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ABSTRACT 

 

A case study on the feasibility of implementing medium temperature solar 

thermal energy in industrial processes in Malaysia is conducted. The objective is to 

determine if it is technically and economically viable to utilize the solar thermal 

renewable energy at a temperature range of 80-250°C as a substitute to conventional 

means of generating thermal energy. Solar energy is the source of most other renewable 

energies, and Malaysia being situated at the equator makes us geographically favorable 

to harness this free energy. Almost half of the industrial processes use thermal energy 

rather than electrical energy, and the output of a solar thermal system can fit in nicely as 

a contributor to the industries’ energy mix. Literature reviews are conducted on the 

climatology of Malaysia, in particular, the solar irradiance, the technologies involved 

and the various industries in Malaysia are then studied to identify potential candidates to 

utilize this renewable energy. Also, different types of solar collector technologies are 

studied and explored. After that, a particular industry and its industrial process are 

chosen for a case study. A solar thermal system is designed and sized to fulfill needed 

energy requirements for the process. Then, a simulation is performed to determine the 

overall output of the system based on Malaysian meteorological data. Based on the 

results, the contribution of solar thermal energy in supplementing the plant’s energy 

requirement, i.e. solar fraction is determined. A cost and benefit analysis is done on the 

system, taking into account of initial investment and consumption cost for a period of 

10 years, without consideration of maintenance cost. The results are compared with 

other means of generating heat, namely boiler, heat pump, electric heater and solar PV 

powered electric heater. It is determined that solar thermal energy provides the greatest 

saving. However, due to the large fuel oil subsidy by the Government currently, solar 

thermal system is attractive for only low temperature ranges. 
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ABSTRAK 

 

Satu kajian kes mengenai kebolehlaksanaan melaksanakan tenaga terma suria  

suhu sederhana  dalam proses perindustrian di Malaysia telah dijalankan. Objektif 

kajian ini adalah untuk menentukan jika ia berdaya maju dari segi teknikal dan ekonomi 

untuk menggunakan tenaga terma suria yang boleh diperbaharu pada julat suhu daripada 

80-250C sebagai pengganti kepada cara konvensional seperti dandang dan pemanas 

elektrik untuk menjanakan tenaga terma. Tenaga suria merupakan sumber kepada 

kebanyakan tenaga boleh diperbaharui yang lain. Lokasi geografi Malaysia yang 

terletak di khatulistiwa memanfaatkan kita untuk menggunakan tenaga percuma ini. 

Hampir separuh daripada proses industri menggunakan tenaga haba daripada tenaga 

elektrik. Output sistem terma suria boleh digunakan sebagai penyumbang kepada 

sumber  tenaga industri. Kajian literature telah dijalankan ke atas iklim Malaysia, 

khususnya, sinaran suria, tecknologi tenaga haba suria dan pelbagai industri di Malaysia 

akan dikaji untuk mengenal pasti calon-calon yang berpotensi untuk menggunakan 

tenaga boleh diperbaharui ini. Pelbagai jenis teknologi pengumpul suria juga dikaji dan 

diterokai. Selepas itu, industri tertentu dan proses industrinya telah dipilih untuk 

menjalankan kajian kes. Satu sistem terma suria direka bentuk untuk memenuhi 

keperluan tenaga yang diperlukan untuk proses industri tersebut. Kemudian, simulasi 

dilakukan untuk menentukan output keseluruhan sistem berdasarkan data meteorologi 

Malaysia. Berdasarkan keputusan simulasi, sumbangan tenaga terma suria dalam 

memenuhi keperluan tenaga kilang, seperti pecahan suria ditentukan. Satu analisis kos 

dan faedah dilakukan ke atas system ini untuk tempoh 10 tahun menggunakan kos 

system and pemasangan. Keputusan ini telah berbanding dengan cara menjana haba 

yang lain.  Kesimpulannya tenaga haba suria paling jimat. Tetapi kenara subsidi 

kerajaan, ianya jimat hanya untuk suhu rendah.  
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CHAPTER 1:INTRODUCTION 

 

1.1 Background 
 

Solar Thermal is a technology for harnessing solar energy for thermal energy. The 

temperature of the working fluid or carrier fluid classifies the different thermal systems, 

namely High, Medium and Low temperature systems. Low temperature systems are 

where water does not reach the boiling point, being less than 80°C, usually through a 

flat plate collector. Medium temperature systems is in the region of 80°C to 250°C, 

achievable through technologies such as evacuated heat pipes with or without the need 

of concentrators.  Finally, working fluid with temperature more than 250°C are High 

Temperature Systems, where concentrators is necessary to be employed to bring the 

working fluid to such high temperatures. 

With the push for renewable energy, Malaysia being geographically stationed in the 

equator gives overwhelming advantage in receiving high solar irradiation. To leverage 

our advantage, our government through the Economic Transformation Programme has 

identified solar photovoltaic technology to be the predominant method of harnessing the 

energy of the sun. 

However, with Malaysia still as an industrious nation, there are a lot of demand for 

thermal energy, rather than electricity for various manufacturing processes. Citing a 

report from the EU, electricity consists of 33% while the rest of 67% are thermal energy, 

and a substantial portion is located in the Medium temperature systems. In the report, 

there are even breakdowns of the various industries which will benefit much from the 

“free” thermal energy. 

Europe is a country with 4 seasons. Solar irradiation is cyclical and on average lower 

than Malaysia. However, with so much effort from the EU to research on solar thermal, 
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and to find it economically feasible and widely implemented, it brings into mind that 

why not Malaysia also follow suit? 

This research report is motivated by this premise.  

Widely available findings from the around the world is localized to fit the Malaysian 

context and decided upon on implementation feasibility. Theoretical information is 

translated to a customized solution to a particular process for a plant in Malaysia. 

Subsequently, a cost and benefit analysis is performed. 
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CHAPTER 2: RESEARCH OBJECTIVES 

 

2.1 Objective 

 

To identify the potential and feasibility of solar thermal energy application for use in 

industries in Malaysia, through evaluation of:- 

1. Malaysia’s Solar Energy Potential, 

2. Potential of applying in industrial processes, 

3. The technology availability,  

4. Proposed system design, and 

5. Cost and Benefit analysis using 10 year payback period comparing with other 

conventional means of thermal energy generation. 
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CHAPTER 3: LITERATURE REVIEW  

 

3.1 Solar Thermal Energy  
 

Solar thermal energy is an innovative technology for harnessing solar energy for 

thermal energy (heat) and is achieved through use of solar thermal collectors. Solar 

thermal collectors can be classified into three types as low-, medium-, or high-

temperature collectors, depending on the working fluid output temperature achievable 

by the United States Energy Information Administration with Low being below 100°C, 

medium being between 100°C - 400°C and High for beyond 400°C. 

The potential for solar thermal collectors to supplement the energy needs of industrial 

sector, known as Solar Industrial Process Heating (SIPH), is huge, which is detailed in 

the following sections. The formation of Task 33 (Solar Heat for Industrial Processes) 

by the International Energy Agency Solar Heating and Cooling (IEA SHC) Programme 

in 2003 is the demonstration of the seriousness of European countries in the push for 

higher utilization of this technology. Since the completion of the task force in October 

2007, a comprehensive report was prepared which provides a good understanding of the 

technologies involved and the potential for implementation in Europe. 

The report provides the result of studies carried out in two industrial sectors from 

Germany and Greece and overall potential review on Belgium, Australia, Austria, the 

Iberian Peninsula (Spain and Portugal), and Italy. It found that 90 operating solar 

thermal plants for process are reported throughout the world, where the 

total capacity is approximately 25 MWh (35,000 m
2
). The plants distribution by sector 

and country are shown in Figure 3.1 and Figure 3.2. 
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Figure 3.1 Solar industrial process heat plants - distribution by industry sector. Source: IEA SHC Task 33, 

2007 

 

 

Figure 3.2 Solar industrial process heat plants - distribution by country. Source: IEA SHC Task 33, 2007 

 

The analysis of the countries studied shows that solar thermal could provide the 

industrial sector with 3-4% of its heat demand. An extrapolation of the national figures 

to the European level shows that solar thermal could provide 258 PJ/year of thermal 

energy to the EU25 industrial sector or an installed capacity of 100-125 GWth (143-180 

Million m
2
) (IEA SHC, 2007). It has been concluded that there is a relevant, promising, 

suitable and so far almost unexploited market sector for applying solar thermal 

technology. Support from policy makers are needed to promote this untapped resource. 
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In another study, 35 solar thermal companies from around the globe were surveyed and 

the result shows that many large solar thermal energy systems are installed around the 

globe (Meyer, 2009); unlike the limited number reported by the IEA SHC report. There 

are around 9000 in China, 200 in India and 320 in Turkey. Majority of systems installed 

are between 50m
2
 to 500m

2
.  Of the companies surveyed, only three have installed 

systems larger than 500m
2
. Most large scale projects are similar in the fact that most are 

designed and built since 2005 (Fuller, 2010). 

In China, Solar thermal technologies have been rigorously studied in China since the 

1980s (Wang, 2009). In terms of solar water heating for domestic uses, the country has 

an installed capacity of 108 million m
2
 collector area in 2007, consisting of 60% of 

SWHs market globally (Luo, 2008). A breakdown of the market share of SWH collector 

market share in the world is shown in Figure 3.3.  

 

Figure 3.3 Market shares of SWH products in China and EU. Source: Han et. al., 2007. 
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It can be seen that China is the market leader for vacuum tube. This fact is kept in mind 

during sourcing for evacuated heat tube manufacturers. Kulkarni (2008) has various 

models for solar thermal design. However, a more simplistic approach is utilized here, 

to be explained in Chapter 4. 

Globally there are many literatures available on the topic of SIPH. However, there are 

few on this topic in Malaysia. Most of the current studies highlight the potential but 

there are no comparison of dollars and cents to it. This knowledge gap is to be cleared 

in this dissertation.  
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3.2 Thermal Energy Usage in Industrial Processes 

 

A typical industrial energy system can be split into 4 functional parts, as below:- 

1. A power supply as the source of the motive force is needed. It can be derived 

from electricity, gas, oil or biomass. These primary sources of power are then 

converted to desired usable energy form, such as electricity, steam, compressed 

air or hot water to feed into the process.  

2. A production plant, where various industrial process is applied to inputs for a 

desired output products. 

3. An energy recovery system, where its presence is to optimize and further utilize 

the remaining energy present after the power plant or production plant. 

4. A cooling system. Most production process would need to bring down the 

temperature for the final product. Thermodynamically, cooling is required for 

the power plant for a continuous cycle to exist. 

The block diagram shown in Figure 3.4 represents a typical conventional industrial 

energy system, as explained  

 

Figure 3.4 Block diagram of a typical industrial energy system. Source: Schnitzer, 2007. 
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Solar thermal can be applied for the production of power supply in electricity form or 

the heat energy to be applied directly to bring up the temperature of the process. In 

industrial processes, thermal energy is a major source of energy used as for example 

evident from studying a typical Sankey diagram for a dyehouse, shown in Figure 3.5. 

