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ABSTRACT 

Sodium metal is an essential reducing agent, and it has a wide range of applications. In 

the present study ionic liquids (ILs) and their analogues known as deep eutectic solvents 

(DESs) have been proposed as electrolytes for sodium metal production at moderate 

temperatures of 90ºC to 150ºC. These electrolytes can be recognized as “green” solvents 

as they can potentially replace hazardous and polluting organic solvents. 

In using ILs or DESs as electrolytes for the production of sodium, three factors are of 

paramount importance: the solubility of commercially available sodium salts in the IL 

or DES, the conductivity of the solution of sodium salt in IL or DES, and the stability of 

the sodium metal in the IL or DES. DESs possess additional advantages over ILs 

especially because of the ease of synthesizing them and due to the lower cost of 

preparation. The evaluation of DESs as new electrolytes requires an insight of their 

main physical properties. For this purpose, some physical properties of specially-

prepared DESs were measured and the results were reported. Zinc chloride-based DESs 

were characterized for their melting temperatures, viscosities, electrical conductivities 

and refractive indices. 

Subsequently, the solubility of different commercially available sodium salts were 

measured in different DESs and ILs at different temperatures. The solubility of sodium 

chloride increased with temperature in all the investigated ILs. The chemical structure 

of cations and anions in the ILs affected the solubility. The effect of the cation was 

larger than that of the anion.Different DESs were prepared by mixing ammonium or 

phosphonium salts, with different hydrogen bond donors (HBDs), or metal halides at 

several molar ratios. The effect of temperature on the solubility of sodium salts was 

found to be different from one DES to another. In certain DESs, the solubility of sodium 

salts increased with increasing temperature. The constituents of the DES and the molar 
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ratios affected the solubility of sodium salts. DESs based on HBDs had very low 

solubility of NaCl in comparison to those that used metal halides as complexing agents. 

Sodium metal reacted with DESs containing HBDs; however, sodium metal was stable 

and did not react with DESs synthesized by utilizing metal halides.  

NRTL model was used to correlate the solubility of NaCl in some ILs as well as DESs 

at different temperatures. In most cases the experimental and calculated solubilities for 

NaCl in DESs and ILs were in good agreement. 

Cyclic voltammetry analysis was used to study the stability of sodium within the 

potential range found for metal halide-based DESs at different salt:metal halide molar 

ratios under different temperatures. It was found that the electrical windows of DESs 

droped with the increase in ZnCl2 molar composition in the DES and increased as the 

temperature increased. Reduction peak was observed for sodium ion in some ZnCl2-

based DESs at certain temperatures. 

This work shows that DESs are superior to conventional molten salt electrolytes of 

Downs Process for the production of sodium metal due to lower operational temperature 

and less negative effects on the environment.  
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ABSTRAK 

Logam natrium merupakan agen penurunan yang penting. Ianya mempunyai pelbagai 

kegunaan. Dalam kajian ini, IL dan DES telah dicadangkan sebagai elektrolit untuk 

penghasilan logam natrium pada suhu sederhana antara 90 ºC hingga 150 ºC. Elektrolit-

elektrolit ini boleh dikenali sebagai “pelarut hijau” memandangkan mereka berpotensi 

untuk menggantikan pelarut organik yang berbahaya dan mencemarkan. 

Dalam penggunaan cecair ionik (ionic liquids atau ILs) atau analog mereka yang 

dikenali sebagai pelarut “deep eutectic” (Deep Eutectic Solvents atau DES) sebagai 

pelarut dan elektrolit untuk penghasilan logam natrium, tiga faktor penting untuk proses 

tersebut termasuklah: keterlarutan garam natrium komersil dalam IL atau DES, 

kekonduksian larutan garam natrium dalam IL atau DES, dan kestabilan logam natrium 

dalam IL atau DES. DES mempunyai kelebihan berbanding IL terutamanya kerana 

penghasilan yang mudah dan berkos rendah. Penilaian DES sebagai elektrolit baru 

memerlukan pemahaman terhadap sifat fizikal mereka. Untuk tujuan ini, sebahagian 

ciri-ciri fizikal DES yang disediakan khas telah didapatkan dan keputusannya 

dilaporkan. DES berasaskan zink klorida telah dikarakterisasikan berdasarkan suhu 

lebur, kelikatan, konduktiviti elektrikal, dan indeks biasan pada julat suhu yang besar. 

Seterusnya, keterlarutan garam natrium komersil yang berlainan telah diukur dalam 

DES dan IL yang berlainan pada suhu berlainan. Keterlarutan natrium klorida 

meningkat dengan suhu dalam semua IL yang dikaji. Struktur kimia kation dan anion 

dalam IL mempengaruhi keterlarutan. Kesan kation lebih besar berbanding anion. DES 

berlainan dihasilkan dengan mencampurkan garam ammonium dan fosfonium, dengan 

penderma ikatan hidrogen (hydrogen bond donors atau HBD) yang berlainan, atau 

logam halida pada beberapa nisbah molar. Kesan suhu pada keterlarutan garam natrium 

telah didapati berbeza daripada satu DES dengan yang lain. Dalam sesetengah DES, 
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keterlarutan garam natrium meningkat dengan peningkatan suhu. Konstituen-konstituen 

DES dan nisbah molar mempengaruhi keterlarutan garam natrium. DES berasaskan 

HBD mempunyai keterlarutan NaCl yang sangat rendah  berbanding DES yang 

menggunakan logam halida sebagai agen pengkompleksan. Logam natrium 

bertindakbalas dengan DES yang mengandungi etilena glikol dan gliserol sebagai HBD; 

namun, logam natrium adalah stabil dan tidak bertindakbalas dengan DES yang 

disintesis menggunakan logam halida. 

Pekali aktiviti termodinamik model “non-random two-liquid” (NRTL) telah digunakan 

untuk mengkorelasi keterlarutan NaCl dalam beberapa IL dan DES pada suhu berlainan. 

Dalam kebanyakan kes, keterlarutan yang didapati daripada eksperimen dengan yang 

dikira untuk NaCl dalam DES dan IL adalah hampir sama.  

Analisis "cyclic voltammetry" telah digunakan untuk mengkaji kestabilan natrium 

dalam julat berpotensi yang ditemukan untuk DES berasaskan logam halida pada 

pelbagai nisbah molar garam:logam halida pada suhu yang berbeza. Keputusan 

menunjukkan bahawa julat elektrikal untuk DES berkurangan dengan meningkatnya 

komposisi molar ZnCl2 dalam DES dan meningkat seiring peningkatan suhu. 

Pengurangan puncak diperhatikan untuk ion natrium dalam sebahagian DES berasaskan 

ZnCl2 pada suhu tertentu. 

Kajian ini menunjukkan DES mempunyai kelebihan berbanding elektrolit larutan garam 

konvensional dalam proses Down’s untuk penghasilan logam natrium oleh sebab suhu 

operasi yang lebih rendah dan kurang kesan negative terhadap alam sekitar.  



viii 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENT iii 
ABSTRACT iv 
ABSTRAK vi 
TABLE OF CONTENTS viii 
LIST OG FIGURES xii 
LIST OF TABLES xvii 
LIST OF ABBREVIATIONS xix 
NOMENCLATURE xx 
      

1 CHAPTER I INTRODUCTION 1 
      
 1.1 INTRODUCTION 1 
 1.2 IONIC LIQUIDS AND THEIR IMPORTANCE 3 
 1.3 PROBLEM STATEMENT 5 
 1.4 RESEARCH OBJECTIVES 7 
 1.5 RESEARCH METHODOLOGY 7 
 1.6 THESIS OUTLINE 8 
      

2 CHAPTER II LITERATURE REVIEW 9 
      
 2.1 SODIUM METAL 9 
  2.1.1 Chemical Properties of Sodium Metal  10 
  2.1.2 Production of Sodium Metal 11 
  2.1.3 Product Grade and Quality Levels 19 
  2.1.4 Factors Affecting Pricing  19 
  2.1.5 Drawbacks of Downs Process 19 
 2.2 GREEN ELECTROLYTES (GREEN 

SOLVENTS)   
21 

 2.3 INTRODUCTION TO IONIC LIQUIDS 23 
  2.3.1 Physical properties of ILs 24 
  2.3.2 History of ILs  26 
  2.3.3 Synthesis of ILs 27 
  2.3.4 Applications of ILs 28 
   2.3.4.1 Applications of ILs as 

electrolytes 
29 

   2.3.4.2 ILs in fuel cells 31 
   2.3.4.3 ILs in Electrochemical Sensors 

and Biosensors 
31 

   2.3.4.4 ILs in supercapacitors 32 
   2.3.4.5 Application of ILs in batteries 33 
  2.3.5 ILs at extreme temperatures 35 
  2.3.6 Limitations of the use of ILs 36 
 2.4 DEEP EUTECTIC SOLVENTS (DESs) 37 



ix 
 

  2.4.1 Synthesis of DESs 43 
  2.4.2 Physical properties of DESs 43 
   2.4.2.1 Freezing point (melting point) 44 
   2.4.2.2 Viscosity 44 
   2.4.2.3 Electrical conductivity 45 
   2.4.2.4 Refractive index  46 
   2.4.2.5 Density 47 
  2.4.3 Applications of DESs 48 
   2.4.3.1 DESs in CO2 capture process 49 
   2.4.3.2 Dissolution of metal oxides 50 
   2.4.3.3 Purification of biodiesel 51 
   2.4.3.4 DESs for ionic conductivity 

enhancement 
52 

   2.4.3.5 DESs as solvents for extraction of 
aromatic hydrocarbons from 
naphtha 

52 

   2.4.3.6 DESs as catalysts 53 

   2.4.3.7 DESs as electrolytes 54 
 2.5 ILs/DESs ELECTROLYTE as MOLTEN SALT 

in DOWNS PROCESS   
58 

  2.5.1 Solubility 59 
  2.5.2 Stability 61 
      

3 CHAPTER III METHODOLOGY 62 
      
 3.1 SYNTHESIS OF DESs 62 

  3.1.1 Chemicals 62 
  3.1.2 Synthetic procedure 63 
 3.2 CHARACTERIZATION OF DESs 64 

 3.3 MEASURING THE SOLUBILITY OF 
SODIUM SALTS IN DESs AND ILs 

68 

 3.4 MEASURING THE CONDUCTIVITIES OF 
SODIUM SOLUTIONS 

69 

 3.5 MEASURING THE STABILITY OF SODIUM 
METAL IN DESs  

70 

 3.6 CYCLIC VOLTAMMETRY 70 
      

4 CHAPTER IV RESULTS AND DISCUSSION 72 
      
 4.1 SYNTHESIS AND CHARACTERIZATION OF 

DIFFERENT DESs 
74 

  4.1.1 Melting temperatures 74 
  4.1.2 Viscosities 76 



x 
 

  4.1.3 Electrical conductivity 81 
  4.1.4 Refractive index 92 
 4.2 SOLUBILITY OF DIFFERENT SODIUM 

SALTS IN ILs AND DESs 
96 

  4.2.1 Solubility of sodium chloride, sodium 
bromide, and sodium carbonate in 
ammonium-based DESs 

97 

   4.2.1.1 Stability of sodium metal in DESs 
1 – 9 

107 

   4.2.1.2 Solubility modelling 107 
   4.2.2. Solubility of sodium chloride in 

phosphonium-based DESs 
111 

   4.2.2.1 Stability of sodium metal in DESs 
10 – 16 

117 

   4.2.2.2 Solubility modelling 117 
  4.2.3 Solubility of sodium chloride in different 

ILs 
123 

   4.2.3.1 Solubility modelling 127 
 4.3 ELECTRICAL CONDUCTIVITY OF SODIUM 

CHLORIDE SATURATED IN DESs 
131 

 4.4 THE ELECTROCHEMICAL POTENTIAL 
WINDOWS OF ZnCl2 BASED DESs 

141 

      

5 CHAPTER V CONCLUSIONS 153 
      
 5.1 A SIMPLE AND EFFICIENT METHOD CAN 

BE USED FOR THE SYNTHESIS OF DESs  
153 

 5.2 DIFFERENT CONDITIONS ARE NEEDED 
FOR THE SYNTHESIS Of DESs OF 
DIFFERENT COMBINATIONS  

153 

 5.3 PHYSICAL PROPERTIES OF DESs ARE 
TEMPERATURE AND COMPONENT 
DEPENDENT 

154 

 5.4 SOLUBILITY OF SODIUM SALTS IN ILs OR 
DESs DEPENDED ON VARIOUS 
PARAMETERS 

154 

 5.5 NRTL ACTIVITY COEFFICIENTS MODEL 
CAN BE APPLIED SUCCESSFULLY FOR 
THE STUDIED SYSTEMS 

155 

 5.6 ZnCl¬2 –BASED DESs HAD A HIGH 
POTENTIAL FOR BEING ELECTROLYTES 
FOR SODIUM PRODUCTION 

155 



xi 
 

6 CHAPTER VI RECOMMENDATIONS FOR FUTURE 
WORK 

 

156 

BIBLIOGRPHY 157 

APPENDIX A 169 

 



xii 
 

LIST OF FIGURES 

Figure 2.1 Castner’s Cell  13 
Figure 2.2 Down’s Cell 14 
Figure 2.3 Flowchart for sodium metal production process by DuPont 16 
Figure 2.4 Schematic representation of eutectic mixture formation 37 
Figure 2.5 Structure of anthracene and phenantherne 60 

Figure 4.1  Melting temperatures of DES5 (●), DES8 (▼), DES12 
(▲) and DES15 (■) as a function of salt:HBD mole ratio 76 

Figure 4.2 
Viscosity μ of DES5 1:1 (●), 1:2 (■) and 1:3 (▲) as a 
function of inversed temperature T-1. Curves represent 
fitting by Equation 1 

78 

Figure 4.3 
Viscosity μ of DES8 1:2 (●), 1:3 (■) and 1:4 (▲) as a 
function of inversed temperature, T-1. Curves represent 
fitting by Equation 1 

79 

Figure 4.4 
Viscosity μ of DES12 1:2 (●), 1:3 (■) and 1:4 (▲) as a 
function of inversed temperature, T-1. Curves represent 
fitting by Equation 1 

80 

Figure 4.5 
Viscosity μ of DES15 1:2 (●), 1:3 (■) and 1:4 (▲) as a 
function of inversed temperature, T-1. Curves represent 
fitting by Equation 1. 

80 

Figure 4.6 
Viscosity μ of DES5 1:2 (●), DES8 1:2 (■), DES12 1:2 
(▲), DES15 1:2 (▼) as a function of inversed temperature, 
T-1. Curves represent fitting by Equation 1 

81 

Figure 4.7 
Electrical conductivity σ of DES1 1:1.75 (●), 1:2 (■), and 
1:2.5 (▲) as a function of the inversed temperature. Curves 
represent fitting by Equation 4.2. 

83 

Figure 4.8 
Electrical conductivity σ of DES2 1:1 (●), 1:2 (■), and 1:3 
(▲) as a function of the inversed temperature. Curves 
represent fitting by Equation 4.2. 

84 

Figure 4.9 
Electrical conductivity σ of DES3 1:2.5 (●), 1:3 (■), and 
1:4 (▲) as a function of the inversed temperature. Curves 
represent fitting by Equation 4.2. 

85 

Figure 4.10 
Electrical conductivity σ of DES4 1:2 (●), 1:3 (■), and 1:4 
(▲) as a function of the inversed temperature. Curves 
represent fitting by Equation 4.2. 

85 

Figure 4.11 
Electrical conductivity σ of DES5 1:1 (●), 1:2 (■), 1:3 (▲), 
and 1:4 (▼) as a function of the inversed temperature. 
Curves represent fitting by Equation 4.2. 

86 

Figure 4.12 
Electrical conductivity σ of DES8 1:1 (●), 1:2 (■), 1:3 (▲), 
and 1:4 (▼) as a function of the inversed temperature. 
Curves represent fitting by Equation 4.2 

87 

Figure 4.13 
Electrical Conductivity σ of DES10 1:3 (●), 1:4 (■), and 
1:5 (▲) as a function of the inversed temperature. Curves 
represent fitting by Equation 4.2 

88 



xiii 
 

Figure 4.14 
Electrical conductivity σ of DES11 1:2 (●), 1:3 (■), and 
1:4 (▲) as a function of the inversed temperature. Curves 
represent fitting by Equation 4.2. 

88 

Figure 4.15 
Electrical conductivity σ of DES12 1:2 (●), 1:3 (■), 1:4 
(▲), and 1:5 (▼) as a function of the inversed temp. 
Curves represent fitting by Equation 4.2 

89 

Figure 4.16 
Electrical conductivity σ of DES12 1:2 (●), 1:3 (■), 1:4 
(▲), and 1:5 (▼) as a function of the inversed temp. 
Curves represent fitting by Equation 4.2 

90 

Figure 4.17 
Refractive index nD of DES5 1:1 (●), 1:2 (■), 1:3 (▲), and 
1:4 (▼) as a function of temperature. Lines represent 
fitting by Equation 4.4 

95 

Figure 4.18 
Refractive index nD of DES8 1:1 (●), 1:2 (■), 1:3 (▲), and 
1:4 (▼) as a function of temperature. Lines represent 
fitting by Equation 4.4. 

95 

Figure 4.19 
Refractive index nD of DES12 1:2 (●), 1:3 (■), 1:4 (▲), 
and 1:5 (▼) as a function of temperature. Lines represent 
fitting by Equation 4.4 

96 

Figure 4.20 
Refractive index nD of DES15 1:2 (●), 1:3 (■), 1:4 (▲), 
and 1:5 (▼) as a function of temperature. Lines represent 
fitting by Equation 4.4 

96 

Figure 4.21 

Solubility of NaCl, NaBr and Na2CO3 in DES1 as a 
function of temperature. The continuous line is drawn 
through the experimental data of the same system for 
visual clarity 

99 

Figure 4.22 

Solubility profiles of NaCl and NaBr in DES2 as a function 
of temperature. NaCl series, for salt:HBD ratios 1:1.5 (●), 
1:2 (○), 1:2.5 (♦) and 1:3 (◊). NaBr series, for salt:HBD 
ratios 1:1.5 (▼), 1:2 (s), 1:2.5 (▲) and 1:3 (Δ) 

100 

Figure 4.23 
Solubility profiles of NaCl in DES3 as a function of 
temperature. NaCl series, for salt:HBD ratios 1:2.5 (●), 1:3 
(○), 1:4 (♦) and 1:4.5 (◊) 

101 

Figure 4.24 
Solubility (Concentration) profiles of NaCl in DES4 as a 
function of temperature. NaCl series, for salt:HBD ratios 
1:2.5 (●), 1:3 (○), 1:4 (♦) 

102 

Figure 4.25 

Solubility  profiles of NaCl and NaBr in DES5 as a 
function of temperature. NaCl series, for salt:HBD ratios 
1:1 (●), 1:2 (○), and 1:3 (♦). NaBr series, for salt:metal 
halide ratios 1:1 (◊), 1:2 (▼), and 1:3 (s) 

103 

Figure 4.26 Comparison of solubility (Concentration) of NaCl in 
DES5, 6 and 7 at 60 oC 105 

Figure 4.27 
Solubility (Concentration) profiles of NaCl in DES8 as a 
function of temperature. NaCl series, for salt:metal halide 
ratios 1:1 (●), 1:2 (○), 1:3 (▲) and 1:4 (Δ) 

106 

Figure 4.28 Solubility profile of NaCl in DES9 (salt:metal halide molar 
ratio 1:3) as a function of temperature 107 



xiv 
 

Figure 4.29 

Calculated (NRTL) vs experimental solubilities of sodium 
chloride in DES2, DES3, DES4, and DES5 for different 
ratios and at different temperatures. z is the ratio of the 
HBD in the DES considering that the salt’s ratio is always 
1 

110 

Figure 4.30 Solubility profiles of NaCl in DES10 as a function of 
temperature (passed lines are based on NRTL calculations) 111 

Figure 4.31 Solubility profiles of NaCl in DES11 as a function of 
temperature (passed line is based on NRTL calculations) 113 

Figure 4.32 Solubility profiles of NaCl in DES12 as a function of 
temperature (passed lines are based on NRTL calculations). 114 

Figure 4.33 Solubility profiles of NaCl in DES13 as a function of 
temperature (passed lines are based on NRTL calculations) 115 

Figure 4.34 Solubility profiles of NaCl in DES14 as a function of 
temperature (passed lines are based on NRTL calculations) 116 

Figure 4.35 Solubility profiles of NaCl in DES15 as a function of 
temperature (passed lines are based on NRTL calculations) 116 

Figure 4.36 Solubility profiles of NaCl in DES16 as a function of 
temperature (passed lines are based on NRTL calculations) 117 

Figure 4.37 
Experimental solubility (Concentration) of NaCl in 
imidazolium-based ILs. (∆) IL1, (ᴏ) IL2, (□) IL3, (¶) IL4, 
(s) IL5, (▲) IL6, (l) IL7, (■)IL8, («) IL9, (q) IL10 

124 

Figure 4.38 Experimental solubility (Concentration) of NaCl in 
pyrrolidinium-based ILs. (∆) IL11, (ᴏ) IL12, (□) IL13 125 

Figure 4.39 Experimental solubility (Concentration) of NaCl in 
pyridinium-based ILs. (∆) IL14, (ᴏ) IL15 126 

Figure 4.40 Experimental solubility of NaCl in IL16 (∆) 127 

Figure 4.41 
Experimental and calculated solubilities (mole fraction) by 
NRTL for NaCl in imidazolium-based ILs. (∆) IL1, (ᴏ) 
IL2, (□) IL3. Line represents NRTL data 

130 

Figure 4.42 
Experimental and calculated solubilities (mole fraction) by 
NRTL for NaCl in (∆) IL10, (□) IL16. Lines represent 
NRTL data 

131 

Figure 4.43 

Electrical conductivity, σ, of saturated NaCl in DES1 
1:1.75 (●), 1:2 (■), and 1:2.5 (▲) as a function of the 
inversed temperature. Curves represent fitting by Equation 
4.2 

134 

Figure 4.44 
Electrical conductivity, σ, of saturated NaCl in DES2 1:1 
(●), 1:2 (■), and 1:3 (▲) as a function of the inversed 
temperature. Curves represent fitting by Equation 4.2 

134 

Figure 4.45 
Electrical conductivity, σ, of saturated NaCl in DES3 1:2.5 
(●), 1:3 (■), and 1:4 (▲) as a function of the inversed 
temperature. Curves represent fitting by Equation 4.2 

135 

Figure 4.46 
Electrical conductivity, σ, of saturated NaCl in DES4 1:2 
(●), 1:3 (■), and 1:4 (▲) as a function of the inversed 
temperature. Curves represent fitting by Equation 4.2 

136 



xv 
 

Figure 4.47 

Electrical conductivity, σ, of saturated NaCl in DES5 1:1 
(●), 1:2 (■), 1:3 (▲), and 1:4 (▼) as a function of the 
inversed temperature. Curves represent fitting by Equation 
4.2 

137 

Figure 4.48 

Electrical conductivity, σ, of saturated NaCl in DES8 1:1 
(●), 1:2 (■), 1:3 (▲), and 1:4 (▼) as a function of the 
inversed temperature. Curves represent fitting by Equation 
4.2 

137 

Figure 4.49 
Electrical Conductivity, σ, of saturated NaCl in DES10 1:3 
(●), 1:4 (■), and 1:5 (▲) as a function of the inversed 
temperature. Curves represent fitting by Equation 4.2 

138 

Figure 4.50 
Electrical conductivity, σ, of saturated NaCl in DES11 1:2 
(●), 1:3 (■), and 1:4 (▲) as a function of the inversed 
temperature. Curves represent fitting by Equation 4.2 

139 

Figure 4.51 
Electrical conductivity, σ, of saturated NaCl in DES12 1:2 
(●), 1:3 (■), 1:4 (▲), and 1:5 (▼) as a function of the 
inversed temp. Curves represent fitting by Equation 4.2 

140 

Figure 4.52 
Electrical conductivity, σ, of saturated NaCl in DES15 1:2 
(●), 1:3 (■), 1:4 (▲), and 1:5 (▼) as a function of the 
inversed temp. Curves represent fitting by Equation 4.2 

140 

Figure 4.53 

Electrochemical window of DES5(1:1) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

144 

Figure 4.54 

Electrochemical window of DES5(1:3) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

145 

Figure 4.55 

Cyclic voltammetry for the reduction of saturated sodium 
chloride in DES5(1:1) at 130oC on a GC (3 mm) working 
electrode/ Ag reference electrode/ Pt counter electrode at 
scan rate of 100 mVs-1 

145 

Figure 4.56 

Electrochemical window of DES8(1:1) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

146 

Figure 4.57 

Electrochemical window of DES8(1:2) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

146 

Figure 4.58 

Electrochemical window of DES8(1:3) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

147 

Figure 4.59 

Electrochemical window of DES12(1:2) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

149 



xvi 
 

Figure 4.60 

Electrochemical window of DES12(1:3) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

149 

Figure 4.61 

Cyclic voltammetry for the reduction of saturated sodium 
in DES12(1:2) at 100 oC on a GC (3 mm) working 
electrode/ Ag reference electrode/ Pt counter electrode at 
scan rate of 100 mVs-1 

150 

Figure 4.62 

Electrochemical window of DES15(1:2) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

151 

Figure 4.63 

Electrochemical window of DES15(1:3) as a function of 
temperature on a GC (3 mm) working electrode/ Ag 
reference electrode/ Pt counter electrode at scan rate of 100 
mVs-1 

151 

Figure 4.64 

Cyclic voltammetry for the reduction of saturated sodium 
in DES15(1:2) under 130oC on a GC (3 mm) working 
electrode/ Ag reference electrode/ Pt counter electrode at 
scan rate of 100 mVs-1 

152 

 



xvii 
 

LIST OF TABLES 

Table 1.1 Main sodium metal producers in China in 2012 2 
Table 2.1 Physical properties of sodium metal  9 

Table 2.2 Sodium metal grades and specifications by DuPont and 
MSSA  19 

Table 2.3 Common cations and anions in ILs  25 
Table 2.4 Properties of some ionic liquids suitable for electrochemistry 30 

Table 2.5 Typical structures of the quaternary salts and HBDs used for 
DES synthesis  41 

Table 3.1 Equipment used in the DESs synthesis 63 

Table 3.2 Devices used for characterization of DESs with their 
uncertainties 64 

Table 4.1 DESs studied in this work with their abbreviations 72 
Table 4.2 ILs studied for the solubility of NaCl 73 
Table 4.3 Melting temperatures for DESs 5, 8, 12 and 15 75 

Table 4.4 Experimental results for viscosity (Pa.S) of DESs 5,8,12, 
and15at different molar ratios and temperatures 

77 

Table 4.5 Values of µo and Eµ for the fitting by Equation 4.1 78 

Table 4.6 Experimental results of electrical conductivity (mS cm-1) for 
DESs 1 and 2 at different molar ratios 

83 

Table 4.7 Experimental results of electrical conductivity (mS cm-1) for 
DESs 3 and 4 at different molar ratios 84 

Table 4.8 Experimental results of electrical conductivity (mS cm-1) for 
DESs 5 and 8 at different molar ratios 86 

Table 4.9 Table 4.9: Experimental results of electrical conductivity (mS 
cm-1) for DESs 10 and 11 at different molar ratios 87 

Table 4.10 Experimental results of electrical conductivity (mS cm-1) for 
DESs 12 and 15 at different molar ratios. 89 

Table 4.11 Values of σ∞ and Eσ for the fitting by Equation 4.2 91 

Table 4.12 Experimental refractive indices nD of DESs 5, 8, 12, and 15 
at different molar ratios 93 

Table 4.13 Values of a and b for the fitting by Equation 4.4 94 

Table 4.14 Solubility(wt%) of sodium chloride, sodium carbonate, and 
sodium bromide in DES1 at different temperatures 98 

Table 4.15 Solubility(wt%) of sodium chloride and sodium bromide in 
DES2 at different temperatures. 99 

Table 4.16 Solubility of sodium chloride in DES3 at different 
temperatures 101 

Table 4.17 Solubility of sodium chloride in DES4 at different 
temperatures 101 

Table 4.18 Solubility of sodium chloride and sodium bromide in DES5 
at different temperatures 103 

Table 4.19 Comparison of solubility of sodium chloride in DESs 5, 6, 
and 7 at 60 oC 104 

Table 4.20 Solubility of sodium chloride in DES8 at different 
temperatures 106 



xviii 
 

Table 4.21 Solubility of sodium chloride in DES9 at different 
temperatures 106 

Table 4.22 
NRTL binary interaction parameters between NaCl and 
DES2 to DES5 for different molar ratios (i ≡ NaCl and j ≡ 
DES) 

110 

Table 4.23 
NRTL binary interaction parameters between NaCl and 
DES10, DES12 – DES16 for different molar ratios (i ≡ DES 
and j ≡ NaCl). 

118 

Table 4.24 Comparison of NRTL and experimental solubilities of NaCl 
in DES10 at different molar ratios 119 

Table 4.25 Comparison of NRTL and experimental solubilities of NaCl 
in DES11 at 1:3.5 molar ratio 119 

Table 4.26 Comparison of NRTL and experimental solubilities of NaCl 
in DES12 at different molar ratios. 120 

Table 4.27 Comparison of NRTL and experimental solubilities of NaCl 
in DES13 at different molar ratios 120 

Table 4.28 Comparison of NRTL and experimental solubilities of NaCl 
in DES14 at different molar ratios 121 

Table 4.29 Comparison of NRTL and experimental solubilities of NaCl 
in DES15 at different molar ratios 121 

Table 4.30 Comparison of NRTL and experimental solubilities of NaCl 
in DES16 at different molar ratios 122 

Table 4.31 Experimental solubilities of NaCl in studied ILs 123 

Table 4.32 NRTL binary interaction parameters between NaCl and 
different ILs(1 ≡ NaCl and 2 ≡ IL)  130 

Table 4.33 Experimental electrical conductivity (mS cm-1) of saturated 
NaCl in DESs 1 and 2 at different molar ratios. 133 

Table 4.34 Experimental electrical conductivity (mS cm-1) of saturated 
NaCl in DESs 3 and 4 at different molar ratios. 135 

Table 4.35 Experimental electrical conductivity (mS cm-1) of saturated 
NaCl in DESs 5 and 8 at different molar ratios. 136 

Table 4.36 Experimental electrical conductivity (mS.cm-1) of saturated 
NaCl in DESs 10 and 11 at different molar ratios. 138 

Table 4.37 Experimental electrical conductivity (mS cm-1) of saturated 
NaCl in DESs 12 and 15 at different molar ratios 139 

Table 4.38 Values of σ∞ and Eσ for the fitting by Equation 4.2 in the 
system of NaCl(saturated)/DES 141 

Table 4.39 
Electrochemical windows obtained at Pt counter electrode, 
glassy carbon working electrode, and a silver wire quasi 
reference electrode for DESs 5, 8, 12, and 15 

142 

 



xix 
 

LIST OF ABBREVIATIONS 

[bmim][BF4] 1-Butyl-3-methylimidazolium tetrafluoroborate 
[bmim][Cl] 1-Butyl-3-methylimidazolium chloride 
[bmim][DCA] 1-Butyl-3-methylimidazolium dicyanamide 

[bmim][Tf2N] 
1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl)-
imide 

[bmim][TfO] 1-Butyl-3-methylimidazolium trifluoromethanesulfonate 
[bmp][DCA] 1-Butyl-1-methylpyrrolidinium dicyanamide  
[bmp][TfA] 1-Butyl-1-methylpyrrolidinium trifluoroacetate   
[bmpyr][CF3SO3] 1-Butyl-1-methylpyrrolidinium trifluoromethanesulfonate 
[bmpyr][DCA] N-Butyl-3-methylpyridinium dicyanamide 
[bmpyr][MSO4] N-Butyl-3-methylpyridinium methylsulfate 
[C8mim][Cl] 1-Octyl-3-methylimidazolium chloride 
[edmi][Cl] 1-Ethyl-2,3-dimethylimidazolium chloride 
[emim][DMP] 1-Ethyl-3-methylimidazolium dimethylphosphate 
[emim][EtSO4] 1-Ethyl-3-methylimidazolium ethylsulfate 
[emim][MeSO3] 1-Ethyl-3-methylimidazolium methanesulfonate 
[EtOHNMe3][Me2PO4] (2-Hydroxy ethyl) trimethylammonium dimethylphosphate 
ChCl Choline Chloride  
DES Deep Eutectic Solvent 
EPA Environment Protection Agency  
FTIR Fourier Transform Infrared 
GC Glassy Carbon 
HBD Hydrogen Bond Donor 
ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer  
IL Ionic Liquid 
MSSA Métaux Spéciaux SA  
NMR Nuclear Magnetic Resonance  
RTIL Room Temperature Ionic Liquid  
XRD X-ray Diffraction  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 



xx 
 

NOMENCLATURE 

 

Eµ Activation Energy of Viscosity(Pa.m3.mol-1) 
γ Activity Coefficient  
τij Binary Interaction Parameters  
k Boltzmann’s constant (meVK-1 ) 
xi Composition of Component i in Binory Mixture 
I Current (A) 
ρ Density (g cm-3) 

ΔCp 
Difference in Heat Capacity Between the Solute in the Two States     (kJ 
mol-1 K-1) 

σ∞ Electrical Conductivity as T reaches infinity (mScm-1) 
σ  Electrical Conductivity (mS cm-1) 
Eσ Electron Mobility (meV) 
a, b Fitting parameters in Equation 4.4 
R Ideal Gas Constant (Pa.m3mol-1K-1) 
ΔHfus Latent Heat of Fusion of NaCl (kJ mol-1 ) 
m.p. Melting Point (K) 
Tm Melting Temperature (K) 
z Mole ratio of HBDs whereby mole ratio of salt is 1 
τij0 , τijT Optimized Parameters in Equation 4.9 
E Potential Voltage (V) 
nD Refractive Index  
s Solubility (wt%) 
ʋ Speed of Light in the Medium of Concern (m s-1) 
c Speed of Light in Vacuum (m s-1) 
T Temperature 
Tr Triple Point Temperature  
µ Viscosity (Pa.s) 
µ0 Viscosity Constant (Pa.s)  
 



1 
 

CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

Sodium (Na) metal is an essential alkali metal having wide technical and 

commercial applications, such as its utilization as an intermediate product in the 

manufacturing of chemicals and pharmaceuticals, and as metal refiner (Thayer, 2008, 

Pearson et al., 2008). These wide applications are possible due to the fact that sodium 

metal is a strong reducing agent (Banks, 1989, Pearson et al., 2008, Thayer, 2008). 

