
 

 

 

 

A C++ STANDARD TEMPLATE LIBRARY  

INTELLIGENT TUTORING SYSTEM 

WITH BAYESIAN AND FUZZY LOGIC STUDENT MODEL  

 

 

 

 

 

 

 

CHRISTINE LEE SIEW KEN 

 

 

 

 

THESIS SUBMITTED IN FULFILLMENT OF THE 

REQUIREMENTS  

FOR THE DOCTOR OF PHILOSOPHY 

 

 

 

 

 

FACULTY OF COMPUTER SCIENCE AND  

INFORMATION TECHNOLOGY 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

 

 

JUNE 2006 



 

ii 

Abstract 
 

 

Earlier work on Intelligent Tutoring Systems (ITSs) for programming focused more on 

teaching programming syntax than its application.  The main tutoring approach is to present 

a problem specification for the student to solve, followed by intelligent analysis of the 

solution with various feedback.  It is also observed that existing ITSs suffer from static 

domain knowledge and are restricted to the tutoring session.  Therefore, this research 

proposes the development of a web-based ITS for both curriculum planners and 

implementer-tutors to teach students the application of the C++ Standard Template Library 

(STL) to problem solving.   

 

From experience, it is discovered that students find the C++ STL difficult due to their 

weaknesses in understanding various object-oriented concepts.  This ITS overcomes the 

learning and teaching challenges by modelling the program specification based on 

prerequisite concepts.  Bayesian Theorem is applied to model the student’s knowledge and 

direct the tutoring intelligently.  Bayesian probability reasoning is a well-known Artificial 

Intelligence technique for uncertainties management.  The development of the C++ STL 

ITS applies practices from the eXtreme Programming methodology and J2EE technologies.  

The 3-tier architecture ITS constitutes three main components – Student Modelling 

Module, Tutoring Module and Users Administration Module providing the authoring of the 

domain knowledge dynamically.  Hence, tutors can then fully participate in the design of 

the curriculum and tutoring sessions as well as in the implementation of the tutorials for 

their students for effective teaching and learning. 

 

Both summative and formative evaluations were conducted on the C++ STL ITS.  The 

evaluation results revealed that the Bayesian Theorem has the capability of modelling the 

student’s prerequisite and directing the student during the tutorial session.  The Fuzzy 

Stereotyping of Students Expert System works well in categorizing the students according 

to four stereotypes – novice, beginner, intermediate and advanced. 

 

Short term future enhancements include extending the tutorial questions, domain 

knowledge, accommodating more feedback on the programming syntax, and incorporating 

the fuzzy expert system into the C++ STL ITS.  Three areas of research proposed for long 

term are application of alternative knowledge acquisition techniques, integration of learning 

styles into the student model, and representation of domain knowledge using ontologies. 

 

 

 



 

iii 

Acknowledgement 
 

I express my most sincere gratitude to 

 

 GOD … constant grace, strength, wisdom and blessing 

 My supervisor  

 Assoc. Prof. M Sapiyan Baba … invaluable help and guidance 

 

 My husband  

 Seng Chor … loving care, help and patience 

 

 My baby boy 

 Jordan … a source of strength and motivation 

 

 Dad Peter and Mum Agnes … a source of inspiration 

 

 My sister Eva … love, concern and moral support 

 

 My brothers Felix and Alex … love and moral support 

 

 My brothers and sisters  

 in Christ … prayer support and encouragement 

 

 Guru Max Lam … advice and kind assistance 

 

 Colleagues at  

     KBU International College … advice and kind assistance 

 

 BSc (Hons) Software Engineering 

 and 

 BEng (Hons) Electronics &  

 Computing Students … patience and co-operation 

 

 Friends … comments and proofreading 

 

 

 

And all other friends, relatives and well-wishes who have contributed in one way or another 

in making this Research a reality. 

 



 

iv 

Table of Contents 
 

Abstract .................................................................................................................................. ii 

Acknowledgement................................................................................................................. iii 

Table of Contents .................................................................................................................. iv 

List of Figures ...................................................................................................................... vii 

List of Tables......................................................................................................................... ix 

Chapter 1 Introduction ........................................................................................................ 1 

1.1 Motivation : Why C++ STL ITS on the Web? ............................................................. 4 

1.2 Aims and Objectives ..................................................................................................... 6 

1.3 Project overview ........................................................................................................... 7 

1.4 Contribution .................................................................................................................. 8 

1.5 Structure of the Thesis ................................................................................................ 10 

 

Chapter 2 Intelligent Tutoring Systems with Focus on Student Modelling ..................... 12 

2.1 Components of an ITS ................................................................................................ 14 

2.1.1 Expert Model ................................................................................................ 15 

2.1.2 Student Model............................................................................................... 17 

2.1.3 Tutoring Model ............................................................................................ 19 

2.1.4 Student Interface .......................................................................................... 19 

2.2 Student Modelling Techniques ................................................................................... 20 

2.2.1 Overlay Model (Carbonell, 1970; Carr & Goldstein, 1977) ....................... 22 

2.2.2 Differential Student Model ........................................................................... 23 

2.2.3 Perturbation Model or Buggy Student Model .............................................. 23 

2.2.4 Cognitive Model ........................................................................................... 25 

2.2.5 Constraint-based Modelling (CBM) ............................................................ 27 

2.2.6 Machine Learning (ML) Techniques ............................................................ 28 

2.2.7 Stereotype-based methods ............................................................................ 29 

2.2.8 Combination of Methods .............................................................................. 30 

2.3 Machine Learning Techniques in ITS ........................................................................ 31 

2.3.1 Case-based Reasoning ................................................................................. 32 

2.3.2 Theory Refinement ....................................................................................... 33 

2.3.3 Fuzzy Logic, Neural Network or Hybrid ...................................................... 34 

2.3.4 Bayesian Network or Probabilistic Model ................................................... 36 

2.4 Neural Networks vs Bayesian Networks .................................................................... 39 

2.5 Summary ..................................................................................................................... 43 

 

Chapter 3 ITS for Computer Programming ...................................................................... 48 

3.1 Prior Work – Overview .............................................................................................. 48 

3.1.1 LispTutor (Reiser, Anderson & Farell, 1985) .............................................. 48 

3.1.2 PROUST (Johnson, 1986) ............................................................................ 50 

3.1.3 BRIDGE (Bonar and Cunningham, 1988) ................................................... 51 

3.1.4 ASSERT (Baffes and Mooney, 1996) ............................................................ 52 

3.1.5 ELM-ART (Weber & Specht, 1997) ............................................................. 54 

3.1.6 Virtual Campus PROLOG Tutor (Peylo et al, 2000) ................................... 56 

3.1.7 Tutor on C++ Programming (Kumar, 2002) ............................................... 57 



 

v 

3.1.8 JITS - Java Intelligent Tutoring System (Sykes, 2003) ................................ 58 

3.1.9 Pseudocode Tutor (Chad Lane & VanLehn, 2003) ...................................... 59 

3.1.10 BITS – Bayesian Intelligent Tutoring System (Butz et al, 2004) .................. 60 

3.2 ITS for Programming – Comparative Analysis .......................................................... 64 

3.2.1 Domain Knowledge ...................................................................................... 64 

3.2.2 Level of Programming ................................................................................. 65 

3.2.3 Tutoring Goals ............................................................................................. 66 

3.2.4 Student Modelling Techniques ..................................................................... 68 

3.3 Summary ..................................................................................................................... 68 

 

Chapter 4 C++ STL and Bayesian-Fuzzy Student Modelling .......................................... 73 

4.1 The Domain Knowledge – C++ STL ......................................................................... 74 

4.2 Difficulties in Learning and Teaching C++ STL ........................................................ 78 

4.2.1 Learning the C++ STL ................................................................................. 78 

4.2.2 Teaching the C++ STL - Curriculum Planners vs Implementer-tutors ....... 81 

4.3 Dynamic Domain Knowledge Modelling ................................................................... 84 

4.4 Student Modelling with Transparency........................................................................ 85 

4.5 Uncertainties Management ......................................................................................... 87 

4.5.1 Bayesian Reasoning ..................................................................................... 89 

4.5.2 Bayesian-based Predictive Initial Student Model ........................................ 91 

4.5.3 Tracking Student’s Progress during Tutorial Sessions ................................ 96 

4.5.4 Updating Student Model ............................................................................ 102 

4.5.5 Evaluating and Categorising Student’s Behaviour .................................... 106 

4.5.6 Acquired Knowledge .................................................................................. 111 

4.6 Summary of Problems and Solutions ....................................................................... 111 

 

Chapter 5 STL Tutor Architecture and Development .................................................... 113 

5.1 Overall Architecture ................................................................................................. 113 

5.2 Student Modelling Module ....................................................................................... 116 

5.3 Domain Knowledge Module..................................................................................... 116 

5.3.1 Topic and Sub-Topic Repository ................................................................ 117 

5.3.2 Program Specifications Repository............................................................ 118 

5.3.3 Tutorials and Sub-Tutorials Repository ..................................................... 119 

5.4 Teaching Strategies Module ..................................................................................... 121 

5.4.1 Pre-Test Module ......................................................................................... 121 

5.4.2 Tutorial Module ......................................................................................... 125 

5.4.3 Post-Test Module ....................................................................................... 125 

5.5 Users Administration Module................................................................................... 126 

5.6 The eXtreme Programming Methodology ................................................................ 127 

5.7 The 3-Tier System Architecture ............................................................................... 128 

5.7.1 The Client-tier Layer .................................................................................. 134 

5.7.2 The Middle-tier Layer ................................................................................ 134 

5.7.3 The Data Source-tier Layer ....................................................................... 137 

5.8 XML Syntax Parser and Student Model Update Algorithm ..................................... 137 

5.8.1 XML Syntax Parser .................................................................................... 138 

5.8.2 Student Model Update Algorithm .............................................................. 141 

5.9 Fuzzy Expert System ................................................................................................ 145 

5.10 Development Tools ............................................................................................ 150 



 

vi 

 

Chapter 6 C++ STL ITS System Evaluation – Methodologies and Results ................... 151 

6.1 Evaluation Methodologies and Evaluation Requirements ........................................ 152 

6.2 Evaluation of the C++ STL ITS Architecture .......................................................... 155 

6.2.1 Domain Knowledge Module ....................................................................... 155 

6.2.2 Teaching Strategies Module ....................................................................... 159 

6.2.3 Student Modelling Module ......................................................................... 160 

6.2.4 Graphical User Interface Module .............................................................. 164 

6.3 Pre-Test Results and Analyses.................................................................................. 166 

6.4 Tutorial Sessions Results and Analyses ................................................................... 169 

6.5 Post-Test Results and Analyses ................................................................................ 173 

6.6 Evaluation of the Fuzzy Stereotyping of Students Expert System ........................... 176 

6.7  Related Work ........................................................................................................... 179 

 

Chapter 7 Conclusions and Future Work ........................................................................ 182 

7.1 Conclusions .............................................................................................................. 182 

7.2 Future Work .............................................................................................................. 183 

7.2.1 Short Term .................................................................................................. 183 

7.2.2 Long Term .................................................................................................. 185 

 

References .......................................................................................................................... 190 

 

Appendix ............................................................................................................................ 205 

Appendix A – List of Conditional Probabilities ............................................................ 206 

Appendix B – List of Topics and Sub-Topics ................................................................ 208 

Appendix C – Vision ...................................................................................................... 210 

Appendix D – User Stories ............................................................................................ 211 

Appendix E – Acceptance Tests .................................................................................... 216 

Appendix F – UML Design Diagrams ........................................................................... 222 

Appendix G – Session Beans ......................................................................................... 226 

Appendix H – Data Tables Descriptions ........................................................................ 251 

Appendix I ...................................................................................................................... 261 

 XML Syntax Parser Code ......................................................................................... 261 

 Student Model Update Code ..................................................................................... 269 

Appendix J – Fuzzy Rules Table ................................................................................... 299 

Appendix K – build.xml ................................................................................................. 300 

Appendix L – List of C++ STL vector Topics and Sub-Topics..................................... 307 

 

 

 

 



 

vii 

List of Figures 
 

Figure 2.1 Routing within a Computer Aided Instruction System 13 

Figure 2.2 Typical Basic Architecture of an ITS 14 

Figure 2.3 An illustration of the overlay model 22 

Figure 2.4 An illustration of the differential model 23 

Figure 2.5 An illustration of the perturbation model or buggy student model 24 

Figure 2.6 A Neural Network Topology 40 

Figure 3.1 A partial Directed Acyclic Graph implemented in the BITS 61 

Figure 3.2 Routing of Student’s Understanding 63 

Figure 4.1 Prerequisite Iteration with its sub-skills 93 

Figure 4.2 A Sample Layout of a Problem Specification during the Tutoring 97 

Figure 4.3 Directing Student after Pre-Test 98 

Figure 4.4 Various Paths during Tutoring Session 101 

Figure 4.5 Gradual Change in Conditional Probability 105 

Figure 4.6 The Four Tasks in the Fuzzy Expert System 107 

Figure 5.1 Components of C++ STL ITS 114 

Figure 5.2 System Architecture of the ITS 115 

Figure 5.3 A Screen Shot of an Interface during the Pre-Test Evaluation Session 123 

Figure 5.4 Partial Screen Shot of the View from ‘Question Contents’ 124 

Figure 5.5 Cycles in XP 127 

Figure 5.6 3-Tier System Architecture of C++ STL ITS 133 

Figure 5.7 XML-based format describing the answer to populate a vector from  

 keyboard 139 

 

 



 

viii 

Figure 5.8 Phases in the XML Syntax Parser 140 

Figure 5.9 Flowchart of Student Model Update 141 

Figure 5.10 Update Pseudocode for Number of Attempts = 0 143 

Figure 5.11 Update Pseudocode for Number of Attempts = 1 144 

Figure 5.12 Fuzzy Sets of Conditional Probabilities 146 

Figure 5.13 Fuzzy Sets of Time 147 

Figure 5.14 Fuzzy Sets of Number of Attempts 147 

Figure 5.15 Fuzzy Sets of Number of Hints 147 

Figure 6.1 Understandability of Pre-Test Questions 158 

Figure 6.2 Understandibility of Post-Test Questions 158 

Figure 6.3 Tutorial Framework and Sub-Tutorial Questions 164 

Figure 6.4 Student’s Evaluation of the Interface for the Pre-Test Module 165 

Figure 6.5 Student’s Evaluation of the ‘Question Content’ Functionality 165 

Figure 6.6 Prerequisites for STL vector Question 1 171 

Figure 6.7 Tutorial Students Post-Test Results 174 

Figure 6.8 Non-Tutorial Students Post-Test Results 174 

Figure 6.9 Rule Viewer 177 

Figure 6.10 (a) Three-dimensional Plot for Understanding-Time-Conditional  

 Probabilities Relationship 178 

 

Figure 6.10 (b) Three-dimensional Plot for Understanding-Attempt-Conditional  

 Probabilities Relationship 178 

 

Figure 6.10 (c) Three-dimensional Plot for Understanding-Hint-Conditional  

 Probabilities Relationship 179 

 

 

 

 



 

ix 

List of Tables 
 

Table 2.1 Similarities and Differences in Neural Networks and Bayesian Networks 43 

Table 2.2 Summary of Student Modelling Techniques 44 

Table 2.3 Area of Application of Student Modelling Techniques 47 

Table 3.1 Multi-layered Overlay Model in the ELM-ART II 55 

Table 3.2 Tutoring Goals of ITSs to teach programming 66 

Table 3.3 Techniques employed in current ITSs 69 

Table 4.1 STL Components 76 

Table 4.2 Examples of Student’s Pre-Test Performance 95 

Table 4.3 Four Levels of Hints 99 

Table 4.4 (a) How the Student Model is Updated when P(U|C) < 0.6 103 

Table 4.4 (b) How the Student Model is Updated when 0.6 <= P(U|C) <= 0.8 103 

Table 4.4 (c) How the Student Model is Updated when P(U|C) > 0.8 104 

Table 4.5 Summary of Identified STL Problems and Proposed Solutions 112 

Table 5.1 Partial List of Topics and Sub-Topics 117 

Table 5.2 An Example of a Program Specification with Prerequisites  

 and Acquired Skills 119 

 

Table 5.3 An Example of Sub-Tutorial Problems 120 

Table 5.4 Overview of Implementation of Web-based Intelligent Tutoring Systems 130 

Table 5.5 Special Characters 139 

Table 5.6 Example of Conditional Probabilities Achieved by a Student 142 

Table 5.7 Lingustic variables, values, range and membership function 149 

Table 6.1 Classification Table of Evaluation Methods 153 

  



 

x 

Table 6.2 Sample – Pre-Test performance of various students 161 

Table 6.3 Overall students’ Pre-Test performance for each topic 163 

Table 6.4 Common Programming Mistakes Example 1 167 

Table 6.5 Common Programming Mistakes Example 2 167 

Table 6.6 Common Programming Mistakes Example 3 168 

Table 6.7 Example – Variance of Percentage in Selection of Answers 169 

Table 6.8 Survey – Questions on Tutorial Session in C++ STL ITS 172 

Table 6.9 Survey – General Questions on Learning Experience with C++ STL ITS 172 

Table 6.10 Class Average for Post-Test Results 173 

Table 6.11 Partial Post-Test Results 175 

Table 6.12 Numerical Range for Stereotype 176 

 

 

 

  

 



 

1 

 

Chapter 1 Introduction 
 

 

In the twilight years of the 19th Century,  Chinese Hakka immigrants, especially the Basel 

Christians, arrived in the Bornean Malaysian State of  Sabah (formerly North Borneo), 

together with their families,  under the immigration schemes promoted by the British North 

Borneo Chartered Company at the time.  Like all Chinese, Hakkas place great emphasis on 

education.  When the initial batches of Hakka immigrants arrived, informal schooling was 

generally the rule, often in the home or neighbourhood.  Most fathers had had a few years 

of education in China, so they taught their children, recycling Chinese calendars to use as 

writing pads.   The children later continued their lessons in the homes of literate elders who 

tutored several neighbourhood children in return for gifts of rice or, occasionally a 

chicken. (Zhang, 2002). 

 

The Chinese Hakka immigrants had a strong desire to preserve and sustain their cultural 

identity.   Thus, they established their own traditional sishus (mini private schools), which 

led to the birth of the first Chinese school in Sabah in 1886 in Kudat, the first capital of 

Sabah (Wong, 2004). 

 

Let us now turn the clock back to a learning scenario in 1920 in Kudat, situated at the 

northern tip of Borneo.  Eighty-five years  ago,  under   the  nipa-palm  roof  of a traditional 

sishu,  ten young boys  sat on  the wooden floor, cross-legged and  barefooted,  (their 

wooden clogs neatly placed beside the door), listening  attentively  to  their  tutor  

explaining  some   Arithmetical sums on  a  slate board.   Each  of  the pupils had  a  piece 

of  wooden-framed  slate  and  slate  pencils  for  writing. 



 

2 

 

Amongst this small group was an eight-year old boy who was an Arithmetic wizard.  Fifty-

one years later, he became my late paternal grandfather.  He could understand and catch on 

faster than the rest of the Class.  Seeing that the young boy  had also the  patience  to guide 

the others, the tutor gave  him  a  role  as a  co-tutor  for  the  slow pupils  who were  a  few 

years older than him.  He co-tutored  the  weak pupils,  one  at  a  time,  using  a  method  

which  could  well  be  termed as individualized  one-to-one tutoring.  It   was   a typical 

example of pupils helping pupils  to achieve learning.  Thus,  it  goes  on  to show  that   

this  underlying  concept  was  being  practised  a long time ago with small-sized classes. 

 

As decades passed, the student population in Sabah, as in all places throughout Malaysia, 

increased as both males and females pursued education to earn a better living. Sishus in 

Sabah were upgraded to formal schools, and teachers had to be recruited from Mainland 

China.  The class size grew bigger and bigger, often reaching about 50 students per class, 

which had certainly affected teaching as well as learning techniques.  Teachers would use 

chalk to write on the blackboard while teaching.  Students would use lead pencils or pens to 

write in exercise books.  In such a scenario, it is humanly impossible for teachers to give 

their students individual attention. Teachers who have an instructional style of teaching 

would be able to do a good job in handling large classes.  In colleges where there may be 

about 100 students in a class, teachers would turn lecturers instead.  

 

Then, in the late 50’s and early 60’s, College-trained teachers prepared lesson notes in 

advance and used teaching aids to enhance the art of teaching and make the learning 

process more interesting and effective.  Even in Teachers’ Training Colleges at that point in 



 

3 

time, trainees who were better in certain subjects like Mathematics, would be assigned co-

tutor roles to help their fellow College mates learn in small tutorial groups. 

 

As I gathered through ‘oral history’, from the time of my ancestors in the late 19th Century 

to my grandparents in the early 20th Century  and to my parents in the mid-20th Century, 

and from my own experience as a secondary student in the 80’s, rote learning was the most 

widely practised form of learning.  Apparently, this trend was attributed to a number of 

factors, namely, fear of the teachers, fear of failing and subsequent class retention, fear of 

corporal punishment, for example caning, wishing to attain perfect test scores and be in the 

Top Ten in Class. 

 

Rote learning still seems to be the order of the day when it comes to learning just to pass 

the tests or examinations.  Students memorize and cram as much information and facts as 

possible into their heads, in parrot fashion, often without proper understanding and later 

regurgitate for the tests or examinations.  At the end of the day, such students find that they 

have practically learned nothing that they can truly apply and use in real life. 

 

From the 60’s onwards up till the present time, it has become a necessity for students to 

attend Tuition classes after school, two, three or more times a week.  Some children are 

sent for Tuition class for nearly all subjects including Art and Craft, not forgetting music or 

dance lessons or martial arts, to name a few.  Initially, only the academically weak students 

attended Tuition classes, but as competition got more intense among the students not only 

in their class or school but with other schools, the bright sparks also jumped aboard the 



 

4 

band-waggon.  As a result of this, Tuition classes expanded and became quite similar to a 

normal classroom situation, which obviously defeats the purpose of such tutoring classes. 

 

With the advent of the Internet and the availability of a vast quantity of information into the 

education scene in the early 90’s, the computer has taken on new, unprecedented 

dimensions never before experienced in history.  In time to come, rote learning could 

gradually be overtaken and phased out by the use of computers.  The computer has become 

an invaluable teaching and learning tool, fostering quality teaching and quality learning and 

above all, helping to achieve a common goal, that is teaching and learning with 

understanding.  

 

It is believed that any difficulties or problems relating to understanding and learning 

challenging subjects such as Programming, can best be solved using Intelligent Tutoring 

Systems (ITSs).  Empirical studies have proven that one-to-one tutoring is the most 

effective mode of teaching and learning, and this individualized tutoring is uniquely offered 

by ITS (Bloom, 1984). 

  

1.1 Motivation : Why C++ STL ITS on the Web? 

 

Intelligent Tutoring Systems (ITSs) are computer-based instructional systems with models 

of instructional content that specify what to teach, and teaching strategies that specify how 

to teach (Wenger, 1987, Ohlsson, 1987).  Most traditional educational software focus on 

the teaching material which is usually presented in a sequential manner to the user.  

However, different users have various needs and knowledge.  The main purpose of the ITS 



 

5 

is to suit the users and its goal is to communicate its embedded knowledge effectively.  

Therefore,  the system is to be user adaptable and flexible.  This is achieved through 

Artificial Intelligence (AI) techniques. 

 

One major contribution of the research and development of ITS is in teaching computer 

programming.  The use of ITSs to support students in learning various programming 

languages from the 1980s to the current millennium, has matured in the areas of choice of 

programming languages, tutoring goals and application of AI techniques. 

 

The level of programming taught in the current ITSs such as ASSERT (Baffes & Mooney, 

1996), C++ Tutor (Kumar, 2002), JITS (Sykes & Franek, 2003) and BITS (Butz et al, 

2006) covers elementary topics that are typically found in an introductory course to 

Computer Programming.  Indeed, there is a need for tutoring materials that target a higher 

programming level.  These include application of the programming language to create data 

structures and solve more complex problems which leads to the motivation to choose the 

C++ Standard Template Library (STL) as the domain knowledge for this ITS. 

 

There is no one right way to learn and teach C++ and its associated design and 

programming techniques.  The aims and background of each student differ (Stroustrup, 

1999).  As ITS seeks to mimic the human tutor as it imparts knowledge to the student, it is 

highly suitable for guiding students who have different levels of prerequisites with respect 

to the application of the C++ STL.  The student model in an ITS has the capability of 

recording the student’s information and keeping track of the student’s action as they 



 

6 

progress in their learning.  With this information, teaching and learning can proceed in a 

variety of ways based on the needs and interests of the students.   

 

Combining web technologies and ITS provides globalization and at the same time 

individualization of teaching and learning.  Globalization in this context refers to providing 

the similar course materials and tools to different locations in the world.  This allows 

sharing and reusability of teaching and learning materials to save resources.  In addition to 

this, institutions that franchise their courses can enhance the collaboration with their 

partners.  On the contrary, individualization uniquely identifies a student providing an 

environment similar to face-to-face tutoring.  The student actually learns at his/her own 

pace within their own workspace in a global environment. 

 

1.2 Aims and Objectives 

 

The aim of this research is to develop a web-based C++ Standard Template Library 

Intelligent Tutoring System using AI techniques.  The objective of this system is to provide 

personalized problem solving support to students in the learning of the C++ STL.     

 

The objectives of this research are : 

 To review current student modelling techniques. 

 To review current techniques employed in existing ITSs for programming. 

 To identify a suitable student modelling technique for the C++ STL ITS. 

 To develop the C++ STL ITS based on the proposed technique. 

 To evaluate the proposed student modelling technique for effectiveness. 

 



 

7 

1.3 Project overview 

 

The C++ STL ITS includes the following functionalities: 

 Authoring of pre-test, tutorial sessions and post-test 

 Pre-assessment module to test student’s prerequisite knowledge 

 Problem solving support with various teaching strategies 

 Post-assessment module to examine student’s understanding after the tutorial 

 Reporting of pre-test, tutorial and post-test performance results 

 Administration of users – students and tutors 

 

The system architecture of the C++ STL ITS consists of four main modules : 

 i) Graphical User Interface Module 

 ii) Student Modelling Module 

 iii) Teaching Strategies Module 

 iv) Domain Knowledge Module 

 

The Graphical User Interface (GUI) Module handles the interaction between the user (tutor 

or student) and the system.  It accepts input from the user and directs the information to the 

other modules for processing.  The Student Module contains the dynamic model of a 

student which stores the personal details and knowledge of the student.  Input obtained 

from the GUI Module through the Teaching Strategies Module and Domain Knowledge 

Module is used to update the student model.  The responsibilities of the Teaching Strategies 

Module include authoring and maintenance of pre-test, tutorials, alternative teaching 

strategies and post-test, stored in the Domain Knowledge Module. 

  



 

8 

The student’s knowledge of the domain is evaluated using the overlay model and 

represented using the Bayesian theorem.  Tracking information measured from the problem 

solving session is then directed to the fuzzy expert system to categorize the students. 

 

The system was tested and evaluated by students enrolled in the BSc (Hons) Software 

Engineering and BEng (Hons) Electronics and Computing courses at KBU International 

College.  The evaluation results showed that the Bayesian theorem is able to model the 

student’s prerequisite knowledge effectively to guide them during the tutorial session. 

 

1.4 Contribution 

This research makes a contribution to the fields of 1) teaching and learning the C++ 

Standard Template Library (STL) as well as 2) web-based Intelligent Tutoring Systems 

architectures. 

 

This ITS contributes to the teaching of C++ STL through intensive authoring tools provided 

by the system.  This includes the authoring of the pre-test, tutorial sessions and post-test.  

The system is a complete tool to aid curriculum planner and implementer tutor in their 

teaching.  One unique feature is that different computer programming languages can be 

represented in the system. 

 

From experience, it is observed that students who are weak in their elementary 

programming, struggled in learning the C++ STL.  Subsequently, the domain knowledge of 

this ITS is modelled in a 2-level hierarchical structure representing the prerequisites and the 

corresponding STL topics.  The understanding of the student’s prerequisites is determined 



 

9 

through a pre-test and represented using the Bayesian Theorem.  Then, the conditional 

probabilities of understanding obtained are utilized to guide them during the tutorial 

session.  The Bayesian Theorem provides a transparent student model to help students 

reflect on their ongoing progress. 

 

The web development of this project applied industry practices in eXtreme Programming 

methodology and Java 2 Platform, Enterprise Edition (J2EE) to enhance the value and 

contribution of this research.  These practices bring the C++ STL ITS closer to the industry 

level and promote its adoption in the educational sector.  The 3-tier system architecture 

forms a strong foundation for future development of Intelligent Tutoring Systems. 

 

 

 

 



 

10 

1.5 Structure of the Thesis 

 

Chapter 2 describes the general architecture of ITS which typically includes a Student 

Module, Domain Knowledge Module, Pedagogical Module and Graphical User Interface 

Module.  It focuses on the techniques employed in student modelling and compares the 

various techniques. 

 

ITS for programming is the main theme in Chapter 3.  Ten ITSs for programming were 

selected for review, ranging from different eras, domain knowledge and techniques.  Four 

aspects of the ITSs were compared: domain knowledge, level of programming, tutoring 

goals and student modelling techniques. 

 

Chapter 4 introduces the domain knowledge of the ITS which is the C++ STL.  It highlights 

the difficulties in learning and teaching C++ STL, discusses two issues with current ITSs – 

dynamic domain knowledge modelling and student modelling with transparency.  This 

chapter places emphasis on uncertainties management and subsequently proposes the 

application of the Bayesian theorem for student modelling. 

Chapter 5 presents the overall architecture of the C++ STL ITS which consists of four main 

modules: Student Modelling Module, Domain Knowledge Module, Teaching Strategies 

Module and Users Administration Module.  The next section briefly describes the eXtreme 

Programming methodology.  This is followed by the specification of the C++ STL ITS 3-

tier system architecture which comprises of client-tier layer, middle-tier layer and data 

source-tier layer.  Two key algorithms are illustrated in this chapter: the XML syntax parser 



 

11 

and student update model.  Lastly, this chapter includes the implementation details of the 

fuzzy expert system using the MATLAB Fuzzy Logic Toolbox. 

The C++ STL ITS system evaluation is furnished in Chapter 6.  Evaluation methodologies 

and evaluation requirements are examined.  The evaluation covers the C++ STL ITS 

architecture.  Results from pre-test, tutorial, post-test and fuzzy stereotyping of students 

expert system are analyzed in detail.  Next, the application of the Bayesian theorem and 

fuzzy logic are evaluated.  This chapter ends with comparison of existing web-based ITSs. 

Finally, chapter 7 concludes the research and proposes future work on the C++ STL ITS. 

 

. 

 

 



 

12 

Chapter 2 Intelligent Tutoring Systems with Focus on Student 

Modelling 
 

Intelligent Tutoring System (ITS) is an advanced training software that mimics a human 

tutor by adapting its instructional approach to each individual student.  ITS was developed 

to overcome the deficiencies of traditional Computer Aided Instruction (CAI) systems.  

These traditional systems were developed to provide students with instruction material in a 

particular topic after which they were tested.  The typical flow of structures in CAI is 

depicted in Figure 2.1 (Smith, 1998).   

 

Students are directed in the course of study by answering a series of questions.  If the 

student answers correctly the next level of instruction is entered and subsequently, new 

problems are selected and presented.  If a student answers the questions incorrectly the 

instructional material is presented again, perhaps in a slightly different format.  If, after the 

material has been repeated, the student again answers incorrectly then remedial instruction 

is invoked.  Remediation usually involves review of the earlier material and requires some 

attempt to identify and rectify the source of errors. 

 

Figure 2.1 reveals that there are some places where flexibility can be introduced to improve 

the model.  One area is to present different problems to solve before invoking the remedial 

lessons.  These could be sub-problems of the original problem or similar problems.  

Another improvement is to provide a choice for remediation to allow more attempts of the 

same problem. 

  



 

13 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Routing within a Computer Aided Instruction System 

(Smith, 1998) 

Such systems seem to imitate intelligence by being able to adapt to student misconceptions.  

However, this is the result of the tutor anticipating all the possible errors that the student 

can make.  The possibilities are hard-coded into the system.  If the tutor anticipated an 

incorrect interpretation, then the system will not be able to provide a remedial instruction to 

the student.  These systems are not capable of dynamically generating response to a 

particular situation like a human tutor. 

In ITS, students interact with the system by answering simple questions about themselves 

and their understanding of the domain knowledge.  The information is then used to find out 

the student’s knowledge.  This is achieved via an expert system.  Then, the ITS will display 

the appropriate interface for the current student. 

 

Remedial 

Instruction 
 

Remedial 

Instruction 
 

Instruction 
2 

Instruction 
1 

Instruction 
3 

Question 

Question 

First Time 

Incorrect 

First Time 

Incorrect 

Correct 

Correct Subsequently 

Incorrect 

Subsequently 

Incorrect 



 

14 

2.1 Components of an ITS 

 

The basic architecture of an ITS consists of the following components (refer to Figure 2.2 

below) : 

i) the domain knowledge, containing the structure of the domain and the 

educational content (Domain / Expert Model). 

ii) the user modelling component, which records information concerning the 

user (Student Model). 

iii) the pedagogical model, which encompasses knowledge regarding various 

pedagogical decisions (Teaching / Tutoring Model). 

iv) the user interface (Student Interface). 

 

 

 

 

 

 

 

 

Figure 2.2 Typical Basic Architecture of an ITS 

 

Shute and Psotka (1996) quoted that an early outline of ITS requirements was presented by 

Hartley and Sleeman (1973).  They argued that ITS must possess : (a) knowledge of the 

domain (expert model), (b) knowledge of the learner (student model), and (c) knowledge of 

User Interface 

User 

Modelling 

Component 

Domain / 

Expert 

Knowledge 

Pedagogical 

Model 



 

15 

teaching strategies (tutor model).  Interestingly, this simple structure has not changed in 

more than 30 years (Shute & Psotka, 1996; Psotka, Massey, and Mutter, 1988; and Sleeman 

& Brown, 1982). 

 

2.1.1 Expert Model 

 

The Expert Model provides the ITS with a representation of the domain knowledge.  

The representation should depend on the domain to be taught.  It is considered the 

heart of an ITS as it heavily influences many other parts of the ITS.  If the 

representation of the knowledge is poor, the whole ITS is deemed unsuccessful. 

 

Experts are commonly classified as (Anderson, 1988) : 

i) Black Box  

In this model, the computer assesses the performance of the student without the 

need of “human intelligence”.  The dialogue between the student and ITS is very 

simple as the computer responds with a simple yes/no to student’s answer.  A clear 

disadvantage is, that the computer does not provide detailed explanation why the 

answer is incorrect (if it is). 

 

ii) Glass Box 

The goal in this model is to make the reasoning of the expert visible for the student.  

The problem solving capability is actually transparent to the student.  One problem 

is that student may not understand the reasoning provided.  The computer should be 

able to provide an alternative reasoning or reformulate the reasoning.  It is important 



 

16 

that the expert system is well-structured to provide better explanation and 

instruction. 

 

iii) Issue-based 

Issue-based tutoring is a modified model of the Black Box.   In this model, the 

programmer attaches instructions to specific issues observable in the behaviour of 

both the expert and the student.  If the student fails to meet the prescribed behaviour 

criterion, the computer will give the feedback immediately.  Feedback includes an 

explanation of the rule.  The dialogue can be just simple feedback on the correct 

action or very complex by providing detailed reasoning behind the behavioural rule. 

 

iv) Cognitive Modelling 

Cognitive models simulate human problem solving which is how human uses 

knowledge.  The model embodies 3 types of knowledge – declarative, procedural 

and heuristic.  Declarative knowledge includes facts or concepts required to solve 

the problems.  Procedural knowledge relates to step by step procedures on how a 

task is performed by the expert.  Heuristic knowledge is the actions and rules of 

expert’s experience in relation to problem solving. 

 

A number of strategies are used to represent and organize knowledge.  Some of 

these are : 

 If-then-rules 

o Often called production rules. 

o Form : IF condition(s) THEN conclusion(s) 



 

17 

 If-then rules with uncertainty measures 

o Uncertainty measures can be used in rule based systems to indicate 

the level of confidence associated with a production rule. 

 Semantic networks representation 

o Represents knowledge as a set of nodes connected by labelled arcs. 

 Frame based representation 

o A frame is a collection of attributes and values and can be regarded 

as an extension of a semantic network. 

 

2.1.2 Student Model 

 

The Student Model represents the student’s level of knowledge.  The computer only 

has an impression of what the student knows.  It influences how the knowledge is 

presented to the student and can be used to predict, describe, and explain student 

behaviour. 

 

The Student Model may consist of four types of items : 

i) personal data (e.g name, email, age) 

ii) interaction parameters  

(information recorded from the interaction with the system) 

iii) knowledge of the concepts 

(include items like multimedia type preferences)  

iv) student characteristics 

(which can either be directly obtainable or inferable) 



 

18 

According to Wenger (1987), student models have three tasks.  

i) They must gather data from and about the learner. This data can be explicit - 

asking the student to solve specific problems or implicit - tracking the 

students navigation and other interactions and comparing them to 

information about similar learner responses.  

ii) They must use that data to create a representation of the student's knowledge 

and learning process. This often takes the form of "buggy" models that 

represent the student's knowledge in terms of deviations from an expert's 

knowledge. The system then uses this model to predict what type of 

response the student will make in subsequent situations, compares that 

prediction to the students' actual response, and uses that information to 

refine the model of the student.  

iii) The student model must account for the data by performing some type of 

diagnosis, both of the state of the student's knowledge and in terms of 

selecting optimal pedagogical strategies for presenting subsequent domain 

information to the student. One of the biggest challenges is to account for 

"noisy" data, the fact that students do not always respond consistently, 

particularly when their knowledge is fragile and they are uncertain about the 

correct responses.  



 

19 

2.1.3 Tutoring Model 

 

The Tutoring Model is also known as the Pedagogical Model or Instructional 

Model.  It captures the expertise of a model tutor and uses it to determine when and 

how to teach and communicate with the student.  Generally speaking, it represents 

the teaching process. 

 

According to Smith (1998), the function of this model is three fold.  Firstly, it must 

control the presentation, ordering and selection of material most appropriate for the 

student.  Secondly, it must be able to answer questions from the student and thirdly, 

it must determine which type of help should be given to the students.  The first two 

functions are commonly associated with the Curriculum Module where as the third 

function is represented by the Instruction Module. 

 

To be effective, the ITS must meet the ever changing needs of the student.  From 

the information in the Student Model, the ITS diagnoses the student’s weaknesses 

and adapts the instruction accordingly.  As the knowledge or skills of the students 

increases, ITS will ideally conform to the evolving level of the student’s 

understanding from novice to an expert.  

   

2.1.4 Student Interface 

 

The Student Interface is linked with the other three models to allow the student to 

explore the ITS learning environment.  In general, it processes the flow of 

communication in and out the ITS. 



 

20 

 

There are two classical approaches to the dialogue: natural or command language 

and graphical interfaces with windows, icons, buttons, and so on.  The ITS should 

be as self- explanatory as possible so that the student is able to interact with the ITS 

without any guidance from a human tutor.  Command language is well understood 

but the language used may not be self-explanatory.  It can be vague as it has still 

some restrictions.  Graphical interface can be distracting as it may draw the 

student’s attention to the interface itself (graphics, icons or various elements) rather 

than the knowledge. 

 

The selected interface should be able to motivate the student to observe and test 

hypotheses as they interact with the ITS.  The goal of this model is to ensure 

successful knowledge communication. 

 

2.2 Student Modelling Techniques 

 

Without an understanding of the knowledge and needs of a student, tutors cannot 

effectively achieve their purpose in teaching.  Tutors are not teaching a domain but they are 

teaching students.  Similarly, ITSs are for students.  Hence, it is important that the system 

models the students and records information about the students as accurately as possible.  

This is necessary in order to facilitate individualized learning.  A lot of research has 

focused on the student modelling techniques.  This section is a summary of some of the 

work. 

 



 

21 

The aim of the student model is to guide the tutor in deciding the best approach or teaching 

strategies for a specific student.  In making the decisions, several factors must be 

considered.  These include the student’s current knowledge and behavioural characteristics, 

the goals of the training or learning objectives, interaction with the students and so on. 

 

Various methods have been used to construct the student model.  These methods have also 

been applied in adaptive hypermedia and hypertext applications.  They include : 

 Overlay model 

 Differential student model 

 Perturbation student model 

 Cognitive model 

 Constraint-based Modelling 

 Machine Learning (ML) techniques 

 Logic-based methods 

 Stereotype-based methods  

 

The subsequent sections elaborate some of the methods above, together with some ITSs and 

their approaches to student modelling.  Systems that use a combination of different 

techniques are also reviewed. 

 

In the 80s, student models were devised to record misconceptions, missing conceptions or a 

combination of both.  A misconception is described as knowledge that the student 

possessed but not by the domain expert.  Missing conceptions are knowledge which the 

expert has but not the student.  (VanLehn, 1988).  The student model was classified as 



 

22 

overlay model, differential student model and perturbation student model or buggy student 

model. 

 

2.2.1 Overlay Model (Carbonell, 1970; Carr & Goldstein, 1977) 

 

In the overlay models, the student’s knowledge is regarded as a subset of expert’s 

knowledge and is extendable (Figure 2.3).  It is particularly applicable when the 

teaching materials can be presented as a prerequisite hierarchy.    In strict overlay 

model, incorrect knowledge is not included.  In other words, it does not cater for 

misconceptions or bugs that the student may have or acquire during the tutoring 

process.  Among the systems that use overlay model for student modelling are 

GUIDON (Clancey, 1992), Grace Tutor (Gray & Atwood, 1992), CALAT 

(Nakabayashi, et al, 1997) and listed in (Kavčič, 2000). 

 

 

Figure 2.3 An illustration of the overlay model (Adapted from Smith, 1998) 

 

The students’ 

knowledge after 

tutoring 

The students’ 

knowledge 

before tutoring 

The experts’ 

knowledge 



 

23 

2.2.2 Differential Student Model 

 

To differentiate between knowledge the student has not yet acquired and knowledge 

the student has not yet been presented with, differential student model was 

introduced.  It is used in the WEST (Burton & Brown, 1982) tutor.  The model is 

depicted in Figure 2.4.  The model partitions the domain knowledge into knowledge 

already exposed and that which has not yet been exposed to the student.  Like the 

overlay model, the differential model does not consider the mistakes made by 

students. 

 

Figure 2.4 An illustration of the differential model (Adapted from Smith, 1998) 

 

2.2.3 Perturbation Model or Buggy Student Model 

 

The perturbation model or buggy student model is illustrated in Figure 2.5.  This 

model considers knowledge which is not in the expert domain knowledge known as 

misconceptions or bugs.  A bug library is included in the expert knowledge.  The 

The knowledge 

the student has 

been exposed to 

The students’ 

knowledge 

The experts’ 

knowledge 



 

24 

list of possible bugs can be produced through analysis of the problem domain and 

errors made by students.  This process is known as enumeration.  The bug library 

can also be generated from an underlying cognitive theory.  The goal of tutoring is 

to increase the student’s knowledge, as in the overlay model, and at the same time 

eliminate any bugs. 

 

 

Figure 2.5 An illustration of the perturbation model or buggy student model  

(Adapted from Smith, 1998) 

 

 

The first ITS based on the study of bugs was developed in 1975 by Brown and 

Burton, known as BUGGY.  The developers attempt to enumerate the different 

possible procedural bugs students might acquire while trying to solve algebra 

problems.  Using its bug library, BUGGY could produce general diagnostic tests to 

identify students’ mistakes.  The use of a static bug catalog restricts the application 

of BUGGY to well defined procedural domains.  Extending the BUGGY model, the 

bug library in the IDEBUGGY tutoring system (Brown & Burton, 1978) is 

developed by enumerating the bugs present in a database of student tutor 

Students’ 

misconceptions 

The students’ 

knowledge  

The experts’ 

knowledge 



 

25 

interactions.  It contains knowledge about frequent irregularities in the students’ 

behaviour to treat misconceptions.  Both systems fail to represent the semantic 

nature of a bug or to explain how a bug was generated.   

 

The PROUST system (Johnson, 1986) performs a sophisticated diagnosis of student 

errors based on a bug catalogue and acts as a consultant for the novice programmer.  

In ASSERT (Baffes & Mooney, 1996), student model is automatically constructed 

and the bug library is refined during the tutoring process using a refinement theory. 

 

2.2.4 Cognitive Model 

 

Cognitive Model is the basis for two well-known student modelling techniques : 

model tracing and knowledge tracing (Anderson et al, 1995). 

 

Model tracing consists of matching every problem-solving action taken by the 

student with the steps of the expert’s solution model of the problem being solved.  

The result of this matching is used to decide when to provide feedback and the type 

of feedback as the student progress through the problem.  

 

Applying the model tracing paradigm, SINT - a Symbolic Integration Tutor  

(Mitrovic, 1996), is capable of solving problems step-by-step along with the 

students. SINT monitors the students while solving problems, informs the student of 

errors and provides individualized help and timely advice.  The approach is not only 

incremental but interactive, since it involves the students in explicit dialogues about 



 

26 

their goals.  The student model is used to guide the generation of instructional 

actions, like generation of explanations and new problems.   

 

Miss Lindquist (Heffernan, 2001) is an ITS designed to engage students on a tutorial 

dialog about symbolization.  In Miss Lindquist, the model tracing paradigm is 

expanded so that it does not only has a model of the student, but also has a model of 

tutorial strategies.  Ms Linquist has tutored over 600 students at 

www.AlgebraTutor.org. 

 

Crowley and her team (2003) have developed the foundations of model-tracing ITS 

in their work on SlideTutor for teaching microscopic diagnosis in 

Dermatopathology.  SlideTutor is designed to provide individualized tutoring to 

students as they search, and interpret virtual pathology slides.  

 

Knowledge tracing employs a simple two-state learning model and Bayesian 

updates.  This student modelling facility is used in the LispTutor to implement 

mastery learning (Anderson & Reiser, 1985).  The Bayesian probability is also used 

to estimate the probability that the student had learned each of the rules in the 

cognitive model. 

 



 

27 

2.2.5 Constraint-based Modelling (CBM) 

 

Constraint-based Modelling (Ohlsson, 1994) represents both domain and student 

knowledge in the form of constraints, where constraints represent the basic 

principles underlying the domain.  Symbolically, the constraint is represented in the 

form <Cr, Cs> where Cr is the relevance condition and Cs is the satisfaction 

condition. The constraints define which problem states are consistent (or correct), 

and which are not. A constraint is relevant to a problem if the Cr is true. All relevant 

constraints must also be satisfied for the problem state to be correct. Otherwise, the 

problem state is incorrect and feedback can be given depending on which relevant 

constraints had their satisfaction condition violated. 

 

In the CFG-MINTS - Context-Free Grammar Multimedia Intelligent Tutoring 

System, CBM reduces complexity of student modelling by focusing on faults only 

and the analysis is reduced to pattern matching (Reyes et al, 2000). 

 

CAPIT - Capitalisation And Punctuation Intelligent Tutor, is designed for, and 

evaluated with, school children in the 10-11 year old age group (Mayo, et al, 2000). 

The system represents the domain as a set of constraints specifying the correct 

patterns of punctuation and capitalisation, and feedback is given on violated 

constraints.  CAPIT is the second ITS to implement Ohlsson’s CBM, the other is a 

tutor for the SQL database language. (Mayo & Mitrovic, 2000) (Mitrovic & 

Ohlsson, 1999). 

 



 

28 

2.2.6 Machine Learning (ML) Techniques  

 

Machine Learning is an area of AI research concerned with developing 

computational theories of learning process and building machines that think and 

learn.  An informal definition of ML is “the ability of a machine to improve its 

performance based on previous results” (dli.grainger.uiuc.edu).  Tom Mitchell 

(1997) provides a formal definition of ML in his book on Machine Learning : 

 

“A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at tasks 

in T, as measured by P, improves with experience E”. 

 

In the definition, Mitchell explained that to have a well-defined learning problem, 

three features must be identified : the class of tasks T, the measure of performance 

to be improved P, and the source of experience E. 

 

Some learning strategies or techniques of ML include rote learning, inductive 

reference, Stochastic Bayesian inference, deductive inference, reinforcement 

learning, neural network learning, clustering, analogical learning and case-based 

reasoning.  Multi-strategy learning is commonly practiced.  The applications of 

some of these techniques in building ITS are discussed in Section 2.3.  Sison and 

Shimura (1996) have also reviewed and compared main applications of machine 

learning to student modelling in the 80s and early 90s. 

 



 

29 

2.2.7 Stereotype-based methods 

 

Stereotype-based methods consist of rules for triggering stereotypes on the basis of 

students’ actions.  Individual student is assigned to one or more stereotypes 

according to his or her level of knowledge.  There are four stereotypes that concern 

the knowledge of student: novice, beginner, intermediate and advanced.    

 

Web PVT (Virvou & Tsiriga, 2001) uses stereotypes in three dimensions to initialise 

the student model.  One dimension concerns the knowledge level of the student.  A 

second dimension concerns the degree of carelessness of a student.  In this category, 

there are three stereotypes: very careful, averagely careful and careless.  Finally, a 

third dimension concerns the student’s knowledge of other languages: student’s 

mother tongue and foreign languages the student may already know.   Based on 

their performance on a preliminary test and their answers to a questionnaire, 

students are initially assigned to one of the stereotypes relating to each dimension. 

 

HyperTutor (Perez et al, 1995) an adaptive hypermedia system employs a pure 

stereotype for student modelling and the student can be categorized as novice, 

medium or expert through some exercises. 

 



 

30 

2.2.8 Combination of Methods 

 

A combination of two or more methods is commonly applied to construct the 

student model.  Different methods are used for initializing and maintaining the 

student model to provide more accurate modelling and allow better analysis of 

gathered information. 

 

Multi-layered overlay models and Episodic User Modelling are used in the web-

based ELM-ART II for learning LISP. Individual student learning history in former 

solving situations is collected in a database of episodes.  The episodes represent 

student’s individual learning history, their behaviour and former problem solving 

situations. 

 

The Conceptual Helper ITS (Albacete & VanLehn, 2000) tutor is basically a model-

tracing ITS enhanced by the use of probabilistic assessment to guide the 

remediation. It is designed to coach students through physics homework problem 

solving of a qualitative nature, i.e., those problems that do not need the use of 

algebraic manipulation to be solved but require the application of conceptual 

knowledge. 

 

A combination of a stereotype and an overlay model is used to represent the 

student’s knowledge of the domain in the web-based ITS using hybrid rules by 

Prentzas et al (2002).  The student model consists of personal data, interaction 

parameters, knowledge concepts and student characteristics.  The student 



 

31 

characteristics are represented with two stereotypes: directly obtainable (multimedia 

type preferences, available Internet connection and educational content preferences) 

and inferable (knowledge level, concentration level and experience in using ITS).  

Its overlay model is based on the concepts associated with the course learning units 

on Internet technologies. 

 

2.3 Machine Learning Techniques in ITS 

 

Beck and Stern (1999) described several promising technologies that have the potential to 

greatly impact the Artificial Intelligence (AI) and Education community. They have 

provided a summary of how these techniques can be used to solve a variety of problems 

relevant to the community.  One of the applications of AI is in the construction of self-

improving tutors.  The tutor has the ability to draw conclusions about effectiveness of 

particular parts of an Intelligent Learning Environment (ILE) and learn about teaching 

strategies.  Currently, specific teaching strategies are hard coded into ITSs.   It is then 

assumed that the teaching style is suitable for all students under all circumstances.  

However, a good tutor must apply various teaching strategies depending on the student.  It 

was pointed by Beck and Stern that one of the biggest challenges is how to get different 

teaching strategies to work together in a single ITS.  Moreover, it is essential for the 

teaching model in the ITS to have the ability to direct students to the most appropriate 

teaching strategies.  Undoubtedly, it is suggested that machine learning is a very suitable 

technique to learn the interactions between the student and the ITS, guiding the student to 

the appropriate tutorial sessions.  This section discusses the application of some well-

known machine learning techniques in the development of ITS. 