Hot water constitutes almost half of the energy used. 

 

Figure 3.5 A typical energy usage pattern for a dyehouse. Source: Plant Engineers Handbook,  2001. 

A large number of industrial applications utilized heat with temperature 

ranging from 80°C to 240°C (Proctor, 1977 & Kalogirou, 2003). Studies into the 

industrial energy usage pattern demonstrate that solar thermal energy has many usages 

in the medium temperature levels (i.e. 80–240°C) (Kalogirou, 2003). Process heat of 

less than 100°C is required by 13% of industrial thermal applications while 

approximately 27% consists of processes up to 200°C (Goyal, 1999). 

Solar thermal applications in industrial sectors can be classified as below (Mekhilef et al, 

2010): 

1. Hot water or steam demand 

processes 

2. Drying and dehydration 

processes 

3. Preheating 

4. Concentration 

5. Pasteurization, sterilization 

8. Industrial space heating 

9. Textile 

10. Food 

11. Buildings 

12. Chemistry 

13. Plastic 
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6. Washing, cleaning 

7. Chemical reactions 

14. Business establishments  

 

The temperature range of common industrial processes is given by Figure 3.6 

(Kalogirou, 2003). 

 

Figure  3.6 Processes and temperature ranges. Source: Kalogirou, 2003. 

 
As an example of SIPH application in real life, we turn to China, the world’s leader in 

evacuated tube solar collectors. For current industrial usage in China, most are used for 

drying of agricultural products. Solar drying is gaining traction because of the flexibility 

of the drying process allows it to be done at a lower temperature for a longer time, 

which coincidently is beneficial to the quality of the product. For these purposes, more 

than 100 sets of solar dryers are distributed across China (Xiao et. al., 2004). As an 

example of successful applications, in Guangdong Province a 620 m
2
 aperture area 

large-scale solar assisted dryer for sausage drying was built in 2000 (Liu, 2000). The 

system was found to reduce coal consumption by 30%. Another example of industrial 

application can be found in Shangshu Dongfang Yinran Factory. It is a large scale solar-

roof heating system with a total aperture area of 10,000 m
2
 (Zhiqiang Liu et. al., 2011).  
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In Australia, the awareness of SIPH was already present 30 years ago. Through the 

active promotion of the government bodies, at least 16 systems were installed around 

the continent. The systems installed range from 75m
2
 to 3855m

2
, using mostly flat plate 

collectors. However, there are few, if any of those remnants in operation (Fuller, 2010). 

It was believed at that moment that low energy price were the cause of the low 

acceptability of SIPH. At the turn of the century, things changed. Industries for example 

food processing have adopted evacuated tube solar collector offered by Solahart, 

Australian’s biggest solar thermal collector manufacturer (AGO, 2006). Now, the 

largest reported installation is in a hospital in South Australia consisting of 296 solar 

panels. Despite the huge potential (Beath, 2012), the adoption in industrial process 

heating is still few, if any (Fuller, 2010). 

SIPH acceptance by the global market is still lukewarm, although there are vast 

improvements at the turn of the century. Malaysia has recognized the potential of solar 

energy, in the form of a great push by the government for solar energy technology 

implementation through the Economic Transformation Programme, Entry Point Project 

10 (ETP, 2010). However, the focus was on solar generated electricity and solar thermal 

for process heat have not received the attention that it should.  

To get a full appreciation of the solar aspect of SIPH, an overview of harnessing solar 

energy and its potentials is provided in the following sections. 
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3.3 Malaysia Energy Usage Pattern 

 

The energy demand of Malaysia in 2009 is 16,132 MW, compared to 10 years before 

the demand of electricity is just 9690 MW (The Malaysia Economic in Figures, 2010). 

This constitutes a rising in electricity demand from 1999 of about 66.5%.  In the year 

2000, the major user of energy in Malaysia is by the transport sector. However, in the 

year 2009, there is a shift in the trend of energy usage. The prime consumption of total 

energy is the industrial sector at 43%, surpassing the transport sector which stands at 

36%.   A further look in the usage pattern in the industrial sector reveals that the main 

form of energy consumed were generated from gas and electricity. Industrial energy 

consumption has dominated more than 50% of total global energy consumption 

(Mekhilef et al, 2010).  From the statistics provided by Malaysia Energy Information 

Hub, the final energy demand by sector and final electricity consumption by sector for 

the country in the year 2010 is plotted in Figure 3.7 and Figure 3.8. 

 

Figure 3.7 Final Energy Demand by Sector (ktoe), 2010. Source: MEIH, 2012. 
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Figure 3.8 Final Electricity Consumption (ktoe), 2010. Source: MEIH, 2012. 

 

From the figures, the industrial electricity usage is just 3994ktoe out of a total of 

12,928ktoe, making grid electricity supply taking up  just 26.4% of the energy mix.  The 

contribution of non-grid electricity supply is not known from these figures. To estimate 

the energy mix distribution, the published works from the EU on the energy usage 

pattern in industries is referred, shown in Figure 3.9.  

 

Figure  3.9 Final Energy use of the EU-Industry. Source: ESTIF, 2010. 
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Using Figure 3.9 as a guideline, it should be safe to assume that mostly the rest of the 

energy is in the form of thermal energy (74.6%, 8934ktoe, 104TWh) and the non grid 

electrical consumption is still marginal as compared to thermal energy.  

 

In terms of quantitative demand, assuming Goyal’s SIPH distribution, the heat demand 

per annum is as shown in Table 3.1 

Table 3.1 Thermal Energy Demand for Malaysian Industries. 

Temperature 

Range 

% of Total 

Heat Demand 

Malaysia Energy 

Demand (TWh) 

≤100°C 13 13.52 

100- 200°C 27 28.08 

>200°C 60 62.4 

 

Coupled with the strong growth rate shown in Figure 3.10, the potential of solar thermal 

energy in supplementing the industrial energy demand is enormous. 

 

Figure 3.10 Global industrial sector energy consumption trend 2006-2030. Source: Abdelaziz et al, 2011. 
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3.4 Energy Consumption and Renewable Energies 

 
We are all creatures of energy. Energy is our life sustenance. There will be no world as 

we know it without energy. As it stands today, world energy requirements is currently at 

107,000 TWh/annum. It is predicted that global energy requirements will increase 

annually by 1.3 % until 2030. We consume around 13 billion litres of crude oil and 

approximately 14.7 million tonnes of hard coal and brown coal daily on this earth, most 

of this for the generation of electricity and heat, and for motor vehicles, airplanes and 

trains. Burning these fossil fuels causes approximately 25 billion tonnes of the 

greenhouse gas, carbon dioxide (CO2), to be released each year into the earth’s 

atmosphere (Technology Guide, 2009). Renewable energy sources will increase 

disproportionately, particularly wind and solar energy. However, as these currently only 

make up a small proportion of the primary energy supply, fossil energies will continue 

to dominate (Technology Guide, 2009), as shown in Figure 3.11. The environmental 

impact and scarce availability of fossil energy caused a shift for increased renewable 

energy utilization (IEA, 2006). Consumption of fossil fuels causes air and water 

pollution and also global warming. On the other hand, renewable energy can avoid these 

adverse impacts. Renewable energies do have their own negative influence to the 

environment but the magnitudes are much smaller and localized than fossil and nuclear 

energies (Union of Concerned Scientists, 2005). 
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Figure 3.11 Global energy requirements by energy sources. Source: Exxon Mobil 

 

From the International Energy Agency (2002), it is said that “Renewable energy is 

derived from natural processes that are replenished constantly. In its various forms, it 

derives directly from the sun, or from heat generated deep within the earth. Included in 

the definition is electricity and heat generated from solar, wind, ocean, hydropower, 

biomass, geothermal resources, and biofuels and hydrogen derived from renewable 

resources”. The above statement stated two main direct sources of renewable energies, 

which are solar power and geothermal power, while other renewable energies are 

derivatives of them. Not forgetting tidal power is also a main direct source, but its 

contribution in relation to the other 2 main types is much smaller. Derivatives of solar 

energy go through at least one level of energy conversion state, increasing exergy and 

generating entropy in the process. Take for example biomass energy. Plant absorbs the 

solar energy and turns it into biological materials – branches, fruits and leaves. 

Unwanted materials are then collected and acted upon by bacteria, releasing 

combustible gasses. Another example would be fossil fuels. It is a form of energy 
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converted from dead animals or plants compressed in the earth crust over a period more 

than millions of years ago, through anaerobic decomposition. Solar energy is faced with 

the limitation of low exergy in the beginning. However, with the advent of different 

solar collection technologies able to produce high temperature outputs, low exergy is no 

longer an issue and its potential is very great, as demonstrated in the subsequent section.  
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3.5 Solar Energy and its potential 

 

About 1000 PW of energy from the sun is received by earth every year which is 1000 

times enough to cover the global energy demand (Amin, 2009). The sun is made of hot 

gaseous matter in a sphere with a diameter approximately of 1,390,000km, where 

continuous fusion of hydrogen into helium gives the sun an effective blackbody 

temperature of 5762K. Although the distance of the sun is 1.5 x 10
11

 m away from earth, 

its energy reaches our planet in 8 min and 20s. Energy output from the sun is 3.8 x 10
20

 

MW, equivalent to 63 MW/m
2
, radiating in all directions. Earth is only able to intercept 

a tiny fraction of 1.7 x 10
14

 kW, of the total radiation emitted (Kreith and Kreider, 1978).  

However, not all of the suns energy reaches the surface, as shown in Figure 3.12. Some 

of them are deflected and lost. 

 

Figure 3.12 Solar energy distribution. Source: Four Peaks Technologies, 2010. 
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Figure 3.13 Solar radiation and energy requirements. Source: Technology Guide, 2009. 

 

Figure 3.13 shows the power generation of the sun and the potential of solar energy in 

perspective. Assuming a 12% efficiency solar cell used in the Sahara, the big rectangle 

shows the surface area required to fulfill the energy demands throughout the world 

where the large square is approximately 910 km in length, medium size square for 

Europe’s requirement and the smallest square for Germany  (Technology Guide, 2009).  

The electromagnetic radiation emitted by the sun is composed of a wide range of 

wavelengths which can be split into two major regions; ionizing radiation such as 

gamma and X-rays and non-ionizing such as infrared, visible light, and ultraviolet 

radiation. The damaging gamma and X-rays radiation is unable to penetrate the earth's 

atmosphere and can only be experienced in outer space. The solar energy imparted on 

earth consists of 8% ultraviolet, 47% visible light and 45% infrared (Arca, 1990). The 
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non-ionizing radiation is attenuated by our atmosphere before reaching Earth’s surface. 

