P1 mode of dripping 

compared to high values of We, nearly 100 times smaller than those in the LC and C 

modes of dripping.  These cross correlation function f values clearly support the visual 

observations made on plots for comparison of breakup time and breakup volume with 

drop number. 

Aside from this, the spread in the volume is small for low We in P1 and LC mode of 

dripping.  If the spread in the volume is less compared to the spread in tb values for same 
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experimental data, the LC modes of dripping can be counted as P1 modes of dripping if 

the volume spread is below 10% of its average.  So the modes of dripping based on tb 

values will have slightly different phase diagrams than that based on drop volume spread.  

So this finding opens an option to define modes of dripping on the basis of volume 

change in the dripping experiments.  In our experiments, the modes of dripping are 

decided on the basis of tb values as the error in tb measurements are much smaller than the 

error in volume calculations. 
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5 Conclusion 
 

 

This is the first systematic exploration of the phase diagram for dripping from an inclined 

nozzle.  According to the experimental results, the global dripping behaviour from an 

inclined nozzle is qualitatively similar to that from a vertical nozzle, where at low values 

of We and Ka the system shows a transition from P1 to LC before C occurs.  The phase 

diagram is however modified in which an increase in the angle of inclination  results in 

narrowing of the LC regime and giving an extended P1 region.  This finding has 

implications to applications involving droplet formation, for example, the dripping modes 

for a desired operation can be obtained by changing the nozzle inclination instead of its 

size.   

 

This study also uncovers an unexpected behaviour that increasing the nozzle inclination 

shortens the drop breakup time in the P1 mode regardless of the values of G, Ka, and We.  

It highlights the significant role of asymmetry due to nozzle inclination in weakening the 

surface tension forces to resist gravity.  This was further supported by both experiments 

and computations which showed that the maximum volume of a stable pendant drop 

decreases noticeably with . 

 

The predicted average volumes of the primary drops are compared with the average 

volumes obtained from image analysis and found within 15%.  Further the volume change 

of primary drops is visually in good agreement with the breakup time change for LC and 

C mode of dripping, but they do not agree in P1 mode of dripping, suggesting that the 



98 

 

pendant drop has different volume for every drop breakup.  The spread of volume is 

always smaller compared to the spread of the breakup time in P1 mode dripping. 

 

Further, it was found that the drop volume in the P1 mode is reasonably independent of 

the flow rate.  This has potential ramifications in applications, as the same drop size could 

be produced at a greater rate.  This finding was summarized in a correlation accurate to 

within 10% for the dimensionless breakup volume V over wide ranges of G, Ka and .   

 

Future efforts could be directed to uncover the underlying reasons such as why pendant 

drop volume changes for every drop for low We.  
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Appendix A- MATLAB codes 

 

A.1 MATLAB code for tb calculations  

 

function time_periodicity1(a,b,x,y,fps); 

  
%a= starting image,  b=number of images to be analysed 
% y= its a column on image which is at the center of the nozzle from which 
% intensity measurements has to start 
% x= subsequent rows starting from center of nozzle till droplet 
%a=49; b=100; 
%x=321; y=165; 
somefile= 'G:\Work\Images\S1N1,30deg\We=0.2,S1N1,30deg\'; % maisource  
%subname= 'view000'; % image name (incomplete) 
%maximum=max(size(m)); 

  
while a<=b; % Takes images in sequence from given folder mentioned in 

following two lines. 

   
    if a<=9; 
        subname= 'view0000'; % This is to read images by subname 

  
    elseif (9<a)&& (a<100); 
        subname= 'view000'; 
    elseif (99<a)&& (a<1000); 
        subname= 'view00'; 
    elseif (999<a) && (a<10000); 
        subname= 'view0'; 
    elseif (9999<a) && (a<100000); 
        subname= 'view'; 
    end 

  
    str= num2str(a); 

     
    images= strcat(somefile,subname,str,'.tif'); % 

C:\MATLAB701\work\snapshots\: is the path or directory for images. % 

view00, str and .tif completes the name of image 

     
    img= imread(images); % reads image in matlab 

     

     
    img= rgb2gray(img); % converts image to gray scale 
    level = graythresh(img); 
    img= im2bw(img,level); 