 

32 

 

2.3.1 Case-based Reasoning 

 

Case-based reasoning (CBR) (Hopgood, 2001) is a problem solving paradigm that  

is used to solve a new problem by remembering a previous similar situation and by 

reusing or recalling information and knowledge of that situation.  CBR involves two 

difficult problems: determining the relevant case and adapting the case to the 

current situation.  Two ITSs that applied the CBR are described below – PROWIZ 

(ETU Projects, 2001) and RMT (Wiemer-Hastings & Malatesta, 2001). 

 

PROWIZ (Programming Wizard) uses CBR approach for identifying errors and 

providing solutions to the problems.  It aims at guiding Java programmers to solve 

syntax errors.  The main tasks that PROWIZ have to deal with are to identify the 

problem situation, find a similar past case, use the case found to suggest a solution, 

evaluate the solution and finally update the system by learning from this experience. 

 

Taking a case-based approach, the RMT (Research Methods Tutor) presents a 

research question to the student, and asks the student to address the question 

through in-depth discussions.  It also allows the system to develop the student's 

analogical reasoning. RMT brings in related research paradigms to help the student 

infer both similarities and differences with their approach.  RMT also employs the 

Structured Latent Semantic Analysis (SLSA) language analysis system (Wiemer-

Hastings, 2000). This system uses part-of-speech tagging, anaphora resolution, and 

shallow parsing to split input sentences into their subject, verb, and object segments 



 

33 

and to replace pronouns with their antecedents. Compared to the standard LSA 

(Wiemer-Hastings & Zipitria, 2001), this technique provides a better match to 

human similarity judgments. Additionally, this allows the tutoring system to know 

what part of the student's answer matched an expected good answer, and what part 

did not match. This efficient matching allows RMT to have a more effective dialog 

with the student, thus leading the student to the complete correct answer. 

 

2.3.2 Theory Refinement 

 

Baffes and Mooney (1993) approach in applying a machine learning technique 

called theory revision is a novel idea.  The key application of the theory refinement 

to student modelling is to facilitate the automatic construction of a bug library.  The 

bug library can contain both common and unique misconceptions.  This is very 

useful in guiding students to different teaching strategies. 

 



 

34 

2.3.3 Fuzzy Logic, Neural Network or Hybrid 

 

Fuzzy logic techniques have been used to manage uncertainties in student 

modelling, such as behaviour, understanding and cognitive abilities.  Fuzzy logic 

uses the continuum of logical values between 0 and 1, instead of just 2 Boolean 

values.  Zadeh (1965), the founder of fuzzy logic provides the following definition 

for fuzzy logic : 

“Fuzzy logic is determined as a set of mathematical principles for 

knowledge representation based on degrees of membership rather than on 

crisp membership of classical binary logic”. 

 

In classical set theory, crisp set A for a universe X is defined as function fA (x) called 

the characteristic function of A (Negnevitsky, 2005) : 

 1,0:)(fA Xx  (two-valued Boolean logic)   (2.1) 

where 

 fA (x)=  
A x if 0,

A x if 1,




 

 

Crisp set theory is represented by two-valued Boolean logic: true (1) or false (0).  

This logic cannot represent vague concepts.  It can answer the question, ‘Does the 

student understand the topic?’, and say ‘yes’, but not the question, ‘How much does 

the student understand?’  Fuzzy logic is able to answer the latter question.  

Therefore, it is very suitable for student modelling in ITS. 

 



 

35 

Fuzzy logic is built upon fuzzy set which has the capability to model a smooth 

transition across a boundary.  In the fuzzy set theory, fuzzy set A of universe X is 

formally defined by function )(xA  called the membership function of set A 

(Negnevitsky, 2005) : 

 ]1,0[:)( XxA        (2.2) 

where 

 )(xA  = 1 if x is totally in A 

 )(xA  = 0 if x is not in A 

 1)(0  xA  if x is partly in A 

 

The membership function assigns a membership number to each element x of the 

universe.  Applying a suitable membership function to the set of values will produce 

a graceful transformation across a boundary.  

 

Fuzzy sets theory is used in fuzzy inference process to map a given input to an 

output.  In student modelling, the input comprises information such as student’s 

actions and knowledge, and the desired output is knowledge gained and problem 

solving abilities. 

 

In Brilliant Scholar Series 1 (BSS1) (Warendorf & Tsao, 1997) for tutoring subjects 

such as mathematics and sciences, a general fuzzy logic engine was developed to 

better manage student’s learning.  The main elements in the engine are: a 

knowledge base, a fuzzification unit, a fuzzy logic reasoning unit and a 

defuzzification unit.  The engine is able to read in a knowledge base at runtime and 



 

36 

use this knowledge to perform inference on input variable.  As the required internal 

parameters are fixed, an average engineer would be able to design a simple expert 

system using the inference engine. 

 

Stathacopoulou and team (1999) proposed a neuro-fuzzy synergism for student 

modelling. Fuzzy logic techniques are used to provide human-like approximate 

diagnosis of student's knowledge and cognitive abilities.  On the other hand, neural 

networks are trained to imitate human teacher's decisions regarding student's 

characteristics, knowledge and cognitive abilities in a domain.  The combination of 

these two techniques enhances the student model enabling the ITS to mimic a 

human tutor. 

 

Neural network was used to assess whether the student is struggling with a problem 

and predict the appropriate problem for the student to solve (Wang & Mitrovic, 

2002).  The assessment of errors performed well but the selection of problems was 

less successful.   

 

2.3.4 Bayesian Network or Probabilistic Model 

 

A Bayesian Network or probabilistic model (Heckerman, 1996) is a graphical model 

or representation of a probability distribution among a set of variables.  With a 

rigorous formalism, the model is able to learn the parameters and structure of a 

Bayesian network from data or a combination of data and prior knowledge. It has 



 

37 

become a popular representation for encoding uncertain knowledge in expert 

systems. 

 

The model is commonly expressed as a directed acyclic graph.  Each node in the 

graph corresponds to a piece of conceptual knowledge that the student is expected 

to learn or a misconception that the tutor can help remedy. The arcs represent the 

underlying dependencies of the domain knowledge.  Each node has a value attached 

to it that indicates the probability that the student will apply the piece of knowledge 

when it is applicable.  As the student solves a problem or applies knowledge, the 

probabilities are updated according to the actions taken by the student. 

 

AnimalWatch (Arroyo et al, 2003) maintains Bayesian-probabilistic overlay student 

model that allows it to make inferences about each student's knowledge during the 

problem solving tasks. Based on these estimations about how students perform in 

relation to the problems that are given to them, AnimalWatch adjusts its problem 

selection to give students problems that will challenge them, so that they improve 

with the guidance provided by the system. 

 

WITS - Whole-course Intelligent Tutoring System is essentially an expert system 

which tries to simulate the expertise of the tutor (Callear, 1997).  The student model 

aims to be the type that tutors use, and is built up using multiple choice questions, 

with probabilities attached to the possible answers.  Besides awarding marks to 

student’s correct answers, each answer is significant and is assigned a 



 

38 

corresponding probability that contributes to an overall probability that the student 

is benefiting from the course. 

 

The student modelling based on Bayesian Network is also applied in the VITAL 

architecture for teaching statistics (Madigan et al, 1995) and in (Fernandez & Sison, 

2001) to model the student’s understanding in a programming domain. 

 

In VITAL, the domain knowledge is represented with a Bayesian network graphical 

model.  Each node in the graph corresponds to a facet with probabilistic links.  A 

facet is a piece of content knowledge used by the student.  Hence, the student model 

is represented by a probability distribution over the facets.  Teaching operators or 

instructional module are associated with each facet to update the probabilities 

during interactions with individual students.  The design of the domain model is a 

cumbersome task due to the need to identify all the concepts and misconceptions 

that students have.  Moreover, for each group of facets, appropriate teaching 

operators and instructional strategy need to be devised. 

 

The Bayesian student model proposed by Fernandez and Sison (2001) represents a 

programming learning hierarchy for novice programming.  The model depicts the 

prerequisite relationships among topics with nodes containing probabilities that the 

student has acquired those skills.  A number of issues are still outstanding in the 

research: establishing the rules for setting and updating prior probabilities and 

dependencies among the network nodes, customising the updating algorithm, 

identifying type of student misconceptions and employing a learning algorithm. 



 

39 

 

2.4 Neural Networks vs Bayesian Networks 

 

Artificial Neural Networks (ANNs) are biologically inspired structures of generalized 

mathematical models of human cognition.  An ANN architecture consists of neurons that 

are connected together either in single layers or in multiple layers, and processing 

information in parallel.  Figure 2.6 shows an ANN topology with 5 input neurons, 4 hidden 

neurons and 2 output neuron.  Signals are passed between neurons over connection links.  

Each connection link has an associated weight which multiplies the input.  The weight is 

altered throughout the “training” period.  A given neural network can be trained either in 

the supervised or unsupervised mode.  In supervised mode, training is achieved by 

presenting the network with the input data and its associated target output values.  The 

weights of the network are then adjusted according to a given learning algorithm.  The 

weights are modified to make the network output as close as possible to the expected 

output.  Only input values are provided in an unsupervised training mode.    Similar input 

data are grouped together and trained with various weights to produce the same output 

values. 

 

Each neuron applies a non-linear activation function to the sum of its weighted inputs to 

derive its output signal.  Initially, the weights are assigned randomly.  The network learns 

by propagating the prediction error backwards through the network, to modify the weights.  

This is the most widely used learning algorithm known as the backpropagation learning 

algorithm.   



 

40 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 A Neural Network Topology 

 

NN has the ability to deal with variance in the data provided.  When presented with 

incomplete data, NNs are capable of producing an approximate answer rather than an 

incorrect one.  Similarly, when presented with data that was not previously used in the 

training, the network will generally produce a reasonable output.  They are frequently used 

in classification tasks and its parallelism makes them highly suited to parallel processing 

computers.   

 

However, much time and effort are required to design and train the network with various 

weights to produce the optimal result.  The NN designer has to perform a large amount of 

trial and error to configure the network for a particular problem. The configuration includes 

the number of inputs, appropriate number of hidden nodes and the desired output.  There is 

weight 

Y1 

Hidden 

Layer 

With  

Activation 

Function 

 

Output 

Layer 

Input 

Layer 

Y2 



 

41 

no clear rule to determine the number of hidden nodes in the network topology.  Much 

training effort is then required to obtain the optimal number of hidden nodes.  The learning 

rate, momentum rate and other parameters have to be determined as well during the 

training.  In most cases, the design is still poorly understood and it is treated like a black 

box. (Beck & Woolf, 1998, Prentzas et al, 2002).   The neural systems are just not intuitive 

for end users to understand the reasoning process.   

 

Bayesian Networks (BNs) are named after Rev. Thomas Bayes, an 18th-century 

Presbyterian minister and mathematician.  He devised a mathematical formula for 

explaining how existing beliefs should be changed in the light of new evidence for or 

against the belief using probability theory.  The basic probability theory is examined in the 

next chapter. 

 

A BN consists of directed acyclic graph and a corresponding set of conditional 

independence probability distributions.  The probabilities are encoded into the nodes in the 

graph representing the strength of the relation among the nodes.  To handle uncertainty, the 

probability of a belief or assertion is updated based on new evidence on the assertion. 

 

Bayesian updating is based upon a well proven statistical theorem – Bayes’ Theorem.  The 

technique employs deductive probabilities which are easier to estimate and understand than 

abductive one.  Initial values for the probability of an event (effect) occurring given another 

event (cause) are included in the graphical model.  The theorem is applied to update an 

effect in response to one or more causes. 

 



 

42 

Both Neural networks (NN) and Bayesian networks (BN) have the ability to deal with 

uncertain knowledge.  Both networks can automatically generate predictions or decisions 

even when key pieces of information are missing.  They are also both represented 

diagrammatically with a graph-like structure containing nodes.  In NN, each node holds a 

value corresponding to the domain problem, whereas in BN each node contains a 

probability.  Weights in the NN are randomly generated.  However, the probabilities in the 

nodes of a BN are assigned in an ad hoc manner.  BN maps out a cause-effect relationship 

among the key variables in a problem.  An Artificial NN (ANN) models a similar kind of 

relationship whereby the input neurons in an ANN are generalized to produce the desired 

output. 

 

NNs need to be trained exhaustively before it can reach an optimal prediction.  One could 

never get sufficient data to train a network.  Its dependency on historical data is an apparent 

limitation.  Hence, it cannot give an optimal prediction with unforeseen data.  Without the 

need of training previous data, BN is able to generate a good predication as the heart of 

BNs is the Bayes’ theorem which is a proven statistical theorem.  This enables the BN to 

offer an efficient method to handle ambiguity or lack of information.  In the VITAL 

architecture (Madigan et al, 1995), the Bayesian graphical model approach is shown to be 

more straightforward and transparent than a NN approach. 

 

Table 2.1 summarises the findings for the comparison of NN and BN.  Overall, BN 

bypasses NN as the more popular and beneficial technique in the development of ITS. 

 



 

43 

Table 2.1 Similarities and Differences in Neural Networks and Bayesian Networks 

NEURAL NETWORKS BAYESIAN NETWORKS 

Similarities 

Ability to deal with uncertain knowledge. 

Generate predictions even with incomplete data. 

Represented diagrammatically with graph-like structures. 

Ad hoc node values. 

Models cause-effect relationships. 

 

Differences 

Often regarded as a “black box” Model is inspectable 

Exhaustive training required to learn first 

and design the optimal network – pre-

learning required. 

Learns as it updates the network – on-going 

learning. 

 

2.5 Summary 

The following table summarises the student modelling techniques discussed above, together 

with the ITSs that employ the technique and brief evaluation.  The techniques are 

categorized as Primary models, Cognitive model and Machine Learning.  The overlay, 

buggy and stereotype-based models are classified as Primary models.  These models are 

classic and applied in most of the ITSs.  Machine Learning techniques employed include 

neural network, fuzzy logic, Bayesian network or probabilistic model, case-based 

reasoning, constraint-based model, theory refinement and neuro-fuzzy. 

 



 

44 

Table 2.2 Summary of Student Modelling Techniques 

STUDENT 

MODELLING 

TECHNIQUES 

INTELLIGENT 

TUTORING 

SYSTEMS 

BRIEF DESCRIPTION 

AND EVALUATION 

Primary Model   

Overlay Model GUIDON  

GraceTutor 

CALAT 

WILEDS (Kassim, 

et al, 2001) 

The goal of tutoring is to enlarge the 

student’s knowledge which is assumed 

to be a subset of the expert’s 

knowledge. 

Most widely employed. 

Student’s misconceptions are not 

considered.  Lack accuracy. 

Buggy Model BUGGY 

IDEBUGGY 

PROUST 

ELM-ART II 

ASSERT 

Maintains a bug library – static and 

dynamic. 

 

Time consuming to build. 

In a static bug library, it is not possible 

to consider all bugs or misconceptions. 

ASSERT overcomes this problem by 

refining the bug library as students 

progress in their learning.   

Stereotype-based Web PVT 

Hypertutor 

 

Assigns a stereotype to categorise 

students. 

Simple and straightforward. 

Powerful in providing considerable 

information based on a few 

observations. 

 

There are uncertainties in the 

classification.   

Need to assume an initial stereotype.   

Lack accuracy. 

Cognitive Model   

 Model tracing 

 

 Knowledge tracing 

 

 

LispTutor  

Geometry Tutor 

(Anderson et al, 

1986) 

Miss Linquist 

SINT 

SlideTutor 

PAT (Algebra Tutor) 

(Ritter et al, 1998) 

Well-established and successful. 

 

Drawback – Teaching strategies are 

directive. 



 

45 

Table 2.2 (continued) 

 

Machine Learning   

Neural Network On the use of NN in 

ITSs  

 

On the effectiveness 

of a NN for 

Adaptive External 

Pacing  

 

Behaves like an expert if trained 

successfully. 

 

Used to simulate student’s cognitive 

process and for adaptive external 

control of student’s learning speed. 

 

Produce an approximate answer if data 

is incomplete or noisy. 

Time consuming to design a suitable 

network – need trial and error. 

Reasoning is obscure. 

Fuzzy Logic BSS1 Tutoring 

System (Warendorf 

& Tsao, 1997) 

 

Sherlock II  

(Katz et al, 1992, 

quoted in 

Stathacopoulou et al 

1999) 

Able to handle imprecise and vague 

information, such as student’s actions, 

knowledge and performance. 

 

Difficult to model the problem 

suitably, define fuzzy parameters and 

suitable membership functions for 

fuzzy sets, and develop a 

comprehensive set of rules relating 

input and output parameters. 

Bayesian Network or 

Probabilistic Model 

AnimalWatch 

WITS 

VITAL 

Technique is based on a proven 

statistical theorem. 

 

An ad hoc technique. 

Need to assume a probability to a 

knowledge acquired or action taken. 

Difficult to obtain accurate estimates 

of likelihood of events and 

combinations of events. 

Case-based Reasoning PROWIZ 

RMT 

 

Encourage students to refer to 

previously solved problems for 

feedback. 

Used to improve adaptability of ITS. 

 

Determining and adapting a case 

involves a certain complexity. 

Constraint-based Model CFG-MINTS 

CAPIT  

 

Natural representation for multiple 

correct solutions to the same problem. 

 

Constraints need to be carefully 

designed to meet required objectives. 



 

46 

Table 2.2 (continued) 

 

Theory Refinement ASSERT  

 

Used to introduce errors into an 

initially correct knowledge base to 

model incorrect student behaviour. 

Automatically makes revisions to 

improve accuracy of knowledge. 

 

Limited domain application.   

Most theory refinement algorithms are 

designed for classification. 

Hybrid  

 

 Neuro-fuzzy 

 

 

 

 

 

 

 

 

 

 Neurules 

 

 

Neural Network-

based Fuzzy 

Modelling of the 

Student  

 

 

 

 

 

 

A Web-based ITS 

using Hybrid Rules 

 

 

 

Fuzzy logic techniques are used to 

evaluate student’s knowledge and 

cognitive abilities.  Neural Networks 

are trained to evaluate student’s 

characteristics and decide appropriate 

teaching strategy. 

Permits representation and processing 

of incomplete, imprecise and vague 

information about the student. 

 

Hybrid rules integrating symbolic 

rules with neurocomputing. 

Used to derive values of inferable 

student characteristics (knowledge, 

concentration level and experience). 

 

Benefits: Time-efficient, space-

efficient, able to conclude based on 

partial inputs, easy to update, produce 

natural explanations on conclusions 

and enable exploitation of various 

knowledge sources. 

 

 

Table 2.3 below furnishes the type of applications that are suitable for a specific student 

modelling technique.  In general, overlay model, stereotype-based and cognitive model 

have a wider scope of applications.  The other techniques are more application-specific.  

Another trend observed is that almost all of these techniques have been applied in the 



 

47 

domain of programming.  It shows that intelligent tutoring systems are commonly 

implemented to teach the syntax of a programming language. 

 

Table 2.3 Area of Applications of Student Modelling Techniques 

STUDENT MODELLING 

TECHNIQUES 

AREA OF APPLICATION CURRENT 

APPLICATIONS 

Overlay Model General. 

Applicable to all domain 

knowledge. 

 Programming 

Language 

Buggy Model Most applicable to programming 

language domain knowledge. 
 Programming 

Language 

Stereotype-based General. 

Applicable to all domain 

knowledge. 

 Language – 

Passive Voice 

 Programming 

Language 

Cognitive Model General. 

Applicable to all domain 

knowledge. 

 Programming 

Language 

 Mathematics 

 Medical 

Neural Network Applications that contain a 

significant large amount of data that 

can be trained to act like an expert. 

 Programming 

Language 

Fuzzy Logic Applications that need to manage 

uncertainties or vagueness. 
 Programming 

Language 

Bayesian Network or 

Probabilistic Model 

Applications that need to manage 

uncertainties based on existing 

probabilities. 

 Programming 

Language 

 Statistics 

Case-based Reasoning Law and Medical – Previous cases 

can be identified, analysed and 

discussed. 

 Programming 

Language 

 Research 

Methods 

Constraint-based Model Pattern matching.  Grammar 

 Database 

Language 

Theory Refinement Limited applications. 

Mostly designed for classification. 
 Programming 

Language 

 



 

48 

Chapter 3 ITS for Computer Programming 
 

The application of ITS encompasses a wide range of education and training domain.  These 

include flight training simulation, medical sciences, law, engineering and computer science.  

Its extensive coverage manifests the effectiveness of ITS in providing one-to-one tutoring.  

One major area is the research and development of ITS for computer programming.  ITSs 

to teach various programming languages from the 1980s to the current millennium have 

matured in the areas of the choice of programming languages, level of programming, 

tutoring goals and application of Artificial Intelligence techniques. 

 

3.1 Prior Work – Overview 

 

3.1.1 LispTutor (Reiser, Anderson & Farell, 1985) 

 

LispTutor was developed to teach the basic principles of programming in LISP.  

Students are provided with a problem description and are required to enter their 

code.  The LispTutor guides their left-to-right, top-down attempts in a highly 

directed fashion by interpreting their code as a correct or buggy solution and 

advising immediately when errors occur. 

 

LispTutor is an application of the Adaptive Control of Thought (ACT*) theory of 

cognition (Anderson, 1983); and now the ACT-R theory (Anderson, 1993).  The 

theory distinguishes between declarative knowledge (eg. knowing a theorem) and 

procedural knowledge (eg. an ability to apply the theorem).  Much of the theory has 



 

49 

been concerned with the acquisition of cognitive skills which refer to a set of 

production rules acquired in the domain.  The expert model was created as a series 

of correct and buggy production rules of a Goal-Restricted Production Systems 

Architecture (GRAPES).  It has 375 correct production rules and about 475 buggy 

production rules to diagnose the student’s errors.  The effectiveness of these rules 

depends on the complexity of the lesson and how well the lessons were 

implemented.  Obviously, developing the rules is a tedious and time consuming 

task. 

 

To model the student, LispTutor employs model tracing or the knowledge tracing 

model.  Model tracing systems analyze problem solving activities and maintain a 

model of problem solving which is traced against the students’ actions.  Applying 

an overlay model, any differences between the students’ solution and the systems 

can be acted upon and suitable action taken.  Three components are utilized in the 

implementation of the model tracing methodology: expert’s model, bug catalogue 

and pedagogical strategies. 

 

The model tracing method has the advantages of early diagnosis of students’ 

misconceptions, providing immediate feedback to the students.  The students are 

always guided closely to the correct solution.  However, the steps are rather rigid 

and the students are not encouraged to explore other possibilities or alternative 

solutions. 

 

The evaluation results demonstrated that the LispTutor has achieved its tutorial 

goals and is more effective than the standard teaching strategies.  However, its 



 

50 

highly directive nature is more suitable for less experienced students.  Better 

students prefer more control of the problem-solving tasks and not being constrained 

in some unnecessary way. 

 

3.1.2 PROUST (Johnson, 1986) 

 

PROUST (Program Understanding for Students) involve students entering code to 

solve a given problem description.  PROUST is an intention-based diagnosis system 

for novice Pascal programmers.  In intention-based diagnosis, errors in a program 

are found through a process of understanding the intended program design, and 

determined whether those intentions were satisfied.  It has the capability to identify 

a wider range of errors because it allows detailed diagnosis of design errors.   

Johnson (1986) defined intention-based error diagnosis as follows: 

 

“A system for diagnosing errors in artifacts is intention-based if it finds 

errors based on an interpretation of the cognitive process which generated 

the artifact, rather than on an interpretation of the structure or behaviour of 

the artifact itself.” 

 

Based on the program description and a given solution, PROUST analyses novice 

programs, diagnoses each program’s non-syntactic bugs, and explains the bugs and 

their causes to the students.  It is also a buggy-based system driven by a bug-

catalogue that identifies the misconceptions that students may have in solving 

Pascal programs.  



 

51 

 

As a program analyser, PROUST analyses student programs and gives a printed 

feedback on the errors found, but it is not integrated within a real learning 

environment.  Therefore, students are not allowed to request feedback as 

programming progresses.  It is not a programming tutor, and lacks a pedagogical 

model.  Moreover, the problem descriptions to analyse a program are limited.  

Writing a problem description of a program is also time consuming and not easy for 

an ordinary tutor.  Another limitation of PROUST is that it has difficulty in dealing 

with syntactic variabilities.  There are still bugs that are not encountered for, and 

PROUST cannot explain them appropriately to the students. 

 

3.1.3 BRIDGE (Bonar and Cunningham, 1988) 

 

In BRIDGE, the student is presented with an introductory programming problem 

and passes through three phases while solving the problem in Pascal. 

 

In the first phase, the student constructs a set of step-by-step instructions by 

selecting the English phrases from the Natural Language Plan Selection menu.  In 

Phase 2, the student matches these instructions to programming plans which are 

standard concepts and techniques for programming, and builds a program.  Briefly, 

the student matches the plans to programming language constructs and uses these to 

develop a programming language solution to the original problem. 

 



 

52 

BRIDGE is highly interactive and it has been designed for students who have some 

familiarity with programming plans.  The terminology and complex screen display 

of BRIDGE is rather overwhelming.  The initial evaluation showed that students 

had difficulty in using BRIDGE, particularly in Phase 2.  They lost track in the 

matching of their English phrases from Phase 1 with a menu selection of 

programming plan names.  In addition, the teaching strategy is rather inflexible. 

 

3.1.4 ASSERT (Baffes and Mooney, 1996) 

 

ASSERT (Acquiring Stereotypical Student Errors by Refining Theories) is a 

generic program for building ITS using the idea of refinement-based modelling and 

refinement-based remediation.  ASSERT was used to develop a tutor for teaching 

concepts in C++ programming.  The C++ Tutor tests a student’s ability to classify 

program segments rather than the ability to write a program.  It is more like an 

intelligent testing system. 

 

The theory refinement implemented in ASSERT is based on general machine 

language technique.  It is a method for automatically revising a knowledge base 

using a database of classified examples.   The NEITHER (Baffes and Mooney, 

1993) theory refinement system, a successor to the EITHER system (Ourston & 

Mooney, 1994), is used to provide a correct representation of the domain using 

propositional Horn-clauses knowledge representation (Baffes, 1994).  The 

representation takes two inputs, a propositional rule base called the theory, which is 

refined using a set of input examples.  The examples are lists of feature-value pairs 



 

53 

chosen from a set of observable domain features.  Each example has an associated 

label or category which is provable using the theory given with the feature values in 

the example.  NEITHER can generalize or specialize a theory, without user 

intervention, and is guaranteed to produce a set of refinements that are consistent 

with the training examples. 

 

A summary of the theory refinement technique is as follows.  Propositional Horn-

clause theories can have four types of errors.  An overly-general theory is one that 

causes an example to be proven in an incorrect category, which is a false positive.  

NEITHER adds new antecedents and deletes rules to fix such problems.  An overly-

specific theory causes an example not to be proven in its own category, which is a 

false negative.  NEITHER deletes existing antecedents and learns new rules to fix 

these problems. By making these four kinds of syntactic rule changes, NEITHER 

can correct the semantics of the theory by altering the conditions under which rules 

are satisfied (Baffes, 1994). 

 

Refinements produced by NEITHER are used to generate explanations for the 

correct use of the rule which is changed, and examples which use the rule.  Various 

student errors detected by NEITHER are used to automatically construct a bug 

library.  The bug library algorithm is able to model both common and unique 

misconceptions.  It is a major improvement to earlier systems like LispTutor and 

PROUST which has a static bug library. 

 



 

54 

Experiments conducted show that ASSERT can be used to construct tutorials which 

would significantly improve students’ performance (Baffes, 1994).  The theory 

refinement is able to generate more accurate student model and support 

individualized feedback. 

 

As pointed out by Baffes (1994), most mature theory refinement algorithms 

developed thus far are designed for classification.  Baffes quoted that enhancements 

in first-order logic refinement methods (Richards & Mooney, 1995) allow ASSERT 

to address a wider range of applications.   

 

3.1.5 ELM-ART (Weber & Specht, 1997) 

 

ELM-ART II (Episodic Learner Model Adaptive Remote Tutor) is an intelligent 

interactive and adaptive learning textbook to support learning programming in 

introductory LISP on the WWW.  It was developed to overcome the shortcomings 

in its predecessor ELM-ART (Brusilovsky et al, 1996) and built, based on ELM-PE 

(Programming Environment) (Weber & Möllenberg, 1995).  ELM-PE is an on-site 

intelligent learning environment that supports example-based programming, 

intelligent analysis of problem solutions, and advanced testing and debugging 

facilities. 

 

ELM-ART II represents knowledge about units to be learned in terms of a 

conceptual network.  Units are organized hierarchically into lessons, sections, 

subsections, and test pages.  The knowledge-based component of the system uses a 



 

55 

combination of a multi-layered overlay model and an episodic user model.  The 

multi-layered overlay model (Weber, 1999) assumes that a student’s knowledge is a 

subset of the expert’s knowledge that allows for adaptive link annotation and 

individual curriculum sequencing.  The model consists of four layers relating to the 

concepts in the domain knowledge as depicted below : 

 

Table 3.1 Multi-layered Overlay Model in the ELM-ART II 

LAYERS CONCEPTS REPRESENTED 

First Layer Page of a corresponding concept already visited 

Second Layer Exercise or test of a concept attempted and the results 

Third Layer Inferred concepts 

Fourth Layer Known concepts 

 

To allow individual curriculum sequencing, links on each page are updated based 

on five learning states of a corresponding concept : ‘already learned’, ‘inferred’, 

‘stated as known by the user’, ‘ready and suggested to be visited’ and ‘not ready to 

be visited’.  The NEXT button in the navigation bar of the web pages allows the 

student to ask the system for the best next step.  The next page is intelligently 

derived from the general learning goal and the learning state of the concepts.  The 

next suggested page will refer to the concept that is not annotated to one of the first 

three learning states and that is the next one ready to be learned. 

 

In an episodic user model, knowledge about the student is stored in terms of a 

collection of episodes or cases.  It encourages the student to reuse previously 

analysed sample code to solve a current problem.  ELM-ART II can predict the 

student's way of solving a particular problem and find the most relevant example 

from the individual learning history.  To construct the student model, the code 



 

56 

produced by a student is analysed in terms of the domain knowledge and a task 

description.   

 

Results of an empirical study show that individual adaptive guidance by the system 

is especially helpful for the novices.  Students who are familiar with Web browsers 

welcome the link annotation and maintain a longer interest in the learning system 

when links are annotated adaptively.  The experiment also shows that the number of 

navigation steps is reduced by both adaptive navigation support and individual 

curriculum sequencing with the NEXT navigation button. 

 

3.1.6 Virtual Campus PROLOG Tutor (Peylo et al, 2000) 

 

The VC PROLOG Tutor analyses the problem solving tasks through the analysis of 

solutions (or partially completed solutions).  It compares the layout and structure of 

the student’s code with one or more example solutions.  The error analysis module 

has to assume that the student will use the basic layout conventions.  The analyzer 

interprets the error dictated and presents them to the user with the corrections and 

explanations.  A graphical display of the program execution is available to enable 

the students to visualize and understand the way a PROLOG program works. 

 

The domain knowledge is organized in a concept lattice to represent the 

dependencies between concepts.  To support intelligent problem solving, concepts 

are related to skills.  Concepts and skills are fundamental for understanding and 

learning to write programs in PROLOG. 



 

57 

 

To judge the student’s understanding of PROLOG, two information sources are 

used: URL-tracking to detect visited PROLOG concepts and the results from the 

intelligent analysis of the problem solving assignments.  The problem arises when 

student browses the lecture notes but does not work on the assignment.  In this 

situation, the system is not able to accurately determine the degree of the student’s 

understanding.  Information from both sources must be available to identify the 

transfer of theoretical knowledge taken from the learning material to problem 

solving. 

 

3.1.7 Tutor on C++ Programming (Kumar, 2002) 

 

The model-based reasoning is used for domain modelling, explanation generation 

and program animation to teach students to analyze and debug C++ programs for 

semantic and run-time errors.  A model of the domain is first constructed.  In this 

case, it is the model of the C++ language.  The model is used to simulate the 

expected behaviour predicted by the student.  The discrepancies between these two 

behaviours are used to predict the student model and to generate feedback to teach 

the student. 

 

The model knows the correct answer and therefore it doubles as the runnable expert 

module.  Another main advantage of model based reasoning is its contribution to 

dynamic generation of problems.  Unlimited number of problems are generated by 

randomly instantiating BNF-like grammar.  Each rule of grammar can be carefully 



 

58 

designed with specific pedagogical objectives in mind.  However, building the 

domain model is an expensive task both in terms of time and expertise. 

 

In general, the evaluation of the tutor shows that the tutor does help the students to 

improve their performance. 

 

3.1.8 JITS - Java Intelligent Tutoring System (Sykes, 2003) 

 

The web-based JITS prototype is designed using cognitive science and Artificial 

Intelligence techniques.  It models a small subset of the Java programming language 

for students in the College and University level. 

 

There are four modules in the JITS architecture – curriculum design, the AI module, 

the distributed web-based infrastructure, and the user interface design.  JITS focuses 

on the methodology by which a student attempts to solve a problem.  Giving the 

correct answers to a given program specification is not the final goal in the tutoring 

system.  Pedagogical issues including conventions, style and professional 

programming techniques are modelled in JITS. 

 

To provide intelligent feedback, the JITS AI Module examines the student’s code 

after being analyzed by the Java Parser.  If the parser fails, the Fuzzy Scanner 

module is invoked to construct feasibly-sound variations of the student’s code and 

proceeds to compile and run them.  The information is then passed into the 

syntactic_decision_tree to determine appropriate feedback.  A Java Parse Tree is 



 

59 

constructed upon a successful parsing.  The code is then compiled and executed.  In 

this situation, semantic_decision_tree is used to determine feedback or hints.  The 

two decision trees represent the strategic and judgmental knowledge for a specific 

programming problem (Scott et al, 1991). 

 

The project is in progress and it is hypothesized that the completed prototype will 

be sufficient to prove that the completed JITS will provide an interactive learning 

environment to improve student’s performance (Sykes, 2003). 

 

3.1.9 Pseudocode Tutor (Chad Lane & VanLehn, 2003) 

 

Pseudocode Tutor is based on Coached Program Planning (CPP), a dialogue-based 

style of tutoring for novice program design.  A similar idea is adopted in BRIDGE 

which allows the student to build the natural language solutions via menu 

selections.   

 

The system employs a four-step pattern found in the dialogues and uses keywords to 

understand student input.  The tutor repeatedly asks the student to (1) identify a 

programming goal, (2) describe a technique to achieve this goal, (3) suggest 

pseudocode steps to implement the technique, and (4) place the steps correctly 

within the pseudocode.  This dialogue pattern continues until all the programming 

goals are satisfied and the pseudocode completed.  The collaborative nature of the 

dialogue allows the refinement of the answers.  Other issues that may arise from the 

interactions are the layout and organization of the pseudocode.  These sub-dialogues 



 

60 

include the improper sequencing steps that produce a logic error and improper 

indentation. 

 

A computer-mediated, human-to-human study to evaluate the usability of the 

environment and the effect of CPP on novices revealed positive results.  It showed 

that students exhibit less unpredictable programming behaviour during the 

implementation, more productive with comments in their programs and commit 

fewer structural mistakes, like indentation. 

 

The system is still under development.  The results from the controlled-experiment 

revealed that using natural language to derive the pseudocode to prepare students in 

writing the program is effective.  Pseudocode is a well-established approach to 

teach programming and design.  On the other hand, the effectiveness and 

naturalness of the techniques adopted in the dialogue remains to be seen.  There are 

other open issues identified by Chad Lane and VanLehn (2003) – representation of 

the wide variabilities of solutions, appropriate reasoning method to derive the sub-

dialogues and more analysis of the data.  The analysis includes the quality of 

designs, quality of identifiers, content and quality of the comments, the timing when 

comments are added, and overall attitude on their work. 

 

3.1.10 BITS – Bayesian Intelligent Tutoring System (Butz et al, 2004) 

 

BITS is built to teach students using the elementary topics in the C++ programming 

language on the web.  These include concepts such as variables, assignments and 



 

61 

control structures.  The architecture of BITS consists of four main modules – 

Bayesian networks, the knowledge base, the user interface and the study mode. 

 

Bayesian networks (BN) are used to model the prerequisite information and to keep 

track of student knowledge regarding each concept.  The first task is to identify the 

set of concepts, followed by the construction of the BN by specifying the 

conditional probability distributions of each node which represents a concept.  

Figure 3.1 illustrates the prerequisite concepts of the “For Loop” construct which 

consists of “Variable Assignment”, “Relational Operators” and 

“Increment/Decrement Operators”. 

 

 

 

 

 

 

Figure 3.1 A partial Directed Acyclic Graph implemented in the BITS 

 

The conditional probability distributions for the graph were obtained from the 

previous examination results.  Each concept is either known or not known based on 

the student’s answer.  Subsequently, the probability of each concept and its 

corresponding prerequisite concepts being known can be determined for the entire 

Bayesian network. 

 

Variable Assignment Relational Operators Increment/Decrement 

Operators 

For Loop 



 

62 

The knowledge base contains the class lecture notes and quizzes which are 

organized by concept for efficient indexing and retrieval.  The class lecture notes 

are displayed during the learning session.  On the other hand, a corresponding quiz 

is presented when BITS attempts to determine whether the student has understood a 

concept or not. 

 

The User Interface module consists of two sub-modules: an Input module and an 

Output module for data flow between the BITS and a student.  The Input module 

updates the BN using data collected from answers to quizzes, choices of study goal 

and understanding of concept.  The output from BITS to the student includes lecture 

notes, sample quizzes and recommendations. 

 

The study module provides three sub-modules called Regular Study, Problem Study 

and Quick Study to guide the students in the tutoring session.  Similarly to the 

ELM-ART II (Weber & Specht, 1997), the Regular Study displays a set of lecture 

notes that are labelled using the traffic light signs on a Navigation Menu: yellow 

(already known), green (ready to learn) and red (not ready to learn).   A concept is 

considered known if the BN indicates a probability greater or equal to 0.70.  A 

concept is marked ready to learn if the probability is less than 0.70 and all of the 

parent concepts are known.  If at least one parent concept is not known, then the 

concept is labelled as red - not ready to learn. 

 

After reading a green topic, the student indicates their understanding by selecting 

Understand or Don’t Understand or Not Sure if Understand (Figure 3.2).  The BN is 



 

63 

updated if the student understands the notes and the Navigation Menu is 

redisplayed.  If the student selects ‘Don’t Understand’, then the Problem Study 

module is invoked to advise the students to revise the notes and revisit the 

prerequisites.  If the student is unsure of his/her understanding, the student is 

quizzed and immediate feedback is provided.  The Quick Study module organizes a 

chosen topic in a learning sequence which allows a student to learn a concept for an 

impending exam or assignment deadline. 

 

Figure 3.2 Routing of Student’s Understanding 

 

Last but not least, BITS provides a positive environment for learning by 

incorporating an animated study agent “genie” to convey appropriate emotion and 

encouragement to the student.  Through the agent, the student receives feedback in 

the form of voice animation and dialog boxes. 

 

Understand? 

Navigation 

Menu 

 

Update 

Bayesian 

Networks 

Problem 

Study 

Present 

Quiz 

Provide 

Feedback 

Understand 

Don’t 

Understand 

Not sure 



 

64 

The primary objective of BITS is to intelligently guide students in navigating the 

course materials.  Analyzing the student’s interactions with the system, it is also 

able to assess what a student knows.  However, the threshold of 0.70 to indicate a 

known concept is subjective and it does not give an accurate assessment of the 

student’s understanding.  It is also noted by Butz et al (2004) that problem solving 

is outside the focus of BITS even though it is essential in learning computer 

programming.  Hence, BITS functions more like an intelligent Computer Aided 

Instruction rather than ITS.   

 

3.2 ITS for Programming – Comparative Analysis 

 

3.2.1 Domain Knowledge 

 

It is observed that the earliest work on the domain knowledge in the ITS for 

programming falls in the field of Artificial Intelligence (AI).  LISP, PROLOG, C++ 

and Java are programming languages of AI.  LISP (LISt Processing) is a functional 

programming language that uses the theory of mathematical functions as the basis 

for programming.  PROLOG is a well-known programming language in the logic 

programming paradigm, whereas C++ and Java are object-oriented.   

 

The other popular domain knowledge is Pascal which is a structured programming 

language.  Numerous interests in ITSs to teach Pascal seem to indicate that it is 

widely taught in introductory programming courses.  The syntax and semantics of 

the language are less complex as compared to other programming languages like C.  



 

65 

It is suitable for teaching in a basic course in programming and design.  However, it 

lacks dominance in the industry. 

 

As AI has matured and demonstrated its applicability to a range of practical 

problems, its almost exclusive reliance on LISP and PROLOG has diminished.  

Consequently, ITSs for programming shift to object-oriented programming (OOP) 

as their domain knowledge (Luger, 2005).  OOP languages incorporate many of the 

features found in frame-based knowledge representations, including class 

inheritance and the ability to represent structured knowledge.  For these reasons, 

object-oriented languages such as Smalltalk, CLOS (OO LISP) and C++ are popular 

in AI applications.   

 

3.2.2 Level of Programming 

 

The level of programming taught in the current ITSs such as ASSERT, C++ Tutor, 

JITS, BITS mostly covered elementary topics that are typically found in an 

introductory course to Computer Programming.  Undoubtedly, there is a need for 

tutoring materials that target the second level of programming for a course.  These 

include application of the programming language to create data structures and solve 

more complex problems. 



 

66 

 

3.2.3 Tutoring Goals 

 

Another observation in the ITSs to teach programming is the tutoring goals.  This is 

summarized in Table 3.2.  The table shows the progression of ITSs for 

programming from the 80s to the current millennium in the area of domain 

knowledge as well as tutoring goals. 

 

Table 3.2 Tutoring goals of ITSs to teach programming 

ITS DOMAIN 

KNOWLEDGE 

TUTORING GOALS 

1980s   

LispTutor LISP Focus on teaching the syntax of LISP 

cognitively. 

PROUST Pascal Focus on teaching the syntax of Pascal by 

analyzing student’s program. 

BRIDGE Pascal Focus on teaching the syntax of Pascal using a 

Natural Language Plan Selection Menu. 

1990s   

ASSERT C++ Tutor tests a student’s ability to classify 

program segments rather than the ability to 

write a program. 

ELM-ART LISP Focus on teaching the syntax of LISP by 

analyzing and diagnosing problem solutions. 

VC PROLOG Tutor PROLOG Focus on teaching the syntax of PROLOG by 

analyzing student’s solutions 

2000s   

C++ Tutor C++ Teach by analyzing and debugging C++ code 

segments. 

Focus on tutoring programming constructs, 

semantic and run-time errors instead of syntax 

errors. 

JITS Java Focus on the approach used by a student to 

solve a program rather than just the program 

correctness.  Promote better programming 

style. 



 

67 

Table 3.2 (continued) 

 

Pseudocode Tutor Structured 

programming  

(eg. Pascal) 

Help novices to understand and solve 

problems in their own words, rather than 

implementation and programming language 

specific issues. 

BITS C++ Teach elementary C++ utilizing prerequisite 

concepts. 

Primary objective is to help students navigate 

the course material.  

 

Most of the above ITSs have focused on teaching students the syntax of the 

programming language as opposed to application which uses programming 

constructs in new situations or solves problems using knowledge.  The common 

teaching strategy adopted is to provide a program specification to solve, followed 

by intelligent analysis of the students’ solutions.  However, weaker students do not 

adapt well to this strategy.  Beck and Stern (1999) suggested coding various 

learning theories and teaching strategies into a system, and then letting the system 

determine which works under which circumstances for a particular student. 

 

In the 2000s, the ITSs for computer programming have shifted the tutoring goals 

from teaching the syntax to improving programming styles.  This is an important 

progression as students should not be equipped with only syntax of a programming 

language but also acquire skills to improve the quality of programs.  Students need 

to learn to write programs that are readable, reliable and maintainable. 



 

68 

 

3.2.4 Student Modelling Techniques 

 

Techniques in the implementation of the ITSs range from application of the 

cognitive theory to Artificial Intelligence (AI) techniques.  Earlier work shows a 

strong influence from cognitive modelling and less contribution of AI techniques.  

However, ITS researches (Beck & Stern, 1999) have realized the promising benefits 

of bringing back AI into AI and Education.  They have pointed out that AI has the 

capabilities to employ more complex models of student behavior, and has the 

potential to decrease the cost and complexity of building educational systems. 

 

 

3.3 Summary 

 

 

The prior work on ITSs to teach computer programming has demonstrated progress in the 

tutoring goals from teaching purely syntax to promoting better programming style.  

However, the main focus on the level of programming is on the fundamental level.  One 

obvious reason is that researchers realised the importance of strengthening the foundation 

of students before proceeding to the next level.  Nevertheless, it is time researches turn their 

interest into teaching higher level of programming to students and improve the students’ 

application skills.  ITS for programming should not just end at teaching elementary syntax 

to students but look beyond that into guiding students to apply what they have learned.  For 

example, knowledge gained in the syntax for iteration can be applied to show when and 

where a particular iteration construct can be most appropriately utilized. 

 



 

69 

ITSs for programming have shown maturity in the techniques that were employed in the 

domain modelling, student modelling and interface.  The Table 3.3 below summarizes the 

techniques employed by current ITSs.  Two main techniques are compared here – domain 

modelling and student modelling.  The domain knowledge is the heart of an ITS and the 

student model is essential to enable personalized tutoring.  The third aspect considered is 

the user interface and platform of the ITSs. 

 

Table 3.3 Techniques employed in current ITSs 

 

ITS TECHNIQUES INTERFACE 

1980s Domain Knowledge Student Modelling 

LispTutor Production Rules based 

on the Adaptive Control 

of Thought theory of 

Cognition 

Model Tracing Text-based 

Dialogue 

PROUST Bug catalogue Intention-based 

Diagnosis 

Text-based 

providing diagnosis 

of student’s 

program 

BRIDGE Organized using 

programming plans ie. 

Concepts 

Overlay Model Natural Language 

Plan Selection via 

menu 

1990s    

ASSERT Dynamic bug library 

entries. 

Domain rules to classify 

problems. 

Theory Refinement 

to Student 

Modelling 

Text-based 

Dialogue 

 

 

ELM-ART Represented in terms of a 

conceptual network. 

Units are organized 

hierarchically into 

lessons, sections, 

subsections and unit 

pages. 

Adaptive 

techniques: 

 Multi-layered 

Overlay Model 

 Episodic Learner 

Model 

Web-based 

Adaptive Learning 



 

70 

Table 3.3 (continued) 

 

VC PROLOG 

Tutor 

Organized in concept 

lattice - hierarchical 

Overlay Model 

based on 

intelligent analysis 

of solutions 

- compare student’s 

solution with one or 

more example 

solutions 

Web-based 

2000s    

C++ Tutor Model-based Reasoning 

- simulate the correct 

behaviour of a C++ 

construct 

Overlay Model 

based on 

behavioural 

discrepancies 

Windows-based 

JITS A database of records 

with problem, solutions, 

classifiable incorrect 

responses and appropriate 

hints. 

Performance 

history based on 

statistics 

Web-based  

 

Pseudocode 

Tutor 

Program specifications 

organized in HTML pages 

Coached Program 

Planning Dialogue :  

i) identify 

programming goal 

ii) describe 

technique to 

achieve goal 

iii) suggest 

pseudocode steps to 

achieve goal 

iv) place steps 

appropriately to 

complete 

pseudocode. 

Web-based. 

Coached Program 

Planning – 

dialogue-based 

style 

BITS Bayesian Networks to 

model structure of 

problem domain. 

Lecture notes in the form 

of web pages, organized 

by concept. 

Bayesian Networks 

to track student 

knowledge 

Web-based 

 

 

 



 

71 

Domain knowledge modelling has progressed from predefined rules and bug catalogues to 

hierarchical structure and dynamic bug library entries.  Combination of overlay modelling 

and other techniques were employed in student modelling.   

 

Prior work also suggested that natural language has played an important role in the 

interface of the ITSs.  However, this interaction style is too rigid and directive causing the 

system to be unsuitable for better students.   

 

The trend shows a lack of contribution from Artificial Intelligence (AI) techniques.  It is 

believed that AI can still act as a vital avenue in the design and implementation of ITSs 

particularly in the areas of domain and student modelling. 

 

AI techniques for uncertainties management play an important role in student modelling.  

In general, the student model is loaded with uncertainty associated with the student’s 

behaviour and understanding.  Jameson (1995) has reviewed several frameworks for 

managing uncertainty in expert systems, including Bayesian networks, the Dempster-Shafer 

theory of evidence, and fuzzy logic.  It is noted that Pearl (1988) has shown that Bayesian 

networks have certain benefits over the other two frameworks.  The application of Bayesian 

probability reasoning and fuzzy logic techniques is described in the next chapter. 

 



 

72 

Finally, an important milestone in the implementation of ITS is the deployment of the 

system on the World Wide Web (WWW).  Since the introduction of the WWW in the early 

1990s, most efforts focused on Web-based ITS.  Researchers began to port existing stand-

alone ITS to the web and works were carried out to provide adaptive learning and 

intelligent sequencing on the web.  The borderless world created by the advent of 

technological advancement has become a platform for independent teaching and learning 

with respect to time and space. 

 



 

73 

Chapter 4 C++ STL and Bayesian-Fuzzy Student Modelling 
 

Most of the current Intelligent Tutoring Systems (ITSs) for programming focus on teaching 

students the syntax of a programming language as opposed to application, for example, 

LispTutor, PROUST, BRIDGE, ELM-ART, ASSERT, JITS and BITS.  The main tutoring 

approach is to present a problem specification for the student to solve, followed by 

intelligent analysis of the solution with various feedback.  It is also observed that existing 

ITSs suffer from static domain knowledge and are restricted to the tutoring session. 

  

The review of prior work motivated this research to shift the tutoring of programming 

language from teaching elementary programming syntax to application.  Following this 

motivation is the choice of the programming language for implementation.  The interest in 

C++ is most obvious as it is widely taught in the first year of a Computing degree course.  

It is considered as one of the de facto programming languages to computer scientists and 

engineers.   

 

Stroustrup (1999) pointed out that there is a need to adopt a paradigm shift in the way we 

write and teach C++ programs.   In his article on “Learning Standard C++ as a New 

Language”, he argued his preferred approach to teaching C++ along with its Standard 

Library using some simple examples.  Consequently, the aim of the proposed ITS is to 

teach students the application of the C++ Standard Template Library (STL) to problem 

solving.   



 

74 

4.1 The Domain Knowledge – C++ STL 

 

Data structures and algorithms are inherently building blocks of a program. For many 

years, programmers everywhere have been writing their own data structures and defining 

fundamental algorithms such as sorting and searching.  The tasks are tedious and error-

prone.  The other problems include incompatibility among vendors, use of virtual functions 

which reduces performance, difficulty in adding new algorithms, not type-safe and use of 

heap memory (ObjectSpace, 1996).  Recognizing that thousands of C++ programmers have 

been reinventing the wheel, the Standard Template Library (STL) was accepted in 1994 as 

part of the C++ Standard Library by the ANSI/ISO C++ Standard Committee. 

 

The Standard Template Library is a framework collection of data structures (called 

containers in STL) and algorithms designed by Alexander Stephanov and Meng Lee (1995) 

at Hewlett-Packard based on their research on generic programming.  Hence, STL is not 

about object-oriented programming but generic programming.  Musser’s (2003) working 

definition of generic programming is "programming with concepts," where a concept is 

defined as a family of abstractions that are all related by a common set of requirements. An 

important aspect in generic programming is defining abstract concepts (for example, 

containers and iterators) and writing algorithms and data structures in terms of abstract 

concepts (Austern, 1999).  In simpler terms, generic programming is about generalizing 

software components so that they can be easily reused in a wide variety of situations – 

different algorithms should work for different containers.   