Through reflection, scattering, and absorption, our atmosphere changes or eliminates 

part of the incident energy by the sun. Almost all ultraviolet radiation and certain 

wavelengths in the infrared region are removed by our atmosphere (Encyclopedia of 

Science & Technology, 2001) 

 

Figure 3.14 Typical Solar Radiation Spectrum. Source: ASTM, 2003. 

 

Figure 3.14 displays the solar radiation spectrum for direct light at both the top of the 

Earth's atmosphere and at sea level. These curves are known as Terrestrial Reference 

Spectra from the American Society for Testing and Materials (ASTM, 2003) and are the 

standard test condition used by the photovoltaic industry. The red field in the figure 

shows the wavelengths that reaches sea level while wavelengths of energy that reach the 

top of the atmosphere is shown by the yellow field. These radiations from the sun is 

filtered and reduced by different gases in specific wavelengths. Gases with specific 

absorption band residing in our atmosphere absorb some of the light. Additional light is 

redistributed by Rayleigh scattering, which gives our atmosphere the blue color sky. 
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Oxygen reduces infrared while our ozone filters out the ultraviolet rays in the shortest 

wavelength, known as UVB (Wikibooks, 2011).  

Solar radiation can also be divided into two components, namely direct or diffuse 

radiation. Direct solar radiation can be concentrated with the optical devices while 

diffuse solar radiations are scattered direct solar radiation, which cannot be concentrated 

by with reflectors or lenses. During cloudy days, diffuse radiation predominates 

(Technology Guide, 2009). The amount of atmospheric absorption and scattering of 

solar radiation is a function of the effective distance (depending on atmospheric 

thickness and content) through which the radiation travels. At the outer atmosphere of 

Earth, the energy received is 1368W/m
2
 and deviates in the region of ±1.7% because of 

the distance changes between the Earth and Sun, as shown in Figure 3.15 (Ahmad, 

2011). 

 

Figure 3.15 Yearly variation of the solar constant. Source: Ahmad, 2011. 

 

The light of the Sun directly overhead at a 90° solar altitude, or zenith, at sea level 

provides an average peak intensity of 1 kW/m
2
. As the Earth circles around the sun, the 
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angle between the Earth-Sun line and Earth’s equatorial plane, known as solar 

declination varies accordingly, which affects the solar radiation coming to Earth. 

Intensity weakens at Sun angles approaching the horizon since the rays have more 

atmospheres to penetrate. Distributions of the solar irradiation depending on 

geographical locations are shown in Figure 3.16. The amount of solar energy incident 

on a horizontal surface at sea level ranges up to 7 kWh/m
2
-day. At latitudes between 

35°N and 35°S, the sites are exposed to around 2000 to 3500h of sunshine each year. At 

higher latitudes the solar energy imparted is less than on sea level (Encyclopedia of 

Science & Technology, 2007) 

 

Figure 3.16 Worldwide direct normal solar irradiation. Source: DLR,  2008. 

 

It can be seen that solar energy is also a relatively “fair” form of renewable energy. 

Most renewable energies are highly geographically dependent. For instances, wind 

energy works well offshore or near shore but weaken abruptly when we move towards 

inland; hydro energy needs rivers and dams at preferably higher level to have good 
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potential energy. While on the other hand, solar energy is best readied near the equator 

but through careful system design, it is available even in winter of seasonal countries. 

On a side note, data collection of solar irradiation is normally done using solarimeters as 

illustrated in Figure 3.17. This device consists of a spherical glass cover under which 

contains thermoelectric elements as sensors. The total incident light energy will produce 

a proportional voltage from the thermoelectric element which is then recorded 

electronically (Everett, 2004). 

 

 

Figure 3.17 A Solarimeter, also refer to as a “Pyranometer” 
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3.6 Malaysia – Solar Energy Perspective 

 

Malaysia is positioned on the South China Sea and lies between 1° and 7° in North 

latitude and 100° and 120° in East longitude (Nugroho, 2010). The total land area is 

approximately 330,000km
2
, of which 60% is made of Sabah and Sarawak and the 

remaining 40% Peninsular Malaysia. Malaysia is situated at the equator, surrounded by 

the sea. This results in a hot, high humidity and a relatively uniform climate all year 

round, typical of a tropical climate. The average daily is 26.5°C and ranges between 

22°C to 33°C throughout the year. Winds are generally light. There are 2 monsoon 

winds seasons in Malaysia. The Southwest Monsoon starts from May to September and 

the Northeast Monsoon is between November and March. The rainfall distribution 

pattern is determined by the monsoon winds and the local topographic features. In 

general, rainfall in Malaysia can be described as copious for the annual rainfall exceeds 

2000mm. Heavy rainfall usually happens between the two monsoons. Rainfall usually 

happens in the afternoon or early evening, as compared to mornings. On average, 

Malaysia experiences more than 170 rainy days (Azhari, et al. 2008) 

Heavy rains are experienced by exposed areas facing directly to the monsoon winds 

such as the east coast of Peninsular Malaysia, Western Sarawak and the northeast coast 

of Sabah. Whereas sheltered areas protected by mountain ranges are relatively 

independent from its influence. Most of the precipitation occurs as thunderstorm, with 

heavy falls in a short period of time. This indicates that western Peninsular Malaysia, 

Eastern Sarawak and Southwest coast of Sabah are better suited for solar energy 

utilization in comparison to the rest. 

It is very unlikely to experience a completely clear sky for a full day or a few days with 

completely no sunshine, with the exception of during the northeast monsoon seasons 

(MMD, 2012). Solar radiation is closely related to the sunshine duration. Substantial 
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amount of sunshine and thus solar radiation is cut off by the ever changing presence of 

cloud. 6 hours of sunshine per day is the average expected in Malaysia (MMD, 2012).   

Due to the constant cloud shading and frequent rainfall, the potential of Malaysia in 

terms of solar energy is not as good as compared to arid desserts but still relatively good, 

as shown by Figure 3.18. 

 

Figure  3.18 Suitability for solar thermal power plants. Source: Schott Ltd. 

 

A distribution of the average solar radiation in Malaysia is shown in Figure 3.19. More 

than 10 years of measured data of direct and diffuse solar radiation exists only for Kuala 

Lumpur and Penang. The data shows that for Penang the amount of direct radiation as 

compared to the global values is normally less than 60% resulting in reduction in 

performance of solar concentrator, limiting the benefits of concentrators. East coast 

experiences a large standard deviation of daily global radiation while the peninsula 

experience more stable daily solar radiation variations (Shafiq, 2010).   



26 

 

Figure 3.19 Annual average solar radiation (MJ/m2/day). Source: Maliman, M.N., 2005. 

 

The average solar energy in Malaysia varies from paper to paper. Mekhilef et al. (2012) 

states that with an average of 12 hours of sunshine daily, the average solar energy 

received is between 1400 and 1900kWh/m
2
 annually. Harris (2008) states that the solar 

insolation average at about 1643kWh/m
2
 per year. Amin et.al (2009) finds that the sun 

hours in a day are more than 10. Yearly average solar radiation in various towns in the 

country is given by Table 3.1. 

Table 3.2 Solar radiation in Malaysia (average value throughout the year). Source: Mekhilef et al., 2012. 
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This works out to the monthly solar radiation in Malaysia to be around 400-600Mj/m
2
 

(Mekhilef, 2012). S.M. Shafie (2011) on the other hand states that Malaysia is exposed 

to an average daily solar radiation of 4500kWh/m
2
 and average daily sunshine duration 

of about 12h, with an ambient temperature of between 27°C and 33°C. Accordingly it 

was justified that the development of solar energy are favourable since the average daily 

solar insolation is 5.5kW/m
2
. A.W.Azhari (2008) states that the range of annual average 

daily solar irradiance is from 4.21kWh/m
2
 to 5.56kWh/m

2
. 6.8kWh/m

2
 is the highest 

estimated solar irradiation to be found in August and November. On the other hand, the 

lowest was estimated to be 0.61kWh/m
2
 in December. These values were estimated 

from MTSAT-1R geostationary satellite images covering Malaysia, utilizing part of a 

system called RADMAP developed by Islam and Exell (1996). The results were 

correlated with data collected from several ground measuring stations in Malaysia and 

are found to be within acceptable limits. The monthly average daily solar irradiation of 

Peninsula Malaysia and Sabah and Sarawak are tabulated in Table 3.2 and plotted in 

Figure 3.20. 

Table 3.3 Monthly average daily solar irradiation of Malaysia. Source: Azhari et. al, 2008. 

Month Min (kWh/m
2
) Max (kWh/m

2
) Average (kWh/m

2
) 

January 4.21 5.56 4.96 

February 4.67 6.62 6.23 

March 4.33 6.51 5.02 

April 2.63 5.11 4.11 

May 3.69 6.84 4.83 

June 2.98 6.71 5.14 

July 4.41 5.86 5.17 

August 2.15 6.81 5.25 

September 3.95 5.53 4.89 

October 4.68 6.43 5.43 

November 4.68 6.43 5.43 

December 0.61 5.34 3.00 
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Figure 3.20 Monthly average daily solar radiation. Source: Azhari et. al, 2008. 

 

A daily and preferably hourly variation of solar radiation is needed to have a better 

estimation of the performance of a solar thermal system. The Malaysian Meteorological 

Services do provide such data for weather stations distributed across Malaysia. 

However, typical performance or long-term average of a system would require many 

years of data, which results in long computational time. To overcome this, the 

simulation can be performed using 1 year of typical weather data (TWD), which 

produces faster results. Employing Finkelstein-Schafer statistics and 19 years of 

meteorological data, I.A.Rahman (2007) has complied a set of typical weather data as 

the test reference year for Subang, Malaysia. The data are shown in Figures 3.21, 3.22, 

3.23 and 3.24. 



29 

 

Figure 3.21 Daily mean dry-bulb temperature for equal weightings test reference years. Source: I.A. Rahman 

et. al, 2006. 

 

Figure 3.22 Daily global solar radiation for equal weightings test reference years. Source: I.A. Rahman et. al, 

2006. 
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Figure 3.23 Daily mean relative humidity for equal weightings test reference years. Source: I.A. Rahman et. al, 

2006. 

 

Figure 3.24 Daily mean wind speed for equal weightings test reference years. Source: I.A. Rahman et. al, 2006. 
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3.7 Solar Thermal Collectors 

 

To begin the introduction to solar collectors, it is helpful to keep the following terms 

and explanation shown in Table 3.3 in mind to ease in the comprehension of the subject 

matter. 

Table 3.4 Commonly used terms and definition for solar collectors. 

Terms Description 

Irradiation /Insolation, G Radiation flux incident on a surface from all directions. 

Direct Irradiance Sunshine directly coming from the sun, without being 

blocked by clouds. 

Diffuse Irradiance Scattered light that appears to come from the whole sky and 

cannot be concentrated by lenses or reflectors. 

Black body A perfect emitter and absorber of radiation. 