     
    A= size(img); % matlab reads image in matrix form so A is size of image 

which is a matrix 
    %whos % 

     
    k=1; % Changing k does not make much difference 
    j=x; % x axis 
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    %count=0; 
        i=y; % y axis 
        val1 = img(i,j,k); % point on nozzle (dark intensity) 
        val2 = img(i+10,j,k); % point in air (light intensity)     
        val3 = img(i+30,j,k);  % point on a drop (dark intensity)  

         
        if val1>val2;  
            diff1= abs(val1-val2); 
        else 
            diff1= abs(val2-val1); 
        end 

         
        if val2>val3;  
            diff2= abs(val2-val3); 
        else 
            diff2= abs(val3-val2); 
        end 

                                  

     
   while diff1 >.50 && diff2>.50 ; % the threashold value can vary  

     
        imnumb=a; 
        strtimg1(a)=imnumb-1; 
        strtimg1(strtimg1==0)=[]; 

         
        g= [strtimg1]; 

  
            for m = 2:length(g); 
                num(m)= abs((g(m)-g(m-1))); 
                time(m)= num(m)/fps  
                dlmwrite('C:\MATLAB701\work\strtimg1.m',strtimg1); 
                dlmwrite('C:\MATLAB701\work\time.m',time); 
                strtimg1 
            end 
         a=a+5; 
    break 
   end 

    

    
   a=a+1; 
end 

    
end   
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A.2 MATLAB code for breakup volume calculations 

 

 
function Volume_simpsons_v14 
clear all; 

   

    
[strtimg]=[6,13,19,20,29,35,43,48,54,60,65,72,80,95,100,106,113,116,1

22,129,135,141,143,147,153,156,160,164,174,181,185,187,189,193,196,20

3,209,212,217,220,224,228,230,232,236,238,243,248];% list outs the 

drop break up image for angle 1 
    for imn=1:length(strtimg); 

         
        for h=1:2; 

                     
        

[r1,r2,strty1,endy1,kk,rng]=Volume_simpsons_v13(180,240,151,300,imn,s

trtimg,h);%Calling file Volume_simpsons_v13 which is given at the end 

of this code which give two different radius r1 and r2 as a output 

for the volume calculations. %r1 is the radius based on vertical half 

section of a asymmetric drop and r2 is for another half vertical 

section. 

  
      

strtimg1=[15,22,28,29,38,45,52,57,63,69,74,81,89,104,109,115,122,125,

131,138,144,150,152,156,162,165,169,173,183,190,194,196,198,202,205,2

12,218,221,226,229,233,237,239,241,245,247,252,257]; 
      % list outs the drop break up image for angle 1   

 
      

[r11,r22,strty11,endy11]=Volume_simpsons_v12(180,240,151,300,kk,h,imn

,strtimg1);%Calling file Volume_simpsons_v12 which is given at the 

end of this code which give two different radius r11 and r22 as a 

output for the volume calculations.%r11 is the radius based on 

verticle half section of a asymmetric drop and r22 is for another 

half verticle section. 

  

  
          p=length(rng); 
          z=mod(p,2); 

  
       if z==0 % Use of Simpsons 1/3 rd rule 

  
          

vol1(imn)=(pi*h/3).*((r1(strty1).*r11(strty11))+(r1(endy1).*r11

(endy11))+(4*sum(r1(strty1+h:2*h:endy1-

h).*r11(strty11+h:2*h:endy11-

h)))+(2*sum(r1(strty1+2*h:2*h:endy1-

2*h).*r11(strty11+2*h:2*h:endy11-2*h))));% volume based on r1 

and r2 

  
          

vol2(imn)=(pi*h/3).*((r2(strty1).*r22(strty11))+(r2(endy1).*r22

(endy11))+(4*sum(r2(strty1+h:2*h:endy1-

h).*r22(strty11+h:2*h:endy11-
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h)))+(2*sum(r2(strty1+2*h:2*h:endy1-