 

75 

Stephanov (1995) has verified that the STL is as efficient as a non-generic version written 

in the same language by studying the performance of the assembly code generated by 

different compilers on different architectures.  Furthermore, the generic algorithms and 

containers had been handcrafted for one specific type (Austern, 1999). 

The STL is divided into three key components – containers, iterators and algorithms.  The 

containers are data structures capable of storing any type of data element (Table 4.1).  They 

are further divided into sequence containers (vector, list and deque), associative containers 

(map, multimap, set and multiset) and container adapters (stack, queue and priority queue).  

STL iterators can be viewed as pointers to manipulate the containers elements. It consists of 

five different flavours – input, output, forward, bidirectional and random access.  STL 

algorithms are function templates that operate on and are parameterized by iterator types.  

Because STL algorithms are decoupled from containers for efficiency, all containers within 

the same iterator category can utilize the same algorithms.  This also reduces the software 

development tremendously.  For example, the single sort routine in the STL algorithm can 

work on (almost) all of the STL containers such as vectors, lists.   New algorithms can be 

added easily without modifying the containers (Stephanov & Lee, 1995).  Future extensions 

of the STL are discussed in the ANSI/ISO C++ Standard Committee. 



 

76 

 

Table 4.1 STL Components 

STL COMPONENTS CATEGORIES 

Containers Sequence containers vector 

list 

deque 

Associative containers map 

multimap 

set 

multiset 

Container adapters stack 

queue 

priority queue 

Iterators Input 

Output 

Forward 

Bidirectional 

Random access 

Algorithms Mutating-sequence algorithms 

Non-mutating-sequence algorithms 

Numerical algorithms 

 

Stroustrup (1999, p. 1), the creator of C++ commented  

“to get the most out of Standard C++, we must rethink the way we write C++ 

programs.  An approach to such a ‘rethink’ is to consider how C++ can be learned 

and taught”.   

In software development, our goals are ultimately to have programs that are easy to write, 

correct, maintainable and acceptably efficient.  Comparing examples of standard C++ 

programs and traditional C-style solutions, Stroustrup demonstrated that through designing 

and programming at a higher level of abstraction with the use of libraries, these goals are 

achievable.  This also leads to a reduction of size and complexity of the code we write and 

subsequently reduces development time, eases maintenance, and decreases the cost of 

testing.  Importantly, the task of learning C++ is also simplified.  



 

77 

“Thus, work on more libraries, on more consistent implementation of widely-used 

libraries (such as the C++ STL), and on making libraries more widely available can 

yield great benefits to the C++ community” (Stroustrup, 1999, p. 10).   

 

Education must play a vital role in this move to make the C++ STL more accessible and 

gearing towards cleaner and higher-level programming styles.  Since becoming a standard, 

C++ STL has been widely taught in C++ programming courses. 

 

Budd (1998) has moved away from the traditional approach of teaching data structures by 

including the power of the STL.  The increased emphasis on the use of standard 

components and decreased emphasis on implementation represent a significant paradigm 

shift indicating the maturation of the computer science field.  He added that many authors 

have predicted that in the future most programs will be constructed piece by piece like 

building a Lego set rather than developing them from scratch.  He concluded that although 

it is important for students to know how to implement a linked list, it would be more 

important to know how to use the list container in the STL (Budd, 1998). 

 

Working with the STL, students will realize the power of C++ in applying the ideas to data 

structures and learn the power of C++, thus allowing them to carry their knowledge to later 

courses on advanced data structures and eventually into their careers.  STL provides most 

of the classic data structures (list, queue, stack) as basic abstract concepts, so it is relatively 

easy to create even quite complex programs.  Knowledge acquired in the ITS should be 

transferable to a larger set of curriculum objectives.  In the case of the STL, it provides a 

platform of expression for data structures.  For example, the application of member 



 

78 

functions in the STL list forms a foundation for students to understand the traditional user 

defined linked list data structure. 

 

To conclude, two main points have been considered in the selection of this domain 

knowledge of C++ STL.  Firstly, it is to encourage the use of C++ STL to produce easy to 

write, correct, maintainable, and acceptably efficient programs.  Secondly, to show that 

using STL adds more experience to augment students’ knowledge in data structures and 

C++.   

 

4.2 Difficulties in Learning and Teaching C++ STL 

 

4.2.1 Learning the C++ STL 

 

Having justified the selection of the domain, a discussion will be made here to 

ascertain the problems students face in using or applying the STL.  In general, two 

views will be considered: difficulties with the prerequisites of STL and the common 

mistakes when using the STL. 

 

From experience, it is discovered that students find the C++ STL difficult due to 

their weaknesses in understanding various object-oriented concepts.  These concepts 

form the prerequisites in learning the C++ STL.  This is different from the idea of 

breaking down a problem into sub problems or components in previous work like 

the JITS and BITS.  Both of these ITSs decomposed the domain knowledge 

consisting of language basics into sub-problems.  For example, a for-loop structure 



 

79 

is decomposed into three parts – initialization, test and incrementation.  However, to 

master the application of the C++ STL, students need a good foundation in some 

prerequisites. 

 

One of the main prerequisite concepts is parameterization.  From experience, STL 

can be difficult to understand due to a high degree of parameterization.  In 

parameterization, a type description is parameterized with another type.  This allows 

us to describe the idea of a vector of T, where T represents a yet to-be-known type.   

In C++, this idea is expressed by a construct called a template.  Template is a very 

powerful tool for reusability of object code and very useful for implementing 

generic structures such as lists, queues and stacks to manipulate on arbitrary types 

(Deitel & Deitel, 2003).  C++ provides two types of templates: function template 

and class template.  Function templates are commonly used to implement generic 

functions like sorting and searching routines.  The class vector is an example of a 

class template.  Class templates are called parameterized types.  They encourage 

software reusability by enabling type-specific versions of generic classes to be 

created.  For example, one vector class template could thus become the foundation 

for creating many vector classes such as vector of int, vector of double, vector of 

string, vector of student, and so on used in a program.   

 

In any course on C++ programming, students start with non-template functions 

which work on specific data types.  When templates are later introduced, they tend 

to struggle with the idea because they could not ‘visualize’ the data type the 

functions are manipulating.  The STL generic algorithms are implemented as 



 

80 

function templates and the containers (vector, list, queue, stack) are implemented as 

class templates.  Therefore, difficulties in understanding templates prevent students 

in applying the STL effectively. 

 

The concept of function overloading is another difficult abstraction to grasp.  In 

C++, several functions with the same name can be defined, as long as these 

functions have different sets of parameters.  It could be different parameter types or 

number of parameters or the order of the parameter types.  These functions are 

known as overloaded functions.  The C++ compiler differentiates these functions 

through the parameter list. 

 

The STL containers and algorithms are bundled with functions which are heavily 

overloaded.    For example, the vector insert() has three flavours – two arguments 

specifying the position and value to insert, three arguments where the first argument 

specifies the destination, the second and third arguments refer to the range of values 

in the source, and another version that allows inserting multiple copies of the same 

value starting at a particular position in the container.  STL actually includes 

approximately 70 standard algorithms.  Having to decide on which one to use and 

how to use it are issues students face. 

 

Other than the problems in understanding the concepts of templates and function 

overloading, there are many common mistakes when using the STL containers, 

iterators, and algorithms.  Most of the mistakes involve the difference between 

applying an algorithm to a container and applying an algorithm to the range of 



 

81 

elements in a container (Austern, 2000).  Indirectly, it is related to function 

overloading. 

 

The ITS for the C++ STL hopes to address some of the difficulties highlighted 

above and give proof that programming skills can be improved through the system. 

 

4.2.2 Teaching the C++ STL - Curriculum Planners vs Implementer-tutors  

 

For an ITS to achieve its learning goals successfully, both curriculum planners and 

implementer tutors need to be actively involved in the overall architectural design of 

the ITS.  The terms that Kinshuk et al (2001) presented in their paper are ITS 

designer teacher and ITS implementer teacher.  They recommended the concept of 

Human Teacher Model in the research and design of ITSs which would consider the 

different personality attributes, styles and preferences of a human teacher – both as 

a designing collaborator and a teaching collaborator.  Their research was motivated 

by the need for adaptation to local contexts where ITS may be used in different 

parts of the world.  Moreover, current research on ITS has been focusing only on 

the tutoring process, neglecting the roles of teacher.  As quoted by Kinshuk, 

evaluation results have also confirmed that implementing teacher/tutor plays an 

important role in the success of a tutoring system (Stoner & Harvey, 1999). 

 

Kinshuk (2002) interestingly argued the various reasons for the failure of the 

adoption of ITS research.  He discussed that there seem to be a gap between the 

delivered research outcome and the needs of actual learning environment.  The 



 

82 

culprits highlighted included no intervention from human tutors, very little 

possibility of customization and mismatch of preferred teaching style between 

developer teacher and implementing teacher.  He concluded with the suggestion that 

the distinction and incorporation of teacher/tutor role allow the ITS to identify the 

different styles, record the teaching style/s adopted in the design and enable the ITS 

to adapt themselves to implementer tutor’s style. 

 

In this research, curriculum planners refer to a designer teacher who designs the 

curriculum for the tutoring and generates assessment methods for students.  This 

person could be the lecturer of the module who plans the teaching schedule and 

prepare the teaching materials.  Implementer tutors refer to tutors who facilitate the 

laboratory or practical sessions of the module.  There are situations whereby both 

the curriculum planner and the implementer tutor refer to a single person.  

Nevertheless, the roles that they play are different – one delivers, another directs.  

Therefore, it is beneficial to distinguish between these two roles in the design and 

implementation of the ITS. 

 

In teaching the C++ STL, both curriculum planner and implementer tutor face 

challenges in dealing with the diversified learning pace and knowledge of students.  

Curriculum planners need tools that can assist them in the assessment of students’ 

prerequisite knowledge and compile them for the implementer tutor to identify 

suitable teaching strategies for students.  Their tasks are different from those who 

teach elementary concepts in C++ such as variable declarations, expressions, 

operators, selection constructs and iteration constructs.  At the foundation level or in 



 

83 

the first year of a computer-related course, students are assumed to have no 

knowledge at all in programming.  Though the students may have different learning 

pace, their knowledge starts at an ‘equal’ level.  Strictly speaking, some students 

may have already learned programming but the majority of these freshmen knows 

little or nothing at all about programming.   

 

On the other hand, C++ STL is covered in a higher level which is after students 

have acquired the foundation in programming.  Tutors who are teaching the C++ 

STL cannot assume that all students have the same understanding in the elementary 

topics, and these topics form the prerequisites in learning the STL.  Some may have 

already forgotten and just need hints to prompt them to recall.  Others may have 

lack of understanding, and hence require exercises to drill the concepts into them 

again.  Besides imparting skills on applying the STL, it is necessary for both the 

curriculum planner and the implementer tutor to put in effort to understand the 

needs of individual student.  However, traditional classroom tutoring is not able to 

meet this demand and satisfy the students.  Intelligent tools such as a curriculum 

authoring tool, assessment authoring tool and tutoring authoring tool are vital to 

assist the tutors.  The integration of these tools together with the application of 

Artificial Intelligence techniques form a powerful system to aid teaching and 

learning. 



 

84 

 

4.3 Dynamic Domain Knowledge Modelling  

 

The lack of customization in the domain knowledge is one reason why most current ITSs 

still remain as prototype.  Their domain knowledge is static, and the problem specifications 

are limited and not updatable.  There has been some previous work done on random 

generation of C++ code to teach program debugging (Kumar, 2002).  Using BNF-like 

grammar, the randomizing can produce interesting and non-trivial variation of a problem.  

However, it would be more useful and effective if program specifications could be created 

adaptively, updated and randomly generated.  The benefits include providing problems to 

students until they have mastered a particular topic, wider range of problems and 

individualized problems to deter plagiarism. 

 

Most ITSs for computer programming are built for a specific programming language and 

then used in a particular environment for a certain group of students.  Therefore, the ITSs 

are limited to the area of their application.  To enlarge the scope of the application, ITSs for 

computer programming need to provide flexible tools to allow dynamic domain knowledge 

modelling. 

 

In summing up, curriculum planners need the flexibility to design their own problem 

specifications and set assessments that cater to their own students.  It is also necessary for 

implementer tutors to design appropriate tutoring sessions incorporating various teaching 

strategies.  An authoring tool for the problem specifications and assessment coupled with 



 

85 

authoring of the tutoring sessions as part of the ITS will definitely resolve some of 

problems raised above. 

 

4.4 Student Modelling with Transparency 

 

Much work is related to the involvement of students in the diagnosis of the student model.  

The term cooperative student model (Beck, Stern & Woolf, 1997) has been coined to refer 

to a model which is constructed by collaborating the student’s and the tutor’s beliefs.  In the 

tutoring system, the tutor prompts the student to provide information that it cannot detect 

by itself.  The model is student-centered design, giving students some control over the 

student model.  In learning, the student knows better, what they know and what they do not 

know.  Therefore, it is appropriate that students assist the ITS to capture their knowledge 

and other information to form the student model. 

 

It is believed that by having a transparent student model, student reflection is promoted and 

this will encourage students to use feedback in future problem solving (Bull, 1997, 

Dimitrova et al, 2000).  The model is also known as an inspectable student model.  An 

inspectable model is constructed for each student based on the feedback given by the tutor.  

In See Yourself Write, the student model encourages the student to think of ways to 

improve their work by viewing and interacting with the model, allowing easy access to 

useful comments on earlier work, being prompted to explain their progress and being 

encouraged to take advantage of self-explanation (Bull, 1997).   This is very useful for 

domain which is difficult to get useful feedback computationally. 

 



 

86 

LacePro – Learning, Applying and Consulting Established Procedures (de Buen et al, 1999) 

applies a collaborative approach to student modelling.  LacePro is a system in which 

professional engineers can learn, apply and consult established procedures.  The 

collaborative user modelling approach provides students with two choices: a directive 

system with adaptive characteristics, and a flexible system in which the student can express 

his or her own approach.  This is within a collaborative environment in which the student 

provides the information the student model requires, has the possibility to inspect the 

student model at any time, and can reject or accept the system's suggestions.  Two major 

considerations behind LacePro's collaborative approach are:  

(i) In principle, the system will accept as true all that the student says (e.g., that 

she knows a step or concept), and  

(ii)  Most actions proposed by the system (e.g., what to explain) can be accepted 

or rejected by the student.   

The scenarios and empirical evaluation showed that engineers preferred this open and 

flexible approach. 

 

Involving students in student modelling as described above (cooperative, inspectable or 

collaborative) requires some consideration.  Weaker students or slower learners need more 

guidance and in most cases, they are not able to determine or decide on the appropriate 

teaching strategy for themselves.  Thus, the information that they provide may not be 

accurate.  Over-confident students pose similar problems.  The student modelling technique 

must have the intelligence to overcome these issues.  Dimitrova et al (2000) has also 

discussed a number of potentials and problems in involving studenst in diagnosis.  One 

issue is the degree of power for students to participate in diagnosis and how the conflicts 



 

87 

between the system and the student’s views can be resolved.  An experienced tutor is 

required to give judgment in this area.  Moreover, Artificial Intelligence techniques have 

the capability to deal with these diagnosis and uncertainties. 

 

4.5 Uncertainties Management 

 

A number of problems were highlighted above.  These include problems in learning and 

teaching the C++ STL, and the deficiencies within current ITSs in general and specifically 

in dynamic domain modelling and transparent student modelling. 

 

The key problem in using the C++ STL lies in the lack of capability in prerequisite 

concepts.  Therefore, a model is required to capture the student’s knowledge in the 

prerequisites concepts.  To find out the student’s level of understanding in the prerequisite 

concepts, a test can be conducted.  However, the test results create an uncertainty in 

determining whether the student has really understood the topic or has guessed the answer 

correctly.   In other words, the system needs to know whether the student knows or do not 

know the topic.  Subsequently, better guidance can be provided for the student. 

 

Besides modelling the student’s prior knowledge, the ITS also needs to track the student’s 

interactions as he or she uses the ITS.  There are also various uncertainties that need to be 

managed to model the student behaviour in the learning process of the C++ ITS.  For 

example, vague problem specifications could lead students to respond incorrectly.  A wrong 

answer could also mean that students have forgotten a particular topic instead of no 

knowledge of it at all. 



 

88 

 

In summary, the ITS is required to deal with two main sources of uncertainties: 

i) Uncertainties in the student’s answers to the test 

ii) Uncertainties in the student’s behaviour during the learning. 

 

There are three common Artificial Intelligence techniques for managing uncertainties – 

Bayesian reasoning, certainty theory and fuzzy logic (Hopgood, 2001).  Bayesian reasoning 

is based on a sound probability theory, but in some applications, it may not be practically 

true to assume the conditional independence of evidence.  Certainty theory lacks 

mathematical basis, but offers a simple approach to overcome some of the limitations in 

Bayesian reasoning.  Lastly, fuzzy logic or possibility theory allows the representation of 

vague language in a precise manner.  There are a number of design issues that need to be 

considered in the building of a fuzzy expert system.  These include the identification of 

input and output parameters, definition of membership functions and rules to improve the 

performance of the expert system. 

 

Considering the problem in the prerequisite knowledge of the individual student, a method 

that is able to model a cause-effect relationship with uncertainty management is required.  

Therefore, Bayesian reasoning which encodes a corresponding set of conditional 

probability distributions is highly appropriate for the student modelling.  The Bayesian 

approach also supports a transparent student model as it has a strongly proven derivation 

probability theory basis, and the probabilities associated are intuitively understandable.  On 

the other hand, certainty factor approach, though simpler, appears ad hoc compared with 

Bayesian reasoning.  Certainty factors are used in situations where reliable statistical 



 

89 

information is not available or the probabilities are difficult or expensive to obtain 

(Negnevitsky, 2002).  Fuzzy logic, in this case, allows us to deal with vagueness in 

categorizing student’s performance. 

 

4.5.1 Bayesian Reasoning 

 

To avoid the computation complexities in Bayesian network, which is used in 

current ITSs, the Bayesian Theorem is used directly in this project for student 

modelling.  Though Bayesian network does not require extensive computation to 

update and assign initial probabilities (Lauritzen & Spielgelhalter, 1988), there are 

considerable design issues in building the network.  These include determining the 

number of nodes for the problem and specifying the parent-child relationships 

(Fernandez & Sison, 2001).  The application of Bayesian Theorem is discussed in 

this section.  Bayesian reasoning or updating provides a probabilistic approach to 

represent uncertainty.  It is based on the assumption that it is possible to assign a 

probability to every hypothesis, and that this probability can be updated in the 

presence or absence of an evidence (Hopgood, 2001). 

 

The technique of Bayesian updating is based upon the application of Bayesian 

Theorem, also known as Bayes Rule.  Bayesian Theorem provides an expression for 

conditional probability which is denoted by P(H|E), 

 where 

  H is the Hypothesis 

  E is the Evidence or observed data 



 

90 

P(H|E) is the conditional probability of the hypothesis H holds given the evidence 

E.  P(H|E) is also known as the posterior probability of H, because it reflects the 

confidence that the hypothesis H holds given that the evidence E has been obtained 

(Mitchell, 1997).  The conditional probability of H, given E is then defined by 

 
)(

)(
)|(

EP

EHP
EHP


  if P(E) > 0    (4.1) 

where 

P(H  E) is the probability of both the H and E occurring, which is also 

called the joint probability. 

Similarly, the conditional probability of E, given H is defined by 

 
)(

)(
)|(

HP

HEP
HEP


  if P(H) > 0    (4.2) 

The joint probability is commutative, thus 

  )()( HEPEHP        (4.3) 

 Therefore, 

  )()|()( HPHEPEHP       (4.4) 

  

Substituting Equation (4.4) into Equation (4.1), yields the Bayesian Theorem 

 
)(

)()|(
)|(

EP

HPHEP
EHP


       (4.5) 

 

The Theorem provides a method to calculate the posterior probability P(H | E), 

from the prior probability P(H), together with P(E) and P(E | H). 

 



 

91 

The Bayesian Theorem can then be expanded as follows: 

  
))(1()|~()()|(

)()|(
)|(

HPHEPHPHEP

HPHEP
EHP




  (4.6)           

where 

 ~H means “not H” or false hypothesis.   

The probability of (~H) is equivalent to one minus the probability of H occurring 

which is 

)(1)(~ HPHP   

 

The denominator for Equation (4.6) is easily derived as follows: 

)(EP  )~()( HEPHEP   

)(~)|~()()|( HPHEPHPHEP   

))(1()|~()()|( HPHEPHPHEP   

 

Equation (4.6) provides the cornerstone for the application of probability theory to 

manage uncertainties in the student modelling of the ITS to tutor C++ STL. 

 

4.5.2 Bayesian-based Predictive Initial Student Model  

 

To model the student’s competence in the prerequisites after taking the pre-test, the 

desired conditional probability is that the student understands the prerequisite given 

that he or she answered it correctly.   



 

92 

Based on the example given by Ross (2003), the conditional probability is obtained 

by 

)|( CUP  
)(

)(

CP

CUP 
  

   
))(1()|~()()|(

)()|(

UPUCPUPUCP

UPUCP




   (4.7) 

where 

 U is the event that the student understands the prerequisite and 

 C is the event that the student answers correctly. 

 

Now, let p represent the probability that the student understands the prerequisite, 

P(U) and (1 – p) the probability that he or she guesses, P(~U).  Two assumptions 

are made here.  Firstly, a student who guesses at the answer will be correct with 

probability 1/m, where m is the number of multiple choice alternatives.  This is 

denoted by P(C|~U).  The second assumption is that a correct answer shows the 

student’s understanding of the prerequisite.  Therefore, the conditional probability 

of student answers correctly given that he or she understands the prerequisite is 1: 

 1)|( UCP  

Applying the assumptions and substituting p and m into Equation (4.7) yields: 

)|( CUP  
)1()/1( pmp

p


  

   
pm

mp




)1(1
     (4.8) 

 



 

93 

The value for p is obtainable from the results of the pre-test for a particular 

prerequisite.  The prerequisites can be modelled using a Bayesian network structure 

as shown in Figure 4.1.  The figure below shows a prerequisite iteration which 

consists of 3 sub-skills or sub-topics, namely ‘for loop’, ‘while loop’ and ‘do..while 

loop’.  Understanding the three sub-skills, leads to the understanding of the topic 

iteration as a whole.  Another way to view it is that, to have a complete 

understanding on iteration, the student must know the three different types of loop 

structure. 

 

Figure 4.1 Prerequisite Iteration with its sub-skills 

 

Each question in the pre-test is associated with a prerequisite sub-skill.  The 

probability of student’s understanding in a prerequisite, P(U) or p can then be 

calculated as follows : 

 
questions skill-sub teprerequisi ofnumber  Total

answerscorrect  ofnumber  Total
)( UP  

  

 

Iteration 

for loop while loop do..while 

loop 



 

94 

Suppose out of 3 questions in the prerequisite iteration, the student has answered 

only 2 correctly.  Therefore, 

 P(U) = 2/3 = 0.67 

 

Let the multiple choice alternatives, m be 4.  Substituting all the values into 

Equation (4.8), produces the following result: 

 

)|( CUP  
pm

mp




)1(1
  

  
67.0)14(1

67.04




   

   =  0.89 

 

The conditional probability, P(U | C) value obtained needs to be further redefined to 

provide useful analysis.  Comparing this value with a threshold allows the student’s 

level of understanding to be quantified and categorised as well.  To determine a 

suitable threshold, range samples of student’s performance in some prerequisites are 

tabulated in Table 4.2.  This table shows four prerequisite sub-skills together with 

their range of conditional probabilities calculated based on the total number of 

correct answers and total number of questions.  The complete table of conditional 

probabilities is in Appendix A. 

 



 

95 

Table 4.2 Examples of Student’s Pre-Test Performance 

PREREQUISITE TOTAL 

NUMBER 

OF 

CORRECT 

ANSWERS 

 

( c ) 

TOTAL 

NUMBER OF 

PREREQUISITE 

SUB-SKILL 

QUESTIONS 

 

( q ) 

P(U) 

 

 

 

p = c/q 

P(U  | C) 

User Defined 

Function 

2 7 0.28 0.62 

4 7 0.57 0.84 

6 7 0.86 0.96 

Array 2 6 0.33 0.67 

4 6 0.67 0.89 

Class 1 5 0.20 0.50 

2 5 0.40 0.73 

3 5 0.60 0.86 

Function 

Template 

1 4 0.25 0.57 

2 4 0.50 0.80 

3 4 0.75 0.92 

 

From the sample range of P(U|C) values shown in the table above, a threshold of 

0.80 is a suitable value to indicate the student’s performance level.  This threshold 

also shows mastery of the prerequisite concept.  Therefore, using an initial threshold 

of 0.80, the prerequisite concept is considered understood if the conditional 

probability P(U|C) indicates a probability greater than 0.80.  The probability is then 

employed to guide the students in the tutoring of the C++ STL problems.  This 

threshold will be adjusted according to the progress made by the student during the 

tutoring process.  Since students’ performance may either improve or decline as 

they solve the given problems, the values of the conditional probability can be 

updated regularly.  This can be done in the light of new evidence such as time taken 

to solve a problem, total number of hints consulted, trials attempted and errors 

made. 

 



 

96 

4.5.3 Tracking Student’s Progress during Tutorial Sessions 

 

Based on the conditional probabilities obtained after the pre-test, the tutoring 

session is then tailored to suit the individual student’s understanding.   Learning a 

programming language requires much drill and practice in problem solving.  It was 

observed by McCraken et al (2001), as quoted by Kelly et al (2004), that problem 

solving difficulty is caused by the an inability to break programming problems up 

into smaller manageable tasks.  Subsequently, the tutoring session for the C++ STL 

consists of problems that are organized according to sub-problems.  In solving a 

problem, students are often taught to decompose the problem into sub-problems to 

reduce complexity.  The two most common approaches in problem solving are top 

down and bottom up.  Given a problem, students can break it into sub-problems in a 

top down manner.  On the other hand, students can choose to solve the sub-

problems independently and eventually combine them to solve the main problem.  

This is the bottom up approach.   

 

The ITS for C++ STL employs a sandwich view of a given problem which 

combines top down and bottom up approaches.  This allows more flexibility to 

students.  The proposed interface is to provide students the problem specifications 

together with a program framework and sub-tutorials, which represents the sub-

problems.  Hence, students are shown the big picture of the solution, which is a top 

down view – from the problem specification to the program framework, and the 

sub-problems that form the main program giving a bottom up view.   A sample 

layout of the interface is depicted in Figure 4.2.  The Program Framework frame 

represents the top down view, where as the Sub Tutorial frame gives the bottom up 



 

97 

view.  It is believed that showing two views of a problem to students gives them a 

better understanding of the requirements, and as a result, their problem solving tasks 

are simplified.  Moreover, the top down and bottom up approaches are elementary 

forms of problem solving skills (Arvanitis, et al, 2001). 

 

z  

Figure 4.2 A Sample Layout of a Problem Specification during the Tutoring 

 

Each step in the sub-tutorial is related to a series of teaching strategies or hints, and 

prerequisite skills.  In order for students to solve the sub-tutorials, they must possess 

the necessary prerequisite concepts for that problem.  The results obtained from the 

 

 

 

 

 

 

 

 

 

 

 

 

Problem Specification 

Write a program that … 

Sub-Tutorials 

Program Framework – Fill in the answers below: 

#include <iostream> 

#include    // Header Declaration – Step 1 

 

using namespace std; 

int main() 

{ 

      // Create a vector – Step 2 

 

 int i; 

 cout << “Please enter 10 integers: ” << endl; 

    // Populate the vector – Step 3 

  

 cout << “The integers are: ” << endl; 

    // Output the vector – Step 4 

  

 cout << endl; 

 return 0; 

} 

Sub Tutorial 1 

Sub Tutorial 2 

Sub-Tutorial 1 

 
Sub-Tutorial 2 Sub-Tutorial 3 Sub-Tutorial 4 

Sub Tutorial 3 

 

Sub Tutorial 4 

Submit 

Answer 

Hint? 



 

98 

pre-test will determine the student’s level of understanding in a particular 

prerequisite sub-skill. 

 

Figure 4.2 illustrates a problem specification that instructs the student to create a 

vector, populate it with some values and finally output the results.  To perform the 

population and output, knowledge in iteration is required.  From the previous 

example, suppose a student obtains a conditional probability P(U|C) of 0.89 for the 

prerequisite iteration in the pre-test.  This indicates that the student understands the 

prerequisite sub-skill concept reasonably well.  Therefore, the ITS will direct the 

student to the problem specification mentioned above, to solve.  If the student fails 

to obtain a probability greater than 0.80, remedial lessons will be recommended to 

the student.  This will enable them to improve the prerequisite concept before trying 

to solve the STL problems.   

 

The algorithm for directing the student after the pre-test is outlined below: 

Calculate P(U|C) 

If P(U|C) > 0.80 Then 

Display the Problem Specification 

Else 

Display choice –  Remedial Lessons or Problem Specification 

Read choice 

If Remedial Lessons Then 

If conditional probability between 0.6 and 0.8 Then 

Display Pre-Test Review 

Else If conditional probability less than 0.6 Then 

Display Pre-Tutoring 

End If 

End If 

End If 

 

Figure 4.3 Directing Student after Pre-Test 

 



 

99 

During the tutoring session, the student’s progress needs to be tracked and updated.  

On completion of each problem specification, the acquired skills will be added to 

the student’s domain knowledge.  The time taken to solve the sub problems will 

also be recorded.  Another item to be taken into account is the number of times the 

student accesses the hints.  All this information is useful in leading the students to 

various teaching strategies to suit their needs and abilities.  The teaching strategies 

here also refer to different levels of hints to guide the students progressively to solve 

the problem.  Four levels of hints (Table 4.3) are proposed for this C++ STL ITS: 

i) Brief explanation 

ii) Pre-Test Review 

iii) Pre-Tutoring 

iv) Demonstration 

 

Table 4.3 Four Levels of Hints 

HINTS DESCRIPTION EXAMPLE – Output the vector 

Brief 

Explanation 

Provide brief explanation of 

sub-tutorial 

vector is similar to array with elements 

accessed using subscript or index.  Like 

array, a loop is required to output the 

contents of a vector. 

Pre-Test 

Review 

Show performance of student 

in the pre-test for a required 

prerequisite to promote 

reflective learning 

Below are your pre-test question answers 

related to this sub-tutorial : 

…. 

(The system will show the student’s 

answer and the correct answer.) 

Pre-Tutoring Guide student step-by-step to 

complete the sub-tutorial 

A for loop consists of 3 parts – 

initialization, test and incrementation 

separated by semicolons. 

(A series of sub-tutorials follow.) 

Write the statement for the initialization. 

… 

Now, enter the test condition. 

… 

Finally, add the incrementation part. 

… 



 

100 

The statement within the for loop should 

be a cout statement that outputs the 

element in the vector.  Write the code to 

access the element in the vector using the 

subscript. 

… 

Demonstration Demonstrate i.e. present 

solution of the sub-tutorial 

based on actions taken in the 

Pre-Tutoring 

A for loop consists of 3 parts – 

initialization, test and incrementation 

separated by semicolons. 

The correct solution is:  

for (i = 0; i < 10; i++) 

Within the for loop, a cout statement 

should be used to output the contents of 

the vector: 

cout << v[i] << “ ”; 

 

In the event that the student is unable to solve the sub-tutorial, he/she has the option 

to refer to the hints.  The type of hint displayed depends on the performance of the 

student for the prerequisite sub-skill in the pretest.  Suppose the student obtains a 

conditional probability of 0.89 for the prerequisite iteration, he/she will be directed 

to the first hint, which is, a brief explanation or notes on the sub-tutorial.  Referring 

to Figure 4.2, an example of a sub-tutorial is Step 3 – Populate the vector.  If the 

student still has difficulty in completing the sub-tutorial, then the Pre-Test Review 

will be invoked to show the student how he/she has responded to the pre-test 

question with respect to the prerequisite expected in the sub-tutorial.  Pre-Tutoring 

will be offered next when the student still fails to answer correctly.  Finally, if all 

fails, the solution will be demonstrated to the student.  On the other hand, a 

conditional probability between 0.60 and 0.80, will direct student straight to the 

Pre-Test Review, whereas a value less than 0.60 will lead them to the Pre-Tutoring 

hint which guides the student step by step to solve the sub-tutorial.  The selected 

threshold of 0.60 is justified from the range of sample results in Table 4.2.  The 

algorithm below clarifies the various path during the tutoring session: 



 

101 

 

If Failed or Hint Selected Then 

If conditional probability > 0.80 Then 

Display Brief Explanation 

Update Student Model 

If Problem Unable to Solve-1 Then 

Display Pre-Test Review 

Update Student Model 

If Problem Unable to Solve-2 Then 

Display Pre-Tutoring 

Update Student Model 

If Problem Unable to Solve-3 Then 

Demonstrate solution 

Update Student Model 

End If 

End If 

End If 

Else If conditional probability between 0.6 and 0.8 Then 

Display Pre-Test Review 

Update Student Model 

If Problem Unable to Solve-1 Then 

Display Pre-Tutoring 

Update Student Model 

If Problem Unable to Solve-2 Then 

Demonstrate solution 

Update Student Model 

End If 

End If 

Else If conditional probability less than 0.6 Then 

Display Pre-Tutoring 

Update Student Model 

If Problem Unable to Solve-1 Then 

Demonstrate solution 

Update Student Model 

End If 

End If 

Else 

Proceed to next sub problem 

End If 

 

Figure 4.4 Various Paths during Tutoring Session 

 



 

102 

4.5.4 Updating Student Model 

 

The student model which includes the conditional probability for each topic, P(U|C) 

will be updated for every path that is taken by the student.  The key idea in the 

update process is that the student’s knowledge level progresses gradually.  The 

adjustment is based on the different levels of performance of the students as they 

attempt to solve various problems.  See Tables 4.4 (a), 4.4 (b) and 4.4 (c).  The 

highlighted area represents the entry point to the recommended teaching strategy 

based on the conditional probability obtained after the pre-test.  

 

Referring to Table 4.4 (a), students who obtained a conditional probability, P(U|C) 

less than 0.6 will be directed to the Pre-Tutoring as explained in section 4.5.3.  If the 

student solved the problem correctly on the first attempt, no update is performed.  

The conditional probability for the topic is updated when the student has obtained 

the correct solution after the second attempt.  If the student did not consult the hint 

and answered correctly, the conditional probability is increased accordingly.  

Similarly, the conditional probability is decreased if the student requires a second 

attempt with the same hint to obtain the correct answer.  The conditional probability 

is set to 0.01 if student fails in all attempts with the given hints.  The non-zero value 

of 0.01 used is based on the assumption that student has obtained some 

understanding after having been given the hints even though he or she fails to 

answer correctly.  The updated value which is the new P(U|C) in Table 4.4 is based 

on the table of conditional probabilities in Appendix A.  The inner workings of this 

algorithm will be explained and evaluated in Chapter 6. 



 

103 

 

 

Table 4.4 (a) How the Student Model is Updated when P(U|C) < 0.6 

P(U|C) < 0.6    Updated Values 

Brief 

Explanation 

Pre-Test 

Review 

Pre-

Tutoring Demonstrate 

Total 

Attempts 

New 

P(U|C) 

No Hint Selected 1 No update 

No Hint Selected 2 0.80 

- - Y - 1 No update 

    Y - 2 0.60 

- - N Y 1 0.60 

    N Y 2 Lowest 

- - N N - 0.01 

 

 

Table 4.4 (b) How the Student Model is Updated when 0.6 <= P(U|C) <= 0.8 

0.6 <= P(U|C) <= 0.8   Updated Values 

Brief 

Explanation 

Pre-Test 

Review 

Pre-

Tutoring Demonstrate 

Total 

Attempts New P(U|C) 

No Hint Selected 1 No update 

No Hint Selected 2 Next Higher Value 

- Y - - 1 No update 

  Y - - 2 0.60 

- N Y - 1 0.60 

  N Y - 2 

Next Lower Value 

or Lowest 

- N N Y 1 

Next Lower Value 

or Lowest 

  N N Y 2 Lowest 

- N N N - 0.01 



 

104 

Table 4.4 (c) How the Student Model is Updated when P(U|C) > 0.8. 

P(U|C) > 0.8    Updated Values 

Brief 

Explanation 

Pre-Test 

Review 

Pre-

Tutoring Demonstrate 

Total 

Attempts New P(U|C) 

No Hint Selected 1 No update 

No Hint Selected 2 1.00 

Y - - - 1 No update 

Y - - - 2 0.60 

N Y - - 1 0.60 

N  

 

Y 

 

- 

  

- 

 

2 

 

Next Lower 

Value 1 or 

Lowest 

N 

 

N 

 

Y 

 

- 

 

1 

 

Next Lower 

Value 1 or 

Lowest 

N 

 

N 

 

Y 

 

- 

 

2 

 

Next Lower 

Value 2 or 

Lowest 

N 

 

N 

 

N 

 

Y 

 

1 

 

Next Lower 

Value 2 or 

Lowest 

N N N Y 2 Lowest 

N N N N - 0.01 

 

The reasoning behind the update is that the performance of students normally 

progresses or weakens gradually and not abruptly.  Therefore, the conditional 

probability is updated after the second attempt and not the first attempt.  This is also 

an assurance that the students truly understood the knowledge acquired and not 

guessing his or her way through. 

 

Figure 4.5 below depicts a graph that shows a gradual increase of a performance for 

a particular pre-requisite topic. The performance level is represented by the set of 

conditional probability, P(U|C) values {0, 0.44, 0.67, 0.80, 0.89, 0.95, 1}, calculated 

using the Bayesian Theorem.  The updated values which is the new P(U|C) in 

Tables 4.4 correspond to the set of conditional probability values for each topic.  



 

105 

For example, if the student’s initial P(U|C) is less than 0.6, and he/she is able to 

answer correctly without hint twice consecutively, then his/her P(U|C) will be 

updated to 0.80. 

 

P(U|C)

0

0.2

0.4

0.6

0.8

1

P(U|C)

P(U|C) 0 0.44 0.67 0.80 0.89 0.95 1

1 2 3 4 5 6 7

 

Figure 4.5 Gradual Change in Conditional Probability 

 

This gradual update algorithm is similar to the idea in fuzzy logic.  Fuzzy logic 

deals with degrees of membership and degrees of truth.  The transition from 

membership to non-membership is gradual rather than abrupt (Zadeh, 1965).  

Similarly, the update algorithm models the student’s understanding gradually from 

less understanding to more understanding.   

 

In the C++ STL ITS student model, a student obtaining an initial conditional 

probability of 0.67 will not be increased suddenly to 1.00 by attempting the problem 

correctly the first time.  The application of the Bayesian Theorem captures a 

realistic progression of the student’s performance. 

 



 

106 

4.5.5 Evaluating and Categorising Student’s Behaviour 

 

Upon completing each tutorial, it is useful to assign a stereotype according to the 

student’s understanding to allow tutors to assess the student further.  Information 

required for the stereotyping is obtained from the student’s behaviour as he/she 

interacts with the ITS.  Sison and Shimura (1996) defined student’s behaviour as 

any observable response that is used as input to the student modelling process.  In 

the C++ STL ITS, various information measured during the interactions is 

evaluated, and subsequently used to categorise the student.  The pre-test 

performance results include the number of correct and incorrect answers, and 

conditional probabilities of understanding for each topic.  As the student attempts 

the tutorial, the time spent to complete the tutorial, number of attempts to answer 

correctly, number of hints selected and the updated conditional probabilities are 

measured.  The information observed is employed to categorise the students into 

four common stereotypes that concern the knowledge of student: novice, beginner, 

intermediate and advanced. 

 

The Bayesian approach efficiently calculates the conditional probabilities of 

student’s understanding.  However, it is not capable of dealing with uncertainties in 

categorizing the student’s understanding given the variables like tutorial duration,  

number of attempts and number of hints selected. 

 

The proposal is to apply fuzzy logic techniques to provide human-like diagnosis of 

the student’s knowledge.  A general fuzzy expert system based on the application of 

fuzzy set theory will be implemented to perform the approximate reasoning.  The 



 

107 

technique proposed to build fuzzy expert system is the Sugeno method.   The 

method was named after Michio Sugeno (Sugeno, 1985).  The operation of the 

fuzzy expert system involves the execution of four major tasks: fuzzification, rule 

evaluation, aggregation and defuzzification (see Figure 4.6) 

 

 

Figure 4.6 The Four Tasks in the Fuzzy Expert System 

 

Fuzzification involves the choice of parameters, fuzzy input and output variables 

and defuzzified output variable(s), definition of membership functions for the input 

parameters and the description of fuzzy rules.  The main purpose is to convert crisp 

values into a fuzzy set.  The membership functions defined on the input parameters 

are applied to their actual values to determine the degree of membership for each 

fuzzy rule.   

 

A fuzzy rule is an IF .. THEN rule of the standard form: 

 IF x is A THEN y is B 

where 

 x and y are linguistic variables  

 A and B are linguistic values determined by fuzzy sets.  

Fuzzification Rule 

Evaluation 
Defuzzification Aggregation 



 

108 

The x is A part is known as the antecedent or premise, whereas y is B is called the 

consequent or conclusion.  In the Sugeno-style fuzzy inference, a singleton is used 

as the membership function of the rule consequent.  A singleton is a fuzzy set with a 

membership function that is unity at a single particular point on the universe of 

discourse and zero everywhere else (Negnevitsky, 2005).  The most commonly used 

zero-order Sugeno fuzzy model applies a constant value to the linguistic value (i.e. 

B) of the consequent. 

Fuzzy sets can have a variety of shapes represented by various membership 

function.  A regular membership function will be applied to the C++ STL ITS fuzzy 

model.  In most cases, a triangle or a trapezoid is adequate to represent the expert’s 

knowledge. 

To categorise the students, the C++ STL ITS will adopt the following input as the 

linguistic variables with their corresponding linguistic values:  

 Conditional probabilities - high, medium and low 

 Time to complete a tutorial - short, medium and long 

 Number of attempts  - high, medium and low 

 Number of hints selected - high, medium and low 

 Understanding - novice, beginner, intermediate and advanced 

The linguistic variable Understanding is the desired consequent, where as, the rest 

are the antecedent. 

 



 

109 

Subsequently, the student’s understanding is captured in fuzzy rules: 

Examples: 

Rule 1: 

IF  conditional_probability is high 

AND time_taken is short 

AND number_of_attempts is low 

AND hints_selected is low 

THEN understanding is advanced 

 

Rule 2: 

IF  conditional_probability is low 

AND time_taken is very long 

AND number_of_attempts is very high 

AND hints_selected is very high 

THEN understanding is novice 

 

Rule Evaluation: With the definition of the rules, membership function and 

fuzzified input, the truth value for the antecedent of each rule is computed, and 

applied to the consequent part of each rule.  The output is one fuzzy set assigned to 

each output parameter for each rule.  The max_min operator will be applied to 

evaluate the rules (Hopgood, 2001). 

 



 

110 

In the Aggregation process, all the fuzzy sets assigned to each output variable are 

combined together to form a single fuzzy set for each output variable.  The 

membership functions of all rule consequents from the previous stage are combined 

into a single fuzzy set. 

 

Defuzzification is the process of converting fuzzy output set into the desired crisp 

value.  The input for the defuzzification process is the aggregate output fuzzy set 

and the output is a single crisp number.  The output is simply calculated by finding 

the weighted average of the singletons obtained from the aggregation operation. 

  

Another method for fuzzy inference is known as the Mamdani method.  It was 

introduced by Professor Ebrahim Mamdani of London University who built one of 

the first fuzzy systems to control a stream engine and boiler combination (Mamdani 

& Assilian, 1975).  This method uses the centroid technique for defuzzification 

which relies on using the centre of gravity of the membership function to calculate 

the crisp value of the output parameter.  Although the Mamdani method is widely 

accepted, its defuzzification process is computationally intensive.  On the other 

hand, the Sugeno method is computationally efficient, works well with optimisation 

and adaptive techniques (Negnevitsky, 2005).  The singleton output functions are 

able to satisfy the requirement of C++ STL ITS to categorise the student.  This 

makes the Sugeno method an attractive choice for this ITS. 

 

 The implementation details of the fuzzy expert system is covered in Chapter 5. 



 

111 

 

4.5.6 Acquired Knowledge 

 

On completion of the tutoring session, the student will be directed to a post-test to 

find out whether he/she has gained the knowledge in the C++ STL satisfactory.  

This post-test also allows us to gauge the effectiveness of the tutoring system.  The 

Bayesian Theorem will again be employed to determine whether the student has 

achieved the learning outcome of the STL. 

 

4.6 Summary of Problems and Solutions 

 

The main focus in this chapter is to ascertain the difficulties in learning and teaching the 

C++ STL.  The findings have led to the proposed solution that models the problem 

specification based on prerequisite sub-skills.  The ITS will also be equipped with the 

authoring of the domain knowledge dynamically which includes the authoring of pre-test, 

tutoring session and post-test.  Hence, curriculum planner and implementer tutor can fully 

participate in the design of the curriculum and tutoring sessions as well as in the 

implementation of the tutorials respectively for their students for effective teaching and 

learning.  Table 4.5 highlights the major problems discussed, in relation to the C++ STL, 

along with their proposed solution. 

 



 

112 

Table 4.5 Summary of Identified STL Problems and Proposed Solutions 

IDENTIFIED PROBLEMS IN STL PROPOSED SOLUTION 

Difficulties in learning STL 

 Poor understanding in prerequisite 

concepts like parametization, 

templates and function overloading. 

 

 Unable to determine the most 

appropriate STL algorithm to apply. 

 

 Model the problem specification 

based on prerequisite sub-skill. 

Strengthening prerequisites through 

drill and practice. 

 Provide tutoring sessions with 

various teaching strategies. 

Difficulties in teaching STL 

 Dealing with diversified learning 

pace and knowledge. 

 Lack customization in the domain 

knowledge. 

 

 Distinguish between Curriculum 

Planner and Implementer Tutor. 

 Dynamic Domain Modelling using 

various Authoring Tools 

 

 

Uncertainties in identifying student’s knowledge in the prerequisite concepts have led to the 

application of the Bayesian Theorem to update the student model dynamically, providing a 

transparent student model that can be explained intuitively.  With Bayesian reasoning, the 

probability of a hypothesis can be updated in the light of new evidences.  Finally, the 

novelty of the student modelling is in the adjustment of the prerequisite sub-skill threshold 

during the tutoring session based on a gradual scale.  A fuzzy expert system is also 

proposed to categorise the students for further assessment.  Integrating the Bayesian 

Theorem and fuzzy logic will produce a dynamic student model that changes smoothly as 

the conditional probability is updated. 



 

113 

Chapter 5 STL Tutor Architecture and Development 
 

The C++ Standard Template Library (STL) Intelligent Tutoring System (ITS) provides 

tutoring in the domain of the C++ STL through drill and practice.  Unlike previous ITS for 

programming which models the domain knowledge hierarchically based on elementary 

topics, C++ STL Tutor models the problem specifications instead based on prerequisite 

sub-skills.  Its domain knowledge is modelled in a 2-level hierarchical structure based on 

topics and sub-topics of prerequisite concepts. 

 

Authoring Tools are included in the design and development of the C++ STL Tutor.  These 

include authoring and editing of the pre-test questions, tutorial sessions and post-test 

questions.   

 

5.1 Overall Architecture 

The overall design of the C++ STL ITS constitutes three main components – Student 

Modelling Module, Tutoring Module and Users Administration Module, as depicted in 

Figure 5.1.  The modularity of the implementation allows more effective participation of 

both the curriculum planner and implementer tutor.  The Student Modelling Module is a 

core component which contains the knowledge of the student.  The Teaching Strategies 

Module includes the Pre-Test, Tutorial and Post-Test modules.  Lastly, the Student, Tutor 

and Administrator modules are part of the Users Administration Module.  The Student 

module is decomposed into Tutorial and Non-Tutorial. 



 

114 

 

Figure 5.1 Components of C++ STL ITS 

 

Figure 5.2 depicts the system architecture of the C++ STL ITS which is based on a typical 

ITS architecture.  The four main modules are: 

 i) Graphical User Interface Module 

 ii) Student Modelling Module 

 iii) Teaching Strategies Module 

 iv) Domain Knowledge Module 

 

The Graphical User Interface (GUI) Module handles the interaction between the user (tutor 

or student) and the system.  It accepts input from the user and directs the information to the 

other modules for processing.  The Student Module contains the dynamic model of a 

student which stores the personal details and the knowledge of the students.  Input obtained 

Teaching Strategies Module 

Pre-Test 

Tutorial 

Post-Test 

Users Administration Module 

Tutor Student 

With 

Tutorial 

Without 

Tutorial Administrator 

Student Modelling Module 

Domain Knowledge 



 

115 

from the GUI Module through the Domain Knowledge Module and Teaching Strategies 

Module is used to update the student model.  The Domain Knowledge Module stores 

tutorials, program specifications and topics on the C++ STL.  This module interacts with 

the Teaching Strategies Module to allow authoring of the various teaching strategies.  The 

responsibilities of the Teaching Strategies Module include the authoring and maintenance 

of pre-test, alternative teaching strategies and post-test. 

 

 

Figure 5.2 System Architecture of the ITS 

Graphical User Interface Module 

Student Modelling 

Module 

Teaching Strategies Module 

Brief Description 

Pre-Test Review 

Pre-Tutoring 

Demonstration 

Post-Test Evaluation 

Domain Knowledge Module 

Tutorials 

and Sub-

Tutorials 

Program 

Specifications 

Topics 

And 

Sub-Topics 

Pre-Test Evaluation 



 

116 

5.2 Student Modelling Module 

The Student Modelling Module is responsible for building the student model from 

information obtained through the student’s interaction with the system.  The student model 

consists of information obtained from three components.  The first component is from the 

pre-test assessment which stores the prerequisite knowledge of the student.  The second 

source is the tutorial module which keeps track of the student’s learning path during the 

problem solving session and updates the student model accordingly.  The third category of 

information for the student model is derived from the post-test evaluation.  This 

information indicates the acquired skills of the student from the tutorials completed. 

 

The student’s knowledge of the domain is evaluated using the overlay model and 

represented using the Bayesian theorem.  Tracking information measured from the problem 

solving session is then directed to the fuzzy expert system to categorize the students. 

 

5.3 Domain Knowledge Module 

The domain knowledge is divided into 3 parts: 

i) Topics and Sub-Topics 

ii) Program Specifications 

iii) Tutorials and Sub-Tutorials 

 

C++ STL Tutor models the problem specifications based on prerequisite sub-skills.  The 

prerequisite sub-skills are organized into topics and sub-topics, which is a 2-level 

hierarchical structure.  Tutorials include the program specifications and are decomposed 



 

117 

into sub-tutorials to provide a bottom up view of the given problem.  Authoring tools 

incorporated allow different knowledge domain to be designed for the tests and tutorials.  

Therefore, the programming language is not fixed on C++ but can be customized to Java, 

for example, and subsequently changed to Java Standard Template Library (JSTL). 

 

5.3.1 Topic and Sub-Topic Repository 

 

Tutors maintain the repository by creating new topics and sub-topics, editing and 

deleting existing ones.  One topic has many sub-topics associated to it.  This 2-level 

simple structure allows the tutors to group the related sub-topics together for easy 

reference.  The structure also reduces the complexity of the mapping between the 

topics and Tutoring Module which includes pre-test, tutorial and post-test.  Table 

5.1 lists three main topics and their respective sub-topics.  These are typical topics 

taught in the first year of a programming module in a Computing degree course.  

The remaining list is in Appendix B. 

