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Abstract 

In the past decade, rapid advancements of nanofluids science in many areas have been 

observed. In recent years, refrigerant-based nanofluids have been introduced as 

nanorefrigerants due to their better heat transfer performance. The objectives of this 

research include preparation, characterization and investigation of the thermophysical 

and migration properties of nanorefrigerants. Al2O3/R141b and TiO2/R141b 

nanorefrigerants with various proportions of concentrations have been prepared to 

investigate their fundamental properties. Nanoparticles size, shape, and elemental 

proportion have been characterized with Field Emission Scanning Electron Microscope 

(FESEM) and Transmission Electron Microscope (TEM). Moreover, this study 

investigated thermal conductivity, viscosity, and density of Al2O3/R141b 

nanorefrigerants for different concentrations and temperatures. In addition, migration 

properties of Al2O3 and TiO2 nanoparticles with R141b refrigerant along with 

lubricating oil have been investigated for different heat fluxes, initial liquid level 

heights, vessel sizes, insulation, nanoparticle sizes, and oil mixture. In this study, the 

thermal conductivity of Al2O3/R141b nanorefrigerant increased with the augmentation 

of particle concentration and temperature. Besides, viscosity and density of the 

nanorefrigerant increased with the increase of volume fractions. However, these 

parameters decreased accordingly with the increment of temperature. Migration of 

nanoparticles during pool boiling increased with the increase of initial nanoparticle 

mass fraction, nanoparticle size, heat flux, and insulation. However, migration of 

nanoparticles decreased with the increase of particle’s self-density, boiling vessel size, 

and initial liquid level height. Therefore, nanoparticle has strong relationship with 

thermophysical and migration properties of refrigerants.  
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Abstrak 

Dalam dekad yang lalu, kemajuan pesat sains “nanofluids” dalam banyak bidang telah 

diperhatikan. Dalam tahun-tahun kebelakangan ini, “nanofluids” berasaskan penyejuk 

telah diperkenalkan sebagai “nanorefrigerants” kerana prestasi pemindahan habanya 

yang lebih baik. Objektif kajian ini termasuk penyediaan, pencirian dan penyiasatan 

termofizikal dan sifat penghijrahan “nanorefrigerants”. Al2O3/R141b dan TiO2/R141b 

“nanorefrigerants” dengan pelbagai nisbah campuran telah disediakan untuk disiasat 

sifat-sifat asasnya. Saiz nanopartikel, bentuk dan nisbah unsur-unsur telah dicirikan 

dengan Pengimbasan Mikroskop Elektron Pancaran Medan (FESEM) dan Mikroskop 

Transmisi Elektron (TEM). Selain itu, kajian ini telah menyiasat kekonduksian terma, 

kelikatan dan ketumpatan “nanorefrigerants” Al2O3/R141b untuk nisbah campuran dan 

suhu yang berbeza. Di samping itu, sifat penghijrahan Al2O3 dan TiO2 nanopartikel 

dengan penyejuk R141b berserta minyak pelincir telah disiasat bagi fluks haba yang 

berbeza, ketinggian tahap cecair awal, saiz vesel, penebatan, saiz nanopartikel, dan 

campuran minyak. Dalam kajian ini, kekonduksian haba nanorefrigerant Al2O3/R141b 

meningkat dengan penambahan kepekatan zarah dan suhu. Selain itu, kelikatan dan 

ketumpatan nanorefrigerant meningkat dengan peningkatan pecahan isi padu. Walau 

bagaimanapun, parameter ini menurun sewajarnya dengan kenaikan suhu. Penghijrahan 

nanopartikel semasa pendidihan tenang meningkat dengan peningkatan pecahan jisim 

nanopartikel awal, saiz nanopartikel, fluks haba dan penebat. Walau bagaimanapun, 

penghijrahan nanopartikel menurun dengan peningkatan ketumpatan diri-zarah, saiz 

vesel mendidih dan tahap ketinggian cecair awal. Oleh itu, nanopartikel mempunyai 

hubungan yang kukuh dengan sifat termofizikal dan penghijrahan penyejuk. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Optimization of engineering devices,  which include heat transfer mechanisms, has been 

the major focus of many researches since it can substantially affect the efficiency and 

the performance of those systems. There are various ways to achieve this goal including 

augmentation of heat transfer area or increasing the heat transfer coefficients of a fluid. 

The former is usually tried to be avoided due to the fact that it could cause the bulkiness 

of the device. The latter way, however, has been implemented by changing different 

parameters. A recently introduced means of increasing the heat transfer rate includes the 

utilization of nanofluids. Nanofluids are the mixture of solid nanoparticles with a base 

fluid. This is a special type of heat transfer fluid which has higher thermal conductivity 

than that of the conventional host fluids (e.g. ethylene glycol, water, propylene glycol, 

engine oil, and so on). Nanoparticles that used to prepare nanofluids are basically metals 

(e.g. Cu, Ni, Al, etc.), oxides (e.g. Al2O3, TiO2, CuO, SiO2, Fe2O3, Fe3O4, BaTiO3, etc.) 

and some other compounds (e.g. CNT, SiC, CaCO3, TNT, etc.) with a size of 1-100 nm. 

Figure 1.1 shows some real life examples of nanometer to millimeter scale substances. 

For very small size and large specific surface areas of the nanoparticles, nanofluid 

possess better heat transfer properties like: high thermal conductivity, less clogging in 

flow passages, long-term stability, and homogeneity (Chandrasekar et al., 2010; Peng et 

al., 2011c). Extensive studies  have done to clarify the performance of these colloidal 

suspensions unanimously state that the suspension of particles leads to augmentation in 

the thermal conductivity and diffusivity. Large enhancements in thermal conductivity at 

even low volume concentrations  for metallic particles (Das et al., 2006) and 

enhancement on the thermal conductivity when augmenting the volume concentration 

(Xuan & Li, 2000) are among these observations. 
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Figure 1.1: Some real life examples of nanometer to millimeter scale substances 

(Serrano et al., 2009). 

 

Figure 1.2 shows that, at the ambient temperatures, thermal conductivity of metallic 

solids is an order-of-magnitude greater than that of fluids ( e.g. thermal conductivity of 

copper is about 700 and 3000 times greater than the thermal conductivity of water and 

engine oil, respectively). Conventional heat transfer fluids like water, propylene glycol, 

ethylene glycol, and refrigerants have very low thermal conductivity. As a result their 

heat transfer performance is also very poor. However, some solids (metal, metal oxide 

and other composites) have very high thermal conductivity. Therefore, thermal 

conductivity of the solid metallic or non-metallic particles suspended fluids are 

significantly higher than the thermal conductivity of the traditional heat transfer fluids 

(Murshed et al., 2008a). Since the heat transfer performance is directly proportional to 

the thermal conductivity of a substance. Then, the idea came to use the mixture of solid 

particles with fluid to increase the heat transfer properties. But the problem is clogging 

on the flow passages. Therefore, the researchers proposed to use nano grade solid 

particles in the mixture.  

 

Stephen Choi from National Argonne Laboratory (USA) is the pioneer who for the first 

time demonstrated that the use of nanoparticles enhances the heat transfer performances 

of liquids in 1995 (Choi, 1995). Since then a lot of research has been going on 
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tremendously about thermal conductivity, viscosity, density, specific heat, different 

modes of heat transfer, pressure drop, pumping power, different properties of nanofluids 

(e.g. fundamental, thermal, physical, optical, magnetic, etc.), etc. Most widely used heat 

transfer fluids such as water, oil, ethylene glycol (EG), and refrigerants have poor heat 

transfer properties, however their huge applications in the field of power generation, 

chemical processes, heating and cooling processes, transportation, electronics, 

automotive, and other micro-sized applications make the re-processing of these heat 

transfer fluids to have better heat transfer properties reasonably necessary. 

 

 

Figure 1.2: Thermal conductivity of solid and liquid materials at 300 K (Choi et al., 

2004; Murshed et al., 2008a). 

 

Since the invention of the vapor compression refrigeration system in the middle of the 

18
th

 century, the utilization of refrigeration systems have entered in numerous fields. 

The application includes preservation of food and medicine, air-conditioning for 

comfort, and industrial processing. During the refrigeration process a heat carrying 

medium called refrigerant absorb heat from a low temperature system and give off the 

heat to a higher temperature system (Jones & Stoecker, 1982). 
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The nanorefrigerant is one kind of nanofluid, with a refrigerant as its host fluid. 

Recently (since 2005) scientists are trying to work on nanorefrigerant a kind of 

nanofluids to enhance the heat transfer performance in refrigeration and air-conditioning 

systems (Bi et al., 2011; Bi & Shi, 2007; Bi et al., 2008). Since then, numerous 

experiments are going on about nanorefrigerants. Wang et al. (2005) introduced the 

term “nanorefrigerants” for the first time. Like the rest of the nanofluids, this type of 

refrigerants have shown enhanced thermal conductivity and heat transfer performance 

(Jiang et al., 2009a). Since the energy efficiency of air conditioning and refrigerators 

can be influenced by adding nanoparticles into the refrigerants, recently some research 

has been done in this area (Bi et al., 2008; Saidur et al., 2011; Wang et al., 2003).  

1.2 Importance of nanorefrigerant study 

Refrigerants are widely used in refrigeration and air conditioning systems in industry 

and commercial buildings. About 20-50% of total energy is used by these systems in 

industry and commercial buildings. Moreover, energy is on the head of “Top Ten” 

global problems of humanity for the next fifty (50) years (Smalley, 2005). 