2*h).*r22(strty11+2*h:2*h:endy11-2*h))));% volume based on r11 

and r22 

  
          else  

  
          

vol1(imn)=((pi*h/3).*((r1(strty1).*(r11(strty11))+(r1(endy1-

4*h).*r11(endy11-4*h))+(4*sum(r1(strty1+1*h:2*h:endy1-

5*h).*r11(strty11+1*h:2*h:endy11-

5*h)))+(2*sum(r1(strty1+2*h:2*h:endy1-

6*h).*r11(strty11+2*h:2*h:endy11-

6*h)))))+(((pi*3*h)/8).*((r1(endy1-3*h).*r11(endy11-

3*h))+(r1(endy1).*r11(endy11))+(3*r1(endy1-2*h).*r11(endy11-

2*h))+(3*r1(endy1-1*h).*r11(endy11-1*h))))); 

  
vol2(imn)=((pi*h/3).*((r2(strty1).*(r22(strty11))+(r2(endy1-

4*h).*r22(endy11-4*h))+(4*sum(r2(strty1+1*h:2*h:endy1-

5*h).*r22(strty11+1*h:2*h:endy11-

5*h)))+(2*sum(r2(strty1+2*h:2*h:endy1-

6*h).*r22(strty11+2*h:2*h:endy11-

6*h)))))+(((pi*3*h)/8).*((r2(endy1-3*h).*r22(endy11-

3*h))+(r2(endy1).*r22(endy11))+(3*r2(endy1-2*h).*r22(endy11-

2*h))+(3*r2(endy1-1*h).*r22(endy11-1*h))))); 

  
          end 

avgvol(imn) = (vol1(imn)+vol2(imn))/2; %taking average of vol1 

and vol2  

  
          if h<=1; 
            dumvol1(imn)=avgvol(imn); 
          else 
            dumvol2(imn)=avgvol(imn); 
          end 
      end 

               
      es(imn)=abs((dumvol1(imn)-dumvol2(imn))/15); 

  
truevol(imn)=(dumvol1(imn)+es(imn))*(5.694241982*10^-6)%this factor 

results from the pixel to ml calculations  

             
      dlmwrite('C:\MATLAB701\work\vol.m',truevol); 

 
errorinpercent=((100*es)/truevol) ; % Gives error percent in the true 

volume calculations 

  

             
end 
end 
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Function which is being called in programme 

Volume_simpsons_v14 above  

 
function [r11,r22,strty11,endy11]= 

Volume_simpsons_v12(strtx,endx,strty,endy,kk,h,imn,strtimg1); 

  

  
% strtx:Starting point on x axix very near to nozzle end from where pixel 

reading starts 
% endx:end point on x axix in the air where pixel reading ends 
% strty:Starting point on y axix in air from where pixel reading starts 
% endy:end point on y axix in air from where pixel reading ends 
% strty11:After detecting the drop, first pixel on y axis on actual drop 
% endy11:After detecting the drop, last pixel on y axis on actual drop 

  

  
somefile= 'H:\Final work\final\Images\Angle-60 deg\Nozzle-1\S1\Angle-

1\We=0.3,S1N1,60deg\';  %calling file  

   

  
    if strtimg1(imn)<=9; 
        subname= 'view0000';  
    elseif (9<strtimg1(imn))&&(strtimg1(imn)<100); 
        subname= 'view000'; 
    elseif (99<strtimg1(imn))&& (strtimg1(imn)<1000); 
        subname= 'view00'; 
    elseif (999<strtimg1(imn))&& (strtimg1(imn)<10000); 
        subname= 'view0'; 
    elseif (9999<strtimg1(imn))&& (strtimg1(imn)<100000); 
        subname= 'view'; 
    end 

    
    str= num2str(strtimg1(imn));  
    images= strcat(somefile,subname,str,'.tif');  
    img = imread(images);  
    img= rgb2gray(img); 
    level = graythresh(img); 
    img= im2bw(img,level+0.1);  

  

      
     hh=h; 

        
        if hh<=1;  
            rng=strty:endy; 
        else 
            rng= strty:2:endy; 
        end 

     
        rr= zeros(length(rng)); 
        r11= zeros(size(rng));   
        r22= zeros(length(rng)); 
        kk1= 0; 

  
        for i= rng; 

       
            j1=0;j2=0; 
            for j =strtx:endx;  
                val1= img(i,j,1);   
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                val2= img(i,j+1,1);  

             
                if val1>val2; 
                    diff= abs(val1-val2); 
                else 
                    diff= abs(val2-val1); 
                end 

             
                if val1>val2 && diff > .5;   
                    j1=j+1; % j+1 is the black pixel and j is white pixel 
                elseif val2>val1 && diff > .5; 
                    j2=j; 
                end 