 

Table 5.1 Partial List of Topics and Sub-Topics 

NO TOPIC SUB-TOPICS 

1 Data Data Type 

Variable 

Constant 

2 Expression Assignment Expression 

Conditional Expression 

3 Input-Output Output 

Input 

4 Selection if…else 

else if… 

switch...case 

5 Iteration for 

while 

do…while 



 

118 

 

5.3.2 Program Specifications Repository  

 

The most common method to learn a programming language is through problem 

solving.  Butz et al (2006) acknowledged that problem solving is an integral part of 

computer programming.  In the C++ STL Tutor, students learn to apply the STL 

through drill and practice.  The tutoring sessions are carried out after a pre-test 

evaluation of the student’s prerequisites sub-skills.  Each tutorial question includes 

a program specification for the student to solve.  The program specification gives a 

top view of the program.  Below is an example of a program specification for the 

STL vector domain: 

“Declare a vector of 10 integers called myVector.  Read 10 integers from the 

keyboard to populate myVector and then output them.” 

 

The program specification above is designed to be clear and concise.  It starts with 

the need for declaration, then listing out the tasks required.  Tutors will have the 

flexibility to author the specifications based on the needs of their students.  With the 

authoring tool, tutors are encouraged to be creative in setting of the specifications to 

enhance learning.  The specifications can be maintained and updated when the need 

arises. 

  



 

119 

5.3.3 Tutorials and Sub-Tutorials Repository 

 

The tutorial session demonstrates that the program specification can be divided into 

sub-tutorials, forming the bottom up view of a program.  Each tutorial is linked to a 

set of required set of prerequisites and acquired skills which are the topics and sub-

topics.  To illustrate this, the same example as in Section 5.3.2 is used.  Table 5.2 

lists the prerequisites and acquired skills for the given specification above: 

 

Table 5.2 An Example of a Program Specification with Prerequisites  

and Acquired Skills 

 

Program Specification 

Declare a vector of 10 integers called myVector.  Read 10 integers from the 

keyboard to populate myVector and then output them. 

Prerequisites Skills Acquired Skills 

TOPICS SUB-TOPICS TOPICS SUB-TOPICS 

Class Template Creating Instance STL vector Parametized 

Declaration 

Constructor Declaration – 

Parametized 

STL vector Populate 

Fundamental Input STL vector Output 

Fundamental Output   

Iteration for 

Array Range 

Array Assignment 

 

  

The following table 5.3 shows the sub-tutorials that can be designed for the tutorial 

above.  Three sub-tutorials are created with the prerequisites and acquired skills 

associated to each.  Both skills are organized into topics and sub-topics. 

 



 

120 

Table 5.3 An Example of Sub-Tutorial Problems 

NO SUB-TUTORIAL PREREQUISITE 

(TOPIC –  

SUB-TOPIC) 

ACQUIRED SKILL 

(TOPIC –  

SUB-TOPIC) 

1 Write the statement 

to create a vector 

called myVector that 

can store up to 10 

integers. 

Class Template – 

Creating Instance 

Constructor – 

Declaration 

parametized 

 

STL vector - 

Declaration 

2 Read 10 integers 

from the keyboard 

and populate the 

vector. 

Fundamental – input 

Iteration – for 

Array – range 

Array – assignment 

STL vector – Populate 

3 Output the contents 

of the vector. 

Fundamental – 

output 

Iteration – for 

Array – range 

Array – assignment 

STL vector - Output 

 

The purpose of the sub-tutorials is to reduce the complexity of the given problem 

through decomposition.  It demonstrates to students that a problem can be 

decomposed into sub-problems and each problem can be solved independently.  An 

ethnographic field study to identify problem solving skills used in Software Design 

(Arvanitis, et al, 2001) showed that students tend to avoid attempting a conceptual 

design after they received a problem specification.  Most students applied a build-

and-fix strategy and had difficulties verifying their programs.  A further problem 

was discovered where students struggled to differentiate between syntactic and 

semantic errors.  The findings concluded that it is beneficial to integrate problem 

solving design strategies into programming knowledge.  The combination of the top 

down and bottom up views, which is the program specification and the sub-tutorials 

respectively, provided by the C++ STL ITS seeks to satisfy this requirement.  

Therefore, software design skills are established and reinforced into the 



 

121 

programming knowledge through the tutorials.  The skills gained are desirable and 

transferable to more advanced or complex programming problems. 

 

5.4 Teaching Strategies Module 

The Teaching Strategies Module consists of three main modules: 

i) Pre-Test Module 

ii) Tutorial Module 

iii) Post-Test Module  

 

The Pre-Test Module involves the setting of questions to test the prerequisite concepts of a 

student and the Pre-Test evaluation session. On completion of the Pre-Test, students are 

directed to the Tutorial Module.  The Tutorial Module allows the tutor to design the tutorial 

sessions and set different teaching strategies.  Lastly, the purpose of the Post-Test module 

is to test the effectiveness of the tutorial sessions.  This includes questions related to the 

C++ STL. 

 

5.4.1 Pre-Test Module 

 

The Pre-Test Module is composed of two components: the Pre-Test Editor and the 

Pre-Test Evaluation Session.  The Pre-Test Editor provides the tutor the tool to 

design pre-test questions to assess student’s prerequisite sub-skills.  The questions 

are based on the topics and sub-topics added into the repository.  The Pre-Test 

Evaluation Session is responsible to provide the interface to evaluate the student’s 

prerequisites and produce the necessary reports on completion. 



 

122 

 

The proposed pre-test editor includes an interface to enter the question and multiple 

choice based answers.  There are two key reasons for employing a multiple choice 

test format.  Firstly, simplicity – simplicity in assessment, design of questions as 

well as implementation.  More importantly, the multiple choice test facilitates the 

application of the Bayesian theorem for the student model.  The results simplify the 

calculation of the conditional probabilities of the student’s understanding of a 

particular prerequisite sub-skill.  The calculation was demonstrated in Chapter 4. 

 

The Pre-Test repository includes the pre-test questions, answers and answers record.  

This information is used during the Pre-Test conducted for the students.  The Pre-

Test Evaluation Session provides a simple interface for the students.  A sample 

screen shot of the interface is shown in Figure 5.3. 

 

The ‘Question Contents’ button allows the student to view the entire pre-test 

questions repository (see Figure 5.4).  Questions that are answered are highlighted.  

From this view, the student are allowed to choose to view all the questions or 

answered questions only or unanswered questions only.  The purpose of this 

filtering is to promote flexibility during this self-assessment.  From the question 

contents, students can choose which questions they wish to answer next.  The 

different views show which questions are still left unanswered or answered already 

but need to be reviewed. 

 



 

123 

 

Figure 5.3 A Screen Shot of an Interface during the Pre-Test Evaluation Session 

 

 

The order of the questions is generated randomly so that no students will have the 

same sequence of questions presented to them.  This can avoid memorization of 

answers if the student chooses to repeat the test. 

 



 

124 

 

Figure 5.4 Partial Screen Shot of the View from ‘Question Contents’ 

 

At the end of the Pre-Test, the conditional probabilities of the student’s 

understanding for each prerequisite skill are generated and stored.  The values are 

then used to direct the student’s learning path during the tutorial session.   

 

As the emphasis is on the performance of the prerequisite skills, a tabulated result 

showing the total number of questions answered correctly and incorrectly for each 

topic is produced.  This will present an overall picture to the students on the topics 

that they are strong and weak at.  The tutors will also benefit from this analysis. 



 

125 

 

5.4.2 Tutorial Module 

 

The Tutorial Module allows the authoring of tutorial sessions and four main 

teaching strategies used during the tutoring process:  The strategies are: 

i) Brief Explanation 

ii) Pre-Test Review 

iii) Pre-Tutoring 

iv) Demonstration 

  

The teaching strategies are linked to the sub-tutorials.  This means that each sub-

tutorial consists of these 4 teaching strategies as described in Chapter 4.   

5.4.3 Post-Test Module 

 

The interface of the Post-Test module is similar to the Pre-Test Module.  Editing 

tools are included to design the multiple choice test.  The questions are related to the 

C++ STL. 

 

Like the Pre-Test repository, the Post-Test repository also includes the post-test 

questions, answers and answers record.  The interface and functionalities are also 

similar to the Pre-Test module.  The main objective of the Post-Test is to evaluate 

the effectiveness of the tutoring session.  Reports are generated for both tutors and 

students. 

 



 

126 

5.5 Users Administration Module 

The responsibility of the Users Administration Module is to manage the various users of 

the system.  The users include: 

i) Tutor 

ii) Tutorial Student 

iii) Non-Tutorial Student 

iv) Administrator 

 

The Administration Module includes the management of various users of the system.  The 

users consist of administrators, tutors (curriculum planner and implementer tutor), tutorial 

and non-tutorial students.  Non-tutorial students refer to those who are involved in the tests 

but did not sit through the Tutorial Module.  Its student model is simpler containing fewer 

results.  The purpose of the distinction is purely for evaluation only. 

 

The basic operations to manage the users are create, add, update, search, view and delete.  

Users are authenticated before the access to the system is granted.  Upon successful 

authentication, their login sessions are logged for monitoring purpose.  The data recorded 

includes user identification number, session identification, last IP address and date. 

 

The next sections discuss the development details of the architecture described in the 

previous sections.  The methodologies applied are also presented and rationalized. 

 



 

127 

5.6 The eXtreme Programming Methodology 

eXtreme Programming (XP) is an agile software development methodology for delivering 

quality software while emphasizing the requirements.  The application of XP in the C++ 

STL ITS allows the software to be implemented in a shorter period of time with tests 

created even before the software is written.  XP is not just a process.  It contains principles 

and practices that guide a project development.  The beauty of XP is that it does small 

design continuously throughout the project one task at a time (see Figure 5.5).  Testing is 

performed repeatedly until the task is fully implemented and working.  Refactoring is 

carried out to make small changes that do not affect external behaviour.  It improves the 

design and makes the code easier to understand. 

 

 

Figure 5.5 Cycles in XP (Astels, et al, 2002) 

 

 

In conceptualizing the ITS, the following main tasks in XP were performed: 

 i) Creating a vision (Appendix C) 

The vision card describes the purpose and objective of the system.  It defines 

the scope of the system and provides the areas of focus. 

ii) Writing User Stories (Appendix D) 

A user story is the smallest unit of information necessary to allow the 

definition of various paths in the system.  The main components are 

identified and described briefly. 

Get 

Task 
Refactor Test Cycle 



 

128 

 iii) Writing Acceptance Tests (Appendix E) 

Acceptance tests are generated based upon user stories.  The Appendix E 

includes test cases to test the Exception class and the Student session beans.  

White box testing is applied on each unit to test the behaviour of the code. 

 

The tasks above were iterated throughout the development stage to refine the system 

through a series of small releases.  The first component released was the Administration 

Module, this was followed by the authoring tools for the pre-test, tutorial framework and 

post-test.  The final release was the Tutoring Module. 

 

Using the user stories from XP, the main classes in the system are identified and 

graphically designed using Unified Modelling Language.  UML provides the visual 

notation to analyze the problem and its possible solutions using object-oriented concepts.  

The diagrams designed for the C++ STL ITS are class diagrams, general package diagram 

and general module package diagram depicted in Appendix F. 

 

5.7 The 3-Tier System Architecture 

 

A lot of research has been focused on Web-based education which gives rise to more web-

based ITS systems on the Internet.  In Brusilovsky’s (1999) paper entitled “Adaptive and 

Intelligent Technologies for Web-based Education”, he gave an impressive review of 

adaptive and intelligent technologies in the context of web-based distance education.  He 

compared three categories of systems – hybrid of adaptive hypermedia and ITS, web-based 



 

129 

adaptive hypermedia systems and web-based ITS systems.  Web-based ITS first appeared 

during the period 1995 – 1996.  Examples include RAPITS (Woods et al, 1995) and ELM-

ART (Brusilovsky et al, 1996).  This list continues to grow with ELM-ART-II (Weber et al, 

1997), CALAT ITS (Nakabayashi et al, 1997), ILESA (López et al, 1998), AlgeBrain 

(Alpert et al, 1999), VC PROLOG (Peylo et al., 2000), Web PVT (Virvou & Tsiriga, 

2001a, b), WILEDS (Kassim et al, 2001), Web-EasyMath (Tsiriga & Virvou, 2002), 

SQLT-Web (Mitrovic & Hausler, 2003), JITS (Sykes & Franek, 2003), BITS (Butz et al, 

2004) (see Table 5.4) and many more.   

The latter systems used a two-tier or client/server architecture implemented using Java.  

Earlier systems employed the Common Lisp Hypermedia Server CL-HTTP completely 

written in Lisp (Mallery, 1994).  CL-HTTP is a full-featured server for the Internet 

Hypertext Transfer Protocol applied in numerous Artificial Intelligence systems.  CL-

HTTP offers a Common Gateway Interface (CGI) to handle incoming URLs which are 

associated with a response function implemented in Lisp.  In response, the appropriate 

HMTL page is generated.  With this architecture, CL-HTTP is a flexible and powerful tool 

for intelligent applications implementation on the web (Brusilovsky et al, 1998).  

Unfortunately, CGI-based applications are subject to these limitations: platform-specific, 

resource intensive, slow and difficult to maintain (J2EE BluePrints, 2001).  Moreover, 

Common LISP is no longer one of the best choices available for today.  The HTML-CGI 

architecture employed by some of the web-based ITS does not scale to more complex 

enterprise applications due to these reasons (Matena & Stearns, 1991): unstructured 

encapsulation of business process, difficult to develop, maintain and manage, intertwine 

business and presentation logic and difficult to maintain integrity of business rules. 

 



 

130 

 Table 5.4 Overview of Implementation of Web-based Intelligent Tutoring Systems 

INTELLIGENT TUTORING SYSTEM IMPLEMENTATION 

RAPITS (Woods et al., 1995) 

 Electronic book environment 

 Made available to students to use 

on their off-campus machines 

 

 Asymetrix ToolBook 

 Microsoft Word 

 Microsoft Excel 

 Microsoft Windows Dynamic Data 

Exchange 

ELM-ART (Brusilovsky et al, 1996) 

 Intelligent problem solving support 

 

Common Lisp Hypermedia Server CL-

HTTP 

 HTTP server implemented in 

Common LISP 

 Offers Common Gateway Interface 

(CGI) to handle incoming URLs 

ELM-ART-II (Weber & Specht, 1997) 

 Intelligent interactive textbook 

Programmable WWW-server CL-HTTP 

 Client – Web browser 

 Server – Web server 

CALAT ITS (Nakabayashi et al, 1997) 

 Provides individual adaptation 

capability 

 

Client-server 

 Client – WWW browser 

 Server consists of a WWW daemon 

process and back-end ITS 

processes. 

 

HTML-CGI architecture. 

ILESA (López et al, 1998) 

 Intelligent Learning Environment 

 Knowledge and Task sequencing 

Client-server 

 

Used JDK 1.1.4 

AlgeBrain (Alpert et al, 1999) 

 Support problem solving activities 

 

Client-server 

 Java Client – Web browser and 

AlgeBrain Java applet. 

 Server – HTTP server and 

AlgeBrain Application Server 

 

Distributed architecture. 

VC PROLOG (Peylo et al, 2000) 

 Intelligent analysis of student’s 

solutions 

Client-server 

 Java client 

 Server written in ANSI-C, a 

POSTGRESS database and 

application process (PROLOG or 

LISP) 

Web PVT (Virvou & Tsiriga, 2001a,b) 

 Adaptive tutoring 

 

Client-server 

 Client – Web browser 

 Server – contains web server and 

application server 

 

HTML-CGI architecture. 



 

131 

Table 5.4 (continued) 

 

WILEDS (Kassim et al, 2001) 

 Intelligent learning environment 

 

Three-tier Java client-server architecture 

 Client – Web browser and run Java 

Applets. 

 Server – contains WWW server, 

student model and domain 

knowledge. 

 

Java servlet for communication between 

client-side Java applets and student model. 

Web-EasyMath (Tsiriga & Virvou, 2002) 

 Individualized assessment 

 

Client-server 

 Client – Web browser 

 Server – contains web server and 

application server 

 

HTML-CGI architecture. 

SQLT-Web (Mitrovic & Hausler, 2003) 

 Adaptive tutoring 

CL-HTTP server (Common Lisp 

Hypermedia Server) 

 Client – Web browser 

 Server – Web server 

 

Centralized architecture. 

JITS (Sykes & Franek, 2003) 

 Support problem-solving activities 

with focus on methodology applied 

 

Three-tier Java client-server architecture 

 J2EE compliant server with web 

server 

 Presentation layer users JSP 

 JDBC connection from the EJBs to 

database. 

BITS (Butz et al, 2006) 

 Hypermedia-structured learning 

material 

General framework developed using 

Microsoft Visual Studio.net. 

Developed instructional materials on 

Macromedia Studio MX. 

Developed ASP, XML files and HTML 

pages. 

 

Generally, in two-tier architecture or client/server architecture, the user interface client on 

the web invokes services from the web server.  In most two-tier designs, most of the 

application part of processing is in the client environment.  The web server usually provides 

the part of the processing related to accessing the database. The client (web browser) 

requests execution of some job, while the application on the server executes this job.  The 

main advantage of two-tier architecture is that it reduces the complexity in implementation, 



 

132 

because the presentation logic and business logic reside in the same process.  Ironically, 

this is also the main disadvantage of two-tier architecture.  Matena and Stearns (1991) 

discussed that because developers cannot cleanly and clearly separate business logic from 

the user interface, a number of problems arise: “easily compromised database integrity, 

difficult to administer, difficult to maintain, exposure to security violations, limited 

scalability, restricted client architecture requirements, and limitation to one presentation 

type.”  This could be one of the reasons ITSs are not adopted commercially. 

The C++ STL ITS adopts a three-tier system architecture which is based on the Java 2 

Platform, Enterprise Edition (J2EE) architecture.  The three-tier architecture overcomes the 

limitations of the two-tier architecture by splitting the presentation logic from the business 

logic.  The multi-tiered ITS architecture shown in Figure 5.6 consists of the following tiers: 

i) Client-tier layer – contains Presentation Logic 

ii) Middle-tier layer – contains Business Logic 

iii) Data Source-tier layer – contains Database  

 

J2EE is a platform for developing distributed software applications.  The J2EE platform 

supports servlets and Java Servlet Pages technologies that overcome the limitations in CGI 

applications.  The key benefits include: 

• reduces development time to concentrate on business logic 

• promotes scalability and manageability in development 

 



 

133 

 

Figure 5.6 3-Tier System Architecture of C++ STL ITS 

 

Kinshuk (2002) observed that most ITS ended up as prototypes and were not deployed in 

the actual learning environment.  There is also no evidence of commercialization of ITS 

even though various evaluation studies confirmed the effectiveness of using these systems.  

This shows the need to reduce the gap between implementation of ITS and profit-driven 

organizations.  One way of achieving this is the application of industry standards for 

software engineering.  The combination of XP and J2EE forms a strong foundation in the 

web development of the C++ STL ITS.  Their industry practices are applied to enhance the 

value and contribution of this research.  It is an attempt to bring the C++ STL ITS closer to 

the industry level and promote its adoption. 

Database 

MySQL 

Web 

Browser 

 

Servlets 

JSP 
http 

Web 

Container 

EJB Container 

DAO 

Session 

Bean 

Proxy 

Application Server - JBoss 



 

134 

 

5.7.1 The Client-tier Layer 

 

The client tier which represents the Graphical User Interface Module in the ITS 

consists of two parts:  

i) dynamic Web pages containing HTML, which are generated by the Web 

Container components running in the Middle-tier, and  

ii)  a Web browser, which renders the pages received from the application 

server and interacts with the user. 

 

5.7.2 The Middle-tier Layer 

 

The middle-tier accepts user responses from the client-tier and generates the 

appropriate presentation logic.  This tier also handles the core business logic of the 

application implemented as Enterprise Java Bean (EJB) components.  It consists of 

the: 

 Application Server 

 Java Servlet and Java Servlet Page Server 

 Enterprise Java Bean (EJB) components 

o Data Access Objects (DAO) 

o Session Beans 

o Proxy 

 



 

135 

Servlets are Java programs with HTML embedded that run on the application 

server.  Java Servlet Pages (JSP) are HTML pages with Java code embedded.  Both 

servlet and JSP are responsible for generating and transmitting web browser markup 

language to the http client through the http channel dynamically. 

 

The EJB components provide for persistence management, business processing, 

transaction processing and distributed processing capabilities.  The EJB architecture 

provides a standard for developing reusable Java server components that run in the 

application server.  In the C++ STL ITS, the EJB specification defines session beans 

which are stateless.  These beans are distributed transactional component which 

provide a single-use service, do not maintain any state, do not survive server 

crashes, and are relatively short lived.  Modules are encapsulated within respective 

session façade patterns implemented as session beans.  The modules are admin, 

authentication, estudent, posttest, pretest, student, topic, tutor and tutorial. 

(Appendix G).  A session façade encapsulates business-tier components and expose 

services to remote clients.  Clients access a session façade instead of accessing 

business components directly.  This will improve manageability, centralize logic, 

increase flexibility, and improve ability to cope with changes (Alur et al, 2003).  

 

The Data Access Object (DAO) manages the connection with the data source to 

retrieve and store data.  It encapsulates and abstracts access to the data from the 

MySQL database.  The DAO design pattern is one of the core J2EE patterns 

documented in the Core J2EE Pattern Catalog at http://java.sun.com. Using DAO 

and Hibernate allows for complete transparency between the system and MySQL.  

http://java.sun.com/


 

136 

Hibernate is a Java-based middleware designed to complete the Object Relational 

mapping model and handles the persistency of those objects.  Hibernate also 

provides data querying and retrieval functions in the Java environment (Pugh & 

Gradecki, 2004). 

 

The listing below shows the mapping for the Java class UserDO. 

 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE hibernate-mapping PUBLIC 

    "-//Hibernate/Hibernate Mapping DTD 2.0//EN" 

    "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd"> 

 

<hibernate-mapping> 

      <class name="com.its.module.user.model.UserDO" table="ITS_USER"> 

          <id name="sysId" column="SYS_ID" type="long"> 

              <generator class="native"/> 

          </id> 

          <property name="username" column="USERNAME"  

type="java.lang.String" not-null="true"/> 

          <property name="password" column="PASSWORD"  

type="java.lang.String" not-null="true"/> 

          <property name="name" column="NAME"  

type="java.lang.String" not-null="true"/> 

          <property name="email" column="E_MAIL"  

type="java.lang.String" not-null="true"/> 

          <property name="department" column="DEPARTMENT"  

type="java.lang.String" not-null="false"/> 

          <property name="type" column="TYPE"  

type="java.lang.String" not-null="true"/> 

          <property name="createdTimestamp" column="CREATED_TIMESTAMP"  

type="java.sql.Timestamp" not-null="true"/> 

          <property name="lastModifiedTimestamp"  

column="LAST_MODIFIED_TIMESTAMP"  

type="java.sql.Timestamp" not-null="true"/> 

          <many-to-one name="statusDO"  

class="com.its.module.status.model.StatusDO"  

column="STATUS_SYS_ID" not-null="true"/> 

      </class> 

</hibernate-mapping> 

 

 



 

137 

In the previous listing, the mapping document is XML based and includes elements 

for specifying an identifier as well as the attributes of the mapped objects.  Once a 

mapping document has been created, the appropriate database table can be added to 

MySQL, thus completing an Object Relational mapping from a Java class to the 

database. 

5.7.3 The Data Source-tier Layer 

 

The Student Module, Teaching Strategies Module and Domain Knowledge Module 

reside in the data source-tier layer.  In the data source-tier, the DAO is used to 

invoke the MySQL database.  The tables implemented are described in Appendix H. 

 

5.8 XML Syntax Parser and Student Model Update Algorithm 

 

The XML syntax parser and the Student Model update algorithm are part of the Tutorial 

Module which resides in the Middle-tier layer.  The parser and the algorithm play a major 

role in the workings of the tutorial sessions.  The parser is required to check the correctness 

of the student’s tutorial answers, where as the update algorithm is responsible in 

maintaining the student model dynamically during the tutorial. 

 



 

138 

5.8.1 XML Syntax Parser 

 

In the authoring of the tutorials, the answers are represented in a simple XML-based 

format.  The data type definition for the format is displayed below: 

<?xml version='1.0' encoding='UTF-8'?> 

<!ELEMENT syntax (eval)*> 

<!ELEMENT eval (#PCDATA|eval)*> 

<!ATTLIST eval 

    join (and|or) #IMPLIED 

    allow (string|number) #IMPLIED 

    ignorecase (true|false) #IMPLIED> 

 

The XML elements used are syntax and eval.  The element syntax defines the start 

of the answer syntax using the tags <syntax> and </syntax>.  The element eval 

represents the actual C++ syntax to be evaluated, within the tags <eval> and 

</eval>.  Blank spaces will be trimmed.  The attributes consist of join, allow and 

ignorecase.  The valid join values are and and or.  The allowed values are string 

and number.  The third attribute is used to indicate whether a statement or variable 

is case sensitive or not.   

 

An example is shown in Figure 5.7.  The example shows the XML describing the 

answer to populate a vector from the keyboard using a for loop.  Each element of 

the C++ syntax is entered with the <eval> and </eval> tags on a new line to allow 

blank spaces to be trimmed during the syntax validation process.  Some special 

characters are also required within the syntax.  Table 5.5 lists the allowable special 

characters used within the eval tags.  The characters are <, > and &. 

 



 

139 

Table 5.5 Special Characters 

 

SPECIAL 

CHARACTER 

ACTUAL 

CHARACTER 

&lt; < 

&gt; > 

&amp; & 

 

 

 

<syntax> 

    <eval>for</eval> 

    <eval>(</eval> 

    <eval>i</eval> 

    <eval>=</eval> 

    <eval allow="number">0</eval> 

    <eval>;</eval> 

    <eval>i</eval> 

    <eval>&lt;</eval> 

    <eval allow="number">10</eval> 

    <eval>;</eval> 

    <eval>i++</eval> 

    <eval>)</eval> 

    <eval>{</eval> 

    <eval>cin</eval> 

    <eval>&gt;&gt;</eval> 

    <eval>aVector</eval> 

    <eval>[</eval> 

    <eval>i</eval> 

    <eval>]</eval> 

    <eval>;</eval> 

    <eval>}</eval> 

</syntax> 

 

Figure 5.7 XML-based format describing the answer to populate a vector from 

keyboard. 

 

 

Figure 5.8 illustrates the three main phases in the XML Syntax Parser to validate the 

student’s answer during the tutorial session.  The phases are Validate Sub-Tutorial 

Answer, Build ITS Syntax Model and Validate Answer Syntax. 

 



 

140 

 

Figure 5.8 Phases in the XML Syntax Parser 

 

In the first phase, two parameters are required – student’s answer and XML syntax 

answer.  The purpose of this phase is to extract the elements in the XML syntax 

answer required for a particular sub-tutorial that the student is solving.  The 

elements are fed into the second phase to build a list recursively forming the syntax 

model.  Allowable elements are checked within this phase.  The list is then 

recursively validated in the third phase against the required answers, matching 

element by element.  The code is furnished in Appendix I. 

 

Validate Sub-Tutorial 

Answer 

Build ITS Syntax Models 

Validate ITS Answer Syntax 



 

141 

5.8.2 Student Model Update Algorithm 

 

The student model update is handled by a class called TutorialTrxnSBBean in the 

Tutorial Module.  The update is based on the algorithm outlined in Table 4.4 

discussed in Chapter 4.  Figure 5.9 provides a clearer flow of the algorithm using a 

flowchart and supplemented with pseudocodes in Figure 5.10 and Figure 5.11. 

 

 

Figure 5.9 Flowchart of Student Model Update 

 

Obtain Number 

of Attempts 

Find Prerequisite 

Conditional 

Probability 

Find Tutorial 

Track Records 

of 

Sub-Tutorial 

Check 

Attempts 

Check 

conditional 

probability 

= 0 = 1 

Demote 

Conditiona1 

Probability 

> 1 

Check 

conditional 

probability 

See Figure 5.10 See Figure 5.11 



 

142 

The initial conditional probabilities for each topic were obtained from the Pre-Test results.  

Each tutorial is linked to a set of prerequisite topics with conditional probabilities attached 

to the topics.  An average of these conditional probabilities is calculated and checked 

against the various thresholds.  Table 5.6 shows the prerequisite topics and their respective 

initial conditional probabilities achieved by a student, for a tutorial question entitled “vector 

– populate using push_back()”.  The average of 0.88 is obtained.  Therefore, the first hint 

displayed for the student will be Brief Explanation.  These conditional probabilities are then 

updated during the tutorial session.  Generally, the update is performed according to the 

number of attempts to solve the problem and type of hint presented to the students.  Brief 

explanation, Pre-Test Review, Pre-Tutoring and Demonstration are the various hints or 

teaching strategies offered to the students during the tutorial session.   

 

Table 5.6 Example of Conditional Probabilities Achieved by a Student 

PREREQUISITE 

TOPIC 

CONDITIONAL 

PROBABILITY 

Class Template 0.57 

Constructor 0.89 

Class 0.94 

Array 1.00 

Iteration 0.89 

Input-Output 1.00 

AVERAGE 0.88 

 

 

 

 

 

 



 

143 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Update Pseudocode for Number of Attempts = 0 

// Number of attempts = 0 

If current conditional probability > 0.8 Then 

 If from Pre-Tutoring or from Demo Then 

  Demote conditional probability 

 Else If from Pre-Test Review 

  Set new conditional probability to 0.6 

 End if 

Else If 0.6 <= current conditional probability <= 0.8 

 If from Demo Then 

  Demote conditional probability 

 Else If from Pre-Tutoring 

  Set new conditional probability to 0.6 

 End If 

Else 

 If from Demo Then 

  Set new conditional probability to 0.1 

 End If  

End If 



 

144 

 

Figure 5.11 Update Pseudocode for Number of Attempts = 1 

 

The flowchart and the pseudocode above are for the updateCP ( ) function in the class 

TutorialTrxnSBBean.  The function takes in two arguments: sub-tutorial and student data 

objects.  It is invoked after the student has submitted the answer for a sub-tutorial. 

 

The entire code for the class TutorialTrxnSBBean is furnished in Appendix I. 

 

 

 

// Number of attempts = 1 

If current conditional probability > 0.8 Then 

 If not from Brief Explanation and not from Pre-Test Review  

and not from Pre-Tutoring and not from Demo Then 

  Set new conditional probability to 1.0 

Else If from Pre-Test Review or from Pre-Tutoring or from Demo 

  Demote conditional probability 

 Else If from Brief Explanation 

  Set new conditional probability to 0.6 

 End If 

Else If 0.6 <= current conditional probability <= 0.8 

 If from Pre-Tutoring or from Demo Then 

  Demote conditional probability 

 Else If from Pre-Test Review 

  Set new conditional probability to 0.6 

 End If 

Else 

 If from Demo Then 

  Demote conditional probability 

 Else If from Pre-Tutoring 

  Set new conditional probability to 0.6 

End If 

End If 



 

145 

5.9 Fuzzy Expert System 

The purpose of the Fuzzy Expert System is to categorize students by a stereotype based on 

their interactions with the C++ STL ITS and performance during the tutoring sessions.  The 

system shall be called the Fuzzy Stereotyping of Students (FSS).  

 

A typical process in developing the FSS incorporates the following steps (Negnevitsky, 

2005) : 

 i) Specify the problem and define linguistic variables. 

The objective here is to categorize the students understanding of the C++ 

STL into novice, beginner, intermediate and advanced. 

The linguistic variables are defined in Table 5.7. 

 

 ii) Determine fuzzy sets. 

The Gaussian fuzzy membership function which produces a very smooth 

output has been selected to represent the fuzzy sets.  Figures 5.12 to Figures 

5.15 show the fuzzy sets for all the linguistic variables defined for this 

problem.  Figure 5.12 depicts the membership function plots for the input 

variable Conditional Probabilities from very low to high.  The key point is 

to ensure sufficient overlap between neighbouring fuzzy sets for the fuzzy 

system to respond smoothly. 

 

  



 

146 

iii) Derive and construct fuzzy rules. 

For this problem, there are four input and one output variables.  A detailed 

analysis of the tutorial session produces 128 rules that represent complex 

relationships between the variable used in the FSS.  The output was elicited 

from an expert’s knowledge.  These rules are listed in Appendix J. 

 

iv) Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy 

inference into the FSS. 

 This process is described below using the MATLAB Fuzzy Logic Toolbox. 

 

v) Evaluate and tune the system. 

This last step is the most tedious tasks.  The objective is to determine 

whether FSS meets the requirements specified at the beginning.  The 

evaluation details are discussed in section 6.6.   

 

 

Figure 5.12 Fuzzy Sets of Conditional Probabilities 

 



 

147 

 

Figure 5.13 Fuzzy Sets of Time 

 

 

Figure 5.14 Fuzzy Sets of Number of Attempts 

 

 

Figure 5.15 Fuzzy Sets of Number of Hints 



 

148 

 

For rapid development of FSS, one of the most popular tools, the MATLAB Fuzzy Logic 

Toolbox from the MathWorks is used.  The toolbox provides graphical interactive tools to 

create and edit fuzzy inference systems within the framework of MATLAB.  There are five 

main integrated Graphical User Interface (GUI) tools for building, editing, and observing 

fuzzy inference systems in the Fuzzy Logic Toolbox: the Fuzzy Inference System or FIS 

Editor, the Membership Function Editor, the Rule Editor, the Rule Viewer, and the Surface 

Viewer.  The tools are easy to use and reduce the laborious tasks to tune the expert system 

to meet the desired performance. 

 

The FIS Editor handles the specification of the input and output parameters.  In FSS, there 

are four input variables or parameters and one output, known as the linguistic variables.  

See Table 5.7 for the list of the linguistic variables with their corresponding linguistic 

values and numerical range.  These values were obtained from the Tutorial Performance 

Report described in section 6.4. 

 

The Membership Function Editor is used to define the shapes of all the membership 

functions associated with each variable.  Some of the membership functions provided 

include Triangular, Trapezoidal, Gaussian, Bell, S and Z membership functions.  The 

membership functions chosen for FSS are Gaussian for the input variables, and Linear for 

the output variables.  Both functions provide an adequate representation of the expert 

knowledge. 

 



 

149 

Table 5.7 Linguistic variables, values, range and membership function 

Linguistic Variable: Conditional Probabilities, ConditionalProbabilities (Type: Input) 

Membership Function: Gaussian 

LINGUISTIC VALUE NOTATION NUMERICAL RANGE 

Very Low VL [0, 0.01] 

Low L [0.4, 0.6] 

Medium M [0.62, 0.8] 

High H [0.84, 1] 

Linguistic Variable: Time taken, Time (Type: Input) 

Membership Function: Gaussian 

LINGUISTIC VALUE NOTATION NUMERICAL RANGE 

Very Short VS [1, 10] 

Short S [11, 20] 

Medium M [21, 30] 

Long L [31, 40] 

Linguistic Variable: Number of Attempts, Attempts (Type: Input) 

Membership Function: Gaussian 

LINGUISTIC VALUE NOTATION NUMERICAL RANGE 

Very Low VL [1, 3] 

Low L [4, 6] 

Medium M [7, 10] 

High H [11, 15] 

Linguistic Variable: Number of Hints, Hints (Type: Input) 

Membership Function: Gaussian 

LINGUISTIC VALUE NOTATION NUMERICAL RANGE 

Very Low VL [0, 1] 

Low L [2, 4] 

Medium M [5, 6] 

High H [7, 8] 

Linguistic Variable: Stereotype of Understanding, Understanding (Type: Output) 

Membership Function: Linear 

LINGUISTIC VALUE NOTATION NUMERICAL RANGE 

Very Low VL [0, 0.01] 

Low L [0.4, 0.6] 

Medium M [0.62, 0.8] 

High H [0.84, 1] 

 

 



 

150 

The Rule Editor allows the construction of the fuzzy rules in FSS using the fuzzy linguistic 

variables specified previously.   The fuzzy rules defined in FSS are found in Appendix J.  

 

The Rule Viewer and the Surface Viewer are used for viewing the FIS results.  The Rule 

Viewer is used as a diagnostic tool to show which rules are active and how individual 

membership function shapes are influencing the results. The Surface Viewer is used to 

display the dependency of one of the outputs on any one or two of the inputs — that is, it 

generates and plots a three-dimensional output surface map for the FSS.  Both views allow 

the FSS to be evaluated and tuned to meet the specified requirements. 

 

5.10 Development Tools 

The development tools used for the C++ STL ITS project are listed below: 

 Apache Tomcat (part of JBoss application server) serves as the platform for the JSP 

and Java Servlet implementation.   

 Apache Ant provides the framework that enables rapid processes configuration for 

all phases of the software life cycle.  An Ant build process is described in an XML 

file, called a buildfile (Appendix K). 

 JBoss Application Server is a J2EE certified platform for developing and deploying 

the application. 

 The NetBeans Integrated Development Environment (IDE) together with the Java 2 

Platform Standard Edition Development Kit (JDK) provides the environment for 

writing, compiling, testing, and debugging the web application. 

 MATLAB Fuzzy Logic Toolbox 



 

151 

Chapter 6 C++ STL ITS System Evaluation – Methodologies 

and Results 
 

The adoption of eXtreme Programming methodology and J2EE standards has been 

successful in ensuring the completeness of the implementation of the C++ STL Intelligent 

Tutoring System (ITS).  Vigorous testing was carried out to verify and validate the 

components in the ITS using black box and white box testing strategies.  Functional testing 

was carried out modularly, starting with the Users Administration Module, followed by the 

Tutoring Module and lastly the Student Modelling Module.  The next important stage is the 

evaluation of the ITS.  The main purpose of this process is to evaluate the effectiveness of 

the Tutoring Module to guide students in learning and applying the C++ STL. 

 

As more ITSs are developed and employed in education, business and government, the 

evaluation of ITSs is being taken more seriously to ensure its effectiveness (Iqbal et al, 

1999, Mark & Greer, 1993).  Mark and Greer (1993) noted that most ITS researchers have 

in the past concerned themselves only with envisioning the potential of ITSs and 

investigating the implementation issues involved in constructing actual components and 

systems.  However, times are changing.  Ainsworth (2005) observed that now, more and 

more researchers are reporting on formative and summative evaluation results, and 

statistical analyses.  Ainsworth also strongly commented that “without evaluation, there is 

no point in doing anything…” 

 

 



 

152 

6.1 Evaluation Methodologies and Evaluation Requirements 

Iqbal et al (1999) proposed a classification of evaluation methods based on two primary 

questions relating to the target of evaluation and learning environment: 

i) What is being evaluated: the whole system or just a component? 

ii) Is it possible to experimentally adjust conditions in the evaluation, and how many 

users are available for the purpose of evaluation? 

 

Iqbal et al (1999) classified evaluation methods into two dimensions according to the above 

questions.  The first dimension focuses on the degree of evaluation – whole or part of a 

system.  If the method evaluates just a component of a system, it can be considered for 

internal evaluation.  On the other hand, methods that test the whole system are suitable for 

external evaluation. 

 

The second dimension is concerned with the environment of evaluation – experimental 

research or exploratory research.  According to Iqbal et al (1999, p. 2): “Experimental 

research requires experiments varying systematically the independent variable(s) while 

measuring the dependent variable(s) and ensuring random assignment of participants to 

conditions and requires statistically significant groups.  Exploratory research includes in-

depth study of the system in a natural context using multiple sources of data, usually where 

sample size is small and the area is poorly understood.”  Table 6.1 shows the classification 

of the evaluation methods reviewed and proposed.  This classification simplifies the 

selection for a suitable method.  The methods are adapted by various ITS researches from 

expert systems development, computer-based instruction, education, evaluation, computer 

science, engineering and psychology disciplines (Iqbal et al, 1999).  Methods 1 to 7 are 



 

153 

categorized under experimental research.  The remaining methods from 8 to 20 are for 

exploratory research (Iqbal et al, 1999).  Based on the evaluation requirements of the C++ 

STL ITS, a combination of evaluation methods from the table below will be selected. 

 

Table 6.1 Classification Table of Evaluation Methods 

NO EVALUATION 

METHODS 

EXPLORATORY 

RESEARCH 

EXPERIMENTAL  

RESEARCH 

INTERNAL EXTERNAL INTERNAL EXTERNAL 

1 Proof of Correctness - -  - 

2 Additive 

Experimental Design 

- -  - 

3 Diagnostic Accuracy - -  - 

4 Feedback/instruction 

Quality 

- -  - 

5 Sensitivity Analysis - -   

6 Experimental 

Research 

- - -  

7 Product Evaluation - - -  

8 Expert Knowledge  - - - 

9 Level of Agreement  - - - 

10 Wizard of Oz 

Experiment 

 - - - 

11 Performance Metrics  - - - 

12 Internal Evaluation  - - - 

13 Criterion-based   - - 

14 Pilot Testing   - - 

15 Certification -  - - 

16 Outside Assessment -  - - 

17 Existence Proofs -  - - 

18 Observation and 

Qualitative 

classification 

 

- 

 
 

 

- 

 

- 

19 Structured Tasks and 

Quantitative 

Classification 

 

- 

 

 

 

- 

 

- 

20 Comparison Studies -  - - 

 



 

154 

In the C++ STL ITS, the whole system and parts of the system are to be evaluated. 

Therefore, it is classified as both internal and external evaluation.  The main aim of the 

whole system evaluation is to evaluate the effectiveness of the C++ STL ITS as compared 

to conventional tutoring in the lectures or laboratory.  Experimental research which enables 

researchers to examine relationships between teaching intervention and outcomes will be 

employed.  In addition, three key components of the system are to be evaluated: Pre-Test, 

Tutoring and Post-Test Modules.  The purpose is two-fold.  Firstly, there is a need to assess 

their effectiveness and secondly, their suitability.  Observation and qualitative 

classification in the exploratory research category is appropriate to observe the pattern and 

trend in the student’s behaviour within the three components.  This is discussed in sections 

6.3, 6.4 and 6.5.  Expert inspection will then be used to assess the suitability of the domain 

knowledge represented in the three components.  Section 6.2 provides the detail of the 

inspection. 

 

The adaptiveness of the ITS to provide individualized learning during the tutorial session 

needs to be assessed as well.  Mark and Greer (1993) suggested that sensitivity analysis and 

certification have the potential of evaluating the adaptiveness of ITSs.  Sensitivity analysis 

is an experimental approach suitable for both internal and external evaluations.  It examines 

the behaviour of a component or system in response to various information supplied to it.  

Such information in the C++ STL ITS includes tutorial completion time, number of hints, 

number of attempts and the conditional probabilities of understanding.  Certification which 

falls under exploratory research is based on techniques to identify competent human 

teachers.  Experts will be approached to appraise the overall accuracy of the ITS, making 

certification adequate for external evaluations.  This is discussed in section 6.4.  These 



 

155 

techniques are also adopted to evaluate the Fuzzy Stereotyping of Students Expert System 

described in section 6.6. 

 

6.2 Evaluation of the C++ STL ITS Architecture 

 

The system architecture of the C++ STL ITS contains four main modules as described in 

Chapter 5.  The modules are Domain Knowledge, Teaching Strategies, Student Modelling 

and Graphical User Interface.  Different modules require different evaluation approaches 

(Mark & Greer, 1993).  This section discusses the formative evaluation methods applied 

and the results recorded.  Summative evaluations are documented in the subsequent 

sections.  Formative evaluation occurs during design and early development of the ITS.  By 

contrast, summative evaluation is concerned with the evaluation of the completed ITS and 

producing formal claims about the ITS (Mark & Greer, 1993). 

 

6.2.1 Domain Knowledge Module 

 

In the C++ STL ITS, the domain knowledge module contains pre-test questions and 

descriptions, problem specifications and teaching strategies, post-test questions and 

descriptions.  The accuracy of this component is ensured before the actual learning 

environment takes place.  Formative evaluation using expert inspection was 

employed to verify the domain.  The experts consulted for the evaluation have about 

10 years in teaching the C++ programming language. 

 



 

156 

Initially, the pre-test covered 12 main prerequisite topics – Fundamentals, Selection, 

Iteration, Array, User Defined Function, Class, Class Member Function, 

Constructor, Function Template, Class Template, Operator Overloading and Class 

string.  Topics were selected from the elementary programming level that represents 

the prerequisites of C++ STL.  The pre-test evaluation results using the 12 topics 

were discussed in (Lee & Sapiyan, 2005a).  It was discovered that a single 

Fundamental topic is unable to specifically identify a particular student’s 

understanding.  For the second evaluation, the topic Fundamental was decomposed 

into four other topics – Data, Operator, Expression and Input-Output, increasing the 

total number of prerequisite topics to 15.  This gives a better breakdown of the 

prerequisite skills to reflect more accurate results on the student’s understanding.  

The total number of questions was subsequently increased from 70 to 76, with a 

minimum of four questions for each topic.  Consequently, the prerequisite topics 

need to be carefully designed by the tutor to model the elementary programming 

topics required to learn the C++ STL.  The choice of minimum of four questions per 

topic is to facilitate the algorithm to gradually update the student model discussed in 

Chapter 4 and Section 6.2.3. 

 

Currently, 11 tutorial questions related to the STL vector are presented.  The 15 sub-

topics covered are listed in Appendix L.  It comprises declaration, population, 

output, iterator and member function. 

 



 

157 

The post-test contains 50 multiple choice questions on STL vector, STL list and 

iterators.  Even though STL list is not covered in the tutorial session, its inclusion is 

to analyze the knowledge transfer of students from STL vector to STL list.  The 

topics tested are based on the acquired skills from the tutorial sessions. 

 

Expert inspection through a questionnaire was carried out to evaluate three aspects 

of the domain knowledge: understandability, appropriateness and accuracy.  Both 

experts either agree or strongly agree with the following aspects of the pre-test 

questions and post-test questions : 

i) The questions are understandable 

ii) The questions are relevant prerequisites to C++ Standard Template Library 

iii) The multiple choice answers provided are appropriate 

iv) The number of multiple choice answers is sufficient 

 

The domain knowledge presented in the tests is accurate according to the required 

standard in a computer programming course. 

 

Students also participated in the evaluation of the understandability of the pre-test 

and post-test questions.  Their responses are depicted in Figures 6.1 and 6.2 below.  

The majority of them agree that the questions are understandable – 71% in pre-test 

and 51% in post-test.  Students commented that questions on iterators in the post-

test are less understandable.  Some questions were similar but worded differently.  

This may have confused some of the students. 



 

158 

The Pre-test Questions are Understandable

2%

71%

27%

Disagree

Agree

Strongly Agree

 

Figure 6.1 Understandability of Pre-Test Questions 

 

 

The Post-test Questions are Understandable

12%

12%

51%

25%

Disagree

Not Sure

Agree

Strongly Agree

 

Figure 6.2 Understandability of Post-Test Questions 

  



 

159 

6.2.2 Teaching Strategies Module 

 

Four teaching strategies or hints were proposed during the tutorial sessions to guide 

students – brief description, pre-test review, pre-tutoring and demonstration.  

According to Mark and Greer (1993), the standards by which teaching knowledge 

can be assessed are instructional theory and the expert human tutor.  In the C++ 

STL ITS Teaching Strategies Module, the evaluation criteria include the range of 

the teaching strategies and the degree to which the ITS can adapt its behaviour to 

individual students.  Expert inspection is again employed to evaluate the former 

criteria.  The appraisal of the latter criteria is discussed in Section 6.4. 

 

Experts commented that the level of teaching strategies is appropriate.  The level 

matches the student’s understanding.  Students with a higher conditional probability 

of understanding receive less hints than students with a lower conditional 

probability of understanding.  However, one observation is that some students may 

have the tendency to take the easy path by continuously selecting the hints until the 

solution is demonstrated to them.  It is explained that even though the solution is 

illustrated to them, they still need to enter the answer before they can proceed to the 

next tutorial problem.  The system does not solve the problem for the students.  

Students are encouraged to make efforts to enter the solution and solve each sub-

tutorial. 

 



 

160 

6.2.3 Student Modelling Module 

 

Two important dimensions of the student model are considered for evaluation: 

validity and reliability.  The validity of the student model is measured through the 

pre-test.  In the experimental research, a total of 56 students sat for the pre-test.  The 

test was conducted in the computer laboratory where the C++ STL ITS was 

installed.  On average, students took about one hour to one and a half hour to 

complete the test.  The conditional probabilities of student’s understanding in the 

prerequisites were calculated by the system at the end of the pre-test.   

 

Table 6.2 shows the pre-test performance of various students generated at the end of 

the pre-test.  It lists down the total number of correct and wrong answers for each 

topic.  This gives awareness to the student on the topic that he or she is weak at.  

Based on the total number of correct and wrong answers, the conditional probability 

produces a useful result which reflects the student’s understanding after the pre-test.  

This result is accessible to the students during the course of the tutorial session, 

allowing them to compare their performance before and after the tutorial. 

 

Analysing the results in Table 6.2 further shows that a student needs to get more 

than half of the answers correct for a topic to obtain a value greater than 0.80.  This 

value indicates the student’s competency in a particular topic.  Furthermore, a value 

less than 0.60 shows a weakness in the student’s understanding.  Based on the total 

number of correct and wrong answers, the conditional probability produces a useful 



 

161 

result which reflects the student’s understanding after the pre-test (Lee & Sapiyan, 

2005b).   

 

The total number of questions per topic was taken into consideration in the 

calculation of the conditional probabilities.  A minimum of 4 questions per topic 

gives a better range of conditional probabilities to demonstrate student’s 

understanding.  The distribution of questions does affect the student model but not 

critical as the topics are independent of each other.  The range of conditional 

probability values produced is based on the number of questions per topic.  

Therefore, 5 questions will produce 5 different conditional probabilities.  A range of 

4 to 6 questions per topic enables the threshold to be applied more effectively. 

 

Table 6.2 Sample - Pre-Test performance of various students 

STUDENT Student X Student Y Student Z 

TOPIC TITLE Total 

Correct 

Total 

Wrong 

CP Total 

Correct 

Total 

Wrong 

CP Total 

Correct 

Total 

Wrong 

CP 

Class String 3 1 0.92 4 0 1 1 3 0.57 

Operator Overloading 3 1 0.92 3 1 0.92 2 2 0.80 

Class Template 2 2 0.80 0 4 0 1 3 0.57 

Function Template 4 0 1 1 3 0.57 2 2 0.80 

Constructor 6 0 1 3 3 0.80 2 4 0.67 

Class Member Function 2 3 0.73 2 3 0.73 2 3 0.73 

Class 4 2 0.86 2 3 0.73 3 2 0.86 

User Defined Function 6 1 0.96 5 2 0.91 2 5 0.62 

Array 6 0 1 4 2 0.89 3 3 0.80 

Iteration 6 0 1 6 0 1 4 2 0.89 

Selection 5 0 1 5 0 1 4 1 0.94 

Input-Output 5 0 1 4 1 0.94 5 0 1 

Expression 5 0 1 4 1 0.94 2 3 0.73 

Operator 4 0 1 4 0 1 3 1 0.92 

Data 6 0 1 4 2 0.89 5 1 0.95 

TOTAL 66 10 14.19 51 25 12.32 41 35 11.85 



 

162 

 

Table 6.3 summarizes the overall performance for each topic.  It is consistent with 

the fact that students are better at fundamental topics (Data, Operator, Expression, 

Input-Output) as compared to object-oriented topics and templates.  From the 

average values, a threshold of 0.80 is able to show a student’s mastery of a 

prerequisite concept.  A value below 0.60 indicates a student’s weakness.  Using 

these thresholds, students were directed to different remedial lessons during the 

tutorial session. 

 

Table 6.3 also compares the results between the Tutorial and Non-Tutorial students.  

Tutorial students are students from the BSc (Hons) Software Engineering (SE) 

programme whereas the Non-Tutorial students are enrolled in the BEng (Hons) 

Electronics and Computing (EC).  From past experience, the Engineering (BEng) 

students have been consistently better in programming than the Computing (BSc).  