Sodium is one of the most effective coolants in nuclear reactors since the operating 

temperatures of these reactors are less than the boiling point of sodium (Pearson et al., 

2008). Sodium as well as its alloys with potassium are utilized as heat transfer agents in 

chemical heat transfer units. Furthermore, sodium is an important substance for 

producing artificial rubber (Pearson et al., 2008, Thayer, 2008) .  

It is interesting to know that sodium metal in its pure form is a hazardous material. 

It is highly reactive with many compounds available naturally in the environment, such 

as water (Kroschwitz, 1995, Banks, 1990). Upon contact with different compounds, 

sodium metal can combust spontaneously resulting in an enormous amount of heat. 

Therefore, it is a problematic and expensive matter to store or transport this pure metal 

(Kroschwitz, 1995, Thayer, 2008). 

According to the United States International Trade Commission report in 2008, 

the main producers of sodium metal in the world are DuPont from the United States, 

Métaux Spéciaux SA (MSSA) from France, and three Chinese companies. In 2008, 

MSSA with production rate of 27000 metric tons per year was the world’s largest 

producer. The global demand of sodium metal at the end of 2008 was 80,000 to 90,000 
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metric tons per year and it has been anticipated that by end of 2013, the global demand 

would rise to 100,000 to 120,000 metric tons per year. Declining tax incentives, rising 

energy cost and quality concerns are limiting Chinese sodium exports, leaving MSSA 

and DuPont as the main global suppliers. MSSA is also the only producer of highly 

purified sodium used as a coolant for fast-breeder nuclear reactors. MSSA exports most 

of its product, while DuPont uses much of its sodium output itself for producing 

biodiesel catalysts or sells it at a contracted price to Rohm and Haas, its largest 

customer for sodium borohydride and other chemicals (Pearson et al., 2008).  

In 2012, according to the global and Chinese sodium metal industry report, China 

in parallel with the United States and France became not only one of the big producers 

of sodium metal but also a big consumer. China’s demand for sodium metal was 

expected to drive up owing to the growing consumption worldwide and the 

development of domestic atomic energy industry. Table 1.1 introduces the main sodium 

metal producers in China in 2012 (Pearson et al., 2008). 

Table 1.1: Main sodium metal producers in China in 2012 (Pearson et al., 2008). 

Manufacture Capacity(Tons /Year) 

Inner Mongolia Lantai Industrial Co., Ltd 45,000  

Wanji Holding Group Co., Ltd 22,500 

Ningxia Yinchuan Sodium Factory 4,000 

Yinchuan Jingying Fine Chemistry Co., Ltd 3,500 

Zunbao Titanium Co., Ltd 10,000( still not in production) 

 

Currently, Downs process based on electrolysis of sodium salts, in particular 

sodium chloride (NaCl), is broadly used by the main producing companies (Thompson, 

2004, Pearson et al., 2008). Since the melting point of sodium chloride is 804 °C, the 

electrolysis process at this temperature can cause corrosion of the cell because of the 

produced sodium fog. Moreover, there is a high possibility of short electrical circuits. 

Hence, calcium chloride (CaCl2) is added to NaCl at a ratio of 2:3 by mass to decrease 
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the fusion temperature to about 600 °C and increases the electrical conductivity. This 

lowering in fusion temperature makes the process feasible. The mixture is electrolyzed 

in a cylindrical outer iron cell lined with fire bricks. The cell is fitted with a central 

graphite anode and a surrounding iron cathode. The two electrodes are separated by a 

cylindrical iron gauze diaphragm which screens the graphite anode from the ring-shaped 

iron cathode. This keeps away the molten sodium metal which floats to the top of the 

cathode compartment from gaseous chlorine formed at the anode. In addition, the 

molten sodium metal must be prevented from contacting with oxygen because the metal 

would be oxidized instantaneously under the high-temperature conditions of the cell 

reaction. The sodium metal collects in the inverted trough placed over the cathode, rises 

up the pipe and is tapped off through the iron vessel (Keppler et al., 2003, Thompson et 

al., 2004, Pearson et al., 2008). 

1.2 Ionic Liquids And Their Importance 

ILs have been accepted as key role players in modern green chemistry (Petkovic 

et al., 2011). This has excited the interest of both the academia and the chemical 

industries. These chemicals can reduce the use of hazardous and polluting organic 

solvents as well as taking part in various new syntheses due to their unique 

characteristics (Seddon et al., 2006). The terms room temperature ionic liquid (RTIL), 

nonaqueous ionic liquid, molten salt, liquid organic salt and fused salt have all been 

used to describe these salts in the liquid phase. ILs are known as salts that are liquid at 

room temperature in contrast to high-temperature molten salts. They have a unique 

array of physico-chemical properties, such as low vapor pressure and non flammability   

which make them suitable in numerous applications in which conventional organic 

solvents are not sufficiently effective or not applicable (Earle and Seddon, 2000).  

In the late 1990s, there was a significant increase in research on ILs, from 

synthesis and characterization to their possible applications. They are now a major topic 
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of academic and industrial interest with numerous existing and potential applications. 

The number of scientific papers, books, and patents covering the latest advances in ionic 

liquids are available in the literature (Hagiwara and Ito, 2000, Petkovi et al., 2009,) .  

The main advantage of ILs is the profiles of their physical and chemical 

properties, resulting from the complex interplay between hydrogen bonding and Van 

Der Waal interactions. Remarkably, many ILs’ properties can be controlled by 

structurally modifying their cations and anions (Plechkova and Seddon, 2008). ILs are 

such a class of potentially useful liquids in environmental friendly applications (Gan et 

al., 2006, Arce et al., 2007, Petkovic et al., 2011). Therefore, they have been explored 

for use in various research and industrial applications, from electronic applications, 

including electrolytes for batteries and capacitors to separation processes, such as 

extraction of metals or matrices for mass spectrometry. One drawback of utilizing ILs is 

that they are usually expensive and unavailable at industrial scale (Keskin et al., 2007, 

Petkovic et al., 2011) .  

ILs analogous, known as deep eutectic solvents (DESs), have been recognized as 

an alternative to traditional solvents and ILs (Hou et al., 2008). A DES is generally 

composed of two or three components which are capable of associating with each other, 

through hydrogen bond interactions, to form a eutectic mixture (Abbott et al., 2003a). 

These components are cheap and environmentally safe (Chen et al., 2010). The 

resulting DES is characterized by a melting point lower than those of the individual 

components. In 2004, Professor Andrew Abbott and his group reported the synthesis of 

the first deep eutectic solvent from a mixture of choline chloride (ChCl) as a salt and 

urea as hydrogen-bond donor (HBD), with a salt:HBD molar ratio of 1:2. The melting 

point of ChCl is 302°C and that of urea is 133°C while the above mentioned eutectic 

liquid melts at 12 °C (Abbott et al., 2004a).  
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It was reported that these ILs analogues or DESs can seriously compete with ILs 

in terms of physical properties, synthesis, and more importantly in price (Earle et al., 

2000, Abbott et al., 2003a, Kareem et al., 2010). As mentioned above, it is possible to 

choose their components to be biodegradable and non-toxic, adding more advantages to 

them. Additionally, most DESs are non-reactive with water (Chen et al., 2010). Since 

the time that Abbott and his colleagues reported the first choline chloride:urea DES, 

numerous researches on DESs synthesis and applications have been carried out (Abbott 

et al., 2004b). New DESs were introduced and numerous applications were studied 

(Kareem et al., 2010, Hayyan et al., 2012). To date, numerous research papers, patents, 

and books have been published covering various possible applications of DESs. In 

Chapter Two, a comprehensive literature review on ILs and DESs is presented. 

1.3 Problem Statement 

Energy crisis and global warming are the major challenges of 21st century. These 

crises have risen up due to (i) limited energy resources and energy security, (ii) 

sustainability of utilized energy resources, as well as (iii) environmental impact of 

conventional fuels and climate change (Akella et al., 2007, Zheng et al., 2010).  

The demands on energy became incredibly huge, and the resources of 

conventional energy, such as coal, oil, petroleum and natural gas are limited. These 

resources are estimated to last until 2040 (Hayward, 2010). On the other hand, it has 

been recognised that the nuclear energy can have serious harmful impact on the 

environment if accidents happen. This was clear in both Chernobyl and Fukushima 

disasters, where radiation leaked out of the reactors due to accidental events (Hayward, 

2010). All of these factors necessitated the wise use of alternative forms of energy. 

Renewable sources of energy, such as solar energy, wind energy, geothermal energy, 

bioenergy, ocean energy, and hydropower are completely clean, natural and harmless. 

The obvious problem concerning utilizing renewable energy resources lies in their high 
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costs of generation. The high cost of these forms of energy originated from two facts. 

Firstly, the technology of renewable energy, such as solar panels, is newer in 

comparison to the conventional ones. Secondly, the materials used in the manufacturing 

of renewable energy systems are often rare and costly (Namovicz, 2011). 

The manufacturers in developed countries terminated the production of sodium 

metal, including the leading manufacturers, DuPont, MSSA and some Russian 

manufacturers. This is due to the fact that Down’s Process features high energy 

consumption (Global and China Sodium Metal Industry Report, 2012). 

Several concepts have been proposed to reduce emissions and energy 

consumption, but none have been successfully applied on an industrial scale. 

Developing an electrolytic process that can be used to produce sodium metal more 

economically is increasingly important. The operability of the process must also be 

improved, making automation possible. Suitable processing techniques are limited 

because sodium has a strong affinity to oxygen and water due to its negative reduction 

potential. Therefore, sodium chloride cannot be electrolyzed in aqueous solutions. All 

processes must also comply with existing environmental regulations. Therefore, a novel 

process that electrolyzes sodium chloride at or near ambient temperatures has numerous 

industrial potential applications (Paterson, 1966, Keppler et al., 2003, Anastas, 2010). 

The concept of green solvents was adopted to represent the efforts spent to 

minimize the industrial impact on the environment by utilizing safer and friendlier 

solvents than the conventional ones. This adoption led to the development of four direct 

implementations for this concept. They are: i) replacing the hazardous solvents by 

solvents of better environmental, health and safety properties, ii) using bio-solvents 

produced from renewable sources, iii) replacing the volatile organic compounds used as 

solvents by benign solvents, and iv) using ionic liquids (ILs) as well as their analogues 



7 
 

known as deep eutectic solvents (DESs) which are considered as non-volatile because 

they showed  negligible vapor pressure.( Keskin et al., 2007, Anastas, 2010)  

The work elaborated in this thesis is an attempt to overcome the problem of high-

energy consumption in sodium metal production by introducing ILs and DESs as low-

temperature electrolytes for this process.  

1.4 Research Objectives 

In using ILs or DESs as electrolytes for the production of sodium, three factors 

are of paramount importance for the process: the solubility of commercially available 

sodium salts in the IL or DES, the conductivity of the solution of sodium salt in IL or 

DES, and the stability of the sodium metal in the IL or DES. Additionally, the pertinent 

physical properties of these DESs are important to be characterized if these DESs are 

planned to be used industrially. Thus, in summary, the objectives of this work are as 

follow: 

1- Synthesis of different DESs including new metal halide-based DESs in the 

laboratory. 

2- Measuring the physical properties for some of these DESs. 

3- Studying the solubility of some commercially available sodium salts in ILs and 

DESs. 

4- Studying the conductivity of sodium chloride (NaCl) in DESs.  

5- Investigating the stability of sodium metal in selected DESs  

6- Applying thermodynamic models to correlate the experimental data. 

7- Evaluating of cyclic voltammetry of selected DESs  

1.5 Research Methodology 
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The methodology followed to achieve the objectives of this project will be dealt 

with comprehensively in Chapter Three. However, a brief introduction to the 

methodology is given here: 

1- Synthesis of DESs. 

2- Characterization of physical properties of these solvents using various 

equipment. 

3- Preparation of solubility experiments. 

4- Addition of sodium salts to ILs and DESs. 

5- Sampling of the experimental mixtures for the measurement of solubility. 

6- Analysis of the samples using Induced Coupled Plasma (ICP) analysis. 

7- Final results are drawn from the ICP results. 

8- Estimation of the stability of sodium metal inside DESs. 

9- Applying the non-random two liquid (NRTL) model for activity coefficients to 

correlate the experimental results. 

10- Cyclic voltammetry analysis using a computer-controlled i-Autolab potentiostat 

1.6 Thesis Outline 

This thesis comprises the following main chapters: 

1. Chapter One - INTRODUCTION 

2. Chapter Two - LITERATURE REVIEW 

3. Chapter Three - METHODOLOGY 

4. Chapter Four - RESULTS AND DISCUSSIONS 

5. Chapter Five - CONCLUSIONS 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Sodium Metal 

Sodium or Natrium in Latin has been used for centuries in both organic and 

inorganic industries (Thayer, 2008). Alkali metals or group I in the Periodic Table 

consists of lithium, sodium, potassium, rubidium, cesium, and francium. This group of 

metals possess lower densities than other metals, one loosely bound valence electron, 

the largest atomic radii in their periods, lower ionization energies, low 

electronegativities and highly reactive than common metals (Banks, 1990). Atomic 

sodium possesses 11 protons, 11 electrons and 12 neutrons that lead to its atomic 

number of 11 and atomic mass of 22.98977 g/mol. Table 2.1 represents the physical 

properties of sodium metal (Banks, 1990, Eggeman, 2007). 

Table 2.1: Physical properties of sodium metal (Eggeman, 2007). 

Phase at room temp. solid 
Density at 20 oC 0.968 g/cm3 
Hardness 0.5 Mohs 
Liquid density at f.p. 0.927 g/cm3 
Melting point 97.72 oC 
Boiling point 883 oC 
Heat of fusion 2.60 kJ/mol 
Heat of vaporization 97.42  kJ/mol 
Molar heat capacity 28.230 kJ/ mol K 
Energy of first ionisation 495.7 kJ/mol 
Standard potential - 2.71 V 
Colour Silvery white 

 

Sodium has a body centered cubic (bcc) structure and is found in the form of a solid 

metallic substance at room temperature. Due to its softness, it can be easily cut with a 
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table knife. When it is exposed to air, it reacts rapidly with oxygen and oxidizes to a 

dull and gray coating (Eggeman, 2007). Sodium is a good conductor of electricity which 

means that electric current can pass through this element without high resistance 

(Pearson et al., 2008). 

2.1.1 Chemical Properties of Sodium Metal  

Sodium is more reactive than lithium and less reactive than potassium (Banks, 

1990, Klemm et al., 2005). In the presence of air, it reacts with oxygen instantly to form 

sodium oxide coating. This coating prevents any further reaction of the oxygen with the 

underlying metal layers. Therefore, it is often stored by immersing in nitrogen 

atmosphere or inside inert liquids like naphtha or kerosene (Wells, 1984). When it is 

burnt in the open atmosphere, sodium peroxide (Na2O2) will be produced whereas upon 

burning in limited supply of oxygen, it forms sodium oxide (Na2O). If this burning 

process is carried out under high pressure, sodium superoxide (NaO2) would be formed 

(Wells, 1984, Greenwood, 1997). At a temperature over 200 oC, sodium reacts with 

hydrogen to produce sodium hydride (NaH) (Holleman et al., 2001). Sodium reacts with 

water through an exothermic reaction and produces sodium hydroxide (NaOH) and 

hydrogen gas. The released heat often ignites the hydrogen gas and a fire may break out 

to the extent that a loud explosion would occur if a big piece of sodium is brought in 

contact with water (Klemm et al., 2005). Sodium is able to react with ammonia either in 

the presence of pure carbon or cobalt. In the presence of carbon, it produces sodium 

cyanide (NaCN) and hydrogen, and in the presence of cobalt, it produces sodium amide 

(NaNH2) and hydrogen (Greenlee et al., 1946). Sodium amalgam, which is an alloy of 

sodium and mercury, is formed by the reaction of sodium and mercury (Renfrow et al., 

1939). On addition of sodium into alcohol, alkoxide is produced. This reaction is similar 

to sodium’s reaction with water since in both cases it replaces one hydrogen atom 

(Chandran et al., 2006). Sodium halides can be produced by vigorous reaction of 
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sodium metal with fluorine and chlorine at room temperature to produce sodium 

fluoride (NaF) and sodium chloride (NaCl), respectively. However, it reacts potentially 

with vaporized bromine and iodine to produce sodium bromide (NaBr) and sodium 

iodide (NaI). When sodium comes in contact with alkenes and dienes, it forms 

additional products. One such product formed the basis of making an early synthetic 

rubber known as Buna Rubber. Sodium reacts with organic halides in order to produce 

sodium organic compounds (Greenwood et al., 1997, Klemm et al., 2005).  

After aluminium, magnesium, calcium and iron, sodium is the fifth most abundant 

element on earth, comprising 2.6 % of the earth’s crust (Banks, 1990). Sodium metal in 

its pure form is a hazardous material. This is because it is highly reactive due to its 

extremely low ionization energy. It may combust spontaneously if it comes into contact 

with air or water. These facts make it a hazardous material that is difficult and 

expensive to transport and store (Kroschwitz, 1995, Thayer, 2008). 

2.1.2 Production of Sodium Metal 

The most common source for the production of sodium metal is sodium chloride 

(NaCl) (Banks, 1990). It is found in nature as rock salt and in sea water. Other sources 

of sodium metal are minerals, among which are soda niter (NaNO3), cryolite 

(Na3AlF6), zeolites (NaAlSi2O6-H2O), and sodalite (Na4Al3(SiO4)3Cl) (Banks, 1990, 

Pearson et al.,2008 ).  

Sodium metal is not found in its pure form in nature due to its vigorous reactivity 

(Banks, 1990, Keppler et al., 2003, Thompson et al., 2004). In October 1807, 

Humphrey Davy isolated sodium by electrolysing molten soda (NaOH) (Banks, 1990). 

The next year, Gay-Lussac and Louis Jacques Thénard produced sodium metal by 

reducing sodium hydroxide with iron at high temperatures (Banks, 1990). More than 

four decades later, in 1855, Henri Étienne Sainte-Claire Deville developed the first 
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commercial process to produce sodium metal from its carbonate by carbon as catalyst at 

temperatures over 1100 oC (Wallace, 1953). However, in 1890, Hamilton Castner 

distilled off sodium metal by electrolysis of fused caustic soda at 330 oC in Oldbury, 

England, at a rate of two tons/week. Later on, Castner’s cell was used to produce 

sodium at a rate of 105 tons/week until late in 1952 when the producing plant was 

finally discontinued. Figure 2.1 illustrates a schematic diagram of Castner’s cell 

(Wallace, 1953). Castner’s process is principally based on the electrolysis of caustic 

soda (NaOH) involving three steps:  

a) Producing individual ions through fusing NaOH 

      NaOH → Na+ + OH-        (2-1) 

b) In the electrolysis cell, Na+ ion tends to move toward the iron cathode and the 

molten sodium is formed. 

      Na+ + e - → Na        (2-2) 

c) At the nickel anode, H2O and O2 are evolved due to oxidation of OH-: 

      4OH- → 2H2O + O2 + 4e-       (2-3) 

 



13 
 

 

Figure 2.1: Castner’s Cell (Wallace, 1953). 

 In 1921, a process involving the electrolysis of a mixture of fused sodium chloride 

(NaCl), calcium chloride (CaCl2), and barium chloride (BaCl2) in Downs cell was 

introduced to reduce the melting point of the electrolyte to slightly below 600 °C 

(Thompson et al., 2004, Keppler et al., 2003). This made the process more practical 

compared to using pure NaCl which has a higher melting point of about 804 °C. This 

change was applied because operating an electrolytic process at 804 °C was difficult 

and presented numerous operating constraints. During electrolysis, calcium was also 

obtained at the cathode but sodium and calcium were separated from each other due to 

the difference in density. The density of sodium is 0.67 g/cm3 and the density of 

calcium is 2.54 g/cm3 at operating temperature, making molten sodium and calcium 

immiscible (Keppler et al., 2003, Thompson et al., 2004, Pearson et al., 2008).  

As the decomposition potential of calcium is close to that of sodium, calcium co-

deposits with sodium at the cathode during the electrolysis. This is the reason for having 

traces of calcium in sodium metal produced by Downs process (Pearson et al., 2008). A 

schematic diagram of Downs cell is shown in Figure 2.2. Downs cell consists of a large 

steel tank lined with a refractory material containing one or more carbon anodes, each 
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surrounded by a cathode. The small gap between the cathode and anode is filled with a 

molten mixture of NaCl, CaCl2 and BaCl2. When electrical current is applied across the 

gap, NaCl produces sodium metal, which is collected at the cathode, and chlorine gas 

(Cl2), which is collected at the anode. A fine metal mesh between the cathode and 

anode prevents the sodium and chlorine from reacting again to form NaCl. The chlorine 

gas bubbles up through the molten salt and is collected in the chlorine dome at the top 

center of the vessel (Pearson et al., 2008). It is then liquified to be used for various 

industrial purposes. Being less dense than the molten salts, the sodium metal floats up 

from the cathodes into a collector, then goes up a riser and into a holding container 

(Pearson et al., 2008). 

 

Figure 2.2: Downs Cell (Pearson et al., 2008). 

The chemistry of reaction in Downs Cell is: 

a) Fused NaCl contains sodium and chloride ions 

NaCl→ Na+ + Cl-        (2-4) 

b) At the cathode: Na+ ions migrate to the cathode where they are reduced to Na 



15 
 

Na+ + e- → Na (Reduction)       (2-5) 

c) At the anode: Cl- ions migrate to the anode and oxidised to form chlorine gas 

2Cl- → Cl2 + 2e- (Oxidation)      (2-6) 

d) Overall Reaction 

2Na+ + 2Cl- → 2Na + Cl2        (2-7) 

The reduced sodium metal in the iron cathode of Downs cell is required to be 

filtered while it is cooled. Afterwards, the excess calcium would be precipitated by 

adjusting with a mixture of an inert gas containing 0.1% - 2% of nitrogen (N2) and 

0.1%  - 0.5% of oxygen (O2) at a temperature below 300 oC. The separation method is 

based on the oxidation of calcium to calcium oxide during the purification of sodium 

(Pearson et al., 2008).   

Downs process shown in figure 2.3 produces sodium with 99.8% purity, is the 

currently utilized method in industry worldwide (Keppler et al., 2003, 

Thompson  et al., 2004, Pearson et al., 2008, Thayer, 2008). The major producers are 

DuPont and MSSA companies (Thayer, 2008). It has been stated that the production 

process for manufacturing sodium metal from the Downs cells is essentially the same 

for the two manufacturers (Pearson et al., 2008, Thayer, 2008).  
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Figure 2.3: Flow chart for sodium metal production process by DuPont 

(Pearson et al.,  2008). 

Several important sources of demand for sodium metal have declined or 

disappeared entirely, although new applications are under development. Its largest end 

use was as a raw material in the production of tetraethyl lead and tetramethyl lead used 

to formulate anti-knock additives for gasoline in automobiles. Consumption for this 

application was dramatically reduced with the phasing out of leaded gasoline during the 

1970s and 1980s (Davies, 1996, Citron et al., 1977, Gatti et al., 2010). Sodium metal 

was principally used in a wide range of applications, such as an input in the production 

of chemicals and pharmaceuticals, indigo fuel, pesticide, rare and precious metal 

smelting, nuclear industries and in metal refining (Fanning, 2007, Pearson et al., 2008, 

Thayer, 2008). It has also been applied in the manufacture of different chemicals 

including sodium borohydride, sodium azide, sodium methylate, sodium tertbutoxide, 
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agricultural chemicals; such as herbicides and insecticides, dyes; such as synthetic 

indigo, nylon synthetic fibers, rubber compounds, and flavorings and fragrances. 

Sodium metal is also used to produce pharmaceutical products such as barbiturate, 

vitamins A and C, ibuprofen, and sulfa methoxizane (Klemm et al., 2005). In metal 

manufacturing, sodium metal is used as a reducing agent to produce pure metals such as 

titanium, tantalum, hafnium, and zirconium (Thayer, 2008, Pearson et al., 2008). 

Possessing vast difference in its melting and boiling points, 98 oC to 882 oC, it has been 

used as heat transfer medium in atomic reactors and in die casting machines. Other 

metal industry uses include silicon manufacturing, refining metallic lead; silver; and 

zinc, alloying metals and steel de-scaling via sodium hydride. Additionally, sodium 

metal is useful as a scavenging agent in smelting processes (Fanning, 2007). 

Three downstream products of sodium metal are of special interest due to the 

potential for strong growth in the future. Firstly, sodium methylate is a catalyst used in 

the production of biodiesel fuel (Thayer, 2008), which will likely witness an increased 

production due to regulations mandates for biofuel usage in some countries. Secondly, 

polysilicon wafers used in solar cells may benefit from the United States’ government 

support for alternative energy (Pearson et al., 2008). Lastly, titanium metal primarily 

used in aircraft manufacturing could be produced in a less expensive manner via a new 

production process that uses sodium metal (Thayer, 2008). 

Since the sodium metal industry features high energy consumption, manufacturers 

in developed countries including leading industrial manufacturers in America, France, 

and Russia, have halted its production, according to a global sodium metal report in 

2012. In China, by contrast, major sodium metal enterprises are expanding their 

capacities and many start-ups emerged, helping worldwide sodium capacity to be 

transferred to China in phases. Recently, the sodium metal production capacity of China 

has exceeded 100,000 tons/yr, offering a surplus in the market. 
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China is not only a big producer of sodium metal now, but also a big consumer. In 

2006, the demand for sodium metal in China hit 82,000 tons/yr, and then in 2010 the 

figure was close to 100,000 tons/yr. China’s demand for sodium metal is expected to 

drive up due to the increasing consumption worldwide as well as the skyrocketing 

development of domestic atomic energy industry (Global and China Sodium Metal 

Industry Report, 2012).  

Indigo Fuel is the key consumer of sodium, occupying 60% of the total demand. 

Indigo Fuel LTD was incorporated in 2005 to provide convenient quality fuel oil service 

at a higher quality than the industrial standard (Pearson et al., 2008). The development 

of nuclear power industry has in recent years fuelled the demand for nuclear-grade 

sodium which features higher specific heat than vast majority of metals and good 

thermal insulation properties and serves as an ideal coolant for fast reactors (Fanning, 

2007). Thus far, fast reactors are in service worldwide, including Phenix, Super-Phenix, 

Russian BN-600 and Chinese CEFR, which are all employing nuclear-grade sodium as 

coolant (IAEA, 2007). 

It is expected that the demand for nuclear-grade sodium will show incredible 

growth with the application of the fourth generation nuclear power technology. In the 

upcoming three to five years, the demand for nuclear grade sodium will mainly be 

contributed by two fast reactors, i.e. Fujian Sanming and Russian BN-1200, with the 

targeted demand hitting 8,000 tons/yr and 6,000 tons/yr, respectively (IAEA, 2007).   

According to the United States International Trade Commission’s Report in 

November 2008 (Pearson et al., 2008), the Chinese exportation of sodium metal reached 

a total of 16,917,000 pounds in 2007.  
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2.1.3 Product Grade and Quality Levels 

Table 2.2 depicts various sodium metal grades by DuPont and MSSA in the period 

January 2005 - June 2008. DuPont offers three quality levels, while MSSA offers four.  

Table 2.2: Sodium metal grades and specifications by DuPont and MSSA (Pearson et 
al., 2008). 

DuPont MSSA 
Commercial 

Name Specifications Commercial 
Name Specifications 

Technical 99.89% pure; 400 ppm Ca Technical (S+) 99.8% pure; 400 ppm Ca 
Niapure 99.89% pure; 400 ppm Ca Sopure 99.8% pure; 200 ppm Ca 
Niapure select 99.91% pure; 200 ppm Ca Refined 99.9% pure; 10 ppm   Ca 

  Extra Refined 99.98% pure; 10 ppm Ca 
 

2.1.4 Factors Affecting Pricing  

Numerous factors influence the purchaser’s decision regarding the suppliers of 

sodium metal. DuPont asserted that price was the largest single factor affecting 

purchase decisions in the market for sodium metal (Thayer, 2008, Pearson et al., 2008).  

Prices of sodium metal may fluctuate based on demand factors such as general 

economic activity as well as shifts in demand for products in the sectors where sodium 

metal is used. They can also fluctuate based on supply side factors, most notably the 

costs of sodium chloride and energy (Pearson et al., 2008). In addition, the form and the 

purity of the sodium metal may have an effect on the overall cost of production, and 

subsequently the price. Other factors that may affect the price are the order size, length 

of the contract, and the mode of transportation. 

2.1.5 Drawbacks of Downs Process 

Downs process is considered as the major process for producing sodium metal, as 

elaborated in previous subsections. It is a minor source for producing industrial chlorine 

as well. The major drawback of this process is the high energy consumption due to the 
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elevated temperatures at which it operates. The electrolyte mixture has a melting 

temperature of about 580 oC to 600 oC (Banks, 1990, Paterson, 1966, Keppler et al., 

2003, Thompson et al., 2004). As a result, cell freeze-ups and other upsets are frequent, 

leading to an increase in the overall costs of production. For this reason, a smooth 

operation of the cell is found to be difficult and the process is not amenable to 

automation (Thompson et al., 2004). Operating an electrolytic process at such 

temperature is difficult and presents a serious operational constraint. Additionally, the 

concentric cylindrical cell design of the Downs process (Figure 2.2) imposes a poor 

space efficiency. This translates directly into high capital and operating costs per ton 

produced.  

Several concepts have been proposed to reduce emissions and energy consumption, 

but none has been successfully applied on an industrial scale. There is an increasing 

need to develop an electrolytic process that can be used to produce sodium metal in a 

more economical way. There is also a need to develop a process that can improve the 

operability, for instance, making automation possible (Paterson, 1966, Keppler et al., 

2003, Thompson et al., 2004). The options for new processing techniques are limited 

because sodium has a strong affinity to both oxygen and water (Klemm et al., 2005). 

Thus, considering production of sodium metal, NaCl cannot be electrolysed in aqueous 

solutions. Furthermore, any new process should comply with existing environmental 

regulations. A new process in which NaCl would be electrolyzed at or near ambient 

temperatures would have a good industrial potential (AlNashef, 2010). Hence, it is of 

paramount importance to introduce new electrolytes in which the production of sodium 

from its common salts such as NaCl is possible at low to moderate temperatures. These 

electrolytes will be considered as “green” materials if they succeed in reducing the 

operation temperature (AlNashef, 2010). 
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2.2 Green Electrolytes (Green Solvents)   

Organic solvents are important in chemical industry. They were utilized as media 

for reactions in the synthesis of various compounds, as extraction solvents for 

separation and purification, as well as in drying. They are also very important in 

analytical methodologies, spectrometry and measurements of physico-chemical 

properties (Plechkova and Seddon, 2007). The majority of traditional organic solvents 

are hazardous, with problems of toxicity, cost, and waste by-products resulting from 

their use in the chemical industry. Using these solvents in chemical laboratories and 

chemical industries is raising an important issue for the health and safety of workers as 

well as pollution for the environment. Green chemistry deals with research focused on 

finding solutions for issues related to excessive use of non-renewable energy and 

hazardous or toxic materials with greener alternatives (Anastas et al., 2003, Plechkova 

and Seddon, 2007, Anastas, 2010). Paul Anderson, a senior chemist in the Environment 

Protection Agency (EPA), developed the principles of green solvents during 1990s and 

introduced them as a set of guidelines. These guidelines were intended to be followed 

by the chemical manufacturers to reduce pollution in their plants and to make chemical 

processes safer and more sustainable. The main target was that the products and 

processes should be cost-competitive and be designed to include as many as possible of 

the following: 

a) Source reduction/prevention of chemical hazards, which includes 

• Design chemical products to be less hazardous to human health and 

environment. This meant that these products should be less toxic to 

organisms and ecosystems, not persistent or bioaccumulative in organisms or 

the environment, and inherently safer with respect to handling and use.  