             
            end 

         
            rr(i) = (j1 + j2)/2; 
            if  rr(i)==0 && rr(i-h)>0 
                endy1=i-h; 
            break 

                 
            end 

             
            dummyj2(i)= j2; 
            dummyj1(i)= j1; 
        end  

  
            strty11=endy1-(kk)+1; 
            kk1=kk ; 
            endy11=endy1; 

  

    
        for i= strty11:h:endy11; 

             
            meanr= mean(rr(strty11:h:endy11)); 

  
            r11(i)= abs(meanr-dummyj1(i)); 
            r22(i)= abs(dummyj2(i)-meanr); 

         
            if r11(i)<=0; 
                r22(i)=abs(r11(i))+r22(i); 
                r11(i)=0; 
            elseif r22(i)<=0; 
                r11(i)=abs(r22(i))+r11(i); 
                r22(i)=0; 

  
            end 

         
    end 
end   
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Function which is being called in programme 

Volume_simpsons_v14 above 

function [r1,r2,strty1,endy1,kk,rng]= Volume_simpsons_v13 

(strtx,endx,strty,endy,imn,strtimg,h); 

  
% strtx:Starting point on x axix very near to nozzle end from where pixel 

reading starts 
% endx:end point on x axix in the air where pixel reading ends 
% strty:Starting point on y axix in air from where pixel reading starts 
% endy:end point on y axix in air from where pixel reading ends 
% strty1:After detecting the drop, first pixel on y axis on actual drop 
% endy1:After detecting the drop, last pixel on y axis on actual drop 

  

  

  
somefile= 'H:\Final work\final\Images\Angle-60 deg\Nozzle-1\S1\Angle-

1\We=0.3,S1N1,60deg\'; %calling file 

  
    strtimg(imn) 

     
    if strtimg(imn)<=9; 
        subname= 'view0000';  
    elseif (9<strtimg(imn))&&(strtimg(imn)<100); 
        subname= 'view000'; 
    elseif (99<strtimg(imn))&& (strtimg(imn)<1000); 
        subname= 'view00'; 
    elseif (999<strtimg(imn))&& (strtimg(imn)<10000); 
        subname= 'view0'; 
    elseif (9999<strtimg(imn))&& (strtimg(imn)<100000); 
        subname= 'view'; 
    end 

    
    str= num2str(strtimg(imn));  
    images= strcat(somefile,subname,str,'.tif');  
    img = imread(images);  
    img= rgb2gray(img); 
    level = graythresh(img); 
    img= im2bw(img,level+0.1);  

   

  
        if h<=1;  
            rng=strty:endy; 
        else 
            rng= strty:2:endy; 
        end 
        meanr=zeros(length(rng)); 
        rr= zeros(length(rng)); 
        r1= zeros(length(rng));   
        r2= zeros(length(rng)); 
        j1= zeros(length(rng)); 
        j2= zeros(length(rng)); 
        dummyj1= zeros(length(rng)); 
        dummyj2= zeros(length(rng)); 
        kk= 0; 

         

  
        for i= rng; 
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            j1=0;j2=0; 
            for j =strtx:endx;  
                val1= img(i,j,1);   
                val2= img(i,j+1,1);  

             
                if val1>val2; 
                   diff= abs(val1-val2); 
                else 
                    diff= abs(val2-val1); 
                end 

             
                if val1>val2 && diff > .5;   
                    j1=j+1; % j+1 is the black pixel and j is white pixel 
                elseif val2>val1 && diff > .5; 
                    j2=j; 
                end 

             
            end 

         
            rr(i) = (j1 + j2)/2; 
            dummyj2(i)= j2;  
            dummyj1(i)= j1; 

             
            if  rr(i)==0 && rr(i-h)>0 
                endy1=i-h; 
                break 

                 
            end 
        end  

     
        for i=strty:h:endy1; 

         
            meanr= mean(rr(strty:h:endy1)); 