Emissivity The ratio of the radiation emitted by the surface at a given 

temperature as compared to a same temperature blackbody. 
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Terms Description 

Aperture Area,  

Absorber Area,  

Gross Area 

 

 

Total  area available for the absorption of solar radiation 

Actual area of black absorber, which is exposed to the sun. 

Total size of the collector array 

 

 
Figure 3. 25 Area definitions of a solar collector. 

Incident Angle The angle between the line normal to the irradiated surface 

(OP’) and the earth-sun line QQ. This incident angle affects 

the intensity of the direct component of solar radiation 

striking the surface and the surface’s ability to absorb, 

transmit or reflect the sun’s rays (ASHRAE Chapter 33, 

2007) 

 

Figure 3.26 Solar Angles with Respect to a Tilted Surface. Source: 

ASHRAE, 2007. 

Absorber Area 

Aperture Area 

Gross Area 
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Terms Description 

IAM (Incidence Angle 

Modifier) 

Output performance variance of a solar collector as the 

angle between the collector and of the sun changes. 

Solar Fraction (%) Measures the percentage of energy consumption being 

fulfilled by solar renewable energy. 

 

A solar thermal collector is a solar device used to absorb sunlight, be it direct or diffuse 

solar radiance and transform it into useful heat. When the Sun’s shortwave radiation 

impinges upon a blackened surface, much of the incoming radiant energy can be 

absorbed and converted into heat. The temperature that results is determined by: the 

intensity of the solar irradiance; the ability of the surface to absorb the incident radiation; 

and the rate at which the resulting heat is removed (McGraw Hill Encyclopedia of 

Science and Technology, 2007).  The various dynamics present in a solar collector is 

shown in Figure 3.27. 

 

Figure 3.27 Processes at a solar collector. Source: Renewable Energy World, 2004. 
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The energy inputs are denoted by the yellow arrows, namely direct irradiance and 

diffuse irradiance; the useful thermal energy is denoted by the green arrow while the 

various losses by the red arrow, namely reflection, convection, conduction and radiation 

losses.The fraction of irradiation absorbed by the surface is called the absorptivity α, the 

fraction reflected by the surface is called the reflectivity ρ, and the fraction transmitted 

is called the transmissivity τ (Cengel, 2004) That is, 

Absorptivity:    
                  

                  
 

    

 
 (3.1) 

Reflectivity:    
                   

                  
 

    

 
 (3.2) 

Absorptivity:    
                     

                  
 

   

 
 (3.3) 

 

Where G is the radiation energy incident on the surface, and     ,      and     are the 

absorbed, reflected and transmitted portion of it, respectively. From the 1
st
 Law of 

thermodynamics, 

                (3.4) 

And 

          (3.5) 

For opaque surfaces, τ=0 and thus 

       (3.6) 

The selective coating on the evacuated tubes possesses a high absorptivity up to 94%. 

Combined with the low emissivity and good insulation, it is very efficient in harnessing 

the energy of the sun. This is the reason why all solar collectors are opaque and black.  
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The efficiency and temperature obtained of a solar thermal system are determined by 

the following factors: 

1. Intensity of solar radiation 

2. Location and orientation of the collectors 

3. Aperture area of solar collectors 

4. Efficiency of the solar collectors 

5. Type of system to which it is connected (size of water heater etc) 

6. Rate at which heat is removed, either for useful work or as losses. 

To suit the various requirement of the industry, a myriad of systems or type of 

collectors are devised to cater for different needs, as shown in Table 3.4. The major 

differences in the systems are the means used to concentrate the solar rays to achieve 

higher solar irradiation per unit area.  

Table 3.5 Types of solar energy collectors. Source: Kalogirou, 2003. 

Motion Collector type 
Absorber 

type 

Concentration 

ratio 

Indicative 

temperature 

range (ºC) 

Stationary 

Flat plate collector 

(FPC) 
Flat 1 30 – 80 

Evacuated tube 

collector (ETC) 
Flat 1 50 – 200 

Compound 

parabolic collector 

(CPC) 

Tubular 

1 – 5 60 – 240 

5 – 15 60 – 300 

Single-

axis 

tracking 

Linear Fresnel 

reflector (LFR) 
Tubular 10 – 40 60 – 250 

Parabolic trough 

collector (PTC) 
Tubular 15 – 45 60 – 300 

Cylindrical trough 

collector (CTC) 
Tubular 10 – 50 60 – 300 

Two-axes 

tracking 

Parabolic dish 

reflector (PDR) 
Point 100 – 1000 100 – 500 

Heliostat field 

collector (HFC) 
Point 150 – 2000 150 – 2000 
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3.8 Solar Evacuated Tubes Collector 

 

Evacuated tubes collector refers to the housing and the method it uses to minimize 

radiation loss.  A cross section of the tube and optical processes is shown in Figure 3.28. 

 

Figure 3.28 Optical processes for evacuated tube. Source: advthermalsolar.com, 2012 

The vacuum inside each tube gives good insulation for conductive and convective heat 

transfer and therefore limits the losses of the system from outside influences, such as 

low temperature, high wind or high humidity. The most popular type are the Sydney 

tube, or commonly known as “thermos flask tube”, shown in Figure 3.29. 

 

Figure 3.29 Sydney Tube. Source: B&ES, 2012 
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Each tube is normally made from borosilicate glass and consists of one glass tube inside 

of another glass tube, fused at the top. The free air in the space between the two tubes 

evacuated giving a Thermos flask similar vacuum-tube jacket. The transparent outer 

tube houses while the inner tube which is coated with a selective coating optimized to 

absorb the solar radiation and turns it into heat (REIA, 2007). The absorbed heat is 

transferred by an aluminium fin to a central piping, where the working fluid flows 

through. The working fluid carries the thermal energy and converges into a manifold on 

the top of the solar collector.  

Often a CPC reflector is placed under the tube to utilize the absorber area not facing 

directly to the sun and to capture the sunlight which was passed between each collector 

tube. If damaged, each tube can be removed individually for easy replacement. There 

are 2 major competing technologies in transporting out the absorbed thermal energy 

from evacuated tubes, namely heat pipe or U-pipe (IEA SHC, 2008). 

  



38 

3.8.1 Evacuated Heat Pipe Collectors 

 

A heat pipe consists of a hollow pipe with a low pressure inside. The low pressure is to 

lower the temperature required to alter the state of the liquid into gaseous state. Purified 

water in a small amount with some additives is sealed inside the tube. The water 

vapourizes when the heat pipe is heated above an adjustable temperature, rising to the 

top of the heat pipe. The top of the heat pipe is also known as a condenser and possesses 

a much larger diameter than the providing for a larger surface over which heat can be 

transferred to the working fluid. The vapour transfers its thermal energy to the working 

fluid and condenses back to its liquid form, which flows back to the bottom of the heat 

pipe. The process repeats in a loop. To ensure circulation, a heat pipe collector has to be 

tilted at a minimum angle of operation, typically about 20°. The quality and quantity of 

the fluid residing in a heat pipe is very crucial.  Water scale and tube exposition will not 

happen as no water flows in the evacuated tube (IEA SHC, 2008).  A schematic is 

shown in Figure 3.30. 

 

Figure 3.30 Heat pipe evacuated tube collector. Source: B&ES, 2012 
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3.8.2 Evacuated U-pipe Collectors 

 

A U pipe collector differs in its mechanism in transporting useful thermal energy out. It 

is comprised of a manifold and many vacuum tubes each containing one U-shaped 

copper pipe. Aluminium fins transfer the heat absorbed to the copper pipes and working 

fluid are pumped through it to obtain hot water. A pictorial representation is shown in 

Figure 3.31 and Figure 3.32. 

 

Figure 3.31 Picture of an U-pipe cross section 

 

Figure 3.32 A U-pipe solar collector 
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3.9 Medium Temperature Solar Thermal System 

 

A typical solar thermal system shall consist of an array of collector, a heat transfer 

circuit which includes the heat exchanger, the pump and circulation fluid and lastly a 

storage system, usually a tank filled with liquid and a heat exchanger, as shown in 

Figure 3.33. 

 

Figure 3.33 Basic components in a solar thermal system. 

 

It is clear that this is a very simple system. The simplicity involved is an advantage of 

this kind of system.  
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The integration of solar collectors to an industrial thermal powered system can be as a 

pre-heater for make-up water in boiler operations, directly for a process, or to generate 

steam by itself, as shown in Figure 3.34. 

 

Figure 3.34 Integration of solar collectors to an industrial thermal powered system. Source: Kalogirou, 2003. 

 

It is important before the deployment of the solar thermal system to take note of the 

following criteria before deployment, namely orientation, angle of inclination and 

shading. These are parameters that would affect the output of the collector. Orientation 

and angle of inclination is related to the collector’s angle to the moving sun, which 

should be optimized to achieve the highest output year round. Shading is to avoid any 

shadows casting on the collectors at any time of the year. This is to ensure maximum 

output and to avoid any thermal stress imbalance.    
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CHAPTER 4: METHODOLOGY 

4.1. Overview 

The methodology used to conduct this study is shown in Figure 4.1. 

 

   

Process 

Requirements 

Evaluate diff 

solar thermal 

technologies 

Choose 

Technology 

Malaysia 

Meteorological 

data 

Evaluate 

Concentrators 

Size Collectors 

System 

efficiency & 

Solar Fraction 

Current 

Plant 

Energy 

Usage 

Cost & 

Benefit 

Analysis 

Decide 

Feasibility 

  Figure 4. 1 Methodology flow chart. 
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The study is initiated by a choosing a process relevant to most industrial processes, such 

as boiler feed water pre-heater or high pressure wash down system. Using the 

Malaysian meteorological data, different solar thermal technologies are evaluated and 

decided on one. Then, the system is sized based on the collectors that are available in 

the market. A simulation is carried out on the system output using Malaysia typical 

weather year data with the solar fraction as the final output. Various case scenarios are 

then carried out to study the sensitivity and reaction of the system .This solar thermal 

system is then compared with other means of generating thermal energy and a cost & 

benefit analysis done.  

The various calculations involved are explained subsequently. 
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4.2. Theory and Calculations 

 

Different theoretical evaluation of the long-term performance is studied (Oliveira, 2007). 

A more simplistic approach is selected as to be explained subsequently. The calculation 

of the system performance is divided into 4 parts: 

a) Solar collector performance and output 

b) Heat Exchanger output 

c) Design and Sizing for Open loop Direct System 

d) Design and Sizing for Closed Loop Drain Back System 

4.3. Solar Collector Performance 

 

A cross section of an evacuated tube and its associated parts is shown below in Figure 

4.2. 

 

 

 

Figure 4. 2 Evacuated tube cross section   
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An evacuated tube can be modeled as in Figure 4.3. 

 

Figure 4. 3 Relevant heat transfer processes for an evacuated tube collector. Source: Incropera, 2007. 