• Use feedstocks and reagents that are less hazardous to human health and 

environment. 
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• Design syntheses and other processes to consume less energy and materials. 

• Use feedstock derived from renewable resources or from abundant waste. 

• Design chemical products that can be reused or recycled. 

b) Treat hazardous chemicals and convert them to safe end materials. 

c) Proper disposal of chemicals not of more use (Anantas et al., 2003). 

The most popular green solvents are water and supercritical carbon dioxide. 

Recently, room temperature ionic liquids (RTILs) were also recognized by many 

researchers as green solvents, mainly due to the fact that they possess negligible vapour 

pressure. This means that they do not emit any hazardous vapours when they are used, 

eliminating the opportunity for the formation of combustible or toxic clouds (Anantas et 

al., 2003). 

All three of the above mentioned green solvents have their benefits and drawbacks. 

Water is abundant, nontoxic, and intensive compound. However, it is a poor solvent for 

most organic compounds and it is difficult to be removed from end products. 

Supercritical carbon dioxide is abundant, can dissolve most organic solvents, and can be 

removed easily. The main problem of utilizing it is the requirement for large energy 

input to generate the pressure needed to liquefy it. RTILs are non flammable, non 

volatile, and easy to recycle. However, most of these solvents are derived from 

petroleum products and thus are toxic to aquatic organisms (Pandey, 2006, Plechkova 

and Seddon, 2007). Therefore, there was an urgent need to develop new type of green 

solvents that can be prepared from abundant, inexpensive, innocuous, and biorenewable 

components and can be reused or recycled. Ionic liquids (ILs) analogues known as deep 

eutectic solvents (DESs) possess the former principles mentioned earlier in this section 

(Zhang et al., 2012). 
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In the following Sections, ILs and DESs are presented and discussed 

comprehensively. 

2.3 Introduction to ILs 

An ionic liquid is a liquid which is composed entirely of ions, such as KCl and 

KOH at high temperatures. If a compound is in liquid state at or near room temperature 

and is composed of ions only, then it is called “room temperature ionic liquid” or RTIL 

(Rui, 2010). In practice, the concept of RTIL is extended to include ILs within the 

temperature range 0-100 °C (Galiński et al., 2006). 

The attractive force between the anion and the cation in ILs is coulombic force. The 

magnitude of this force is related to the charge number and radius of anion and cation. 

Ionic compounds have a larger ionic radius and smaller force between them, thus an 

ionic compound has a low melting point (George et al., 2011). Their ability to be liquid 

at or around room temperature initiated a big interest in them within the chemical 

society.  

The application of common organic solvents, such as toluene, diethyl ether or 

methanol is limited nowadays due to more strict regulations imposed on the industry. In 

contrast, ILs due to their specific properties and their potential as green solvents do not 

encounter this problem. An intriguing characteristic is to fine tune the physical and 

chemical properties by suitable choice of cations and anions (Zhang et al., 2012). 

Therefore, ILs are recognized as designer solvents, which means that their properties 

such as viscosity, melting point, hydrophobicity, and density can be easily adjusted to 

suit the requirements of a particular process. ILs have been the subject of considerable 

interest due to their very low volatility and their ability to dissolve a wide variety of 

compounds, which makes them useful as “green” solvents for energy applications and 

industrial processes. ILs involving fully quarternized nitrogen cations have negligible 
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vapor pressure and are non-flammable. These properties are important when addressing 

the health and safety concerns for the working personnel. Negligible vapor pressure 

means that the solvent will not evaporate at normal temperatures, eliminating the risk of 

the formation of combustible clouds or the risk of suffocation (Huang et al., 2001, 

Stewart et al., 2004).  

2.3.1 Physical Properties of ILs 

ILs possess numerous important favorable properties in physics and chemistry, 

such as their low melting points, moderate viscosities and densities, and high thermal 

stability. Different cations and anions can be selected to prepare different ILs, and their 

compatibility with water is thus controllable (Wang, 2007). They are little denser than 

water, miscible with substances having very wide range of polarities, and can 

simultaneously dissolve organic and inorganic substances.  

The negligible vapor pressure, wide electrochemical window (between 2 V and 

4.5  V except for Bronsted acidic system), large liquid range, and high electrical 

conductivity are other favorable physical properties of ILs. The molecule of an IL is 

composed of a large asymmetric cation and an organic or inorganic anion (Johnson, 

2007, Forsyth et al., 2004). The most common cations and anions that compromise the 

well-known ILs are presented in Table 2.3.   
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Table 2.3: Common cations and anions in ILs (Wilkes et al., 1982, Wasserscheid 
and Keim, 2000, Tsuda and Hussey, 2007). 

Cation
s 

Imidazolium Pyrazolium Triazolium Thiazolium Oxazolium 

Pyridinium Pyridazinium Pyridnium Pyrazinium 

 

Anion
s 

NO3
- 

Nitrate 
Cl- 

Chloride 
Br- 

Bromide CuCl2
- ClO4

- 

Perchlorate 
BF4

- 

Tetrafluorobor
ate 

PF6
- 

Hexafluorophosph
ate 

CF3SO3
- 

Trifluoromethanesulfo
nate 

N(SO2CF3)
2

- 
N(SO2CF2CF3

)2
- 

 

The physical behavior of ILs was found to be dependent largely on the utilized 

cation and anion. Additionally, this behavior can be easily changed by utilizing various 

cations and anions. The solubility of ILs in water depends significantly on the structure 

of the anion (Plechkova and Seddon, 2007, Holbrey et al., 2003). For instance, most of 

the chloride-based ILs are miscible with water, while the ILs composed of the anions 

hexafluorophosphate (PF6
-) or bis(trifluoromethylsulfonyl)imide (Tf2N-) are 

hydrophobic. This shows an advantage for ILs over conventional solvents, which is the 

possibility of anion replacement that enables designing compounds with properties 

required for a particular application. Thus, the solvent properties of ILs can be tuned for 

a specific application by varying the anion-cation combinations (Shvedene et al., 2005, 

Plechkova and Seddon, 2007, Zhou et al., 2012). 

ILs can replace hazardous and polluting organic solvents in industrial applications. 

They are receiving an increasing interest as environmental-friendly solvents for many 

synthetic and catalytic processes. Having high electrical conductivity due to their ionic 

structure is the essential character of ILs that predisposes them as potential efficient 

electrolytes. This is an advantage for their potential to serve as electrolytes in 

electrochemical processes (Tsuda and Hussey, 2007). 
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In ILs, a combination of bulky and asymmetrical cations and evenly shaped anions 

form a regular structure of liquid phase. This means that the anion of ILs cannot pack 

well. The combination of larger asymmetric organic cation and smaller inorganic 

counterparts lower the lattice energy and hence the melting point of the formed ILs. In 

some ILs, the anions are relatively large and playing a role in decreasing the melting 

point. For instance, the melting point of 1-butyl-3-methylimidazolium tetrafluoroborate 

([bmim][BF4]) is -71oC in comparison with that of 1-butyl-3-methylimidazolium 

hexafluorophosphate ([bmim][PF6]) which is 11oC (Coll et al., 2005, Ganjali et al, 

2009). Consequently, ILs are often liquid at ambient temperature (Keskin et al., 2007, 

Plechkova and Seddon, 2007).  

ILs are polar solvents and consist of loosely coordinating bulky ions. They are able 

to dissolve various organic, inorganic, and organo metallic materials. They are 

immiscible with many organic solvents. Furthermore, they are nonaqueous polar 

alternatives for phase transfer processes (Cooper and O’Sullivan, 1992, Keskin et al., 

2007). 

What was discussed above is general and valid for the most commonly used ILs. 

However, it must be noted that there are many ILs containing different anions and 

cations and their properties cover a vast range. Therefore, the above statements should 

not be generalized for all existing ILs and for those designed in the future (Keskin et al., 

2007). 

2.3.2 History of ILs  

The use of the first IL goes back to 1914 when ethylammonium nitrate, 

[EtNH3][NO3], with melting point of 12 oC was synthesised. However, ILs did not 

achieve a decent interest until the discovery of binary ionic liquids synthesised from 

mixtures of aluminium chloride and N-alkylpyridinium or 1,3-dialkylimidazolium 
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chloride. The most problematic factor of chloroaluminate based ILs was their instability 

in the presence of air and water. Moreover, they are not inert towards various organic 

compounds and this limited their applications. In 1970, a work was presented for 

developing ILs as electrolytes for nuclear warhead batteries and space probes (Chen, 

2001, Keskin et al., 2007). 

These type of batteries and space probes required molten salts to operate. These 

molten salts were hot enough to damage the nearby materials. Therefore, chemists 

searched for salts which remain liquid at lower temperatures and eventually they 

identified alkyl-substituted imidazolium and pyridinium cations, with halide or 

tetrahalogenoaluminate anions that initially could use as electrolytes in battery 

applications. Wilkes and his colleagues improved specific ILs for the use as battery 

electrolytes (Wilkes et al., 1982). In 1980s, imidazolium-based cations were found to 

have better properties, such as air/moisture stability and more potential variations 

(Carmichael and Seddon, 2000, Aki et al., 2001, Sheldon et al., 2002, Kölle and 

Dronskowski, 2004). In 1990s, applications of air-stable ILs, such as 1-n-butyl-3-

methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-n-butyl-3-

methylimidazolium hexafluorophosphate ([bmim][PF6]) as well as water-stable ILs 

were increased rapidly to the extent that ILs became among the most promising 

chemicals as solvents in chemical processes (Aki et al., 2001, Wasserscheid et al., 

2002). 

2.3.3 Synthesis of ILs 

There are three basic methods to synthesis the ILs, namely: the methatesis 

reactions, acid-base neutralization, and direct combination.  

a) Metathesis Reactions 

Numerous ILs are prepared by a metathesis reaction from a halide or similar salt of 

the desired cation. Pyridinium and imidazolium halides can be obtained according to 

http://en.wikipedia.org/wiki/Imidazolium
http://en.wikipedia.org/wiki/Pyridinium
http://en.wikipedia.org/wiki/Halide
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this method. Generally, these kinds of reactions are divided into two categories 

depending on the water solubility of the targeted IL: metathesis by free acids or 

ammonium salts of alkali metals, and metathesis by silver (Ag) salt. For example, in 

1996, the synthesis of water immiscible ILs, such as dialkylimidazolium 

bis(triflyl)amides and dialkylimidazolium nonafluorobutanesulphonate were reported by 

reacting a halide or triflate with lithium bis(triflyl)amide. The production of water 

miscible ILs is an important and difficult task since it requires separation of the by-

products from the desired IL. For instance 1-ethyl-3-methylimidazolium 

tetrafluoroborate [C2mim][BF4] was produced in 1992 by metathesis reaction of 1-

ethyl-3-methylimidazolium iodid [C2mim]I and silver tetrafluoroborate (AgBF4) in 

methanol.  

Metathesis reaction is suitable for synthesizing new ILs. However, the prepared ILs 

are usually contaminated with small amounts of halide ions that may react with solute 

materials (Wilkes and Zaworotko, 1992, Bao et al., 2003).  

b) Acid-base neutralization 

Monoalkylammonium nitrats are produced by the neutralization of the aqueous 

solutions of the amine (base) with nitric acid. The by-product is water , which can be 

removed under vacuum. Similarly, tetraalkylammonium sulfonates are prepared by the 

reaction of sulfonic acid and tetraalkylammonium hydroxide. In order to purify the 

produced IL, it must be dissolved in either acetonitrile or tetrahydrofuran and treated 

with carbon active for at least 24 hours, and the organic solvent can be removed under 

vacuum (Wilkes and Zaworotko, 1992, Bao et al., 2003).   

c) Direct combination 

Some ILs are prepared by direct combination of a metal salt and a metal halide, 

such as halogenaluminate(III) as well as chlorocuprate(I) based ILs. However, the 
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chlorocuprate(I) based ILs are sensitive to oxygen, and are not utilized widely in 

synthesis (Welton, 1999).  

2.3.4 Applications of ILs 

Apart from the fact that ILs are utilized as green solvents in different chemical and 

engineering processes (Plechkova and Seddon, 2007), they possess numerous other 

applications. Various electronic applications, such as electrolytes for batteries, 

capacitors and charge storage devices, as well as conducting and light emitting materials 

have utilized ILs as solvents. In the area of polymers, ILs have applications as grafted 

components, solvents for polymerization, and modifiers of polymer morphology. They 

were utilized as solvents for the synthesis as well as stabilization of nanomaterials.  

ILs have been the focus of most researchers on nonaqueous electrodeposition and 

recovery of metals. Separations, spectroscopy, and mass spectrometry are other broad 

applications for ILs. They have also been employed widely in solvent extraction, 

particularly for recovery of metal salts. Moreover, ILs are being utilized recently as 

optical materials, lubricants, fuels for propulsion, and refrigerants (Plechkova and 

Seddon, 2007, Handy, 2011). 

2.3.4.1 Applications of ILs as Electrolytes 

Another useful aspect of some ILs is their wide window of electrochemical 

stability, which can be as large as 6 V. This wide window makes ILs promising 

candidates for use as electrolytes for electrochemistry. While materials with large 

voltage windows are desirable, they may also possess unacceptable viscosities and 

insufficient conductivities for use as electrolytes. High viscosities often result in higher 

oxidation potentials due to decreased mass transfer rates and longer reaction times 

(Tsuda and Hussey, 2007, Pinter et al., 2010). Examples of main physical and 

electrochemical properties of some IL electrolytes (ILEs) are shown in Table 2.4. 
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Table 2.4: Properties of some ionic liquids suitable for electrochemistry. (Stenger-Smith 
and Irvin, 2009) 

Ionic Liquid M.P. 
(oC) 

Viscosity 
(Pa s) at 

25 oC 
Conductivity (S/cm) Electrochemical  

window (V) 

1-ethyl-3-methylimidazolium 
bis  (trifluoromethylsulfonyl)imide -17 18 8.8 4.1 

1-ethyl-3-methylimidazolium 
trifluoromethanesulfonate -9 43 9.2 4.1 

1-butyl-1-methylpyrrolidinium 
bis(trifluoromethylsulfonyl)imide -50 71 2.2 5.5 

1-hexyl-3-methylimidazolium 
hexafluorophosphate -80 548 1 5.5 

1-ethyl-3-methylimidazolium 
dicyanamide -21 17 27 5.9 

1-methyl-3-octylimidazolium 
tetrafluoroborate -88 422 0.43 6 

 

The ILs shown in Table 2.4 have attracted significant attention as alternative 

electrolytes in industrial processes. They can be used in a pure form or in  combination 

with other solvents (Stenger-Smith et al., 2002, Pringle et al., 2005, Zakeeruddin and 

Graetzel, 2009). Advantages of ILs include a broad temperature range of application, 

low volatility, and good electrochemical and thermal stabilities (Armand et al., 2009). 

Wide electrochemical windows and negligible vapor pressures make ILs 

advantageous for the electroplating of metals and semiconductors (Tsuda and Hussey, 

2007, Keskin et al., 2007, Palmieri et al., 2009). ILs are also promising in enabling the 

technology of high-temperature fuel cells (Greaves, 2008, Handy, 2011). ILs offer an 

excellent alternative to conventional aqueous proton transfer systems at temperatures 

exceeding 100 °C, i.e. when water as a solvent is not an option. ILs have been showing 

an enhancement for long-term stability of electromechanical actuators utilizing 

electroactive or ion exchange polymers (Ding et al., 2003). The most prominent 

illustration of stability enhancement using ILs is in the electrochromic devices. When 

1 - butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) was used as the 

electrolyte in a polyaniline-based electrochromic display, there was no significant loss 

in electroactivity after 1,000,000 cycles (Armand et al., 2009, Handy, 2011). ILs were 

http://www.sigmaaldrich.com/technical-documents/articles/material-matters/ionic-liquids-for.html#R
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also utilized as electrolytes in the synthesis of electrochemical sensors, biosensors and 

supercapacitors (Handy, 2011).  

2.3.4.2 ILs in Fuel Cells 

Many factors had encouraged researchers to utilize ILs as electrolytic solvents in 

fuel cells (Handy, 2011, Ke et al., 2012). Examples are the high demand to improve the 

anhydrous proton conducting electrolytes used in fuel cells, and the need for developing 

electrolytes able to operate at temperatures above 120 oC, especially in polymeric-

electrolyte membrane fuel cells. ILs were required to act as protonic solvents or be 

capable to conduct protons. The developed fuel cells were categorized in five 

categories: i) molten carbonate, ii) solid oxide, iii) phosphoric acid, iv) polymeric 

electrolyte membrane, and v) alkaline fuel cells (Handy, 2011, Ke et al., 2012). The 

non-Bronsted acid-base room temperature imidazolium ionic liquids, such as 1-n-butyl-

3-methylimidazolium tetrafluoroborate, were found to be outstanding electrolytes for 

fuel cells (Noda and Susan, 2003).     

2.3.4.3 ILs in Electrochemical Sensors and Biosensors 

Due to the entire ionic composition, the intrinsic conductivity, and the negligible 

vapor pressure of ILs, they have been utilized as electrochemical sensors for gaseous 

analytes, such as oxygen (O2), carbon dioxide (CO2), sulfur dioxide (SO2) and 

ammonia (NH3) (Buzzeo et al., 2004, Peng et al., 2008). Cai and colleagues (Cai et al., 

2001) had developed an SO2 gas sensor resembling the Clark model that employs an IL 

as the electrolyte. Furthermore, several groups have used different kinds of ILs in 

electrode modification for the design of electrochemical sensors or as novel electrolytic 

materials. For instance, Lu et al. in 2001 utilized a novel chitosan/1-butyl-3-

methylimidazolium hexafluorophosphate composite material as a new immobilization 

matrix to entrap proteins, in addition they studied the electrochemical behaviors of 

hemoglobin (Hb) on glassy carbon electrode (Singh et al., 2012). 
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Biosensors are small devices employing biochemical molecular recognition 

properties as the basis for a selective analysis. The major processes involved in any 

biosensor system are (i) analyte recognition, (ii) signal transduction, and (iii) readout. In 

an electrochemical biosensor, a molecular sensing device couples a biological 

recognition element to an electrode transducer, which converts the biological 

recognition event into an electrical signal (Singh et al., 2012). ILs have shown good 

compatibility with biomolecules and enzymes and even whole cells are active in various 

ILs. 1-Butyl-3-methylimidazolium chloride ([bmim][Cl]) was found miscible with silk, 

which is an attractive biomaterial with excellent mechanical properties and 

biocompatibility (Singh et al., 2012, Buzzeo et al., 2004). 

2.3.4.4 ILs in Supercapacitors 

Electrochemical capacitors (ECs), also known as supercapacitors, are power 

leveling charge storage devices in which oxidation and reduction of electroactive 

polymers, metal oxides, or carbonaceous materials are taking place to store electrical 

energy. They require an electrolyte for their operation. During the charging process, the 

EC cathode is reduced and the anode is oxidized to store electrical energy. Later on, this 

charge is released during discharge, as electrode materials return to their neutral states 

(Namisnyk, 2003). 

The most promising applications of ECs are memory protection systems for 

portable electronics, load leveling for electric utilities and energy storage for electric 

vehicles. ECs generally provide more power per unit mass than batteries and store more 

energy per unit mass than traditional capacitors. Consequently, they are used to supply 

burst power for electric vehicles (Namisnyk, 2003). 

The most common commercial electrolytes used in ECs are organic solvents 

containing a salt, typically an alkylammonium salt dissolved in acetonitrile. These 

mixtures have good conductivity and ion transport properties, but also have high 



33 
 

volatility, flammability and toxicity (Stenger-Smith, 2002). These characteristics raise 

safety and environmental concerns. Moreover, the use of acetonitrile generally limits 

their applications above 70 oC due to the risk of cell rupture. It also has a very low flash 

point, i.e. 10 oC, and emits toxic gases such as cyanogen (CN2) and nitrogen oxides 

(NOx) as combustion products.  

The use of ILs (Frackowiak et al., 2005, Kim et al., 2011) in ECs allows volatile 

and hazardous conventional solvents to be eliminated and improves the operational 

stability of these devices. Therefore, their utilization opens up the possibility of utilizing 

energy storage devices for applications at higher temperatures such as military 

equipment, hand-held surgical tools for sterile surgical environments, subterranean 

probes and other power systems exposed to high temperature environments (Kim et al., 

2011, Balducci et al., 2004, Frackowiak et al., 2005) . 

2.3.4.5 Application of ILs in Batteries 

For a long period of time, battery cells used caustic and hazardous electrolytes. By 

the introduction of ILs as electrolytes in these cells, scientists believe that numerous 

new types of batteries can be introduced. This is due to the fact that ILs are non-volatile 

and thermally-stable in contrast to the common electrolytes (Stenger-Smith and Irvin, 

2009).  

Generally, conventional batteries are composed of an organic electrolyte, a graphite 

anode and a lithium transition metal oxide as cathode, such as lithium cobalt oxide 

(LiCoO2) and lithium nickel oxide (LiNiO2). The used electrolytes consist of an 

electrochemically stable lithium salt, such as lithium hexafluorophosphate (LiPF6) and 

ethylene carbonate (C3H4O3) dissolved in an organic solvent such as dimethyl 

carbonate (C3H4O3). The dissolved C3H4O3 plays a role by forming a film on the 

anode to protect the electrolyte against reduction while it is ionically-conductive. The 
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drawback of these batteries is the low boiling point and flammability of the organic 

solvent which cause a safety risk (Lewandowski and Swiderska-Mocek, 2009)  

Unlike highly acidic conventional electrolytes, ILs due to their unique properties 

have fostered the interest in battery applications to develop novel types of solid state 

rechargeable batteries such as lithium-ion batteries. These kinds of batteries are broadly 

used in portable electrical and electronic products such as laptops and cell phones owing 

to the highest energy density among rechargeable energy storage systems. The utilized 

electrolyte in a lithium ion battery consists of a lithium salt dissolved in the IL, such as 

1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) 

(Abu-lebdeh and Davidson, 2013).  

Various ILs were studied for this application, such as 1-ethyl-3-methylimidazolium 

chloride and 1-metyle1-butylpyridinum chloride due to their incombustibility. In 

addition, other ILs based on tetrafluoroborate [BF4], bis(trifluoromethylsulfonyl)imide 

[NTf2], and hexafluorophosphate [PF6] as anions and ethylmethylimidazolium 

[EtMeIm], [Et2Me2Im], [BuMe2Im], and [Me3HexN] as cations have been reported for 

this application(Clare et al., 2008) .  

Furthermore, ILs have been used as alternative electrolytes in nickel-metal hydride 

(NiMH) batteries, the standard lead-acid battery, and flow batteries. In 2012, 

researchers at the Queen’s University Belfast have developed a novel battery 

technology based on a design of a flow battery which stores and releases energy by the 

electrochemical reactions of ILs as they pass through a membrane.  

The purity of the electrolytes used in energy storage applications is crucial for the 

stability and performance of electrochemical devices. ILs are no exception. Depending 

on the synthetic routes employed for the preparation of ILs, impurities in these materials 

may include water, superfluous cations or anions, or other solvents. Even trace amounts 

of contaminants can result in undesirable side reactions and hamper the performance of 
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electroactive polymer-based devices. Chloride and water impurities have been shown to 

influence the viscosity of ionic liquids (Seddon et al., 2000, Zhang and Bond, 2005) 

Small amounts, i.e. few ppm’s, of sorbents such as alumina and silica can also result in 

reduced electrochemical performance of ILs (Clare et al., 2008, Stenger-Smith and 

Irvin, 2009). Purification approaches that produce ILs suitable for use in 

electrochemistry often involve column chromatography or vacuum distillation of 

impurities.  

2.3.5 ILs at Extreme Temperatures 

As the focus on energy production and storage attained an increasing pattern, there 

is a growing demand for charge storage devices that operate at a wide range of 

temperatures. For instance, charge storage devices are ideally operational at 

temperatures as low as -30 °C in the automotive industry (Pesaran et al., 2007). Other 

requirements for these devices are even more severe, as the temperatures reach -60 °C. 

It has been reported that batteries undergo severe performance deficiency at low 

temperatures (Stenger-Smith and Irvin, 2009). Low temperatures slow down the 

kinetics of the charge/discharge process and increase the viscosity of the electrolytes 

leading to a reduced ability of charge transportation. These changes in the property lead 

to performance deficiency or failure upon long exposure to low temperatures. One of 

the most serious effects of low temperatures on solution-based electrolytes is the 

reduction in the solubility of the electrolyte material, which in turn leads to precipitation 

of the salt and destruction of the EC or battery (Stenger-Smith and Irvin, 2009).  

ILs as electrolytes are used at the moderately low temperatures required by the 

automotive industry. However, few of these can operate at extremely low temperatures 

(Stenger-Smith and Irvin, 2009). What is more challenging is the fact that these 

electrolytes should support various electrochemical processes in a variety of reaction 

systems across a broad temperature interval. There are very few ILs that remain liquid 
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at extremely low temperatures and their viscosities may become relatively high for most 

of the electrochemical applications. To overcome this challenge, the use of mixtures of 

different ILs and the use of viscosity-reducing additives have been proposed. Not only 

the low temperatures are of concern to researchers, but also the elevated temperatures, 

i.e. up to 60 °C (Pesaran et al., 2007). As most solvent-based electrolytes have high 

solvent volatility at elevated temperatures, solvent evaporation can result in numerous 

unfavoured issues. These issues include fire and explosion in sealed systems and in 

electrolyte precipitation, destruction of the charge storage materials, and loss of charge 

storage capability in open systems. Thus, the negligible vapour pressure of ILs makes 

them excellent electrolytes for use at elevated temperatures (Stenger-Smith and Irvin, 

2009). 

2.3.6 Limitations of the Use of ILs 

To date, cations such as N-alkyimidazolium, N-alkylpyridinium, N-

alkylthiazolium, N,N-dialkylpyrazolium, tetraalkylammonium, and coordinating 

inorganic bulky anions such as BF4
−, PF6

−, F3CSO3
– and (F3CSO2)2N−, ZnCl3

−, are the 

most investigated components of traditional ILs (Endres, 2002, Endres, 2004). 

Imidazolium based ILs for their micro-by phasic structure composed of polar and non-

polar domains had undergone numerous simulations and experimental research (Santos 

et al., 2007). Drawbacks that hindered the full utilization of ILs are mostly connected to 

their toxicity (Morrison et al., 2009). Possible drain of the ILs to the soil or water 

channels make them persistent pollutants and pose environmental risks. Not forgetting 

to mention the cost factor, drawbacks are now obvious for the industrial management 

bodies in considering ILs for complete utilization. 

Even though ultrasonic irradiation ostensibly can break down traditional ILs into 

more environmentally benign non-toxic compounds, such as biurea and acetoxyacetic 
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acid (Xuehui, et al., 2007), this irradiation requires high frequency sound waves on 

solutions of hydrogen peroxide and acetic acid to be implemented.  

Other main challenging issues are not only the synthesis, but also the drying and 

purifying steps of traditional ILs. Moreover, the equipment used in processes utilizing 

ILs necessitate certain skills, owing to the complicated reaction mechanism of 

traditional ILs. Lastly, physico-chemical properties of ILs can simply be influenced by 

small amounts of impurities especially in catalytic activities and electrochemical 

applications.    

Recently, Abbott and his colleagues (Abbott et al., 2001) demonstrated that a 

mixture of solid organic salt and a complexing agent can form a liquid at temperatures 

below 100◦C, known as deep eutectic solvent (DES).   

2.4 Deep Eutectic Solvents (DESs) 

The term “deep eutectic solvent” refers to liquids close to the eutectic composition 

of the mixtures and is represented diagrammatically in Figure 2.4. The eutectic point of 

a mixture refers to the molar ratio of the components which gives the lowest melting 

point. 

 
Figure 2.4: Schematic representation of eutectic mixture formation 

 



38 
 

It is found in the literature that DESs are mostly synthesized by mixing a 

quaternary salt (X) with a hydrogen bond donor (HBD) or a complexing agent (Y). 

Professor Andrew Abbott and co-workers have introduced the first research article on 

the synthesis of DESs in 2004 (Abbott et al., 2004a). Their initial view was that it is 

possible to synthesize a DES from a quaternary salt and a HBD. Their research was 

focused on quaternary ammonium salt, (2-hydroxyethyl)trimethylammonium chloride, 

which is known commercially as choline chloride. It is a well-known vitamin used in 

the diet of cows and chicken; thus, it possesses no harmful impact and is considered as a 

totally “green” compound (Aquilina et al., 2011). The selected HBD was carbamide 

(urea) which is a fertilizer used in agriculture. Obviously both components are harmless 

and green, resulting in a totally green DES upon their mixing (Mavrovic et al., 2010) 

DESs are now a class of solvents that possess desirable characteristics such as low 

cost, high solute solubility, wide potential window, and negligible impacts on the 

environment (Abbott et al., 2003a, Abbott et al., 2006a, Kareem et al., 2010, Ju et al., 

2012). The possibility to design their structure by choosing the proper salt and HBD as 

well as the similar salvation properties to ILs made them analogues for ILs. Added 

advantage is the ease of the preparation in comparison with ILs. DESs are produced 

from physical mixing of the salt and HBD with acute heating involving neither chemical 

reaction nor the need for catalysts (Yu et al., 2008, Weaver et al., 2010, Ilgen et al., 

2009, Reinhardt et al., 2008); while, the production of ILs involves chemical reactions 

of the raw materials. Side products will form impurities to the IL and require additional 

purification (Keskin et al., 2007). An example is given for the production of 1-butyl-3-

methylimidazolium hexafluorophosphoate according to the following reaction 

(Swatloski et al., 2003): 
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+ NaPF6  

 

+ NaCl                       (2-8) 

Sodium chloride (NaCl) as a side product is an impurity to the IL and its removal is 

essential to improve the quality of the product. 

The combination of the salt and the HBD or the complexing agent in DES synthesis 

creates a new compound with a melting point lower than that of its constituent 

components. The mechanism by which a DES is formed is not complicated. The HBD 

or the complexing agent interacts with the anion of the salt and increases its effective 

size, which in turn reduces the anion interaction with the cation. Thus, the melting point 

of the mixture is decreased (Zhang et al., 2012, Carriazo et al., 2012). Generally, DESs 

are characterized by a large depression of freezing point and by being liquids at 

temperatures lower than 150 oC (Carriazo et al., 2012). However, most of them are 

liquid between room temperature and 70 oC (Zhang et al., 2012, Carriazo et al., 2012). 

A classic example is the mixture of choline chloride/urea DES. The melting points of 

ChCl and urea are 302 oC and 133 oC, respectively. When mixed at a 1:2 molar ratio of 

ChCl:urea, a liquid eutectic mixture was formed which has a melting temperature of 

12  oC (Abbott et al., 2003a, Zhao and Baker, 2013). 

 

   (2-9) 

 

As mentioned earlier in this Section, DESs have advantages in the preparation 

procedure over ILs. Firstly, the preparation procedure of these eutectic mixtures, unlike 

traditional ILs, is simple and needs only to mix two different compounds mechanically 
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with acute heating without the need for a catalyst. Secondly, a total mass efficiency and 

zero emission in the synthesis are achieved. This means that all the masses of the salt 

and HBD or complexing agent involved are converted to DES, which is 

environmentally benign as there is no side products, especially in the form of vapours. 

Lastly, substance density and energy density in the preparation process is lower in 

comparison to ILs synthesis (Kareem et al., 2010, Hayyan et al., 2012, Zhao and Baker, 

2013). All these advantages of the DESs make them suitable for strict industrial 

requirements and large-scale production in comparison to the traditional ILs synthesized 

by metathesis and ion exchange. 

In 2007, DESs were defined using the general formula R1R2R3R4N+X-:Y-, (Abbott 

et al., 2007a) where X is generally a halide ion (often Cl-), Y is a complexing agent. 

Four general types of DESs were given as below: 

Type I DES: Y = MClx, M = Zn, Sn, Fe, Al, Ga 
 
Type II DES: Y = MClx.yH2O, M = Cr, Co, Cu, Ni, Fe 
 
Type III DES: Y = R5Z with Z= CONH2

-, COOH-, OH- 

Type IV DES:   MClx, such as ZnCl2, mixed with a HBD such as urea, ethylene 

glycol, acetamide or hexanediol. 