             
            rad1(i)= (meanr-dummyj1(i)); 
            rad2(i)= (dummyj2(i)-meanr); 
            dia(i)=(rad1(i)+rad2(i))/2; 

             
if (dia(i-(4*h))>dia(i-(3*h))) && (dia(i-(3*h))>=(dia(i-

2*h)))&& (dia(i-(2*h))<=(dia(i-1*h))) &&(dia(i-1*h)<(dia(i))); 
            strty1=i-2*h; 
            break 

             
elseif(dia(i-(8*h))>dia(i-(7*h)))&&(dia(i-(7*h))>=dia(i-(6*h))) 

&& (dia(i-(6*h))>=dia(i-(5*h))) && (dia(i-(5*h))>=(dia(i-

4*h)))&& (dia(i-(4*h))<=(dia(i-3*h))) &&(dia(i-3*h)<=(dia(i-

2*h))) && (dia(i-(i-2*h))<=dia(i-1*h)) &&(dia(i-1*h)<(dia(i))); 
            strty1=i-4*h; 

                  
            break 

             
elseif (dia(i-(6*h))>dia(i-(5*h))) && (dia(i-(5*h))>=(dia(i-

4*h)))&& (dia(i-(4*h))>=(dia(i-3*h))) &&(dia(i-3*h)<=(dia(i-

2*h))) && (dia(i-(i-2*h))<=dia(i-1*h)) &&(dia(i-1*h)<(dia(i))); 
            strty1=i-3*h; 

                  
            break 
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elseif (dia(i-(3*h))>(dia(i-(2*h)))) &&(dia(i-2*h)<=(dia(i-

1*h))) && (dia(i-1*h)<(dia(i))); 
            strty1=i-1*h; 
            break 

            
            end 

             
        end 

         
        for i= strty1:h:endy1; 
            r1(i)= (meanr-dummyj1(i)); 
            r2(i)= (dummyj2(i)-meanr); 

             

            
        end 
        kk=(endy1-strty1+1); 
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A.3 MATLAB code for FFT calculations 

clc 
clear 

  
% To use real data (y-axis in time domain) 
data =[  
];%copy the data of breakup time here 

  
N = length(data);     % number of data points 
t_tot= sum(data(:));  % total sampling time 
fs   = N/t_tot;       % sampling frequency 

  
% Create the time vector (x-axis in time domain) 
t = zeros(N, 1); 
t(1) = data(1); 

for i = 2:N 
    t(i) = data(i) + t(i-1); 
end 

  

 
% Watch out for the effects 
%NFFT = 2^nextpow2(N);    % Next power of 2 from the length of data 
NFFT = N; 

  
Y = fft(data, NFFT); 

  
% Both forms are equal: 
%f = (fs/2)*linspace(0,1,NFFT/2+1); 
f = (1:NFFT/2)*fs/NFFT; 
mag=abs(Y(2:NFFT/2+1)); 
% Plot single-sided amplitude spectrum. 
% First point of fft is excluded 
figure(1) 
plot(f, log(mag)) 
%title('Single-Sided Amplitude Spectrum of y(t)') 
xlabel('Frequency (Hz)') 
ylabel('Amplitude') 
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A.4 MATLAB code for Lomb Scargle periodogram calculations 

 

clc 
clear 

  
% Call the data file, remember to change the assignment of y below 
drop_dataS1N1_breakuptime1_ang_0_oil; 

  
% Select the desired data point from the Weber number vector 

for point =1:length(we_no); 

    
point 
% Assign the data and the Weber number 
y  = we_ang_0{point}; 
We = we_no(point); 
d = we_ang_0{point}; 
lny=length(y) 
N = length(y);      % number of data points 
t_tot = sum(d(:));  % total sampling time 
fs = N/t_tot;       % sampling frequency 

  
% Create the time vector (x-axis in time domain) 
t = cumsum(d); 
length(y) 
length(t) 
lnt=length(t) 
 

 
% Now do compute the Lomb normalized periodogram 
% first create a vector of frequency bins 
NFFT = N; 
f = (1:NFFT/2)*fs/NFFT; 
lnf=length(f) 
[Pn Prob] = lomb(t,y,f); 

  

  

 
% plot the periodogram, to also indicate the peaks 
figure(point) 
ylim([0 15]); 
%axis([0 1 0 80]); 
%b=horzcat('4,4,',num2str(point)) 
subplot(1,1,1) 
h=plot(f,Pn,'k'); set(h,'LineWidth',2); 

  
% sort for smallest values first  
% (i.e. those points least likely to be random) 