This is clearly reflected in the table below as the Engineering students performed 

better in most of the topics tested.  One contributive factor is that Engineering 

students have a stronger foundation in Mathematics.  This is a useful analysis when 

comparing class performances. 

 



 

163 

Table 6.3 Overall students’ Pre-Test performance for each topic 

TOPIC TUTORIAL NON-TUTORIAL 

Class String 0.68 0.79 

Operator Overloading 0.76 0.84 

Class Template 0.58 0.62 

Function Template 0.69 0.81 

Constructor 0.72 0.86 

Class Member Function 0.82 0.81 

Class 0.82 0.86 

User Defined Function 0.78 0.86 

Array 0.93 0.90 

Iteration 0.83 0.92 

Selection 0.95 0.98 

Input-Output 0.92 0.97 

Expression 0.84 0.90 

Operator 0.94 0.93 

Data 0.95 0.95 

CLASS AVERAGE 0.81 0.87 

 

 

The conditional probabilities obtained from the pre-test reflected the student’s 

understanding in a particular prerequisite.  It provided a form of automated self-

assessment for the students as it indicates the competency of each topic.  It showed 

that the application of the Bayesian theorem strongly demonstrated the student’s 

prerequisite knowledge.  The student model produced by the Bayesian theorem is a 

valid representation of the student’s understanding.  This result together with the 

threshold identified is useful in directing the student during the tutoring session, as 

the student model will then be updated based on the initial values obtained. 

 

The objective of the validation testing has been satisfied and the results showed to 

be beneficial for the tutoring session to direct the students intelligently.  The 

reliability of this result is assessed during the summative evaluation of the tutorial 

sessions. 



 

164 

6.2.4 Graphical User Interface Module 

 

The module presents information to the student and acquires responses from the 

student.  A survey was conducted with the students to examine two dimensions of 

the GUI: interface and learning experience. 

 

Most students agree that the interface is easy to use (see Figure 6.4).  The system 

presents the program specification together with the program skeleton which is 

divided into sub-problems.  Students are required to enter their answers in the Sub 

Tutorial section as shown in Figure 6.3, and submit the answers or refer to the hints 

for help. 

 

Figure 6.3 Tutorial Framework and Sub-Tutorial Questions 



 

165 

The Interface is Easy to Use

10%

44%

46% Not Sure

Agree

Strongly Agree

 

Figure 6.4 Student’s Evaluation of the Interface for the Pre-Test Module 

 

The ‘Question Content’ functionality allows students to view answered and unanswered 

questions during the pre-test and post-test.  It also enables the students to review their 

answers and change them.  From the survey (Figure 6.5), it is apparent that students did not 

use the functionality much.  Most of them did not really bother to check their answers.  

Hence, they might not see the need to use the function. 

The 'Question Content' button is Useful

2%
17%

44%

37% Disagree

Not Sure

Agree

Strongly Agree

 

Figure 6.5 Student’s Evaluation of the ‘Question Content’ Functionality 



 

166 

6.3 Pre-Test Results and Analyses 

 

This section analyzes the pre-test answer records in detail.  The analysis performed is on 

the common mistakes students made in programming.  The multiple choice answers in the 

pre-test cover the common programming mistakes or misconceptions.  The purpose is not 

to ‘trick’ the students but to identify and confirm the common programming errors.  For 

each question in the pre-test, the percentage of each answer chosen was calculated.  In most 

cases, the highest percentage represented the correct answer chosen.  The next highest 

percentage reveals the common mistake of students.  A few examples are highlighted 

below.  The tables show the percentage of each chosen answer for the Tutorial students 

(TS), Non-Tutorial students (NTS) and both combined.  The correct answer is identified 

with a tick next to it. 

 

Example 1 in Table 6.4 indicates that students often misunderstood between char and 

string.  Strings are denoted by the data type “char []” and enclosed within double quotes (“ 

”).  Some students very often chose the data type “char” and single quotes to represent 

strings or array of characters. 

 



 

167 

Table 6.4 Common Programming Mistakes Example 1 

TOPIC AVAILABLE ANSWERS TS NTS BOTH 

 char 15.2 13.0 14.3 

Data Type  char[] 81.8 82.6 82.1 

  double 3.0 4.3 3.6 

  int 0.0 0.0 0.0 

 start = "a"; 21.2 8.7 16.1 

Assignment start = a; 9.1 8.7 8.9 

Expression  start = 'a'; 69.7 82.6 75.0 

  start = 'a' 0.0 0.0 0.0 

 aDog.setBreed('German Shepherd'); 6.1 0.0 3.6 

Accessing   aDog.setBreed("German Shepherd"); 78.8 82.6 80.4 

 Members aDog.setBreed(German Shepherd); 9.1 13.0 10.7 

  setBreed.aDog("German Shepherd"); 6.1 4.3 5.4 

 

 

Example 2 is a classic error where students mixed up the operators >> and << for input and 

output. 

 

Table 6.5 Common Programming Mistakes Example 2 

TOPIC AVAILABLE ANSWERS TS NTS BOTH 

 cin << "Please enter an integer"; 3.0 0.0 1.8 

Output cin >> "Please enter an integer"; 15.2 8.7 12.5 

  cout << "Please enter an integer"; 78.8 91.3 83.9 

  cout >> "Please enter an integer"; 3.0 0.0 1.8 

 cin << "age"; 3.0 0.0 1.8 

Input cin << age; 12.1 4.3 8.9 

   cin >> age; 84.8 95.7 89.3 

  cin >> age 0.0 0.0 0.0 

 



 

168 

Example 3 reveals the programming mistakes made for function call.  Students are usually 

weak in specifying the required parameters in calling a function. 

 

Table 6.6 Common Programming Mistakes Example 3 

TOPIC AVAILABLE ANSWERS TS NTS BOTH 

 cout << calculateArea(int); 15.2 8.7 12.5 

Call cout << calculateArea(); 9.1 0.0 5.4 

   cout << calculateArea(radius); 69.7 87.0 76.8 

  cout >> calculateArea(radius); 6.1 4.3 5.4 

 cout << aDate.getYear(int); 15.2 8.7 12.5 

Member cout << aDate.getYear(year); 9.1 8.7 8.9 

Function Call cout << getYear(); 0.0 0.0 0.0 

   cout << aDate.getYear(); 75.8 82.6 78.6 

 

 

The errors highlighted in the examples above are not just relevant for this particular cohort 

but for novice students studying programming in general.  It is believed that such analysis 

is beneficial for tutors to guide the students.  The awareness of the common mistakes made 

is a first step to help students to improve their programming. 

 

Another obvious trend from the result is that as the difficulty of the questions increases, the 

variance of the selected answers increases.  Table 6.7 illustrates this point by comparing the 

percentage of results for two questions.  The question on Data Type is easier than the 

question on Class Template Member Function, and it is clearly shown in the columns 

marked TS, NTS and BOTH.  With this analysis, tutors can guide the students more 

effectively by setting tutorial questions for topics that students are struggling in. 

 



 

169 

Table 6.7 Example – Variance of Percentage in Selection of Answers 

TOPIC AVAILABLE ANSWERS TS NTS BOTH 

 char 100.0 95.7 98.2 

Data Type float 0.0 0.0 0.0 

  double 0.0 0.0 0.0 

  int 0.0 4.3 1.8 

 template < class T > T Complex<T>::Display() 15.2 13.0 14.3 

Class Template template < class T > void Complex<T>::Display; 24.2 26.1 25.0 

Member Function Complex<class>::Display(); 24.2 8.7 17.9 

   template < class T > void Complex<T>::Display() 36.4 52.2 42.9 

 

 

6.4 Tutorial Sessions Results and Analyses 

 

All the students’ actions performed during the tutorial session were logged, and 

subsequently used to analyze the effectiveness of the teaching strategies and the student 

model update algorithm.   

 

The log files are summarized into individual Student Tutorial Performance Report.  Each 

report contains tutorial title, sub-tutorial title, tutorial route, correctness and duration to 

complete the sub-tutorial.  From the reports generated, a few analyses were carried out.  

These include the duration to complete each tutorial, the number of attempts and the 

number of hints referred.  The average duration to complete each tutorial is approximately 

30 minutes.  The average number of attempts is 7 times.  This figure includes those who did 

not refer to the hints and submitted the incorrect answer.  It is also observed that some 

students referred to the hints each time even before attempting the problem.  This has 

caused their conditional probabilities of understanding to be demoted each time.  The 

demotion may be discouraging to some students but it reflects their actual learning 



 

170 

progression.  The updated conditional probabilities is important in directing the students 

throughout the tutorial. 

 

It is noted that for the student model update algorithm to be effective, there must be 

sufficient sub-tutorial questions related to the same problem.  This is due to the fact that the 

update is performed based on the number of hints and attempts.  As the student solves 

similar problems, a clearer trend can be observed – whether the student’s conditional 

probabilities of understanding are being demoted or promoted.  In other words, the problem 

solving support applies a ‘drill and practice’ approach.   In the C++ STL ITS, students were 

required to declare, populate and output a vector in most of the tutorial questions.  It is 

observed that as they progress in the tutorial, their problem solving skills in those topics 

improved. 

 

Figure 6.6 depicts the prerequisites for the first tutorial question – STL vector Question 1.  

It shows an example of conditional probabilities, P(U|C) for each prerequisite achieved by 

a student after the pre-test.  The question is decomposed into three sub-tutorials – declare a 

vector, populate a vector using subscript and output a vector using subscript.  Initially, an 

average conditional probability is calculated to obtain the type of hints or teaching 

strategies to be presented to the student.  In this case, the average is (0.94+0.95+1+0.8+1) / 

5, giving the value 0.94.  Since the value is greater than 0.8, the student will be directed to 

the brief explanation of the sub-tutorial upon failure to solve the problem.  The levels in the 

figure refer to the four levels of hints available to the students – brief explanation, pre-test 

review, pre-tutoring and demonstration.  Based on the student model update algorithm 

described in section 5.8.2, the conditional probability of the student will be demoted if the 



 

171 

problem is not solved after two attempts to submit the answer.  On completion of the 

tutorial, students can compare their initial conditional probabilities achieved from the pre-

test to the conditional probabilities obtained during the tutorial.  Generally, the conditional 

probabilities showed improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Prerequisites for STL vector Question 1 

 

Input Output 

Input-Output 

Range Assignment 

Array 

Creating 

Instance 

Declaration- 

Parameter 

Class 

Template 

Constructor 

for 

Iteration 

Tutorial 001 

STL vector 

Question 1 

P(U|C) = 0.94 

4 Levels 

1 – 2 – 3 – 4? 

P(U|C) = 1 

4 Levels 

1 – 2 – 3 – 4? 

P(U|C) = 0.95 

4 Levels 

1 – 2 – 3 – 4? 

P(U|C) = 1.00 

4 Levels 

1 – 2 – 3 – 4? P(U|C) = 0.8 

4 Levels 

1 – 2 – 3 – 4? 

SubTut002 

SubTut003 
SubTut002 

SubTut003 

SubTut002 

SubTut003 

SubTut001 

SubTut001 



 

172 

The results of the questionnaire on the tutorial sessions are summarized in Table 6.8 and 

Table 6.9.  Overall, the responses from the students have been positive.  The percentage for 

both agree and strongly agree is high.  Though the feedback is supportive and encouraging, 

it does not reflect the effectiveness of the tutorial.  Nevertheless, it provides a general view 

of the tutorial sessions and the students’ learning experience in C++ STL ITS.  The logged 

files which are the tutorial performance reports and the post-test results are the two methods 

used to evaluate the effectiveness of the tutorial. 

 

Table 6.8 Survey – Questions on Tutorial Session in C++ STL ITS 

 

NO 

 

QUESTION 

RATING (%) 

Strongly 

Disagree 

Disagree Not 

sure 

Agree Strongly 

Agree 

1 The program specifications are 

understandable. 

- - 5 % 65 % 30 % 

2 The hints provided are useful. - - - 45 % 55 % 

3 The function to view my current 

progress is useful. 

- - 15 % 35 % 50 % 

4 The interface is easy to use. - - - 60 % 40 % 

 

Table 6.9 Survey - General Questions on Learning Experience with C++ STL ITS 

 

NO 

 

QUESTION 

RATING (%) 

Strongly 

Disagree 

Disagree Not 

sure 

Agree Strongly 

Agree 

1 I learned more about C++ STL 

from the ITS than the lectures. 

- - 20 % 30 % 50 % 

2 I learned more about C++ STL 

from the ITS than the labs. 

- - 20 % 40 % 40 % 

3 I would like to use C++ STL ITS 

more.  

- - 5 % 55 % 40 % 

4 I enjoyed the learning experience 

with C++ STL ITS. 

- - - 60 % 40 % 

5 I would recommend C++ STL to 

other students. 

- - 5 % 40 % 55 % 

 



 

173 

 

6.5 Post-Test Results and Analyses 

 

The main advantage of post-tests is to enable quick evaluation of student’s knowledge.  A 

total of 50 multiple-choice questions related to the sequence containers vector and list, and 

iterators were designed.  The post-test class average conditional probability results are 

tabulated in Table 6.10 and illustrated using pie charts in Figure 6.7 and Figure 6.8. 

 

At first glance of the post-test results, the tutorials seem to be ineffective as the difference 

between the non-tutorial and tutorial results is minimal.  Section 6.2.3 discussed that the EC 

students achieved a higher average than the SE students in the pre-test as the former have a 

stronger foundation in Mathematics.  SE students who did the tutorial on the STL vector 

performed better than the EC students in the post-test.  Though the tutorial did not cover 

topics on STL list, the SE students still performed better.  This shows that they have the 

ability to transfer their knowledge gained for STL vector and apply it successfully to the 

STL list.  Questions on iterators were not included in the tutorial.  Therefore, being the 

weaker group, the SE students performed less satisfactorily. 

 

Table 6.10 Class Average for Post-Test Results 

TOPIC EC : NON-TUTORIAL SE : TUTORIAL 

STL vector 0.87 0.94 

STL list 0.85 0.96 

Iterator 0.85 0.77 

 



 

174 

Tutorial Students Post-test Results

35%

36%

29%

STL vector

STL list

Iterator

 

Figure 6.7 Tutorial Students Post-Test Results 

 

Non-Tutorial Students Post-test Results

34%

33%

33%

STL vector

STL list

Iterator

 

Figure 6.8 Non-Tutorial Students Post-Test Results 

 

The detailed results for each post-test question reveal that the answers selected by the SE 

students contain less variance.  Some examples are illustrated in Table 6.11.  For the topic 

on vector Member Function, SE students selected choices with the end function, whereas, 

EC students selected the last function as well.  The topic on vector Declaration showed 



 

175 

more variations.  All the answers were selected by EC but SE chose only three answers.  

These examples indicate that SE students are more confident in answering the questions.   

 

Table 6.11 Partial Post-Test Results (Figures are shown in percentage) 

 

TOPIC AVAILABLE ANSWERS CORRECT EC SE BOTH 

 fitr = vec.last();  14 0 7 

vector fitr = vec.end();  73 95 83 

Member  fitr = vec.end;  14 5 10 

Function fitr = vec.End();  0 0 0 

 fitr = vec.End;  0 0 0 

 vector v(10);  9 0 5 

vector vector < int > v(10);  32 84 56 

Declaration vector ( int ) v(10);  5 11 7 

 vector < int > v[10];  50 5 29 

 Vector < int > v(10);  5 0 2 

 ( vector )  9 5 7 

vector < VECTOR >  5 0 2 

Header < Vector >  0 0 0 

File < vector >  77 95 85 

 "vector"  9 0 5 

 

 

Like the pre-test, common mistakes students made in applying the C++ STL can be 

identified by taking a closer look at the selection of answers.  Tutors can then set additional 

tutorial questions to address these misconceptions. 

 

In conclusion, further analysis of the post-test results has revealed positive outcome from 

the tutorial sessions.  The problem solving support with various teaching strategies has 

benefited the students. 

 



 

176 

6.6 Evaluation of the Fuzzy Stereotyping of Students Expert System 

 

The MATLAB Fuzzy Logic Toolbox provides two functionalities to analyse the 

performance of the Fuzzy Stereotyping of Student Expert System (FSS) – the fuzzy 

inference viewer (Figure 6.9) and the output surface viewer (Figures 6.10 (a) – 6.10 (c)). 

 

Figure 6.9 shows the output for the following input: 

 Conditional Probabilities = 0.5 (Low) 

 Time = 20.5    (Short) 

 Attempt = 8    (Medium) 

 Hint = 4    (Low) 

The output obtained is 0.736, which falls into the category, Medium and subsequently 

stereotyped as Intermediate.  The numerical range for the output is specified in Table 5.7 of 

Chapter 5.  The range including the stereotype is summarized in Table 6.12 below.  The 

numerical range is determined based on the list of conditional probabilities in Appendix A. 

 

Table 6.12 Numerical Range for Stereotype 

STEREOTYPE LINGUSTIC VALUE NUMERICAL RANGE 

Novice Very Low [0, 0.01] 

Beginner Low [0.4, 0.6] 

Intermediate Medium [0.62, 0.8] 

Advanced High [0.84, 1] 

 

Using the Rule Viewer, the FSS has successfully categorized the students into the required 

stereotype.   

 



 

177 

 

Figure 6.9 Rule Viewer 

 

The Fuzzy Logic Toolbox can generate a three-dimensional output surface by varying any 

two of the inputs and keeping other inputs constant.  In the FSS, three output surfaces are 

generated.  Figure 6.10 (a) depicts the three-dimensional plot for Understanding-Time-

Conditional Probabilities relationship.  As the conditional probability increases and time 

decreases, understanding grows.  Figure 6.10 (b) shows the three-dimensional plot for 

Understanding-Attempt-Conditional Probabilities relationship.  Lastly, Figure 6.10 (c) 

illustrates the three-dimensional plot for Understanding-Hint-Conditional Probabilities 

relationship.   

 



 

178 

 

Figure 6.10 (a)  Three-dimensional Plot for Understanding-Time-Conditional 

Probabilities Relationship 

 

 

 
 

Figure 6.10 (b) Three-dimensional Plot for Understanding-Attempt-Conditional 

Probabilities Relationship 

 

 

 



 

179 

 
 

Figure 6.10 (c)  Three-dimensional Plot for Understanding-Hint-Conditional 

Probabilities Relationship 

 

The 128 rules defined in the fuzzy system works well.  The linguistic variables and values 

are sufficient and appropriate to achieve the objective in stereotyping the students.  The 

Sugeno-style inference system is computationally effective and there is no strong reason to 

try different techniques to tune the FSS. 

 

6.7  Related Work 

One of the most recent research work that applies the Bayesian Network is BITS (Butz et 

al, 2006).  BITS uses a fixed value of 0.70 to indicate whether a concept is known or 

otherwise.  This value is not only subjective but also does not reflect the actual 

understanding of the student as tutoring takes place.  As students progress in their learning, 

their performance may become inconsistent.  Hence, a variable threshold is more 

appropriate to direct students’ learning.  Moreover, the choice of 0.70 is arbitrarily chosen, 

whereas the threshold in the C++ STL ITS is chosen based on the conditional probabilities 

generated by the pre-test questions. 

 



 

180 

BITS distinguishes between two states of a knowledge concept, known and unknown.  Butz 

et al (2006) noted that this might not be useful in practical applications as student may 

partially know a concept.  In the C++ STL ITS, the conditional probability of 

understanding for a prerequisite concept is calculated.  The direct application of the 

Bayesian Theorem gives a more realistic model of the student’s understanding of the 

domain knowledge. 

 

Currently, BITS provides only intelligent navigation of course materials.  Butz et al (2006) 

acknowledged that problem solving is an important component of computer programming.  

They plan to enhance BITS to offer such guidance. 

 

In Chapter 3, the review on ITSs for teaching computer programming has unfolded a few 

facts.  The level of programming taught in existing ITSs such as PROUST (Johnson, 1986), 

BRIDGE (Bonar & Cunningham, 1988), ASSERT (Baffes & Mooney, 1996), C++ Tutor 

(Kumar, 2002), JITS (Sykes & Franek, 2003) and BITS (Butz et al, 2006) covers 

elementary topics that are typically found in an introductory course to Computer 

Programming.  On the other hand, the domain knowledge in C++ STL ITS encompasses a 

higher level programming. 

 

Most of the current ITSs for programming focuses on teaching students the syntax of a 

programming language as opposed to application of the programming.  The main tutoring 

approach is to present a problem specification for the student to solve, followed by 

intelligent analysis of the solution with various feedback.  Correcting syntax is not the 



 

181 

focus of C++ STL ITS.  The main purpose is to guide students in applying the STL using a 

variety of teaching strategies. 

 

Unlike the assessment system proposed by Martin and VanLehn (1995), C++ STL ITS does 

not just assess what a student knows, it also provides problem solving support.  Two 

assessments are included – a pre-test to evaluate a student’s prerequisite knowledge and a 

post-test to examine his/her understanding on completion of the tutorial.  The Bayesian 

theorem is applied in both tests to determine the conditional probabilities of understanding. 

 

Section 5.7 examined various web-based ITSs which employ two-tier or client/server 

architecture implemented using Java and the Common Lisp Hypermedia Server CL-HTTP 

completely written in Lisp.  The C++ STL ITS adopts a three-tier system architecture 

which is based on the Java 2 Platform, Enterprise Edition (J2EE) architecture.  This 3-tier 

architecture overcomes some of the limitations of two-tier architectures. 



 

182 

Chapter 7 Conclusions and Future Work 

 

7.1 Conclusions 

The web-based C++ Standard Template Library (STL) Intelligent Tutoring System (ITS) 

provides a complete teaching and learning tool for both tutors and students.  For tutors, 

assessment tools and authoring tools are available to complement their teaching.  The 

domain knowledge can be modified to suit the current curriculum.  Tutors can design their 

own program specifications according to the needs of the students.  The ITS also provides 

self-assessment to students and adaptively helps them in solving C++ STL problems using 

various teaching strategies.  The teaching strategies can form a supplement to existing 

classroom teaching materials. 

The Bayesian theorem is applied to model the student’s understanding.  The application 

centers around the prerequisite knowledge of the students.  The conditional probabilities 

produced by Bayesian reveal strengths and weaknesses of the students.  The student model 

is simple and yet effective enough to direct students during the tutorial sessions.  The 

student model update algorithm which is based on the range of conditional probabilities 

obtained by the students during the pre-test simplifies the computational complexities in 

Bayesian networks. 

The C++ STL ITS has the potential to be extended to other domain knowledge.  The 

authoring tools facilitate the flexibilities of incorporating other programming languages in 

the ITS.  One unique feature is that more than one programming languages can exist at the 



 

183 

same time in the ITS.  This enables students to use the same system to learn different 

computer programming. 

The Fuzzy Stereotyping of Students Expert System built works well and has successfully 

categorized the students.  Knowing the ability of the students in the class will enable the 

tutors to provide better guidance and use different teaching approaches to help the students. 

 

7.2 Future Work 

 

Two fields of future work are considered: short term and long term.  Short term extensions 

can be achieved in a shorter time frame.  These include extending the tutorial questions, 

domain knowledge and accommodating more feedback on the programming syntax.  One 

major short term future work is to incorporate the fuzzy expert system into the C++ STL 

ITS.  Three areas of research proposed for long term are application of alternative 

knowledge acquisition techniques, integration of learning styles into the student model, and 

representation of domain knowledge using ontologies. 

 

7.2.1 Short Term 

 

The C++ STL ITS will be used in the module Software Design and Implementation 

2 for the courses BSc (Hons) Software Engineering and BEng (Hons) Electronics 

and Computing.  The system is currently installed in the Computer Center at KBU 

International College.  Students will be able to use the system during the laboratory 

sessions.  The tutorial questions will be extended to cover higher level topics such 

as the STL associative containers, adaptive containers and algorithms.  Besides 



 

184 

topics on STL, learning materials on advanced data structures like trees, deap, hash 

tables can be incorporated too. 

 

Another extension is to include the domain Java Standard Template Library (JSTL).  

Prerequisite knowledge required to learn the JSTL can be modelled by the experts 

who would subsequently design pre-test questions, tutorial questions and post-test 

questions based on the prerequisites. 

 

Currently, the XML syntax parser does not focus on the syntax of the programming 

language but emphasizes more on application of certain standard and style of 

programming.  For example, the system insists that students use braces for the begin 

(‘{’) and end (‘}’) block within a for loop, and apply certain variable naming 

conventions.  The parser can be extended to provide more specific feedback on the 

student’s misconceptions and check the correctness of the code.  More tokens on the 

programming syntax can be added to improve the parser. 

 

A more significant enhancement is to integrate fuzzy logic into the system to 

stereotype the students directly after each path in the system, which is the pre-test, 

tutorial and post-test sessions.  It is believed that combining Bayesian and fuzzy 

logic techniques can further improve the adaptivity of the ITS during the tutorial 

sessions. 

 



 

185 

7.2.2 Long Term 

 

Currently, the C++ STL ITS models the student according to the knowledge of the 

prerequisite sub-skills.  For future enhancement, it would be beneficial to model 

other type of student model attributes such as learning styles and learning 

preferences attributes.  From the preferences in interaction, various content 

presentation can be engaged.  Recent learner characteristics and preferences 

examples are the approaches presented in INSPIRE (Papanikolaou et al, 2003) and 

the NEMO project (Manouselis and Sampson, 2003).   

 

The aim of INSPIRE is to support a more learning-focused model of instruction by 

providing a sequence of authentic and meaningful tasks that matches students’ 

knowledge level and preferred way of learning.  INSPIRE, throughout its 

interaction with the student, dynamically generates personalized lessons that 

gradually lead to the attainment of student’s learning goals.  Futhermore, it supports 

several levels of adaptation, which range from full system-control to full student-

control.  The student model is accomplished in multiple ways: curriculum 

sequencing, adaptive navigation support, adaptive presentation, and supports 

system’s adaptable behavior.  It is worth mentioning that Papanikolaou et al (2003) 

reviewed several aspects in Adaptation in Educational Hypermedia Systems: 

adaptation source, adaptation technology, adaptivity, teaching theories and teaching 

approaches. 

 



 

186 

The NEMO “Non-Excluding Models for Web-based Education” project aims in 

designing and developing a web-based platform for empowering the education and 

training methodology of learning communities with special needs, in an adaptive 

and individualized way.  The learner model was modelled and specified using the 

IMS Learner Information Package (LIP) Specification, and the domain knowledge 

was also modelled and specified using the IEEE Learning Object Metadata (LOM) 

specification.  Then, a rule-based expert shell, and a multi-criteria evaluation model 

were presented to recommend e-learning courses most appropriate to the learner’s 

needs and preferences. 

 

Much could be learned from the work done in INSPIRE and NEMO on modelling 

various student’s attributes.  It is foreseen that the application can improve the 

adaptivity of the teaching strategies in the C++ STL ITS.  It would be interesting to 

review how standards from the IMS LIP and IEEE LOM specifications can be 

employed in the C++ STL ITS.  Moreover, the advantages of using learning 

technologies standards promote reusability of information and interoperability with 

other systems. 

 

In the C++ STL ITS, a multiple-choice single answer pre-test has been used to 

initialize the student model.  The multiple-choice format facilitates the application 

of the Bayesian Theorem directly.  It would be interesting to consider other types of 

format in the pre-test to acquire the student’s prerequisite knowledge.  For example, 

Fill-in-the-blank and True/False type of questions.  To describe a proposal on the 



 

187 

application of Bayesian Theorem for alternative question format, Equation (4.8) 

explained in Chapter 4 is further considered:  

)|( CUP  
pm

mp




)1(1
     (4.8) 

The value of p is easily attainable as it is calculated based on the number of correct 

answers for the prerequisite sub-skills.  The value of m in the equation refers to the 

total number of multiple choice alternatives.  If the question format is True/False 

type, then m will be 2, and the P(U|C) value can be computed for each student.  

However, to facilitate the Bayesian for Fill-in-the-blank type of questions, the 

simplest method is to offer multiple options for the blank.  The value of m can vary 

based on the number of choices provided.  Further evaluation can be conducted to 

confirm the appropriateness of the Bayesian for other types of pre-test question 

format. 

 

As quoted by Kumar (2003), several researches have proposed using a pre-test to 

initialize the student model for adaptive learning (Aimeur et al, 2002, Czarkowski 

and Kay, 2003).  He also briefly reviewed various improvements to the pre-test by 

other researches:  

 Adaptive pre-tests to reduce the number of problems the student must solve 

(Arroyo et al, 2001, Millan et al, 2000) 

 Stereotypes to generate a shortened pre-test (Aimeur et al, 2002, Kay, 2000) 

 Schema-based assessment (Kalyuga, 2003) to devise tests rapidly wherein 

the student fills in incomplete intermediate stages in a solution rather than 

providing the entire solution 

 



 

188 

The pre-test in the C++ STL has a large set of 76 questions which is necessary to 

cover the various prerequisite sub-skills.  In future work, it is worth researching 

how the pre-test questions can be minimized and how work by the researches above 

can be adapted to improve the pre-test. 

 

The domain knowledge in the C++ STL ITS is modelled based on prerequisite sub-

skills which is a 2-level hierarchical model.  The domain is not structured to provide 

intelligent adaptive navigation and adaptive sequencing.  This was not part of the 

objective of this research.  However, it is beneficial to look into the relationships 

among the prerequisite concepts and consider how these relationships can enhance 

adaptive learning.   

 

Karampiperis and Sampson (2004) have addressed the issue of adaptive learning 

object sequencing problem in intelligent learning management systems proposing a 

methodology based on the ontologies and learning object metadata.  Ontologies are 

specifications of the conceptualization and corresponding vocabulary use to 

describe a domain (Karampiperis and Sampson, 2004).  They added that ontologies 

typically consist of definitions of concepts relevant for the domain, their relations, 

and axioms about these concepts and relationships.  In their instructional planning 

process, they have identified four classes of concept relationships, namely: 

 Consists of 

 Similar to 

 Opposite of 

 Related with 



 

189 

The result of their research is a generic Instructional planner capable of providing 

both Adaptive and Dynamic Courseware Generation.  The main contribution of this 

method is that it is fully automatic and can be applied independently of the 

knowledge domain. 

 

For future work, the hypothesis is that in-depth study in identifying relationships 

among the prerequisite concepts will enable intelligent sequencing of the problems.  

Subsequently, problem specifications can be organized according to the level of 

difficulty.  An example of a relationship is between the user defined function and 

class member function.  It can be described with the relationship related with, which 

means class member function is related with user defined function.  Therefore, the 

program specification can be designed to test that students understand the relation 

that class member functions are user defined functions that exist within a class and 

can be either public or private. 

 

In conclusion, the long term future work proposed focuses on a wider development 

scope that can be taken by the ITS community.  The C++ STL ITS has achieved the 

three main tasks of an ITS (Shute and Psotka, 1996): 

 It accurately diagnoses the student’s knowledge using the Bayesian Theorem 

 Based on the student’s knowledge, it provides adaptive teaching strategies 

 The system provides feedback through the various teaching strategies 

 

 

 



 

190 

References 
 

 

Aimeur, E., Brassard, G., Dufort, H., and Gambs, S. (2002).  CLARISSE: A Machine 

Learning Tool to Initialize Student Models. S. Cerri, G. Gouarderes, F. Paraguacu (eds.), In 

Proceedings of ITS 2002, Springer (2002). pp 718-728. 

 

 

Albacete P.L., VanLehn, K. (2000). The conceptual helper: An intelligent tutoring system 

for teaching fundamental physics concepts. In G. Gauthier, C. Frasson & K. VanLehn 

(Eds), In Proceedings of 5th International Conference, Intelligent Tutoring Systems, Berlin: 

Springer (Lecture Notes in Computer Science, Vol. 1839), Montreal, Canada, pp 564-573. 

  

 

Alpert, Sherman R., Singley, Mark K. and Fairweather, Peter G. (1999). “Deploying 

Intelligent Tutors on the Web: An Architecture and an Example” 

International Journal of Artificial Intelligence in Education, 10(2), pp 183-197. 

 

 

Alur, D., Crupi, P. and Malks, D. (2003). Core J2EE Patterns, Best Practices and Design 

Strategies, Second Edition, Sun Microsystems, Prentice Hall. 

 

 

Ainsworth, Shaaron. (2005). Evaluation Methods for Learning Environments : A Tutorial 

for AIED 2005 – T1, Amsterdam. 

[URL: 

http://www.psychology.nottingham.ac.uk/staff/Shaaron.Ainsworth/aied_tutorialslides2005.

pdf] 

 

 

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University 

Press. 

 

 

Anderson, J. R. (1988). The Expert Module. In Polson M.C. and Richardson J.J. (Eds.), 

Handbook of Intelligent Training Systems. Hillsdale, NJ: Erlbaum, pp 21-53. 

 

 

Anderson, J. R. (1993). Production Systems and the ACT-R Theory.  Rules of the Mind. 

Hillsdale, NJ: Lawrence Erlbaum & Associates, Inc., pp 1-10. 

 

 

Anderson, J. R., Boyle, C. F., and Yost, G. (1986). The geometry tutor. The Journal of 

Mathematical Behavior, pp 5-20. 

 

 



 

191 

Anderson, J. R., Corbett, A. T., Koedinger, K. and Pelletier, R. (1995). Cognitive Tutors: 

Lessons Learned. In The Journal of the Learning Science, 4(2), Lawrence Erlbaum & 

Associates, Inc., pp 167-207. 

 

 

Anderson, J. R. and Reiser, B. J. (1985). The LISP tutor. In: BYTE, Volume 10, No. 4, S. 

pp 159-175. 

 

 

Arroyo, I., Beck, Joseph. E, Beal, Carole. R. and Woolf, Beverly. P. (2003). Learning 

within the ZPD with the AnimalWatch Intelligent Tutoring System, AERA 2003, Chicago. 

 

 

Arroyo, I., Conejo, R., Guzman, E. and Woolf, B. P. (2001).  An Adaptive Web-Based 

Component for Cognitive Ability Estimation., In Proceedings of International Conference 

on Artificial Intelligence in Education (AIED 2001), IOS Press. pp 456-466. 

 

 

Arvanitis, T. H., Todd, M. J., Gibb, A. J. and Orihashi, E. (2001). Understanding Students’ 

Problem-Solving Performance in the Context of Programming-In-The-Small: An 

Ethnographic Field Study.  Paper presented at the 31th ASEE/IEEE Frontiers in Education 

Conference, Session F1D, Reno, NV, 10–13 October. 

 

 

Astels, D., Miller, G. and Novak, M. (2002).  A Practical Guide to eXtreme Programming, 

The Coad Series, Peter Coad, Series Editor, Upper Saddle River, NJ, USA, Prentice Hall. 

 

 

Austern, Matthew H. (1999) Generic Programming and the STL. Using and extending the 

C++ Standard Template Library. Professional Computing Series.  Addison-Wesley, USA. 

 

 

Austern, Matthew H. (2000).  C++ Report : The Standard Librarian :  Algorithms and 

Containers, In: ADTmag.com. 

 

 

Baffes, P. (1994). Automatic student modelling and bug library construction using theory 

refinement. Ph.D. Dissertation, Department of Computer Sciences, The University of Texas 

at Austin.  

[URL: http://net.cs.utexas.edu/users/ml/] 

 

 

Baffes, P. and Mooney, R. (1993). Symbolic revision of theories with M-of-N rules. In 

Proceedings of the Thirteenth International Joint Conference on Artificial intelligence, pp 

1135-1140. Chambery, France. 

 

 



 

192 

Baffes, P. and Mooney, R. (1996). A Novel Application of Theory Refinement to Student 

Modeling, In the Proceedings of the Thirteenth National Conference on Artificial 

Intelligence (AAAI-96). 

 

 

Beck, J. E. and Woolf, B. P. (1998). Using a learning agent with a student model. In 

Proceedings of Intelligent Tutoring Systems, pp 6-15.  

[URL: http://citeseer.ist.psu.edu/beck98using.pdf] 

 

 

Beck, Joseph E. and Stern, Mia K. (1999). Bringing back the AI to AI & ED, 9th World 

Conference of the AIED Society. 

 

 

Beck, J., Stern, M., and Haugsjaa, E. (1996). Applications of AI in Education, ACM 

Crossroads, September.  

 

 

Beck, J., Stern, M. and Woolf, B. P. (1997). Cooperative Student Models, In B. du Boulay 

& R. Mizoguchi (eds), Artificial Intelligence in Education, IOS Press, Amsterdam, pp 127-

134. 

 

 

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as 

effective as one-to-one tutoring. Educational Researcher 13(6), pp 4-16.  

 

 

Bonar, J.G, and Cunningham, R. (1988). Bridge: Tutoring the Programming Process. In 

Intelligent Tutoring Systems: Lessons Learned, J. Psotka, L.D. Massey, and S A. Mutter 

(Eds.), Lawrence Erlbaum Associates, Hillsdale, New Jersey, pp 409-434. 

 

Brown J. S. and Burton R. R. (1978). Diagnostic models for procedural bugs in basic 

mathematical skills. Cognitive Science, vol. 2, pp. 155-92. 

 

Brusilovsky, P. (1999). Adaptive and Intelligent Technologies for Web-based Education, In 

C. Rollinger and C. Peylo (eds.), Special Issue on Intelligent Systems and Teleteaching, 

Künstliche Intelligenz, 4, pp 19-25. 

 

 

Brusilovsky, P., Eklund, J. and Schwarz, E. (1998). Web-based Education for All: A Tool 

for Development Adaptive Courseware. Computer Networks and ISDN Systems. 

Proceedings of Seventh International World Wide Web Conference, 14-18 April 1998 30 

(1-7), pp 291-300. 

 

 



 

193 

Brusilovsky, P., Schwarz, E., and Weber, G. (1996). ELM-ART: An Intelligent Tutoring 

System on World Wide Web, Frasson, C., Gauthier, G., Lesgold, A. (Eds). In Proceedings of 

the Third International Conference on Intelligent Tutoring Systems, ITS'96, Berlin: 

Springer, pp 261-269. 

 

 

Budd, Timothy (1998).  Data Structures in C++ using Standard Template Library.  

Addison Wesley Longman, Inc., USA. 

 

 

Bull, Susan (1997). See Yourself Write: A Simple Student Model to Make Students Think.  

In Anthony Jameson, Cécile Paris, and Carlo Tasso (Eds.), User Modelling: Proceedings of 

the Sixth International Conference, UM97. Vienna, New York: Springer Wien New York. 

© CISM. 

 

 

Burton, R. R., Brown, J. S. (1982). An investigation of computer coaching for informal 

learning activities. In: Sleeman, D., Brown, J. (eds.): Intelligent Tutoring Systems, Chap. 4, 

pp. 79-98, London: Academic Press. 

 

 

Butz, C. J., S. Hua, S. and Maguire, R.B. (2004). “A Web-based Intelligent Tutoring 

System for Computer Programming”, IEEE/WIC/ACM Conference on Web Intelligence 

(WI04), pp 159-165. 

 

 

Butz, C. J., S. Hua, S. and Maguire, R.B. (2006). A Web-based Bayesian Intelligent 

Tutoring System for Computer Programming, Web Intelligence and Agent Systems: An 

International Journal, to appear Vol. 4, No. 1.  

 

 

Callear, D. (1997). A Course-oriented Approach to Intelligent CAL Based on the Teacher. 

[URL: http://www.media.uwe.ac.uk/masoud/cal-97/posters/callear.htm] 

Last accessed date: 21 November 2005. 

 

 

Carbonell, J. R. (1970). AI in CAI: an artificial intelligence approach to computer-assisted 

instruction. IEEE Transactions on Man-Machine Systems, 11(4), pp 190-202. 

 

 

Carr, B. and Goldstein, I. (1977). Overlays: a theory of modelling for computer-aided 

instruction. Technical Report A. I. Memo 406, Cambridge, MA: MIT. 

 

 

Chad Lane, H. and VanLehn, K. (2003). Coached Program Planning: Dialogue-Based 

Support for Novice Program Design. In Proceedings of the SIGCSE ’03, February 19-23, 

2003 Reno, Nevada, USA. 

 



 

194 

 

Clancey, William J. (1992). Guidon-Manage Revisited: A Socio-Technical Systems 

Approach. In Claude Frasson, Gilles Gauthier, Gordon I. McCalla (Eds.): Intelligent 

Tutoring Systems, Second International Conference, ITS '92, Montréal, Canada, June 10-

12, 1992, Proceedings. Lecture Notes in Computer Science 608 Springer, pp 21-36. 

 

 

Crowley, R. S., Medvedeva, O. and Jukic, D. (2003). SlideTutor – A model-tracing 

Intelligent Tutoring System for teaching microscopic diagnosis. U. Hoppe, F. Verdejo and 

J. Kay (eds.), In Proceedings of the 11th International Conference on Artificial Intelligence 

in Education (AIED 2003), July 20 – 24, Sydney, Australia, IOS Press. 

 

 

Czarkowski, M. and Kay, J. (2003).  Challenges of Scrutable Adaptivity. U. Hoppe, F. 

Verdejo and J. Kay (eds.), In Proceedings of the 11th International Conference on 

Artificial Intelligence in Education (AIED 2003), July 20 – 24, Sydney, Australia, IOS 

Press. pp 404-406. 

 

 

de Buen, P.R., Vadera, S. and Morales, E.F. (1999). A Collaborative Approach to User 

Modeling within a Multi-Functional Architecture, in J. Kay (ed), UM99: In User 

Modelling,  Proceedings of the Seventh International Conference, Springer Wien New 

York, pp 291-293.  

[URL: http://www.cs.usask.ca/UM99/Proc/short/BuenRodriguez_032414.pdf] 

 

 

Deitel, H. M. and Deitel, P. J. (2003).  C++ How to Program, Fourth Edition, Pearson 

Education Inc., Prentice Hall.  

 

 

Dimitrova, V., Self, J. A. and Brna, P. (2000). Involving the Learner in Diagnosis – 

Potentials and Problems. In Web Information Technologies: Research, Education, 

Commerce (WITREC 2000), May 2-5 2000, Montpellier, France. 

 

 

Fernandez, K. and Sison, R. (2001). A Probabilistic Student Model in Novice 

Programming. In Proceedings of the 9th International Conference on Computers in 

Education, pp 242-249. 

 

 

Gamboa, Hugo and Fred, Ana. (2001). Designing Intelligent Tutoring Systems: a Bayesian 

Approach. In 3rd International Conference on Enterprise Information Systems, 

ICEIS'2001. 

 

 

Gray, W. D and Atwood, M. E. (1992). Transfer, Adaptation, and Use of Intelligent 

Tutoring Technology: The Case of Grace. In M. Farr and J. Psotka (Eds.), Intelligent 

Instruction by Computer: Theory and Practice, New York: Taylor and Francis, pp 179-203. 



 

195 

 

 

Hartley, J. and Sleeman, D. (1973). Towards more intelligent teaching systems. 

International Journal of Man-Machine Studies 2, pp 215-236. 

 

 

Heckerman, D. (1996).  A Tutorial on Learning with Bayesian Networks.  In Learning in 

Graphical Models, M. Jordan, ed.. MIT Press, Cambridge, MA, 1999.  Also appears as 

Technical Report MSR-TR-95-06, Microsoft Research, March, 1995.  An earlier version 

appears as Bayesian Networks for Data Mining, Data Mining and Knowledge Discovery, 1, 

pp 79-119. 

 

 

Heffernan, N. T. (2001). Intelligent Tutoring Systems have Forgotten the Tutor: Adding a 

Cognitive Model of an Experienced Human Tutor.  Dissertation. Carnegie Mellon 

University, Computer Science Department. 

[URL: http://gs260.sp.cs.cmu.edu/diss] 

 

 

Hopgood, Adrian A. (2001). Intelligent Systems for Engineers and Scientists, Second 

Edition, CRC Press LLC. 

 

 

Ito, J., Okazaki, Y., Watanabe, K., Kondo, H., and Okamoto, M. (1998). “Pen based user 

interface for an ITS on WWW client”. In Proceedings of ICCE'98, Beijing, China, AACE 

(1998) pp 324-327. 

 

 

Iqbal A., Oppermann R., Patel A. and Kinshuk (1999). A Classification of Evaluation 

Methods for Intelligent Tutoring Systems. Software Ergonomie '99 - Design von 

Informationswelten (Eds. U. Arend, E. Eberleh & K. Pitschke), B. G. Teubner Stuttgart, 

Leipzig, pp 169-181. 

 

 

Jameson, A. (1995).  Numerical uncertainty management in user and student modelling: an 

overview of systems and issues, User Modelling and User-Adapted Interaction, 5(3- 4) 

(1995) 193-251. 

 

 

J2EE BluePrints (2001), Sun Microsystems, Inc. 

[URL: 

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/dyna

mic_content/] 

Last accessed date: 21 November 2005. 

 

 

Jameson, A. (1998). “What Can the Rest of Us Learn from Research on Adaptive 

Hypermedia – and Vice-Versa?”, Comments on the book “Adaptive Hypertext and 

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/dynamic_content/
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/dynamic_content/


 

196 

Hypermedia”. Peter Brusilovsky, Alfred Kobsa, and Julita Vassileva (Eds), Dordrecht: 

Kluwer. 

[URL: http://w5.cs.uni-sb.de/~jameson/ahh/ahh-comments.html] 

 

 

Johnson, W. L. (1986). Intention-based diagnosis of errors in novice programs.  Palo Alto, 

CA: Morgan Kaufman. 

 

 

Kalyuga, S. (2003).  Rapid Assessment of Learner's Knowledge in Adaptive Learning 

Environments, U. Hoppe, F. Verdejo and J. Kay (eds.), In Proceedings of the 11th 

International Conference on Artificial Intelligence in Education (AIED 2003), July 20 – 

24, Sydney, Australia, IOS Press. pp 167-174. 

 

 

Karampiperis P. and Sampson D. (2004).  Adaptive Instructional Planning using 

Ontologies, In Proceedings of the 4th IEEE International Conference on Advanced 

Learning Technologies (ICALT 04), ISBN: 0769521819, Joensuu, Finland, IEEE 

Computer Society, August 2004, pp 126-130. 

 

 

Kassim, A. A., Ahmed, K. S. and Ranganath, S. (2001). A Web-based Intelligent Approach 

to Tutoring.  Paper presented at the International Conference on Engineering Education, 

Session 8B4, Oslo, Norway, 6-10, August. 

 

 

Katz, S., Lesgold, A. Eggan, G. and Gordin, M. (1992). Modelling the student in Sherlock 

II, Journal of Artificial Intelligence in Education Vol 3 No 4 pp 495. 

 

 

Kavčič, Alenka. (2000). "The Role of User Models in Adaptive Hypermedia Systems", In 

Proceedings of the 10th Mediterranean Electrotechnical Conference MEleCon 2000, 

Lemesos, Cyprus, May. 

 

 

Kay, J. (2000).  Stereotypes, Student Models and Scrutability. In Proceedings of ITS 2000. 

G. Gauthier, C. Frasson and K. VanLehn (eds.). Springer. pp 19-30. 

 

 

Kelly,J., Ghent, J., Bergin, S., Gaughran, P. and Mooney, A. (2004). "Initial Findings on 

the Impact of an Alternative Approach to Problem Based Learning in Computer Science", 

PBL International Conference, Mexico, June. 

 

 

Kinshuk (2002). Does intelligent tutoring have future! In Kinshuk, R. Lewis, K. Akahori, 

R. Kemp, T. Okamoto, L. Henderson & C.-H. Lee (Eds.) Proceedings of the International 

Conference on Computers in Education, Los Alamitos, CA: IEEE Computer Society. 

 



 

197 

 

Kinshuk, Patel A., Oppermann R., Russell D. (2001). Role of Human Teacher in Web-

based Intelligent Tutoring Systems. Journal of Distance Learning, 6 (1), pp 26-35.  

 

 

Kumar, A. N. (2002).  Model-based Reasoning for Domain Modelling, Explanation 

Generation and Animation in an ITS to help Students Learn C++.  In Proceedings of the 6th 

International Conference, ITS 2002, Cerri, S. A., Gouarderes, G. & Paraguacu, F., Eds., 

Biarritz, France and San Sebastian, Spain, June 2-7, Springer-Verlag Berlin Heidelberg 

New York. 

 

 

Kumar, A. N. (2003).  Rule-based Adaptive Problem Generation in Programming Tutors 

and its Evaluation.  U. Hoppe, F. Verdejo and J. Kay (eds.), In Proceedings of the 11th 

International Conference on Artificial Intelligence in Education (AIED 2003), July 20 – 

24, Sydney, Australia, IOS Press. 

 

 

Lajoie, S. P. and Derry, S. J., eds (1993).  Computer as cognitive tools.  Hillsdale, NJ: 

Erlbaum. 

 

 

Lauritzen, S. L. and Spiegelhalter, D.J. (1988).  “Local computations with probabilities on 

graphical structures and their application to expert systems”, J. Royal Stat. Soc. 50 (1988) 

pp 172 – 194. 

 

 

Lee, Christine and Sapiyan, M. (2005). “Web-based C++ Standard Template Library 

Intelligent Tutoring System”, 18th Education Technology Conference, Kuala Terengganu, 

16-19 September 2005. 

 

 

Lee, Christine and Sapiyan, M. (2005). “Bayesian-based Intelligent Tutoring System for 

teaching C++ STL”, The Journal of Technology Management and Entrepreneurship 

(JTME), Institute of Technology Management and Entrepreneurship, November. 

 

 

López, J. M., Millán, E., Pérez-de-la-Cruz, J. L., & Triguero, F. (1998). ILESA: a Web-

based Intelligent Learning Environment for the Simplex Algorithm. In Alvegård, C. (ed.) 

Proceedings of CALISCE'98, 4th International conference on Computer Aided Learning 

and Instruction in Science and Engineering, Göteborg, Sweden, pp 399-406. 

 

 

Luger, G. F. (2005). Artificial Intelligence, Structures and Strategies for Complex Problem 

Solving, 5th Edition, Addison Wesley, USA. 

 

 



 

198 

Madigan, David, Hunt, Earl, Levidow, Bjorn and Donnell, Deborah (1995).  Bayesian 

Graphical Modeling for Intelligent Tutoring Systems, Technical Report. 

[URL: http://citeseer.ist.psu.edu/article/madigan94bayesian.html] 

Last accessed date: 21 November 2005. 

 

 

Mallery, J.C. (1994). A Common Lisp Hypermedia Server, In Proceedings of the 1st 

International WWW Conference, Geneva.  

 

 

Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy 

logic controller, International Journal Man-Machine Studies, 7(1), pp 1-13. 

 

 

Manouselis N. and Sampson D. (2003). "Agent-based e-Learning Course Discovery and 

Recommendation: Matching Learner Characteristics with Content Attributes", 

International Journal of Computers and Applications (IJCA), Special Issue on Intelligence 

and Technology in Educational Applications, Volume 25, No. 1. 

 

 

Mark, M. A. and Greer, J. E. (1993). Evaluation methodologies for intelligent tutoring 

systems. Journal of Artificial Intelligence in Education (Special Issue on Evaluation), 1993, 

4 (2/3), pp 129-153. 

 

 

Martin, J. and VanLehn, K. (1995). Student assessment using Bayesian nets. International 

Journal of Human-Computer Studies, 42, pp 575-591.  

 

 

Matena, Vlada and Stearns, Beth. (1991). Applying Enterprise JavaBeans: Component-

Based Development for the J2EE Platform.   The Java Series Enterprise Edition, Sun 

Microsystems, Inc. 

 

 

Mayo, M. and Mitrovic, A. (2000). Using a probabilistic student model to control problem 

difficulty. In Proceedings of ITS 2000 Conference, pp 524-533. 

 

 

Mayo, M., Mitrovic, A. and McKenzie, J. (2000). CAPIT: an Intelligent Tutoring System 

for Capitalization and Punctuation. International Workshop for Advanced Learning 

Technologies IWALT2000, December 4-6, 2000, Palmerston North, pp 151-154. 