The relevant heat transfer processes are as follows (Incropera, 2007): 

qs Incident solar radiation including contribution due to reflection off panel 

(most is transmitted), 

qconv,o Convection heat transfer from outer surface to ambient air, 

qrad,o-sur Net rate of radiation heat exchange between outer surface of outer tube and 

the  surroundings, including the panel, 

qs,t Solar radiation transmitted through outer tube and incident on inner tube 

(most is absorbed), 

qrad,i-o Net rate of radiation heat exchange between outer surface of inner tube and 

inner surface of outer tube, and 

qconv,i Convection heat transfer to working fluid. 

 

There is also conduction heat transfer through the inner and outer tube walls. If the 

walls are thin, the temperature drop across the walls will be small. Also, since the 

thermal conductivity of copper and aluminium fin is very much better than the working 

fluid and through the evacuated tube, both of the thermal resistance is ignored. 
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It can be seen that is not a simple equation to solve, especially when radiative heat 

transfer is involved. Recognizing the difficulty in achieving an exact solution to the 

above heat transfer processes, an experimental method is employed, as the equation 

shown below. 

        

       

  
   

       
 

  
 

(3.7) 

 

Where, 

Symbol  Description Unit 

   = Solar Collector Efficiency % 

   = 

Optical efficiency of the collector. It measures 

the ability of the collector is at absorbing 

sunshine. 

% 

   = 

Liner loss co-efficient. It is a measure of how 

much heat is lost mainly by conduction as the 

collector temperature rises relative to ambient 

temperature. 

 
     

   = 

Quadratic loss co-efficient. It is a measure of 

how much heat is lost mainly by convection and 

radiation as the collector temperature rises 

relative to ambient temperature. 

 
      

   = Mean temperature of the collector °C 

   = Surrounding ambient temperature °C 
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The coefficient a1 and a2 is determined by experiment and is unique to each type of 

collector. Tm is the arithmetic mean of the inlet and outlet temperature. This 

approximation yields reasonably accurate results (O'Keefe, 1985). 

 

Applying Newton’s Law of cooling, the required mass flow rate to maintain the 

temperature difference would be  

   
     

            

             
 

(3.8) 
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4.4. Heat Exchanger 

 

For the performance calculation, the number of transfer units, NTU and heat capacity 

ratio, Cr value will need to be computed and subsequently the heat exchanger 

effectiveness, ε is then determined, either from the equation below 

     
 
 
  

                          
 

(3.9) 

 

or from the chart in Figure 4.4 for single pass, cross flow flat plate heat exchanger with 

both fluid unmixed. 

 

 
 
Figure 4. 4 Effectiveness of a single-pass, cross-flow heat exchanger with both fluids unmixed. Source: 

Incropera, 2007. 
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Determination of NTU is given by 

    
     

    
 (3.10) 

Where Uh is the Overall Heat Transfer Co-efficient, Cmin is equal to Cc or Ch, whichever 

is smaller. Cc and Ch are the cold and hot fluid heat capacity rates, respectively, given 

by the formulation: 

                       (3.11) 

Also, 

   
    

    
 (3.12) 

With the obtained effectiveness, ε, the heat transfer rate is given by 

                            (3.13) 

The heat transfer rate of the heat exchanger will be the determining factor in sizing the 

temperature of collector input and output.  
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4.5. Design and Sizing for Open loop Direct System 

 

A fixed ΔT condition is imposed on the system, which is 75°C outlet temperature of the 

solar collector and 27°C as the water inlet temperature to the collector. It is sized to  

provide 100% solar fraction for the sunniest day in Malaysia. It is designed without 

taking into consideration of any heat storage facility and the transient behavior of the 

system due to changes in solar insolation. With these constraints, the panels required are 

determined. 

With the designed arrangement, the Malaysia typical weather data is used to calculate 

the solar fraction in a year. This is achieved by first computing the mass flow rate 

required to maintain the desired differential temperature in the inlet and outlet of the 

collector, followed by the power output of the system. 

 

Figure 4. 5 Schematics for Open Loop Direct System 

Fixed, 25°C 

Fixed, 70°C 

Mass flow rate varies 
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4.6. Design and Sizing for Closed Loop Drain Back System 

 

This system is complicated by the presence of the heat exchanger, which is dealt with 

accordingly. 

First, a fixed ΔT condition is imposed on the cold side of the heat exchanger, which is 

25°C as the water inlet temperature to the heat exchanger and 70°C for the Cold side 

outlet temperature. The process requirement of 470kW is used to determine the mass 

flow rate required on the cold side, which uses water as the process fluid. 

The design criteria is set that on the sunniest day, the mass flow rate of the collector 

loop, which is on the heat exchanger hot side needs to be equal to the cold side mass 

flow rate. This would give a heat capacity of unity to the system. Subsequently, the cold 

side heat capacity is determined followed by the heat exchanger NTU. Using these 2 

values, the effectiveness of the heat exchanger is computed.  

The hot side heat exchanger input and output temperature is calculated using the 

knowledge of the effectiveness and process requirement. Assuming no heat loss, these 

temperatures will correspondingly be the solar collector in and out temperatures. The 

solar collector efficiency for the said input and output temperatures are determined and 

the number of panels required sized. 

For the performance calculation of the system, the overall heat transfer coefficient of the 

heat exchanger will change during changes in the mass flow rate or if different working 

fluids are used. However, Data on thermal performance are not readily available 

because of the proprietary nature of the machines (Plant Design Handbook, 2001). 

Consequently, during these calculations, the overall heat transfer coefficient is assumed 

to be constant. The bottleneck in the system is set on the ability of the collector to 

produce the required output, rather than the heat exchanger capacity to transfer the 



52 

required power output. The heat exchanger performance is assumed to be able to handle 

the system requirements, regardless of the flow rate.  

 

Figure 4. 6 Schematic of closed loop drainback system and temperature profile of heat exchanger. 
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4.7. Software Assisted Analysis 

 

To calculate the overall solar fraction in a year, and its hourly variation, spreadsheet 

software is needed. Microsoft Excel is selected for its built-in library of functions and 

the ease of programming through the use of macro. The input, calculations involved and 

output are shown in Figure 4.7. 

 

 

The steps in obtaining the overall year result for an open loop direct system is as 

follows:- 

1. Input process requirements and fluid properties. 

2. Input evacuated tube collector data. 

3. Input 365 days Malaysian typical meteorological year data on solar insolation. 

4. Input collector input and output temperature 

5. Convert the daily average insolation into hourly insolation following a normal 

distribution. 

6. From the hourly solar insolation, choose the highest value as the basis for 

system sizing. 

Input 
Calculations 

Heat exchanger required 

temp. 

Solar collector efficiency 

 Output 

Collector data 

Meteorological data 

Process fluid 

requirements 

Heat exchanger data 

 

 

kWh output 

Solar Fraction 

Figure 4. 7 Excel block diagram. 
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7. Calculate the efficiency of the collector panel at that hour. 

8. Determine the mass flow rate of working fluid through the panel. 

9. Calculate the number of panels required to produce 100% solar fraction for that 

hour. 

10. Using the number of panels obtained, calculate the output from the panels on 

each and every hour. 

11. Get monthly average solar fraction. 

For a closed loop drain back system, the only difference is the existence of a heat 

exchanger, which raises the solar collector input and output temperature in order to 

maintain the process fluid requirements. The calculation steps are the same as previous 

with an additional step to first determine the raised temperature required. The 

prerequisite steps are:- 

1. Input heat exchanger active area, overall heat exchanger efficiency. 

2. Input working fluid heat capacity. 

3. Calculate solar collector input and output temperature. 
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CHAPTER 5: PROJECT BACKGROUND AND SIZING 

DESCRIPTION 

 

To study the applicability of medium solar thermal technology, a particular process in 

the industry is chosen. Since most plants would have long operating hours and a 

preferred production flow, it is unrealistic to depend solely on solar insolation for a 

particular process’s thermal energy needs. It is a requirement that energy is supplied on 

demand. To overcome this, a solar thermal system would need to be supplemented by 

another system, such as electrical heater, heat pumps or boilers. 

Subang is the location with the most meteorological data availability as it is where our 

nation’s first airport is situated. Incidentally, there are a few industrial estates in Subang. 

For these reasons, the factory chosen is situated within Subang area.  

One process which is mostly used in all industries is high pressure wash down systems. 

This system is used for cleaning purposes. The system requirements are listed in Table 

5.1. 

Table 5.1 Solar thermal system requirements. 

Criteria Value Unit 

Power 470 kW 

Fluid Out temperature 80 °C 

Fluid In Temperature 25 °C 

Fluid used Water -  

Fluid heat capacity 4.18 kW/m
2
.K 

Required flow rate 2.044 kg/s 
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5.1 Solar Collector Selection 
 

As the collector heats up, more heat is loss to the surrounding. The main mechanism are 

Conduction loss at the front, side and back of the panel, Convective losses at the front 

of the panel and most importantly radiative loss at the front of the panel., described by 

the equation below, repeated for convenience:- 

        

       

  
   

       
 

  
 

(3.7) 

Where, 

Parameter  Description Unit 

   = Solar Collector Efficiency % 

   = Optical efficiency of the collector. It is a measure 

of how good the collector is at absorbing solar 

energy. 

% 

   = Liner loss co-efficient. It is a measure of how 

much heat is lost mainly by conduction as the 

collector temperature rises relative to ambient 

temperature. 

 
      

   = Quadratic loss co-efficient. It is a measure of 

how much heat is lost mainly by convection and 

radiation as the collector temperature rises 

relative to ambient temperature. 

 
       

   = Mean temperature of the collector, 

(Toutlet+Tinlet)/2 

°C 

   = Surrounding ambient temperature °C 
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The equation above would yield an efficiency graph as in Figure 5.1. 

  

Figure 5.1 Efficiency of solar collector as the collector temperature rises. Source: Renewable Energy World, 

2004.  

Generally, flat plate collector has a lower linear loss coefficient but higher quadratic 

loss co-efficient as compared to an evacuated tube collector. This would result in a 

higher heat loss when the difference in collector and ambient temperature is higher, as 

shown in Figure 5.2 

Figure 5.2 Comparison of flat plate and evacuated tube collector. 
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Due to our intention of utilizing the solar thermal energy for industrial usage, which is 

in the medium temperature region, and the simplicity of a stationary collector, the 

evacuated tube collector is chosen for this study since it yields a higher efficiency. This 

would be 

 the reason why evacuated tubes are more popular, as show in Figure 5.3 of the market 

share of various solar collectors. 

 

 

Figure 5.3 Distribution of the total installed capacity in operation by collector type in 2009. Weiss and 

Mauthner, 2011. 

In general, the two collectors have nearly identical efficiency ratings and the 

differentiating advantages of U-pipes are:  

• Lower price                                                                    

• Installation versatility – there are no requirements on inclination of the panels. 