Like ILs, most of the DESs possess ionic species, especially choline chloride-based 

ones. However, they cannot be considered as ILs because they are not completely 

composed of cations (Abbott et al., 2003a).  

Since the time the interest on DESs became obvious in the literature, many 

combinations of salts and HBDs or complexing agents were reported. Table 2.5 shows a 

summary of typical quaternary salts as well as some HBDs utilized by different 

researchers (Abbott et al., 2003b, Abbott et al., 2009, Kareem et al., 2010, Shahbaz et 

al., 2010, Hayyan et al., 2012, Kareem et al., 2012a, Kareem et al., 2012b).  
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Table 2.5: Typical structures of the quaternary salts and HBDs used for DES synthesis (Zhang et al., 2012, Zhao and Baker, 2013) 
 

Quaternary salts HBDs 
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Choline chloride (C5H14ClNO) is widely available in the market at low prices. It is 

biodegradable and non-toxic. These characteristics favour its use as an organic salt to 

produce eutectic solvents with safe HBDs, such as urea, glycerol, carboxylic acids, or 

carbohydrate–derived polyols (Zhang et al., 2012). In comparison with traditional ILs, 

DESs derived from choline chloride possess numerous superiorities which reinforce 

the greenness of these solvents, such as low price, ease of storage, ease of preparation, 

biodegradability, biocompatibility and non-toxicity. In addition, choline chloride-based 

DESs are very similar to traditional imidazolium-based ILs from both physical and 

chemical aspects. Intensive investigations were carried out by different researchers 

(Zhao and Baker, 2013, Zhang et al., 2012) to characterize these types of DESs. 

Properties such as density, viscosity, refractive index, electrical conductivity, surface 

tension, and chemical inertness were found to be close to those of ILs. Consequently, 

applications of imidazolium ILs can be replaced by DESs. Moreover, in contrast with 

traditional organic solvents, storing DESs is easy due to their non flammability and 

non volatility properties (Zhao and Baker, 2013, Zhang et al., 2012). From the view 

point of green chemistry, apart from their biodegradability and water stability, some 

DESs are compatible with enzymes, making them even more attractive. Choline 

chloride based DESs were successfully applied in numerous chemical and biochemical 

applications, such as metal oxide processing (Abbott et al., 2006a), electropolishing 

(Abbott et al., 2006b) and extraction of glycerol from biodiesel (Shahbaz et al., 2010). 

Similar to ILs, ChCl-based DESs are studied for their potential application in carbon 

dioxide (CO2) absorption. Li and co-workers (Li et al., 2008, Zhang et al., 2012) 

reported the absorption of CO2 in a wide range of DESs from ChCl:urea and the 

solubility of CO2 in ChCl:urea DES with water content.  
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2.4.1 Synthesis of DESs 

DESs as “advanced ILs” (Gorke et al., 2010) are favorable solvents in comparison 

to ILs. One of the favoring factors is the ease of their synthesis. They can be easily 

prepared in high purity with very limited resources. The requirements are only a 

jacketed vessel with mechanical mixer and a mixing temperature of lower than 100oC. 

Additionally, their components can be selected from biodegradable and 

environmentally benign materials that possess low or no toxicity. (Abbott et al., 2003a, 

Abbott et al., 2009, Kareem et al., 2010, Shahbaz et al., 2010, Kareem et al., 2012a, 

Kareem et al., 2012b, Hayyan et al., 2012).  

The mechanism in which a DES is formed is that the complexing agent, typically a 

HBD, interacts with the anion of the salt and increases its effective size. This interaction 

reduces the anion interaction with the cation and thus decreases the freezing point of the 

mixture. DESs are characterized by a very large depression of freezing point and by 

being liquids at temperatures lower than 150 oC. Abbott et al. (2004a) have described a 

method for synthesizing DESs. This method also was adopted by Kareem et al. (2010, 

2012a, 2012b) and Shahbaz et al. (2011a, 2011b, 2011c, 2012a, 2012b).  

The mixing time and the temperature required to cause a complete interaction 

between the salt and the HBD are not systematically calculated. They are acquired 

through laboratory experience. The DES is said to be formed completely when the salt 

and HBD change to a homogeneous liquid (Abbott et al., 2004a).  

2.4.2 Physical Properties of DESs 

As a similarity to ILs, DESs can be designed by combining desired components in 

various molar ratios to tune their physicochemical properties (Zhang et al., 2012). In 

this way, different task-specific DESs with different physicochemical properties, such 
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as freezing point, viscosity, conductivity, and pH can be derived. Owing to their 

promising applications, numerous efforts have been devoted to the physicochemical 

characterization of DESs.  

2.4.2.1 Freezing Point (Melting Point) 

DESs are distinguished for their unique properties, essentially low melting points 

which make them favorable to traditional conventional solvents. The interest in their 

applications is influenced by liquid phase under 100oC, thus they are suitable to replace 

traditional molten salts that operate at very high operational temperatures. Abbott et al. 

(2003a) showed that DESs of choline chloride (ChCl) + urea had some unique solvent’s 

properties. It was shown that the self-association taking place between the salt and the 

HBD depends on the type of components, and additionally their molar ratios play a key 

role in controlling the melting point of the DES. Kareem et al. (2010) and Shahbaz et al. 

(2010) presented similar findings to those of Abbott et al. (2003b) for phosphonium-

based DESs and choline-based DES, respectively. A melting point of – 66 oC was 

achieved for ChCl + ethylene glycol at a salt:HBD molar ratio of 1:2. Moreover, Hua et 

al. (2011) and Hayyan et al. (2013) authenticated the controlling role of salt:HBD molar 

ratio in glycerol and glucose based DESs, respectively. 

2.4.2.2 Viscosity 

Owing to the potential application of DESs as green media in chemical processes, 

the development of DESs with low viscosity is critically important.  

Viscosity is defined as the resistivity of a fluid to flow in streams. It is an important 

property, especially when fluids, generally, and liquids, specifically, are used as 

lubricants (Streeter et al., 1998). Viscosity of a DES, similar to melting point, is 

strongly influenced by the atomic structure of its components, the molar ratio by which 

it is prepared, the operating temperature, and the water content. The ionic size of 
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components, void volume and interaction forces between components, such as 

electrostatic and Van der Waals, all significantly affect the viscosity of DESs (Abbott et 

al., 1999).  

Viscosity of most eutectic mixtures obviously changes as a function of the 

temperature. (Kareem et al., 2010, Hayyan et al., 2012): 

Hayyan et al. (2012) presented a DES made of ChCl and D-fructose as a HBD. It 

was shown that the variation of the salt:HBD molar ratio influenced the viscosity of the 

resulting DES. The lowest viscosity attained was when the salt:HBD is 2:1 whereby the 

viscosity is 12 Pa.s at around 30 oC. Yet, the viscosity of this DES is higher than those 

reported for choline chloride-based DES by Kareem et al. (2010) with viscosities in the 

range of 0.068 and 0.14 Pa.s.  

2.4.2.3 Electrical Conductivity 

Electrical conductivity is one of the fundamental physical properties which 

represent how well a material can conduct electrical current. It is also an indication for 

how much a material is resistive for the motion of electrons within its molecules, i.e. 

resistivity (Ju et al., 2012). The higher the value of the conductivity, the lower the 

resistance it provides to the flow of electric current (Ju et al., 2012, Holbery et al., 

2003). In addition, it is a useful measurement, as in the case of using liquids as 

electrolytes in electrochemical processes, such as in batteries or in electroplating 

process. In engineering applications, it is crucial to measure the electrical conductivity 

of an electrolyte in order to design, control and optimize the electrolytic processes and 

the production of electrochemical power sources. For corrosion protection, electrical 

conductivity provides practical information for assessing the corrosivity of aqueous 

media and for cathodic protection system.(Holbery et al., 2003). 
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Electrical conductivity of DESs is influenced by their relatively high viscosity. 

Therefore, DESs exhibit poor ionic electrical conductivity around or lower than 2 

mS  cm-1 at room temperature. In addition, due to the strong impact of the molecular 

structure and molar ratio of DES components on viscosity, the electrical conductivity of 

DESs is strongly influenced by these factors. A detailed description of electrical 

conductivity and its behavior with temperature for different ammonium and 

phosphonium based DES is presented in Chapter 4 of this work. Conductivities of 

DESs generally increase significantly as the temperature increases due to a decline in 

the viscosity.  

2.4.2.4 Refractive Index  

The index of refraction or refractive index is an important property, especially for 

optical identification of particular substances, inspecting the purity of materials and in 

measuring the concentration of solutes in solutions (Awwad and AlDujaili, 2001). 

There are few recent studies that investigated the change in the refractive index of 

DESs with temperature. The work by Kareem et al. (2010) and Hayyan et al. (2013) 

showed that the refractive index of DESs decreases linearly as the temperature 

increases. Five different DESs were investigated, and it was found that the values of the 

refractive index for phosphonium salts-based DESs varied between 1.47 and 1.57 

(Kareem et al., 2010), for glucose-based DESs varied between 1.65 and 1.66 while for 

fructose-based DESs varied between 1.50 and 1.52 (Hayyan et al., 2012, Hayyan et al., 

2013). A study by Shahbaz et al. (2013) proposed a predictive method to theoretically 

calculate the refractive indices of DESs. This method is based on the molar refraction 

method proposed by Wildman and Crippen (1999). The calculated refractive indices by 

this method were compared to the experimental values and the error percentages were 

estimated. The maximum error was 2.9918 % for ChCl:glycerol DES at salt:HBD molar 
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ratio of 1:1 while the minimum error was 0.2741 % for N,N-diethylethanol ammonium 

chloride:ethylene glycol DES at salt:HBD molar ratio of 1:3. 

2.4.2.5 Density 

Recent studies have reported the measurements of densities of DESs over various 

range of temperatures (Kareem et al., 2010, Abbott et al., 2011a, Shahbaz et al., 2011c, 

Hayyan et al., 2013). Density of a substance is the amount of mass in a unit volume. 

Most of the materials in liquid phase tend to follow the general rule, i.e. density varies 

in an inversely proportional pattern with temperature. The reported measurements for 

density of DESs showed the same behaviour. Some DESs possess low densities, such as 

N,N-diethylenethanol ammonium chloride: ethylene glycol (1:4) which has a density of 

1.0590 gr/cm3at 95 oC. Other DESs possess moderate densities, such as methyltriphenyl 

phosphonium bromide: glycerol (1:2) with a density of 1.2486 g cm-3 at 95 oC. The 

studies on DESs’ densities showed that the density of a DES is similar to other physical 

properties in their dependence on the salt:HBD molar ratio. This means that the 

variation in salt:HBD molar ratio leads to a variation of the density of the resulting 

DES. This fact was illustrated by the work of Shahbaz et al. (2011c). 

From the various works that dealt with the estimation of the densities of different 

DESs, it was shown that phosphonium-based DESs possess higher densities than water 

(Kareem et al., 2010, Shahbaz et al., 2012c). In the work of Abbott et al. (2011a), 

density’s profile versus the salt’s concentration in a DES made from ChCl and glycerol 

was reported. The density of this DES was 1.26 g/cm3 at zero % molar concentration of 

ChCl. The density started to decrease as the ChCl concentration increased until it 

reached 1.18 g/cm3 when the ChCl concentration became around 33 % mol.  
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2.4.3 Applications of DESs 

Zhang et al. (2012) showed that the use of DESs not only allows the design of safer 

processes but also provides a straightforward access to new chemicals and materials.  

The advantages of DESs over conventional ILs can be summarized as follows: 

ease in preparation, lower costs, the elimination of purification step and 

biodegradability. However, other than what has been reported in earlier sections, the 

applications of DESs are virtually unknown. This indicates the wide industrial horizon 

in which they can play essential roles. As DESs has emerged as an efficient, non-toxic 

and cheap replacement for conventional solvents, their potential applications in various 

chemical and electrochemical applications are significant. The electrodeposition of 

metals from zinc–tin alloys on ChCl:urea DESs was one of the first applications dealing 

with DESs (Abbott et al., 2007a). Jhong et al. (2009) applied ChCl:glycerol DES as 

electrolyte for dye-sensitized solar cells. Biosett (2013) has reported physical properties 

of lithium bis[(trifluoromethyl)sulfonyl]imide:N-methylacetamide DES as superionic 

electrolyte for lithium ion batteries and electric double layer capacitors. It was found 

that, this DES possesses wide liquid-phase range from −60 °C to 280 °C, low vapor 

pressure, and high ionic conductivity up to 28.4 mS cm-1 at 150 °C and at ratio of 1:4, 

therefore this solution can be practically used as electrolyte for electrochemical storage 

systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries 

(LiBs).  

The exponentially growing flow of research papers and patents concerning the 

synthesis and applications of DESs indicates the significant expansion in research on 

DESs.  
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2.4.3.1 DESs in CO2 Capture Process 

According to the Intergovernmental Panel on Climate Change (IPCC), global 

greenhouse gas emissions must be reduced by 50 to 80% by 2050 to avoid dramatic 

consequences of global warming (Metz et al., 2005). By the end of the 21st century, it is 

predicted that the emissions of greenhouse gases will increase the average global 

temperature by 1.1 to 6.4 oC. The consequences of elevated global temperatures will be 

melting of glaciers, leading to reduced water and food resources. The most important 

greenhouse gas is carbon dioxide (CO2) because it is produced widely by the industry as 

a result of burning fossil fuels. Anthropogenic CO2 emissions are mainly from fossil 

fuels, being the most important global energy sources. Therefore, it is of an urgent need 

to reduce CO2 emissions from the industry (Metz et al., 2005). CO2 capture by washing 

the flue gases with amine solutions, such as monoethanol amine (MEA) and diethanol 

amine (DEA), has been proposed and studied widely (Gray et al., 2008, Houshmand et 

al., 2013, Song et al., 2013). Although the utilization of amine solutions in CO2 capture 

is efficient in terms of the yield of the process, drawbacks related to this utilization have 

been reported. High energy consumption and corrosion of process units due to the use 

of corrosive amine solutions as well as the degradation, toxicity and inefficient 

recyclability of these absorbents are among the drawbacks connected with CO2 capture 

by amine solutions (Dawodu and Meisen, 1996, Schach et al., 2010). 

Li et al. (2008) repoted that ChCl:urea DES has the potential in capturing CO2. It 

was shown that ChCl:urea DES under different operating conditions of pressure and 

temperature has a high capacity to dissolve CO2. The solubility was reported to be 

increasing with increasing pressure. Additionally, the different salt:HBD molar ratios 

did not give a significant difference in the solubility of CO2 in the DES. Su et al. (2009) 

reported a work similar to the earlier work of Li et al., whereby it was confirmed that 

CO2 has a good solubility in the ChCl:urea DES.  
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2.4.3.2 Dissolution of Metal Oxides 

Selective solubility of different metal oxides in “green” solvents under different 

temperatures is essentially important for metal extraction processes in hydrometallurgy 

or recovery of metals from waste materials produced by electric arc furnace 

(Cherginets, 2001, Fray and Chen, 2001). Electrowinning and liquid-liquid extraction 

have been used to recover and concentrate the metals, typically from their oxides 

(Abbott et al., 2006b). Aqueous acids, alkalis and some high temperature molten salts 

have been used extensively in recovery of metals, such as titanium and aluminum 

(Cherginets, 2001, Abbott et al., 2006a). Preliminary studies have shown that traditional 

imidazolium-based ILs are potentially applicable in metal recovery (Zhang and Bond, 

2005, Wu et al., 2002, McCluskey et al., 2002). They have been applied for the 

extraction of the gold and silver from a mineral matrix and the recovery of uranium and 

plutonium from used nuclear fuel (Abbott et al., 2006a). DESs as a potential 

replacement for ILs have shown the potential to dissolve metal oxides successfully 

(Abbott et al., 2003a, Abbott et al., 2006a). For example, ChCl:urea DES is capable of 

selectivity extracting zinc oxide (ZnO) and lead oxide (PbO) versus ferric oxide 

(Fe2O3) and aluminum oxide (Al2O3) from the waste of electric arc furnace (Abbott et 

al., 2006a). Moreover, ChCl:urea DES is capable of dissolving a broad range of organic 

and inorganic compounds, even those which are not soluble in water, such as lithium 

chloride (LiCl), silver chloride (AgCl), aromatic acids, i.e. benzoic acid and amino acids 

(d-alanine). Abbott et al. (2003a) demonstrated the solubility of metal oxides in 

ChCl:urea DESs. It was shown that, for instance, the solubility of copper oxide (CuO) 

in a ChCl:urea eutectic mixture was 0.12 mol/L. In a later article (Abbott et al., 2006a), 

the solubility of ZnO, CuO and Fe3O4 in different ChCl:carboxylic DESs was reported. 

It has been shown that the solubility of these oxides vary from 0.071 mol/L to 0.554 
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mol/L. It was also concluded that the solubility of different metal oxides would be 

dependent on the nature of the DES and metal oxides (Zhang et al., 2012).  

2.4.3.3 Purification of Biodiesel 

Despite the use of liquid-liquid decantation to separate glycerol from biodiesel, the 

ASTM specification requires more purification for biodiesel prior to its use in vehicles 

(Shahbaz et al., 2010). Unlike biodiesel, glycerol is highly polar. Abbott et al. (2007c) 

demonstrated the utilization of DESs to additionally treat biodiesel, owing to their 

compatible properties with ILs such as polarity. Ammonium-based DESs such as 

acetylcholine chloride:glycerol DES with ratio of 1:1 was used to separate glycerol from 

raw biodiesel. The results showed a significant decrease, 99%, of the content of glycerol 

in biodiesel. Evaluation of ammonium chloride DESs versus ammonium bromide DESs 

showed that the former DESs such as acetylcholine chloride-based DES was more 

efficient, i.e. 99% than ammonium bromide DES such as Pr4NBr:glycerol DES (Abbott 

et al., 2007c, Zhang et al., 2012). This high efficiency of ammonium chloride-based 

DESs may be attributed to the higher electronegativity of the chloride agent. Similarly, 

Hayyan et al. (2010) showed that ChCl:glycerol based DESs can also be used as a 

solvent for the separation of glycerol from palm oil-derived biodiesel. Recently, 

Shahbaz et al. (2010) used other ChCl-based DESs for the extraction of residual 

glycerol from biodiesel. For example, ChCl:ethylene glycol and ChCl:2,2,2-

trifluracetamide DESs were found to be efficient in this extraction. It has been shown 

that the best separation efficiency was achieved using a ChCl–ethylene glycol DES with 

a salt:HBD molar ratio of 1:2.5 with a DES:biodiesel ratio of 2.5:1. ChCl–2,2,2 

trifluracetamide DES with a salt:HBD molar ratio of 1:1.75 was also highly efficient in 

the separation of glycerol from biodiesel at DES:biodiesel ratio of 3:1. In addition to 

ammonium based DESs, Shahbaz et al. (2010) utilized phosphonium-based DESs for 
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the purification of palm oil-derived biodiesel. Phosphonium-based DESs were 

synthesized from methyltriphenylphosphonium bromide as a salt with three different 

HDBs, i.e. glycerol, ethylene glycol or triethylene glycol. It was shown that ethylene 

glycol and triethylene glycol-based DESs were very efficient, over 90%, for removing 

residual glycerol from palm oil-derived biodiesel.  

2.4.3.4 DESs for Ionic Conductivity Enhancement 

Ramesh et al. (2012) used a ChCl:urea DES to improve the ionic transport 

mechanism and electrical conductivity as a suitable additive to the series of electrolytes 

of corn starch and lithium bis(trifluoromethanesulfonyl)imide. It was shown that the 

ionic conductivity of traditional ILs was increased by the amorphous elastomeric phase 

in corn starch: lithium bis(trifluoromethanesulfonyl)imide matrix. The ionic transport 

mechanism was found to be improved, and an appreciable amount of ion conducting 

polymer electrolytes was produced. 

2.4.3.5 DESs as Solvents for Extraction of Aromatic Hydrocarbons from Naphtha 

The removal of aromatic hydrocarbons from naphtha prior to the thermal cracking 

process to produce ethylene is a necessary process to gain economical and industrial 

benefits. It is a challenging process since these hydrocarbons have similar boiling points 

and cannot be separated by normal distillation. Solvent extraction is commonly used in 

industrial processes for aromatic hydrocarbon separation because of the mild operating 

conditions and due to its simplicity (Gaile et al., 2004). Industrially used chemicals as 

extractants are mostly conventional polar organic solvents, such as with problems of 

toxicity and flammability. Meindersma (2005), Arce et al. (2007), Garcia et al. (2010), 

and Dominguez et al. (2013) utilized different ILs as extraction solvents in the 

separation of aromatics from naphtha. Different phosphonium-based DESs were 

http://www.sciencedirect.com/science/article/pii/S0378381211005048#bib0005
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successfully used in ternary systems of benzene + hexane + DES and toluene + heptane 

+ DES by Kareem et al. (2012a and 2012b). It was found that the DES of molar ratio of 

1:6 methyltriphenylphosphonium bromide:ethylene glycol showed the best separation 

performance in comparison to sulfolane which is the commercial solvent for this 

extraction. In the system of toluene + heptane + DES, DESs composed of 

tetrabutylphosphonium bromide and two HBDs, i.e. ethylene glycol and sulfolane, were 

applied within a range of temperatures 30 oC to 60 oC. The results showed high 

seletivities of the DESs towards toluene, but not as high as those of sulfolane. However, 

the advantage was that the DESs investigated did not suffer a solvent loss to the 

raffinate phase.   

2.4.3.6 DESs as Catalysts 

Not only DESs were successful solvents in separation processes due to their low 

price and simplicity in synthesis but also they have been applied successfully as 

catalysts in different applications, similar to traditional ILs. Lindberg et al. (2010) used 

choline chloride-based DESs with ethane-diol, urea and ethylene glycol as HBDs in the 

hydrolysis of 1,2-trans-2-methylstyrene oxide. Recently, Hayyan et al. (2013) 

introduced phosphonium-based DESs as advantageous catalyst over ILs for the 

production of biodiesel from industrial low grade crude palm oil. In that work, Hayyan 

and colleagues used allyltriphenylphosphonium bromide as the phosphonium salt and p-

 toluenesulfonic acid monohydrate as HBD. The DES produced was jelly viscous under 

laboratory conditions, and the biodiesel produced from low grade crude palm oil met 

the international standards, i.e. ASTM D6751 and EN 14214. Durand et al. (2012) 

concentrated on analysing the advantages and limitations of several DESs as “green” 

solvents for biotransformation using immobilized Candida antarctica lipase B as a 

catalyst. Selected DESs for this utilization composed of two different ammonium salts, 
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i.e. choline chloride and ethylammonium chloride, with different HBDs, i.e. urea, 

glycerol, oxalic acid, malonic acid, and ethylene glycol. It was shown that the DESs 

composed of glycerol or urea combined with choline chloride as salt allowed the best 

initial specific activity of the lipase in comparison to those in conventional organic 

media. Azizi et al. (2012) introduced DESs as a dual catalyst and reaction medium for 

the efficient formation of aromatic amines without hazardous organic solvent and 

catalyst. Choline chloride-based DES with tin(II)chloride (SnCl2) as a complexing 

agent was investigated as an environmental friendly catalyst for this application. The 

development of practical and harmless method to produce N,N-diarylamidines and 

formamides in the presence of DESs as catalyst and reaction medium was also 

investigated  

2.4.3.7 DESs as Electrolytes 

ILs are highly electrochemically stable which makes them promising candidates for 

electrolytic applications. Similarly, DESs became promising green electrolytes as 

proper replacement for high melting point molten salts and ILs in electrolysis and 

batteries applications. This is due to the fact that DESs share most of the favorable 

characteristics of ILs and more favorably they can be synthesized more easily than ILs 

(Zhang et al., 2012). Some of the applications of DESs as electrolytes are summarized 

below: 

a) Electrodeposition in DESs 

ChCl-based DESs with HBDs such as urea or ethylene glycol have been widely 

applied as electrolytes in the electrodeposition of metals. Abbott et al. (2007a) 

introduced the electrodeposition of zinc (Zn)-tin (Sn) alloys in ChCl-basd DESs. It has 

been shown that DESs composed of ChCl as salt and urea or ethylene glycol as HBD 
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are capable in depositing Sn, Zn and their alloys electrically. In addition, composite 

materials such as aluminium oxide (Al2O3) were found to be able to deposit in DESs 

media. Abbott et al. (2009) utilized the same DESs successfully in the electrodeposition 

of copper (Cu) with an efficiency of approximately 100%. It was found that the rate of 

electrodeposition is significantly dependent on the ratio of the DES and the 

concentration of the solvent. Additionally, Abbott et al. (2006c) studied the 

electrodeposition of stainless steel in ChCl based DESs. 

Pollet et al. (2008) introduced possible utilization of ChCl:glycerol DES in the 

electrodeposition of Cu on platinum (Pt) electrodes. The electrodeposition process was 

carried out under three different conditions, i.e. without driving force; with driving force 

of 20 kHz; and with driving force of 850 kHz. Under normal conditions and without any 

driving force, the electrodepositon was driven only by diffusion. However, ultrasound 

waves served as the driving force to accelerate the electrodeposition.  

ChCl-DESs were also successfully applied in producing CuGaSe2 (CGS) 

semiconductors in thin film solar cells (Steichen et al., 2011). It was found that 

ChCl:urea DES with salt:HBD molar ratio of 1:2 is capable in depositing Cu and galium 

(Ga) to produce CGS economically.  

The same DES was applied by Gómez and colleagues in the electrodeposition 

analysis of cobalt (Co), samarium (Sm) and samarium-cobalt (SmCo) system (Gómez et 

al., 2011). In order to decrease the viscosity of DES to support less mass transfer rate 

and longer reaction time, the electrodeposition process took place at a high operating 

temperature of 70 oC. It was found that the DES had the capability to permit the 

electrodeposition in non-aggressive conditions for alloys containing some transition 

metals. In parallel, the same DES was applied for the electrodepositinon of pure nickel 

(Ni) (Yang et al., 2011). You et al. (2012) demonstrated facile electrodeposition of Ni–
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Co alloys from ChCl:ethylene glycol DES containing NiCl2.6H2O and CoCl2.6H2O at 

room temperature. 

Saravanan and Mohan (2011) introduced DESs synthesized from ChCl, 

chromium(III) chloride hexahydrate (CrCl3.6H2O), nickel(II) chloride hexahydrate 

(NiCl2.6H2O), iron (II) sulfate heptahydrate (FeSO4.7H2O), potasium chloride (KCl) as 

well as ethylene glycol at specific ratios. These DESs were utilized in the 

electrodeposition of Fe-Ni-Cr alloy on mild steel substrate. Other studies on the 

electrodeposition of metals from DESs media were also reported by Bozzini et al. 

(2012), Abbott et al. (2011b), Yang et al. (2012), Gu et al. (2012), Wei et al. (2012), 

and Cojocaru et al. (2011). 

Unlike the electrodeposition of metals in DESs media, the electrolytic deposition in 

DESs of ChCl and urea or ethylene glycol was introduced by Abbott et al. (2007b). The 

DESs were applied in the electrolytic deposition of metallic silver on copper substrates 

from a solution of silver ions (Ag+). Silver deposits resulted from electrolytic deposition 

from DESs were at several microns through dip-coating. Electroless deposition of 

metals inside DESs was also studied by Abbott et al. (2008). 

b) DESs in redox flow batteries 

Bahadori et al. (2012) conducted the electrochemical screening of both ammonium 

and phosphonium-based DESs in their work on the potential applications of redox flow 

batteries. To select the best DES in their study, ferrocene/ferrocenium redox couple was 

chosen as the Nernstian redox probe. The investigated DESs for this application were 

ammonium salts, i.e. ChCl and N,N-diethylethanolammonium chloride, and 

phosphonum salt, i.e. methyltriphenylphosphonium bromide while the HBDs were 

glycerol, ethylene glycol and ferrocene. The potential windows of DESs were 

determined electrochemically at Pt (platinum) microelectrode and a GC (glassy carbon) 
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electrode. The reductive and oxidative potential limits were reported versus the Fc/Fc+ 

couple. It was observed that DESs synthesized from ammonium salts provided a larger 

potential window in comparison to the phosphonium-based ones when either Pt or GC 

working electrodes were employed. It was shown that N,Ndiethylethanolammonium 

chloride:ethylene glycol DES with salt:HBD molar ratio of 1:2 possessed the highest 

standard heterogeneous rate constant of 5.44×10-4 cm s-1 and the compatible cyclic 

voltametry with ILs as big as 5.7 V. It was concluded that this DES can be utilized as an 

electrolyte in redox flow batteries. 

c) DESs in dye synthesized solar cells  

Dye synthesized solar cells are low-cost solar cells belonging to the group of thin 

film solar cells. Jhong et al. (2009) investigated ammonium iodide-based DES with 

glycerol as HBD as electrolyte in dye-sensitized solar cells. DES-based electrolyte 

possesses numerous outstanding features in comparison to the traditional imidazolium-

based ILs. It has been shown that current-voltage characteristics stand at 0.533 V on 

Voc, 12.0 mAcm-2 on Jsc, 0.582 on fill factor, and 3.88% cell efficiency under AM 1.5, 

100 mWcm-2 illuminations. The comparable cell performance with other advantages of 

DSEs makes glycerol-based DES a strong candidate for future electrolytic development 

of dye-sensitized solar cells.  

d) DESs as electrolyte in lithium ion batteries and electric double layer 

capacitors 

Biosset et al. (2013) investigated the potential application of N-methylacetamide: 

lithium bis[(trifluoromethyl)sulfonyl]imide DES as environmentally advantageous 

electrolyte in lithium ion batteries and electric double layer capacitors. Owing to the 

favorable properties of the DES for ratio of 4:1, such as wide liquid-phase range from 

−60oC to 280oC, low vapor pressure, and high ionic conductivity of up to 28.4 mS cm-1 

at 150oC, it is suggested that this DES can be used as a promising electrolyte for EDLCs 
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(electrical double-layer capacitors) and LiBs 

(lithium  bis[(trifluoromethyl)sulfonyl]imide) applications, especially for those 

requiring high safety and stability. 

e) DESs in electropolishing of metals 

Abbott et al. (2006b) utilized ChCl:ethylene glycol DES for the electropolishing of 

type 316 stainless steel, and the choice of this DES was due to its favorable 

characteristics, such as high current efficiencies, negligible gas evolution at the 

anode/solution interface during polishing, and being comparatively benign and non-

corrosive in comparison to the traditional aqueous acid solutions. The electropolishing 

was successfully demonstrated and the dissolution mechanism was shown to be 

different from that found in aqueous acid solutions. Additionally, the dissolution of the 

oxide film was slow in the DES medium in comparison with aqueous solutions. The 

DES was not only non-corrosive but also air and moisture stable, adding one more 

advantage to the DES over the acid solutions.  

2.5 ILs/DESs Electrolyte as Molten Salt in Downs Process   

Earlier, the Downs process was introduced as the current industrial process for the 

production of sodium metal. The utilization of typical molten salt mixture of NaCl in a 

certain ratio with CaCl2 and BaCl2 is aimed at decreasing the melting temperature of 

NaCl from above 800oC to slightly below 600oC. This reduced temperature is still 

extremely high and therefore economically and environmentally unacceptable. 

The high operating temperature of this process is considered as an operational 

drawback. Additionally, operating an electrolytic process at 600oC is difficult and 

presents numerous constraints. At such operating temperature, the process generates 

pollutants and consumes a high volume of energy (Keppler et al., 2003, Thompson et 

al., 2004). Moreover, the concentric cylindrical cell design of the Downs process 

necessitated by the high operating temperature leads to very poor space efficiency in the 
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cell. This translates directly into high capital and operating costs per unit production. To 

overcome this difficulty, the utilization of a green efficient electrolyte has been 

proposed. The utilization of ILs and DESs instead of molten salts for the production of 

sodium, brings into focus three significant characteristics, namely solubility, electrical 

conductivity and stability. The solubility of commercially available sodium salts and the 

electrical conductivity of solution of sodium salt in IL or DES must be high, and the 

stability of sodium in IL or DES must be achieved (AlNashef, 2012).  

2.5.1 Solubility  

Solubility is in general a strong function of the intermolecular forces between solute 

and solvent. It is undeniable that in the absence of specific chemical effects, 

intermolecular forces between chemically similar species lead to a similar endothermic 

enthalpy of solution than those between dissimilar species (Prausnitz et al., 1998). 