 

 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B-D., Laxer, 

C., Thomas, L. and Utting, I. (2001). A multi-national, multi-institutional study of 

assessment of programming skills of first-year CS students.  ACM SIGCSE Bulletin 33 (4), 

pp 125-180.   

 



 

199 

 

Millan, E., Perez-de-la-Cruz, J.L., and Svazer, E. (2000).  Adaptive Bayesian Networks for 

Multilevel Student Modeling. In Proceedings of ITS 2000. Springer, pp 534-543. 

 

 

Mitchell, Tom. (1997). Machine Learning. International Edition, McGraw Hill 

Publications. 

 

 

Mitrovic, A. (1996). SINT - a Symbolic Integration Tutor. Frasson, C., Gauthier, G., 

Lesgold, A. (Eds).  In Proceedings of ITS'96 conference, Montreal, June 1996, Lecture 

Notes in Computer Science, Springer, pp 587-595. 

 

 

Mitrovic, A. and Hausler, Kurt. (2003). “An Intelligent SQL Tutor on the Web”, 

International Journal of Artificial Intelligence in Education, Vol. 13, Numbers 2-4, pp 173-

197. 

 

 

Mitrovic A. and Ohlsson S. (1999). Evaluation of a Constraint-Based Tutor for a Database 

Language. Int. J. on A.I. in Education, 10(3-4), 1999, pp 238-256. 

 

 

Musser, David. (2003). Generic Programming. 

[URL: http://www.cs.rpi.edu/~musser/gp/] 

Last accessed date: 21 November 2005. 

 

 

Nakabayashi, K, Maruyama, M., Koike, Y., Kato, Y., Touhei, H. and Fukuhara, Y. (1997). 

Architecture of an Intelligent Tutoring System on the WWW. In Proceedings of the 8th 

World Conference of the AIED Society, Kobe, Japan, 18-22, August. 

 

 

Negnevitsky, Michael (2005). Artificial Intelligence, A Guide to Intelligent Systems, 

Second Edition, Addison-Wesley.  

 

 

ObjectSpace Inc. (1996), “Standard Template Library”. 

[URL: http://wwwasd.web.cern.ch/wwwasd/lhc++/ObjectSpace/doc/2.1/stdusr/intro.1.html] 

Last accessed date: 21 November 2005. 

 

 

Ohlsson, S. (1987). Some Principles of Intelligent Tutoring.  In Lawler & Yazdani (Eds.), 

Artificial Intelligence and Education, Volume 1. Ablex: Norwood, NJ, pp 203-238. 

 

 

Ohlsson, S. (1994). Constraint-Based Student Modelling. Student Modelling: The Key to 

Individualized Knowledge-Based Instruction. pp 167-189, Springer-Verlag. 



 

200 

 

 

Ourston, D. and Mooney, R. (1994). Theory refinement combining analytical and empirical 

methods. Artificial Intelligence. 66, pp 311-394. 

 

 

Papanikolaou K.A., Grigoriadou M., Kornilakis H., and Magoulas G.D. (2003).   

"Personalising the Interaction in a Web-based Educational Hypermedia System: the case of 

INSPIRE", User-Modeling and User-Adapted Interaction, 13 (3), pp 213-267. 

 

 

Pearl, J. (1988).  Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

Inference, Morgan Kaufmann. 

 

 

Pérez, T., Lopistéguy, P., Gutiérrez, J., and Usandizaga, I. (1995). HyperTutor: From 

hypermedia to intelligent adaptive hypermedia. In H. Maurer (Eds.), Educational 

Multimedia and Hypermedia, Proceedings of ED-MEDIA'95, World conference on 

educational multimedia and hypermedia, June 17-21, 1995. Graz, Austria, AACE. – pp 

529-534. 

 

 

Peylo, C., Thelen, T., Rollinger, C., and Gust, H. (2000). A Web-based intelligent 

educational system for PROLOG. In Peylo, C. (Ed.), Proceedings of the International 

Workshop on Adaptive and Intelligent Web-based Educational Systems (held in 

Conjunction with ITS 2000), Technical Report of the Institute for Semantic Information 

Processing, Osnabrück, pp 85-96. 

 

 

Polson, M. C. & Richardson, J.J., eds. (1988). Foundations of intelligent tutoring systems.  

Hillsdale, NJ: Erlbaum 

 

 

Prentzas, J., Hatzilygeroudis, I. and Garofalakis, J. (2002). A Web-based Intelligent 

Tutoring System Using Hybrid Rules as its Representational Basis, Cerri, S.A., Gourederes, 

G. and Paraguacu, F. (Eds): ITS 2002, LCNS 2363, Springer-Verlag Berlin Heidelberg, In 

Proceedings of the ITS 2002 Conference, Biarritz, France, June, pp 119-128. 

 

 

Prentzas, J, Hatzilygeroudis I and Koutsojannis C. (2001).  A Web-based ITS Controlled by 

a Hybrid Expert System, Proceedings of the IEEE ICALT-2001, Madison, Wisconsin, 

USA, pp 239-240. 

 

 

Psotka, J. Massey, L.D. and Mutter, S. A. (1988). Intelligent tutoring systems: lessons 

learned. Hillsdale, NJ: Erlbaum. 

 

 



 

201 

Pugh, E. and Gradecki, J. D. (2004). Professional Hibernate, Wrox, Wiley Publishing, Inc., 

Indianapolis, Indiana. 

 

 

Reiser, B., Anderson, J., and Farell, R. (1985).  Dynamic student modelling in an intelligent 

tutor for LISP programming. In Proceedings of the Ninth International Joint Conference on 

Artificial Intelligence, pp 8-14. 

 

 

Reyes, Rhodora L., Galvey, Carlo, Gocolay , Ma. Christine, Ordona, Eden and Ruiz, 

Conrado Jr.(2000). Multimedia Intelligent Tutoring System For Context-Free Grammar. In 

Proceedings of the Philippine Computing Science Congress (PCSC) 2000. 

 

 

Ritter, S., Anderson, J. R., Cytrynowicz, M., and Medvedeva, O. (1998) Authoring Content 

in the PAT Algebra Tutor. Journal of Interactive Media in Education, 98 (9). 

 

 

Ross, M. Sheldon. (2003). Introduction to Probability Models, 8th Edition, Academic Press, 

USA. 

 

 

Scott, A. C., Clayton, T. E., and Gibson, E. L. (1991). A Practical Guide to Knowledge 

Acquisition. Menlo Park, CA: Addison-Wesley. 

 

 

Shute, V.J and Regian, J.W. (1993). Principles for evaluating intelligent tutoring systems.  

In a special evaluation issue of Journal of Artificial Intelligence & Education 4(3), pp 245-

71 

 

 

Shute, V. J. and Psotka, J. (1996).  Intelligent Tutoring Systems: Past, Present and Future. 

In D. Jonassen (ed.) Handbook of Research on Educational Communications and 

Technology.  Scholastic Publications. 

 

 

Sison, R. and Shimura, M. (1996). The Application of Machine Learning to Student 

Modelling (A 1996 Perspective): Toward a Multistrategic Learning Student Modelling 

System.  World wide web document. 

 

 

Sleeman,D. and Brown, J.S. (1982). Intelligent Tutoring Systems. London, England : 

Academic. 

 

 



 

202 

Smith, Serengul. (1998) “Intelligent Tutoring Systems”, School of Computing Science 

Middlesex University. Revised: September 1998. 

[URL: 

http://www.cs.mdx.ac.uk/staffpages/serengul/Traditional.Computer.Aided.Learning.System

s.htm] 

Last accessed date: 21 November 2005. 

 

 

Sommerville, Ian (2000). Software Engineering, 6th Edition, Addison-Wesley, USA. 

 

 

Stathacopoulou R. , Magoulas G.D. and Grigoriadou M. (1999). Neural network-based 

fuzzy modeling of the student in intelligent tutoring systems, In Proceedings of the INNS-

IEEE International Joint Conference on Neural Networks, Washington, U.S.A., July 1999. 

 

 

Stephanov, Alex. (1995) “Part of the draft C++ standard, STL provides the framework for 

building generic, highly reusable algorithms and data structures”, BYTE.com, October.  

[URL: http://www.byte.com/art/9510/sec12/art3.htm] 

Last accessed date: 21 November 2005. 

 

 

Stephanov, Alex and Lee, Meng. (1995) The Standard Template Library. Internet 

Distribution, Published at ftp://butler.hpl.hp.com/stl, July 7, 1995 

[URL: http://www.cs.rpi.edu/~musser/doc.ps] 

Last accessed date: 21 November 2005. 

 

 

Stoner G. and Harvey J. (1999) Integrating learning technology in a foundation level 

management accounting course: an e(in)volving evaluation. CTI-AFM Annual Conference, 

Brighton, U.K., April.  

 

 

Stroustrup, Bjarne (1999). “Learning Standard C++ as a New Language”, AT&T Labs, The 

C/C++ Users Journal, pp 43-54, May. 

 

 

Sykes, E. R. (2003). An Intelligent Tutoring System Prototype for Learning to Program 

Java.  In Proceedings of the 3rd IEEE International Conference on Advanced Learning 

Technologies (ICALT ’03), July 9-11, 2003, Athens, Greece, pp 485. 

 

 

Sykes, E. R and Franek, F. (2003). “An Intelligent Tutoring System Prototype for Learning 

to Program Java”, In Proceedings of the 3rd IEEE International Conference on Advanced 

Learning Technologies (ICALT ’03), Athens, Greece, July, 2003, pp 485-486. 

 

 

Sugeno, M. (1985). Industrial Applications of Fuzzy Control. North-Holland, Amsterdam. 

http://www.dcs.bbk.ac.uk/~gmagoulas/JCNN0679.PDF
http://www.dcs.bbk.ac.uk/~gmagoulas/JCNN0679.PDF


 

203 

 

 

Tsiriga, V. and Virvou, M. (2002). “Individualized Assessment in a Web-based Algebra 

Tutor”. In Proceedings of 2002 International Conference on Information 

Communication Technologies in Education (ICICTE), Samos. 
 

 

VanLehn, K. (1988). Student Modeling. Foundations of Intelligent Tutoring Systems, 

Polson M.C. and Richardson J.J. (Eds). 

 

 

Virvou, M. and Tsiriga, V. (2001a). “Adaptive Tutoring Based on the Student Model of a 

Web-based ICALL”. In Proceedings of TELEMATICA-2001 International Conference on 

Telematics and Web-Based Education, pp 47-50. 

 

 

Virvou, M. and Tsiriga, V. (2001b). “Web Passive Voice Tutor: an Intelligent Computer 

Assisted Language Learning System over the WWW”, In Okamoto, T., Hartley, R., 

Kinshuk, and Klus, J. (eds.) Proceedings of the IEEE International Conference on 

Advanced Learning Technologies: Issues, Achievements and Challenges, IEEE Society 

Press, Los Alamitos, 2001, pp 131-134. 

 

 

Wang, T. and Mitrovic, A. (2002) Using neural networks to predict student's performance. 

In Proceedings of the International Conference on Computers in Education (ICCE). 

 

 

Warendorf K. and Tsao S. J. (1997).  Application of Fuzzy Logic Techniques in the BSS1 

Tutoring System. Journal of Artificial Intelligence in Education, 8(1), pp 113-146. 

 

 

Weber, Gerhard. (1999). Adaptive Learning Systems in the World Wide Web. In 

Proceedings of the 7th International Conference on User Modelling, June 20-24, 1999, 

Banff, Canada. 

 

 

Weber, Gerhard and Specht, Marcus. (1997). User Modeling and Adaptive Navigation 

Support in WWW-Based Tutoring System. In Anthony Jameson, Cécile Paris, and Carlo 

Tasso (Eds.) In User Modeling: Proceedings of the Sixth International Conference, UM97, 

Cagliari, Italy, Vienna, New York: Springer Wien New York, pp 289-300. 

 

 

Weber, G., and Möllenberg, A. (1995). ELM programming environment: A tutoring system 

for LISP beginners. In Wender, K. F., Schmalhofer, F., and Böcker, H.-D. (Eds), Cognition 

and Computer Programming. Norwood, NJ: Ablex Publishing Corporation, pp 373-408. 

 

 



 

204 

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan 

Kaufmann Publishers, Inc. 

 

 

Wiemer-Hastings, P. (2000). Adding syntactic information to LSA. In Proceedings of the 

22nd Annual Conference of the Cognitive Science Society, pp 989-993 Mahwah, NJ. 

Erlbaum. 

 

 

Wiemer-Hastings, Peter and Malatesta, Kalloipi-Irini. (2001). Introducing RMT: A dialog-

based tutor for research methods. In Proceedings of Artificial Intelligence in Education 

2001. 

 

 

Wiemer-Hastings, P., and Zipitria, I. (2001). Rules for Syntax, Vectors for Semantics. In 

Proceedings of the 23rd Annual Conference of the Cognitive Science Society Mahwah, NJ. 

Erlbaum. 

 

 

Wise, G. Bowden (1995). “An overview of the Standard Template Library”, Dr Dobb’s 

Journal, December. 

[URL: http://www.cs.rpi.edu/~wiseb/xrds/ovp2-3b.html] 

Last accessed date: 21 November 2005. 

 

 

Wong, Danny. (2004). “Early Chinese Schooling”, Daily Express, 29th March, p 9. 

 

 

Woods, P. and Warren, J. (1995). Rapid Prototyping of an Intelligent tutorial system. In 

Proceedings of the ASCILITE'95, Melbourne, pp 557-563. 

 

 

Zadeh, L. (1965). Fuzzy Sets, Information and Control, 8(3), pp 338-353. 

 

 

Zhang Delai @ Chong Tet Loi. (2002). The Hakkas of Sabah, A Survey on Their Impact on 

the Modernization of the Borneon Malaysian State, Sabah Theological Seminary, Kota 

Kinabalu. 

 

 

Ziemer, S. (1994). Intelligent Tutoring Systems in general and Curricula in particular.  

ERASMUS-Student, Coventry. 



 

205 

 

 

 

 

 

 

Appendix 
 

 



 

206 

Appendix A – List of Conditional Probabilities 

 

Prerequisites 

(Topic) 

Total number of 

correct answers 

(c) 

Total number of  

prerequisite  

sub-skill questions 

( q ) 

P(U) 

 

p = c/q m*p 1 + (m-1)*p P(U|C) 

Data 

1 6 0.17 0.67 1.50 0.44 

2 6 0.33 1.33 2.00 0.67 

3 6 0.50 2.00 2.50 0.80 

4 6 0.67 2.67 3.00 0.89 

5 6 0.83 3.33 3.50 0.95 

6 6 1.00 4.00 4.00 1.00 

Operator 

1 4 0.25 1.00 1.75 0.57 

2 4 0.50 2.00 2.50 0.80 

3 4 0.75 3.00 3.25 0.92 

4 4 1.00 4.00 4.00 1.00 

Expression 

1 5 0.20 0.80 1.60 0.50 

2 5 0.40 1.60 2.20 0.73 

3 5 0.60 2.40 2.80 0.86 

4 5 0.80 3.20 3.40 0.94 

5 5 1.00 4.00 4.00 1.00 

Input-Output 

1 5 0.20 0.80 1.60 0.50 

2 5 0.40 1.60 2.20 0.73 

3 5 0.60 2.40 2.80 0.86 

4 5 0.80 3.20 3.40 0.94 

5 5 1.00 4.00 4.00 1.00 

Selection 

1 5 0.20 0.80 1.60 0.50 

2 5 0.40 1.60 2.20 0.73 

3 5 0.60 2.40 2.80 0.86 

4 5 0.80 3.20 3.40 0.94 

5 5 1.00 4.00 4.00 1.00 

Iteration 

1 6 0.17 0.67 1.50 0.44 

2 6 0.33 1.33 2.00 0.67 

3 6 0.50 2.00 2.50 0.80 

4 6 0.67 2.67 3.00 0.89 

5 6 0.83 3.33 3.50 0.95 

6 6 1.00 4.00 4.00 1.00 

Array 

1 6 0.17 0.67 1.50 0.44 

2 6 0.33 1.33 2.00 0.67 

3 6 0.50 2.00 2.50 0.80 

4 6 0.67 2.67 3.00 0.89 

5 6 0.83 3.33 3.50 0.95 

6 6 1.00 4.00 4.00 1.00 



 

207 

 

User Defined 

Function 

1 7 0.14 0.57 1.43 0.40 

2 7 0.29 1.14 1.86 0.62 

3 7 0.43 1.71 2.29 0.75 

4 7 0.57 2.29 2.71 0.84 

5 7 0.71 2.86 3.14 0.91 

6 7 0.86 3.43 3.57 0.96 

7 7 1.00 4.00 4.00 1.00 

Class 

1 5 0.20 0.80 1.60 0.50 

2 5 0.40 1.60 2.20 0.73 

3 5 0.60 2.40 2.80 0.86 

4 5 0.80 3.20 3.40 0.94 

5 5 1.00 4.00 4.00 1.00 

Class  

Member  

Function 

1 5 0.20 0.80 1.60 0.50 

2 5 0.40 1.60 2.20 0.73 

3 5 0.60 2.40 2.80 0.86 

4 5 0.80 3.20 3.40 0.94 

5 5 1.00 4.00 4.00 1.00 

Constructor 

1 6 0.17 0.67 1.50 0.44 

2 6 0.33 1.33 2.00 0.67 

3 6 0.50 2.00 2.50 0.80 

4 6 0.67 2.67 3.00 0.89 

5 6 0.83 3.33 3.50 0.95 

6 6 1.00 4.00 4.00 1.00 

Function 

Template 

1 4 0.25 1.00 1.75 0.57 

2 4 0.50 2.00 2.50 0.80 

3 4 0.75 3.00 3.25 0.92 

4 4 1.00 4.00 4.00 1.00 

Class 

Template 

1 4 0.25 1.00 1.75 0.57 

2 4 0.50 2.00 2.50 0.80 

3 4 0.75 3.00 3.25 0.92 

4 4 1.00 4.00 4.00 1.00 

Operator 

Overloading 

1 4 0.25 1.00 1.75 0.57 

2 4 0.50 2.00 2.50 0.80 

3 4 0.75 3.00 3.25 0.92 

4 4 1.00 4.00 4.00 1.00 

Class String 

1 4 0.25 1.00 1.75 0.57 

2 4 0.50 2.00 2.50 0.80 

3 4 0.75 3.00 3.25 0.92 

4 4 1.00 4.00 4.00 1.00 

 



 

208 

Appendix B – List of Topics and Sub-Topics 

 

NO MAIN TOPICS SUB-TOPICS 

NO. OF 

QUES 

SUB  

TOTAL 

1 Data Data Type 3   

    Variable 2   

    Constant 1 6 

2 Operator Arithmetic Operator 2   

    Relational Operator 1   

    Logical Operator 1 4 

3 Expression Assignment Expression 2   

    Conditional Expression 3 5 

4 Input-Output Output 3   

    Input 2 5 

5 Selection if...else 3   

    else if … 1   

    switch…case 1 5 

6 Iteration for 3   

    while 2   

    do…while 1 6 

7 Array Array Declaration 3   

    Array Range 1   

    Array Assignment 1   

    Array - Passing to Function 1 6 

8 User Defined Function Function - Prototype 2   

    Function - Call 2   

    Function - Definition 1   

    Function - Parameter Passing 2 7 

9 Class Object Declaration 1   

    Class - Accessing Members 3   

    Member Access Specifier 1 5 

10 Class Member Function Member Function - Declaration 1   

    Member Function - Call 1   

    Member Function - Definition 3 5 

11 Constructor Declaration - Default 1   

    Declaration - Parametized 1   

    Declaration - Copy 1   

    Definition - Default 1   

    Definition - Parametized 1   

    Definition - Copy 1 6 



 

209 

 

12 Function Template Function Template - Declaration 2   

    Function Template - Call 1   

    Function Template - Definition 1 4 

13 Class Template Class Template Declaration 1   

    Class Template Creating Instance 1   

    Class Template Definition 1   

    Class Template Member Function 1 4 

14 Operator Overloading Operator << 1   

    Operator >> 1   

    Template operator << 1   

    Template operator >> 1 4 

15 Class String String Constructor 3   

    String Assignment 1 4 

    76 

 



 

210 

Appendix C – Vision 

 

System Vision 

 

The Intelligent Tutorial System (ITS) is a computer aided tutoring platform, which provides 

tutorials to any students / users the usage knowledge of C++ Standard Template Library 

(STL). 

 

ITS is intelligent enough to measure the fundamental skill of a single student, thus 

providing the student with the appropriate STL tutoring path. The measurement of skills 

and students’ progress is based on the implementation of common Artificial Intelligence 

algorithms. 

 

The ITS is also a platform for moderators and tutors to enter STL questions, their respective 

weighting when correctly answered and their alternative learning route when it is not 

correctly answered, based on the application of artificial intelligence expert system. 

 

Students’ performances will be recorded in every aspect of their learning period, including 

the time taken in answering the questions, how many trials before answering correctly and 

other relevant aspects, which lead to the understanding of the students' learning   and   

knowledge progress. 

 

Reports and monitors will be part of the platform, which provides the tutors with 

information of   the students’ progress.  

 

The ultimate objective of the system platform is to ensure that the students will improve 

their skills in C++ STL from a novice level to an advanced level by solely depending on the 

tutoring platform, without the aid of human tutors. 



 

211 

Appendix D – User Stories 

 

 

Title: User Roles 

 

Description: There are altogether 3 main user roles. 

 

1) The Administrator: A user who has the authority to add multiple users to the system and 

maintain their individual details (e.g. user name, password, e-mail, etc). 

2) The Student: A user who will be using the platform as a means of learning.  This is the 

user who will go through the tutorial provided by the system. 

3) The Tutor: A user whose role is to input the tutorial questions and direct the learning 

path of the question depending on its answer given. 

4) External Student: A user who will only be using the post-test as a knowledge 

comparison to the system users. 

 

 

Title: Tutorial Categories 

 

Description: The tutorial for the student will be categorized as Pre-Test, Tutorial, and Post-

Test. 

 

 

Title: Pre-Test 

 

Description: The Pre-Test is a test, which determines the students' fundamental skills 

before taking the tutorial on STL.  This is crucial as if the student is weak in fundamentals, 

the student will be routed to be tutored on its fundamentals before tutoring STL.  This is 

called the Prerequisite tutorial.  Pre-Test questions are made up of multiple choices, single 

answer questions. 

 

 

Title: Tutorial 

 

Description: The tutorial will have two parts, both the prerequisite and the STL.  The 

prerequisite tutorials will have the student tutored on the fundamentals, whereas the STL is 

the main tutorial in the system.  Tutorial questions will consist of a general question 

framework, with blanks for answers to be filled.  Sub-tutorials will be given to the student 

on each question framework. 

 

 



 

212 

Title: Sub-tutorials and question framework relationship 

 

Description: For every question framework, there will be a series of sub-tutorials.  For each 

sub-tutorial, it will consist of an answer box (either a test box or a drop down combo box) 

for the student to input the answer.  Each sub-tutorial will be displayed in sequence.  The 

next sub-tutorial will not be displayed until the previous sub-tutorial is answered. However, 

the answer to the previous sub-tutorials could be updated.  Each sub-tutorial will have its 

own respective tracker.  All sub-tutorials will be finalized when the “finalize” button is 

clicked and data will be recorded. 

 

 

Title: Post-Test 

 

Description: Post-Test format will be the same as the pre-test. 

 

 

Title: User Login 

 

Description: All users of the platform must login to the system by providing the user name 

and the password.  The administrator has a ready set user name and password, which could 

be changed when it is logged-in.  The others will depend on the user name and password 

given by their administrator.  All users could log off after using the system.  A specific 

time-out will be applied. 

 

 

Title: Administrator Options 

 

Description: When the administrator is logged in, the administrator has the option to add, 

update and delete all users of the system, excluding himself.  A search engine will be 

provided to the administrator to search for the user by its user name, name, e-mail and role.  

The return results will be listed in pages.  When the user has been clicked, the details will 

be shown with the above-mentioned option.  Only the user name could not be updated. 

 

 

Title: Administrator Front Page 

 

Description: The front page of the administrator will display the summary of the system, 

including number of tutors, students, external students, both active and non-active and 

support messages.  

 

 

Title: Administrator Tutor's Page 

 

Description: This page will be displayed when the Users -> Tutors tab has been clicked.  

The tutor's tab will have two panes, mainly the side pane and the main pane.  The side pane 

provides links to add a tutor and display all tutors.  When the page is loaded, a list of all the 

tutors will be displayed with their respective options (such as: details, delete) at the side.  

 



 

213 

 

Title: Administrator Tutors Listing 

 

Description: This page will list all the tutors with their respective options (such as: details, 

delete) at the side.  The page will only list 20 tutors at one time, and a page pane will 

display the pages below.  Once the page number is clicked, the next page of tutors will be 

displayed.  When the details link is clicked, the details of the tutor will be displayed with all 

details field populated and with the update option visible. 

 

 

Title: Administrator Tutor Addition 

 

Description: This page will allow the administrator to add a tutor into the database.  The 

tutor's data model will include two sections: Login Information and Professional Details. 

The Login Information section includes both user name and password.  The Professional 

Details Section will include name, title, e-mail, and department.  Duplication check field: 

user name. 

 

 

Title: Tutor Options 

 

Description: Any tutor will have the option of entering into the Pre-Test, Tutorial and Post-

Test sections.  These test sections will grant the tutor the ability to add, update and remove 

questions of their respective test category (discussed later).   The tutor has the option to 

search for a particular student (Student/External Student) to view his/her performance.  

This is done through search engine. 

 

 

Title: Pre-Test and Tutorial Prerequisite Topics and Sub-Topics 

 

Description: Both the Pre-Test and Tutorial prerequisite topics and sub-topics are of the 

same kind.  For each topic, it consists of multiple sub-topics, or what we call sub-skills.  

 

 

Title: Entering the Pre-Test questions (for tutors only) 

 

Description: When the tutor selects the pre-test section, a list of topics and their sub-topics 

will be displayed.  Tutors are allowed to add, update and delete topics and the sub-topics.  

For each topic branch, an option to add a sub-topic will be visible.  As for each sub-topic 

branch, an option to view the questions will be visible. 



 

214 

  

Title: Main Topic addition 

 

Description: When the add main topic link is clicked on, a text box will be displayed for 

the input of the main-topic's title.  When entered, it will check for duplication.  If 

everything is fine, the main topic will be added and returned to the list of all main topics 

and sub-topics. 

 

 

Title: Sub-topic addition 

 

Description: When clicked on the add sub-topic link, a text box will be displayed for the 

input of the sub-topic's title.  When entered, it will check for duplication.  If everything is 

fine, the main topic will be added and returned to the list of all main topics and sub-topics. 

 

 

Title: Sub-topic views 

 

Description: From the main topic listing, when a tutor clicks on the sub-topics list link, a 

series of questions and their ID will be displayed.  From here, the tutor will have the 

options to add, delete and update the sub-topic questions. 

 

 

Title: Sub-topic questions composition 

 

Description: All sub-topic questions are composed of a question and multiple-choice single 

answer.  

 

 

Title: Addition of sub-topic questions 

 

Description: The sub-topic addition page will consist of multiple text areas and text boxes.  

The main text area will be for the input of the question (HTML tag is allowed) followed by 

4 text areas for the answers and their respective radio button, which indicates the 

correctness of the answer.  If 4 text areas if not enough, the tutor could click on the “Add 

more answers boxes” button, which will then generate another 4 extra answers text box and 

so on.  A box to enter the weight (score) of the question will be provided.  Sub-Topic 

questions could either be Pre-Test or for Prerequisite.  An option (check box or radio 

button) could trigger this.  All answers allow HTML tags!  

 

 

Title: Sub-topic question model structure 

 

Description: Each addition of new sub-topic questions will not be checked for duplication.  

Any new sub-topic question will be given a unique ID generated by the system for 

referential integrity.  

 

 



 

215 

Title: Update of sub-topic 

 

Description: In the list of sub-topics, the tutor may choose any sub-topic link.  This will be 

followed by the same page format as the adding of sub-topic, expecting that the questions 

and all the answers will be populated on the text areas.  Any changes made on the 

populated text areas will be saved after the “Update” button is clicked. 

 

 

Title: Deletion of sub-topic 

 

Description: After the delete link is clicked, a confirmation page will be displayed, asking 

for a confirmation.  If confirmed, the sub-topic will be deleted and will no longer appear in 

the sub-topic list.  If not, the operation is canceled. 



 

216 

Appendix E – Acceptance Tests 

 

 
package com.its.test; 

 

import com.its.exception.*; 

import junit.framework.*; 

 

 

/** 

 *  Test Case for Exception Handling 

 * 

 * @author  

 * @version $Revision: 1.1 $ 

 */ 

public class ExceptionTest extends TestCase 

{ 

 /** 

  * Creates a new ExceptionTest object. 

  * 

  * @param testName DOCUMENT ME! 

  */ 

 public ExceptionTest( java.lang.String testName ) 

 { 

  super( testName ); 

 } 

 

 /** 

  * Test suite 

  * 

  * @return DOCUMENT ME! 

  */ 

 public static Test suite(  ) 

 { 

  TestSuite suite = new TestSuite( ExceptionTest.class ); 

 

  return suite; 

 } 

 

 /** 

  * Test the ITSException 

  */ 

 public void test01(  ) 

 { 

  try 

  { 

   throw new NullPointerException(  ); 

  } 

  catch ( NullPointerException ex ) 

  { 

   ITSException iex = new ITSException( ex ); 

   System.out.println( iex.toString(  ) ); 

  } 

 } 

} 



 

217 

 

package com.its.module.student.test; 

 

import com.its.base.constant.*; 

 

import com.its.module.student.constant.IStudentSearchFields; 

import com.its.module.student.model.*; 

import com.its.module.student.service.sb.*; 

import com.its.module.user.model.*; 

 

import com.its.resource.ResourceLocator; 

 

import com.vagrant.lossehelin.j2ee.*; 

 

import junit.framework.*; 

 

import java.util.*; 

 

 

/** 

 * Test Case for Student Session Bean 

 * 

 * @author 

 * @version 1.1 

 */ 

public class StudentSBTest extends TestCase implements IJNDI 

{ 

 /** 

  * Creates a new StudentSBTest object. 

  * 

  * @param testName DOCUMENT ME! 

  */ 

 public StudentSBTest( java.lang.String testName ) 

 { 

  super( testName ); 

 } 

 

 /** 

  * Test suite 

  * 

  * @return DOCUMENT ME! 

  */ 

 public static Test suite(  ) 

 { 

  TestSuite suite = new TestSuite( StudentSBTest.class ); 

 

  return suite; 

 } 

 

  



 

218 

/** 

  * Test Case 1 - Create 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void atest01(  ) throws Exception 

 { 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

 

  for ( int i = 0, j = 100; i < 100; i++, j-- ) 

  { 

   UserDO userDO = new UserDO(  ); 

   userDO.setUsername( "TSUU" + i ); 

   userDO.setPassword( "PW" + i ); 

   userDO.setName( "TSUNAME" + j ); 

   userDO.setDepartment( "TSUDEPT" + i ); 

   userDO.setEmail( "tsumail" + i + "@test.com" ); 

   userDO.setStatus( IStatus.ACTIVE ); 

   userDO.setType( IUserType.STUDENT ); 

 

   StudentDO studentDO = new StudentDO(  ); 

   studentDO.setClassCode( "TSUCC" + i ); 

   studentDO.setStatus( IStatus.ACTIVE ); 

   studentDO.setUserDO( userDO ); 

 

   studentSBRemote.createStudent( studentDO ); 

  } 

 } 

 

 /** 

  * Test Case 2 – Find and Display 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void atest02(  ) throws Exception 

 { 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

 

  for ( int i = 0; i < 100; i++ ) 

  { 

   AbstractStudentDO studentDO = studentSBRemote.findStudent( "TSUU" + i ); 

   System.out.println( studentDO ); 

  } 

 } 

 

  



 

219 

/** 

  * Test Case 3 – Find and Update 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void atest03(  ) throws Exception 

 { 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

 

  for ( int i = 0; i < 100; i++ ) 

  { 

   AbstractStudentDO studentDO = studentSBRemote.findStudent( "TSUU" + i ); 

 

   AbstractUserDO userDO = studentDO.getUserDO(  ); 

   userDO.setPassword( "PWU" + i ); 

   userDO.setName( "TSUNAMEU" + i ); 

   userDO.setDepartment( "TSUDEPTU" + i ); 

   userDO.setEmail( "tsumailu" + i + "@test.com" ); 

   userDO.setStatus( IStatus.ACTIVE ); 

   userDO.setType( IUserType.STUDENT ); 

 

   studentDO.setClassCode( "TSUTITLEU" + i ); 

   studentDO.setStatus( IStatus.ACTIVE ); 

 

   studentSBRemote.updateStudent( studentDO ); 

  } 

 } 

 

 /** 

  * Test Cases 4 – Find All using Username 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void test04(  ) throws Exception 

 { 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

  Collection col = studentSBRemote.findAllStudent( IStudentSearchFields.USERNAME ); 

  Iterator itr = col.iterator(  ); 

 

  while ( itr.hasNext(  ) ) 

  { 

   StudentDO _DO = ( StudentDO ) itr.next(  ); 

   System.out.println( _DO.toString(  ) ); 

  } 

 } 

 

  



 

220 

/** 

  * Test Case 5 – Find All with Criteria 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void atest05(  ) throws Exception 

 { 

  StudentSearchDO studentSearchDO = new StudentSearchDO(  ); 

  studentSearchDO.setUsername( "TSUU9%" ); 

 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

  Collection col = studentSBRemote.findAllStudentWithCriteria( studentSearchDO,  

IStudentSearchFields.USERNAME ); 

  Iterator itr = col.iterator(  ); 

 

  while ( itr.hasNext(  ) ) 

  { 

   StudentDO _DO = ( StudentDO ) itr.next(  ); 

   System.out.println( _DO.toString(  ) ); 

  } 

 } 

 

 /** 

  * Test Case 6 – Find All with Criteria 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void atest06(  ) throws Exception 

 { 

  StudentSearchDO studentSearchDO = new StudentSearchDO(  ); 

 

  studentSearchDO.setUsername( "TSUU9%" ); 

  studentSearchDO.setName( "TSUNAME%" ); 

  studentSearchDO.setDepartment( "TSUDEPT%" ); 

 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

  Collection col = studentSBRemote.findAllStudentWithCriteria( studentSearchDO,  

IStudentSearchFields.USERNAME ); 

  Iterator itr = col.iterator(  ); 

 

  while ( itr.hasNext(  ) ) 

  { 

   StudentDO _DO = ( StudentDO ) itr.next(  ); 

   System.out.println( _DO.toString(  ) ); 

  } 

 } 

 

  



 

221 

/** 

  * Test Case 7 - Remove 

  * 

  * @throws Exception DOCUMENT ME! 

  */ 

 public void atest07(  ) throws Exception 

 { 

  ServiceLocator locator = ServiceLocator.newInstance 

( ResourceLocator.getJBossLookupProperties(  ) ); 

  StudentSBHome studentSBHome = ( StudentSBHome ) locator.getRemoteHome 

( JNDI_STUDENT_SB, StudentSBHome.class ); 

  StudentSBRemote studentSBRemote = studentSBHome.create(  ); 

 

  for ( int i = 0; i < 100; i++ ) 

  { 

   studentSBRemote.removeStudent( "TSUU" + i ); 

  } 

 } 

} 

 

 

 

 



 

222 

Appendix F – UML Design Diagrams 

 

Class Diagrams – Student Module 

 

 



 

223 

Class Diagrams – Topic Module 

 

 



 

224 

General Package Diagram 

 

 



 

225 

General Module Package Diagram 

 

 

Sample – Student Module 

 

 



 

226 

Appendix G – Session Beans 
 

Admin 

 
package com.its.module.admin.service.sb; 

 

import com.its.module.admin.model.*; 

import com.its.module.admin.service.database.*; 

import com.its.module.user.model.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

import javax.ejb.*; 

 

 

public class AdminSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( AdminSBBean.class.getName(  ) ); 

 private AdminDAO adminDAO = null; 

 

 public AdminSBBean(  ) throws EJBException 

 { 

  try 

  { 

   adminDAO = new AdminDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

  

 public int getTotalActiveAdmin(  ) throws CException 

 { 

  return adminDAO.getTotalActiveAdmin(  ); 

 } 

 

  

 public int getTotalActiveEStudent(  ) throws CException 

 { 

  return adminDAO.getTotalActiveEStudent(  ); 

 } 

  

 public int getTotalActiveStudent(  ) throws CException 

 { 

  return adminDAO.getTotalActiveStudent(  ); 

 } 

 

  



 

227 

public int getTotalActiveTutor(  ) throws CException 

 { 

  return adminDAO.getTotalActiveTutor(  ); 

 } 

 

 public int getTotalAdmin(  ) throws CException 

 { 

  return adminDAO.getTotalAdmin(  ); 

 } 

 

 public int getTotalEStudent(  ) throws CException 

 { 

  return adminDAO.getTotalEStudent(  ); 

 } 

 

 public int getTotalStudent(  ) throws CException 

 { 

  return adminDAO.getTotalStudent(  ); 

 } 

 

 public int getTotalSuspendedAdmin(  ) throws CException 

 { 

  return adminDAO.getTotalSuspendedAdmin(  ); 

 } 

 

 public int getTotalSuspendedEStudent(  ) throws CException 

 { 

  return adminDAO.getTotalSuspendedEStudent(  ); 

 } 

 

 public int getTotalSuspendedStudent(  ) throws CException 

 { 

  return adminDAO.getTotalSuspendedStudent(  ); 

 } 

 

 public int getTotalSuspendedTutor(  ) throws CException 

 { 

  return adminDAO.getTotalSuspendedTutor(  ); 

 } 

 

 public int getTotalTutor(  ) throws CException 

 { 

  return adminDAO.getTotalTutor(  ); 

 } 

 

 public AdminDO findAdminByAdminSysId( long sysId ) throws CException 

 { 

  return adminDAO.findAdminByAdminSysId( sysId ); 

 } 

 

 public AdminDO findAdminByUsername( String username ) throws CException 

 { 

  return adminDAO.findAdminByUsername( username ); 

 } 

 

  



 

228 

public Collection findAllAdmin(  ) throws CException 

 { 

  return adminDAO.findAllAdmin(  ); 

 } 

 

 public Collection findAllAdminWithCriteria( AdminSearchDO adminSearchDO )  

throws CException 

 { 

  return adminDAO.findAllAdminWithCriteria( adminSearchDO ); 

 } 

 

 public void removeAdmin( AdminDO _DO ) throws CException 

 { 

  adminDAO.removeAdmin( _DO ); 

 } 

 

 public void updateAdmin( AdminDO _DO ) throws CException 

 { 

  adminDAO.updateAdmin( _DO ); 

 } 

} 

 



 

229 

Authentication 

 
package com.its.module.authentication.service.sb; 

 

import com.its.module.authentication.model.*; 

import com.its.module.authentication.service.database.*; 

import com.its.module.user.model.*; 

import com.its.module.user.service.database.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

import com.vagrant.security.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import javax.ejb.*; 

 

 

public class AuthenticationSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( AuthenticationSBBean.class.getName(  ) ); 

 private AuthenticationDAO authDAO = null; 

 private UserDAO userDAO = null; 

 

 public AuthenticationSBBean(  ) throws EJBException 

 { 

  try 

  { 

   authDAO = new AuthenticationDAO(  ); 

   userDAO = new UserDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

 

 public boolean isSessionExists( String username ) throws CException 

 { 

  log.debug( "Executing isSessionExists( String username )" ); 

 

  boolean isSessionExists = false; 

 

  try 

  { 

   try 

   { 

    authDAO.findLoginSessionByUsername( username ); 

 

    isSessionExists = true; 

   } 

   catch ( Exception ex ) 

   { 

    log.debug( "Session does not exists" ); 

   } 

  } 



 

230 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 

  return isSessionExists; 

 } 

 

 public boolean isSessionValid( LoginDO _DO ) throws CException 

 { 

  log.debug( "Executing isSessionValid( AbstractLoginDO _DO )" ); 

 

  boolean isSessionValid = false; 

 

  try 

  { 

   LoginDO tmpDO = findLoginSession( _DO.getUserDO(  ).getUsername(  ) ); 

 

   if ( _DO.equals( tmpDO ) ) 

   { 

    isSessionValid = true; 

   } 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 

  return isSessionValid; 

 } 

 

 public String authenticate( String username, String password ) throws CException 

 { 

  log.debug( "Executing authenticate( String username, String password )" ); 

 

  try 

  { 

   username = username.trim(  ).toUpperCase(  ); 

   password = password.trim(  ); 

 

   //Authenticate username 

   UserDO userDO = findUser( username ); 

 

   //Authenticate password                 

   if ( !userDO.getPassword(  ).equals( password ) ) 

   { 

    throw getExceptionHandler(  ).generateError( "ERLG-002" ); 

   } 

 

   return userDO.getType(  ); 

  } 

  catch ( CException ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 



 

231 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 } 

 

 public void createLoginSession( LoginDO _DO ) throws CException 

 { 

  log.debug( "Executing createLoginSession( AbstractLoginDO _DO )" ); 

 

  try 

  { 

   java.sql.Timestamp now = new java.sql.Timestamp(System.currentTimeMillis( )); 

   _DO.setCreatedTimestamp( now ); 

 

   authDAO.createLoginSession( _DO ); 

  } 

  catch ( CException ex ) 

  { 

   ctx.setRollbackOnly(  ); 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   ctx.setRollbackOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 } 

 

 public void dismissSession( String username ) throws CException 

 { 

  log.debug( "Executing dismissSession( String username )" ); 

 

  try 

  { 

   try 

   { 

    LoginDO _DO = authDAO.findLoginSessionByUsername( username ); 

    authDAO.deleteLoginSession( _DO ); 

   } 

   catch ( Exception ex ) 

   { 

    log.debug( "Session Not Found" ); 

   } 

  } 

  catch ( Exception ex ) 

  { 

   ctx.setRollbackOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 } 

 



 

232 

 public LoginDO findLoginSession( String username ) throws CException 

 { 

  try 

  { 

   return authDAO.findLoginSessionByUsername( username ); 

  } 

  catch ( CException ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 } 

 

 public UserDO findUser( String username ) throws CException 

 { 

  try 

  { 

   UserDO _DO = userDAO.findUserByUsername( username ); 

 

   /* 

   PassPhraseEncryptor encryptor = new PassPhraseEncryptor(_DO.getUsername( )); 

   String password = encryptor.decrypt( _DO.getPassword(  ) ); 

   _DO.setPassword( password ); 

   */ 

   return _DO; 

  } 

  catch ( CException ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERDB-003" ); 

  } 

 } 

 

  

 public UserDO findUserBySysId( long sysId ) throws CException 

 { 

  return userDAO.findUserBySysId( sysId ); 

 } 

} 

 

 

 



 

233 

EStudent 

 
package com.its.module.estudent.service.sb; 

 

import com.its.module.estudent.model.*; 

import com.its.module.estudent.service.database.*; 

import com.its.module.user.model.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

import javax.ejb.*; 

 

 

public class EStudentSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( EStudentSBBean.class.getName(  ) ); 

 

 EStudentDAO eStudentDAO = null; 

 

 public EStudentSBBean(  ) throws EJBException 

 { 

  try 

  { 

   eStudentDAO = new EStudentDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   throw new EJBException( ex ); 

  } 

 } 

 

 public long createEStudent( EStudentDO _DO ) throws CException 

 { 

  return eStudentDAO.createEStudent( _DO ); 

 } 

 

 public Collection findAllEStudent(  ) throws CException 

 { 

  return eStudentDAO.findAllEStudent(  ); 

 } 

 

 public Collection findAllEStudentWithCriteria( EStudentSearchDO eStudentSearchDO )  

throws CException 

 { 

  return eStudentDAO.findAllEStudentWithCriteria( eStudentSearchDO ); 

 } 

 

 public EStudentDO findEStudentByEStudentSysId( long sysId ) throws CException 

 { 

  return eStudentDAO.findEStudentByEStudentSysId( sysId ); 

 } 

 

  



 

234 

public EStudentDO findEStudentByUserSysId( long userSysId ) throws CException 

 { 

  return eStudentDAO.findEStudentByUserSysId( userSysId ); 

 } 

 

 public EStudentDO findEStudentByUsername( String username ) throws CException 

 { 

  return eStudentDAO.findEStudentByUsername( username ); 

 } 

 

 public void removeEStudent( EStudentDO _DO ) throws CException 

 { 

  eStudentDAO.removeEStudent( _DO ); 

 } 

 

 public void updateEStudent( EStudentDO _DO ) throws CException 

 { 

  eStudentDAO.updateEStudent( _DO ); 

 } 

} 

 



 

235 

Posttest 

 
package com.its.module.posttest.service.sb; 

 

import com.its.module.posttest.model.*; 

import com.its.module.posttest.service.database.*; 

import com.its.module.posttest.service.helper.*; 

import com.its.module.pretest.model.PreTestStatisticDO; 

import com.its.module.pretest.service.helper.PreTestHelper; 

import com.its.module.user.model.*; 

import com.its.module.user.service.database.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.sql.*; 

import java.util.*; 

import javax.ejb.*; 

 

 

public class PostTestSBBean extends AbstractCommonSBBean 

{ 

 private Log log = new Log4JLogger( PostTestSBBean.class.getName(  ) ); 

 private PostTestDAO postTestDAO = null; 

 private UserDAO userDAO = null; 

 

  

 public PostTestSBBean(  ) throws EJBException 

 { 

  try 

  { 

   postTestDAO = new PostTestDAO(  ); 

   userDAO = new UserDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

 

 public PostTestStatisticDO getPostTestStatisticsByUserSysId( long userSysId ) throws CException 

 { 

  try 

  { 

   UserDO userDO = userDAO.findUserBySysId( userSysId ); 

 

   //Calculate all the pass and failed stuff 

   PostTestHelper postTestHelper = new PostTestHelper(  ); 

   Collection postTestAnswerRecordDOs =  

findPostTestAnswerRecordsByUserSysId( userDO.getSysId(  ) ); 

 

   return postTestHelper.generatePostTestStatistics( postTestAnswerRecordDOs,  

userDO ); 

  } 



 

236 

  catch ( CException ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-002", ex ); 

  } 

 } 

 

 public Collection findAllPostTestQuestionBySearchCriteria( PostTestQuestionSearchDO  

postTestQuestionSearchDO ) throws CException 

 { 

  return postTestDAO.findPostTestQuestionsBySearchCriteria(postTestQuestionSearchDO); 

 } 

 

 public Collection findAllPostTestQuestions(  ) throws CException 

 { 

  return postTestDAO.findAllPostTestQuestions(  ); 

 } 

 

 public PostTestAnswerDO findPostTestAnswerBySysId( long sysId ) throws CException 

 { 

  return postTestDAO.findPostTestAnswerBySysId( sysId ); 

 } 

 

 public PostTestAnswerRecordDO findPostTestAnswerRecord( long postTestQuestionSysId,  

long userSysId ) throws CException 

 { 

  return postTestDAO.findPostTestAnswerRecord( postTestQuestionSysId, userSysId ); 

 } 

 

 public Collection findPostTestAnswerRecordDOByTopicSysId( long topicSysId )  

throws CException 

 { 

  return postTestDAO.findPostTestAnswerRecordDOByTopicSysId( topicSysId ); 

 } 

 

 public Collection findPostTestAnswerRecordDOByTopicSysIdUserSysId( long topicSysId,  

long userSysId ) throws CException 

 { 

  return postTestDAO.findPostTestAnswerRecordDOByTopicSysIdUserSysId( topicSysId,  

userSysId ); 

 } 

 

 public Collection findPostTestAnswerRecordsByUserSysId( long userSysId ) throws CException 

 { 

  return postTestDAO.findPostTestAnswerRecordsByUserSysId( userSysId ); 

 } 

 

 public Collection findPostTestAnswersByPostTestQuestionSysId( long sysId ) throws CException 

 { 

  return postTestDAO.findPostTestAnswersByPostTestQuestionSysId( sysId ); 

 } 

 

  



 

237 

public PostTestQuestionDO findPostTestQuestionBySysId( long sysId ) throws CException 

 { 

  return postTestDAO.findPostTestQuestionBySysId( sysId ); 

 } 

 

 public Collection findPostTestResultCPsByUserSysId( long userSysId ) throws CException 

 { 

  return postTestDAO.findPostTestResultCPsByUserSysId( userSysId ); 

 } 

 

 public long findTotalPostTestQuestions(  ) throws CException 

 { 

  return postTestDAO.findTotalPostTestQuestions(  ); 

 } 

} 

 



 

238 

Pretest 

 
package com.its.module.pretest.service.sb; 

 

import com.its.module.pretest.model.*; 

import com.its.module.pretest.service.database.*; 

import com.its.module.pretest.service.helper.*; 

import com.its.module.user.model.*; 

import com.its.module.user.service.database.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.sql.*; 

import java.util.*; 

import javax.ejb.*; 

 

 

public class PreTestSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( PreTestSBBean.class.getName(  ) ); 

 private PreTestDAO preTestDAO = null; 

 private UserDAO userDAO = null; 

 

 public PreTestSBBean(  ) throws EJBException 

 { 

  try 

  { 

   preTestDAO = new PreTestDAO(  ); 

   userDAO = new UserDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

 

 public PreTestStatisticDO getPreTestStatisticsByUserSysId( long userSysId ) throws CException 

 { 

  try 

  { 

   UserDO userDO = userDAO.findUserBySysId( userSysId ); 

 

   //Calculate all the pass and failed stuff 

   PreTestHelper preTestHelper = new PreTestHelper(  ); 

   Collection preTestAnswerRecordDOs = findPreTestAnswerRecordsByUserSysId 

( userDO.getSysId(  ) ); 

 

   return preTestHelper.generatePreTestStatistics( preTestAnswerRecordDOs,  

userDO ); 

  } 

   



 

239 

catch ( CException ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-002", ex ); 

  } 

 } 

 

 public Collection findAllPreTestQuestionBySearchCriteria( PreTestQuestionSearchDO  

preTestQuestionSearchDO ) throws CException 

 { 

  return preTestDAO.findPreTestQuestionsBySearchCriteria( preTestQuestionSearchDO ); 

 } 

 

 public Collection findAllPreTestQuestions(  ) throws CException 

 { 

  return preTestDAO.findAllPreTestQuestions(  ); 

 } 

 

 public Collection findAllPreTestResultCPs(  ) throws CException 

 { 

  return preTestDAO.findAllPreTestResultCPs(  ); 

 } 

 

 public Collection findFilteredPreTestResultCPs( long userSysId, Collection selectedTopicDOs )  

throws CException 

 { 

  return preTestDAO.findFilteredPreTestResultCPs( userSysId, selectedTopicDOs ); 

 } 

 

 public PreTestAnswerDO findPreTestAnswerBySysId( long sysId ) throws CException 

 { 

  return preTestDAO.findPreTestAnswerBySysId( sysId ); 

 } 

 

 public PreTestAnswerRecordDO findPreTestAnswerRecord( long preTestQuestionSysId,  

long userSysId ) throws CException 

 { 

  return preTestDAO.findPreTestAnswerRecord( preTestQuestionSysId, userSysId ); 

 } 

 

 public Collection findPreTestAnswerRecordDOByTopicSysId( long topicSysId ) throws CException 

 { 

  return preTestDAO.findPreTestAnswerRecordDOByTopicSysId( topicSysId ); 

 } 

 

 public Collection findPreTestAnswerRecordDOByTopicSysIdUserSysId( long topicSysId,  

long userSysId ) throws CException 

 { 

  return preTestDAO.findPreTestAnswerRecordDOByTopicSysIdUserSysId( topicSysId,  

userSysId ); 

 } 

 

  



 

240 

public Collection findPreTestAnswerRecordsByUserSysId( long userSysId ) throws CException 

 { 

  return preTestDAO.findPreTestAnswerRecordsByUserSysId( userSysId ); 