Nanorefrigerants have the potentiality to enhance heat transfer rate thus making heat 

exchanger of air conditioning and refrigeration systems compact. In addition, they 

decreases the amount of energy needed to operate those systems. This, consequently, 

will reduce energy consumption in these sectors along with reduction in emission, 

global warming potential, and greenhouse gas effect. However, for accurate and reliable 

performance (e.g. heat transfer, energy, and lubricity) investigation; determination of 

fundamental characteristics like: thermal conductivity, viscosity, density, surface 

tensions, and specific heat capacity of nanorefrigerant with varied concentrations need 

to be carried out. 
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There are some literatures on the pool boiling, nucleate boiling, convective heat 

transfer, energy performance, lubricity, and material compatibility of nanorefrigerants. 

It may be noted that these performance parameters are dependent of different properties 

of a fluid or refrigerant (Daungthongsuk & Wongwises, 2007; Trisaksri & Wongwises, 

2007; Wang & Mujumdar, 2007). At the moment, scientists are using mathematical 

relationships/models for thermal conductivity (e.g. Maxwell model (1891), Hamilton 

and Crosser (HC) model (1962), etc.), viscosity (e.g. Einstein model (1906), Brinkman 

model (1952), etc.) of other fluids applying in nanorefrigerants. As different fluids have 

different fundamental properties, the model used may not be suitable for another fluid. 

It is expected that if experimental values of thermophysical properties of 

nanorefrigerants are obtained, it would be more appropriate for better analysis of heat 

transfer, energy performance, lubricity, and so on. 

1.3 Objectives of the research 

Refrigerants are widely used in air conditioning and refrigeration systems. 

Nanorefrigerants could save energy in these sectors. However, very few researchers 

work on nanorefrigerants. Moreover, available information about nanorefrigerants is 

still limited. This study tried to minimize these gaps by preparing, characterizing, and 

analyzing thermal conductivity, viscosity, density, and migration characteristics of 

nanorefrigerants.  

 

The objectives of the research are as follows: 

 To prepare and characterize nanorefrigerants 

 To investigate thermophysical properties (e.g. thermal conductivity, viscosity, 

and density) of nanorefrigerants 

 To analyze migration properties of nanorefrigerants 
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1.4 Outline of the dissertation 

This dissertation comprises five chapters. The contents of the individual chapters have 

been outlined as follows: 

Chapter 1: This chapter starts with some background information about 

nanorefrigerants as well as describing the importance, aim, objectives, and limitations of 

the dissertation.  

Chapter 2: In this chapter, a review of the literature on preparation, characterization, 

thermophysical properties (e.g. thermal conductivity, viscosity, and density), and 

migration properties of nanorefrigerants have been addressed.  

Chapter 3: It describes the experimental set up, materials, procedures and equipment 

that have been used during preparation, characterization, and determination of 

thermophysical properties (e.g. thermal conductivity, viscosity, and density), and 

migration properties of nanorefrigerants.  

Chapter 4: This chapter analyzes the outcomes of preparation, characterization, 

thermophysical properties (e.g. thermal conductivity, viscosity, and density), and 

migration properties of nanorefrigerants. 

Chapter 5: This is the last chapter and wraps up the dissertation with some concluding 

remarks and recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter contains an overview of other related studies, their approach development 

and significance to this study in order to set up the objectives of the research. Pertinent 

literatures in the form of journal articles, reports, conference papers, internet sources, 

and books collected from different sources are used for this study. It may be mentioned 

that about 80–90% of the journal papers collected from most relevant and prestigious 

peer reviewed international referred journals such as International Journal of 

Refrigeration, International Journal of Heat and Mass Transfer, Applied Thermal 

Engineering, Journal of Applied Physics, Applied Physics Letters, Renewable and 

Sustainable Energy Reviews, Journal of Nanoparticle Research, International Journal of 

Thermal Science, etc. Moreover, the substantial amount of relevant information has 

been collected through personal communication with the key researchers around the 

world in this research area.  

2.2 An overview on preparation of nanorefrigerants 

Preparation of nanofluids with traditional fluids is a little bit different from the 

preparation of nanorefrigerants. Generally, two techniques have been using to prepare 

nanofluids: a) single step method and b) two step method. 

 

In a single step method (Eastman et al., 2001; Zhu et al., 2004), both the preparation of 

nanoparticles as well as mixture of nanofluid are done in a joint process. Some 

commonly used  techniques for single step method of nanofluid preparation includes: 

physical vapor deposition (PVD) technique (Eastman et al., 2001) or liquid chemical 

method (Zhu et al., 2004). This single step method has both merits and demerits. One of 
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the most important advantages is the enhanced stability and minimized agglomeration. 

One of the important disadvantages of this method is that just the low pressure fluids 

could be synthesized by this process. 

 

In two step method (Paul et al., 2011; Yu et al., 2011), first nanoparticles are initially 

prepared. Then homogenize into the fluid by some methods such as: high shear (Pak & 

Cho, 1998; Wen & Ding, 2005) and ultrasound (Goharshadi et al., 2009). Figure 2.1 

shows typical nanoparticle preparation methods. Nowadays, nanoparticles are available 

from commercial sources. This method has attracted scientists and commercial users. 

The disadvantage of this method is that the particles quickly agglomerate before 

dispersion and sometimes nanoparticles disperse partially.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Nano particle manufacturing method. 
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Table 2.1 shows typical synthesis method used by the researchers to prepare nanofluids. 

From the table it is clear that, most of the researchers used two step method by ultra-

sonication process for proper dispersion. Only, Garg et al. (2008)  used chemical 

reduction methods for synthesis of nanofluids. Two step methods have also been used to 

prepare nanorefrigerants and nanolubricants. Few researchers (Jiang et al., 2009a; Jiang 

et al., 2009b; Peng et al., 2011a; Peng et al., 2009a) used ultrasonic vibration for 30 

minutes to stabilize the nanorefrigerants. Kedzierski (2011) used ultrasonic vibration for 

24 hours to stabilize the Al2O3/polyolester/R134a (a mixture of nanoparticles with 

lubricants and refrigerants). However, Henderson et al. (2010) prepared the 

nanorefrigerants with direct dispersions of nanoparticles in R134a refrigerants. 

Refrigerants are low temperature fluids and most of the refrigerants are at gaseous state 

at normal temperature and pressure. Hence, this ultra-sonication process is not a correct 

method to prepare nanorefrigerants. There are some refrigerants (e.g. R141b, R113, 

R123, and n-Pentane) are available in liquid form at ambient temperature and pressure. 

However, during ultra-sonication process these refrigerants will start to evaporate even 

before their boiling point. This is because; ultrasonic process creates a force to 

homogenize the solution that causes, refrigerants to start evaporate. Figure 3.1 of 

section 3.3 showed this phenomenon during ultra-sonication process. This would be 

harmful for the operator as well as the surroundings. However, in this experiment two 

step method with ultra-sonication process was used to prepare nanorefrigerant. 

Furthermore, another new type of two step preparation process has been introduced by 

using an incubator shaker. 
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Table 2.1: Summery of different types of synthesis process that have been used by the 

researchers. 

 

Base fluid Nanoparticle  

(diameter in nm) 

Particle volume 

concentration (%) 

Synthesis 

process 

Reference 

DW, EG Al2O3 (28) 1 to 6  Two-step (Wang et al., 1999) 

Water Al2O3 (37) 0.01 to 0.16  Two-step (Tseng & Chun, 2002) 

Terpineol Ni (300) 3 to10  Two-step (Tseng & Chen, 2003) 

Water TiO2 (7–20) 5 to12  Two-step (Tseng & Lin, 2003) 

EG CuO (12) 0.002 Two-step (Kwak & Kim, 2005) 

EG TiO2 (25) 0 to 8 wt % Two-step (Chen et al., 2007a) 

EG TiO2 (25) 0.1 to 1.86   Two-step (Chen et al., 2007b) 

Ethanol SiO2 (35,94 &190) 1.4 to 7  Two-step (Chevalier et al., 2007)  

DW TiO2 (20) 0.024 to 1.18 Two-step (He et al., 2007) 

EG-W(60:40) CuO (29) 0 to 6.12 Two-step (Namburu et al., 2007a) 

EG-W(60:40) SiO2 (20,50 & 100) 0 to10 Two-step (Namburu et al., 2007b) 

EG Cu (200) 0.4 to 2 Single-step (Garg et al., 2008) 

Water, EG Al2O3(10 & above) 5 Two-step (Lu & Fan, 2008) 

DIW, EG  TiO2 (15), Al2O3 (80 & 

150) 

1 to 5 Two-step (Murshed et al., 2008a) 

Water Al2O3 (45&150) 1 to 6 wt % Two-step (Anoop et al., 2009b) 

EG TNT (~10), L=100 nm 0 to 8% mass Two-step (Chen et al., 2009a)  

Water MWCNTs (10–20) 1 wt% Two-step (Garg et al., 2009) 

EG-W(60:40) CuO (30), Al2O3 (45), 

SiO2 (50) 

0 to 6.12 Two-step (Kulkarni et al., 2009)  

DIW  Fe2O3 (20, 40) 0.2 wt %  Two-step (Phuoc & Massoudi, 

2009) 

DIW TiO2 (21) 0.2 to 3 Two-step (Turgut et al., 2009)   

Water  Al2O3 (43) 0.33 to 5 Two-step (Chandrasekar et al., 

2010) 

Car engine 

coolant  

Al2O3 (<50) 0.1 to 1.5  Two-step (Kole & Dey, 2010)  

DW CNT 0.1 to 0.5 wt% Two-step (Ding et al., 2006) 

R113 Cu,Ni,Al,CuO, Al2O3 0.1 to 1.2 Two-step (Jiang et al., 2009b) 

R113 CNT’s 0.2 to 1.0 Two-step (Jiang et al., 2009a) 

Water MWCNT’s  Single-step (Madni et al., 2010) 

PG-water CuO (<50) 0.025 to 1.25 Two-step (Naik et al., 2010) 

DW CaCO3 (20–50) 0.12 to 4.11 Two-step (Zhu et al., 2010) 

Water CuO (23–37, 11±3) 0.05 to 10 wt% Single-step, 

Two-step 

(Pastoriza-Gallego et al., 

2011) 

Water MWCNTs (20–30), 

L=10–30 μm 

0.24 to 1.43 Two-step (Phuoc et al., 2011) 
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2.3 An overview on characterization of nanorefrigerants 

Stability of nanofluids is an important phenomenon that needs to be characterized. If 

nanofluids are not stable, clogging, aggregation and sedimentation would happen that 

decline the performance of suspensions via decreasing thermal conductivity and 

increasing viscosity. Literature about characterization of refrigerant based nanofluid is 

limited however there are some studies have been done based on other fluids. Some 

apparatus and procedures have introduced in literature that can measure the comparative 

stability of nano-suspensions. UV-Visible spectrophotometer, Sediment photograph 

capturing, SEM (Scanning Electron Microscope) and TEM (Transmission Electron 

Microscope) are some well-known instruments that have been used to measure the 

relative stability of nanofluids. 