However, factors other than intermolecular forces between solvent and solute also play 

a large role in determining the solubility of solid. To illustrate this, the solubilities of 

two isomers, such as anthracene and phenanthrene in benzene at 25oC are taken as an 

example (see Figure 2.6). Even though both solids are chemically similar to each other 

and to the solvent, the solubilities are different. The solubility of phenanthrene is 20.7 

mol% which is about 25 times larger than that of anthracene, i.e. 0.81 mol%. It means 

that not only does solubility depend on the activity coefficient of the solute, which is a 

function of the intermolecular forces between solute and solvent, but also on the 

fugacity of the standard state to which that activity coefficient refers and on the fugacity 

of the pure solid (Prausnitz, et al., 1998).  

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/177-1303241-6361456?_encoding=UTF8&field-author=John%20M.%20Prausnitz&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/177-1303241-6361456?_encoding=UTF8&field-author=John%20M.%20Prausnitz&search-alias=books&sort=relevancerank


60 
 

 

Figure 2.5: Structure of anthracene and phenanthrene 

 

If the solute is designated by subscript 2, the equation of equilibrium would be: 

𝑓2(𝑝𝑢𝑟𝑒 𝑠𝑜𝑙𝑖𝑑) = 𝑓2(𝑠𝑜𝑙𝑢𝑡𝑒 𝑖𝑛 𝑙𝑖𝑞𝑢𝑖𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)     

 (2.10) 

Equation 2.10 is based on the assumption that there is no appreciable solubility of the 

liquid solvent in the solid phase, or 

𝑓2(𝑝𝑢𝑟𝑒 𝑠𝑜𝑙𝑖𝑑) = γ2𝑥2𝑓20      (2.11) 

where x2 is the solubility in mole fraction of the solute in the solvent, γ2 is the liquid-

phase activity coefficient and f2
0 the standard-state fugacity to which γ2 refers. 

From Equation 2.11, the solubility is 

𝑥2 = 𝑓2(𝑝𝑢𝑟𝑒 𝑠𝑜𝑙𝑖𝑑)

γ2𝑓20
         (2.12) 

Thus, the solubility depends not only on the activity coefficient but also on the ratio 

of the two fugacities as indicated by Equation 2.12.  

Solubility of a solid in a liquid is strongly influenced by temperature. To a certain 

extent, the higher the temperature, the higher the solubility. As the temperature of a 

solution is increased, the average kinetic energy of the molecules that make up the 

anthracene phenanthrene 

https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_temperature
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_kinetic
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_energy


61 
 

solution also increases. This increase in kinetic energy allows the molecules of the 

solvent to more effectively break apart the solute molecules that are held together 

by intermolecular attractions. The average kinetic energy of the solute molecules also 

increases, destabilizing the solid state. The increased vibration of the molecules causes 

them to be less able to hold together, and thus they dissolve more readily (Prausnitz et 

al., 1998). 

The electrical conductivity part has been presented in section 2.4.2.3. 

2.5.2 Stability 

It is well known that sodium metal is highly reactive when it is in its pure form. For 

this reason, sodium metal cannot be found pure in nature. It is therefore found in the 

form of compounds such as sodium halides, nitrites and oxides. Sodium has a fast and 

exothermic reaction when it comes into contact with atmospheric oxygen or water. It 

reacts with water to form sodium hydroxide and releases flammable hydrogen. Thus, 

the presence of any traces of water in the DES used for its production is not favorable 

(Pearson et al., 2008)   

As the proposed change to Downs process assumes the production of pure sodium 

metal in ILs or DESs as media, it is important to choose an IL or DES with which the 

pure sodium will not react. Thus, the stability of sodium metal inside various ILs and 

DESs must be studied. 

 

https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_energy
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_solute
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_intermolecular
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_kinetic
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_energy
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_solute
https://www.boundless.com/chemistry/solutions/factors-affecting-solubility/solid-solubility-and-temperature/#key_term_glossary_solid
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/177-1303241-6361456?_encoding=UTF8&field-author=John%20M.%20Prausnitz&search-alias=books&sort=relevancerank
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CHAPTER III 

METHODOLOGY 

 

This chapter is composed of five sections. Section 3.1 discusses the synthesis of 

DESs. Section 3.2 explains the characterization procedure of the physical properties of 

some of the synthesized DESs. Section 3.3 shows the procedure followed for the 

measurement of the solubility of sodium salts in different DESs and ILs. Section 3.4 

tackles the experimental work for measuring the electrical conductivity for solutions of 

sodium salts in DESs. Finally, Section 3.5 presents the experimental procedure for 

measuring the stability of sodium metal in some of the DESs. The whole of the 

experimental work was carried out under a glove box (Innovative Technology, USA) 

environment whereby the humidity was less than 0.4 ppm. 

3.1 Synthesis of DESs 

3.1.1 Chemicals 

Various salts and HBDs or metal halides as complexing agents were utilized to 

synthesize the DESs. Choline chloride (ChCl), N,Ndiethylethanolammonium chloride, 

methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, 

tetrabutylphosphonium bromide, ethylene glycol, glycerol, anhydrous zinc chloride (ZnCl2), 

anhydrous tin chloride (SnCl2), anhydrous iron (III) chloride (FeCl3), sodium chloride (NaCl) 

and sodium bromide (NaBr) were acquired from Merck (Germany). All chemicals used were 

synthesis grade, i.e. highly pure, not less than 99% and were used without further purification. 
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3.1.2 Synthetic Procedure 

Abbott et al. (2004a) reported that DESs can be synthesized by mixing 

predetermined amounts of a quaternary ammonium salt and hydrogen-bond donor at a 

certain temperature until a homogeneous colourless liquid is formed. This method was 

followed by many researches, and is utilized in this work to successfully synthesize 

different DESs. This method is easy to follow and less expensive in comparison to the 

synthesizing of ILs. 

As the formation of DES depends in part on temperature and on the way the salt 

and HBD or metal halide are mixed, the mixing is an important operation in the 

synthesis of DES. The significant parameters are the type of mixing, mixing time, and 

mixing speed. Some DESs require mechanical stirring, some of them can be formed by 

shaking the mixing vessels while others can be stirred magnetically. The extent and type 

of mixing depend on the type and phase of the salt and the HBD or metal halide used in 

the synthesis of DES. In general, DES is said to be completely formed and is ready for 

use when the salt and HBD or metal halide combine together to give a homogenous 

liquid.  

The equipment used in the synthesis of DESs are summarized in Table 3.1. 

Table 3.1 : Equipment used in the DESs synthesis. 
 

Stirring Type Equipment and accessories Model 

Mechanical 
Mechanical agitators, stirring speed 

controllers, jacketed vessels, 
oil/water bath. 

Locally fabricated speed controller 
and mechanical agitators. Protech 

water bath. 

Shaking Incubating shaker, sealed vials. Adolf Kühner AG, Schewir ASF-1-
V incubating shaker 

Magnetic Hotplate magnetic stirrers, magnetic 
bars, sealed vessels. 

IKA C-MAG HS7 S2 hotplate 
stirrer. 
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3.2 Characterization of DESs 

Abbott et al. (2004a) reported that DES results from the formation of complex 

anions which decrease the lattice energy and the freezing point of the system. The mole 

ratio of salt: HBD or metal halide in the DES is an important factor that affect the 

physical properties of the resulting DES. This is obvious when the physical properties 

of different DESs synthesized from one combination of salt and HBD or metal halide at 

different mole ratios are compared.  

A list for the characterization equipment and the measurements obtained along with 

the uncertainties in measurement are shown in Table 3.2. 

Table 3.2 : Devices used for characterization of DESs with their uncertainties. 
 

Property Device Estimated Uncertainty 

Melting temperature Mettler Toledo Differential Scanning Calorimetry  ±0.01 oC 

Viscosity Brookfield R/S plus Rheometer (3 to 5) % of measured value* 
Conductivity Cheetah multi parameters meter ±1 µS.cm-1 

Refractive index ABBE SASTEC ST-WYA-25 refractometer ±0.00001 
* As per the manufacturer guide 

The detailed experimental procedures followed to measure the physical properties 

of some of the DESs are explained below. 

a) Melting temperature 

The melting temperature is defined as the temperature at which the substance 

changes from liquid phase to solid phase upon temperature depression. Identifying this 

exact temperature is possible by using visual methods. The capillary tube method is the 

common method used in organic chemistry laboratories. It utilises a magnifying lens 

that magnifies the vision of the glass tube which contains the sample. A light might be 
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used to provide better visibility. Upon heating or cooling the sample by an oil bath, the 

sample passes through its melting temperature at which the change in phases is 

detectable visually. This method is the one used in various analysis equipment such as 

Thomas Hoover melting point apparatus (advertised in Chemical and Engineering News 

Journal, 1961). 

Although the above mentioned method is satisfactory for melting point analysis, 

another method of interest is the heat flow measurement method. The principle of this 

method is that when a sample passes through its melting temperature upon heating, it 

emits a certain amount of heat which is detectable by micro-scale sensors. The 

Differential Scanning Calorimetry (DSC) is an apparatus that measures the heat flow 

emitted from a sample upon heating over a range of temperatures. 

To measure the melting temperature of a compound by DSC, a sample of less than 

10 mg of this compound is placed inside a special pan made mainly from aluminium 

and a hole is made in the cover of that pan. The temperature of the sample is gradually 

raised. The hole allows the heat emitted to transfer outside the pan whereby special 

sensors measure this heat and record it. If the sample is liquid at room temperature, then 

it must be cooled down till it freezes. The measurement starts from a point at which the 

sample is in the solid state. If the sample is solid at room temperature, then the heating 

program may start from the ambient temperature to a temperature at which the sample is 

in the liquid state. The heating of the sample from below its melting temperature to 

above this temperature is carried out through a computerized program. On the initiation 

of the program the sample starts to emit a certain amount of heat till it reaches the glass 

transition point whereby only a few molecules of the sample change from the solid state 

to liquid state. At the glass transition point, the amount of heat emitted will be reduced 

sharply to assist in converting the state of the sample. The specialized sensors detect this 

sudden depression and it is drawn as a drop in the curve of the heat flow. When the 
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entire sample has melted down, the heat emission will be uniform again. This sudden 

drop in the heat flow curve will be identified on the x-axis which represents the 

temperature, and this temperature will be the melting temperature of the sample. 

b) Viscosity 

Viscosity is a measure of the resistance that the fluid shows to gradual deformation 

by shear or tensile stresses. The low viscosity of a fluid indicates an easy flow of that 

fluid in process streams, and vice versa.  

Brookfield R/S Plus rheometer was used to measure viscosity. Temperature control 

was achieved by an external water bath that was connected to the jacket-like cell. A 

stainless steel testing tube was placed inside the jacket cell. A certain period of time was 

allowed after the desired temperature was reached in the water bath to ensure that the 

cell, test tube and the DES sample were all at the same desired temperature. Only then, 

the rheometer was run and measurements of the dynamic viscosity taken.  

c) Electrical Conductivity 

The conduction of electrical current through a medium requires the presence of 

charged atoms or ions. It is common knowledge that not all liquids contain ions, and 

thus not all liquids conduct electric current. Salty water conducts electricity due to the 

presence of the salt ions, but sugary water does not as there are no such ions. As 

different liquids may contain different amounts and types of ions, their conductivity 

varies. The conductivity of a liquid is an indication of the concentration of ions in it and 

their type. The measurement of the electrical conductivity of a liquid is accomplished by 

the use of conductivity meters. These meters use a probe in which two poles are 

represented by two metallic ends. As an example, these ends could be in the shape of 

rings. Upon immersing the probe in the liquid medium of interest, the meter generates 

an electrical current and sends it to two metal ends in the probe. The current is 
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transferred by the medium from one metallic end to another. The received amount of 

current is compared to the transmitted one, and the conductivity of the liquid is 

displayed. 

Cheetah multi parameters meter model DZS - 780 is the apparatus used in the 

present work. It has a wide temperature range for measurements, i.e. from -5 oC up to 

135 oC. The meter was calibrated by standard buffer solutions supplied by the 

manufacturer. The measurements of the electrical conductivities at different 

temperatures were carried out by placing the DES on a hot plate, equipped with a 

temperature controller. To ascertain that the temperature displayed by the hot plate was 

accurate, external thermometers were used to measure the temperature inside the DES 

medium.  

d) Refractive Index 

The refractive index nD is a dimensionless factor which measures the bending of a 

ray of light when passing from one medium into another (Hale and Querry, 1973). The 

mathematical expression that is commonly used to calculate refractive index is given in 

the following equation: 

𝑛𝐷 = 𝑐
𝑣
          (3.1) 

where c is the speed of light in vacuum and ʋ is the speed of light in the medium of 

concern.  

The value of nD for some of the DESs was measured at a specific range of 

temperatures. This range usually starts from a few degrees Kelvin above the melting 

temperature of the DES up to a maximum of 363 K. ABBE SASTEC refractometer 

model number ST-WYA-25 was used to measure the refractive indices. This meter uses 
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an external oil bath for heating the sample, thus high temperatures can be achieved in 

the measurement prism. The measurement is achieved when the device sends a beam of 

light through the lens to the sample and measures the angle by which the reflected light 

is returning back to the device. This angle is then converted to a refractive index. The 

meter was calibrated by measuring the refractive index of glycerol at 298 K, which was 

found to be 1.4746, exactly same as what is reported in the literature (Rheims et 

al.,1997). 

3.3 Measuring the Solubility of Sodium Salts in DESs and ILs 

The electrochemical separation of the Na+ ions from sodium salts is carried out by 

passing a high voltage electrical current through the electrolyte in which the salt is 

dissolved. Thus, if DESs or ILs are to be utilized as electrolytes for the production of 

sodium metal from its common salts, it is important to know the extent in which a 

sodium salt dissolves in a certain DES or IL. 

In the shake flask experiments, the solute is added to the solvent and the mixture is 

stirred (shaken) vigorously for 24 hours or longer. Continuous observation is required to 

determine if the solute has completely dissolved or not. If it is completely dissolved, 

addition of more solute is required and the observation is repeated. Saturation is reached 

and confirmed by observing the presence of undissolved solute in the solvent after 

several additions of the solute.  

Both the stirring and settling must be performed under the same temperature. 

Samples from the solution are then taken from the upper part that does not hold 

suspended undissolved salt. The sample may require filtering if suspended salt is 

suspected to be present. After filtration, samples are taken for chemical analysis. To 

prevent crystallization, dilution may be necessary in certain cases of sample preparation. 

If necessary, the samples are diluted with de-ionized water. Finally, samples are 

analyzed using Perkin-Elmer Optima 5300DV inductively coupled plasma-atomic 
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emission spectrometer (ICP-AES). For reasons of accuracy, each analysis should be 

repeated three times and the average of the three analyses is to be considered.  

Shake Flask method was used in this work as it is the most accurate method to 

determine solubility. In the present work, the solubilities of three different low-cost 

sodium salts, namely sodium chloride (NaCl), sodium bromide (NaBr) and sodium 

carbonate (Na2CO3) were measured in various DESs and ILs under different 

temperatures (25°C – 150°C). This was carried out by adding about 0.1 g of sodium salt 

(anhydrous) to 5 g of DES or IL and stirred for 24 – 48 hours at constant temperature. If 

the solvent was able to dissolve all the 0.1 g of the sodium salt, more salt was added and 

observation was focused to ensure that a saturated solution was achieved. During these 

measurements, three important factors were taken into consideration. Firstly, the solvent 

and sodium salt must be of high purity. This is because any amount of impurities, no 

matter how small, will affect the measured solubility. For this reason, all the chemicals 

used in the present work were of synthesis grade. Secondly, the samples withdrawn 

from the saturated solutions did not contain any undissolved salt. Lastly, the 

temperature during stirring was carefully controlled. The uncertainty of the ICP is 

estimated to be ±0.02 for solubility >20wt% and ±0.05 for solubility < 10 wt%. 

3.4 Measuring the Conductivities of Sodium Solutions 

The conductivity of the solutions of sodium salts in different DESs is important for 

the final selection of the most suitable DES for sodium metal production. As this 

production process is electrochemical, high conductivity of the electrolytic solution is 

favorable. Accordingly, some of the solutions of sodium salts in DESs were subjected to 

electrical conductivities measurements. The measurement here is from the measurement 

of electrical conductivity described in Subsection 3.2 (b). The difference here is that the 

electrical conductivity was measured for a solution of sodium salt in a DES, while it 

was for pure DES earlier. 
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3.5 Measuring the Stability of Sodium Metal in DESs  

It is well known that sodium metal is highly reactive when it is in its pure form. For 

this reason, sodium metal cannot be found in a pure form in nature, but in the form of 

compounds. This is due to the reaction of pure sodium with other elements or 

compounds to form sodium halides, nitrate and oxides. Thus, it is important to know 

whether the sodium metal proposed to be produced DES is going to react with the DES 

or remain intact, i.e. stable. 

The stability of sodium inside the proposed DESs was studied by placing 

approximately 0.5 g of pure sodium metal in 5 ml of each DES in a glove box and 

monitoring the results of this addition over a time span of one week.  

3.6 Cyclic Voltammetry 

Cyclic voltammetry is the most widely used technique for acquiring qualitative 

information about electrochemical behavior of electrolytes (Wibowo et al., 2010, 

Barrosse-Antle et al., 2010). It offers a rapid location of redox potentials of the 

electroactive species. In the current work, the electrolytic behavior of ZnCl2-based 

DESs in electrolysis of sodium chloride were investigated in those possess high 

solubility and high conductivity of sodium chloride at optimum thermal conditions. The 

electrochemical cell consisted of a typical three-electrode set-up. The counter electrode 

was a Pt wire, and an Ag wire (immersed in 65% HNO3 prior to experiments, then 

rinsed thoroughly with water and ethanol) was used as a quasi-reference electrode. A 

glassy carbon (GC, 3 mm diameter) were used as working electrodes. The working 

electrodes were carefully polished before each voltammetric experiment with 0.25 M 

alumina suspensions and ultrasonically rinsed in acetone. All electrochemical 



71 
 

experiments were performed using a computer-controlled i-Autolab potentiostat 

(PGSTAT302N) and experiments were carried out inside a Faraday cage. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Different types of DESs have been synthesized in the present work and some of 

these DESs have not been reported before. Their novelty is due to the unique 

combinations of chemicals used in their synthesis. Most of the DESs that have been 

investigated and reported in the literature were synthesized from a salt and a hydrogen-

bond donor (HBD). However, in the present work, some of the DESs were synthesized 

from a salt and a metal halide. Moreover, one DES was synthesized from a combination 

of a salt and two metal halides. The DESs used in the present study along with their 

abbreviations are summarized in Table 4.1.  

Table 4.1: DESs studied in this work with their abbreviations. 

Salt:HBD Mole ratios Abbreviation 
Choline chloride:Ethylene glycol 4:7 4:8 4:9 4:10  DES1 
Choline chloride:Glycerol 2:2 2:3 2:4 2:5 2:6 DES2 
N,Ndiethylethanolammonium chloride:Ethylene 
glycol 2:5 2:6 2:8 2:9  DES3 

N,Ndiethylethanolammonium chloride:Glycerol 2:4 2:5 2:6 2:8  DES4 
Choline chloride:Zinc chloride 1:1 1:2 1:3 1:4  DES5 
Choline chloride:Tin chloride 1:3     DES6 
Choline chloride:Zinc chloride:Tin chloride 1:1:1     DES7 
N,Ndiethylethanolammonium chloride:Zinc 
chloride 1:1 1:2 1:3 1:4  DES8 

N,Ndiethylethanolammonium chloride:Iron(III) 
chloride 1:3     DES9 

Methyltriphenylphosphonium bromide:Ethylene 
Glycol 1:3 1:4 1:5   DES10 

Methyltriphenlphosphonium bromide:Glycerol 2:4 2:6 2:7 2:8  DES11 
Ethyltriphenylphosphonium bromide:Zinc 
chloride 1:2 1:3 1:4 1:5  DES12 

Ethyltriphenylphosphonium bromide:Zinc 
bromide 1:2 1:3 1:4   DES13 

Ethyltriphenylphosphonium bromide:Iron (III) 
chloride 1:3 1:4 1:5   DES14 

Tetrabutylphosphonium bromide:Zinc chloride 1:2 1:3 1:4 1:5  DES15 
Tetrabutylphosphonium bromide:Iron(III) chloride 1:3 1:4 1:5   DES16 

 

The solubility of NaCl in selected ILs was also investigated. The ILs employed are 

listed in Table 4.2. 
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Table 4.2: ILs studied for the solubility of NaCl. 
 

No IL Structure Common 
name 

M.wt. 
g/mol 

m.p. 
oC 

1 1-Ethyl-3-methylimidazolium 
ethylsulfate 

 

[emim] 
[EtSO4] 236.29 < -20 

2 1-Ethyl-3-methylimidazolium 
methanesulfonate 

 

[emim] 
[MeSO3] 206.27 35 

3 1-Ethyl-3-methylimidazolium 
dimethylphosphate 

 

[emim] 
[DMP] 264.26 20 

4 1-Ethyl-2,3-
dimethylimidazolium chloride 

 

[edmi] 
[Cl] 160.65 96 

5 1-Butyl-3-methylimidazolium 
chloride 

 

[bmim] 
[Cl] 174.67 70 

6 1-Butyl-3-methylimidazolium 
dicyanamide 

 

[bmim] 
[DCA] 205.26 -6 

7 1-Butyl-3-methylimidazolium 
trifluoromethanesulfonate 

 

[bmim] 
[TfO] 288.29 16.4 

8 1-Butyl-3-methylimidazolium 
tetrafluoroborate 

 

[bmim] 
[BF4] 226.02 -71 

9 
1-Butyl-3-methylimidazolium 
bis (trifluoromethylsulfonyl)-
imide  

[bmim] 
[Tf2N] 419.36 1 

10 1-Octyl-3-methylimidazolium 
chloride  

[C8mim] 
[Cl] 230.78 NA 

11 1-Butyl-1-methylpyrrolidinium 
dicyanamide   

[bmp] 
[DCA] 208.31 -55 

12 1-Butyl-1-methylpyrrolidinium 
trifluoroacetate   

 

[bmp] 
[TfA] 255.28 31 

13 1-Butyl-1-methylpyrrolidinium 
trifluoromethanesulfonate 

 

[bmpyr] 
[CF3SO3] 291.33 3 

14 N-Butyl-3-methylpyridinium 
dicyanamide 

 

[bmpy] 
[DCA] 216.29 16 

15 N-Butyl-3-methylpyridinium 
methylsulfate 

 

[bmpy] 
[MSO4] 261.34 NA 

16 
(2-Hydroxyethyl) 
trimethylammonium 
dimethylphosphate  

[EtOHNMe3
] 

[Me2PO4] 
229.21 40 
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The results of this study are presented in two main sections. Section 4.1 shows the 

results of the synthesis and characterization of some of the DESs summarized in Table 

4.1 while Section 4.2 presents the results of the assessment of the solubilities of sodium 

salts in ILs and DESs as electrolytic solvents for the potential production of sodium 

metal by electrolysis. Section 4.2 also reports the application of the non-random two 

liquid (NRTL) activity coefficients model to predict the solubilities of sodium salts in 

some of the ILs and DESs. 

4.1 Synthesis and Characterization of Selected DESs 

Some of the DESs synthesized in this work were characterized for their physical 

properties. This is to obtain a clear view of their significant behaviours if they were to 

be used for application in chemical processes.  

It has been shown in Section 3.1 that it is possible to synthesize different DESs 

from the same salt and HBD combination by varying the salt:HBD mole ratio. The 

effect of the mole ratio on the physical properties of DESs was investigated. The results 

confirmed that the physical properties of the synthesized DESs are dependent on the 

salt:HBD mole ratio.   

4.1.1 Melting Temperatures 

The melting temperatures were measured for DESs 5, 8, 12 and 15. These DESs 

were all synthesized from ZnCl2 which was used as the complexing agent. The 

measured melting temperatures are listed in Table 4.3 and plotted as a function of molar 

ratio in Figure 4.1. 
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Table 4.3: Melting temperatures Tm (K) for DESs 5, 8, 12 and 15.  
 

DES5 1:1 1:2 1:3 1:4 
Tm 314.77 325.33 320.37 318.97 
DES8 1:1 1:2 1:3 1:4 
Tm 313.39 307.56 310.47 312.26 
DES12 1:2 1:3 1:4 1:5 
Tm 341.5 338.98 340.27 345.29 
DES15 1:2 1:3 1:4 1:5 
Tm 340.95 343.01 341.55 344.99 

 

Figure 4.1 shows that the melting point of the DES is dependent on the salt:HBD 

mole ratio.  The minimum melting point for each DES occurs at different salt:HBD 

mole ratio.  

It is obvious that the DESs based on phosphonium salts have higher melting points 

than those based on ammonium salts. This is agreement with results reported by 

Shahbaz et al. (2012a and 2012b). It has been shown that, in general, the phosphonium-

based DESs possess melting temperatures are higher than those of the ammonium-based 

DESs. For instance, the ammonium-based DESs reported by Shahbaz, et al. (2012a and 

2012b) were of melting temperatures lower than 323 K while the phosphonium-based 

ones were of melting temperatures more than 333 K.  
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Figure 4.1 Melting temperatures of DES5 (●), DES8 (▼), DES12 (▲) and DES15 (■) 
as a function of salt:HBD mole ratio. 

 

4.1.2 Viscosities 

The viscosity of a fluid varies with temperature in an inverse proportional pattern, 

i.e. becoming smaller as temperature is elevated. Research on this physical phenomenon 

has been carried out to understand the relationship between the temperature and the 

viscosity (Giap, 2010). One model assumed that this relationship is governed by an 

“Arrhenius-like” equation, as shown below (Choi and Yoo, 2009, Saeed et al., 2009): 

𝜇 = 𝜇𝑜𝑒
𝐸𝜇
𝑅𝑇                                                                                                                  (4.1) 

where µ is the viscosity in Pa.s and R is the ideal gas constant in kPa.L.mol-1.K-1. In the 

case of DESs of this work, µo is a specific constant for each DES with the units of 

viscosity and Eµ is the activation energy of viscosity, which is constant for each DES in 

Pa.m3.mol-1.  

The viscosity of various ILs and DESs was a subject for many characterization 

studies (Kareem et al., 2010, Dai et al., 2009, Hayyan et al., 2013, Pereiro et al., 2007). 
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This is due to the need for such data in the references and literature if a certain process 

utilizing ILs or DESs is to be designed.  

In the present work, the viscosity of selected DESs was measured experimentally at 

temperatures between 343.15 and 368.15 K and presented in Table 4.4. The 

experimental values of the viscosity were plotted as a function of the temperature, 

Figures 4.2 – 4.5. Individual series of viscosity values for each DES were fitted by 

Equation 4.1 above. Although the values of the constants µo and Eµ are different for 

each DES, all the series were fitted with high accuracy, as can be seen in Figures 4.2 – 

4.5. The values of µo and Eµ are listed in Table 4.5.  

Table 4.4: Experimental results for viscosity (Pa.S) of DESs 5, 8, 12, and 15 at different 
molar ratios and temperatures. 

 

T/K DES5 
(1:1) 

DES5 
(1:2) 

DES5 
(1:3) 

DES8 
(1:2) 

DES8 
(1:3) 

DES8 
(1:4) 

343.15 0.8278 13.9887 3.4654 0.5053 0.9954 2.2885 
348.15 0.6648 9.5433 2.5171 0.3891 0.7679 1.5433 
353.15 0.522 7.1962 1.8269 0.3116 0.5956 1.1122 
358.15 0.396 5.6353 1.3993 0.2445 0.4687 0.8376 
363.15 0.3168 4.0271 1.2456 0.1828 0.3612 0.6068 
368.15 0.2842 3.0392 1.2148 0.1423 0.2916 0.4601 

T/K DES12 
(1:2) 

DES12 
(1:3) 

DES12 
(1:4) 

DES15 
(1:2) 

DES15 
(1:3) 

DES15 
(1:4) 

343.15 76.8437 19.7389 23.8818 44.0712 66.0198 49.64 
348.15 39.4883 12.3299 16.6789 31.6102 55.2216 38.6791 
353.15 25.484 8.7249 10.0123 20.5574 31.335 25.7027 
358.15 20.0837 8.013 8.9119 13.2642 19.4016 18.1887 
363.15 15.5391 7.1931 7.2456 10.9159 10.5504 11.5157 
368.15 7.9785 6.8769 6.9125 9.0304 5.3145 6.4118 
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Table 4.5: Values of µo and Eµ for the fitting by Equation 4.1. 
 

DES Ratio µo (Pa.S) Eµ (Pa.m3.mol-1) 
5 1:1 4.16×10-08 4.80×10+04 
5 1:2 2.37×10-09 6.41×10+04 
5 1:3 2.79×10-08 5.31×10+04 
8 1:2 7.25×10-09 5.15×10+04 
8 1:3 1.29×10-08 5.18×10+04 
8 1:4 6.55×10-11 6.92×10+04 
12 1:2 5.88×10-14 9.92×10+04 
12 1:3 9.43×10-08 5.44×10+04 
12 1:4 3.97×10-09 6.42×10+04 
15 1:2 2.28×10-10 7.42×10+04 
15 1:3 1.24×10-11 8.38×10+04 
15 1:4 4.19×10-10 7.29×10+04 

 
 

As can be seen in Figure 4.2, the viscosity of DES5 1:2 has a large value at low 

temperatures in comparison to DES5 1:1 and 1:3. However, it decreases sharply with 

increasing temperature and reaches a value of around 3.03 Pa.s at 368.15 K. Both DES5 

1:1 and 1:3 show lower viscosities than DES5 1:2 at all measured temperatures.In 

addition, DES5 1:2 has a melting temperature of 325.33 K which is higher than both 

DES5 1:1 and 1:3, i.e. 314.77 K and 320.37 K, respectively. 
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Figure 4.2 Viscosity μ of DES5 1:1 (●), 1:2 (■) and 1:3 (▲) as a function of inversed 
temperature T-1. Curves represent fitting by Equation 4.1. 
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Figure 4.3 depicts the profiles of viscosity for DES8 1:2, 1:3 and 1:4. The increased 

mole percentage of ZnCl2 from 66% in DES8 1:2 to 80% in DES8 1:4 has a clear and 

uniform effect on the viscosity. It increases from around 0.5 Pa.s for DES8 1:2 at 

343.15 K to 2.28 Pa.s for DES8 1:4 at the same temperature. Thus, the relationship 

between the mole percentage of ZnCl2 in DES8 1:2, 1:3, and 1:4 and the viscosity is a 

direct proportional relationship. At higher temperatures, the same observation applies, 

whereby DES8 1:4 possesses a higher viscosity than DES8 1:2 and 1:3. 
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Figure 4.3 Viscosity μ of DES8 1:2 (●), 1:3 (■) and 1:4 (▲) as a function of inversed 

temperature, T-1. Curves represent fitting by Equation 4.1. 
 

Viscosity profiles for DES12 and DES15 are shown in Figure 4.4 and Figure 4.5, 

respectively. DES12 1:3 was found that possessed lower viscosity than that of 1:2 and 

1:4, it means that by approaching to the eutectic ratio of salt:metal halide viscosity 

decreases to its minimum point. For instance, it decreases from 7.98 Pa.s for 1:2 under 

368.15K to 6.88 Pa.s at ratio of 1:3 and then increases to 6.91 Pa.s at that of 1:4 under 

same operating temperature. Significantly, the same trend was observed in table 4.3 for 

the melting point of DES12 1:3.  
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Figure 4.4 Viscosity μ of DES12 1:2 (●), 1:3 (■) and 1:4 (▲) as a function of inversed 
temperature, T-1. Curves represent fitting by Equation 4.1. 
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Figure 4.5 Viscosity μ of DES15 1:2 (●), 1:3 (■) and 1:4 (▲) as a function of inversed 
temperature, T-1. Curves represent fitting by Equation 4.1. 

Figure 4.6 shows a comparison between the viscosity of DESs 5, 8, 12, and 15 

when the salt:HBD is 1:2, and this is to illustrate the difference in viscosities between 

phosphonium and ammonium-based DESs. It can be seen that phosphonium-based 

DESs, i.e. DES12 and DES15, possess relatively higher viscosities than ammonium-
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based DESs, i.e. DES5 and DES8. The difference is very big in some cases, reaching up 

to 80 folds at low temperatures. This finding reduces the search for potential solvents 

for the extraction of sodium metal from its common salts to a fewer number of DESs. 

This is because the viscosity of the successful DES candidate at the proposed moderate 

temperatures should be within an acceptable range.  
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Figure 4.6 Viscosity μ of DES5 1:2 (●), DES8 1:2 (■), DES12 1:2 (▲), DES15 1:2 (▼) 
as a function of inversed temperature, T-1. Curves represent fitting by Equation 4.1. 

 

4.1.3 Electrical Conductivity 

As the intended use of the DESs of the present study is as solvents for electrolytic 

production of sodium metal, the electrical conductivity σ is thus an important physical 

property that, together with other factors, can decide the eligibility of a solvent to serve 

for the intended task.  

σ is measured from a temperature above the melting temperature of each DES. 