• Smaller size for easier placement in tight locations. 
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A comparison of the two technologies was undertaken by SuMaxx, as shown in Table 

5.2. 

Test Models:  SunMaxx-30 Heat Pipe, and SunMaxx-30U-Pipe 

Testing Report:  Solar Keymark Certification Testing 

Table 5.2 Comparison of heat pipe and u-pipe evacuated tube collectors. Source: SuMaxx, 2008. 

Model SunMaxx-30U SunMaxx-30 

Collector Type U-Pipe Heat Pipe 

Aperture Area 2.67 m
2
 (28.74 ft

2
) 2.79 m

2
 (30.03 ft

2
) 

Conversion Factor 

(efficiency   ) 
0.650 0.734 

Heat Transfer Coefficient 

(a1) 
1.585 W/(m

2
K) 1.529 W/(m

2
K) 

Temperature Dependent 

Heat Transfer Coefficient 

(a2) 

0.002 W/(m
2
K

2
) 0.012 W/(m

2
K

2
) 

   Typical Power Output/Collector 

Tm – Ta (K) @ 400 

W/m
2
 

@ 700 

W/m
2
 

@ 1000 

W/m
2
 

 

@ 400 

W/m
2
 

@ 700 

W/m
2
 

@ 1000 

W/m
2
 

 

10 649 1172 1693 
 

772 1387 2001 
 

30 562 1083 1510 
 

650 1264 1879 
 

50 469 990 1510 
 

490 1105 1719 
 

   Power Output (BTU/h/m
2
 – 

Aperture Area) based on 

1000W/m
2
 Irradiance 

2163 BTU/h/m
2
 of Aperture 

Area 

201 BTU/h/ft
2
 of Aperture 

Area 

2446 BTU/h/m
2
 of Aperture 

Area 

227 BTU/h/ft
2
 of Aperture 

Area 

Total BTU/h 5923 BTU/h 6824 BTU/h 

BTU/h/$ Invested (Value of 

Collector) 
BTU/h/$ 4.76 BTU/h/$ 3.90 

 

The result shows that the conversion efficiency of Heat Pipe technology is better than 

U-Pipe. However, in pure dollar value – BTU/h/$ invested –U-Pipe Solar Evacuated 
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Tube Solar Collectors is more cost effective because of their lower price and 

comparable performance rating.  

Also, compared to the flat solar panel, solar tube is designed to collect the energy from 

the daylight at all angles, as illustrated in Figure 5.4. The rays are all absorbed 

perpendicularly to the tube.  Therefore, solar tube collector is more efficient in 

absorbing solar energy. 

 

Figure 5.4 Solar ray angle. Source: Himin Ltd., 2012 
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Due to the simplicity and the proven nature of the technology used in a U-pipe solar 

collector, it is chosen for further study for the higher possibility of implementation in 

the industrial world. 

From the market, a solar collector vendor is chosen, which is Himin Ltd from China. 

The solar collector used has the parameters listed in Table 5.3. The parameters are 

tested by German Fraunhofer research institute and are obtained directly from the 

manufacturer. 

Table 5.3 Himin Solar Collector HUJ16/1.8 

Paramater Value Unit 

D_tube 58 mm 

D_Copper 8 mm 

U-pipe thickness 0.5 mm 

Length 1800 mm 

Collector Joint 15 mm 

Outline Dimension 1978x1636x134 mm x mm x mm 

No of tubes 16  - 

Weight 61.65 kg 

Rated working pressure 0.6 MPa 

a1 2.103 W/(m
2
K) 

a2 0.0107 W/(m
2
K

2
) 

n_0 0.779  - 

Aperture Area 1.51 m
2 

Gross Area 3.24 m
2
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Figure 5.5 Himin u-pipe collector. Source: Himin Ltd, 2012. 
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5.2 System Description 

 

The philosophy of design is that this system is meant to be a secondary system. Its 

function is to supplement a primary system, which is able to supply the full heat load 

requirement by itself. It is the intent to avoid thermal overload in the system. As such, 

the solar thermal system is sized such that the solar fraction will be 1 for the sunniest 

day. Two systems are evaluated, namely the Open-Loop Direct and Closed Loop Drain 

Back system. 

 

5.3 Open-Loop Direct Systems 
 

This is the simplest of the active systems. The transfer fluid acts also as the intended 

working fluid for a process and is passed through the collector, gaining heat energy in 

the process. A solar storage tank acts as an expansion tank and is the reservoir of the 

heated fluid. The heated fluid is then passed to a secondary heater where if the 

temperature is insufficient, it will be heated by other means such as boiler or electrical 

heater. An air vent is required at the high point of the solar thermal collector for initial 

air purging. A pump is used to circulate the working fluid and can be thermostatically 

controlled to give a variable flow rate to maintain the output temperature.   
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Figure 5.6 Open-Loop Direct Systems. Source: Homepower.com, 2012. 

 

5.4 Closed-Loop Drainback Systems 
 

The closed-loop drainback system is attractive because of the least amount of routine 

service required of any active system. The heat-transfer working fluid is circulated in a 

closed loop, making no direct contact with the outer environment and thus eliminating 

the risk of contamination. When the system is not in use, either because of over capacity 

or maintenance, the solar collector is emptied of the working fluid which is stored in a 

reservoir tank. 
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The operation of the system is when the pump is running; the working fluid is pumped 

from the reservoir to the collector and then the heat exchanger, transferring heat energy 

to the process fluid in the solar tank. If the pump is off, the working fluid will drain 

back by gravity to the reservoir. As such, there must be a continuous slope in the piping 

for efficient draining and the collector must therefore always be situated above the 

storage tank. Drainback systems are able to avoid overcapacity and freezing and are 

effective and reliable. They can operate twenty years without servicing typically. 

 

Figure 5.7 Closed loop drain back systems. Source: Homepower.com, 2012. 
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A plate type heat exchanger is used in the simulation and have the specifications as 

shown in Table 5.4. The Overall Heat Transfer Co-efficient obtained for the rated heat 

transfer rate is assumed to be constant for the whole range of different mass flow rate of 

fluid across the heat exchanger. 

Table 5.4 Heat exchanger parameters. 

Paramater Value Unit 

Type Plate - 

Channels x Pass  

(Hot & Cold) 
25 x 1 

- 

Total Active Area, Ah 19.11 m
2 

Overall Heat Transfer 

Coefficient, Uh 

3000 
W/(m

2
K) 

Heat Exchanger Rate 470 kW 

Net Weight 584 kg 

 

 

Figure 5.8 Plate type heat exchanger. Source: Tranter PHE, Inc. 
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CHAPTER 6: RESULTS & DISCUSSIONS 

The requirement and component properties used for the simulations are repeated here 

for reader convenience purposes. 

Table 6. 1 Solar thermal system requirements 

Criteria Value Unit 

Power 470 kW 

Fluid Out temperature 80 C 

Fluid In Temperature 25 C 

Fluid used Water -  

Fluid heat capacity 4.18 kW/m
2
.K 

Required flow rate 2.044 kg/s 

 

Table 6. 2  Himin Solar Collector HUJ16/1.8 

Paramater Value Unit 

D_tube 58 mm 

D_Copper 8 mm 

U-pipe thickness 0.5 mm 

Length 1800 mm 

Collector Joint 15 mm 

Outline Dimension 1978x1636x134 mm x mm x mm 

No of tubes 16  - 

Weight 61.65 kg 

Rated working pressure 0.6 MPa 

a1 2.103 W/(m
2
K) 

a2 0.0107 W/(m
2
K

2
) 

n_0 0.779  - 

Aperture Area 1.51 m
2 

Gross Area 3.24 m
2
 

 

Table 6. 3  Heat exchanger parameters. 

Paramater Value Unit 

Type Plate - 

Channels x Pass (Hot 

& Cold) 25 x 1 

- 

Total Active Area, Ah 19.11 m
2 

Overall Heat Transfer 

Coefficient, Uh 3000 

W/(m
2
K) 

Heat Exchanger Rate 470 kW 

Net Weight 584 Kg 
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6.1 Open Loop Direct System 
 

The open loop direct system is sized with parameters shown in Table 6.4 below:- 

Table 6. 4 Sizing parameters for open loop system. 

Paramater Value Unit 

Max solar insolation 1304.1 W/m2 

Collector input temperature 25 °C 

Collector output temperature 80 °C 

Panels required 323  

Each panel efficiency at max 

solar insolation 

73.86 % 

 

With the application of Malaysia Typical Weather Year data, the resulting output and 

solar fraction is shown in Figure 6.1 and Table 6.5. 

Table 6. 5 Open loop direct system solar fraction of system for a typical year (80°C) 

Month 
Min 

(kWh/m
2
) 

Max 

(kWh/m
2
) 

Average 

(kWh/m
2
) 

Average 

kW Output 

Solar 

Fraction, % 

January 4.21 5.56 4.96 134,117 28.54 

February 4.67 6.62 6.23 152,868 32.53 

March 4.33 6.51 5.02 174,584 37.15 

April 2.63 5.11 4.11 152,262 32.40 

May 3.69 6.84 4.83 141,180 30.04 

June 2.98 6.71 5.14 137,755 29.31 

July 4.41 5.86 5.17 139,457 29.67 

August 2.15 6.81 5.25 134,493 28.62 

September 3.95 5.53 4.89 127,682 27.17 

October 4.68 6.43 5.43 133,376 28.38 

November 4.68 6.43 5.43 121,804 25.92 

December 0.61 5.34 3.00 115,809 24.64 
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Figure 6. 1 Open Loop Direct System Solar fraction and average insolation (80°C) 

This first attempt from the outset would give a false impression that the solar thermal 

system is unable to provide a good enough solar fraction, of just 37.97% maximum. 

However, this is due to our sizing intention of no overloading at any day in a year. 

Instead, we should look at how the variation in solar fraction behaves in a year, rather 

than the total contribution it has to the system. The variation in this case is 12.46% 

using 323 panels. If 960 panels are used, the maximum solar fraction would be 114.28% 

and gives a variation of 37.5%. Despite the multitude of equation used, the result is just 

a direct scaling of the original 323 panels. This also demonstrates that it is unrealistic to 

rely on solar alone as the provider of process heat, due to the huge variation in output, 

unless clever ways of solar storage is designed. 

 

Since it is the intent that the solar thermal system is used as a fuel saver, it should be 

sized with no wastage at anytime. If the design is to maximize solar fraction, during 

periods of over capacity, the excess thermal energy will have to be discarded, which can 

be seen as a waste. Due to this, the original design philosophy of no overload in any one 

day is retained.  
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6.2 Closed Loop Drainback System 
 

The closed loop drainback system is sized with parameters shown in Table 6.6 below:- 

Table 6. 6 Sizing parameters for open loop system. 