2.3.1 UV–Visible spectrophotometer 

Generally, UV–Visible spectrophotometer quantitatively illustrates the colloidal 

stability of nanofluids. A UV–Visible spectrophotometer exploits the fact that the 

intensity of the light becomes different by absorption and scattering of light passing 

through a fluid. Normally, nanofluid stability is determined by comparing the 

sedimentation amount versus the sedimentation time.  Nevertheless, this method is not 

suitable for nanofluids with high concentration of particles. Particularly for the case of 

nanofluids with CNT nanoparticles, the dispersions are dark enough to distinguish the 

sediment visibly. For the first time, Jiang et al. (2003) investigated sedimentation 

estimation for nanofluids using UV-Visible spectrophotometer. This method was used 

by Kim et al. (2007) and Lee et al. (2009). To the best of author’s knowledge, there is 

no available literature for the evidence of using UV-Visible spectrophotometer to 

characterize stability of nanorefrigerants. Furthermore, the author had used this method 

to characterize the nanorefrigerants. Figure 1.3 of section 1.3 is the evidence of 

difficulties when using this method for refrigerant based nanofluids. 
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2.3.2 Sediment photograph capturing 

This is a basic, easy and cheap method to find out the sedimentation of suspensions. 

After the preparation of nanofluids, some percentages of the particles will be inside a 

test tube or bottle (the bottles need to be clear enough so that the fluid inside could 

easily be captured by camera). Usually, photos can be captured after certain period of 

time. From the captured photo, sedimentation of suspension can be compared. Peng et 

al. (2009a) used this method to measure the stability of nanorefrigerants. In this study, 

this sediment photograph capturing method has been successfully implemented. 

2.3.3 SEM and TEM  

SEM and TEM are suitable equipment to determine the size, shape, elemental 

composition, and distribution of nanoparticles. Though, they cannot state the real 

condition of nanoparticles in nanofluids, especially when the dried samples are 

measured. There are some specialized electron microscope like Cryogenic electron 

microscope (Cryo-TEM and Cryo-SEM) that could directly monitor the nanoparticles 

aggregation state in nanofluids (Wu et al., 2009). Though these equipment are high 

costly. However, now a days, these methods are widely used to determine the sizes and 

shape of nanoparticles. Throughout this study, both of these types of equipment have 

been used to measure the nanoparticles size, shape, and elemental composition. 

2.4 An overview on thermophysical properties of nanorefrigerants 

This section is divided into three subsections as review of thermal conductivity, 

viscosity, and density of nanorefrigerants. 

2.4.1 Thermal conductivity of nanorefrigerants 

Heat transfer performance is directly related to thermal conductivity of a substance. 

Research is going on tremendously about the thermal conductivity of nanofluids. 
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According to the author’s knowledge, there are two literatures available about thermal 

conductivity of nanorefrigerants. Jiang et al. (2009a) analyzed the thermal conductivity 

of four different types of CNT with R113 refrigerants for a volume concentrations of 

0.2 to 1 %. They modified the Yu-Choi model (Yu & Choi, 2003) and presented a 

correlation to determine the thermal conductivity of CNT nanorefrigerants. Jiang et al. 

(2009b) investigated the thermal conductivity of R113 with Cu, Al, Ni, CuO and Al2O3 

with a controlled volume concentrations of 0.1 to 1.2 %. The authors proposed a model 

based on Wang model (Wang, 2003) for measuring thermal conductivity of 

nanorefrigerants. Furthermore, there are a plenty of literature available about thermal 

conductivity of nanofluids based on water or ethylene glycol. Available literatures could 

be divided into two sections as: effect of volume concentrations and effect of 

temperatures. 

2.4.1(a) Effect of volume fractions on thermal conductivity of nanofluids 

It is well known that the thermal conductivity is increased with increasing the volume 

faction of nano particle. Figure 2.2 shows that thermal conductivity increases with the 

enhancement of particle concentrations.  

 

 

Figure 2.2: Variation of thermal conductivity of nanofluids with different volume 

concentrations of nanoparticles. 
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From the figure it is clear that, in most cases thermal conductivity increases linearly 

(Jang & Choi, 2004; Prasher et al., 2005; Xuan & Li, 2003)  and in some cases increases 

abruptly (Koo & Kleinstreuer, 2005; Vasu et al., 2008). 

2.4.1(b) Influence of temperatures on thermal conductivity of nanofluids 

Besides, it is found that the thermal conductivity is increased accordingly with the 

temperature of the nanofluids. This would be a good reason to apply nanofluids in heat 

exchangers. Figure 2.3 shows that thermal conductivity augmented accordingly with the 

increase of temperatures. It is clear from the figure that, in most cases thermal 

conductivity increases linearly. However, the increment rate is different for different 

researchers; this may be due to various reasons as nanoparticle type, size, and base 

fluid.  

 

 

 

Figure 2.3: Variation of thermal conductivity of nanofluids with different temperatures. 
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There are some existing theoretical formulae to estimate thermal conductivity of 

suspensions. First, Maxwell (1891) proposed the model as:  
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Later on considering the effective thermal conductivity of two-phase mixture, Hamilton 

and Crosser (HC) (1962) proposed a model as: 
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Where, 


3
n  . 

For a binary mixture of homogeneous spherical particles, the Bruggeman model (Hui et 

al., 1999) gives a better estimation compared with other models specially for spherical 

particles is given by:  
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A modified version of , Hamilton and Crosser (HC) is Wasp model (Wasp et al., 1977)  

 
 

pffp

pffp

feff
kkkk

kkkk
kk










2

22
/        (2.5) 

Where,    is the particle concentrations and is measured by 

3
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The difference between Equations (2.2) and (2.5) is that Wasp's model is limited with 

the sphericity 1.0 of the Hamilton and Crosser's model. 
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Yu and Choi (2003) amended the Maxwell correlation to predict the effective thermal 

conductivity of solid and liquid mixtures. 
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This modification was based on interfacial layer of nanofluids that enhances the thermal 

conductivity. But, this renewed Maxwell model is limited to predict the thermal 

conductivity of nanofluids with spherical nanoparticles. After that, the authors extended 

the Hamilton–Crosser model for nanofluids of non-spherical particles to assume the 

effect of a solid/liquid interface of nanofluids. The extended Hamilton–Crosser model 

(Yu & Choi, 2004) is: 
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Xuan et al. (2003) proposed a model considering the physical properties of the base 

fluid and the nanoparticles, and the structure of the nanoparticles and aggregation. The 

model is: 
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Where, BK is the Boltzmann constant = 1.381x10
-23

 JK
-1

 and   is the viscosity in 

Kg/(s.m). 

Considering the role of Brownian motion Jang and Choi (2004) developed a correlation 

to determine the thermal conductivity of nanofluids including the effect of volume 

fraction, temperature and particle size. The correlation is expressed as: 
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Prasher et al. (2005) proposed a semi-empirical Brownian model to measure the thermal 

conductivity of nanofluids as: 
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Koo and Kleinstreuer (2005) proposed a correlation to measure the thermal conductivity 

of suspensions. This model can consider the effects of particle size, volume 

concentrations and temperature also the properties of base liquid. This model is stated 

as: 
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Leong et al (2006) proposed a new equation to determine the effective thermal 

conductivity of nanofluids based on the interfacial layer effect at the solid particle/liquid 

interface. This new presented model can interpret the effects of particle sizes, interfacial 

layer thicknesses, and volume concentration of nanoparticles on thermal conductivity of 

nanofluids. 
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Sitprasert et al. (2009) extended Leong et al.’s model and proposed that, the thickness of 

interfacial layer, t depends on temperature where   35.0)27301.0 prTt  , and the 
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thermal conductivity of the interfacial layer can be found from r

p

lr k
r

t
Ck    where C = 

30, a constant for Al2O3 nanoparticles. 

 

More investigation is needed to justify the application of these theories for refrigerant 

based nanofluids as most of this theory developed based on water and ethylene glycol 

based nanofluids. 

 

Table 2.2 shows the available literatures about thermal conductivity of nanorefrigerants. 

To make a comparison the entire thermal conductivity enhancement ratio has been 

selected for 0.2 volume fraction of nanoparticles concentrations (%).  

 

Table 2.2: Summery of available literatures about thermal conductivity of 

nanorefrigerants. 