Table 4.6 to 4.10 presents the experimental result of measured electrical conductivity 

for some of the DESs listed in Table 4.1. The conductivity is found to have a consistent 

trend of increasing with increasing temperature for DESs. This is an expected behaviour 
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for most materials, as the increase in temperature charges the molecules of the matter 

with additional energy and sets the electrons of the molecules in an active state. This 

situation leads to an improved electrical conductivity. 

Figures 4.7 – 4.16 show the profiles of ln (σ) as function of inverse of temperature 

(T-1) for DES1 1:1.75, 1:2, and 1:2.5; DES2 1:1, 1:2, and 1:3; DES3 1:2.5, 1:3, and 1:4; 

DES4 1:2, 1:3, and 1:4; DES5 1:1, 1:2, 1:3, and 1:4; DES8 1:1, 1:2, 1:3 and, 1:4; 

DES10 1:3, 1:4, and 1:5; DES11 1:2, 1:3, and 1:4; DES12 1:2, 1:3, 1:4, and, 1:5; and 

DES15 1:2, 1:3, 1:4, and 1:5. From the plots, the temperature dependence of σ is 

obvious. An adoption of the original Arrhenius-like equation for conductivity which 

was given by Ying et al., (2001), was used to represent this dependence: 

ln(𝜎) = ln (𝜎∞) − 𝐸𝜎
𝑘𝑇

                   (4.2)  

where σ∞ is the electrical conductivity as T reaches infinity, Eσ is the electron mobility 

of the DES in me.V, k is the Boltzmann’s constant in which meV.K-1, and T is the 

temperature in Kelvin (Vila et al., 2007). This equation is used to fit the conductivity 

profiles for the above mentioned ten DESs. Individual series of σ possess their own σ∞ 

and Eσ, and these are given in Table 4.11. The fitted series are also plotted in Figures 

4.7 – 4.16. The accuracy of this fitting is obvious from the plots, as the curves are very 

close to the experimental points. Due to the high accuracy found for this fitting, it could 

be used as a predictive method for the values of electrical conductivity at a given 

temperature.  
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Table 4.6: Experimental results of electrical conductivity (mS cm-1) for DESs 1 and 2 at 
different molar ratios. 

 

T/K DES1 
(1:1.75) 

DES1 
(1:2) 

DES1 
(1:2.5) 

DES2 
(1:1) 

DES2 
(1:2) 

DES2 
(1:3) 

298.15 6.801 7.332 8.317 1.929 1.749 1.463 
303.15 9.138 10.191 10.665 2.191 1.951 1.553 
308.15 10.857 11.407 12.070 3.161 2.549 2.035 
313.15 12.935 13.553 14.133 3.680 3.004 2.570 
318.15 14.794 15.895 16.558 4.603 3.991 3.112 
323.15 16.335 17.185 17.977 5.864 5.120 3.816 
328.15 18.393 20.227 21.257 6.668 6.046 4.811 
333.15 20.102 22.991 24.247 7.805 7.187 5.757 
338.15 21.773 24.200 25.152 8.980 8.160 6.717 
343.15 23.474 25.599 26.275 9.863 8.955 7.805 
348.15 24.750 27.065 27.799 11.548 10.629 9.286 
353.15 26.043 28.072 28.690 12.954 12.191 10.800 
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Figure 4.7 Electrical conductivity σ of DES1 1:1.75 (●), 1:2 (■), and 1:2.5 (▲) as a 
function of the inversed temperature. Curves represent fitting by Equation 4.2. 
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Figure 4.8 Electrical conductivity σ of DES2 1:1 (●), 1:2 (■), and 1:3 (▲) as a function 
of the inversed temperature. Curves represent fitting by Equation 4.2. 

 
Table 4.7: Experimental results of electrical conductivity (mS cm-1) for DESs 3 and 4 at 

different molar ratios. 
 

T/K DES3 
(1:2.5) 

DES3 
(1:3) 

DES3 
(1:4) 

DES4 
(1:2) 

DES4 
(1:3) 

DES4 
(1:4) 

298.15 5.120 5.429 5.661 0.750 0.602 0.487 
303.15 6.627 6.878 6.994 1.177 0.958 0.780 
308.15 7.940 8.305 8.245 1.635 1.041 1.099 
313.15 9.283 9.486 9.699 2.067 1.562 1.387 
318.15 10.955 11.339 11.579 2.716 2.112 1.878 
323.15 12.539 13.147 13.408 3.381 2.637 2.357 
328.15 14.330 14.769 15.086 3.903 3.426 2.716 
333.15 16.161 16.664 17.137 4.878 4.086 3.246 
338.15 17.779 18.395 18.755 5.754 4.916 3.962 
343.15 19.417 19.900 20.286 6.521 5.748 4.646 
348.15 21.347 21.924 22.262 7.754 6.474 5.335 
353.15 23.097 23.667 24.053 9.109 7.100 6.095 
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Figure 4.9 Electrical conductivity σ of DES3 1:2.5 (●), 1:3 (■), and 1:4 (▲) as a 
function of the inversed temperature. Curves represent fitting by Equation 4.2. 
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Figure 4.10 Electrical conductivity σ of DES4 1:2 (●), 1:3 (■), and 1:4 (▲) as a 
function of the inversed temperature. Curves represent fitting by Equation 4.2. 
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Table 4.8: Experimental results of electrical conductivity (mS cm-1) for DESs 5 and 8 at 
different molar ratios. 

 

T/K DES5 
(1:1) 

DES5 
(1:2) 

DES5 
(1:3) 

DES5 
(1:4) 

DES8 
(1:1) 

DES8 
(1:2) 

DES8 
(1:3) 

DES8 
(1:4) 

328.15 0.574 0.481 0.325 0.212 0.512 0.376 0.345 0.316 
348.15 1.548 1.418 1.216 0.959 1.852 1.717 1.180 0.929 
373.15 2.403 2.235 1.861 1.116 3.267 2.877 2.468 2.060 
393.15 3.518 3.348 2.730 1.948 4.360 3.845 3.453 2.770 
408.15 4.779 4.631 3.780 2.270 5.200 4.723 4.105 3.170 
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Figure 4.11 Electrical conductivity σ of DES5 1:1 (●), 1:2 (■), 1:3 (▲), and 1:4 (▼) as 
a function of the inversed temperature. Curves represent fitting by Equation 4.2. 
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Figure 4.12 Electrical conductivity σ of DES8 1:1 (●), 1:2 (■), 1:3 (▲), and 1:4 (▼) as 
a function of the inversed temperature. Curves represent fitting by Equation 4.2. 

 
 
 

Table 4.9: Experimental results of electrical conductivity (mS cm-1) for DESs 10 and 11 
at different molar ratios. 

 

T/K DES10 
(1:3) 

DES10 
(1:4) 

DES10 
(1:5) 

DES11 
(1:2) 

DES11 
(1:3) 

DES11 
(1:4) 

298.15 1.092 1.557 1.942 0.062 0.103 0.116 
303.15 1.598 2.193 2.570 0.124 0.172 0.198 
308.15 1.914 2.649 3.103 0.186 0.319 0.370 
313.15 2.502 3.246 3.845 0.277 0.394 0.410 
318.15 2.964 3.858 4.437 0.405 0.549 0.607 
323.15 3.265 4.405 5.072 0.496 0.719 0.816 
328.15 4.307 5.395 6.279 0.701 0.927 0.965 
333.15 5.129 6.221 7.110 0.858 1.124 1.233 
338.15 5.797 7.423 8.169 1.160 1.487 1.608 
343.15 6.723 8.192 9.496 1.493 1.778 1.971 
348.15 7.372 9.074 10.31 1.811 2.196 2.874 
353.15 8.114 10.027 11.196 2.154 2.599 3.594 
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Figure 4.13 Electrical Conductivity σ of DES10 1:3 (●), 1:4 (■), and 1:5 (▲) as a 
function of the inversed temperature. Curves represent fitting by Equation 4.2. 
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Figure 4.14 Electrical conductivity σ of DES11 1:2 (●), 1:3 (■), and 1:4 (▲) as a 
function of the inversed temperature. Curves represent fitting by Equation 4.2. 

 

 

 

 

 



89 
 

Table 4.10: Experimental results of electrical conductivity (mS cm-1) for DESs 12 and 
15 at different molar ratios. 

T/K DES12 
(1:2) 

DES12 
(1:3) 

DES12 
(1:4) 

DES12 
(1:5) 

DES15 
(1:2) 

DES15 
(1:3) 

DES15 
(1:4 

DES15 
(1:5) 

353.15 0.101 0.124 0.152 0.175 0.330 0.363 0.417 0.465 
363.15 0.257 0.377 0.493 0.601 0.406 0.440 0.518 0.597 
373.15 0.387 0.550 0.733 0.860 0.471 0.524 0.608 0.680 
393.15 0.650 0.840 1.086 1.302 0.602 0.716 0.822 0.964 
408.15 0.930 1.150 1.379 1.707 0.768 0.911 1.081 1.351 
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Figure 4.15 Electrical conductivity σ of DES12 1:2 (●), 1:3 (■), 1:4 (▲), and 1:5 (▼) 
as a function of the inversed temp. Curves represent fitting by Equation 4.2. 
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Figure 4.16 Electrical conductivity σ of DES15 1:2 (●), 1:3 (■), 1:4 (▲), and 1:5 (▼) 

as a function of the inversed temp. Curves represent fitting by Equation 4.2. 
 

 

It can be observed from Figures 4.7 – 4.16 that the electrical conductivity for most 

ammonium based DESs is higher than that for the corresponding phosphonium based 

DESs. The maximum conductivity achieved in this research was for DES1 1:2.5 at 

353.15 K which is 28.69 mS.cm-1. As expected the electrical conductivity of DESs 

increased with increasing the salt concentration in the mixture. This can be attributed to 

the increase of the number of charge-carriers in the solution. This behavior can be seen 

in Tables 4.6, 4.7 and 4.8 for ammonium based DESs with glycerol or zinc chloride as 

complexing agent, i.e. DESs 2, 4, 5, and 8. On the other hand, DESs 1 and 3 which are 

composed of ammonium salt and ethylene glycol together with the phosphonium based 

DESs, i.e. DESs 10, 11, 12, and 15, showed an opposite trend. At higher salt 

concentrations in the DESs mixtures, the electrical conductivity was found to be 

decreasing. This decrease could be due to the strong influence of ion pairs, ion triplets, 

and higher ion aggregations that reduces the overall mobility and number of the 

effective charge carriers.   
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Table 4.11: Values of σ∞ and Eσ for the fitting by Equation 4.2. 
 

DES Ratio σ∞(ms.cm-1) Eσ(meV) 
1 1:1.75 2.91×10+04 2.10×10+02 
1 1:2 3.63×10+04 2.14×10+02 
1 1:2.5 2.69×10+04 2.04×10+02 
2 1:1 5.08×10+04 3.20×10+02 
2 1:2 7.44×10+05 3.34×10+02 
2 1:3 9.46×10+05 3.46×10+02 
3 1:2.5 7.16×10+04 2.42×10+02 
3 1:3 6.48×10+04 2.38×10+02 
3 1:4 6.42×10+04 2.37×10+02 
4 1:2 3.77×10+06 3.90×10+02 
4 1:3 6.13×10+06 4.11×10+02 
4 1:4 3.33×10+06 3.98×10+02 
5 1:1 1.82×10+04 2.88×10+02 
5 1:2 3.03×10+04 4.62×10+02 
5 1:3 4.52×10+04 3.27×10+02 
5 1:4 1.93×10+04 3.13×10+02 
8 1:1 5.36×10+04 3.18×10+02 
8 1:2 9.29×10+04 3.40×10+02 
8 1:3 1.01×10+05 3.49×10+02 
8 1:4 4.75×10+04 3.31×10+02 
10 1:3 3.80×10+04 3.24×10+02 
10 1:4 2.06×10+04 3.00×10+02 
10 1:5 1.53×10+04 2.87×10+02 
11 1:2 2.45×10+08 5.59×10+02 
11 1:3 5.42×10+07 5.08×10+02 
11 1:4 1.20×10+08 5.27×10+02 
12 1:2 5.68×10+05 4.63×10+02 
12 1:3 4.93×10+05 4.50×10+02 
12 1:4 5.08×10+05 4.43×10+02 
12 1:5 8.55×10+05 4.54×10+02 
15 1:2 1.38×10+02 1.83×10+02 
15 1:3 3.14×10+02 2.06×10+02 
15 1:4 4.03×10+02 2.09×10+02 
15 1:5 9.34×10+02 2.31×10+02 

 

In general, the conductivities of the ammonium-based DESs are higher than those 

of the phosphonium-based DESs. Together with the finding that ammonium-based 

DESs possessed lower melting temperatures and lower viscosities than the 

phosphonium-based DESs, it is more evident now that the production of sodium metal 
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from its common salts at moderate temperatures has more potential to be carried out in 

ammonium-based DESs. 

4.1.4 Refractive Index 

Refractive index nD is an important property in many optical applications and it can 

reflect how pure the measured medium is. The typical relationship between the 

refractive index and temperature is an inversed proportional relationship.  This means 

that the refractive index decreases with increasing temperature (Kareem et al., 2010, 

Hayyan et al., 2013). At elevated temperatures, the density of the medium decreases, 

allowing more freedom for the movement of light. This translates in an increase for the 

speed of light in that medium and thus a lower refractive index is observed. Hence, the 

following expression is valid: 

𝑇 ∝  𝜌−1  ∝  𝑛𝐷−1                                                                                               (4.3) 

where T, ρ and nD are temperature, density and refractive index, respectively. 

Accordingly, the refractive index could be used as an indication for the density of the 

DES at a given temperature. This requires a single measurement of the density at a 

temperature at which the refractive index is measured as well. Table 4.12 presents 

experimental results of refractive indices at different molar ratios as a function of 

temperature.  

Figures 4.17, 4.18, 4.19, and 4.20 show the profiles of the refractive indices at 

different molar ratios for DESs 5, 8, 12, and 15, repectively. It was found that the 

refractive indices are directly proportional to the ZnCl2 molar ratios in ammonium 

based DESs, i.e. DES5 and DES8. In phosphonium based DESs, i.e. DES12 and DES 

15, the same trend was observed for salt:metal halide molar ratios of 1:3, 1:4, and 1:5. 

While for the salt:metal halide ratio of 1:2, the refractive indices are higher than those of 

1:3,1:4, and 1:5. It is worth mentioning that the refractive indices decrease to a 

minimum when approaching the eutectic point of DESs. The relationships between the 

refractive indices and the temperature were fitted by a straight-line equation in the form: 
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𝑛𝐷 = 𝑎 + 𝑏𝑇(𝐾)                                                        (4.4) 

where a and b are fitting parameters which are different for each individual DES.  

Table 4.12: Experimental refractive indices nD of DESs 5, 8, 12, and 15 at different 
molar ratios. 

T/K DES5 T/K DES5 T/K DES5 T/K DES5 
(1:1)  (1:2)  (1:3)  (1:4) 

339.15 1.5161 336.15 1.5371 333.15 1.5533 333.15 1.5683 
340.15 1.5156 340.15 1.5358 339.15 1.5518 339.15 1.5668 
346.15 1.5143 348.15 1.5337 344.15 1.5505 344.15 1.5655 
351.15 1.5131 353.15 1.5325 349.15 1.5492 349.15 1.5642 
359.15 1.5112 357.15 1.5312 353.15 1.5482 353.15 1.5632 
362.15 1.5105 361.15 1.5301 358.15 1.5469 358.15 1.5619 

    362.15 1.5459 362.15 1.5609 
T/K DES8 T/K DES8 T/K DES8 T/K DES8 

(1:1)  (1:2)  (1:3)  (1:4) 
338.15 1.5106 338.15 1.513 331.15 1.5221 323.15 1.5304 
348.15 1.5073 348.15 1.5103 338.15 1.5202 329.15 1.5292 
353.15 1.5057 353.15 1.5092 348.15 1.5179 333.15 1.5279 
358.15 1.5041 357.15 1.5082 358.15 1.5154 339.15 1.5264 
363.15 1.5024 362.15 1.5073 362.15 1.5145 343.15 1.5255 

      
348.15 1.5244 

      
353.15 1.5229 

      359.15 1.5213 
T/K DES12 T/K DES12 T/K DES12 T/K DES12 

 (1:2)  (1:3)  (1:4)  (1:5) 
348.15 1.5525 343.15 1.5205 343.15 1.5365 343.15 1.5412 
353.15 1.5508 348.15 1.5185 348.15 1.5337 348.15 1.5384 
358.15 1.5492 353.15 1.5169 353.15 1.5329 353.15 1.5369 
362.15 1.5475 358.15 1.5153 358.15 1.5306 358.15 1.5353 

  362.15 1.5136 362.15 1.5291 362.15 1.5335 
T/K DES15 T/K DES15 T/K DES15 T/K DES15 

 (1:2)  (1:3)  (1:4)  (1:5) 
343.15 1.5390 331.15 1.5068 331.15 1.5221 343.15 1.5355 
348.15 1.5373 338.15 1.5050 338.15 1.5202 348.15 1.5338 
353.15 1.5362 348.15 1.5027 348.15 1.5179 353.15 1.5327 
358.15 1.5349 358.15 1.5002 358.15 1.5154 358.15 1.5314 
362.15 1.5341 362.15 1.5001 362.15 1.5145 362.15 1.5306 

 
Equation 4.4 was used to fit the refractive index values in Table 4.12. Table 4.13 

shows the values of a and b for the fitted values.  
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Table 4.13: Values of a and b for the fitting by Equation 4.4. 
 

DES Salt:metal halide a b (K) 

DES5 

1:1 1.597 -2.38×10-04 
1:2 1.630 -2.75×10-04 
1:3 1.639 -2.56×10-04 
1:4 1.654 -2.56×10-04 

DES8 

1:1 1.621 -3.27×10-04 
1:2 1.594 -2.40×10-04 
1:3 1.603 -2.44×10-04 
1:4 1.612 -2.53×10-04 

DES12 

1:2 1.675 -3.52×10-04 
1:3 1.642 -3.54×10-04 
1:4 1.664 -3.73×10-04 
1:5 1.673 -3.85×10-04 

DES15 

1:2 1.626 -2.55×10-04 
1:3 1.603 -2.44×10-04 
1:4 1.581 -2.24×10-04 
1:5 1.623 -2.55×10-04 

 

Figures 4.17, 4.18, 4.19, and 4.20 show plots for the profiles of the refractive 

indices along with the calculated values using Equation 4.4 for DESs 5, 8, 12, and 15; 

respectively. The regression coefficient, R2, was not less than 0.99 for all the systems. 

This means that the regressed models are highly suitable for representing the nD values 

as the temperature varies. The plots in the Figures show this fact as the fitting curves are 

passing through almost all of the experimental data points. 
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Figure 4.17 Refractive index nD of DES5 1:1 (●), 1:2 (■), 1:3 (▲), and 1:4 (▼) as a 
function of temperature. Lines represent fitting by Equation 4.4. 
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Figure 4.18 Refractive index nD of DES8 1:1 (●), 1:2 (■), 1:3 (▲), and 1:4 (▼) as a 
function of temperature. Lines represent fitting by Equation 4.4. 
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Figure 4.19 Refractive index nD of DES12 1:2 (●), 1:3 (■), 1:4 (▲), and 1:5 (▼) as a 
function of temperature. Lines represent fitting by Equation 4.4. 
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Figure 4.20 Refractive index nD of DES15 1:2 (●), 1:3 (■), 1:4 (▲), and 1:5 (▼) as a 
function of temperature. Lines represent fitting by Equation 4.4. 

 
 

4.2 Solubility of Different Sodium Salts in ILs and DESs 

Three important factors must be taken into account when choosing the proper 

solvent for the production of sodium metal electrochemically. These are: i) the high 
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solubility of commercially available sodium salts in the solvent, ii) reasonable electrical 

conductivity of the resulting solution, and iii) the stability of the produced sodium metal 

in the solution. The most important part of the present work was the measurement of the 

solubility of different sodium salts in ILs and DESs. This section was divided into three 

main subsections to handle the size of the experimental results obtained. They are: 

- 4.2.1 Solubility of sodium chloride, sodium bromide, and sodium carbonate in 

ammonium-based DESs 

- 4.2.2 Solubility of sodium chloride in phosphonium-based DESs 

- 4.2.3 Solubility of sodium chloride in different ILs 

 

4.2.1 Solubility of Sodium Chloride, Sodium Bromide, and Sodium Carbonate in 

Ammonium-Based DESs 

The method used to measure the solubility of a sodium salt in DES or IL was given 

in Section 3.3. In this Subsection, ammonium-based DESs mentioned in Table 4.1 were 

synthesized and the solubility of sodium chloride (NaCl), sodium bromide (NaBr), and 

sodium carbonate (Na2CO3) was measured experimentally in these DESs and tabulated 

in Tables 4.14 through 4.21. 

Several solubility measurements were done repeatedly to increase the reliability of 

the experimental results. The results were classified according to solvent structure, 

range of temperature and stability of the solution. Figures 4.21 through 4.28 depict the 

results of solubility as a function of temperature.  

The studied ammonium DESs were shown in Table 4.1 as DESs 1 – 9. 

Figure 4.21 shows the solubility of NaCl, NaBr and Na2CO3 in DES1, i.e. choline 

chloride:ethylene glycol. This DES has a maximum solubility of 0.25 wt. % of Na2CO3 

while the solubility of NaCl and NaBr are 0.06 and 0.04 wt. %, respectively. The 

solubility increases by increasing the temperature from ambient to 308.15ºC, and then 
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slowly increasing to a temperature of 333.15 K. The slight decrease in solubility noticed 

at 50oC for a number of cases can be neglected and considered as experimental error. 

This is because it happened in certain cases but not in all. At temperatures higher than 

333.15 K the DES started to lose ethylene glycol and thus became unstable.  There is no 

clear trend in the solubility of all three salts in DES1 with the change of salt:HBD molar 

ratio.  

 

Table 4.14: Solubility(wt%) of sodium chloride, sodium carbonate, and sodium bromide 
in DES1 at different temperatures. 

T/K 1:1.75 1:2 1:2.25 1:2.5 
 

 
NaCl 

 298.15 5.076×10-03 5.224×10-03 4.386×10-03 5.424×10-03 
308.15 3.390×10-02 4.630×10-02 5.230×10-02 6.660×10-02 
323.15 3.350×10-02 4.180×10-02 5.130×10-02 5.670×10-02 
333.15 4.020×10-02 4.770×10-02 5.650×10-02 6.600×10-02 

 
 

Na2CO3 
 298.15 3.090×10-02 1.570×10-02 1.250E-02 1.490E-02 

308.15 2.159×10-02 1.621×10-02 1.469E-01 1.825E-01 
323.15 2.246×10-02 1.504×10-02 1.442E-01 1.548E-01 
333.15 2.486×10-02 1.755×10-02 1.620E-01 1.789E-01 

 
 

NaBr 
 298.15 4.061E-03 4.701×10-02 3.114×10-02 1.190×10-02 

308.15 2.710E-02 3.980×10-02 3.710×10-02 1.478×10-02 
323.15 2.680E-02 3.520×10-02 3.640×10-02 1.176×10-02 
333.15 3.220E-02 4.720×10-02 4.010×10-02 1.414×10-02 
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Figure 4.21 Solubility of NaCl, NaBr and Na2CO3 in DES1 as a function of 
temperature. The continuous line is drawn through the experimental data of the same 

system for visual clarity. 
 

For DES2, i.e. choline chloride:glycerol, the solubility of sodium salts decreases 

smoothly by increasing temperature. DES2 dissolves a maximum of 1.09 wt% of NaCl 

and 0.97 wt% of NaBr, as can be seen in Figure 4.22. Thus, it is clear that the type of 

the HBD does affect the solubility of sodium salts in DES.  

Table 4.15: Solubility(wt%) of sodium chloride and sodium bromide in DES2 at 
different temperatures. 

 
T/K 1:1.5 1:2 1:2.5 1:3 

 
 

NaCl 
 298.15 0.365 

 
0.870 1.090 

323.15 0.361 0.427 0.862 1.088 
348.15 0.333 0.423 0.842 1.074 
373.15 0.319 0.402 0.804 1.039 
393.15 0.312 0.399 0.798 0.979 
414.15 0.307 0.400 0.776 0.960 

 
 

NaBr 
 298.15 0.329 

   323.15 0.325 0.385 0.776 0.979 
348.15 0.299 0.381 0.756 0.966 
373.15 0.287 0.362 0.723 0.935 
393.15 0.281 0.359 0.718 0.881 
414.15 

  
0.658 
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Figure 4.22 Solubility profiles of NaCl and NaBr in DES2 as a function of temperature. 
NaCl series, for salt:HBD ratios 1:1.5 (●), 1:2 (○), 1:2.5 (♦) and 1:3 (◊). NaBr series, 

for salt:HBD ratios 1:1.5 (▼), 1:2 (), 1:2.5 (▲) and 1:3 (Δ). 
 

In order to investigate the effect of the salt used in the synthesis of the DES on the 

solubility of sodium chloride, choline chloride was replaced by N,N- 

diethylethanolammonium chloride with ethylene glycol as HBD, and this is designated 

DES3.  The maximum solubility of NaCl at 328.15 K was approximately 0.55 wt%. 

This is higher than that for DES1, under the same conditions. The maximum solubility 

of NaCl in DES3 was 1.15 wt% at 25ºC for the salt:HBD molar ratio of 1:4. 

Surprisingly, the solubility of NaCl in DES3 decreased with an increase of temperature 

and increased with an increase of the HBD molar ratio in the DES from 2.5 to 4, as 

illustrated in Figure 4.23. The use of N,N- diethylethanolammonium chloride increased 

the stability of the DES to much higher temperatures which enabled the measurement of 

the solubility at temperatures up to 423.15 K.  
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Table 4.16: Solubility of sodium chloride in DES3 at different temperatures. 
 

T/K 1:2.5 1:3 1:4 1:4.5 
 

 
NaCl 

 298.15 0.442 0.529 1.044 1.153 
323.15 0.399 0.524 0.980 1.066 
348.15 0.366 0.509 0.950 1.061 
373.15 0.319 0.494 0.860 0.989 
398.15 0.278 0.442 0.804 0.886 
423.15 0.213 0.407 0.700 0.800 

 

 
 

Figure 4.23 Solubility profiles of NaCl in DES3 as a function of temperature. NaCl 
series, for salt:HBD ratios 1:2.5 (●), 1:3 (○), 1:4 (♦) and 1:4.5 (◊). 

 
The solubility of NaCl in DES4 was 2.08 and 2.53 wt% at 298.15 K and 423.15 K, 

respectively, as shown in Figure 4.24. 

Table 4.17: Solubility of sodium chloride in DES4 at different temperatures. 
 

T/K 1:2.5 1:3 1:4 
 

 
NaCl 

 298.15 1.050 1.141 2.047 
323.15 1.097 1.198 2.228 
348.15 1.181 1.264 2.361 
373.15 1.200 1.326 2.402 
398.15 1.270 1.374 2.451 
423.15 1.314 1.425 2.529 
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Figure 4.24 Solubility (Concentration) profiles of NaCl in DES4 as a function of 
temperature. NaCl series, for salt:HBD ratios 1:2.5 (●), 1:3 (○), 1:4 (♦). 

 

Moreover, the solubility of NaCl increased with an increase of temperature and the 

decrease of HBD molar ratio in the DES. It is clear from Figures 4.21 – 4.24 that for the 

same salt, the solubility of NaCl in DESs using glycerol as HBD is higher than that 

when ethylene glycol is used as HBD.  

The relatively low NaCl solubility in the DESs studied so far motivated the 

investigation in to other types of DESs, namely the DESs resulting from mixing 

ammonium based salts with metal halides. This group of DESs was synthesized and 

used for different applications by Abbott et al. (2004b). The solubility of NaCl and 

NaBr in choline chloride:zinc chloride DES,i.e. DES5, was measured at different 

temperatures and different salt:metal halide ratios. Interestingly, it was found that the 

solubility of NaCl and NaBr in DES5 is very high, reaching a maximum of 67 and 56 

wt%, respectively, as illustrated in Figure 4.25. 
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Table 4.18: Solubility of sodium chloride and sodium bromide in DES5 at different 
temperatures. 

 
T/K 1:1 1:2 1:3 

 
 

NaCl 
 323.15 42.56 58.00 60.00 

333.15 43.68 60.00 63.00 
348.15 44.85 63.00 66.00 
383.15 46.00 65.60 68.15 
398.15 45.24 63.00 67.00 
408.15 44.95 62.50 66.00 
 

 
NaBr 

 T/K 1:1 1:2 1:3 
323.15 41.50 50.40 53.40 
328.15 42.30 51.20 54.00 
333.15 43.00 52.30 55.50 
343.15 44.00 53.60 56.70 
363.15 44.70 54.90 58.30 
393.15 44.20 54.00 57.00 
403.15 44.10 53.80 56.80 

 

 
 

Figure 4.25 Solubility  profiles of NaCl and NaBr in DES5 as a function of temperature. 
NaCl series, for salt:HBD ratios 1:1 (●), 1:2 (○), and 1:3 (♦). NaBr series, for salt:metal 

halide ratios 1:1 (◊), 1:2 (▼), and 1:3 (). 
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Again, the solubility of NaBr is less than that of NaCl under the same conditions for all 

ratios and temperatures. It is to be noted that the solubility of both NaCl and NaBr 

increased with the increase of metal halide molar ratio. On the other hand, the solubility 

increased with the increase of temperature up to a maximum temperature, and then it 

started to decrease slowly. Special analytical techniques are to be employed in order to 

understand this behaviour. Such techniques include the analysis by Fourier Transform 

Infrared (FTIR), Nuclear Magnetic Resonance (NMR) and X-ray Diffraction (XRD). 

The high solubility in the DES synthesised from an ammonium salt and a metal 

halide instead of a typical HBD is very promising.  

These significant finding led to the extension of the research into the utilization of 

another metal halide, namely tin chloride, and the investigation into the solubility of 

different sodium salts in the resulting DESs. DES6 in Table 4.1 is the result of mixing 

choline chloride with tin chloride. Following the procedure described earlier, different 

molar ratios were investigated. In Figure 4.26, the solubility of NaCl in DESs 5, 6 and 7 

at 333.15 K is shown. From this, it can be inferred that the solubility of NaCl in tin 

chloride-based DES, which is 2.07 wt %, is much lower than that in zinc chloride-based 

DES. Both ZnCl2 and SnCl2 were used with choline chloride in the synthesis of DES7. 

NaCl solubility in this DES at 333.15 K is included in Figure 4.26. It is approximately 

4.27 wt%, which is again not as good as DES5. Thus, further investigation of NaCl’s 

solubility at different temperatures in this DES was not carried out.  

 
Table 4.19. Comparison of solubility of sodium chloride in DESs 5, 6, and 7 at 333.15 

K. 
 

DES and ratio Solubility 
DES5, 1:1 43.68 
DES5, 1:2 60.00 
DES5, 1:3 63.00 
DES6, 1:3 2.08 

DES7, 1:1:1 4.27 
 



105 
 

DES5,1:1 DES5,1:2 DES5,1:3 DES6,1:3 DES7,1:1:1

C
on

ce
nt

ra
tio

n 
(N

aC
l w

t%
)

0

2

4

40

50

60

70

 
 

  Figure 4.26: Comparison of solubility (Concentration) of NaCl in DES5, 6 and 7 
at 333.15 K. 

 

Due to the high NaCl solubility in DES5, another ammonium salt, i.e. N,N-

 diethylethanolammonium chloride, was chosen to synthesize a novel DES with zinc 

chloride. This new DES was abbreviated as DES8. As in DES5, NaCl solubility profiles 

with temperature showed two regions of increase and decrease, from 323.15 K to 358.15 

K and from 358.15 K to 398.15 K, respectively, as illustrated in Figure 4.27. The 

solubility of NaCl in DES8 has a maximum value of approximately 80 wt%. The NaCl 

solubility in this DES increased when the metal halide’s molar ratio in this DES 

increased from 1 to 3. However, the solubility decreased when the metal halide’s molar 

ratio was further increased to 4. On the other hand, by approaching to the eutectic ratio 

in DES8, solubility of NaCl in DES increased to its maximum point. 

Following the study on the effect of metal halide on the solubility of NaCl, zinc 

chloride was replaced by iron (II) chloride to give a new DES,i.e. DES9. Figure 4.28 

shows the variation in NaCl solubility with temperature in DES9. A maximum 

solubility of 10.8 wt% at 368.15 K was observed. On the other hand, for DES8 (1:3) 

with the same salt, i.e. N,N-diethylethanolammonium chloride, but using zinc chloride 
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as the metal halide, 80 wt% of solubility was observed. Thus, no further investigation 

was carried out on other salt:metal halide ratios of DES9. 