 } 

 

 public Collection findPreTestAnswersByPreTestQuestionSysId( long sysId ) throws CException 

 { 

  return preTestDAO.findPreTestAnswersByPreTestQuestionSysId( sysId ); 

 } 

 

 public PreTestQuestionDO findPreTestQuestionBySysId( long sysId ) throws CException 

 { 

  return preTestDAO.findPreTestQuestionBySysId( sysId ); 

 } 

 

 public Collection findPreTestResultCPsByUserSysId( long userSysId ) throws CException 

 { 

  return preTestDAO.findPreTestResultCPsByUserSysId( userSysId ); 

 } 

 

 public long findTotalPreTestQuestions(  ) throws CException 

 { 

  return preTestDAO.findTotalPreTestQuestions(  ); 

 } 

} 



 

241 

Student 

 
package com.its.module.student.service.sb; 

 

import com.its.module.student.model.*; 

import com.its.module.student.service.database.*; 

import com.its.module.user.model.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

import javax.ejb.*; 

 

 

public class StudentSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( StudentSBBean.class.getName(  ) ); 

 

 StudentDAO studentDAO = null; 

 

 public StudentSBBean(  ) throws EJBException 

 { 

  try 

  { 

   studentDAO = new StudentDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   throw new EJBException( ex ); 

  } 

 } 

 

 public long createStudent( StudentDO _DO ) throws CException 

 { 

  return studentDAO.createStudent( _DO ); 

 } 

 

 public void createStudentAcquiredSkillsMap( StudentAcquiredSkillsMapDO _DO )  

throws CException 

 { 

  studentDAO.createStudentAcquiredSkillsMap( _DO ); 

 } 

 

 public Collection findAcquiredSkillsSubTopicDOsByStudentSysId( long studentSysId )  

throws CException 

 { 

  return studentDAO.findAcquiredSkillsSubTopicDOsByStudentSysId( studentSysId ); 

 } 

 

 public Collection findAllStudent(  ) throws CException 

 { 

  return studentDAO.findAllStudent(  ); 

 } 

 



 

242 

 public Collection findAllStudentWithCriteria( StudentSearchDO eStudentSearchDO )  

throws CException 

 { 

  return studentDAO.findAllStudentWithCriteria( eStudentSearchDO ); 

 } 

 

 public StudentDO findStudentByStudentSysId( long sysId ) throws CException 

 { 

  return studentDAO.findStudentByStudentSysId( sysId ); 

 } 

 

 public StudentDO findStudentByUserSysId( long userSysId ) throws CException 

 { 

  return studentDAO.findStudentByUserSysId( userSysId ); 

 } 

 

 public StudentDO findStudentByUsername( String username ) throws CException 

 { 

  return studentDAO.findStudentByUsername( username ); 

 } 

 

 public void removeStudent( StudentDO _DO ) throws CException 

 { 

  studentDAO.removeStudent( _DO ); 

 } 

 

 public void updateStudent( StudentDO _DO ) throws CException 

 { 

  studentDAO.updateStudent( _DO ); 

 } 

} 



 

243 

Topic 

 
package com.its.module.topic.service.sb; 

 

import com.its.module.topic.model.*; 

import com.its.module.topic.service.database.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

import javax.ejb.*; 

\ 

 

public class TopicSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( TopicSBBean.class.getName(  ) ); 

 private TopicDAO topicDAO = null; 

 

 public TopicSBBean(  ) throws EJBException 

 { 

  try 

  { 

   topicDAO = new TopicDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

 

 public Collection findAllSubTopicBySearchCriteria( SubTopicSearchDO subTopicSearchDO )  

throws CException 

 { 

  return topicDAO.findSubTopicBySearchCriteria( subTopicSearchDO ); 

 } 

 

 public Collection findAllTopic(  ) throws CException 

 { 

  return topicDAO.findAllTopics(  ); 

 } 

 

 public Collection findAllTopicBySearchCriteria( TopicSearchDO topicSearchDO )  

throws CException 

 { 

  return topicDAO.findTopicBySearchCriteria( topicSearchDO ); 

 } 

 

 public SubTopicDO findSubTopicBySubTopicSysId( long subTopicSysId ) throws CException 

 { 

  return topicDAO.findSubTopicBySysId( subTopicSysId ); 

 } 

 

  



 

244 

public TopicDO findTopicByTopicSysId( long topicSysId ) throws CException 

 { 

  return topicDAO.findTopicBySysId( topicSysId ); 

 } 

 

 public long findTotalTopics(  ) throws CException 

 { 

  return topicDAO.findTotalTopics(  ); 

 } 

 

 public void removeSubTopic( long subTopicSysId ) throws CException 

 { 

  SubTopicDO subTopicDO = topicDAO.findSubTopicBySysId( subTopicSysId ); 

  topicDAO.removeSubTopic( subTopicDO ); 

 } 

 

 public void removeTopic( long topicSysId ) throws CException 

 { 

  TopicDO topicDO = topicDAO.findTopicBySysId( topicSysId ); 

  topicDAO.removeTopic( topicDO ); 

 } 

 

 public void updateSubTopic( SubTopicDO _DO ) throws CException 

 { 

  topicDAO.updateSubTopic( _DO ); 

 } 

 

 public void updateTopic( TopicDO _DO ) throws CException 

 { 

  topicDAO.updateTopic( _DO ); 

 } 

} 



 

245 

Tutor 

 
package com.its.module.tutor.service.sb; 

 

import com.its.module.tutor.model.*; 

import com.its.module.tutor.service.database.*; 

import com.its.module.user.model.*; 

import com.its.module.user.service.database.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

import javax.ejb.*; 

 

 

public class TutorSBBean extends AbstractCommonSBBean 

{ 

 private Log log = LogFactory.getLog( TutorSBBean.class.getName(  ) ); 

 private TutorDAO tutorDAO = null; 

 private UserDAO userDAO = null; 

 

 public TutorSBBean(  ) throws EJBException 

 { 

  try 

  { 

   tutorDAO = new TutorDAO(  ); 

   userDAO = new UserDAO(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

 

 public long createTutor( TutorDO _DO ) throws CException 

 { 

  return tutorDAO.createTutor( _DO ); 

 } 

 

 public Collection findAllTutor(  ) throws CException 

 { 

  return tutorDAO.findAllTutor(  ); 

 } 

 

 public Collection findAllTutorWithCriteria( TutorSearchDO tutorSearchDO ) throws CException 

 { 

  return tutorDAO.findAllTutorWithCriteria( tutorSearchDO ); 

 } 

 

 public long findTotalEStudents(  ) throws CException 

 { 

  return tutorDAO.findTotalEStudents(  ); 

 } 



 

246 

 

 public long findTotalStudents(  ) throws CException 

 { 

  return tutorDAO.findTotalStudents(  ); 

 } 

 

 public TutorDO findTutorByTutorSysId( long sysId ) throws CException 

 { 

  return tutorDAO.findTutorByTutorSysId( sysId ); 

 } 

 

 public TutorDO findTutorByUsername( String username ) throws CException 

 { 

  return tutorDAO.findTutorByUsername( username ); 

 } 

 

 public Collection findUsersBySearchCriteria( UserSearchDO searchDO ) throws CException 

 { 

  return userDAO.findUsersBySearchCriteria( searchDO ); 

 } 

 

 public Collection findUsersByUserTypes( List userTypes ) throws CException 

 { 

  return userDAO.findUsersByUserTypes( userTypes ); 

 } 

 

 public void removeTutor( TutorDO _DO ) throws CException 

 { 

  tutorDAO.removeTutor( _DO ); 

 } 

 

 public void updateTutor( TutorDO _DO ) throws CException 

 { 

  tutorDAO.updateTutor( _DO ); 

 } 

} 



 

247 

Tutorial 

 

 
package com.its.module.tutorial.service.sb; 

 

import com.its.module.pretest.model.*; 

import com.its.module.pretest.service.database.*; 

import com.its.module.pretest.service.helper.*; 

import com.its.module.student.model.*; 

import com.its.module.tutorial.model.*; 

import com.its.module.tutorial.service.database.*; 

import com.its.module.tutorial.service.helper.*; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.lang.builder.*; 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

import javax.ejb.*; 

 

 

public class TutorialSBBean extends AbstractCommonSBBean 

{ 

 private Log log = new Log4JLogger( TutorialSBBean.class.getName(  ) ); 

 private TutorialDAO tutorialDAO = null; 

 private PreTestDAO preTestDAO = null; 

 private PreTestHelper preTestHelper = null; 

 private TutorialHelper tutorialHelper = null; 

 

 public TutorialSBBean(  ) throws EJBException 

 { 

  try 

  { 

   tutorialDAO = new TutorialDAO(  ); 

   preTestDAO = new PreTestDAO(  ); 

   preTestHelper = new PreTestHelper(  ); 

   tutorialHelper = new TutorialHelper(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw new EJBException( ex ); 

  } 

 } 

 

 public boolean isTokenExists( long studentSysId, long token ) throws CException 

 { 

  //return tutorialDAO.isTokenExists( studentSysId, token ); 

  return false; 

 } 

 

  

  



 

248 

public long createTutorialTracker( TutorialTrackerDO _DO ) throws CException 

 { 

  _DO.setCreatedTimestamp( new java.sql.Timestamp( System.currentTimeMillis(  ) ) ); 

 

  return tutorialDAO.createTutorialTracker( _DO ); 

 } 

 

 public Collection findAcquiredSkillsSubTopicsByTutorialSysId( long tutorialSysId )  

throws CException 

 { 

  return tutorialDAO.findAcquiredSkillsSubTopicsByTutorialSysId( tutorialSysId ); 

 } 

 

 public Collection findAllPreTutorialStackByStudentSysId( long studentSysId ) throws CException 

 { 

  return tutorialDAO.findAllPreTutorialStackByStudentSysId( studentSysId ); 

 } 

 

 public Collection findAllTutorials(  ) throws CException 

 { 

  return tutorialDAO.findAllTutorials(  ); 

 } 

 

 public Collection findFilteredTutorialCPs( long userSysId, Collection selectedTopicDOs )  

throws CException 

 { 

  return tutorialDAO.findFilteredTutorialCPs( userSysId, selectedTopicDOs ); 

 } 

 

 public Collection findHintsBySubTutorialSysId( long sysId ) throws CException 

 { 

  return tutorialDAO.findHintsBySubTutorialSysId( sysId ); 

 } 

 

 public String findInitialPath( StudentDO studentDO, Collection preRequisiteSubTopicDOs )  

throws CException 

 { 

  Collection preRequisiteTopicDOs = tutorialHelper.getTopicsFromSubTopics(  

preRequisiteSubTopicDOs ); 

  Collection tutorialCPDOs = tutorialDAO.findFilteredTutorialCPs( studentDO.getUserDO 

(  ).getSysId(  ), preRequisiteTopicDOs ); 

 

  if ( ( tutorialCPDOs != null ) && ( tutorialCPDOs.size(  ) > 0 ) ) 

  { 

   Iterator itr = tutorialCPDOs.iterator(  ); 

 

   log.debug( "========================================" ); 

 

   while ( itr.hasNext(  ) ) 

   { 

    TutorialCPDO _DO = ( TutorialCPDO ) itr.next(  ); 

    log.debug( "Topic Name: " + _DO.getTopicDO(  ).getTopicName(  ) ); 

    log.debug( "CP: " + _DO.getCp(  ) ); 

   } 

 

   log.debug( "========================================" ); 

  } 

 



 

249 

  double cp = tutorialHelper.getMinCP( tutorialCPDOs ); 

 

  log.debug( "obtained cp: " + cp ); 

 

  //return the choice page / next tutorial page 

  String path = tutorialHelper.getInitialTutorialPath( cp ); 

 

  return path; 

 } 

 

 public TutorialTrackerDO findLastTutorialTrackerByStudentSysId( long studentSysId )  

throws CException 

 { 

  return tutorialDAO.findLastTutorialTrackerByStudentSysId( studentSysId ); 

 } 

 

 public Collection findPreRequisiteSubTopicsByTutorialSysId( long tutorialSysId )  

throws CException 

 { 

  return tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId( tutorialSysId ); 

 } 

 

 public Collection findPreTestQuestionBySubTutorialSysId( long sysId ) throws CException 

 { 

  return tutorialDAO.findPreTestQuestionBySubTutorialSysId( sysId ); 

 } 

 

 public SubTutorialDO findSubTutorialBySysId( long sysId ) throws CException 

 { 

  return tutorialDAO.findSubTutorialBySysId( sysId ); 

 } 

 

 public Collection findSubTutorialsByTutorialSysId( long sysId ) throws CException 

 { 

  return tutorialDAO.findSubTutorialsByTutorialSysId( sysId ); 

 } 

 

 public long findTotalTutorialQuestions(  ) throws CException 

 { 

  return tutorialDAO.findTotalTutorialQuestions(  ); 

 } 

 

 public TutorialDO findTutorialBySysId( long sysId ) throws CException 

 { 

  return tutorialDAO.findTutorialBySysId( sysId ); 

 } 

 

 public TutorialDO findTutorialByTutorialId( String tutorialId ) throws CException 

 { 

  return tutorialDAO.findTutorialByTutorialId( tutorialId ); 

 } 

 

 public Collection findTutorialCPsByUserSysId( long userSysId ) throws CException 

 { 

  return tutorialDAO.findTutorialCPsByUserSysId( userSysId ); 

 } 

 

  



 

250 

public Collection findTutorialTrackersByUserSysId( long userSysId ) throws CException 

 { 

  return tutorialDAO.findTutorialTrackersByUserSysId( userSysId ); 

 } 

 

 public Collection findTutorialsByTopicSysId( long sysId ) throws CException 

 { 

  return tutorialDAO.findTutorialsByTopicSysId( sysId ); 

 } 

 

 public Collection findTutorialsWithCriteria( TutorialSearchDO searchDO ) throws CException 

 { 

  return tutorialDAO.findTutorialsWithCriteria( searchDO ); 

 } 

 

 public long generateNewToken( long studentSysId ) throws CException 

 { 

  HashCodeBuilder builder = new HashCodeBuilder(  ); 

  builder.append( System.currentTimeMillis(  ) ); 

  builder.append( Math.random(  ) ); 

  builder.append( studentSysId ); 

 

  long token = builder.toHashCode(  ); 

 

  //check if the token exists 

  while ( isTokenExists( studentSysId, token ) ) 

  { 

   builder = new HashCodeBuilder(  ); 

   builder.append( System.currentTimeMillis(  ) ); 

   builder.append( Math.random(  ) ); 

   builder.append( studentSysId ); 

   token = builder.toHashCode(  ); 

  } 

 

  return token; 

 } 

} 

 
 

 

 

 

 

 



 

251 

Appendix H – Data Tables Descriptions 

List of Tables 

 

NO TABLE 

1 acquired_skills_map                     

2 admin                                   

3 demo                                    

4 estudent                                

5 hint                                    

6 its_user                                

7 login_log                               

8 post_test_answer                        

9 post_test_answer_record                 

10 post_test_question                      

11 post_test_result_condition_probability  

12 pre_requisite_map                       

13 pre_test_answer                         

14 pre_test_answer_record                  

15 pre_test_question                       

16 pre_test_result_condition_probability   

17 pre_tutorial_stack                      

18 selection                               

19 status                                  

20 student                                 

21 student_acquired_skills_map             

22 sub_topic                               

23 sub_tutorial                            

24 sub_tutorial_answer                     

25 sub_tutorial_pre_test_map               

26 topic                                   

27 tutor                                   

28 tutorial                                

29 tutorial_condition_probability          

30 tutorial_route                          

31 tutorial_token                          

32 tutorial_tracker                        

 



 

252 

Descriptions of Tables 

 

Table: acquired_skills_map 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 TUTORIAL_SYS_ID bigint(20)   PRI 0   

 SUB_TOPIC_SYS_ID bigint(20)   PRI 0   

 

 

Table: admin 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   UNI 0   

TITLE varchar(50) YES   NULL   

 

 

Table: demo 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 SUB_TUTORIAL_SYS_ID bigint(20)   PRI 0   

 DEMO_ID varchar(50)   UNI     

 DEMO_EXPLAINATION text YES   NULL   

 CREATED_TIMESTAMP datetime     

0000-00-00 

00:00:00   

 LAST_MODIFIED_TIMESTAMP datetime     

0000-00-00 

00:00:00   

 STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: estudent 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   UNI 0   

CLASS_CODE  varchar(10)         

PRE_TEST_COMPLETED tinyint(1)     0   

POST_TEST_COMPLETED tinyint(1) YES   0   

TUTORIAL_COMPLETED tinyint(1)     0   

 

 



 

253 

Table: hint 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 SYS_ID bigint(20)   PRI NULL auto_increment 

 SUB_TUTORIAL_SYS_ID bigint(20)   MUL 0   

 HINT text         

 CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

 LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

 STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: its_user 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

USERNAME varchar(20)   UNI     

PASSWORD varchar(255)         

NAME varchar(255)         

E_MAIL varchar(30)         

DEPARTMENT varchar(100) YES   NULL   

TYPE varchar(10)         

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20) YES MUL NULL   

 

 

Table: login_log 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   MUL 0   

SESSION_ID varchar(50)         

LAST_IP varchar(15)         

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

 

 



 

254 

Table: post_test_answer 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

QUESTION_SYS_ID bigint(20)   MUL 0  

ANSWER_TEXT varchar(255)        

CORRECT tinyint(4)     0  

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00 

 

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00 

 

STATUS_SYS_ID bigint(20)   MUL 0  

 

 

Table: post_test_answer_record 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   MUL 0   

POST_TEST_QUESTION_ 

SYS_ID bigint(20)   MUL 0   

SELECTED_POST_TEST_ 

ANSWER_SYS_ID bigint(20) YES MUL NULL   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

 

 

Table: post_test_question 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

QUESTION_ID varchar(50)   UNI     

QUESTION_TITLE varchar(255)         

QUESTION_TEXT text         

SUB_TOPIC_SYS_ID bigint(20)   MUL 0   

EXPLAINATION text YES   NULL   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 



 

255 

Table: post_test_result_condition_probability 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 SYS_ID bigint(20)   PRI NULL auto_increment 

 ITS_USER_SYS_ID bigint(20)   MUL 0   

 TOPIC_SYS_ID bigint(20)   MUL 0   

 TOTAL_QUESTIONS int(11)     0   

 TOTAL_CORRECT int(11)     0   

 TOTAL_WRONG int(11)     0   

 CP decimal(10,2)     0.00   

 

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

 

 

Table: pre_requisite_map 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 TUTORIAL_SYS_ID bigint(20)   PRI 0   

 SUB_TOPIC_SYS_ID bigint(20)   PRI 0   

 

 

Table: pre_test_answer 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

QUESTION_SYS_ID bigint(20)   MUL 0   

ANSWER_TEXT varchar(255)         

CORRECT tinyint(4)     0   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: pre_test_answer_record 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 SYS_ID bigint(20)   PRI NULL auto_increment 

 ITS_USER_SYS_ID bigint(20)   MUL 0  

 PRE_TEST_QUESTION_ 

SYS_ID bigint(20)   MUL 0  

 SELECTED_PRE_TEST_ 

ANSWER_SYS_ID bigint(20) YES MUL NULL  

 CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00  

 LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00  



 

256 

 

Table: pre_test_question 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

QUESTION_ID varchar(50)   UNI     

QUESTION_TITLE varchar(255)         

QUESTION_TEXT text         

SUB_TOPIC_SYS_ID bigint(20)   MUL 0   

EXPLAINATION text YES   NULL   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: pre_test_result_condition_probability 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 SYS_ID bigint(20)   PRI NULL auto_increment 

 ITS_USER_SYS_ID bigint(20)   MUL 0   

 TOPIC_SYS_ID bigint(20)   MUL 0   

 TOTAL_QUESTIONS int(11)     0   

 TOTAL_CORRECT int(11)     0   

 TOTAL_WRONG int(11)     0   

 CP decimal(10,2)     0.00   

 

CREATED_TIMESTAMP| datetime     

0000-00-00 

00:00:00   

 

 

Table: pre_tutorial_stack 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

STUDENT_SYS_ID bigint(20)   MUL 0   

PRE_TUTORIAL_SYS_ID bigint(20)   MUL 0   

PARENT_SUB_TUTORIAL_ 

SYS_ID bigint(20)     0   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

 

 



 

257 

Table: selection 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI 0   

SUB_TUTORIAL_SYS_ID bigint(20)   MUL 0   

SELECTION_TEXT varchar(55)         

CORRECT tinyint(4)     0   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: status 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

STATUS_TYPE varchar(50)   UNI     

STATUS_DESC varchar(255)         

 

 

Table: student 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   UNI 0   

CLASS_CODE varchar(10)         

PRE_TEST_COMPLETED tinyint(1)     0   

TUTORIAL_COMPLETED tinyint(1)     0   

POST_TEST_COMPLETED tinyint(1) YES   0   

CURRENT_TUTORIAL_ 

TOKEN bigint(20) YES   NULL   

 

 

Table: student_acquired_skills_map 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 STUDENT_SYS_ID bigint(20)   PRI 0   

 SUB_TOPIC_SYS_ID bigint(20)   PRI 0   

 

 



 

258 

Table: sub_topic 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID  bigint(20)   PRI NULL auto_increment 

SUB_TOPIC_ID varchar(50)   UNI     

SUB_TOPIC_NAME varchar(255)         

TOPIC_SYS_ID bigint(20)     0   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: sub_tutorial 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

SUB_TUTORIAL_ID varchar(50)   UNI     

SUB_TUTORIAL_TITLE varchar(255)         

SUB_TUTORIAL_QUESTION_ 

TEXT text         

TUTORIAL_SYS_ID bigint(20)   MUL 0   

PRE_TUTORIAL_SYS_ID bigint(20) YES   NULL   

SEQUENCE int(11)     0   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: sub_tutorial_answer 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SUB_TUTORIAL_SYS_ID bigint(20)   PRI 0   

SYNTAX_STRING text         

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 



 

259 

Table: sub_tutorial_pre_test_map 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SUB_TUTORIAL_SYS_ID bigint(20)   PRI 0   

PRE_TEST_QUESTION_SYS_ID bigint(20)   PRI 0   

 

 

Table: topic 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

TOPIC_ID varchar(50)   UNI     

TOPIC_NAME varchar(255)         

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP  datetime     

0000-00-00  

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 

Table: tutor 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   UNI 0   

TITLE varchar(50) YES   NULL   

 

 

Table: tutorial 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

TUTORIAL_ID varchar(50)   UNI     

TUTORIAL_TITLE varchar(255)         

TUTORIAL_QUESTION_ 

TEXT text         

CREATED_TIMESTAMP datetime     

0000-00-00 

00:00:00   

LAST_MODIFIED_ 

TIMESTAMP datetime     

0000-00-00 

00:00:00   

STATUS_SYS_ID bigint(20)   MUL 0   

 

 



 

260 

Table: tutorial_condition_probability 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

ITS_USER_SYS_ID bigint(20)   MUL 0   

TOPIC_SYS_ID bigint(20)   MUL 0   

TOTAL_QUESTIONS int(11)     0   

TOTAL_CORRECT int(11)     0   

TOTAL_WRONG int(11)     0   

CP decimal(10,2)     0.00   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

 

 

Table: tutorial_route 

FIELD TYPE NULL KEY DEFAULT EXTRA 

 SYS_ID bigint(20)   PRI NULL auto_increment 

 ROUTE_NAME varchar(200)         

 

 

Table: tutorial_token 

FIELD TYPE NULL KEY DEFAULT EXTRA 

TUTORIAL_SYS_ID bigint(20)   PRI 0   

TOKEN bigint(20)   PRI 0   

 

 

Table: tutorial_tracker 

FIELD TYPE NULL KEY DEFAULT EXTRA 

SYS_ID bigint(20)   PRI NULL auto_increment 

STUDENT_SYS_ID bigint(20)   MUL 0   

TUTORIAL_SYS_ID bigint(20)   MUL 0   

SUB_TUTORIAL_SYS_ID bigint(20)   MUL 0   

TUTORIAL_ROUTE_SYS_ID bigint(20)   MUL 0   

ANSWER text YES   NULL   

CORRECT tinyint(1) YES   NULL   

CREATED_TIMESTAMP datetime     

0000-00-00  

00:00:00   

DURATION bigint(20)     0   

 

 

 



 

261 

Appendix I 

XML Syntax Parser Code 

 

package com.its.module.tutorial.service.helper; 

 

import com.vagrant.base.exception.*; 

import com.vagrant.base.helper.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

import org.w3c.dom.*; 

import org.xml.sax.*; 

 

import java.io.*; 

import java.util.*; 

 

import javax.xml.parsers.*; 

 

 

public class TutorialAnswerSyntaxParser extends AbstractHelper 

{ 

 private Log log = new Log4JLogger( TutorialAnswerSyntaxParser.class.getName(  ) ); 

 private DocumentBuilder builder = null; 

 

 /** 

  * Creates a new instance of TutorialAnswerSyntaxParser 

  * 

  * @throws CException DOCUMENT ME! 

  */ 

 public TutorialAnswerSyntaxParser(  ) throws CException 

 { 

  try 

  { 

   DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(  ); 

   factory.setValidating( true ); 

   factory.setNamespaceAware( true ); 

   factory.setIgnoringComments( true ); 

   factory.setIgnoringElementContentWhitespace( false ); 

   builder = factory.newDocumentBuilder(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   getExceptionHandler(  ).generateError( "ERSYS-002", ex ); 

  } 

 } 

 

  

  



 

262 

public boolean isAnswerCorrect( String syntax, String answer ) 

 { 

  if ( ( answer != null ) && ( syntax != null ) ) 

  { 

   return validateSubTutorialAnswer( syntax, answer ); 

  } 

  else 

  { 

   return false; 

  } 

 } 

 

 public boolean validateSubTutorialAnswer( String xmlSyntax, String answer ) 

 { 

  try 

  { 

   StringBuffer xml = new StringBuffer( "<?xml version=\"1.0\"  

encoding=\"UTF-8\"?>" ); 

   xml.append( "<!DOCTYPE syntax PUBLIC \"-//ITS 1.0//EN\"  

\"http://localhost:8080/its/itssyntax.dtd\">" ); 

 

   //xml.append("<!DOCTYPE syntax SYSTEM file:///C:/ITS/itssyntax.dtd>"); 

   xml.append( xmlSyntax ); 

 

   log.debug( "====================================" ); 

   log.debug( "Validating Answer Syntax" ); 

   log.debug( "====================================" ); 

   log.debug( xml.toString(  ) ); 

   log.debug( "====================================" ); 

 

   InputSource source = new InputSource( new StringReader( xml.toString(  ) ) ); 

   Document doc = builder.parse( source ); 

 

   Element rootElement = doc.getDocumentElement(  ); 

   List itsSyntaxModels = buildITSSyntaxModels( rootElement ); 

 

   return validateITSAnswerSyntax( itsSyntaxModels, answer, false ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   return false; 

  } 

 } 

  

  



 

263 

public boolean validateSyntax( String xmlSyntax ) 

 { 

  try 

  { 

   StringBuffer xml = new StringBuffer( "<?xml version=\"1.0\"  

encoding=\"UTF-8\"?>" ); 

   xml.append( "<!DOCTYPE syntax PUBLIC \"-//ITS 1.0//EN\"  

\"http://localhost:8080/its/itssyntax.dtd\">" ); 

 

   //xml.append("<!DOCTYPE syntax SYSTEM file:///C:/ITS/itssyntax.dtd>"); 

   xml.append( xmlSyntax ); 

 

   log.debug( "====================================" ); 

   log.debug( "Validating Answer Syntax" ); 

   log.debug( "====================================" ); 

   log.debug( xml.toString(  ) ); 

   log.debug( "====================================" ); 

 

   InputSource source = new InputSource( new StringReader( xml.toString(  ) ) ); 

   builder.parse( source ); 

   return true; 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   return false; 

  } 

 } 

 private List buildITSSyntaxModels( Element element ) 

 { 

  ArrayList itsSyntaxModels = new ArrayList(  ); 

  NodeList nodeList = element.getElementsByTagName( "eval" ); 

 

  log.debug( "nodelist size: " + nodeList.getLength(  ) ); 

 

  for ( int i = 0; i < nodeList.getLength(  ); i++ ) 

  { 

   TutorialAnswerSyntaxParser.ITSSyntaxModel model = new  

TutorialAnswerSyntaxParser.ITSSyntaxModel(  ); 

   Node node = nodeList.item( i ); 

   Element ele = ( Element ) node; 

 

   if ( ( ele.getAttribute( "join" ) != null ) &&  

ele.getAttribute( "join" ).equalsIgnoreCase( "or" ) ) 

   { 

    log.debug( "join spotted" ); 

    model.getOrValueList(  ).addAll( buildITSSyntaxModels( ele ) ); 

   } 

   else 

   { 

    //If more than one, then do recursive parsing 

    if ( ele.getChildNodes(  ).getLength(  ) > 1 ) 

    { 

     log.debug( "child nodes spotted" ); 

     model.getAndValueList(  ).addAll( buildITSSyntaxModels(ele)); 

    } 

    else 

    { 



 

264 

     if ( ( ele.getAttribute( "ignorecase" ) != null )  

&& ele.getAttribute( "ignorecase" ).equalsIgnoreCase( "true" ) ) 

     { 

      log.debug( "ignore case spotted" ); 

      model.setIgnoreCase( true ); 

     } 

 

     if ( ( ele.getAttribute( "allow" ) != null ) &&  

!ele.getAttribute( "allow" ).trim(  ).equals( "" ) ) 

     { 

      log.debug( "allow spotted" ); 

      log.debug( "allow type: " +  

ele.getAttribute( "allow" ).trim(  ) ); 

      model.setAllow( ele.getAttribute( "allow" ) ); 

     } 

 

     Text value = ( Text ) ele.getFirstChild(  ); 

     model.setValue( value.getData(  ) ); 

 

     log.debug( "Value: " + value.getData(  ) ); 

    } 

 

    itsSyntaxModels.add( model ); 

   } 

  } 

 

  return itsSyntaxModels; 

 } 

 

  

private boolean validateITSAnswerSyntax( List itsSyntaxModels, String answer,  

boolean orEnabled ) 

 { 

  log.debug( "validating answer..." ); 

  log.debug( "answer: " + answer ); 

 

  if ( ( itsSyntaxModels != null ) && ( itsSyntaxModels.size(  ) > 0 ) ) 

  { 

   boolean result = true; 

   Iterator itr = itsSyntaxModels.iterator(  ); 

 

   while ( itr.hasNext(  ) ) 

   { 

    TutorialAnswerSyntaxParser.ITSSyntaxModel model =  

( TutorialAnswerSyntaxParser.ITSSyntaxModel ) itr.next(  ); 

 

    if ( model.getAndValueList(  ).size(  ) > 0 ) 

    { 

     boolean tmpResult = validateITSAnswerSyntax 

( model.getAndValueList(  ), answer, false ); 

     if ( orEnabled ) 

     { 

      result |= tmpResult; 

     } 

     else 

     { 

      result &= tmpResult; 

     } 



 

265 

    } 

    else if ( model.getOrValueList(  ).size(  ) > 0 ) 

    { 

     boolean tmpResult = validateITSAnswerSyntax 

( model.getOrValueList(  ), answer, true ); 

     if ( orEnabled ) 

     { 

      result |= tmpResult; 

     } 

     else 

     { 

      result &= tmpResult; 

     } 

    } 

    else 

    { 

     String compareValue = model.getValue(  ); 

     log.debug( "compareValue: " + compareValue ); 

     if ( ( model.getAllow(  ) != null ) &&  

model.getAllow(  ).equals( "number" ) ) 

     { 

      log.debug( "must be a number" ); 

      if ( ( compareValue != null ) &&  

!compareValue.equals( "" ) ) 

      { 

       int index = -1; 

       log.debug( "index: " + answer.indexOf 

( compareValue ) ); 

       if ( ( index =  

answer.indexOf( compareValue ) ) != -1 ) 

       { 

        log.debug( "old answer: " + answer ); 

        answer = answer.substring( index +  

compareValue.length(  ), answer.length(  ) ); 

        log.debug( "new answer: " +  

answer ); 

       } 

       else 

       { 

        log.debug( "validation failed" ); 

        result &= false; 

       } 

      } 

     } 

     else if ( ( model.getAllow(  ) != null ) &&  

model.getAllow().equals( "string" ) ) 

     { 

      log.debug( "must be a string" ); 

      if ( ( compareValue != null ) &&  

!compareValue.equals( "" ) ) 

      { 

       int index = -1; 

       log.debug( "index: " +  

answer.indexOf( compareValue ) ); 

        



 

266 

if ( ( index =  

answer.indexOf( compareValue ) ) != -1 ) 

       { 

        log.debug( "old answer: " + answer ); 

        answer = answer.substring( index +  

compareValue.length(  ), answer.length(  ) ); 

        log.debug( "new answer: " +  

answer ); 

       } 

       else 

       { 

        log.debug( "validation failed" ); 

        result &= false; 

       } 

      } 

     } 

     else 

     { 

      log.debug( "other free string" ); 

      if ( ( compareValue != null ) &&  

!compareValue.equals( "" ) ) 

      { 

       int index = -1; 

       log.debug( "index: " + 

 answer.indexOf( compareValue ) ); 

 

       if ( ( index =  

answer.indexOf( compareValue ) ) != -1 ) 

       { 

        log.debug( "old answer: " + answer ); 

        answer = answer.substring( index +  

ompareValue.length(  ), answer.length(  ) ); 

        log.debug( "new answer: " +  

answer ); 

       } 

       else 

       { 

        log.debug( "validation failed" ); 

        result &= false; 

       } 

      } 

     } 

    } 

   } 

   return result; 

  } 

  else 

  { 

   return false; 

  } 

  

  



 

267 

private class ITSSyntaxModel 

 { 

  private String value = ""; 

  private String allow = ""; 

  private boolean ignoreCase = false; 

  private ArrayList andValueList = new ArrayList(  ); 

  private ArrayList orValueList = new ArrayList(  ); 

 

  /** 

   * Setter for property allow. 

   * 

   * @param allow New value of property allow. 

   */ 

  public void setAllow( java.lang.String allow ) 

  { 

   this.allow = allow; 

  } 

 

  /** 

   * Getter for property allow. 

   * 

   * @return Value of property allow. 

   */ 

  public java.lang.String getAllow(  ) 

  { 

   return allow; 

  } 

 

  /** 

   * Setter for property andValueList. 

   * 

   * @param andValueList New value of property andValueList. 

   */ 

  public void setAndValueList( java.util.ArrayList andValueList ) 

  { 

   this.andValueList = andValueList; 

  } 

 

  /** 

   * Getter for property andValueList. 

   * 

   * @return Value of property andValueList. 

   */ 

  public java.util.ArrayList getAndValueList(  ) 

  { 

   return andValueList; 

  } 

 

  /** 

   * Setter for property isIgnoreCase. 

   * 

   * @param ignoreCase New value of property isIgnoreCase. 

   */ 

  public void setIgnoreCase( boolean ignoreCase ) 

  { 

   this.ignoreCase = ignoreCase; 

  } 

 



 

268 

  /** 

   * Getter for property isIgnoreCase. 

   * 

   * @return Value of property isIgnoreCase. 

   */ 

  public boolean isIgnoreCase(  ) 

  { 

   return ignoreCase; 

  } 

 

  /** 

   * Setter for property orValueList. 

   * 

   * @param orValueList New value of property orValueList. 

   */ 

  public void setOrValueList( java.util.ArrayList orValueList ) 

  { 

   this.orValueList = orValueList; 

  } 

 

  /** 

   * Getter for property orValueList. 

   * 

   * @return Value of property orValueList. 

   */ 

  public java.util.ArrayList getOrValueList(  ) 

  { 

   return orValueList; 

  } 

 

  /** 

   * Setter for property value. 

   * 

   * @param value New value of property value. 

   */ 

  public void setValue( java.lang.String value ) 

  { 

   this.value = value; 

  } 

 

  /** 

   * Getter for property value. 

   * 

   * @return Value of property value. 

   */ 

  public java.lang.String getValue(  ) 

  { 

   return value; 

  } 

 } 

} 



 

269 

Student Model Update Code 

 
package com.its.module.tutorial.service.sb; 

 

import com.its.intf.*; 

 

import com.its.module.pretest.model.*; 

import com.its.module.pretest.service.database.*; 

import com.its.module.pretest.service.helper.*; 

import com.its.module.status.model.*; 

import com.its.module.status.service.database.*; 

import com.its.module.student.model.*; 

import com.its.module.student.service.database.*; 

import com.its.module.topic.model.*; 

import com.its.module.topic.service.database.*; 

import com.its.module.tutorial.intf.*; 

import com.its.module.tutorial.model.*; 

import com.its.module.tutorial.service.database.*; 

import com.its.module.tutorial.service.helper.*; 

 

import com.its.web.intf.*; 

 

import com.vagrant.base.exception.*; 

 

import com.vagrant.j2ee.ejb.*; 

 

import org.apache.commons.logging.*; 

import org.apache.commons.logging.impl.*; 

 

import java.util.*; 

 

import javax.ejb.*; 

 

 

/** 

 * TutorialTrxnSBBean 

 * 

 * @version 1.0 

 */ 

public class TutorialTrxnSBBean extends AbstractTransactionSBBean 

{ 

 private Log log = new Log4JLogger( TutorialTrxnSBBean.class.getName(  ) ); 

 private TutorialDAO tutorialDAO = null; 

 private StatusDAO statusDAO = null; 

 private StudentDAO studentDAO = null; 

 private PreTestDAO preTestDAO = null; 

 private TutorialHelper tutorialHelper = null; 

 private TutorialAnswerSyntaxParser answerSyntaxParser = null; 

 private PreTestHelper preTestHelper = null; 

 

 /** 

  * Creates a new instance of TutorialTrxnSBBean 

  * 

  * @throws EJBException  

  */ 



 

270 

 public TutorialTrxnSBBean(  ) throws EJBException 

 { 

  try 

  { 

   preTestDAO = new PreTestDAO(  ); 

   tutorialDAO = new TutorialDAO(  ); 

   statusDAO = new StatusDAO(  ); 

   tutorialHelper = new TutorialHelper(  ); 

   preTestHelper = new PreTestHelper(  ); 

   answerSyntaxParser = new TutorialAnswerSyntaxParser(  ); 

  } 

  catch ( CException ex ) 

  { 

   throw new EJBException( ex ); 

  } 

 } 

 

 /** 

  * createBatchSubTutorialPreTestMap 

  * 

  * @param subTutorialPreTestMapDOs  

  * 

  * @throws CException  

  */ 

 public void createBatchSubTutorialPreTestMap( Collection subTutorialPreTestMapDOs )  

throws CException 

 { 

  try 

  { 

   beginTrxn(  ); 

 

   tutorialDAO.createBatchSubTutorialPreTestMap( subTutorialPreTestMapDOs ); 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

  



 

271 

/** 

  * createBatchTutorialCPscreateBatchTutorialCPs  

 * 

  * @param tutorialCPDOs  

  * 

  * @throws CException 

  */ 

 public void createBatchTutorialCPs( Collection tutorialCPDOs ) throws CException 

 { 

  try 

  { 

   beginTrxn(  ); 

 

   java.sql.Timestamp now = new java.sql.Timestamp( System.currentTimeMillis() ); 

 

   if ( ( tutorialCPDOs != null ) && ( tutorialCPDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = tutorialCPDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     TutorialCPDO _DO = ( TutorialCPDO ) itr.next(  ); 

 

     _DO.setCreatedTimestamp( now ); 

     _DO.setLastModifiedTimestamp( now ); 

 

     tutorialDAO.createTutorialCP( _DO ); 

    } 

   } 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

  



 

272 

/** 

  * createTutorial 

  * 

  * @param tutorialDO  

  * @param subTutorialDOs 

  * 

  * @return log 

  * 

  * @throws CException  

  */ 

 public long createTutorial( TutorialDO tutorialDO, Collection subTutorialDOs ) throws CException 

 { 

  long pk = 0; 

 

  try 

  { 

   beginTrxn(  ); 

 

   java.sql.Timestamp now = new java.sql.Timestamp(System.currentTimeMillis( )); 

   StatusDO statusDO = statusDAO.findStatusByStatusType( IStatus.ACTIVE ); 

 

   tutorialDO.setStatusDO( statusDO ); 

   tutorialDO.setCreatedTimestamp( now ); 

   tutorialDO.setLastModifiedTimestamp( now ); 

 

   pk = tutorialDAO.createTutorial( tutorialDO ); 

   tutorialDO = tutorialDAO.findTutorialBySysId( pk ); 

 

   if ( ( subTutorialDOs != null ) && ( subTutorialDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = subTutorialDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     SubTutorialDO _DO = ( SubTutorialDO ) itr.next(  ); 

     _DO.setTutorialDO( tutorialDO ); 

 

     _DO.setStatusDO( statusDO ); 

     _DO.setCreatedTimestamp( now ); 

     _DO.setLastModifiedTimestamp( now ); 

 

     long subTutorialSysId = tutorialDAO.createSubTutorial( _DO ); 

 

     //Create Sub Tutorial Answer 

     StringBuffer syntaxString = new StringBuffer( "<syntax>\r\n" ); 

     syntaxString.append( "     <eval/>\r\n" ); 

     syntaxString.append( "</syntax>\r\n" ); 

 

     SubTutorialAnswerDO answerDO =  

new SubTutorialAnswerDO(  ); 

     answerDO.setSysId( subTutorialSysId ); 

     answerDO.setStatusDO( statusDO ); 

     answerDO.setSubTutorialDO( _DO ); 

     answerDO.setSyntaxString( syntaxString.toString(  ) ); 

     answerDO.setCreatedTimestamp( now ); 

     answerDO.setLastModifiedTimestamp( now ); 

 

     tutorialDAO.createSubTutorialAnswer( answerDO ); 



 

273 

 

     //Create Demo 

     DemoDO demoDO = new DemoDO(  ); 

     demoDO.setSysId( subTutorialSysId ); 

     demoDO.setSubTutorialDO( _DO ); 

     demoDO.setDemoId( _DO.getSubTutorialId(  ) ); 

     demoDO.setDemoExplaination( "" ); 

     demoDO.setStatusDO( statusDO ); 

     demoDO.setCreatedTimestamp( now ); 

     demoDO.setLastModifiedTimestamp( now ); 

 

     tutorialDAO.createDemo( demoDO ); 

    } 

   } 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 

  return pk; 

 } 

 

 /** 

  * deleteBatchSubTutorialPreTestMap 

  * 

  * @param subTutorialPreTestMapDOs 

  * 

  * @throws CException 

  */ 

 public void deleteBatchSubTutorialPreTestMap( Collection subTutorialPreTestMapDOs )  

throws CException 

 { 

  try 

  { 

   tutorialDAO.deleteBatchSubTutorialPreTestMap( subTutorialPreTestMapDOs ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

   



 

274 

catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

 /** 

  * processFromBriefExplanationRoute 

  * 

  * @param parameters  

  * 

  * @return HashMap 

  * 

  * @throws CException  

  */ 

 public HashMap processFromBriefExplanationRoute( HashMap parameters ) throws CException 

 { 

  HashMap result = new HashMap(  ); 

 

  try 

  { 

   beginTrxn(  ); 

 

   TutorialDO currentTutorialDO = ( TutorialDO )  

parameters.get( IWebConst.CURRENT_TUTORIAL ); 

   SubTutorialDO selectedSubTutorialDO = ( SubTutorialDO )  

parameters.get( IWebConst.SELECTED_SUB_TUTORIAL ); 

   Collection currentSubTutorialDOs = ( Collection )  

parameters.get( IWebConst.CURRENT_SUB_TUTORIALS ); 

   Collection allTutorialDOs = ( Collection )  

parameters.get( IWebConst.ALL_TUTORIALS ); 

   StudentDO studentDO = ( StudentDO )  

parameters.get( IWebConst.STUDENT_DO ); 

   long startTimeMillis = ( ( Long )  

parameters.get( IWebConst.START_TIME_MILLIS ) ).longValue(  ); 

   long duration = System.currentTimeMillis(  ) - startTimeMillis; 

 

   //Create the new next tutorial tracker 

   RouteDO routeDO = tutorialDAO.findRouteByRouteName(  

IWebConst.ROUTE_FROM_BRIEF_EXPLANATION ); 

 

   TutorialTrackerDO tutorialTrackerDO = new TutorialTrackerDO(  ); 

   tutorialTrackerDO.setCreatedTimestamp( new java.sql.Timestamp(  

System.currentTimeMillis(  ) ) ); 

   tutorialTrackerDO.setStudentDO( studentDO ); 

   tutorialTrackerDO.setSubTutorialDO( selectedSubTutorialDO ); 

   tutorialTrackerDO.setTutorialDO( currentTutorialDO ); 

   tutorialTrackerDO.setRouteDO( routeDO ); 

   tutorialTrackerDO.setDuration( duration ); 

 

   tutorialDAO.createTutorialTracker( tutorialTrackerDO ); 

 

   result.put( IWebConst.CURRENT_TUTORIAL, currentTutorialDO ); 

   result.put( IWebConst.CURRENT_SUB_TUTORIALS, currentSubTutorialDOs ); 

   result.put( IWebConst.SELECTED_SUB_TUTORIAL, selectedSubTutorialDO ); 



 

275 

   result.put( IWebConst.DEST_PATH,  

ITutorialPath.TP_DISPLAY_PROBLEM_SPEC ); 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 

  return result; 

 } 

 

 /** 

  * processFromDemoRoute 

  * 

  * @param parameters  

  * 

  * @return HashMap 

  * 

  * @throws CException 

  */ 

 public HashMap processFromDemoRoute( HashMap parameters ) throws CException 

 { 

  HashMap result = new HashMap(  ); 

 

  try 

  { 

   beginTrxn(  ); 

 

   TutorialDO currentTutorialDO = ( TutorialDO )  

parameters.get( IWebConst.CURRENT_TUTORIAL ); 

   SubTutorialDO selectedSubTutorialDO = ( SubTutorialDO )  

parameters.get( IWebConst.SELECTED_SUB_TUTORIAL ); 

   Collection currentSubTutorialDOs = ( Collection )  

parameters.get( IWebConst.CURRENT_SUB_TUTORIALS ); 

   Collection allTutorialDOs = ( Collection )  

parameters.get( IWebConst.ALL_TUTORIALS ); 

   StudentDO studentDO = ( StudentDO )  

parameters.get( IWebConst.STUDENT_DO ); 

   long startTimeMillis = ( ( Long )  

parameters.get( IWebConst.START_TIME_MILLIS ) ).longValue(  ); 

   long duration = System.currentTimeMillis(  ) - startTimeMillis; 

 

   //Create the new next tutorial tracker 

   RouteDO routeDO = tutorialDAO.findRouteByRouteName(  

IWebConst.ROUTE_FROM_DEMO ); 

 



 

276 

   TutorialTrackerDO tutorialTrackerDO = new TutorialTrackerDO(  ); 

   tutorialTrackerDO.setCreatedTimestamp( new java.sql.Timestamp(  

System.currentTimeMillis(  ) ) ); 

   tutorialTrackerDO.setStudentDO( studentDO ); 

   tutorialTrackerDO.setSubTutorialDO( selectedSubTutorialDO ); 

   tutorialTrackerDO.setTutorialDO( currentTutorialDO ); 

   tutorialTrackerDO.setRouteDO( routeDO ); 

   tutorialTrackerDO.setDuration( duration ); 

 

   tutorialDAO.createTutorialTracker( tutorialTrackerDO ); 

 

   result.put( IWebConst.CURRENT_TUTORIAL, currentTutorialDO ); 

   result.put( IWebConst.CURRENT_SUB_TUTORIALS, currentSubTutorialDOs ); 

   result.put( IWebConst.SELECTED_SUB_TUTORIAL, selectedSubTutorialDO ); 

   result.put( IWebConst.DEST_PATH,  

ITutorialPath.TP_DISPLAY_PROBLEM_SPEC ); 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 

  return result; 

 } 

 

 /** 

  * processFromPreTestReviewRoute  

  * 

  * @param parameters  

  * 

  * @return HashMap  

  * 

  * @throws CException  

  */ 

 public HashMap processFromPreTestReviewRoute( HashMap parameters ) throws CException 

 { 

  HashMap result = new HashMap(  ); 

 

  try 

  { 

   beginTrxn(  ); 

 

   TutorialDO currentTutorialDO = ( TutorialDO )  

parameters.get( IWebConst.CURRENT_TUTORIAL ); 

   SubTutorialDO selectedSubTutorialDO = ( SubTutorialDO )  

parameters.get( IWebConst.SELECTED_SUB_TUTORIAL ); 



 

277 

   Collection currentSubTutorialDOs = ( Collection )  

parameters.get( IWebConst.CURRENT_SUB_TUTORIALS ); 

   Collection allTutorialDOs = ( Collection )  

parameters.get( IWebConst.ALL_TUTORIALS ); 

   StudentDO studentDO = ( StudentDO )  

parameters.get( IWebConst.STUDENT_DO ); 

   long startTimeMillis = ( ( Long ) parameters.get(  

IWebConst.START_TIME_MILLIS ) ).longValue(  ); 

   long duration = System.currentTimeMillis(  ) - startTimeMillis; 

 

   //Create the new next tutorial tracker 

   RouteDO routeDO = tutorialDAO.findRouteByRouteName(  

IWebConst.ROUTE_FROM_PRE_TEST_REVIEW ); 

 

   TutorialTrackerDO tutorialTrackerDO = new TutorialTrackerDO(  ); 

   tutorialTrackerDO.setCreatedTimestamp( new java.sql.Timestamp(  

System.currentTimeMillis(  ) ) ); 

   tutorialTrackerDO.setStudentDO( studentDO ); 

   tutorialTrackerDO.setSubTutorialDO( selectedSubTutorialDO ); 

   tutorialTrackerDO.setTutorialDO( currentTutorialDO ); 

   tutorialTrackerDO.setRouteDO( routeDO ); 

   tutorialTrackerDO.setDuration( duration ); 

 

   tutorialDAO.createTutorialTracker( tutorialTrackerDO ); 

 

   result.put( IWebConst.CURRENT_TUTORIAL, currentTutorialDO ); 

   result.put( IWebConst.CURRENT_SUB_TUTORIALS, currentSubTutorialDOs ); 

   result.put( IWebConst.SELECTED_SUB_TUTORIAL, selectedSubTutorialDO ); 

   result.put( IWebConst.DEST_PATH,  

ITutorialPath.TP_DISPLAY_PROBLEM_SPEC ); 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 

  return result; 

 } 

 

  



 

278 

/** 

  * processFromRemedialRoute  

  * 

  * @param parameters  

  * 

  * @return HashMap  

  * 

  * @throws CException  

  */ 

 public HashMap processFromRemedialRoute( HashMap parameters ) throws CException 

 { 

  HashMap result = new HashMap(  ); 

 

  try 

  { 

   beginTrxn(  ); 

 

   TutorialDO currentTutorialDO = ( TutorialDO )  

parameters.get( IWebConst.CURRENT_TUTORIAL ); 

   SubTutorialDO selectedSubTutorialDO = ( SubTutorialDO )  

parameters.get( IWebConst.SELECTED_SUB_TUTORIAL ); 

   Collection currentSubTutorialDOs = ( Collection )  

parameters.get( IWebConst.CURRENT_SUB_TUTORIALS ); 

   Collection allTutorialDOs = ( Collection )  

parameters.get( IWebConst.ALL_TUTORIALS ); 

   StudentDO studentDO = ( StudentDO )  

parameters.get( IWebConst.STUDENT_DO ); 

   long startTimeMillis = ( ( Long )  

parameters.get( IWebConst.START_TIME_MILLIS ) ).longValue(  ); 

   long duration = System.currentTimeMillis(  ) - startTimeMillis; 

 

   //obtain current sub-tutorial pre-requisites 

   Collection preRequisiteSubTopicDOs =  

tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId(  

currentTutorialDO.getSysId(  ) ); 