 

Refrige

rant 

Nanoparticle (size) Volume 

fraction (%) 

Thermal 

conductivity 

enhancement 

ratio, knf/kf for 

0.2 vol.% 

Reference 

R113 CNT’s (L=1.5µm, d=15nm) 0.2 to 1.0 1.35 (Jiang et al., 2009a) 

R113 CNT’s (L=10µm, d=15nm) 0.2 to 1.0 1.46 (Jiang et al., 2009a) 

R113 CNT’s (L=1.5µm, d=8 nm) 0.2 to 1.0 1.06 (Jiang et al., 2009a) 

R113 CNT’s (L=10µm, d=80nm) 0.2 to 1.0 1.06 (Jiang et al., 2009a) 

R113 Cu ( Avg. d=25 nm) 0.1 to 1.2 1.05 (Jiang et al., 2009b) 

R113 Al. ( Avg. d=18 nm) 0.1 to 1.2 1.03 (Jiang et al., 2009b) 

R113 Ni ( Avg. d=20 nm) 0.1 to 1.2 1.04 (Jiang et al., 2009b) 

R113 CuO ( Avg. d=40 nm) 0.1 to 1.2 1.03 (Jiang et al., 2009b) 

R113 Al2O3 ( Avg. d=20 nm) 0.1 to 1.2 1.04 (Jiang et al., 2009b) 

 

From the table it is obvious that, almost all the available literatures about 

nanorefrigerants are based on R113 refrigerants. This refrigerant is mostly used for 

manufacturing soft PU foam. It is a CFC gas and it will be phased out within 2030. This 
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research will enrich the scientific contents and try to fill some gaps of the study about 

thermal conductivity of nanorefrigerants. 

2.4.2 Viscosity of nanorefrigerants 

Viscosity is an important phenomenon like thermal conductivity. Pumping power and 

pressure drop is proportional to viscosity of any liquid, especially in laminar flow 

(Mahbubul et al., 2012). To the best of author’s knowledge there is no literature 

available about viscosity of nanorefrigerants. However, literatures are available on 

viscosity of nanofluids based on water, ethylene glycol, etc. Most of the available 

literatures about viscosity of nanofluids are based on the volume concentrations effect 

over viscosity. Moreover, some literatures are also available on temperatures and 

particle sizes effects over viscosity of nanofluids.  

2.4.2(a) Viscosity of nanofluids as a function of volume fraction  

Most of the available literatures about viscosity of nanofluids show that viscosity of 

nanofluids enhances accordingly with the augmentation of the volume concentrations. 

Das et al. (2003) and Putra et al. (2003) showed that viscosity of nanofluid increases 

accordingly with the enhancement of nanoparticle concentration for Al2O3/water 

nanofluid, for the concentrations between 1 % and 4 % particle (volume) fractions. 

Prasher et al. (2006) presented that viscosity of nanofluids enlarges around 10 X (ten 

times) as the volume fraction enhances.  

 

Some researchers stated that, viscosity of liquids increases tremendously after the 

addition of nanoparticles. For example, for 12 volume concentration (%) of 

Al2O3/water, viscosity enhances 5.3 times (Nguyen et al., 2008), and for 12 volume 

concentration (%) of TiO2 with water viscosity increased 1200 times (Tseng & Lin, 

2003). Seemingly, viscosities of metal oxide based nanofluids have been broadly 
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investigated and Al2O3 and TiO2 related literatures are foremost among the accessible 

literatures on viscosity of nanofluids. Hence, graphical representations of viscosity of 

nanofluids with Al2O3 and TiO2 nanoparticles have been presented in Figure 2.4.  

 

 

Figure 2.4: Viscosity of nanofluids increases accordingly with the intensification of 

volume fraction. 

  

2.4.2(b) Effects of temperatures on viscosity of nanofluids 

There are some literatures available on the effects of temperatures over viscosity of 

nanofluids. Available literatures show, the researchers’ agreement over the fact that, 

viscosity of nanofluid augmented with the intensification of volume fraction. On the 

other hand, there are debates about the effects of temperatures over viscosity of 

nanofluids. Most of the researchers showed that, viscosity of nanofluids decreases with 

the enhancement of temperatures like the viscosity of most of the base fluids decreases 
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with the intensification of temperatures. However, some of the researchers argued that, 

viscosity of nanofluids is not related to temperature (Prasher et al., 2006).  

 

Yang et al. (2005) measured the effects of temperature for viscosity of nanofluids with 

four different temperatures (35, 43, 50, and 70
o
C) and for four different nanofluids 

mixtures having graphite as the common nanoparticles. The authors demonstrated that 

kinematic viscosity declines with the augmentation of temperatures. Chen et al. (2008b) 

measured the effects of temperature for multi walled carbon nanotubes with distilled 

water for a temperatures ranges of 5
o
C to 65

o
C and stated that comparative viscosity 

rises considerably after the temperature of 55
o
C. Turgut et al. (2009) showed that, 

viscosity of TiO2 with deionized water for a temperature range of 13
o
C to 55

o
C and for 

volume concentration of 0.2 to 3 % decreases with the rise of temperatures but in very 

less amount of deterioration. Figure 2.5 shows viscosity of nanofluids deteriorates with 

the rise of temperature.  

 

 

Figure 2.5: Viscosity of fluids decreases with the increase of temperature. 
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From the figure it is obvious that, the viscosity of ethylene glycol and Al2O3/ethylene 

glycol deteriorates tremendously with the increase of temperature compared with water 

based nanofluids. This is because of the viscosity of the base fluids (viscosity of pure 

ethylene glycol is higher than that of water).  

 

There are some theoretical formulas (model or correlations) available in literature to 

calculate the viscosity of nanofluids (in general these formulas are for particle 

suspension viscosity). Among these theories, Einstein (1906) is the pioneer and some 

other researchers derived relations basically from this equation. The assumptions made 

for this theory is linearly viscous fluid having dilute, suspended, and spherical particles 

for a low particle volume concentration  02.0  . The model is stated as:  

  5.21 bfnf                   (2.15) 

In 1952, Brinkman (1952) has modified Einstein’s model to be used with reasonable 

particle volume fraction, as bellow: 

  5.2
1/   bfnf                   (2.16) 

Lundgren (1972) proposed the bellow correlation to predict the suspension viscosity. 

This equation is the form of a Taylor series in terms of  : 

 







 32

4

25
5.21  fbfnf

                 (2.17) 

Batchelor (1977) proposed the below model with the consideration of the effect of 

Brownian motion of particles on suspension of rigid and spherical particles; 

 25.65.21   bfnf                   (2.18) 

It is clear from Equations 2.17 and 2.18 that, if second or higher order of

  

  are 

discounted, then these formula will be the same as Einstein’s formula. 
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Murshed et al. (2008b) recommended that the popular models such as (Einstein, 1906), 

(Krieger, 1959), (Batchelor, 1977), and (Nielsen, 1970) could not calculate the viscosity 

of nanofluids accurately. Truly, there is no model that could assume the viscosity of 

nanofluids accurately considering the wide range of nanoparticle volume 

concentrations, temperature and particle size. Table 2.3 shows the available literatures 

on the viscosity of nanofluids. Here in this table, particle size and volume 

concentrations have been considered.  

 

Table 2.3: Some literatures about enhancement of viscosity of nanofluids with the 

increase of volume fractions. 

 

Researchers Base 

fluid 

Nano-

particle 

Particle 

size 

(nm) 

Volume 

fraction (%) 

Viscosity 

enhancement 

(%) 

Chandrasekar et al. (2010) Water Al2O3 43  1 to 5 14 to 136 

Nguyen et al. (2008; 2007) Water Al2O3 47  1 to 13 12 to 430 

Wang et al. (1999) EG Al2O3 28  1.2 to 3.5  7 to 39 

Prasher et al. (2006) PG Al2O3 27  0.5 to 3 7 to 29 

Murshed et al. (2008a) DIW Al2O3 80  1 to 5 4 to 82 

Anoop et al. (2009b) Water Al2O3 45  2 to 8 wt % 1 to 6 

Anoop et al. (2009a) Water Al2O3 95  0.5 to 6 3 to 77 

Masuda et al. (1993) Water TiO2 27 1 to 4.3 11 to 60 

Murshed et al. (2008a) DIW TiO2 15  1 to 5 24 to 86 

Chen et al. (2007a; 2007b; 

2009b)  

EG TiO2 25  0.1 to 1.86  0.5 to 23 

He et al. (2007) DW TiO2 95,145,

210  

0.024 to1.18  4 to 11 

Chen et al. (2009b) Water TiO2 25 0.25 to 1.2 3 to 11 

Duangthongsuk and 

Wongwises (2009) 

Water TiO2 21  0.2 to 2 4 to 15 

Turgut et al. (2009)   DIW TiO2 21 0.2 to 3 4 to 135 

Pastoriza-Gallego et al. 

(2011) 

Water CuO 11±3 1–10 wt % 2.5 to 73 

Chevalier et al. (2007) Ethanol SiO2 35 1.2 to 5 15 to 95 

Chevalier et al. (2007) Ethanol SiO2 94 1.4 to 7 12 to 85 

Chen et al. (2009a; 2009b) EG TNT ~10,L= 

100 nm 

0.1 to 1.86 3.3 to 70.96 

Chen et al. (2009b; 2008a)  Water TNT ~10, L= 

100 nm 

0.12 to 0.6 3.5 to 82 

Garg et al. (2008) EG Cu 200 0.4 to 2 5 to 24 

Zhu et al. (2010) DW CaCO3 20–50 0.12 to 4.11 1 to 69 

Lee et al. (2011) DW SiC <100 0.001 to 3 1 to 102 
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Table 2.3 shows that, viscosity of nanofluids increases accordingly with the 

enhancement of volume concentrations. However, the increment rate is not similar from 

one researcher to another. Even for the same authors, variations exist among the 

different studies. So, it is needed to study the viscosity of different types of nanofluids 

for different parameters. Furthermore, there is no literature available about the viscosity 

of nanorefrigerants. This study will help the scientific community by introducing 

experimentation about viscosity of nanorefrigerants. 