 

Table 4.20: Solubility of sodium chloride in DES8 at different temperatures. 
 

T/K 1:1 1:2 1:3 1:4 
323.15 67.00 76.00 77.70 50.42 
333.15 67.60 76.70 78.40 50.80 
348.15 68.10 77.20 79.30 51.10 
358.15 68.80 77.25 80.00 51.20 
363.15 68.20 76.80 79.30 51.10 
383.15 67.96 74.97 78.60 51.00 
403.15 67.30 74.30 77.90 50.87 

 

 
 

Figure 4.27 Solubility (Concentration) profiles of NaCl in DES8 as a function of 
temperature. NaCl series, for salt:metal halide ratios 1:1 (●), 1:2 (○), 1:3 (▲) and 1:4 

(Δ). 
 

Table 4.21. Solubility of sodium chloride in DES9 at different temperatures. 
 

T(K) 1:3 
317.15 3.57 
328.15 4.72 
350.15 10.21 
368.15 10.40 
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Figure 4.28 Solubility profile of NaCl in DES9 (salt:metal halide molar ratio 1:3) as a 
function of temperature.   

 
4.2.1.1 Stability of Sodium Metal in DESs 1 – 9 

As expected, sodium metal reacted with DESs containing ethylene glycol and 

glycerol as HBDs, i.e. DES1 to DES4. This is due to the presence of the hydroxyl group 

in these HBDs, and the fact that sodium metal in its pure state reacts instantly with 

oxygen, hydroxyl or halides (Banks, 1990). However, DESs synthesized from metal 

halides, i.e. DES5 to DES9, were stable and did not react with the sodium metal. Even 

though a halide group existed, it seems that the DES’s structure held it strongly and 

prevented it from reacting. These results narrow down the search for a potential DES to 

conduct the task of sodium metal production. 

4.2.1.2 Solubility Modelling 

The basic equation for predicting the saturation mole fraction of a solid in a liquid 

is given by the general equation (Prausnitz et al., 1999, Sandler, 1999): 

𝑙𝑛(𝑥1𝛾1) =  −∆𝐻𝑓𝑢𝑠(𝑇𝑚)
𝑅𝑇

�1 − 𝑇
𝑇𝑚
� − 1

𝑅𝑇 ∫ ∆𝐶𝑃
𝑇
𝑇𝑚

𝑑𝑇 + 1
𝑅 ∫

∆𝐶𝑃
𝑇

𝑇
𝑇𝑚

𝑑𝑇       (4.5) 
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The subscript 1 denotes the solid solute, x1 and γ1 its molar composition (solubility at 

equilibrium) and activity coefficient in the mixture, respectively. Tm is the melting 

temperature of the solid. T is the temperature of the system at equilibrium. ΔHfus and 

ΔCp are the respective enthalpy and heat capacity changes from the solid to the liquid 

state of the solute. 

Without introducing appreciable error, we can assume that ΔCp is independent of 

temperature. Thus, equation 4.5 becomes: 

𝑙𝑛(𝑥1) =  − 𝑙𝑛 𝛾1 − �∆𝐻
𝑓𝑢𝑠(𝑇𝑚)
𝑅𝑇

�1 − 𝑇
𝑇𝑚
� + ∆𝐶𝑃

𝑅𝑇
�1 − 𝑇𝑚

𝑇
+ 𝑙𝑛 �𝑇𝑚

𝑇
���     (4.6) 

This equation can be used based on the assumption of simple eutectic mixtures with 

complete miscibility in the liquid and immiscibility in the solid phases. However, due to 

the lack of suitable data representing the difference in heat capacity (ΔCp) between the 

solute in the two states, the simplified version of the solubility without the ΔCp term 

was applied: 

𝑙𝑛 𝑥1 = − 𝑙𝑛 𝛾1  − �∆𝐻
𝑓𝑢𝑠(𝑇𝑟)
𝑅𝑇

�1 − 𝑇
𝑇𝑟
��         (4.7)

 where Tr is reduction  

The expected error resulting from neglecting ΔCp usually depends on the 

compound under consideration. For conventional molecular compounds, the error does 

not exceed 2%. 

If the liquid mixture is ideal, γ1 = 1 and the solubility can be computed from the 

thermodynamic data (ΔHfus and ΔCp) for the solid species near the melting point. For 

non-ideal solutions, γ1 must be estimated from either experimental data or liquid 

solution models, such as NRTL or UNIFAC model. 

The latent heat of fusion of pure sodium chloride and its melting temperature are 

∆Hfus = 28.3 kJ/mol and Tm = 1073.95 K, respectively (Yamada et al, 1993). 



109 
 

The Non-Random Two Liquid (NRTL) model (Renon and Prausnitz, 1968) was 

used to calculate the activity coefficient at equilibrium. This model has three 

parameters, τij, τji and αij, for each pair of components in the multi-component mixture.  

The model development was achieved by utilizing the Simulis® thermodynamics 

environment which is a thermo-physical properties calculation server, provided by 

ProSim (www.prosim.net, 2013). The deep eutectic solvent was considered as a pseudo 

component. In the present work, we proposed the hypothesis that τij = τji and the non-

randomness parameter referred to as αij was taken equal to 0.20, a commonly used 

value. The binary interaction parameters τij were estimated from the N experimental 

data points at each temperature for NaCl with DES2, DES3, DES4 and DES5, 

respectively. An iterative procedure was used for each temperature by minimizing the 

squared relative error (criterion) between the calculated and the experimental 

solubilities: 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 1
𝑁
∑ �𝑥1

𝑒𝑥𝑝−𝑥1𝑐𝑎𝑙

𝑥1𝑒𝑥𝑝
�
2

𝑁                 (4.8) 

Linear temperature dependence was obtained for the binary interaction parameters 

expressed by the following correlation: 

𝜏𝑖𝑗 = 𝜏𝑖𝑗0 + 𝜏𝑖𝑗𝑇 . (𝑇 − 273.15)         𝑇/𝐾      (4.9) 

The optimized parameters τij0 and τijT for each DES and the different molar ratios 

are listed in Table 4.22. A comparison of the calculated values from the model with 

experimental data is presented in Figure 4.29 for NaCl solubility in DES2, DES3, DES4 

and DES5. The calculated solubilities by the model show a good agreement with 

experimental measured solubilities.  

It must be noted that the modeling procedure has been tested and validated for NaCl 

with a number of DESs, but it could be easily applied to fit NaBr and Na2CO3 

solubilities with other DESs, provided that the number of experimental data is 

representative.    
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Tabble 4.22: NRTL binary interaction parameters between NaCl and DES2 to DES5 for 
different molar ratios (i ≡ NaCl and j ≡ DES). 

τij0 τijT τij0 τijT τij0 τijT τij0 τijT 
DES2 

1:1.5 1:2 1:2.5 1:3 
-623.9 3.194 -647.3 2.767 -764.9 2.446 -829.6 2.368 

DES3 
1:2.5 1:3 1:4 1:4.5 

-668.5 3.472 -698.9 2.987 -816.2 2.636 -849.5 2.569 
DES4 

1:2.5 1:3 1:4 - 
-785.3 1.709 -822.7 1.601 -1063.6 1.267 - - 

DES5 
1:1 1:2 1:3 - 

-3718.9 -4.531 -4542.7 -10.282 -4847.4 -12.939 - - 
 

 
DES 2 

 
DES3 
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DES4 

 
 

DES5 
Figure 4.29 Calculated (NRTL) vs experimental solubilities mole fraction,of sodium 

chloride in DES2, DES3, DES4, and DES5 for different ratios and at different 
temperatures. z is the ratio of the HBD in the DES considering that the salt’s ratio is 

always 1. 
 

4.2.2 Solubility of Sodium Chloride in Phosphonium-Based DESs 

Phosphonium-based DESs were synthesized and the solubility of sodium chloride 

(NaCl) was measured experimentally in these DESs at different temperatures, i.e. 

293.15 K to 433.15 K. The phosphonium DESs are shown in Table 4.1 as DESs 10 – 

16.  

The results are classified according to the solvent structure, temperature, and the 

solution stability. Figures 4.30 to 4.36 show plots for the measured NaCl solubility in 
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the mentioned DESs at different temperatures. As a large amount of experimental 

results have been generated, the results for each DES are shown in individual figures.  

Figure 4.30 shows the solubility of NaCl in DES10. The solubility of NaCl 

increases as the salt:HBD ratio for the DES increases. However, the increase in 

solubility when the mole ratio increases from 1:3 to 1:4 is much less than that when the 

mole ratio increases from 1:4 to 1:5. This is because a ratio of 1:5 is close to the DES 

eutectic point. For all salt:HBD mole ratios, the solubility of NaCl increased with 

temperature. The maximum NaCl solubility was approximately 0.47 wt% at a salt:HBD 

ratio of 1:5. 

 
 

Figure 4.30 Solubility profiles of NaCl in DES10 as a function of temperature (passed 
lines are based on NRTL calculations). 

For DES11, the solubility of NaCl increases with a smooth gradient from ambient 

temperature to 353.15 K, where it reaches 0.2 at a salt:HBD molar ratio of 1:4, as shown 

in Figure 4.31. The solubility of NaCl increased with the increase in salt:HBD molar 

ratio. However, DES10 exhibited a larger molar ratio effect. DES10 and DES11 

produced low NaCl solvation capacities,i.e.less than the capacities required to 

commercially produce sodium metal.  



113 
 

 
 

Figure 4.31 Solubility profiles of NaCl in DES11 as a function of temperature (passed 
line is based on NRTL calculations). 

The low NaCl solubility in these DESs could be attributed to the low 

electronegativity of the DESs due to the use of neutral HBD as well as the presence of 

alkyl groups in the neutral moleclules of HBDs which negatively affected the solubility 

term. This prompted the investigation of NaCl solubility in other types of DESs. 

Using metal halides as complexing agents instead of HBDs produces a unique type 

of DES. Although metal halides cannot share hydrogen, they form a complex with 

phosphonium salts and yield a different type of DES. This is the first time ever that this 

type of DES was synthesised. Abbott et al. (2004b) produced a similar type of DES by 

using ammonium salts instead of phosphonium salts. Zinc chloride (ZnCl2), zinc 

bromide (ZnBr2), and iron(III) chloride (FeCl3) were used to synthesize DES12, 

DES13, DES14, DES15, and DES16. 

The solubility of NaCl in DES12 under different temperatures and salt:metal halide 

ratios is shown in Figure 4.32. The solubility of NaCl in DES12 is higher than in 

DES10 and DES11, reaching a maximum of 88.5 wt% at 383.15 K. The solubility 

increased with temperature, reaching a maximum at 383.15 K. Figure 4.31 shows that 
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the solubility of NaCl increases with the amount of metal halide used in the DES. This 

confirms the observations from DES10 and DES11. A DES composed of a metal halide 

exhibits a higher melting temperature than a DES composed of ethylene glycol and 

glycerine. Thus, the solubility of NaCl was measured in DES12 starting from 82 °C 

onwards, as shown in Figure 4.31. However, this does not affect the use of these DESs 

in the production of sodium metal because the minimal process temperature is 

approximately 120 °C. 

 
 

 Figure 4.32 Solubility profiles of NaCl in DES12 as a function of temperature (passed 
lines are based on NRTL calculations). 

 

In order to evaluate the effect of the halide ion in the molecule of metal halide on 

the solubility on NaCl in DESs, ZnBr2 was used instead of ZnCl2 to synthesize DES13. 

Figure 4.33 shows that the solubility of NaCl in DES13 increases uniformly with 

temperature and with the ZnBr2 molar ratio. When the metal halide ratio in the DES 

increase from 2 to 3, the solubility of NaCl increased by approximately 5 wt% at the 

same temperature. Increasing this ratio to 1:4 increased the solubility by approximately 

1 wt% at the same temperature. The maximal solubility for NaCl in this DES, i.e. 75.4 
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wt%, occurred at a salt:metal halide ratio of 1:4 and a temperature of 393.15 K. At the 

same temperature and molar ratio, DES12 has a solubility of 88.8 wt%. This shows that 

the type of halide ion affects the solubility of NaCl in DESs.  

 
 

Figure 4.33 Solubility profiles of NaCl in DES13 as a function of temperature (passed 
lines are based on NRTL calculations).  

 

To investigate the effect of the type of metal in the metal halide on NaCl solubility, 

FeCl3 and ethyltriphenylphosphonium bromide were used to synthesize DES14. Figure 

4.34 shows the variation of NaCl solubility in DES14 as a function of temperature and 

DES composition. The solubility of NaCl increases sharply from 6.2 wt% at 90 °C to 

66.6 wt% at 423.15 K. The solubility increases also with the increase of the metal halide 

molar ratio in the DES. The maximal NaCl solubility in DES14 at 393.15 K was 

approximately 68 wt%. This value is lower than that achieved by DES12 under the 

same temperature and metal halide molar ratio. 

Lastly, an examination for the effect of the salt used in the DES on NaCl solubility 

was carried out. Ethyltriphenylphosphonium bromide was replaced by 

tetrabutylphosphonium bromide. The salt was combined with ZnCl2 and FeCl3 to 
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synthesize DES15 and DES16, respectively. Figures 4.35 and 4.36 show the solubility 

profiles of NaCl as a function of temperature in DES15 and DES16, respectively. As 

expected, NaCl solubility increases with temperature and the metal halide ratio. DES15 

and DES16 have lower NaCl solubilities than DES12 and DES14 at the same 

temperature. DES15 has a higher NaCl solubility than DES16 under the same 

conditions. This is similar to the findings for DES12 and DES14.  

 
 

Figure 4.34 Solubility profiles of NaCl in DES14 as a function of temperature (passed 
lines are based on NRTL calculations).  

 
Figure 4.35 Solubility profiles of NaCl in DES15 as a function of temperature (passed 
lines are based on NRTL calculations).  
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Figure 4.36 Solubility profiles of NaCl in DES16 as a function of temperature (passed 
lines are based on NRTL calculations).  

 

4.2.2.1 Stability of Sodium Metal in DESs 10 – 16 

Sodium metal reacts with DESs containing ethylene glycol and glycerol as HBDs, 

i.e. DES10 and DES11. This is expected to occur because of the hydroxide group in the 

HBDs and because sodium metal reacts instantly with oxygen, hydroxides, halides, 

alcohols, and other compounds (Banks, 1990). Sodium metal was stable in DESs 

containing metal halides, i.e. DES12, DES13, DES14, DES15 and DES16. This means 

that a reaction does not occur between the pure sodium metal and the DESs, despite the 

presence of a halide group. This is attributed to the strong interaction between the halide 

group and the salt, preventing it from reacting with the sodium metal.   

4.2.2.2 Solubility Modelling 

The procedure described in Subsection 4.2.1.2 is followed here for the application 

of the non-random two-liquid (NRTL) model to calculate the solubilities of NaCl in 

DESs 10 – 17.  
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Table 4.23 shows the optimized parameters τij0 and τijT for each DES and different 

molar ratios. For DES11, the unique interaction parameters, τij0 = 269.15 and τijT = 

2.076, were regressed to fit the solubilities obtained in the DES regardless of the HBD 

molar ratio. The calculated solubilities are plotted in Figures 4.30 – 4.36 as curves. 

Excellent agreement between the experimental and calculated solubilities are obtained. 

DES10 and DES15 exhibited a relationship between the binary interaction 

parameters and the HBD or metal halide mole fraction in the DES. The remaining DESs 

did not exhibit any clear trends. 

Tables 4.24 – 4.30 show comparisons between the calculated solubilities by the 

NRTL model and the experimental values with the percentage differences between the 

values. The percentages were lower than 10% in most of the cases, indicating high 

agreement between the calculated and experimental solubilities, except for the case of 

DES16 where the percentages reached a maximum of 27.7% for 1:3 molar ratio. 

 
Table 4.23: NRTL binary interaction parameters between NaCl and DES10, DES12 – 

DES16 for different molar ratios (i ≡ DES and j ≡ NaCl). 
 

DES10 τij0 τijT DES14 τij0 τijT 
1:3 -423.3 2.964 1:3 6286.7 -76.059 
1:4 -450.8 3.017 1:4 5925.4 -75.935 
1:5 -517.6 3.147 1:5 3083.2 -57.074 

DES12 τij0 τijT DES15 τij0 τijT 
1:2 -4504.1 -12.378 1:3 -3431.3 -12.471 
1:3 -4523.9 -12.075 1:4 -3565.2 -11.996 
1:4 -3371.6 -30.060 1:5 -3649.9 -11.970 

DES13 τij0 τijT DES16 τij0 τijT 
1:2 -3677.1 -16.176 1:3 -576.1 -6.044 
1:3 -3411.5 -20.541 1:4 147.1 -16.677 
1:4 -3530.7 -19.687 1:5 -202.6 -14.970 
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Table 4.24: Comparison of NRTL and experimental solubilities of NaCl in DES10 at different molar ratios. 
 

1:3 1:4 1:5 

T/K exp. cal. Differ.(%) exp. cal. Differ.(%) exp. cal. Differ.(%) 

298.15 0.160 0.156 2.56 0.212 0.217 2.74 0.371 0.399 7.55 

323.15 0.172 0.173 0.99 0.234 0.233 0.47 0.402 0.396 1.37 

348.15 0.190 0.197 3.69 0.260 0.257 1.27 0.429 0.407 5.08 

473.15 0.234 0.225 3.55 0.295 0.287 2.61 0.446 0.428 3.95 

498.15 0.252 0.259 3.14 0.322 0.324 0.56 0.464 0.458 1.19 

523.15 0.303 0.298 1.65 0.361 0.366 1.36 0.472 0.496 4.95 
 

Table 4.25: Comparison of NRTL and experimental solubilities of NaCl in DES11 at 1:3.5 molar ratio. 
 

1:3.5 

T/K exp. cal. Differ.(%) 

298.15 0.026 0.025 3.846 

308.15 0.037 0.039 3.876 

333.15 0.112 0.103 8.438 

353.15 0.190 0.198 3.991 
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Table 4.26: Comparison of NRTL and experimental solubilities of NaCl in DES12 at different molar ratios. 
 

1:2 1:3 1:4 
T(K) exp. cal. Differ.(%) T(K) exp. cal. Differ.(%) T(K) exp. cal. Differ.(%) 

363.15 78 77.97 0.043 355.15 79.15 79.079 0.089 363.15 85 85.47 0.551 
369.15 78.3 78.29 0.130 364.15 79.5 79.52 0.025 373.15 87.95 87.21 0.236 
377.15 78.6 78.71 0.136 373.15 79.85 79.946 0.120 384.15 88.5 88.82 0.355 
384.15 79.13 79.06 0.087 381.15 80.1 80.311 0.264 

    
    

383.15 80.66 80.401 0.321 
     

 
 
 

Table 4.27: Comparison of NRTL and experimental solubilities of NaCl in DES13 at different molar ratios. 
 

1:3 1:4 1:5 
T(°C) exp. cal. Differ.(%) exp. cal. Differ.(%) exp. cal. Differ.(%) 

373.15 67.02 67.04 0.030 71.03 70.84 0.267 72.16 71.94 0.305 

378.15 68.1 67.82 0.411 72 71.84 0.222 72.88 72.85 0.041 

388.15 68.8 69.3 0.727 73 73.72 0.986 74.02 74.56 0.730 

398.15 70.9 70.67 0.324 75.8 75.43 0.488 76.4 76.11 0.380 
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Table 4.28: Comparison of NRTL and experimental solubilities of NaCl in DES14 at different molar ratios. 
 

1:3 1:4 1:5 
T(°C) exp. cal. Differ.(%) T(°C) exp. cal. Differ.(%) T(°C) exp. cal. Differ.(%) 

363.15 2.7 3.4 25.926 363.15 6.21 6.36 2.415 368.15 18 19.9 10.556 

373.15 7.5 6.78 9.600 373.15 13 11.95 8.077 378.15 29.88 29.3 1.941 

391.15 25.1 21.91 12.709 398.15 38 40.72 7.158 383.15 34.9 34.39 1.461 

418.15 59.01 61.17 3.660 418.15 66.6 65.48 1.682 388.15 41 39.58 3.463 

        392.15 45 43.73 2.822 

        423.15 70 70.95 1.357 
 
 

Table 4.29: Comparison of NRTL and experimental solubilities of NaCl in DES15 at different molar ratios. 
 

1:3 1:4 1:5 
T(°C) exp. cal. Differ.(%) T(°C) exp. cal. Differ.(%) T(°C) exp. cal. Differ.(%) 

358.15 61.6 62.3 1.136 358.15 65.03 65.47 0.677 368.15 68.4 69.09 1.009 

368.15 63.8 63.81 0.016 368.15 66.82 66.75 0.105 373.15 70.12 69.65 0.670 

378.15 66.1 65.22 1.331 378.15 67.95 67.96 0.015 403.15 73.1 72.67 0.588 

403.15 68.7 68.38 0.466 403.15 71.4 70.67 1.022 433.15 75 75.23 0.307 

413.15 69 69.52 0.754 433.15 73.08 73.47 0.534      
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Table 4.30: Comparison of NRTL and experimental solubilities of NaCl in DES16 at different molar ratios. 
 

1:3 1:4 1:5 
T(°C) exp. cal. Differ.(%) T(°C) exp. cal. Differ.(%) T(°C) exp. cal. Differ.(%) 

323.15 3.03 3.87 27.723 338.15 5.61 5.51 1.783 325.15 5.88 5.95 1.190 

341.15 6.61 5.29 19.970 348.15 6.88 7.05 2.471 355.65 10.96 10.76 1.825 

358.15 7.8 6.95 10.897 363.15 10.18 10.26 0.786 383.15 17.16 16.78 2.214 

379.15 8.37 9.64 15.173 371.15 12.62 12.45 1.347 388.15 17.5 17.98 2.743 

    377.15 17.25 14.29 17.159      
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4.2.3 Solubility of Sodium Chloride in Different ILs 

Table 4.2 summarized the names and chemical structures of the sixteen ILs 

investigated. Experimental solubilities of NaCl in these ILs are listed in Table 4.31 and 

illustrated in Figures 4.37 to 4.40.  

Table 4.31: Experimental solubilities of NaCl in studied ILs. 
 

[emim][EtSO4]  [emim][MeSO3]  [emim][DMP]  [edmi][Cl] 
T / K s / wt%  T / K s / wt%  T / K s / wt%  T / K s / wt% 

298.15 0.56  298.15 0.33  303.15 0.67  378.15 0.2 

333.15 0.74  333.15 0.52  323.15 2.55  389.15 0.22 

358.15 1.11  358.15 0.71  342.15 2.97  398.15 0.26 

378.15 1.27  378.15 1.31  359.15 3.66  408.15 0.33 

383.15 1.30  383.15 2.18  368.15 3.73    
   298.15 2.34  378.15 4.67    
      388.15 6.28    
      398.15 8.96    
[bmim][Cl]  [bmim][DCA]  [bmim][TfO]  [bmim][BF4] 

T / K s / wt%  T / K s / wt%  T / K s / wt%  T / K s / wt% 

348.15 0.07  303.15 0.37  298.15 0.02  303.15 0.05 

383.15 0.10  333.15 0.38  333.15 0.03  333.15 0.07 

396.15 0.14  363.15 0.40  358.15 0.04  363.15 0.09 

408.15 0.16  393.15 0.45  378.15 0.05  393.15 0.11 

423.15 0.22  423.15 0.50  383.15 0.05  423.15 0.14 
[bmim][Tf2N]  [C8mim][Cl]  [bmp][DCA]  [bmp][TfA] 

T / K s / wt%  T / K s / wt%  T / K s / wt%  T / K s / wt% 

298.15 0.02  363.15 1.28  298.15 0.22  303.15 0.59 

323.15 0.02  373.15 1.96  318.15 0.26  333.15 0.62 

353.15 0.03  383.15 2.63  348.15 0.30  363.15 0.68 

385.15 0.03  393.15 3.38  393.15 0.39  393.15 0.71 

390.15 0.03  403.15 3.94     423.15 0.74 

403.15 0.05  363.15        
[bmpyr][CF3SO3]  [bmpy][DCA]  [bmpy][MSO4]  [EtOHNMe3][Me2PO4] 

T / K s / wt%  T / K s / wt%  T / K s / wt%  T / K s / wt% 

303.15 0.08  303.15 0.71  298.15 0.27  298.15 1.21 

333.15 0.08  333.15 0.74  318.15 0.35  313.15 1.70 

363.15 0.08  363.15 0.81  345.35 0.42  333.15 1.81 

393.15 0.09  393.15 0.86  373.15 0.53  348.15 2.06 

423.15 0.09  423.15 0.89     363.15 2.37 

   
 

     379.15 3.34 
 

 

Figure 4.37 shows the results of NaCl solubility in several imidazolium-based ILs at 

different temperatures. The solubility of NaCl in the ILs increased with temperature, and 
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different ILs showed different solubility profile trends. The IL structure affected these 

trends. For instance, IL2, IL3, and IL10 exhibited a sharp increase in NaCl solubility 

with increasing temperature whereas IL4, IL5, IL8, and IL9 exhibited the lowest NaCl 

solubilities of the imidazolium ILs. The NaCl solubility in these ILs did not exceed 0.05 

wt% at all temperatures. One of the factors that affect NaCl solubility is the type of 

anion of the IL. IL3 which composes a dimethylphosphate anion provided the highest 

NaCl solubility of 8.96 wt% at 398.15 K. These findings confirm the data available in 

the literature (AlNashef, 2001). AlNashef (2001) examined the solubility of NaCl in 

dimethylimidazolium dimethylphosphate, concluding that its solubility increases with 

temperature, similar to the results illustrated in Figure 4.37.  

 
 

Figure 4.37 Experimental solubility (Concentration) of NaCl in imidazolium-based ILs. 
(∆) IL1, (ᴏ) IL2, (□) IL3, () IL4, () IL5, (▲) IL6, () IL7, (■)IL8, () IL9, () 

IL10.  
 

The results from this study and from AlNashef show that the dimethylphosphate 

anion significantly increases the solubility of NaCl in ILs. Substituents on the 

imidazolium cation can also affect the solubility of NaCl in ILs. This is reflected by IL5 

and IL10. The IL5 cation has a butyl group and produces a NaCl solubility of 0.098 wt% 

at 110 °C. IL10 has an octyl group instead of the butyl group and produces a NaCl 
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solubility of 2.629 wt% at 383.15 K. It can be explained by the strength of C/H bond in 

IL10 which is more than in IL5 (Yu et al., 2008); Therefore, it significantly affects the 

Cl- ion from NaCl. The mutual electro negativity item in IL10 is more obvious than in 

IL5. 

The effect of changing the anion on NaCl solubility in imidazolium-based ILs was 

also investigated. The ethylsulfate anion in IL1 was replaced by a methanesulfonate 

anion in IL2 and a dimethylphosphate anion in IL3. The NaCl solubilities in these ILs 

were compared at 358.15 K. The solubility increased from approximately 1.102 wt% in 

IL1 and 0.982 wt% in IL2 to 3.66 wt% in IL3. Figure 4.30 shows that imidazolium-

based ILs with a 1-butyl-3-methyl group in the cation resulted in low solubility, i.e. less 

than 0.5 wt%.  

Figure 4.38 shows an assessment of NaCl solubility in pyrrolidinium-based ILs. It 

shows that solubility is directly proportional to temperature.  

 
 

Figure 4.38 Experimental solubility (Concentration) of NaCl in pyrrolidinium-based ILs. 
(∆) IL11, (ᴏ) IL12, (□) IL13. 

 

To determine the effects of anions on NaCl solubility, the dicyanamide anion in 

IL11 was replaced with a triflouroacetate and trifluoromethanesulfonate anions in IL12 
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and IL13, respectively. At 393.15 K, IL12 had the highest NaCl solubility of 0.71 wt%. 

Under the same temperature, IL11 and IL13 produced lower NaCl solubilities of 

approximately 0.4 wt% and 0.09 wt%, respectively. This shows that the triflouroacetate 

anion is more attracted to sodium ions (Na+) than the dicyanamide or 

trifluoromethanesulfonate anions. 

Figure 4.39 shows NaCl solubility plots for IL14 and IL15, which are based on 

pyridinium cations. The solubilities increased sharply with temperature.  

 
 

Figure 4.39 Experimental solubility (Concentration) of NaCl in pyridinium-based ILs. 
(∆) IL14, (ᴏ) IL15. 

 

IL6, IL11 and IL14 contained dicyanamide anions. Comparing NaCl solubilities in 

these ILs allows the comparison of the effects of the parent groups on NaCl solubility. 

To compare the changes in NaCl solubility with a fixed anion and a variable cation, 

NaCl solubility in IL6, IL11, and IL14 were compared at similar temperatures. IL6 and 

IL11 produced NaCl solubilities of approximately 0.448 wt% and 0.389 wt% at 393.15 

K, respectively. IL14 produced the highest solubility of 0.86 wt%. This shows that a N-

butyl-3-methyl pyridinium cation exhibits more Na+ affinity than the other cations.  

Figure 4.40 shows the solubility of NaCl in IL16 as a function of temperature. NaCl 

solubility in this IL is approximately 3.34 wt% at 379.15 K. Comparing IL3 and IL16 
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which are both having the dimethylphosphate anion, it is noticed that NaCl solubility in 

IL3 is higher than that in IL16. However, the difference in solubility is not significant. 

This may be attributed to the difference in the cation. It can therefore be concluded that 

the presence of dimethylphosphate anion in the IL increases its ability to dissolve NaCl. 

It is to be noted that the highest NaCl solubility achieved was in IL3 which has the 

dimethylphosphate anion with imidazolium-based cation.  

 
 

Figure 4.40 Experimental solubility of NaCl in IL16 (∆). 
 

4.2.3.1 Solubility Modelling 

Solubility modelling in ILs is different from the one shown for DESs. Taking the same 

equation presented in Subsection 4.2.1.2, the basic equation for calculating the 

saturation mole fraction of a solid in a liquid is: 

𝑙𝑛(𝑥1𝛾1) =  −∆𝐻𝑓𝑢𝑠(𝑇𝑚)
𝑅𝑇

�1 − 𝑇
𝑇𝑚
� − 1

𝑅𝑇 ∫ ∆𝐶𝑃
𝑇
𝑇𝑚

𝑑𝑇 + 1
𝑅 ∫

∆𝐶𝑃
𝑇

𝑇
𝑇𝑚

𝑑𝑇       (4.5) 

where subscript 1 is the solid solute; x1 and γ1 are its molar composition (solubility at 

equilibrium) and activity coefficient in the mixture, respectively. Tm is the melting point 

temperature; T is the temperature of the system at equilibrium; and ∆Hfus and ∆𝐶𝑃 are the 

enthalpy and heat capacity changes when the solute changes from a solid to a liquid 

state, respectively. 
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Two approximations were made without introducing appreciable error. The first 

assumption is that ∆𝐶𝑃 is independent of temperature. Therefore, Equation (4.5) is 

simplified to: 

𝑙𝑛(𝑥1𝛾1) =  −�∆𝐻
𝑓𝑢𝑠(𝑇𝑚)
𝑅𝑇

�1 − 𝑇
𝑇𝑚
� + ∆𝐶𝑃

𝑅𝑇
�1 − 𝑇𝑚

𝑇
+ 𝑙𝑛 �𝑇𝑚

𝑇
���       (4.10) 

Because the melting temperature Tm at any pressure and the triple point temperature 

Tr are only slightly different for most solids, Equation (4.10) can be rewritten as 

Equation (4.11) below: 

𝑙𝑛 𝑥1 = − 𝑙𝑛 𝛾1  − �∆𝐻
𝑓𝑢𝑠(𝑇𝑟)
𝑅𝑇

�1 − 𝑇
𝑇𝑟
� + ∆𝐶𝑃

𝑅𝑇
�1 − 𝑇𝑟

𝑇
+ 𝑙𝑛 �𝑇𝑟

𝑇
���    (4.11) 

• If the liquid mixture is ideal, 𝛾1 = 1 and the solubility can be calculated by using the 

thermodynamic data , ∆𝐻𝑓𝑢𝑠 and ∆𝐶𝑃, for the solid species near the melting point. 

• For non-ideal solutions, 𝛾1 must be estimated from either experimental data or liquid 

solution models, such as the UNIFAC model. 

This equation may be used, assuming that the ILs exhibit full miscibility in the 

liquid phase and immiscibility in the solid phase. Due to the lack of appropriate data 

representing the difference in ∆CP between the heat capacities of the solute in the solid 

and liquid states for systems containing ILs, especially in systems where the IL 

represents the solid phase, the simple solubility version without the ∆CP term was used 

in Equation 4.12: 

𝑙𝑛 𝑥1 = − 𝑙𝑛 𝛾1  − �∆𝐻
𝑓𝑢𝑠(𝑇𝑟)
𝑅𝑇

�1 − 𝑇
𝑇𝑟
��      (4.12) 

The expected error from ignoring ∆CP usually depends on the substance. For normal 

molecular compounds, this error does not exceed 2%. 