Paramater Value Unit 

Process Flow Output & Input 

Temperature 

25 & 80 °C 

Max solar insolation 1304.1 W/m
2
 

Collector input temperature 40.76 °C 

Collector output temperature 95.76 °C 

Panels required 338 - 

Each panel efficiency at max 

solar insolation 

70.53% % 

 

With the application of Malaysia Typical Weather Year data, the resulting output and 

solar fraction is shown in Figure 6.2 and Table 6.7. 

Table 6. 7 Closed Loop System Solar Fraction of system for a typical year (80°C) 

Month 
Min 

(kWh/m
2
) 

Max 

(kWh/m
2
) 

Average 

(kWh/m
2
) 

Average 

kW Output 

Solar 

Fraction, % 

January 4.21 5.56 4.96  122,180 26.00 

February 4.67 6.62 6.23 141,175 30.04 

March 4.33 6.51 5.02 163,301  34.74 

April 2.63 5.11 4.11 140,582  29.91 

May 3.69 6.84 4.83 129,418  27.54 

June 2.98 6.71 5.14 125,836  26.77 

July 4.41 5.86 5.17 127,606  27.15 

August 2.15 6.81 5.25 122,380  26.04 

September 3.95 5.53 4.89 115,548  24.58 

October 4.68 6.43 5.43 121,565  25.86 
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Month 
Min 

(kWh/m
2
) 

Max 

(kWh/m
2
) 

Average 

(kWh/m
2
) 

Average 

kW Output 

Solar 

Fraction, % 

November 4.68 6.43 5.43 109,601  23.32 

December 0.61 5.34 3.00 103,636  22.05 

 

 
Figure 6. 2 Closed Loop Direct System Solar fraction and average insolation (80°C) 

 

 

  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

1 2 3 4 5 6 7 8 9 10 11 12 

So
la

r 
Fr

ac
ti

o
n

 %
 

Month 

Solar fraction & average insolation 

Solar Fraction, % 

Average (kWh/m2) 

A
ve

ra
ge

 In
so

la
ti

o
n

 
kW

h
/m

2
 



72 

6.3 Comparison of Open Loop and Closed Loop Drainback System 
 

The two systems results are tabulated in Table 6.8. 

Table 6. 8 Open loop and close loop solar fraction at 80°C output temperature. 

Parameter Open Loop 

Direct System 

Closed Loop 

Drainback System 

Maximum Solar Fraction 37.15 34.74 

Minimum Solar Fraction 24.64 22.05 

 

The difference between open loop and closed loop is around 2.4%, coming to 

approximately 11.33kW. A further sensitivity analysis on output temperature on system 

efficiency is done. A summary of different output temperature, between open loop and 

closed loop system is shown in Table 6.9. 

Table 6. 9 Open loop and close loop system performance at various output temperatures. 
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70 31.19 57.43 319 28.86 44.92 332 8.07 27.85 

80 30.32 52.10 323 27.8 41.00 338 9.06 27.07 

90 29.55 47.87 328 26.8 37.18 346 10.26 28.75 

100 28.70 44.50 332 25.65 33.56 353 11.89 32.60 

110 27.98 41.46 338 24.61 30.30 362 13.69 36.83 

120 27.12 38.46 343 23.54 27.4 371 15.21 40.36 

130 26.27 35.51 349 22.52 24.86 381 16.65 42.84 

140 25.38 32.71 355 21.46 22.53 391 18.27 45.18 

150 24.53 30.17 362 20.43 20.31 403 20.07 48.55 
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The resulting information is plotted in a graph form as shown in Figure 6.3. 

 

Figure 6. 3 Open loop and closed loop system performance at various output temperatures. 

 

It shows that for a higher output temperature, greater loss is experienced by both 

systems. It is observed that as the output temperature grows so will the difference 

between the performance of an open loop and closed loop system. This signifies that if 

possible; try to use a direct system as much as possible. The presence of a heat 

exchanger device would mean a higher collector output requirement and thus lower 

efficiency.  
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6.4 Cost and Benefit Analysis  
 

The system for output of 70°C hot water is used for the cost analysis. This is because to 

give a fair comparison, the performance comparison was downgraded to the limitation 

of the heat pump sourced which can only go to a maximum of 70°C. Table 6.10 

summarizes the cost of various methods in generating thermal energy.  

 

Table 6. 10 Consumption Cost and Overall Cost for 70°C output temperature 

No Method Consumption Cost  

 

RM cents /kWhth 

Overall Cost /Profit  

 

RM Cents/kWhth 

1 Medium Temperature Solar 

Thermal System (Open Circuit) 

0 3.54 

2 Medium Temperature Solar 

Thermal System (Closed 

Circuit) 

0 (5.27) 

3 Electric Heater (28.3) (28.76) 

4 Steam Boiler (24.565) (25.11) 

5 Solar PV driven electric heater 94.7 0 

6 Heat Pump (8.09) (10.63) 

 

Consumption cost refers to the cost of fuel. Overall cost takes into consideration of the 

installation cost of the systems. The economical analysis is done for an assumed useful 

life of 10 years, although it can be reasonable expected that the well maintained 

equipment will be able to be in service for 20 years or more. There are no 

considerations of maintenance costs in the calculation. Refer Appendixes for detailed 

calculations. 

 

From the cost and benefit analysis, it can be seen that open circuit solar thermal system 

is the most attractive, giving a return of 3.54¢ per kWhth. This is followed by Solar PV 
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driven electric heater breaking even the investment cost at the 10
th

 year through selling 

the electricity generated to TNB and using the proceeds to purchase grid electricity for 

heaters, giving 0¢ per kWhth. Subsequently, closed circuit solar panel system is at the 3
rd

 

position, costing 5.27¢ per kWhth followed by Heat pump system at 10.63¢ per kWhth; 

Steam Boiler at 25.11¢ per kWhth  and finally pure electric heater, at 28.76 kWhth.  

 

Solar PV system is ranked high because of the heavy subsidies the Government has 

provided through the Feed-in-Tariff.  The other alternatives such as diesel and grid 

electricity are also subsidized by the government. Even without subsidies, the return of 

solar thermal system can be on par, making it an economically viable solution. The 

attractiveness of this system will be greatly felt when the subsidies for fuel is removed 

by the government and mass adoption by the industry pushes down component and 

installation cost. 

 

The downside of solar thermal system is the real estate needed for the deployment of the 

panels, which in this case stands at around 34m x 34m of space. Part of the solar panels 

can be integrated into the building roof, generating useful energy while acting as an 

insulator to lower radiative heat gain to the building, reducing cooling cost. Also, the 

system is limited to low temperature applications, given the government subsidized 

cheap alternatives available currently in Malaysia. 

 

The big initial cost would be a deterrent for implementation of solar thermal as 

compared to conventional boilers. It is observed that a big chuck of the system cost is 

spent on transportation of collector panels from China. If there is a manufacturing plant 

in Malaysia, we can expect that the cost to be lower and would make the system more 

acceptable to the industry. 
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Maintenance cost for the different system is not included into the cost and benefit 

analysis. The inclusion of these costs would provide a better estimate of the 

attractiveness of solar thermal systems. Qualitatively, it should be noted that solar 

thermal system involves minimal moving parts. It is foreseen that the maintenance 

involved would be much less than boiler/heat pump technologies.  
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CHAPTER 7: CONCLUSIONS 

 

Malaysia’s solar energy potential and SIPH demand has been explored and found 

attractive. Technology to achieve SIPH is available and improving. Also, installed 

system around the globe is a good source for reference for deployment in Malaysia. 

Finally, the cost and benefit analysis has shown that SIPH is the cheapest among the 

other alternatives. It is demonstrated that Solar Industrial Process Heat is technically 

feasible and economically feasible. The research objectives have been achieved.   

 

Policy makers in Malaysia should have a closer look at the benefits of SIPH as a means 

to achieve greater renewable energy utilization. Support and direction from the 

government is always a good catalyst for wider acceptable by the industry. 

 

Lastly, in my opinion there should be a common glass screen for each collector panel, 

rather than having each evacuated tube exposed to the environment by its own. This is 

because with the frequent rain in Malaysia, the glass surface of the tubes will be easily 

dirtied by the elements. A common glass screen will ease the cleaning of the panels and 

is much more practical. 
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APPENDIX A - TENAGA NASIONAL ELECTRICAL 

PRICING AND TARIFF – INDUSTRIAL 

 

Table A1 Tenaga Nasional Electricity Tariff Rates for Industries. Source: TNB, 2012 

TARIFF CATEGORY UNIT RATES 

1 Tariff D - Low Voltage Industrial Tariff   

For Overall Monthly Consumption Between 0-200 

kWh/month   

For all kWh sen/kWh 34.5 

The minimum monthly charge is RM7.20   

For Overall Monthly Consumption More Than 200 

kWh/month   

For all kWh (From 

1kWh onwards) 

sen/kWh 37.7 

The minimum monthly charge is RM7.20   

Tariff Ds – Special Industrial Tariff (for consumers who 

qualify only)   

For all kWh sen/kWh 35.9 

The minimum monthly charge is RM7.20   

2 Tariff E1 - Medium Voltage General Industrial Tariff   

For each kilowatt of 

maximum demand 

per month 

RM/kW 25.3 

For all kWh sen/kWh 28.8 

The minimum monthly charge is RM600.00 

Tariff E1s – Special Industrial Tariff (for consumers 

who qualify only)   

For each kilowatt of 

maximum demand 

per month 

RM/kW 19.9 

For all kWh sen/kWh 28.3 

The minimum monthly charge is RM600.00   
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TARIFF CATEGORY UNIT RATES 

3 Tariff E2 - Medium Voltage Peak/Off-Peak Industrial 

Tariff 

For each kilowatt of 

maximum demand 

per month during 

the peak period 

RM/kW 31.7 

For all kWh during 

the peak period 

sen/kWh 30.4 

For all kWh during 

the off-peak period 

sen/kWh 18.7 

The minimum monthly charge is RM600.00   

Tariff E2s – Special Industrial Tariff (for consumers 

who qualify only)   

For each kilowatt of 

maximum demand 

per month during 

the peak period 

RM/kW 27.7 

For all kWh during 

the peak period 

sen/kWh 28.3 

For all kWh during 

the off-peak period 

sen/kWh 16.1 

The minimum monthly charge is RM600.00   

4 Tariff E3 - High Voltage Peak/Off-Peak Industrial 

Tariff   

For each kilowatt of 

maximum demand 

per month during 

the peak period 

RM/kW 30.4 

For all kWh during 

the peak period 

sen/kWh 28.8 

For all kWh during 

the off-peak period 

sen/kWh 17.3 

The minimum monthly charge is RM600.00   

Tariff E3s – Special Industrial Tariff (for consumers 

who qualify only)   

For each kilowatt of 

maximum demand 

per month during 

the peak period 

 

RM/kW 24.4 
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For all kWh during 

the peak period 

sen/kWh 26.7 

For all kWh during 

the off-peak period 

sen/kWh 14.7 

The minimum monthly charge is RM600.00  

 

Notes: SIT has a 2% higher increase than normal Industrial tariff in line with the 

Government's effort to gradually phase out the SIT subsidy 

Top-Up and Standby 

“Co-generator” means a generator who uses a single primary energy source to 

generate sequentially two different forms of useful energy for its own use at an 

efficiency rate of more than 70%. Services offered to co-generators are: 

Top-up supply: 

The additional supply required by a Co-generator who does not produce sufficient 

electricity for its own use.  