   Collection preRequisiteTopicDOs = tutorialHelper.getTopicsFromSubTopics(  

preRequisiteSubTopicDOs ); 

 

   Collection tutorialCPDOs = tutorialDAO.findFilteredTutorialCPs(  

studentDO.getUserDO(  ).getSysId(  ), preRequisiteTopicDOs ); 

 

   //obtain the PC of the current sub-tutorial 

   double cp = tutorialHelper.getMinCP( tutorialCPDOs ); 

   String path = tutorialHelper.getTutorialPathByChoice( cp ); 

 

   //If pre-tutorial was choose as route, obtain the pretutorial stuff 

   if ( path.equals( ITutorialPath.TP_DISPLAY_PRE_TUTORING ) ) 

   { 

    log.debug( "pre-tutorial enabled" ); 

 

    if ( selectedSubTutorialDO.getPreTutorialDO(  ) != null ) 

    { 

     currentTutorialDO = ( TutorialDO )  

selectedSubTutorialDO.getPreTutorialDO(  ); 

 

     log.debug( "Pre-Tutorial sys-id: " +  

currentTutorialDO.getSysId(  ) ); 

     log.debug( "Pre-Tutorial title: " +  



 

279 

currentTutorialDO.getTutorialTitle(  ) ); 

 

     currentSubTutorialDOs =  

tutorialDAO.findSubTutorialsByTutorialSysId(  

currentTutorialDO.getSysId(  ) ); 

 

     //create a pretutorial stack record 

     PreTutorialStackDO stackDO = new PreTutorialStackDO(  ); 

     stackDO.setStudentSysId( studentDO.getSysId(  ) ); 

     stackDO.setPreTutorialSysId( currentTutorialDO.getSysId(  ) ); 

     stackDO.setParentSubTutorialSysId(  

selectedSubTutorialDO.getSysId(  ) ); 

     stackDO.setCreatedTimestamp( new java.sql.Timestamp(  

System.currentTimeMillis(  ) ) ); 

           

     Boolean demoFlag = false; 

 

     //only create the pre-tutorial stack when it is not present 

     try 

     { 

      stackDO = tutorialDAO.findPreTutorialStackDO(  

currentTutorialDO.getSysId(  ), studentDO.getSysId() ); 

     } 

     catch ( Exception ex ) 

     { 

      tutorialDAO.createPreTutorialStack( stackDO ); 

     } 

 

     selectedSubTutorialDO = ( SubTutorialDO )  

currentSubTutorialDOs.iterator(  ).next(  ); 

     result.put( IWebConst.CURRENT_TUTORIAL,  

currentTutorialDO ); 

     result.put( IWebConst.IS_PRE_TUTORIAL, Boolean.TRUE ); 

    } 

    else 

    { 

     log.debug( "No Pre-Tutorial, Changed to Demo" ); 

     path = ITutorialPath.TP_DEMO; 

    } 

   } 

   //set next route into the request 

   result.put( IWebConst.DEST_PATH, path ); 

 

   //set all things into request 

   result.put( IWebConst.CURRENT_TUTORIAL, currentTutorialDO ); 

   result.put( IWebConst.CURRENT_SUB_TUTORIALS, currentSubTutorialDOs ); 

   result.put( IWebConst.SELECTED_SUB_TUTORIAL, selectedSubTutorialDO ); 

 

   commitTrxn(  ); 

 

   return result; 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 



 

280 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

 /** 

  * processFromTutorialRoute 

  * 

  * @param parameters  

  * 

  * @return HashMap 

  * 

  * @throws CException  

  */ 

 public HashMap processFromTutorialRoute( HashMap parameters ) throws CException 

 { 

  HashMap result = new HashMap(  ); 

 

  try 

  { 

   log.debug( "Check 1" ); 

 

   beginTrxn(  ); 

 

   TutorialDO currentTutorialDO = ( TutorialDO )  

parameters.get( IWebConst.CURRENT_TUTORIAL ); 

   SubTutorialDO selectedSubTutorialDO = ( SubTutorialDO )  

parameters.get( IWebConst.SELECTED_SUB_TUTORIAL ); 

   Collection currentSubTutorialDOs = ( Collection )  

parameters.get( IWebConst.CURRENT_SUB_TUTORIALS ); 

   Collection allTutorialDOs = ( Collection )  

parameters.get( IWebConst.ALL_TUTORIALS ); 

   StudentDO studentDO = ( StudentDO )  

parameters.get( IWebConst.STUDENT_DO ); 

   long startTimeMillis = ( ( Long )  

parameters.get( IWebConst.START_TIME_MILLIS ) ).longValue(  ); 

   long duration = System.currentTimeMillis(  ) - startTimeMillis; 

 

   log.debug( "Check 2" ); 

 

   //obtain the answer from student 

   String answerText = ( String ) parameters.get( "answerText" ); 

 

   log.debug( "answerText: " + answerText ); 

 

   //validate the student answer 

   boolean isAnswerRight = answerSyntaxParser.isAnswerCorrect(  

selectedSubTutorialDO.getSubTutorialAnswerDO(  ).getSyntaxString(  ),  

answerText ); 

 

   log.debug( "Check 3" ); 

 

   //Create the new next tutorial tracker 

   RouteDO routeDO = tutorialDAO.findRouteByRouteName(  



 

281 

IWebConst.ROUTE_FROM_TUTORIAL ); 

 

   TutorialTrackerDO tutorialTrackerDO = new TutorialTrackerDO(  ); 

   tutorialTrackerDO.setCreatedTimestamp( new java.sql.Timestamp(  

System.currentTimeMillis(  ) ) ); 

   tutorialTrackerDO.setStudentDO( studentDO ); 

   tutorialTrackerDO.setSubTutorialDO( selectedSubTutorialDO ); 

   tutorialTrackerDO.setTutorialDO( currentTutorialDO ); 

   tutorialTrackerDO.setRouteDO( routeDO ); 

   tutorialTrackerDO.setDuration( duration ); 

 

   log.debug( "Check 4" ); 

 

   //if answer is right 

   if ( isAnswerRight ) 

   { 

    log.debug( "Check 5" ); 

    log.debug( "isAnswerRight: " + isAnswerRight ); 

 

    tutorialTrackerDO.setAnswer( answerText ); 

    tutorialTrackerDO.setCorrect( true ); 

 

    //Find Next sub tutorial 

    SubTutorialDO nextSelectedSubTutorialDO =  

this.findNextSubTutorialDO( selectedSubTutorialDO, studentDO ); 

 

    if ( nextSelectedSubTutorialDO != null ) 

    { 

     log.debug( "Check 6" ); 

     log.debug( "determining next route" ); 

 

     //determine next route by gathering of all next tutorial PC or  

// next sub-tutorial 

     //get the next tutorial's pre-requisite sub-topics                     

     Collection preRequisiteSubTopicDOs =  

tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId(  

nextSelectedSubTutorialDO.getTutorialDO(  ).getSysId(  ) ); 

 

     //return the choice page / next tutorial page 

     String path = this.getTutorialSBLocal(  ).findInitialPath(  

studentDO, preRequisiteSubTopicDOs ); 

 

     log.debug( "path check 1" ); 

 

     if ( nextSelectedSubTutorialDO.getTutorialDO(  ).getSysId(  )  

== currentTutorialDO.getSysId(  ) ) 

     { 

      log.debug( "path check 2" ); 

      path =  

ITutorialPath.TP_DISPLAY_PROBLEM_SPEC; 

     } 

 

     log.debug( "path: " + path ); 

 

     //set next route into the request 

     result.put( IWebConst.DEST_PATH, path ); 

 

      



 

282 

//set all things into request 

     result.put( IWebConst.CURRENT_TUTORIAL,  

nextSelectedSubTutorialDO.getTutorialDO(  ) ); 

     result.put( IWebConst.CURRENT_SUB_TUTORIALS,  

tutorialDAO.findSubTutorialsByTutorialSysId( 

nextSelectedSubTutorialDO.getTutorialDO(  ).getSysId(  ) ) ); 

     result.put( IWebConst.SELECTED_SUB_TUTORIAL,  

nextSelectedSubTutorialDO ); 

    } 

    else 

    { 

     log.debug( "path: " + ITutorialPath.TP_COMPLETED ); 

 

     studentDO.setTutorialCompleted( true ); 

     studentDAO.updateStudent( studentDO ); 

 

     result.put( IWebConst.DEST_PATH,  

ITutorialPath.TP_COMPLETED ); 

    } 

   } 

   else 

   { 

    log.debug( "Check 9" ); 

    tutorialTrackerDO.setAnswer( answerText ); 

    tutorialTrackerDO.setCorrect( false ); 

 

    //obtain current sub-tutorial pre-requisites 

    Collection preRequisiteSubTopicDOs =  

tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId(  

currentTutorialDO.getSysId(  ) ); 

    Collection preRequisiteTopicDOs =  

tutorialHelper.getTopicsFromSubTopics( preRequisiteSubTopicDOs ); 

 

    Collection tutorialCPDOs = tutorialDAO.findFilteredTutorialCPs(  

studentDO.getUserDO(  ).getSysId(  ), preRequisiteTopicDOs ); 

 

    log.debug( "tutorialCPDOs size: " + tutorialCPDOs.size(  ) ); 

 

    //obtain the PC of the current sub-tutorial 

    double cp = tutorialHelper.getMinCP( tutorialCPDOs ); 

 

    log.debug( "cp: " + cp ); 

 

    String path = tutorialHelper.getTutorialPathByChoice( cp ); 

 

    log.debug( "path: " + path ); 

 

    //If pre-tutorial was choose as route, obtain the pretutorial stuff 

    if ( path.equals( ITutorialPath.TP_DISPLAY_PRE_TUTORING ) ) 

    { 

     log.debug( "Check 10" ); 

     log.debug( "pre-tutorial enabled" ); 

 

     if ( selectedSubTutorialDO.getPreTutorialDO(  ) != null ) 

     { 

      currentTutorialDO = ( TutorialDO )  

selectedSubTutorialDO.getPreTutorialDO(  ); 

      currentSubTutorialDOs =  



 

283 

tutorialDAO.findSubTutorialsByTutorialSysId 

( currentTutorialDO.getSysId(  ) ); 

 

      //create a pretutorial stack record 

      PreTutorialStackDO stackDO = new  

PreTutorialStackDO(  ); 

      stackDO.setStudentSysId( studentDO.getSysId(  ) ); 

      stackDO.setPreTutorialSysId(  

currentTutorialDO.getSysId(  ) ); 

      stackDO.setParentSubTutorialSysId(  

selectedSubTutorialDO.getSysId(  ) ); 

      stackDO.setCreatedTimestamp( new  

java.sql.Timestamp( System.currentTimeMillis(  ) ) ); 

 

      Boolean demoFlag = false; 

 

      //only creates it when the pre-tutorial is not in the stack  

      try 

      { 

       stackDO =  

tutorialDAO.findPreTutorialStackDO

( currentTutorialDO.getSysId(  ), 

studentDO.getSysId(  ) ); 

      } 

      catch ( Exception ex ) 

      { 

       tutorialDAO.createPreTutorialStack(stackDO); 

      } 

 

      selectedSubTutorialDO = ( SubTutorialDO )  

currentSubTutorialDOs.iterator(  ).next(  ); 

      result.put( IWebConst.IS_PRE_TUTORIAL,  

Boolean.TRUE ); 

     } 

     else 

     { 

      log.debug( "No Pre-Tutorial, Changed to Demo" ); 

      path = ITutorialPath.TP_DEMO; 

     } 

    } 

 

    log.debug( "Check 11" ); 

 

    //set next route into the request 

    result.put( IWebConst.DEST_PATH, path ); 

 

    //set all things into request 

    result.put( IWebConst.CURRENT_TUTORIAL, currentTutorialDO ); 

    result.put( IWebConst.CURRENT_SUB_TUTORIALS,  

currentSubTutorialDOs ); 

    result.put( IWebConst.SELECTED_SUB_TUTORIAL,  

selectedSubTutorialDO ); 

   } 

 

   log.debug( "Check 12" ); 

   tutorialDAO.createTutorialTracker( tutorialTrackerDO ); 

 

    



 

284 

//Update cp 

   if ( !isAnswerRight ) 

   { 

    log.debug( "Check 13" ); 

    this.updateCp( selectedSubTutorialDO, studentDO ); 

   } 

 

   commitTrxn(  ); 

 

   return result; 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

 /** 

  * updateSubTutorial 

  * 

  * @param subTutorialDO  

  * @param preTestQuestionDOs  

  * @param hintDOs  

  * 

  * @return SubTutorialDO 

  * 

  * @throws CException  

  */ 

 public SubTutorialDO updateSubTutorial( SubTutorialDO subTutorialDO,  

Collection preTestQuestionDOs, Collection hintDOs ) throws CException 

 { 

  try 

  { 

   beginTrxn(  ); 

 

   java.sql.Timestamp now = new java.sql.Timestamp(System.currentTimeMillis( )); 

   StatusDO statusDO = statusDAO.findStatusByStatusType( IStatus.ACTIVE ); 

 

   //Update SubTutorialDO 

   subTutorialDO.setLastModifiedTimestamp( now ); 

   tutorialDAO.updateSubTutorial( subTutorialDO ); 

 

   //update subTutorialAnswerDO 

   SubTutorialAnswerDO answerDO = subTutorialDO.getSubTutorialAnswerDO(  ); 

   answerDO.setLastModifiedTimestamp( now ); 

 

   tutorialDAO.updateSubTutorialAnswer(  

subTutorialDO.getSubTutorialAnswerDO(  ) ); 



 

285 

 

   //Remove and re-create preTestMap 

   Collection subTutorialPreTestMapDOs =  

tutorialDAO.findPreTestMapsBySubTutorialSysId( subTutorialDO.getSysId(  ) ); 

   tutorialDAO.deleteBatchSubTutorialPreTestMap( subTutorialPreTestMapDOs ); 

 

   if ( ( preTestQuestionDOs != null ) && ( preTestQuestionDOs.size(  ) > 0 ) ) 

   { 

    ArrayList mapDOs = new ArrayList(  ); 

    Iterator itr = preTestQuestionDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     PreTestQuestionDO _DO = ( PreTestQuestionDO ) itr.next(  ); 

     SubTutorialPreTestMapDO mapDO = new  

SubTutorialPreTestMapDO(  ); 

     mapDO.setPreTestQuestionSysId( _DO.getSysId(  ) ); 

     mapDO.setSubTutorialSysId( subTutorialDO.getSysId(  ) ); 

 

     mapDOs.add( mapDO ); 

    } 

 

    tutorialDAO.createBatchSubTutorialPreTestMap( mapDOs ); 

   } 

 

   //Remove and re-create preTutorialMap 

 

   /* 

   Collection subTutorialPreTutorialMapDOs =  

tutorialDAO.findPreTutorialMapsBySubTutorialSysId(  

subTutorialDO.getSysId(  ) ); 

   tutorialDAO.deleteBatchSubTutorialPreTutorialMap(  

subTutorialPreTutorialMapDOs ); 

 

   if ( ( preTutorialDOs != null ) && ( preTutorialDOs.size(  ) > 0 ) ) 

   { 

       ArrayList mapDOs = new ArrayList(  ); 

       Iterator itr = preTutorialDOs.iterator(  ); 

 

       while ( itr.hasNext(  ) ) 

       { 

           TutorialDO _DO = ( TutorialDO ) itr.next(  ); 

           SubTutorialPreTutorialMapDO mapDO = new  

SubTutorialPreTutorialMapDO(  ); 

           mapDO.setTutorialSysId( _DO.getSysId(  ) ); 

           mapDO.setSubTutorialSysId( subTutorialDO.getSysId(  ) ); 

 

           mapDOs.add( mapDO ); 

       } 

 

       tutorialDAO.createBatchSubTutorialPreTutorialMap( mapDOs ); 

   } 

   */ 

 

    



 

286 

//Remove and recreate hints 

   Collection tmpHintDOs = tutorialDAO.findHintsBySubTutorialSysId(  

subTutorialDO.getSysId(  ) ); 

   tutorialDAO.deleteBatchHints( tmpHintDOs ); 

 

   if ( ( hintDOs != null ) && ( hintDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = hintDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     HintDO hintDO = ( HintDO ) itr.next(  ); 

     hintDO.setSubTutorialDO( subTutorialDO ); 

     hintDO.setCreatedTimestamp( now ); 

     hintDO.setLastModifiedTimestamp( now ); 

     hintDO.setStatusDO( statusDO ); 

 

     tutorialDAO.createHint( hintDO ); 

    } 

   } 

 

   //update demo 

   DemoDO demoDO = subTutorialDO.getDemoDO(  ); 

   demoDO.setSysId( subTutorialDO.getSysId(  ) ); 

   demoDO.setLastModifiedTimestamp( now ); 

 

   tutorialDAO.updateDemo( demoDO ); 

 

   commitTrxn(  ); 

 

   return tutorialDAO.findSubTutorialBySysId( subTutorialDO.getSysId(  ) ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

  



 

287 

/** 

  * updateTutorial  

  * 

  * @param tutorialDO 

  * @param acquiredSkillsSubTopicDOs  

  * @param preRequisiteSubTopicDOs  

  * @param newSubTutorialDOs  

  * @param deleteSubTutorialDOs  

  * 

  * @throws CException  

  */ 

 public void updateTutorial( TutorialDO tutorialDO, Collection acquiredSkillsSubTopicDOs,  

Collection preRequisiteSubTopicDOs, Collection newSubTutorialDOs,  

Collection deleteSubTutorialDOs ) throws CException 

 { 

  try 

  { 

   beginTrxn(  ); 

 

   java.sql.Timestamp now = new java.sql.Timestamp(System.currentTimeMillis( )); 

   StatusDO statusDO = statusDAO.findStatusByStatusType( IStatus.ACTIVE ); 

 

   //Update the tutorialDO first 

   tutorialDO.setLastModifiedTimestamp( now ); 

   tutorialDAO.updateTutorial( tutorialDO ); 

 

   //Re-map the acquiredSkills and Pre-Requisites 

   Collection tmp = tutorialDAO.findAcquiredSkillsMapByTutorialSysId(  

tutorialDO.getSysId(  ) ); 

   tutorialDAO.deleteBatchTutorialAcquiredSkillMap( tmp ); 

 

   tmp = tutorialDAO.findPreRequisiteMapByTutorialSysId( tutorialDO.getSysId() ); 

   tutorialDAO.deleteBatchTutorialPreRequisiteMap( tmp ); 

 

   ArrayList acquiredSkillsMapDOs = new ArrayList(  ); 

   ArrayList preRequisiteMapMapDOs = new ArrayList(  ); 

 

   if ( ( acquiredSkillsSubTopicDOs != null ) &&  

( acquiredSkillsSubTopicDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = acquiredSkillsSubTopicDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     SubTopicDO _DO = ( SubTopicDO ) itr.next(  ); 

     TutorialAcquiredSkillMapDO mapDO = new  

TutorialAcquiredSkillMapDO(  ); 

     mapDO.setTutorialSysId( tutorialDO.getSysId(  ) ); 

     mapDO.setSubTopicSysId( _DO.getSysId(  ) ); 

 

     acquiredSkillsMapDOs.add( mapDO ); 

    } 

   } 

 

    



 

288 

if ( ( preRequisiteSubTopicDOs != null ) &&  

( preRequisiteSubTopicDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = preRequisiteSubTopicDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     SubTopicDO _DO = ( SubTopicDO ) itr.next(  ); 

     TutorialPreRequisiteMapDO mapDO = new  

TutorialPreRequisiteMapDO(  ); 

     mapDO.setTutorialSysId( tutorialDO.getSysId(  ) ); 

     mapDO.setSubTopicSysId( _DO.getSysId(  ) ); 

 

     preRequisiteMapMapDOs.add( mapDO ); 

    } 

   } 

 

   tutorialDAO.createBatchTutorialAcquiredSkillMap( acquiredSkillsMapDOs ); 

   tutorialDAO.createBatchTutorialPreRequisiteMap( preRequisiteMapMapDOs ); 

 

   //Update the Sub-Tutorials 

   //Delete the mark for delete subTutorials 

   if ( ( deleteSubTutorialDOs != null ) && ( deleteSubTutorialDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = deleteSubTutorialDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     SubTutorialDO _DO = ( SubTutorialDO ) itr.next(  ); 

 

     //Delete the preTestMapping 

     Collection preTestMapDOs =  

tutorialDAO.findPreTestMapsBySubTutorialSysId(  

_DO.getSysId(  ) ); 

     tutorialDAO.deleteBatchSubTutorialPreTestMap(  

preTestMapDOs ); 

 

     //Delete the hints 

     Collection hintDOs =  

tutorialDAO.findHintsBySubTutorialSysId( _DO.getSysId(  ) ); 

     tutorialDAO.deleteBatchHints( hintDOs ); 

 

     //Delete the SubTutorial 

     tutorialDAO.deleteSubTutorial( _DO ); 

    } 

   } 

 

   //Create new sub-tutorials 

   if ( ( newSubTutorialDOs != null ) && ( newSubTutorialDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = newSubTutorialDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     SubTutorialDO _DO = ( SubTutorialDO ) itr.next(  ); 

     _DO.setTutorialDO( tutorialDO ); 

 

     _DO.setStatusDO( statusDO ); 



 

289 

     _DO.setCreatedTimestamp( now ); 

     _DO.setLastModifiedTimestamp( now ); 

 

     long subTutorialSysId = tutorialDAO.createSubTutorial( _DO ); 

 

     //Create Sub Tutorial Answer 

     SubTutorialAnswerDO answerDO = new  

SubTutorialAnswerDO(  ); 

     answerDO.setSysId( subTutorialSysId ); 

     answerDO.setStatusDO( statusDO ); 

     answerDO.setSubTutorialDO( _DO ); 

     answerDO.setSyntaxString( "" ); 

     answerDO.setCreatedTimestamp( now ); 

     answerDO.setLastModifiedTimestamp( now ); 

 

     tutorialDAO.createSubTutorialAnswer( answerDO ); 

 

     //Create Demo 

     DemoDO demoDO = new DemoDO(  ); 

     demoDO.setSysId( subTutorialSysId ); 

     demoDO.setSubTutorialDO( _DO ); 

     demoDO.setDemoId( _DO.getSubTutorialId(  ) ); 

     demoDO.setDemoExplaination( "" ); 

     demoDO.setStatusDO( statusDO ); 

     demoDO.setCreatedTimestamp( now ); 

     demoDO.setLastModifiedTimestamp( now ); 

 

     tutorialDAO.createDemo( demoDO ); 

    } 

   } 

 

   commitTrxn(  ); 

  } 

  catch ( CException ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw ex; 

  } 

  catch ( Exception ex ) 

  { 

   rollbackTrxnOnly(  ); 

 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSYS-001" ); 

  } 

 } 

 

  



 

290 

/** 

  * getTutorialSBLocal  

  * 

  * @return TutorialSBLocal  

  * 

  * @throws CException  

  */ 

 private TutorialSBLocal getTutorialSBLocal(  ) throws CException 

 { 

  try 

  { 

   TutorialSBLocalHome tutorialSBLocalHome = ( TutorialSBLocalHome )  

getServiceLocator(  ).getLocalHome( IJNDI.JNDI_TUTORIAL_SB_LOCAL ); 

 

   return tutorialSBLocalHome.create(  ); 

  } 

  catch ( Exception ex ) 

  { 

   log.error( ex.getMessage(  ), ex ); 

   throw getExceptionHandler(  ).generateError( "ERSERV-001" ); 

  } 

 } 

 

 /** 

  * demote  

  * 

  * @param subTutorialDO  

  * @param studentDO  

  * 

  * @return double 

  * 

  * @throws CException  

  */ 

 private double demote( SubTutorialDO subTutorialDO, StudentDO studentDO ) throws CException 

 { 

  double minCP = 0.0d; 

 

  Collection prSubTopicDOs = tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId(  

subTutorialDO.getTutorialDO(  ).getSysId(  ) ); 

 

  if ( ( prSubTopicDOs != null ) && ( prSubTopicDOs.size(  ) > 0 ) ) 

  { 

   double[] cps = new double[ prSubTopicDOs.size(  ) ]; 

   Iterator itr = prSubTopicDOs.iterator(  ); 

 

   for ( int i = 0; itr.hasNext(  ); i++ ) 

   { 

    SubTopicDO _DO = ( SubTopicDO ) itr.next(  ); 

    TutorialCPDO cpDO = tutorialDAO.findTutorialCP( _DO.getSysId(  ),  

studentDO.getUserDO(  ).getSysId(  ) ); 

 

    if ( cpDO.getTotalCorrect(  ) != cpDO.getTotalQuestions(  ) ) 

    { 

     if ( cpDO.getTotalCorrect(  ) == 0 ) 

     { 

      cps[ i ] = 0.01; 

     } 

     else 



 

291 

     { 

cps[ i ] = preTestHelper.getConditionalProbability(  

cpDO.getTotalQuestions(  ),  

cpDO.getTotalCorrect(  ) - 1, 4 ); 

     } 

    } 

    else 

    { 

     cps[ i ] = cpDO.getCp(  ); 

    } 

   } 

   minCP = tutorialHelper.getAverageCP( cps ); 

  } 

  return minCP; 

 } 

 

 /** 

  * findNextSubTutorialDO  

  * 

  * @param currentSelectedSubTutorialDO  

  * @param studentDO  

  * 

  * @return SubTutorialDO 

  * 

  * @throws CException 

  */ 

 public SubTutorialDO findNextSubTutorialDO( SubTutorialDO currentSelectedSubTutorialDO,  

StudentDO studentDO ) throws CException 

 { 

  TutorialDO nextTutorialDO = null; 

  SubTutorialDO nextSelectedSubTutorialDO = null; 

  Collection nextSubTutorialDOs = null; 

 

  //obtain next sub-tutorial or tutorial 

  log.debug( "Obtaining next sub-tutorial or tutorial" ); 

 

  Collection currentSubTutorialDOs = tutorialDAO.findSubTutorialsByTutorialSysId(  

currentSelectedSubTutorialDO.getTutorialDO(  ).getSysId(  ) ); 

  Collection allTutorialDOs = tutorialDAO.findAllTutorials(  ); 

 

  Iterator itr = currentSubTutorialDOs.iterator(  ); 

 

  while ( itr.hasNext(  ) ) 

  { 

   SubTutorialDO _DO = ( SubTutorialDO ) itr.next(  ); 

 

   if ( _DO.getSysId(  ) == currentSelectedSubTutorialDO.getSysId(  ) ) 

   { 

    //next sub-tutorial 

    if ( itr.hasNext(  ) ) 

    { 

     log.debug( "Obtaining Next Sub-Tutorial" ); 

 

     nextSelectedSubTutorialDO = ( SubTutorialDO ) itr.next(  ); 

     nextTutorialDO = nextSelectedSubTutorialDO.getTutorialDO( ); 

     nextSubTutorialDOs = currentSubTutorialDOs; 

 

     break; 



 

292 

    } 

//next tutorial 

    else 

    { 

     //Check if the student is at pre-tutorial 

     try 

     { 

      PreTutorialStackDO stackDO =  

tutorialDAO.findPreTutorialStackDO(  

currentSelectedSubTutorialDO.getTutorialDO 

(  ).getSysId(  ), studentDO.getSysId(  ) ); 

      SubTutorialDO parentSubTutorialDO =  

tutorialDAO.findSubTutorialBySysId(  

stackDO.getParentSubTutorialSysId(  ) ); 

 

      //clear the stackDO 

      tutorialDAO.deletePreTutorialStack( stackDO ); 

 

      //return previous sub tutorial 

      return parentSubTutorialDO; 

     } 

     catch ( Exception ex ) 

     { 

      //move on... 

     } 

 

     log.debug( "Obtaining Next Tutorial" ); 

 

     Iterator itr2 = allTutorialDOs.iterator(  ); 

 

     while ( itr2.hasNext(  ) ) 

     { 

      TutorialDO tDO = ( TutorialDO ) itr2.next(  ); 

 

      if ( tDO.getSysId(  ) ==  

currentSelectedSubTutorialDO.getTutorialDO 

(  ).getSysId(  ) ) 

      { 

       //next tutorial 

       if ( itr2.hasNext(  ) ) 

       { 

        log.debug( "Found Next Tutorial" ); 

 

        nextTutorialDO = ( TutorialDO )  

itr2.next(  ); 

        nextSubTutorialDOs =  

tutorialDAO.findSubTutorialsByTuto 

rialSysId( nextTutorialDO.getSysId(  

) ); 

        nextSelectedSubTutorialDO = (  

SubTutorialDO )  

nextSubTutorialDOs.iterator(  ).next(  

); 

 

        break; 

       } 

       else 

       { 



 

293 

        //consider end! 

       } 

      } 

     } 

    } 

   } 

  } 

 

  return nextSelectedSubTutorialDO; 

 } 

 

 /** 

  * findPreRequisiteCp 

  * 

  * @param prSubTopicDOs  

  * @param studentDO 

  * 

  * @return double 

  * 

  * @throws CException 

  */ 

 private double findPreRequisiteCp( Collection prSubTopicDOs, StudentDO studentDO )  

throws CException 

 { 

  double cp = 0.0; 

 

  if ( ( prSubTopicDOs != null ) && ( prSubTopicDOs.size(  ) > 0 ) ) 

  { 

   double[] cps = new double[ prSubTopicDOs.size(  ) ]; 

   Iterator itr = prSubTopicDOs.iterator(  ); 

 

   for ( int i = 0; itr.hasNext(  ); i++ ) 

   { 

    SubTopicDO _DO = ( SubTopicDO ) itr.next(  ); 

    TutorialCPDO cpDO = tutorialDAO.findTutorialCP( _DO.getSysId(  ),  

studentDO.getUserDO(  ).getSysId(  ) ); 

    cps[ i ] = cpDO.getCp(  ); 

   } 

 

   cp = tutorialHelper.getAverageCP( cps ); 

  } 

 

  return cp; 

 } 

 

 



 

294 

/** 

  * promote 

  * 

  * @param subTutorialDO 

  * @param studentDO 

  * 

  * @return promote  

  * 

  * @throws CException  

  */ 

 private double promote( SubTutorialDO subTutorialDO, StudentDO studentDO ) throws CException 

 { 

  double minCP = 0.0d; 

 

  Collection prSubTopicDOs = tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId(  

subTutorialDO.getTutorialDO(  ).getSysId(  ) ); 

 

  if ( ( prSubTopicDOs != null ) && ( prSubTopicDOs.size(  ) > 0 ) ) 

  { 

   double[] cps = new double[ prSubTopicDOs.size(  ) ]; 

   Iterator itr = prSubTopicDOs.iterator(  ); 

 

   for ( int i = 0; itr.hasNext(  ); i++ ) 

   { 

    SubTopicDO _DO = ( SubTopicDO ) itr.next(  ); 

    TutorialCPDO cpDO = tutorialDAO.findTutorialCP( _DO.getSysId(  ),  

studentDO.getUserDO(  ).getSysId(  ) ); 

 

    if ( cpDO.getTotalCorrect(  ) != cpDO.getTotalQuestions(  ) ) 

    { 

     cps[ i ] = preTestHelper.getConditionalProbability(  

cpDO.getTotalQuestions(  ), cpDO.getTotalCorrect(  ) + 1, 4 ); 

    } 

    else 

    { 

     cps[ i ] = cpDO.getCp(  ); 

    } 

   } 

 

   minCP = tutorialHelper.getAverageCP( cps ); 

  } 

 

  return minCP; 

 } 

 

  



 

295 

/** 

  * updateCp  

  * 

  * @param subTutorialDO  

  * @param studentDO  

  * 

  * @throws CException  

  */ 

 private void updateCp( SubTutorialDO subTutorialDO, StudentDO studentDO ) throws CException 

 { 

  log.debug( "================================" ); 

  log.debug( "Entering updateCp" ); 

  log.debug( "================================" ); 

 

  //Obtain number of attempts from previous tutorial tracker 

  int noOfAttempts = tutorialDAO.findNoOfAttempts( subTutorialDO.getSysId(  ),  

studentDO.getSysId(  ) ); 

 

  //Check no. of attempts and update the student model accordingly 

Collection preRequisiteSubTopicDOs =  

tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId 

( subTutorialDO.getTutorialDO(  ).getSysId(  ) ); 

  double currentCP = this.findPreRequisiteCp( preRequisiteSubTopicDOs, studentDO ); 

 

  //find tutorial track records of the same sub tutorial 

  boolean fromBriefExplanation = false; 

  boolean fromPreTestReview = false; 

  boolean fromPreTutoring = false; 

  boolean fromDemo = false; 

 

  try 

  { 

   tutorialDAO.findTutorialTrackDO( studentDO.getSysId(  ),  

subTutorialDO.getSysId(  ),  

ITutorialPath.ROUTE_FROM_BRIEF_EXPLANATION ); 

   fromBriefExplanation = true; 

  } 

  catch ( Exception ex ) 

  { 

   //Absorb 

  } 

 

  try 

  { 

   tutorialDAO.findTutorialTrackDO( studentDO.getSysId(  ),  

subTutorialDO.getSysId(  ),  

ITutorialPath.ROUTE_FROM_FROM_PRE_TEST_REVIEW ); 

   fromPreTestReview = true; 

  } 

  catch ( Exception ex ) 

  { 

   //Absorb 

  } 

 

   



 

296 

try 

  { 

   tutorialDAO.findTutorialTrackDO( studentDO.getSysId(  ),  

subTutorialDO.getSysId(  ), ITutorialPath.ROUTE_FROM_PRE_TUTORIAL ); 

   fromPreTutoring = true; 

  } 

  catch ( Exception ex ) 

  { 

   //Absorb 

  } 

 

  try 

  { 

   tutorialDAO.findTutorialTrackDO( studentDO.getSysId(  ),  

subTutorialDO.getSysId(  ), ITutorialPath.ROUTE_FROM_FROM_DEMO ); 

   fromDemo = true; 

  } 

   

catch ( Exception ex ) 

  { 

   //Absorb 

  } 

 

  boolean update = false; 

  double newCP = currentCP; 

 

  log.debug( "noOfAttempts: " + noOfAttempts ); 

  log.debug( "currentCP: " + currentCP ); 

 

  //Bottom up 

  //First Attempt 

  if ( noOfAttempts == 0 ) 

  { 

   if ( currentCP > 0.8 ) 

   { 

    if ( fromPreTutoring || fromDemo ) 

    { 

     newCP = demote( subTutorialDO, studentDO ); 

     update = true; 

    } 

    else if ( fromPreTestReview ) 

    { 

     newCP = 0.6d; 

     update = true; 

    } 

   } 

   else if ( ( currentCP >= 0.6 ) && ( currentCP <= 0.8 ) ) 

   { 

    if ( fromDemo ) 

    { 

     newCP = demote( subTutorialDO, studentDO ); 

     update = true; 

    } 

    else if ( fromPreTutoring ) 

    { 

     newCP = 0.6d; 

     update = true; 

    } 



 

297 

   } 

   else 

   { 

    if ( fromDemo ) 

    { 

     newCP = 0.01d; 

     update = true; 

    } 

   } 

  } 

 

  //More than one attempts 

  else if ( noOfAttempts == 1 ) 

  { 

   if ( currentCP > 0.8 ) 

   { 

    if ( !fromBriefExplanation && !fromPreTestReview &&  

!fromPreTutoring && !fromDemo ) 

    { 

     newCP = 1.0d; 

     update = true; 

    } 

    else if ( fromPreTestReview || fromPreTutoring || fromDemo ) 

    { 

     newCP = demote( subTutorialDO, studentDO ); 

     update = true; 

    } 

    else if ( fromBriefExplanation ) 

    { 

     newCP = 0.6d; 

     update = true; 

    } 

   } 

   else if ( ( currentCP >= 0.6 ) && ( currentCP <= 0.8 ) ) 

   { 

    if ( fromPreTutoring || fromDemo ) 

    { 

     newCP = demote( subTutorialDO, studentDO ); 

     update = true; 

    } 

    else if ( fromPreTestReview ) 

    { 

     newCP = 0.6d; 

     update = true; 

    } 

   } 

   else 

   { 

    if ( fromDemo ) 

    { 

     newCP = demote( subTutorialDO, studentDO ); 

     update = true; 

    } 

    else if ( fromPreTutoring ) 

    { 

     newCP = 0.6d; 

     update = true; 

    } 



 

298 

   } 

  } 

 

  //The rest 

  else 

  { 

   update = true; 

   newCP = demote( subTutorialDO, studentDO ); 

  } 

 

  //Update the cp 

  if ( update ) 

  { 

   Collection prSubTopicDOs =  

tutorialDAO.findPreRequisiteSubTopicsByTutorialSysId(  

subTutorialDO.getTutorialDO(  ).getSysId(  ) ); 

 

   if ( ( prSubTopicDOs != null ) && ( prSubTopicDOs.size(  ) > 0 ) ) 

   { 

    Iterator itr = prSubTopicDOs.iterator(  ); 

 

    while ( itr.hasNext(  ) ) 

    { 

     SubTopicDO _DO = ( SubTopicDO ) itr.next(  ); 

 

     TutorialCPDO cpDO = tutorialDAO.findTutorialCP(  

_DO.getSysId(), studentDO.getUserDO().getSysId()); 

     cpDO.setCp( newCP ); 

     tutorialDAO.updateTutorialCPDO( cpDO ); 

    } 

   } 

  } 

 } 

} 

 



 

299 

Appendix J – Fuzzy Rules Table 

 

Note:  Linguistic Variable    Linguistic Value 

 p = Conditional Probabilities VL = Very Low 

 t   =  Time    VS = Very Short 

 a  =  Attempts   S =  Short 

 h  =  Hints    L =  Low/Long 

 u  =  Understanding   M = Medium 

       H = High 

 

 R = Rule    N = Novice  

B = Beginner 

I = Intermediate 

A = Advanced  

 
R p t a h u R p t a h u R p t a h u R p t a h u 

1 VL VS VL VL B 17 VL VS VL L I 33 VL VS VL M I 49 VL VS VL H B 

2 L VS VL VL I 18 L VS VL L I 34 L VS VL M B 50 L VS VL H B 

3 M VS VL VL I 19 M VS VL L I 35 M VS VL M I 51 M VS VL H I 

4 H VS VL VL A 20 H VS VL L A 36 H VS VL M I 52 H VS VL H I 

5 VL S VL VL B 21 VL S VL L B 37 VL S VL M B 53 VL S VL H B 

6 L S VL VL B 22 L S VL L B 38 L S VL M B 54 L S VL H B 

7 M S VL VL I 23 M S VL L I 39 M S VL M I 55 M S VL H B 

8 H S VL VL A 24 H S VL L A 40 H S VL M I 56 H S VL H I 

9 VL M L VL B 25 VL M L L I 41 VL M L M B 57 VL M L H N 

10 L M L VL B 26 L M L L B 42 L M L M B 58 L M L H B 

11 M M L VL I 27 M M L L I 43 M M L M I 59 M M L H B 

12 H M L VL I 28 H M L L I 44 H M L M I 60 H M L H I 

13 VL L L VL B 29 VL L L L B 45 VL L L M B 61 VL L L H N 

14 L L L VL B 30 L L L L B 46 L L L M B 62 L L L H B 

15 M L L VL I 31 M L L L I 47 M L L M I 63 M L L H B 

16 H L L VL I 32 H L L L B 48 H L L M B 64 H L L H B 

 

 
R p t a h u R p t a h u R p t a h u R p t a h u 

65 VL VS M VL B 81 VL VS M L I 97 VL VS VL M B 113 VL VS M H B 

66 L VS M VL B 82 L VS M L I 98 L VS VL M B 114 L VS M H B 

67 M VS M VL I 83 M VS M L I 99 M VS VL M I 115 M VS M H B 

68 H VS M VL A 84 H VS M L A 100 H VS VL M I 116 H VS M H I 

69 VL S M VL B 85 VL S M L I 101 VL S VL M B 117 VL S M H B 

70 L S M VL B 86 L S M L I 102 L S VL M B 118 L S M H B 

71 M S M VL I 87 M S M L I 103 M S VL M I 119 M S M H I 

72 H S M VL A 88 H S M L A 104 H S VL M I 120 H S M H I 

73 VL M H VL B 89 VL M H L B 105 VL M L M I 121 VL M H H B 

74 L M H VL B 90 L M H L B 106 L M L M I 122 L M H H B 

75 M M H VL I 91 M M H L I 107 M M L M I 123 M M H H I 

76 H M H VL I 92 H M H L I 108 H M L M I 124 H M H H I 

77 VL L H VL B 93 VL L H L B 109 VL L L M B 125 VL L H H N 

78 L L H VL B 94 L L H L B 110 L L L M B 126 L L H H N 

79 M L H VL B 95 M L H L I 111 M L L M I 127 M L H H B 

80 H L H VL I 96 H L H L I 112 H L L M I 128 H L H H I 

 

 



 

300 

Appendix K – build.xml 

 

<?xml version="1.0" encoding="UTF-8" ?>  

- <project basedir="." default="help" name="ITS"> 

- <!--  
 Static Properties  

  -->  

  <property name="file.its.ear" value="its.ear" />  

  <property name="file.resources.jar" value="resources.jar" />  

- <!--  
 End of Static Properties  

  -->  

- <!--  
 Development Properties  

  -->  

  <property name="build" location="build" />  

  <property name="build.classes" location="${build}/classes" />  

  <property name="conf" location="conf" />  

  <property name="conf.ear" location="${conf}/ear" />  

  <property name="conf.ejb" location="${conf}/ejb" />  

  <property name="conf.hibernate" location="${conf}/hibernate" />  

  <property name="conf.properties" location="${conf}/properties" />  

  <property name="conf.spring" location="${conf}/spring" />  

  <property name="conf.jboss" location="${conf}/jboss" />  

  <property name="conf.webwork" location="${conf}/webwork" />  

  <property name="conf.xml" location="${conf}/xml" />  

  <property name="dist" location="dist" />  

  <property name="docs" location="docs" />  

  <property name="lib" location="lib" />  

  <property name="setup" location="setup" />  

  <property name="setup.mysql" location="${setup}/mysql" />  

  <property name="src" location="src" />  

  <property name="test" location="test" />  

  <property name="test.report" location="${test}/report" />  

  <property name="webapp" location="webapp" />  

  <property name="webapp.web-inf" location="${webapp}/WEB-INF" />  

  <property name="webapp.src" location="${webapp.web-inf}/src" />  

  <property name="webapp.classes" location="${webapp.web-inf}/classes" />  

- <!--  
 End of Development Properties  

  -->  

- <!--  
 Deployment Properties  

  -->  

  <property file="build.properties" />  

- <!--  
 End of Deployment Properties  

  -->  

- <!--  

../../../../../../../ITS/build.xml##


 

301 

Classpath Definition  

  -->  

- <path id="ccpath"> 

  <pathelement path="${build.classes}" />  

  <pathelement path="${conf.dev.properties}" />  

  <pathelement path="${conf.hibernate}" />  

  <pathelement path="${conf.spring}" />  

- <fileset dir="${lib}"> 

  <include name="**/*.jar" />  

  </fileset> 

- <fileset dir="${jboss.default.deploy}/jbossweb-tomcat55.sar"> 

  <include name="**/*.jar" />  

  </fileset> 

  </path> 

- <!--  
 End of Classpath Definition  

  -->  

- <!--  
 Task Definition  

  -->  

- <!--  
<taskdef name="junit" classname="org.apache.tools.ant.taskdefs.optional.junit.JUnitTask" 

classpathref="dev.ccpath"/> 

  -->  

  <taskdef name="jasper2" classname="org.apache.jasper.JspC" classpathref="ccpath" />  

- <!--  
 End of Task Definition  

  -->  

- <!--  
 Initialize Directories  

  -->  

- <target name="init"> 

  <mkdir dir="${build.classes}" />  

  <mkdir dir="${dist}" />  

  <mkdir dir="${test.report}" />  

  <mkdir dir="${webapp.classes}" />  

  <mkdir dir="${webapp.src}" />  

  </target> 

- <!--  
 Compile the Source Codes  

  -->  

- <target name="compile" depends="init"> 

  <javac debug="true" srcdir="${src}" destdir="${build.classes}" classpathref="ccpath" optimize="on" />  

  <javac debug="true" srcdir="${test}" destdir="${build.classes}" classpathref="ccpath" optimize="on" />  

  </target> 

- <!--  
 Pre-Compile JSP  

  -->  

- <target name="jsp-compile" depends="compile"> 

  <delete includeEmptyDirs="true" dir="${webapp.src}" />  

- <delete includeEmptyDirs="true"> 

- <fileset dir="${webapp.classes}"> 

  <include name="**/*.*" />  

  </fileset> 

  </delete> 

  <delete file="${webapp}/generated_web.xml" />  

../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##


 

302 

  <jasper2 validateXml="false" uriroot="${webapp}" webXmlFragment="${webapp}/WEB-

INF/generated_web.xml" outputDir="${webapp}/WEB-INF/src" />  

  <javac debug="true" srcdir="${webapp.src}" destdir="${webapp.classes}" classpathref="ccpath" 

optimize="on" />  

  </target> 

- <!--  
 Setup JBoss  

  -->  

- <target name="setup-jboss"> 

  <delete dir="${jboss.its}" includeemptydirs="true" />  

  <mkdir dir="${jboss.its}" />  

- <copy todir="${jboss.its}" overwrite="true"> 

- <fileset dir="${jboss.default}"> 

  <include name="*/**" />  

  </fileset> 

  </copy> 

- <copy todir="${jboss.its.deploy}" overwrite="true"> 

- <fileset dir="${conf.jboss}"> 

  <include name="mysql-ds.xml" />  

  </fileset> 

  </copy> 

- <copy todir="${jboss.its.conf}" overwrite="true"> 

- <fileset dir="${conf.jboss}"> 

  <include name="log4j.xml" />  

  </fileset> 

  </copy> 

- <copy todir="${jboss.its.lib}" overwrite="true"> 

- <fileset dir="${lib}"> 

  <exclude name="j2ee.jar" />  

  <exclude name="mail.jar" />  

  <exclude name="ant*.jar" />  

  <exclude name="log4j*.jar" />  

  </fileset> 

  </copy> 

  </target> 

- <!--  
 Build the source codes only (clean)  

  -->  

  <target name="build" depends="clean, compile, jsp-compile" />  

- <!--  
 Clean up the build directory  

  -->  

- <target name="clean"> 

- <delete includeEmptyDirs="true" failonerror="false"> 

- <fileset dir="${build}"> 

  <include name="**/*" />  

  </fileset> 

- <fileset dir="${dist}"> 

  <include name="**/*" />  

  </fileset> 

- <fileset dir="${test.report}"> 

  <include name="**/*" />  

  </fileset> 

  </delete> 

  <delete dir="${build.classes}" failonerror="false" />  

  <mkdir dir="${build.classes}" />  

  </target> 

- <!--  

../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##


 

303 

  



 

304 

Distribute the Enterprise Application  

  -->  

- <target name="dist" depends="build, resource-compile, lib-compile, ejb-compile, web-compile"> 

- <ear destfile="${dist}/${file.its.ear}" appxml="${conf.ear}/application.xml" update="true"> 

- <fileset dir="${build}"> 

  <exclude name="**/sb/**" />  

  <exclude name="**/classes/**/*" />  

  </fileset> 

  </ear> 

  </target> 

- <!--  
 Deploy the web-app  

  -->  

- <target name="web-compile" depends="jsp-compile"> 

- <copy todir="${webapp}"> 

- <fileset dir="${conf.xml}"> 

  <include name="itssyntax.dtd" />  

  </fileset> 

  </copy> 

- <jar destfile="${build}/its.war" update="true"> 

- <fileset dir="${webapp}"> 

  <exclude name="sub-web.xml" />  

  <exclude name="**/generated_web.xml" />  

  <exclude name="**/classes/**" />  

  <exclude name="**/src/**" />  

  </fileset> 

  </jar> 

  </target> 

- <!--  
 Compile the neccessary libraries  

  -->  

- <target name="lib-compile"> 

- <!--  
 copy other external libraries into the deploy folder  

  -->  

- <!--  
        <copy todir="${build.lib}"> 

            <fileset dir="${lib}"> 

                <exclude name="j2ee.jar"/> 

                <exclude name="log4j*.jar"/> 

                <exclude name="junit*.jar"/> 

                <exclude name="ant*.jar"/> 

            </fileset> 

        </copy> 

         

  -->  

  </target> 

- <!--  
 Compile all the resources (e.g. Hibernate Config, Spring Config and other property files)  

  -->  

- <target name="resource-compile"> 

- <jar destfile="${build}/${file.resources.jar}" update="true"> 

- <fileset dir="${conf.hibernate}"> 

  <include name="*.hbm.xml" />  

  </fileset> 

- <fileset dir="${conf.properties}"> 

  <include name="*.properties" />  

../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##


 

305 

  </fileset> 

- <fileset dir="${conf.spring}"> 

  <include name="*.xml" />  

  </fileset> 

- <fileset dir="${conf.webwork}"> 

  <include name="*.xml" />  

  </fileset> 

- <fileset dir="${build.classes}"> 

  <exclude name="**/sb/**" />  

  </fileset> 

  </jar> 

  </target> 

- <!--  
 Invoke the JBoss EJB Compilation  

  -->  

- <target name="ejb-compile" depends="compile"> 

  <ant antfile="${conf.ejb}/admin/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  <ant antfile="${conf.ejb}/authentication/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  <ant antfile="${conf.ejb}/estudent/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  <ant antfile="${conf.ejb}/pretest/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  <ant antfile="${conf.ejb}/posttest/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  <ant antfile="${conf.ejb}/student/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  <ant antfile="${conf.ejb}/topic/ejb-build.xml" target="ejb-compile" inheritAll="true" inheritRefs="true" 

/>  

  <ant antfile="${conf.ejb}/tutor/ejb-build.xml" target="ejb-compile" inheritAll="true" inheritRefs="true" 

/>  

  <ant antfile="${conf.ejb}/tutorial/ejb-build.xml" target="ejb-compile" inheritAll="true" 

inheritRefs="true" />  

  </target> 

- <!--  
 Perform unit test  

  -->  

- <target name="test" depends="compile"> 

- <junit printsummary="yes" haltonfailure="no" fork="yes" showoutput="yes"> 

  <classpath refid="ccpath" />  

  <formatter type="xml" />  

- <batchtest todir="${test.report}"> 

- <fileset dir="${build.classes}"> 

  <include name="test/**/*Test.class" />  

  </fileset> 

  </batchtest> 

  </junit> 

- <junitreport todir="${test.report}"> 

- <fileset dir="${test.report}"> 

  <include name="*.xml" />  

  </fileset> 

  <report format="frames" todir="${test.report}" />  

  </junitreport> 

  </target> 

- <!--  
  

../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##


 

306 

Development Deploy (Only for Developent)  

  -->  

- <target name="deploy" depends="dist"> 

- <copy todir="${jboss.its.deploy}"> 

- <fileset dir="${dist}"> 

  <include name="${file.its.ear}" />  

  </fileset> 

  </copy> 

  </target> 

  <target name="cancel" />  

  <target name="redeploy" depends="dist" />  

  <target name="undeploy" />  

- <!--  
 Print the HELP menu  

  -->  

- <target name="help"> 

- <!--  
 to be implemented  

  -->  

  </target> 

  </project> 

 

 

 

../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##
../../../../../../../ITS/build.xml##


 

307 

Appendix L – List of C++ STL vector Topics and Sub-Topics 

 

 

Topic: C++ STL vector 

 

Sub-Topics: 

 

1 Populate using iterator 

2 Output using subscript 

3 Output using iterator 

4 Accessing member function 

5 Using operator << 

6 Using operator >> 

7 Iterator - Forward RW 

8 Iterator - Reverse RW 

9 Iterator - Forward R 

10 Iterator - Reverse R 

11 Populate using member function 

12 Description 

  

 

 