The latent heat from pure sodium chloride fusion and its melting temperature are 

∆Hfus = 28.3 kJ/mol and Tm = 1073.95 K, respectively (Yamada et al., 1993).  
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The non-random 2-liquid (NRTL) model is an activity coefficient model frequently 

used in chemical engineering to calculate phase equilibria (Renon and Prausnitz, 1968). 

This model presumes that, within a liquid solution, local compositions account for the 

short-range order and non-random molecular orientations resulting from molecular size 

and intermolecular force differences. 

The NRTL equation is expressed for a multi-component system in terms of activity 

coefficients in Equation 4.13: 

𝑙𝑛𝛾𝑖 =
∑ 𝜏𝑗𝑖𝐺𝑗𝑖𝑥𝑗𝑗

∑ 𝐺𝑗𝑖𝑥𝑗𝑗
+ ∑ 𝐺𝑖𝑗𝑥𝑗

∑ 𝐺𝑘𝑗𝑥𝑘𝑘
�𝜏𝑖𝑗 −

∑ 𝜏𝑘𝑗𝐺𝑘𝑗𝑥𝑘𝑘

∑ 𝐺𝑘𝑗𝑥𝑘𝑘
�𝑗       (4.13) 

with:  𝑙𝑛𝐺𝑖𝑗 = −𝛼𝑖𝑗𝜏𝑖𝑗, 𝛼𝑖𝑗 = 𝛼𝑗𝑖, 𝜏𝑖𝑖 = 0            

Equation 4.13 includes three parameters, i.e.τij, τji, and αij, for each pair of 

components in the multi-component mixture. Therefore, modifying the NRTL equation 

for a binary system produces Equation 4.14: 

𝑙𝑛𝛾1 = 𝑥22 �𝜏21 �
𝐺21

𝑥1+𝑥2𝐺21
�
2

+ 𝜏12𝐺12
(𝑥2+𝑥1𝐺12)2�      (4.14) 

The model was developed within the Simulis® Thermodynamics environment, a 

thermo physical property calculation server created by ProSim and available as an MS-

Excel add-in (www.prosim.net, 2013). 

The non-randomness parameter α12 was set to 0.2. Then, the binary interaction 

parameters τij and τji were estimated temperature from the Na+ experimental data points. 

An iterative process was used at each temperature. The quadratic relative criterion 

between the calculated and experimental solubilities was minimized using Equation 4.8: 

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = 1
𝑁
∑ �𝑥1

𝑒𝑥𝑝−𝑥1𝑐𝑎𝑙

𝑥1𝑒𝑥𝑝
�
2

𝑁          (4.8) 

This methodology was applied to estimate the binary interaction parameters τ12 for 

only the ionic liquids showing NaCl solubility greater than 1 wt%, i.e. IL1, IL2, IL3, 
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IL10 and IL16. The results show linear temperature dependence for τij parameter 

expressed by the following correlation: 

𝜏𝑖𝑗 = 𝜏𝑖𝑗0 + 𝜏𝑖𝑗𝑇 . (𝑇 − 273.15)        (4.15) 

The optimized parameters τij
0 and τij

T are listed in Table 4.32. Figures 4.41 and 4.42 

show comparisons between the experimental and calculated solubilities, expressed in 

mole fractions. Overall, these data are in very good agreement, confirming that the 

NRTL model can be used to predict the solubility of NaCl in various ILs. 

Table 4.32: NRTL binary interaction parameters between NaCl and different ILs  
(1 ≡ NaCl and 2 ≡ IL). 

 
IL τ12

0 τ12
T 

[emim][EtSO4] -585.33 0.6662 
[emim][MeSO3] -420.74 -1.0891 
[emim][DMP] -479.47 -3.9415 
[C8mim][Cl] -86.52 -5.2329 
[EtOHNMe3][Me2PO4] -651.25 -0.8478 

 
 

 
 

Figure 4.41: Experimental and calculated solubilities (mole fraction) by NRTL for NaCl 
in imidazolium-based ILs. (∆) IL1, (ᴏ) IL2, (□) IL3. Line represents NRTL data. 

 



131 
 

 
 

Figure 4.42: Experimental and calculated solubilities (mole fraction) by NRTL for NaCl 
in (∆) IL10, (□) IL16. Lines represent NRTL data. 

 
 

The experimental and calculated data for IL1, IL2, IL4, and IL5 are in good 

agreement, with the exception of the data for IL3. However, this does not affect the 

overall suitability of the developed model.  

 

4.3 Electrical Conductivity of Sodium Chloride Saturated in DESs 

Electrical conductivity is one of the essential factors of electrolytes since it 

determines the level of ohmic drop in cyclic voltammetric analysis (Faridbod et al., 

2011). Thus, measuring ionic mobility of saturated solutions of sodium chloride in DESs 

is highly important to evaluate the electrolytic behaviour of DESs. The electrical 

conductivity of saturated NaCl solutions in DESs 1 - 5, 8, 10 - 12, and 15 was measured 

within a range of temperatures. Experimental measurements were done repeatedly to 

increase the reliability of the obtained values. The results were classified according to 

solvent structure, range of temperature and stability of the solution. Experimental results 
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are tabulated in Tables 4.33 through 4.37. Similar to the electrical conductivity of blank 

DESs, the electrical conductivity of NaCl solutions in DESs was found to be directly 

proportional to the temperature. Additionally, it depended significantly on the salt, HBD 

or metal halide used to synthesize a DES. 

Figures 4.43 through 4.52 show the profiles of ln (σ) versus the inverse of 

temperature for NaCl solutions in DESs at different salt:HBD or metal halide ratios and 

under different temperatures.  

Similar to the electrical conductivity of blank DESs, the electrical conductivity of 

NaCl solutions in DESs were fitted using the same equation used to fit the conductivity 

profiles in Section 4.1.3, i.e. Equation 4.2. The values of σ∞ and Eσ for each solution are 

given in Table 4.38. The fitted series were also plotted in Figures 4.43 – 4.52. The fitting 

showed a high accuracy when plotted, as it showed a high proximity to the experimental 

points. 

The addition of NaCl to blank DESs until saturation was expected to increase the 

electrical conductivity of each DES used. This was ascertained by measuring the 

conductivity of saturated solutions and comparing them to that of blank DESs. An 

enhancement was obviously noticed in the values of conductivity when compared at the 

same temperatures. However, in some saturated solutions when the salt concentration 

was high in the DES, the electrical conductivity decreased when the DES became a 

saturated solution of NaCl. This was true for DESs 1, 10, 11, and 12. This reduction is 

caused by the strong influence of ion pairs and ion triplets, together with the higher ion 

aggregations, which all reduce the overall mobility of ions and the number of effective 

charge carriers.  

The electrical conductivity of ammonium based DESs was increased by a 

magnitude bigger than the magnitude in which it was increased in phosphonium based 

DESs. This can be seen when the values in Tables 4.6 - 4.10, blank DES, and Tables 
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4.33 - 4.37, NaCl solutions in DESs, are compared. For instance, the conductivity of 

DES8(1:1) increased sharply from 4.36 mS.cm-1 for blank DES to 11.81 mS.cm-1 when 

the DES became a saturated solution under 398.15 K. However, the conductivity of 

DES12(1:2) slightly increased from 0.257 mS.cm-1 to 0.360 mS.cm-1 under 363.15 K in 

saturated NaCl solution.  

Considering the practical range of electrical conductivity in electrochemical 

processes, the electrical conductivity of selected DESs for the present work ought to be 

higher than 0.1 mS.cm-1 (Faridbod et al., 2011). In this study, all measured electrical 

conductivities of DESs were found to be in the aforesaid range of electrical conductivity, 

except for DES15 at 1:4 and 1:5 molar ratios of salt:metal halide under temperatures 

below 373.15 K and 368.15 K, respectively. 

 

Table 4.33: Experimental electrical conductivity (mS cm-1) of saturated NaCl in DESs 1 
and 2 at different molar ratios. 

 

T/K DES 1 
(1:1.75) 

DES1 
(1:2) 

DES1 
(1:2.5) 

DES2 
(1:1) 

DES2 
(1:2) 

DES2 
(1:3) 

298.15 8.500 8.925 9.996 1.701 1.405 1.264 
308.15 11.300 11.865 13.289 2.614 2.160 1.944 
318.15 14.120 14.826 16.605 4.453 3.680 3.312 
328.15 17.500 18.375 20.580 7.889 6.520 5.868 
338.15 20.464 21.487 24.070 14.387 11.890 10.701 
348.15 23.018 24.168 27.069 20.546 16.980 15.282 
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Figure 4.43 Electrical conductivity σ of saturated NaCl in DES1 1:1.75 (●), 1:2 (■), and 
1:2.5 (▲) as a function of the inversed temperature. Curves represent fitting by 

Equation 4.2. 
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Figure 4.44 Electrical conductivity σ of saturated NaCl in DES2 1:1 (●), 1:2 (■), and 
1:3 (▲) as a function of the inversed temperature. Curves represent fitting by 

Equation 4.2. 
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Table 4.34: Experimental electrical conductivity (mS cm-1) of saturated NaCl in DESs 3 
and 4 at different molar ratios. 

 

T/K DES3 
(1:2.5) 

DES3 
(1:3) 

DES3 
(1:4) 

DES4 
(1:2) 

DES4 
(1:3) 

DES4 
(1:4) 

298.15 6.360 5.490 5.460 0.707 0.587 0.547 
308.15 8.640 7.937 7.260 1.504 1.093 0.995 
318.15 11.000 10.324 9.980 2.700 2.050 1.780 
328.15 15.750 14.370 13.200 5.300 4.400 3.500 
338.15 17.073 16.840 15.847 7.930 5.500 4.910 
348.15 20.634 19.641 19.100 11.380 9.830 8.950 
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Figure 4.45 Electrical conductivity σ of saturated NaCl in DES3 1:2.5 (●), 1:3 (■), and 
1:4 (▲) as a function of the inversed temperature. Curves represent fitting by Equation 

4.2. 
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Figure 4.46 Electrical conductivity σ of saturated NaCl in DES4 1:2 (●), 1:3 (■), and 
1:4 (▲) as a function of the inversed temperature. Curves represent fitting by Equation 

4.2. 
 

Table 4.35: Experimental electrical conductivity (mS cm-1) of saturated NaCl in DESs 5 
and 8 at different molar ratios. 

 

T/K DES5 
(1:1) 

DES5 
(1:2) 

DES5 
(1:3) 

DES5 
(1:4) 

DES8 
(1:1) 

DES8 
(1:2) 

DES8 
(1:3) 

DES8 
(1:4) 

363.15 0.924 0.912 0.770 0.580 3.760 2.850 0.207 0.980 
368.15 1.308 1.207 0.890 0.730 4.490 3.905 0.650 1.560 
373.15 1.628 1.572 1.300 1.100 6.200 5.400 0.854 2.900 
378.15 2.080 2.018 1.575 1.400 7.070 6.100 1.097 4.200 
383.15 2.550 2.561 1.831 1.798 8.580 7.200 1.823 5.600 
388.15 3.940 3.219 2.618 2.246 10.400 9.010 2.180 6.400 
393.15 4.640 4.011 3.206 2.900 11.810 10.800 2.960 7.500 
398.15 4.810 4.961 4.050 3.700 14.880 12.600 3.560 9.300 
403.15 6.180 6.093 5.110 4.500 16.100 13.500 4.800 10.200 
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Figure 4.47 Electrical conductivity σ of saturated NaCl in DES5 1:1 (●), 1:2 (■), 1:3 
(▲), and 1:4 (▼) as a function of the inversed temperature. Curves represent fitting by 

Equation 4.2. 
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Figure 4.48 Electrical conductivity σ of saturated NaCl in DES8 1:1 (●), 1:2 (■), 1:3 
(▲), and 1:4 (▼) as a function of the inversed temperature. Curves represent fitting by 

Equation 4.2. 
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Table 4.36: Experimental electrical conductivity (mS.cm-1) of saturated NaCl in DESs 
10 and 11 at different molar ratios. 

 

T/K DES10 
(1:3) 

DES10 
(1:4) 

DES10 
(1:5) 

DES11 
(1:2) 

DES11 
(1:3) 

DES11 
(1:4) 

303.15 1.454 2.351 2.920 0.120 0.132 0.185 
313.15 1.887 3.155 3.531 0.266 0.340 0.390 
323.15 2.920 4.300 5.250 0.462 0.502 0.566 
333.15 4.390 5.420 6.730 0.725 0.855 1.067 
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Figure 4.49 Electrical Conductivity σ of saturated NaCl in DES10 1:3 (●), 1:4 (■), and 
1:5 (▲) as a function of the inversed temperature. Curves represent fitting by Equation 

4.2. 
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Figure 4.50 Electrical conductivity σ of saturated NaCl in DES11 1:2 (●), 1:3 (■), and 
1:4 (▲) as a function of the inversed temperature. Curves represent fitting by Equation 

4.2. 
 

 

Table 4.37: Experimental electrical conductivity (mS cm-1) of saturated NaCl in DESs 
12 and 15 at different molar ratios. 

 

T/K DES12 
(1:2) 

DES12 
(1:3) 

DES12 
(1:4) 

DES12 
(1:5) 

DES15 
(1:2) 

DES15 
(1:3) 

DES15 
(1:4) 

DES15 
(1:5) 

363.15 0.297 0.365 0.410 0.534 0.416 0.320 0.059 0.047 
368.15 0.360 0.442 0.498 0.647 0.503 0.387 0.081 0.065 
373.15 0.425 0.522 0.588 7.645 0.524 0.403 0.103 0.082 
378.15 0.448 0.551 0.619 0.805 0.588 0.452 0.166 0.133 
383.15 0.525 0.645 0.726 0.944 0.651 0.501 0.197 0.158 
388.15 0.598 0.735 0.827 1.075 0.806 0.620 0.267 0.214 
393.15 0.705 0.867 0.975 1.268 0.940 0.723 0.324 0.259 
398.15 0.780 0.959 1.079 1.403 1.037 0.798 0.399 0.319 
403.15 0.930 1.143 1.286 1.672 1.294 0.995 0.460 0.368 
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Figure 4.51 Electrical conductivity σ of saturated NaCl in DES12 1:2 (●), 1:3 (■), 1:4 
(▲), and 1:5 (▼) as a function of the inversed temp. Curves represent fitting by 

Equation 4.2. 
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Figure 4.52 Electrical conductivity σ of saturated NaCl in DES15 1:2 (●), 1:3 (■), 1:4 
(▲), and 1:5 (▼) as a function of the inversed temp. Curves represent fitting by 

Equation 4.2. 
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Table 4.38: Values of σ∞ and Eσ for the fitting by Equation 4.2 in the system of 
NaCl(saturated)/DES. 

 
DES Ratio σ∞ (ms.cm-1) Eσ (meV) 

1 1:1.75 9.52×10+3 1.79×10+2 
1 1:2 1.00×10+4 1.80×10+2 
1 1:2.5 1.12×10+4 1.81×10+2 
2 1:1 1.06×10+8 1.06×10+2 
2 1:2 8.77×10+7 4.63×10+2 
2 1:3 7.93×10+7 4.64×10+2 
3 1:2.5 2.61×10+4 2.12×10+2 
3 1:3 4.57×10+4 2.30×10+2 
3 1:4 3.97×10+4 2.27×10+2 
4 1:2 2.38×10+8 5.09×10+2 
4 1:3 2.05×10+8 5.04×10+2 
4 1:4 1.39×10+8 4.97×10+2 
5 1:1 2.11×10+8 6.00×10+2 
5 1:2 1.80×10+8 5.95×10+2 
5 1:3 1.93×10+8 6.06×10+2 
5 1:4 6.61×10+8 6.51×10+2 
8 1:1 1.18×10+7 4.67×10+2 
8 1:2 1.77×10+7 4.86×10+2 
8 1:3 5.88×10+11 8.81×10+2 
8 1:4 1.41×10+10 7.22×10+2 
10 1:3 3.55×10+5 3.25×10+2 
10 1:4 2.80×10+4 2.45×10+2 
10 1:5 4.34×10+4 2.52×10+2 
11 1:2 5.48×10+7 5.19×10+2 
11 1:3 7.78×10+7 5.24×10+2 
11 1:4 2.72×10+7 4.90×10+2 
12 1:2 1.80×10+4 3.44×10+2 
12 1:3 2.24×10+4 2.44×10+2 
12 1:4 2.50×10+4 2.44×10+2 
12 1:5 3.25×10+4 3.44×10+2 
15 1:2 2.36×10+4 3.43×10+2 
15 1:3 1.81×10+4 3.43×10+2 
15 1:4 1.01×10+8 6.63×10+2 
15 1:5 8.10×10+7 6.63×10+2 

 

4.4 The Electrochemical Potential Windows of ZnCl2 Based DESs 

It was shown throughout this chapter that zinc chloride based DESs are potential 

candidates for the production of sodium metal. This is mainly because of the high NaCl 
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solubility and their high electrical conductivity. Additionally, experiments in our labs 

showed that pure sodium metal was stable in these DESs.  

Another important property of the solvent to be used in electrochemical processes is 

the electrochemical window. The electrochemical window can be defined as the 

potential range within which the material is stable. In this work, the electrochemical 

windows of these DESs were measured using cyclic voltammetry.  

Table 4.39 gives a summary of the findings for each DES at different experimental 

conditions.  

Table 4.39: Electrochemical windows obtained at Pt counter electrode, glassy carbon 
working electrode, and a silver wire quasi reference electrode for DESs 5, 8, 12, and 15. 

DES Salt:metal halide 
molar ratio  

Temperature 
(oC) 

Anodic 
Limit (V) 

Cathodic 
Limit (V) 

Electrochemica
l window (V) 

DES 5 

1:1 
100 1.69 -0.97 2.66 
110 2.13 -1.06 3.19 
130 2.47 -1.27 3.74 

1:3 
100 1.3 -0.95 2.25 
110 1.37 -1.02 2.39 
130 1.65 -1.36 3.01 

DES 8 

1:1 
100 1.33 -0.69 2.02 
110 1.37 -0.74 2.11 
130 1.4 -0.97 2.37 

1:2 
100 1.32 -0.48 1.8 
110 1.21 -0.66 1.87 
130 1.41 -0.6 2.01 

1:3 
100 1.26 -0.41 1.67 
110 1.34 -0.51 1.85 
130 1.38 -0.57 1.95 

DES12 

1:2 
100 1.87 -1.06 2.93 
110 1.91 -1.09 3.00 
130 1.93 -1.11 3.04 

1:3 
100 1.51 -0.8 2.31 
110 1.6 -0.82 2.42 
130 1.64 -0.84 2.48 

DES15 

1:2 
100 1.6 -1.17 2.77 
110 1.73 -1.24 2.97 
130 1.8 -1.26 3.06 

1:3 
100 1.17 -1.07 2.24 
110 1.23 -1.08 2.31 
130 1.31 -1.13 2.44 
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Figures 4.53 through 4.64 depict the electrochemical windows and cyclic 

voltammetries of saturated solutions of sodium in DESs at different molar ratios and 

temperatures. This is achieved by using a glassy carbon (GC) electrode with a diameter 

of 3 mm as working electrode, a silver (Ag) wire as reference electrode, and a platinum 

(Pt) electrode as counter electrode at a scan rate of 100 mV s-1.  

The electrochemical windows of DES5 for ratios of 1:1 and 1:3 in the temperature 

range of 100 oC to 130 oC were plotted in Figures 4.53 and 4.54. The effect of increasing 

the concentration of ZnCl2 as the complexing agent in the DES was evaluated together 

with the effect of varying the temperature. It was found that the electrochemical 

windows of DES5 are strong functions of temperature. For instance, in DES5(1:1), the 

electrochemical window increased sharply from 2.66 V at 100 oC to 3.19 V and 3.74 V 

at 110 oC and 130 oC, respectively. In addition, the same trend was obtained for 

DES5(1:3). The electrochemical window increased from 2.25V at 100 oC to 2.39V and 

3.01V at 110 oC and 130 oC, respectively. In contrast, the electrical electrochemical 

window of DES5 decreased significantly by increasing the molar ratio of ZnCl2 in the 

DES. The maximum electrochemical window of DES5 (1:1) at 130 oC was 3.74 V while 

it was 3.01 V for the molar ratio 1:3 under the same temperature.  

Figure 4.55 depicted the cyclic voltammetry of saturated sodium in DES5 at130 oC 

as the minimum temperature which attained a electrochemical window of 3.74 V. The 

sodium reduction potential peak was detected at -0.40 V vs. Ag reference electrode. 
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Figure 4.53: Electrochemical window of DES5 (1:1) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
 

 

E/V

-2 -1 0 1 2

I/µ
A

-150

-100

-50

0

50

100

150

DES5(1:3),100oC
DES5(1:3),110oC
DES5(1:3),130oC

 
 

Figure 4.54: Electrochemical window of DES5 (1:3) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100mV s-1. 
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Figure 4.55: Cyclic voltammetry for the reduction of saturated sodium chloride in DES5 
(1:1) at 130oC on a GC (3 mm) working electrode/ Ag reference electrode/ Pt counter 

electrode at scan rate of 100mV s-1. 
 

To evaluate the effect of the salt on the electrochemical window, choline chloride as 

salt in DES5 was replaced by N,N diethylethanolammonium chloride in DES8. It is 

clearly shown in Figures 4.56, 4.57, and 4.58 that for the same salt and complexing 

agent in DES8 but at different molar ratios, the electrochemical windows were 

influenced noticeably by the concentration of ZnCl2 and temperature. By changing the 

molar ratio of DES8 from 1:1 to 1:2 and then to 1:3 at 130 oC, the electrochemical 

window declined from 2.37 V to 2.01 V and 1.95 V, respectively. However, it was 

found that the electrochemical windows of DES8 for each molar ratio depended 

significantly on the operating temperature similar to DES5. On the contrary, the 

electrochemical window in DES8 increased by increasing the temperature. Table 4.39 

and Figure 4.56 shows that in DES8 with molar ratio of 1:1, the electrochemical window 

grow from 2.02 V under 100 oC to 2.11 V under 110 oC, and afterward it reaches to its 

maximum potential at 2.37 V under 130oC. The same trend of electrochemical windows 

are presented in Figures 4.57 and 4.58 for DES8 with the molar ratios 1:2 and 1:3.  

Reduction of sodium ion: Na+/Na 

Oxidation of sodium: Na/Na+  
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Figure 4.56: Electrochemical window of DES8(1:1) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
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Figure 4.57: Electrochemical window of DES8(1:2) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
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Figure 4.58: Electrochemical window of DES8(1:3) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
 

In a comparison between the effect of different ammonium salts on the cyclic 

voltametry of ZnCl2 based DESs, it was found that the electrochemical window in N,N 

diethylethanolammonium chloride:ZnCl2 DES was less than the corresponding 

ChCl:ZnCl2 DES. From Table 4.39 it can be seen that the maximum electrochemical 

window for DES 8 (1:1) at 130oC is 2.37 V. However, it is 3.7 4V for DES5 (1:1) at the 

same temperature.  

Surprisingly, the cyclic voltammetry of saturated solutions of sodium chloride in 

DES8 at different molar ratios and different temperatures below 130oC did not give any 

peak for the reduction of sodium ion. It may give peak at temperatures higher than 

130oC. However, owing to equipment limitations the analysis was not carried out at 

temperatures more than 130oC.  

Following the discussion of the effect of the salt on the electrochemical window of 

ZnCl2 based DES, the ammonium salts in DESs 5 and 8 were replaced by phosphonium 

salts, namely, ethyltriphenylphosphonium bromide and tetrabutylphosphonium bromide 
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for DESs 12 and 15, respectively. The electrical electrochemical windows of 

ethyltriphenylphosphonium bromide:ZnCl2, DES12, at two molar ratios of 

salt:complexing agent, 1:2 and 1:3, are plotted in Figures 4.59 and 4.60, respectively. 

Similar to the electrical windows of the ammonium based DESs, i.e. DES5 and DES8, 

the electrical windows of DES12 are influenced directly by the temperature change. The 

obtained electrochemical window for DES12 with a mole ratio of 1:2, Figure 4.59 and 

Table 4.39, increased from 2.93 V at 100 oC to 3 V and 3.04V at 110 oC and 130 oC, 

respectively. Additionally, the same trend was attained in the cyclic voltammetry test for 

DES12 using a 1:3 ratio, as observed in Figure 4.60 and Table 4.39. The detected 

electrochemical window at 100 oC was 2.31V, which increased to 2.42 V and 2.48 V at 

110 oC and 130 oC, respectively. Furthermore, the electrochemical windows of this DES 

decreased sharply by decreasing the molar ratio of ethyltriphenylphosphonium 

bromide:ZnCl2. For instance, from Table 4.39, the maximum electrochemical window 

for DES12 with a molar ratio of 1:2 is 3.04 V at 130 oC in comparison with a 

electrochemical window of 2.48 V for the same DES at a molar ratio of 1:3 and under 

the same temperature.  

Figure 4.61 shows the cyclic voltammetry of saturated solution of sodium chloride 

in DES12 at 100 oC as the minimum temperature, which had the electrochemical 

window of 2.93 V. The sodium reduction potential peaked at -0.35 V vs. Ag reference 

electrode.  
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Figure 4.59: Electrochemical window of DES12 (1:2) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
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Figure 4.60: Electrochemical window of DES12 (1:3) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
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Figure 4.61: Cyclic voltammetry for the reduction of saturated sodium in DES12 (1:2) 
at 100 oC on a GC (3 mm) working electrode/ Ag reference electrode/ Pt counter 

electrode at scan rate of 100 mV s-1. 
 

Cyclic voltammetry analysis for electrochemical windows of DES15 are shown in 

Figures 4.62 and 4.63. The electrical electrochemical windows of DES 15(1:2 and 1:3) 

decline by the increase in ZnCl2 molar composition in the DES and increase slightly as 

the temperature increases. For instance, in Table 4.39, the detected electrochemical 

window for DES 15 (1:2) was 3.06V at 130 oC while it was 2.44 V for DES 15(1:3) 

under the same operating temperature. In Table 4.39 and Figure 4.62, the 

electrochemical window of DES15 (1:2) is 2.77 V at 100oC and increases to 2.97 V at 

110 oC and finally reached to 3.06V under 130 oC. Similarly, Figure 4.63 shows that the 

electrochemical windows of DES15 (1:3) increase from 2.24 V at 100 oC to 2.31 V and 

2.44 V at 110 oC and 130 oC, respectively. The maximum detected electrochemical 

window for DES15 was 3.06 V at 130 oC and 1:2 molar ratio. 

Figure 4.64 depicts the cyclic voltammetry of saturated solution of sodium chloride 

in DES15 at 130 oC . The reduction potential peaks at -0.42 V vs. Ag reference 

electrode.  

Reduction of sodium ion: Na+/Na 

Oxidation of sodium: Na/Na+  
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Figure 4.62: Electrochemical window of DES15 (1:2) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
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Figure 4.63 Electrochemical window of DES15 (1:3) as a function of temperature on a 
GC (3 mm) working electrode/ Ag reference electrode/ Pt counter electrode at scan rate 

of 100 mV s-1. 
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Figure 4.64: Cyclic voltammetry for the reduction of saturated sodium in DES15(1:2) 
under 130oC on a GC (3 mm) working electrode/ Ag reference electrode/ Pt counter 

electrode at scan rate of 100 mV s-1. 
 

It can be concluded that the electrical windows in the studied ammonium based 

DESs, i.e. DES5 and DES8, were more affected by the change in temperature in 

comparison with the phosphonium based DESs, i.e. DES12 and 15. For instance, for 

DES5(1:1), the electrochemical window increased from 2.66V at 100 oC to 3.19V and 

3.74V at 110 oC and 130 oC, respectively. While it increased slightly for DES12(1:2) 

from 2.93V at 100 oC to 3V and 3.04V at 120 oC and 130 oC, respectively.  

As a conclusion from this electrochemical study, DES5(1:1) at 130 oC possessed the 

widest electrochemical window among the studied DESs, which was 3.74 V. 

ZnCl2-DESs with high solubility for NaCl in DESs, high electrical conductivity of 

NaCl in DESs as well as stability of sodium metal in DESs were selected for this 

application. 

Reduction of sodium ion: Na+/Na 

Oxidation of sodium: Na/Na+  
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CHAPTER V 

CONCLUSIONS 

 

The present study investigated the suitability of selected ILs and DESs to serve as 

electrolytes for the production of sodium metal by electrolysis of common sodium salts. 

Sixteen ILs and sixteen DESs at various salt:HBD or metal halide molar ratios were 

utilized in this study, and the results obtained are promising. A number of conclusions 

can be drawn from this study. 

5.1 A Simple and Efficient Method Can be Used for the Synthesis of DESs  

DESs were simply produced by mixing a salt and a HBD or a metal halide. The 

procedure was straight forward and did not require sophisticated equipment. The 

components of the DES were mixed while the mixing vessel was heated, and this 

resulted in the formation of a DES. All the mass of the starting materials were utilized 

in the formation of a DES without a side product, meaning a 100% yield. The purity of 

the resulting DES depended totally on the purity of the mixed components.  

5.2 Different Conditions are Needed for the Synthesis of DESs of Different 

Combinations  

Different ammonium and phosphonium salts were utilized to synthesize the sixteen 

DESs. By combining these salts with different HBDs and metal halides, and by varying 

the molar ratios of these combinations, a large variety of DESs was produced. 

The important parameters that determine the successful synthesis of a DES are the   

mixing time, mixing type and mixing temperature. These parameters are of importance 

for the synthesis of various DESs. 
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5.3 Physical Properties of DESs are Temperature and Component Dependent 

The physical properties, such as electrical conductivity, viscosity and refractive 

index, are temperature-dependent. The variation of the temperature affected the 

measured physical properties either linearly or exponentially. Some of the DESs 

possessed good electrical conductivities, especially the DESs synthesized from ZnCl2 as 

complexing agent. In addition, DESs of ammonium salts and ZnCl2 have low viscosities 

which is very important in industrial applications.  

Additionally, they depended also on the salt of the DES. In general, the DESs 

synthesized from phosphonium-based salts had melting temperatures above 338 K, 

while those synthesized from ammonium-based salts had melting temperatures below 

326 K. The ammonium-based DESs also had lower viscosities than those of the 

phosphonium-based DESs. In certain cases, the viscosities of phosphonium-based DESs 

were 90 folds higher than that of the corresponding ammonium DESs under the same 

conditions. Moreover, the DESs synthesized from ammonium salts showed higher 

electrical conductivities than those made from phosphonium salts.  

5.4 Solubility of Sodium Salts in ILs or DESs Depended on Various 

Parameters 

In most cases, the solubility of sodium salt increased as the temperature increased 

and the salt:HBD or metal halide mole ratios decreased. The chemical structure of the 

DES has a significant effect on the solubility of sodium salts. The solubility of sodium 

salts in DESs that have ethylene glycol or glycerol as HBD, i.e. neutral molecules, was 

very small. On the other hand, the solubility of sodium salts in DESs containing 

ammonium salts and metal halides was very high. This is especially observed for a DES 

synthesized using ZnCl2 as complexing agent. 



155 
 

When ILs were analyzed, it was found that both the anion and the cation of a IL 

affect the solubility of NaCl in the IL. The solubility of NaCl was measured in 16 ILs at 

different temperatures. Similar to solubility in DESs, the solubility of NaCl in ILs was 

found to be directly proportional to the temperature. Imidazolium-based ILs had higher 

NaCl solubilities than pyridinium, pyrrolidinium, and ammonium-based ILs. 

5.5 NRTL Activity Coefficients Model Can be Applied Successfully for the 

Studied Systems 

NRTL model was applied successfully to correlate the solubilities of NaCl in some 

of the tested DESs and ILs. The experimental and predicted values showed very good 

agreement in most cases. This indicates that the NRTL model can be successfully 

applied to correlate the solubility of salts in DES or IL.  

5.6 ZnCl2 –based DESs Had a High Potential for Being Electrolytes for 

Sodium Production  

Sodium metal was stable in ZnCl2-based DESs. The cyclic voltammetry study on 

saturated NaCl solutions in these DES showed a reduction peak through a quasi-

reversible reaction. This peak confirmed the suitability of these DESs to be electrolytes 

for NaCl decomposition. 
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CHAPTER VI 

RECOMMENDATIONS FOR FUTURE WORK 

 

The recommendations for future work are as follows: 

1- DESs of the present work can be applied in electrolysis cell so as to produce sodium 

metal under 130 oC.  

2- Pilot plant-scale experiments can be carried out to assess the applicability of the studied 

systems in the batch process.  

3- The parameters of the process can be optimized to achieve better productivity. Such 

parameters are the temperature of the separation and the salt:HBD mole ratio. 

4- In addition to the production of sodium metal, DESs of the present work can also be 

applied for the production of zinc from zinc halides. 
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