2.4.3 Density of nanorefrigerants 

Density of fluid is an important thermophysical property.  Like viscosity, density of any 

fluid also has direct impact over pressure drop and pumping power. There are some 

literatures available about density of nanofluids. Still, there is no literature available on 

density of nanorefrigerants. However, Kedzierski (2009) measured the density of copper 

(II) oxide (CuO) nanoparticles with synthetic polyolester lubricant. The author reported 

that, density of nanolubricant increases with the increase of volume concentration of 

nanoparticles. Furthermore, density of nanolubricant decreases with the increase of 

temperature. 

 

There are some equations used to calculate the density of mixture. The most widely 

used Mixture equation for suspensions by Wasp et al. (1977) is: 

L

m

s

m

m

xx






11
                   (2.19) 

Where the density of solid nanoparticles is s , L is the density values of pure liquid, 

m is the measured liquid density of the mixture and mx is the particle mass fraction. 

 

Pak and Cho (1998) suggested a correlation to measure the density of nanofluid as: 
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  sbfnf   1
                   

 (2.20) 

Where, density of solid nanoparticles is s , bf is the density values of base fluid, nf is 

the density of the suspension. 

  

In this study, density of Al2O3/R141b nanorefrigerants has been measured for different 

concentration of nanoparticles. In addition, the available correlations to measure the 

mixture density of fluids has been used to compare with the experimental data. 

2.5 An overview on migration properties of nanorefrigerants  

Migration properties of nanoparticles during the pool boiling of nanorefrigerants are 

essential information for the application of nanorefrigerants in a refrigeration system. 

When implementing nanorefrigerants in the refrigeration systems, one important issue is 

to be considered and that is the migration of nanoparticles during the boiling process. 

This knowledge will help to identify, how the distribution of nanoparticles affect the 

cycle behavior of a refrigeration system (Peng et al., 2011b). 

 

Regarding the migration properties of nanoparticles during boiling of a nanorefrigerant 

very few literatures exists up to the present and more research seems to be helpful in 

this area. Ding et al. (2009) for the first time investigated the major factors influencing 

the migration characteristics of nanoparticles during pool boiling. A comparison was 

made between pure nanofluid and nanofluid/oil mixture. The original mass of the 

nanoparticles and the mass of nanorefrigerant were stated to be effective on the 

migration rate. While investigating the both mentioned effects, the nanorefrigerant 

showed higher migrated mass of nanoparticles compared to the nanorefrigerant/oil 

mixture (17.5 % and 8.7% respectively). In another experimental study by-  Peng et al. 

(2011b) other parameters including nanoparticle type and size, refrigeration type heat 
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flux and initial liquid-level height where analyzed. It was expressed that migration of 

nanoparticles inversely changes with nanoparticle size as it was said to be higher for Cu 

particles with 20 nm diameter compared with that for particles with 50 nm diameter. 

The authors outlined that due to the exclusion of parameters considering nanofluid 

composition as well as heating conditions, the model presented by Ding et al. (2009) 

would not be able to predict the migration characteristics. A more inclusive model were 

developed in the study by Peng et al. (2011c) which was claimed to be 90 % in 

accordance with  the experimental data. Another literature is also available on the 

migration characteristics of Carbon Nanotube (CNT’s) on the pool boiling of R113, 

R141b, and n-pentane refrigerants (Peng et al., 2011d). The available literatures about 

migration properties of nanorefrigerants are tabulated in Table 2.4. 

 

Table 2.4: Summery of available literatures about migration properties of 

nanorefrigerants. 

 

Objective Refrigerant Nanoparticle (size, 

nm) 

Reference 

Effect of nanoparticles 

and refrigerant weight 

R113 CuO (40 nm) (Ding et al., 2009) 

Influence of nanoparticle 

type 

R113 Cu (20 nm), Al (20 

nm), Al2O3 (20 nm) 

(Peng et al., 2011b, 

2011c) 

Influence of nanoparticle 

size 

R113 Cu (20 nm), Cu (50 

nm), Cu (80 nm) 

(Peng et al., 2011b, 

2011c) 

Influence of refrigerant 

type 

R113, R141b,  

n-pentane 

CuO (40 nm) (Peng et al., 2011b, 

2011c) 

Influence of mass 

fraction of lubricating oil 

R113 CuO (40 nm) (Peng et al., 2011b, 

2011c) 

Influence of heat flux R113 CuO (40 nm) (Peng et al., 2011b, 

2011c) 

Influence of initial liquid 

level height 

R113 CuO (40 nm) (Peng et al., 2011b, 

2011c) 

Influence of CNT’s 

physical dimensions 

R113 Different types of 

CNT’s 

(Peng et al., 2011d) 

Influence of refrigerant 

type 

R113, R141b,  

n-pentane 

CNT (dout=15 nm, 

din=10 nm, L=10 µm) 

(Peng et al., 2011d) 

Influence of oil 

concentration 

R113 CNT (dout=15 nm, 

din=10 nm, L=10 µm) 

(Peng et al., 2011d) 

Influence of heat flux R113 CNT (dout=15 nm, 

din=10 nm, L=10 µm) 

(Peng et al., 2011d) 

Influence of initial liquid 

level height 

R113 CNT (dout=15 nm, 

din=10 nm, L=10 µm) 

(Peng et al., 2011d) 
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From the Table 2.4, it is clear that, most of the available literatures are based on 

refrigerant R113 and with nanoparticles CuO and CNT’s. There is no literature 

available on the most widely used TiO2 nanoparticle. This experiment have introduced 

the migration characteristics of TiO2 and Al2O3 nanoparticles with R141b refrigerant for 

different parameters including nanoparticle type, size, initial liquid level height, boiling 

vessel size, heat flux, insulation, and oil. Two nanoparticles types have been chosen to 

see the effect of density of particles to predict the sedimentation inside the compressor 

of refrigeration system. Size has been considered to check the effect of particle size. It 

has been considered that if the nanoparticle size is smaller and spherical shaped it would 

be better for refrigeration system. The level of refrigerant inside the compressor varies 

time to time. So, the effect of liquid level size has been characterized. Different 

refrigeration systems have different size of compressors, evaporators, and piping 

systems. Therefore, the effect of boiling vessel size has been analyzed. Refrigerant are 

used in refrigeration system as they are too much heat sensitive and very low heat 

transfer fluids. Therefore, the effects of heat flux on migration of nanoparticles have 

been studied. Some air conditioning system use insulation on piping. Therefore, the 

effects of insulation during pool boiling of nanorefrigerants have also been analyzed. 

Some researchers used nanoparticles with refrigeration oil to study the performance of 

refrigeration system. Hence, the effects of refrigeration oil on migration of 

nanorefrigerants have been investigated. 

2.6 Summary 

The available literatures about nanorefrigerants have been summarized in Table 2.5. 
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Table 2.5: Summery of the available literatures about nanorefrigerants. 

Investigator Nanorefrigerant Investigation 

Kedzierski et al. (2007) R134a -CuO Heat transfer coefficient enhanced 

from 50% to 275% for 0.5% 

nanolubricant. 

Park & Jung (2007) (R123, R134a)- 

CNT’s 

Heat transfer coefficient enhanced up 

to 36.6%. 

Shengshan & Lin (2007) R134a -TiO2 Energy savings 7.43%. 

Bi et al. (2008) Mineral oil -TiO2 26.1% less energy consumption. 

Ding et al. (2009) R113-CuO Migration of nanoparticles increased 

with the intensification of initial 

mass of nanoparticles. 

Jiang et al. (2009a) R113-CNT’s Thermal conductivity of CNT’s 

nanorefrigerants increased with the 

intensification of CNT’s volume 

concentrations. 

Jiang et al. (2009b) R113-

Cu,Al,Ni,CuO, 

Al2O3 

Thermal conductivity of 

nanorefrigerants increased with the 

intensification of nanoparticle 

volume concentrations. 

Peng et al. (2009a) R113-CuO Highest heat transfer coefficient 

enhanced 29.7%. 

Peng et al. (2009b) R113-CuO Highest enhancement of frictional 

pressure drop was 20.8%. 

Trisaksti & Wongwises 

(2009) 

R141b -TiO2 Nucleate pool boiling heat transfer 

decreased with increase of particle 

concentrations. 

Peng et al. (2010) R113/VG68-

Diamond 

About 63.4% nucleate pool boiling 

heat transfer coefficient increased.  

Bi et al. (2011) R600a-TiO2 9.6% less energy used 

Peng et al. (2011b) R113-

Cu,Al,CuO,Al2O3 

R141b,n-pentane-

CuO 

Migration of nanoparticles increased 

with the decrease of nanoparticle 

density and size. 

Peng et al. (2011c) R113-

Cu,Al,CuO,Al2O3 

R141b,n-pentane-

CuO 

Model development for migration 

properties of nanoparticles within a 

deviation of ±20%. 

Peng et al. (2011d) R113,R141b,n-

pentane-CNT’s 

Migration ratio of CNT’s increased 

with the increase of particle size (e.g. 

outside diameter or length of 

CNT’s). 

 

From the Table 2.5 it is obvious that, most of the available literatures about 

nanorefrigerants are about heat transfer coefficient and energy performance of 

refrigerating system. This study could contribute to enrich the analysis about 
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preparation, characterization, thermal conductivity, viscosity, density, and migration 

properties of nanorefrigerants. 

 

From the literature- it is evident that, most of the studies about nanorefrigerants and 

nanofluids have been done with oxide nanoparticles. Moreover, TiO2 and Al2O3 

nanoparticles are widely used in nanofluid. These two oxides are comparatively 

chemically stable. They are cheap and readily available as they are produced 

industrially in large scale (Chen et al., 2007b). Furthermore, Al2O3 has good thermal 

conductivity compared with TiO2 and other heat transfer fluids. Therefore, Al2O3/R141b 

nanorefrigerants were prepared to measure the thermal conductivity, viscosity, and 

density of nanorefrigerants. TiO2 is safe for human and animals. Therefore, TiO2 was 

used to analyze the migration of nanoparticles during the pool boiling of refrigerants.  
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

The aim of this chapter is to describe the materials, equipment, experimental settings 

and to introduce the various parameters that have been used to conduct the research. 