  
[p,ind] = sort(Prob); 
pos = ind(1:last); 
ANS=[f(pos)' Pn(pos)' Prob(pos)']; 

  
fprintf('For We = %.3f,\n', We) 
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display('The probably non-random frequencies:') 
display(' ') 
display('Frequency in Hz    PSD     Probability') 

for row = 1:last 
     fprintf('  %.4f        %.4f      %.4f\n', ANS(row,:)) 

end 

  
% show the top 3 peaks  

for j = 1:2 
text(f(pos(j)), Pn(pos(j)), sprintf('f = %.4f', 

f(pos(j))),'FontSize',16,'FontWeight','bold') 
end 

         
xlabel('Frequency (Hz)','FontSize',18,'FontWeight','bold'); 

ylabel('Normalized PSD','FontSize',18,'FontWeight','bold');  
title(sprintf('We= %g',we_no(point)),'FontSize',18,'FontWeight','bold'); 

set(gca,'LineWidth',2,'FontSize',16);  

  

 
end 

 

 

Function which is being called in of Lomb Scargle method above 

 

% 
%   [Pn, Prob] = lomb(t, y, freq) 
% 
%       Uses Lomb's method to compute normalized 
%       periodogram values "Pn" as a function of 
%       supplied vector of frequencies "freq" for 
%       input vectors "t" (time) and "y" (observations). 
%       Also returned is probability "Prob" of same 
%       length as Pn (and freq) that the null hypothesis 
%       is valid. 
%       x and y must be the same length. 

 
function [Pn, Prob] = lomb(t, y, f) 

 
%       check inputs 

if length(t) ~= length(y); error('t and y not same length'); 
    exit;  

end; 

 
%   subtract mean, compute variance, initialize Pn 
z = y - mean(y); 
var = std(y); 
N=length(f); 
Pn=zeros(size(f)); 

 
%   now do main loop for all frequencies 
for i=1:length(f) 
    w=2*pi*f(i); 
    if w > 0  
       twt = 2*w*t; 
       tau = atan2(sum(sin(twt)),sum(cos(twt)))/2/w; 
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       wtmt = w*(t - tau); 
       Pn(i) = (sum(z.*cos(wtmt)).^2)/sum(cos(wtmt).^2) + ... 
        (sum(z.*sin(wtmt)).^2)/sum(sin(wtmt).^2); 
     else 
    Pn(i) = (sum(z.*t).^2)/sum(t.^2); 
     end 
end 
% 
%   and normalize by variance, compute probs 
Pn=Pn/2/var.^2; 
Prob = 1-(1-exp(-Pn)).^N; 
for i=1:length(Pn)      % accomodate possible roundoff error 
    if Prob(i) < .001 
    Prob(i) = N*exp(-Pn(i)); 
    end 

 

end 
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Appendix B- Experimental set-up images 

 

 

 

Figure B.1 Experimental set-up photograph 

 

Nozzle 

LED-1 

LED-2 

Transparent 

Shield 

Syringe 

pump 



117 

 

 

Figure B.2 Experimental set-up near nozzle 
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Appendix C-Lomb Scargle periodogram plots 

 

 

Figure C.1 Lomb Scargle periodogram for P1 behaviour. Here G=0.057, 

Ka=0.000562 
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Figure C.2 Lomb Scargle periodogram for P1 behaviour. Here G=0.057, Ka=0.000562 

 

Figure C.3 Lomb Scargle periodogram for P1 behaviour. Here G=0.057, Ka=0.000562 
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Figure C.4 Lomb Scargle periodogram for P1 behaviour. Here G=0.057, Ka=0.000562 

 

Figure C.5 Lomb Scargle periodogram for LC behaviour. Here G=0.057, Ka=0.000562
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Appendix D- List of Publications and Conferences Attended 

 

 

a) Submitted a paper titled “Dripping Modes of Newtonian Liquids: The Effect of 

Nozzle Inclination” to the ICFMT 2013: International Conference on Fluid 

Mechanics and Thermodynamics.  The paper was selected for an oral presentation on 

17 December 2013. 

b) Submitted a manuscript titled “Dripping Dynamics of Newtonian Liquids from a 

tilted Nozzle” to Journal of Mechanics B/Fluids. This paper is currently under 

revision by reviewers. 

 