Standby supply: 

The supply that TNB provides to a Co-generator in the event that the Co-generator does 

not generate electricity due to plant failure or planned shutdown for maintenance. The 

Co-generator has a choice of firm or non-firm supply. Non-firm standby means that 

TNB does not guarantee that supply can be given when the Co-generator fails or is 

shutdown for maintenance.  

 Notes: 

This new Standby rate (as of 1 June 2011) is applicable to the following customers: 

All new co-generation customers; and 

Existing co-generation customers who wish to migrate to this new Standby rate 
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For existing co-generation customers who wish to maintain the previous Standby (Firm 

& Non-Firm) rates, the previous Standby (Firm & Non-Firm) rates together with the 

new Top-Up rate (as of 1 June 2011) will be applicable 

1% as Feed-in-Tariff (FiT) for RE Fund will be imposed on consumers' monthly bill 

(excluding Domestic consumers with monthly consumption of 300kWh and below) 

effective 1st December 2011. 

 

The industrial tariff rate used in the comparison is based on “Tariff E1-Medium Voltage 

General Industrial Tariff”.  The tariff rate for each kilowatt of maximum demand per 

month is not included. 

As such, the tariff rate for each kWh is 28.8¢. 
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APPENDIX B – BOILER THERMAL ENERGY 

GENERATION COST 

 

Typical fuel properties are listed as below: 

Table B1 Typical fuel properties. Source: Mark’s Handbook 11th Ed 

Fuel Typical 

Density 

High 

Calorific 

Value 

Low 

Calorific 

Value 

Fuel Pump 

Prices 

Price   

¢/kWh  

(HCV) 

Petrol 

(RON95) 

740kg/ m
3
 46.89MJ/kg 43.71MJ/kg RM1.90/litre 19.71 

Diesel 860kg/ m
3
 45.97MJ/kg 43.17MJ/kg RM2.49/litre* 22.67 

Diesel 

(Automotive) 

860kg/ m
3
 45.97MJ/kg 43.17MJ/kg RM1.80/litre 16.39 

Natural Gas  36.38MJ/m
3 

32.75MJ/m
3 

RM0.62/ m
3
 6.14 

 

The price for industrial use diesel is obtained through the Department of Statistics 

Malaysia, as shown in Figure B1. 

 

Figure B1 Diesel price for industrial use. Source: Department of Statistics Malaysia 
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A typical boiler is obtained through the widely used industrial yellow pages 

“Alibaba.com”. The boiler chosen is shown in Table B2.  

Table B2 Typical Boiler Data. Source: Alibaba.com, Henan Sitong Boiler Co., Ltd. 

 

Items WNS0.5-0.7-Y(Q) 

 Nominal Capacity (t/h) 0.5 

Nominal Working Pressure (Mpa) 0.7 

Saturated Steam Temperature (°C) 170 

Thermal Efficiency of Boiler (%) 92 

Nominal Oil and Gas Consumption  

(Nm3/h) 
34.5/42 

Power Consumption (KW) 2.96 

Applicable Fuel Light oil or heavy oil  Natural gas or city gas 

Power Supply (AC) 380v   50Hz 

Weight and Size of maximum  

transport thing (m) 
3.1×1.9×1.9 

Approx. Weight of maximum  

transpoirting kg 
4000 

Exhaust Gas Temperature (°C) 230 

 Combustion way 
Pressure atomized  Micro positive pressure  

combustion  

 Regulating mode  Automatic 
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The displayed price is USD 10,000, FOB. It is estimated that the price should be around 

USD 15,000 DDP + Installation + Startup & Commissioning. The total Estimated Price 

= RM105, 000.00. 

Knowing that the heat of vaporization of steam is 2257kJ/kg, the boiler chosen is able to 

output 1,128.5kW of thermal energy. This is suitable for our requirement of 470kW. 

Ignoring the power consumption since it is small relative to the output and utilizing the 

thermal efficiency given, the cost of thermal energy generation through a boiler is 

tabulated in Table B3.  

It is assumed the useful life is 10 years and without consideration of maintenance cost. 

Assuming again an average utilization of 10 hours per day, 365 days a year, the overall 

cost of boiler output is tabulated in Table B3. 

Table B3 Typical cost of thermal energy generation through boilers 

Fuel 
Price 

¢/kWh  (HCV) 

Boiler Output 

¢/kWh 

Boiler Ouput 

(Including cost of 

ownership) 

Diesel 22.67 24.65 25.11 

Natural Gas 6.14 6.67 7.14 
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APPENDIX C – ELECTRIC HEATER 

 

Price quote was obtained from rs-component for a domestic usage immersion tank 

heater. The datasheet is as below. The price is RM137.50 including delivery for a 

3000kW unit. It is assumed that an industrial unit will need to be of a higher quality of 

construction and as such will command double the price. A calculation of the final price 

is shown in Table C1. 

Table C1 Electric heater installation price 

Item RM 

Unit Price for domestic use 137.50 

Unit Price for industrial use 275.00 

Total price for 470kW 44,000.00 

Total price including 

installation & startup 

103,125.00 

 

The efficiency is chosen to be 1. It is assumed the useful life is 10 years and without 

consideration of maintenance cost. Assuming again an average utilization of 10 hours 

per day, 365 days a year, the overall cost of electrical heater output is tabulated in Table 

C2. 

Table C2 Typical cost of thermal energy generation through electric heater 

Fuel 
Price 

¢/kWh 

Heater Output 

¢/kWh 

Heater Ouput 

(Including cost of 

ownership) 

Electric 28.3 28.3 28.76 
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Figure C1 Immersion heater datasheet. Source: rs-component.com.my  
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APPENDIX D – SOLAR PV THERMAL ENERGY 

GENERATION COST 

 

The cost of implementing solar PV is available abundantly, although mostly dealt with 

domestic usage. The works of Firdaus Muhammad-Sukki, et al. (2011) is shown in 

Table D1. 

Table D1 Cost of PV electricity generation for a 2.5kWp PV panel. Source: Muhammad-Sukki, 2001 

 

It is assumed that the scaling up to 470kW is directly proportional. A calculation of the 

price of installation is shown in Table D2. 

Table D2 PV panel installation price 

Item RM 

Unit Price a 2.5kWp PV 

panel system 

47,800 

Price for a 470kWp PV 

panel system 

8,986,400 

 

The output of the 470kWp PV system is scaled to be 772,210 kWh per year. It is 

assumed the useful life is 10 years and without consideration of maintenance cost and 

the feed-in tariff rate from Kettha for a system of 75kWp – 1MWp is RM1.14. The 
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output from the PV is assumed to be sold back to the grid and using the proceeds to pay 

for the thermal energy generation. The useful life of the whole system is 21 years. The 

cost of output of this system is tabulated in TableD3. 

 
 

 

Figure D1 Malaysia Average BIPV Price/kWp from 2005 to 2010. Source: www.mbipv.net.my 

  
 

Table D3 Cost of electricity generation 

Item Value Unit 

Feed-in Tariff Price 

 
1.23 RM/kWh 

TNB Electricity Price 0.283 RM/kWh 

Net Profit 0.947 RM/kWh 

Total Electricity Generation 722,210 kWh 

Payback period 10 Years 

Cost of Electricity generation for 

10 years 
0.283 RM 

 

Since the payback period is 10 years, the first 10 years when the system is installed is 

used to payback for the cost of the system itself, and the cost of electricity is the same as 

using the electricity straight from TNB grid. As such, the cost of a system out of the 

picture and only the consumption cost is of concern, as tabulated in Table D4. 
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Table D4 Typical cost of PV thermal energy generation through electric heater 

Fuel 
Price 

¢/kWh 

Electricity bought from TNB while 

PV generated is sold back. 
28.3 
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APPENDIX E – HEAT PUMP ENERGY GENERATION 

COST 

 
Figure E1 Heat pump datasheet  

A reference price from Alibaba.com indicates that the cost is around USD 150/kW. 

For 470kW  =  USD 70,500 

  = RM 218,550 

Per kWh  = RM218,550/(470kW × 10 hours × 365 days/yr × 10 years) 

ownership = RM 0.0127/ kWh × 2 (including installation etc)  

cost  = RM 0.0254 

 

Assuming a COP of 3.5, 

Cost per kWh = RM0.283/kWh /4 + RM 0.0254 = RM 0.1063  
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APPENDIX E – SOLAR THERMAL ENERGY 

GENERATION COST 

 

Open Loop 
Table E1 Solar Thermal System Costs – Open Loop 

Item RM 

Solar Collector/unit 1240 

Solar Collector Transportation/unit 2464 

Total Units required 319 Nos 

Containers required 8 Nos 

Estimated Transportation Cost 250,000 

Collectors cost 400,000 

Other components, Installation, 

Commissioning and etc 

450,000 

Total Cost 1,100,000 

 

The savings incurred by using this system is translated to boiler fuel saving, which 

stands at RM0.2465/kWh. Although there needs to be input to keep the circulating fluid 

moving, the pump used is less than 5kW. As such, the pump presence is ignored. 

 

System total kWh per year  =  521,184kWh/year 

 

Cost Saving per year  = 521,184kWh  × RM 0.2465/kWh 

= RM 128,471 

 

10 years service  = RM 1,284,717 

 

Payback period  = 9  years 

 

ROI, 10 years   = 1.68% 

 

Per kWh cost/ profit  = (RM 1,284,717 – RM 1,100,000)/5,211,848kWh 

    = 3.54 cents 
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Closed Loop 
Table E2 Solar Thermal System Costs – Closed Loop 

Item RM 

Solar Collector/unit 1240 

Solar Collector Transportation/unit 2464 

Total Units required 332 Nos 

Containers required 9 Nos 

Estimated Transportation Cost 300,000 

Collectors cost 420,000 

Other components, Installation, 

Commissioning and etc (including HE) 

720,000 

Total Cost 1,440,000 

 

The savings incurred by using this system is translated to boiler fuel saving, which 

stands at RM0.2465/kWh. The inclusion of the flat plate heat exchanger has increased 

the cost of the system by RM270,000. 

 

System total kWh per year  =  481,228kWh/year 

 

Cost Saving per year  = 481,228kWh × RM 0.2465/kWh 

= RM 118,623 

 

10 years service  = RM 1,186,230 

 

Payback period  = 13 years 

 

ROI, 10 years   = -1.76% 

 

Per kWh cost/profit  = (RM 1,186,230 – RM 1,440,000)/4,812,288kWh 

    = -5.27 cents 

 