Moreover, the related equations used in this research are presented. The subsequent 

sections start with the description of the materials and their properties and brief 

information about the equipment that were used. The sections also are followed by the 

preparation methods along with challenges faced with during the preparation of 

nanorefrigerants; characterization processes; and the measuring procedure of 

thermophysical properties (e.g. thermal conductivity, viscosity, and density). Finally, 

the processes to analyze the migration properties of nanorefrigerants have discussed. 

3.2 Experimental set-up 

This section is divided into materials and equipment that were used throughout this 

study. 

3.2.1 Materials 

TiO2 and Al2O3 nanoparticles have been used in this study. Table 3.1 shows the 

properties of TiO2 and Al2O3 nanoparticles. Both of these two nanoparticles were 

purchased readily from the mentioned source. Each of the nanoparticles was purchased 

with two different sizes. TiO2 with manufacturer defined average diameter of ~21 nm 

and two different sizes of Al2O3 (manufacturer defined sizes of 13 nm and 50 nm) were 

purchased from Sigma Aldrich (Malaysia). TiO2 of 40 nm diameter size has also been 

purchased from Hefei Kaier Nanometer Energy & Technology Co., Ltd (China) with a 

manufacturer defined purity of more than 99%.  The elemental compositions of the 
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nanoparticles have been checked by SEM-EDAX analysis and have presented in 

Appendix B. Nanoparticles sizes and shapes have been checked by SEM and TEM 

analysis and have been presented in Appendix C. 

Table 3.1: Properties of nanoparticles used in this experiment. 

Property Al2O3 TiO2 

Molecular mass (g/mol) 101.96 79.87 

Average particle diameter (nm) 13 and 50 ~21 and 40 

Density (kg/m
3
) 4000 4260 

Thermal conductivity (W/mk) 40 8.4 

Specific heat (J/kgK) 773 692 

 

Refrigerant R141b has been used throughout this experiment as its boiling temperature 

is 32.06°C. Though, this refrigerant is no longer used in refrigeration and air 

conditioning systems. However, the basic properties of this refrigerant are similar to the 

most of used ones like- R22, R410a, R134a, etc. Table 3.2 shows the properties of 

R141b refrigerant at atmospheric pressure. The lubricant used as refrigerant oil for this 

experiment was manufactured by FOVAC Superior Ind. Inc. USA. This is ester oil with 

viscosity of 32 cp at 40
o
C and density of 880 kg/m

3
. 

Table 3.2: Properties of R141b refrigerant. 

Property R141b 

Chemical formula CH3CCL2F 

Molecular mass (g/mol) 116.95 

Normal boiling point (
o
C) 32.06 

Freezing point (
o
C) -103.5 

Critical temperature (
o
C) 204.50 

Critical Pressure (MPa) 4.25 

Liquid phase density (kg/m
3
) 1220.30 

Liquid phase thermal conductivity (W/m.K) 0.0888 

Liquid phase dynamic viscosity (mPas) 0.3780 

Liquid phase isobaric specific heat (J/kg.K) 1165 

Surface tension (N/m) 0.0174 
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3.2.2 Equipment 

Table 3.3 shows the equipment used in this study. Other than this, some refrigerants 

properties like thermal conductivity, viscosity, and density for R141b refrigerants have 

been taken from REFPROP7 software (Lemmon et al., 2002). 

Table 3.3: List of equipment used for data collection. 

Equipment Manufacturer Model Purpose Accuracy 

Sonics vibra cell Madell  To prepare 

nanorefrigerant 

 

Digital power 

meter 

YOKOGAWA WT 130 To measure power to 

calculate heat flux 

±0.2% 

Precision analytical 

balance 

AND GR-200 To weigh 

nanoparticles 

±0.1 mg 

Orbital shaker 

incubator 

Hottech 718 To prepare 

nanorefrigerant 

 

UV-Visible 

spectrophotometer 

SHIMADZU UV-1601 To characterize 

nanorefrigerant 

 

Portable density 

meter 

Kyoto DA-130 To measure density of 

nanorefrigerant 

±0.001 

g/cm
3
 

Programmable 

rheometer 

Brookfield  LVDV-III To measure viscosity 

of nanorefrigerant 

±1% 

Thermal properties 

analyzer 

DECAGON KD2-Pro To measure thermal 

conductivity of 

nanorefrigerant 

±0.01 

W/(m· 

K) 

Hot plate heater YONGQIAN YQ-1010A To evaporate 

refrigerant  

 

Digital photo 

camera 

Samsung ES65 To capture photo of 

nanorefrigerant 

 

Field Emission 

Scanning Electron 

Microscope 

(FESEM) 

Zeiss AURIGA To analyze the 

particle size, shape, 

and composition 

 

Transmission 

Electron 

Microscope (TEM) 

Zeiss TEM 

LIBRA 

120 

To analyze the 

particle size, shape, 

and distribution 

 

Refrigerated 

circulator bath 

CPT Inc. C-DRC 8 To maintain constant 

temperature 

±0.02ºC 

 

3.3 Preparation of nanorefrigerants 

R-141b was used throughout the experiment as the host fluid because it is in the liquid 

state in room temperature and normal atmospheric condition. The most widely used 

refrigerants (such as R-134a and R-410A,) are in the gaseous state under the same 
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conditions. Therefore, nanorefrigerants based on R-141b refrigerant are easier for 

preparation compared to the other refrigerants. In this study no surfactant has been used. 

Acid treatment may be dangerous for the operator and it might be harmful for the 

refrigeration system as well. Hence, no acid treatment has been applied throughout this 

study to control the pH of nanorefrigerants. Sonics Vibra Cell ultrasonic vibrator was 

used for preparation of nanorefrigerants. This device can generate frequency up to 

20,000 hertz (Hz). Thirty percent (30 %) amplitude of frequency was used for 

oscillation. A 2s:2s pulse (that means 2 seconds vibration and 2 seconds rest) was used 

throughout the preparation. 

 

The experimental procedure for preparation of nanorefrigerants includes the following 

steps: weighing the desired amount of nanoparticle, nm  and put them into a vessel; in 

the next step adding the required amount of refrigerant, rm  into that vessel. Finally, the 

nanorefrigerants have been prepared by vibrating the mixture with ultrasonic processor 

for 60 minutes.  

 

The equation used to calculate the volume fraction of nanorefrigerants is as follows: 

rrnn

nn

mm

m






//

/


           (3.1) 

Table 3.5 and Table 3.6 show the proportion of R141b refrigerant with TiO2 and Al2O3 

nanoparticles, respectively for different volume concentrations.  

 

Calculated amount of TiO2 nanoparticles (Table 3.4 and Table 3.6) and Al2O3 

nanoparticles (Table 3.5 and Table 3.7) was measured by “AND” precision analytical 

balance. The measurement range is between 10.0 mg to 210.0000 g with the highest 

error of 0.1 mg. 
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Table 3.4: Amount of TiO2 nanoparticles and R141b refrigerant required for making 

100 ml of desired concentration. 

Concentration 

of TiO2/R141b 

TiO2 (g) R141b (ml) 

0.2 wt. % 0.20 100.00 

0.5 vol. % 2.14 100.00 

1.0 vol. % 4.28 99.50 

 

Table 3.5: Amount of Al2O3 nanoparticles and R141b refrigerant required for making 

100 ml of desired concentration. 

Concentration 

of Al2O3/R141b 
Al2O3 (g) R141b (ml) 

0.1 vol. % 0.40 99.50 

0.2 vol. % 0.80 99.50 

0.3 vol. % 1.20 99.50 

0.4 vol. % 1.61 100.00 

0.5 vol. % 2.00 99.50 

1.0 vol. % 4.06 100.50 

1.5 vol. % 6.09 100.00 

2.0 vol. % 8.20 100.50 

2.5 vol. % 10.20 99.50 

3.0 vol. % 12.31 99.50 

 

Figure 3.1 shows the limitation of preparation of nanorefrigerants by the ultra-

sonication method. Figure 3.1 (a) shows when the beaker is filled with 1 volume 

concentration (%) of TiO2/R141b nanorefrigerants, just before starting the ultra-

sonication process. From the figure it is clear that, the level of liquid and solid mixture 

is more than 80 ml. Figure 3.1 (b) shows the level of mixture after 30 minutes of ultra-

sonication where it is almost 40 ml. Therefore, about half of the refrigerants evaporated 

with vibration of the ultrasonic amplitude. Figure 3.1 (c) shows that, the amount of 

nanorefrigerants is about 30 ml after 1 hour of ultra-sonication. The same thing 

happened for Al2O3/R141b nanorefrigerants. Therefore, this ultrasonic vibration method 

is not suitable for preparation of nanorefrigerants. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.1: Effect of evaporation during ultra-sonication of TiO2/R141b to prepare 1 

volume concentration (%) of nanorefrigerant; (a) before ultrasonication; (b) just after 30 

minutes of ultra-sonication; and (c) just after 60 minutes of ultra-sonication. 
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Then nanorefrigerants were prepared using an orbital incubator shaker. In most cases, 

the mixture of nanoparticles and refrigerants was continuously shaken at 240 rpm for 

about 24 hours. But, in some cases the period of shaking lasted about 6 hours. Constant 

temperature of 15ºC was maintained inside the incubator to avoid evaporation of 

refrigerants. The refrigerant remained liquid under these conditions.  

 

To validate this method of preparation, two other types of nanofluids as TiO2/water and 

Al2O3/water was prepared by continuously shaking at 240 rpm for about 24 hours. 

Then, a sediment photograph capturing method was applied to check the stability of the 

prepared nanofluids by using an orbital shaker. One volume concentration (%) of 

nanoparticles was prepared by this method having the nanoparticles and liquid 

proportion as described in Table 3.6 and Table 3.7 for TiO2/water and Al2O3/water, 

respectively. 

Table 3.6: Amount of TiO2 nanoparticles and water required for making 100 ml, 1 

volume concentration (%) of nanofluids. 

 

Concentration 

of TiO2/water 

TiO2 (g) water (ml) 

1 vol. % 4.30 100.00 

 

Table 3.7: Amount of Al2O3 nanoparticles and water required for making 100 ml, 1 

volume concentration (%) of nanofluids. 

 

Concentration 

of Al2O3/water 

Al2O3 (g) water (ml) 

1 vol. % 4.04 100.00 

3.4 Characterization of nanorefrigerants 

The methodology of characterization section is divided into four subsections based on 

four different methods used for characterization of nanorefrigerants. 
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3.4.1 UV-Visible spectrophotometer 

SHIMADZU (UV-1601) UV-Visible spectrophotometer was used to characterize the 

sedimentation of nanorefrigerants. The spectrum of UV-Visible spectrophotometer was 

analyzed for 0.2 weight concentration (%) of TiO2/R141b nanorefrigerants with pure 

R141b refrigerant. Initially, the range of wavelength was arbitrarily taken from 200 to 

500 nm. From the trial and error of different wave length finally, the spectrum was 

measured within the range of 190 nm to 350 nm.  

3.4.2 Sediment photograph capturing 

A Samsung digital camera was used to capture the photograph of nanorefrigerants. 

Sedimentation photo of Al2O3/R141b nanorefrigerants prepared by an orbital incubator 

shaker was taken just after the preparation, and until seven (7) days after preparation 

with an interval of 1 day (24 hours).  Also, photos of Al2O3/water and TiO2/water 

nanofluids prepared by an orbital incubator shaker were taken just after the preparation, 

and until seven (7) days after preparation with an interval of 1 day (24 hours) to check 

the sedimentation and to validate the preparation method. The prepared nanorefrigerants 

were kept in closed glass bottle inside normal chamber of the domestic refrigerator at 

temperature below 15ºC to avoid evaporation.  

3.4.3 SEM and TEM  

Nanoparticle size and shape of Al2O3 (13 nm and 50 nm) and TiO2 (~21 nm and 40 nm) 

were measured with the Field Emission Scanning Electron Microscope (FESEM), 

AURIGA (made by Zeiss, Germany). Moreover, the elemental compositions of these 

nanoparticles were checked by Energy Dispersive Spectroscopy (EDS) on the FESEM. 

Furthermore, a LIBRA 120, Transmission Electron Microscope (TEM) made by Zeiss, 

Germany was used to analyze the particle dispersion.  TEM was used to check the 

particle size, shape, and distribution of 0.5 % particle volume   concentration (%) of 
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four solutions. All the four combinations were based on R141b refrigerant with four 

different nanoparticles. The four nanorefrigerants include: Al2O3/R141b (13 nm), 

Al2O3/R141b (50 nm), TiO2/R141b (21 nm), and TiO2/R141b (40 nm). All the samples 

for TEM were collected, 24 hours after the preparation by 6 hours of mechanical shaker 

at 240 rpm. A pin point sample of each solution was taken into the fluorescent screen. 

The solution evaporated naturally during the transfer, i.e. only the particles was in dry 

form.  

3.5 Thermophysical properties of nanorefrigerants 

This section is divided into three subsections according to the methodology to measure 

thermal conductivity, viscosity, and density of nanorefrigerants. 

3.5.1 Thermal conductivity of nanorefrigerants 

A KD2 Pro thermal properties analyzer (Decagon, USA) was applied to analyze the 

thermal conductivity of nanorefrigerants. This device could measure thermal 

conductivity of liquids within the range of 0.02 to 2.00 W/(m· K). The accuracy of the 

equipment is ± 5 % from 0.2 - 2 W/(m· K) and ±0.01 W/(m· K) from 0.02 - 0.2 W/(m· 

K). The accuracy of this device was also measured with the standard sample (glycerin) 

provided by the manufacturer. Figure 3.2 shows the accuracy and precision of the 

device. The deviations of the measured value with the standards have shown in the 

figure. The figure indicated that, this equipment could produce very good data since the 

maximum deviation found to be less than 1.5 %.  

 

Finally, the thermal conductivity of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 volume concentration 

(%) of Al2O3/R141b (13 nm) were measured for a temperature range of 1.5 to 20.5ºC 

with this device. A KS-1 sensor was used to determine the thermal conductivity of 

suspensions. The details of sensor specifications presented in Table A1 (Appendix A). 
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Each experiment was conducted three times to get more precise value and the mean 

value of three data was plotted in the results. Some of the data (about 5 %) was omitted 

considered as abnormality. Some other models (e.g. Maxwell (1891), Yu-Choi (2003), 

Koo & Kleinstreuer (2005), Sitprasert et al. (2009), and Leong et al. (2006)) were used 

to verify the results of nanorefrigerants’ thermal conductivity at 20ºC. 

 

 

Figure 3.2: Accuracy of the KD2 Pro thermal properties analyzer (Decagon, USA) 

compared by the sample (glycerine) measured by the manufacturer. 

3.5.2 Viscosity of nanorefrigerants 

LVDV series (LVDV II, LVDV III, and LVDV III Ultra Programmable) viscometers 

are most widely used to determine the viscosity of suspensions. These LV series are 

suitable for measuring the low viscous fluid like water or ethylene glycol based 

nanofluids. Available literatures show that, most of the viscosity data have been 

measured by this equipment. LVDV III Ultra Programmable viscometer could measure 

the viscosity of suspensions within the range of 1.0 to 6,000,000  mPa.s by using the UL 

Adapter as an accessory with the main machine. As the viscosity of pure R141b 

refrigerant is less than 1 mPa.s, so the accuracy of this device was measured with the 

ethylene glycol. Standard viscosity of ethylene glycol (Incropera et al., 2007) was 
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compared with the measured viscosity for different temperature range. It was found that, 

the maximum deviation was within ±6 %. Figure 3.3 shows the accuracy of this device. 

 

 

Figure 3.3: Accuracy of the LVDV III Ultra Programmable viscometer (Brookfield 

Engineering, USA) measured by ethylene glycol. 

 

The viscosity of 0.5, 1.0, 1.5, and 2.0 volume concentration (%) of Al2O3/R141b (13 

nm) were measured for a temperature range of 3 to 20ºC with this device. LV-2 (code: 

62) spindle was used to measure the viscosity of suspensions at 250 rpm. The details of 

spindle specifications presented in Table A2 (Appendix A). Each experiment was 

conducted three times to get more precise value. The mean value of the three data was 

considered for analysis. Most widely used Brinkman model (1952) was implemented to 

compare the measured values for different nanoparticle concentrations at 20ºC.  

3.5.3 Density of nanorefrigerants 

The density of nanorefrigerants was measured by KEM-DA130N portable density meter 

(KYOTO, Japan). It measured the density with resonant frequency method. It could 

measure the density within a range of 0.0000 to 2.0000 g/cm
3 

with a precision of ±0.001 
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g/cm
3
. It has the resolution of 0.0001 g/cm

3 
and can measure density within a 

temperature range of 0 to 40.0°C. Figure 3.4 shows the accuracy of the machine. The 

comparison of the measured data with REFPROP7 (Lemmon et al., 2002) standard data 

base shows the maximum deviation to be only about 0.2 %. This device was a small and 

portable type and the inlet tube was very small capillary. High concentration of 

nanorefrigerants could not support this device. Therefore, very low concentrations of 

nanorefrigerants were measured. Density of pure R141b refrigerant and 0.1 to 0.4 

volume concentrations (%) of Al2O3/R141b were measured for a temperatures range of 

5 to 20°C. All the data was taken three times to get more precise values and the mean 

value of three data was considered for analysis. Some of the data (about 5 %) were 

omitted as considered abnormality, especially above 20°C. When the refrigerant was 

evaporated at above 20°C, some of data showed abnormality. 

 

 

Figure 3.4: Accuracy of the DA 130N portable density meter (KYOTO, Japan) 

measured by pure R141b. 
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3.6  Migration properties of nanorefrigerants 

In this section more details on the experimental procedures of migration of 

nanoparticles during the pool boiling process of refrigerants have been presented. 

Different conditions and set up will be expressed along with the step-by-step description 

of experimental process. 

3.6.1 Materials and test conditions 

 The nanoparticles used for this experiment were basically Titanium Oxide (TiO2) as it 

is safe for human being. Aluminum Oxide (Al2O3) was used only to compare the 

influence of particle types on migration of nanoparticles during the pool boiling of 

nanorefrigerants. Table 3.1 shows some properties of different nanoparticles used in this 

experimental investigation.  

 

All of the experiments were conducted at atmospheric pressure (101.3 kpa). The details 

of materials and their categories were presented in Table 3.8. 
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Table 3.8: Materials categories and test conditions for migration of nanoparticles. 

Objective Nanoparticle 

(size, nm) 

Mass 

fraction of 

lubricating 

oil, xo 

(wt. %) 

Heat flux, 

q 

(kW/m
2
) 

Initial 

liquid level 

height, L 

(cm) 

Initial 

refrigerant 

volume, 

(ml) 

Initial 

nanoparticle 

weight, 

(grams) 

Influence of heat 

flux  
TiO2 (40) 0 10–40 0.9 30 0.50–1.50 

Influence of 

initial liquid 

level height  

TiO2 (40) 0 20 0.9, 2.7 30,90 0.50–3.01 

Influence of size 

of boiling vessel  
TiO2 (40) 0 20 1.8 30,60 0.50–2.50 

Influence of 

insulation of 

boiling vessel  

TiO2 (40) 0 20 0.9 30 0.25–1.50 

Influence of 

particle types  

TiO2 (40) and 

Al2O3 (50) 

0 20 1.8 60 
0.50–2.65 

Influence of 

particle size  

TiO2 (40) and 

TiO2 (21) 

0 20 1.8 60 
0.50–2.65 

Influence of 

mass fraction of 

lubricating oil  

TiO2 (40) 0–10 20 0.9 30 0.50–2.50 

 

 

3.6.2 Experimental apparatus  

Mainly, three apparatus were used in this experimental work. A digital power meter 

(WT130, YOKOGAWA) was used to measure the voltage, ampere, and power. A 

variable electrical hot plate heater (YQ-1010A, YONGQIAN) was used to heat the 

refrigerant for migration at different heat fluxes. Direct current was supplied for this 

heater. Heat flux could be set at any point between 0 to 54 kW/m
2
 with this hot plate. A 

precise digital analytical balance (GR200, AND) was used to measure the mass of 

nanoparticles, lubricant, and refrigerant. The measurement range is between 10.0 mg to 

210.0000 g with a maximum error of 0.1 mg. The used boiling vessel was a cylindrical 

beaker with inside diameter of 67 mm and height of 94 mm. To measure the effect of 
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boiling vessel size another boiling vessel was used with inside diameter of 47 mm and 

height of 69 mm. All the experiments were conducted without insulating the beaker. 

However, the boiling vessel was insulated only when the effect of insulation of boiling 

vessel during migration was to be analyzed. 

3.6.3 Experimental procedure 

In this experiment, the same procedure introduced by Ding et al. (2009) was used. The 

experimental process can be divided into two parts: (1) experiments for migration of 

nanoparticles without lubricants; and (2) experiments for migration of nanoparticles 

with lubricants. 

 

Experiments for migration of nanoparticles without lubricants includes the following 

steps: adding the desired amount of nanoparticle, nm  into the boiling vessel; In the next 

step weighing the total mass of the nanoparticles and boiling vessel, 1m ; Then adding 

the required amount of refrigerant, rm  into the boiling vessel and switching on and 

adjusting the heater to control the heat flux afterwards. Next heating the boiling vessel 

until the refrigerant is fully evaporated; after this, weighing the total mass of the 

nanoparticles and boiling vessel, 2m  (weighing should be kept on until the mass of the 

mixture becomes constant after 12 hours); and finally calculating the migrated mass of 

nanoparticles from the equation 21 mmm  . 

 

Experiments for migration of nanoparticles with lubricants would be followed as: 

adding the desired amount of nanoparticle, nm  and the required amount of lubricating 

oil, om  into the boiling vessel; Next weighing the total mass of the nanoparticles and 

boiling vessel, 3m ; Then adding the required amount of refrigerant, 0rm  into the boiling 
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vessel and switching on and adjusting the heater to control the heat flux afterwards. For 

the next step, heating the boiling vessel until the refrigerant is fully evaporated followed 

by weighing the total mass of the nanoparticles, lubricant, and boiling vessel, 4m  

(weighing should be kept on until the mass of the mixture becomes constant after 12 

hours) and lastly calculating the migrated mass of nanoparticles from the equation 

43 mmm  . Figure 3.5 shows the experimental setup for migration of nanoparticles 

during the pool boiling of nanorefrigerant. Here, Figure 3.5 (a) shows weighing the 

initial mass of nanoparticles and refrigerants or nanoparticles plus the refrigerant and 

oil, Figure 3.5 (b) shows boiling of nanorefrigerant and Figure 3.5 (c) shows  weighing 

after the complete evaporation. 

 

 

Figure 3.5: Experimental setup for migration properties of nanoparticles; (a) taking 

weigh of refrigerant, nanoparticles and beaker, (b) heating the refrigerant and 

nanoparticles for boiling, and (c) taking weigh of beaker and nanoparticles after fully 

evaporation of refrigerant. 
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CHAPTER 4: RESULTS AND DISCUSSIONS 

4.1 Introduction 

The aim of this chapter is to describe the results and discussions of the characterization 

and investigation of thermophysical and migration properties of nanorefrigerants. The 

subsequent sections start with the characterization of nanorefrigerants where UV-

Visible spectrophotometry, sediment photograph capturing and SEM and TEM have 

discussed. The sections also are followed by the effect of particle concentration and 

temperature on thermophysical properties (e.g. thermal conductivity, viscosity, and 

density) of nanorefrigerants have discussed. Finally, the results of migration of 

nanoparticles during the pool boiling of nanorefrigerants have been discussed.  

4.2 Characterization of nanorefrigerants 

The results and discussions about characterization of nanorefrigerants section is divided 

into three subsections which are presented below.  

4.2.1 UV-Visible spectrophotometer 

Characterization for stability of nanorefrigerants was analyzed with the UV-Visible 

spectrophotometer. Figure 4.1 shows the spectrum image of 0.2 weight concentration 

(%) of TiO2/R141b nanorefrigerants in UV-Visible spectrophotometer compared to the 

pure R141b refrigerant. Figure shows the noises on the image and that the graph was not 

clear to understand. However, it was assumed that the peak point would be within 200 

to 300 nm. Figure 4.2 shows the image of 0.2 weight concentration (%) of TiO2/R141b 

nanorefrigerants in UV-Visible spectrophotometer compared to the pure R141b 

refrigerant for more small range of wave length (from 190 nm to 350 nm).  
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Figure 4.1: UV-Visible spectrophotometer image of 0.2 weight concentration (%) of 

TiO2/R141b comparing with the pure R141b. 

 

 

Figure 4.2: UV-Visible spectrophotometer image of 0.2 weight concentration (%) of 

TiO2/R141b comparing with the pure R141b for more small range of wave length. 
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It is clear from the figure that, still there is noise and the image is not good for analysis. 

This would happen because when the light passed through the liquid, the refrigerants 

evaporated slightly inside the machine and for the vapor creation, the light could not 

pass clearly through the liquid. Therefore, there was noise and the output wave length 

was unreadable. 

4.2.2 Sediment photograph capturing 

Figure 4.3 shows the picture of 1 volume concentrations (%) of Al2O3/R141b 

nanorefrigerant prepared by 24 hours shaking with an orbital incubator shaker. Image of 

nanorefrigerants were taken after seven (7) days of preparation with a time interval of 1 

day (24 hours). Figure 4.3 shows that, sedimentation starts after four days. The empty 

spaces of the last four specimens imply sedimentation. The amounts of empty space on 

the top of the bottle “after 4 days to 7 days” indicate that the sedimentation rate was 

very slow. Generally, the sedimentation of mixtures is measured from the bottom of the 

specimen. It could be possible when there are slurries obvious at the bottom of the 

sample. This happened, especially for the low concentration in the suspension. This 1 

volume concentrations (%) of Al2O3/R141b nanorefrigerant is a moderate amount of 

volume fraction (neither so low nor so high concentration). There were no slurries 

obvious at the bottom of any of the specimens. 
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Figure 4.3: Image of 1 volume concentration (%) of Al2O3/R141b nanorefrigerants 

started from just after the preparation to after seven (7) days of preparation with a time 

duration of 1 day (24 hours). 
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Figures 4.4 and 4.5 show 1 volume concentration (%) of Al2O3/water and TiO2/water 

nanofluids, respectively prepared by 24 hours shaking with orbital incubator shaker. 

The images show that, there is no sedimentation after seven days of preparation. In most 

cases sedimentation depends on the viscosity of base fluid as well as the preparation 

methods. The viscosity of water and R141b refrigerant are 0.85099 and 0.40021 mPa.s, 

respectively at 27°C and at atmospheric condition (Lemmon et al., 2002). For this 

reason during this experiment water based nanofluids found to be more stable compared 

to R141b based nanorefrigerants. That’s why the ethylene glycol based nanofluids have 

more stability compared to water based nanofluids (Ghadimi et al., 2011). Figures 4.4 

and 4.5 prove that, nanofluids prepared by shaking have good stability. This method is 

an easy procedure to prepare nanorefrigerants.  
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Figure 4.4: Image of 1 volume concentration (%) of Al2O3/water nanofluid started from 

just after the preparation to after seven (7) days of preparation with a time duration of 1 

day (24 hours). 

 

        
After 

preparation 

After  

1 day 

After  

2 days 

After  

3 days 

After  

4 days 

After  

5 days 

After  

6 days 

After  

7 days 

 

Figure 4.5: Image of 1 volume concentration (%) of TiO2/water nanofluid started from 

just after the preparation to after seven (7) days of preparation with a time duration of 1 

day (24 hours). 
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4.3 Thermophysical properties of nanorefrigerants 

This section is divided into three subsections according to the results and discussions of 

thermal conductivity, viscosity, and density of nanorefrigerants. Each of the subsection 

firstly, describes the effect of volume concentrations and finally, describes the effect of 

temperature. 

4.3.1 Thermal conductivity of nanorefrigerants 

Figure 4.6 shows the thermal conductivity of Al2O3/R141b nanorefrigerants at 20ºC 

temperature for 0.5 to 3.0 volume concentrations (%) of nanoparticles. The 

experimental result of the present study was compared with results obtained from other 

models for validation. The figure shows that the thermal conductivity of Al2O3/R141b 

nanorefrigerant increases with nanoparticle volume concentration enhancement. The 

increment rate with the augmentation of concentration expected to be linear.  

 

 

Figure 4.6: Variation of thermal conductivity of Al2O3/R141b as a function of particle 

volume fraction (at 20ºC). 
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However, at high concentration of nanorefrigerant, high clustering of nanoparticles have 

been observed which increase abnormal and nonlinear thermal conductivity 

tremendously. Another reason may be nanoparticle alignments that also cause abnormal 

increment of thermal conductivity (Zhu et al., 2006). The experimental values for this 

study were found to be higher than all other models such as: Leong et al. (2006) 

[Equation 2.14], Maxwell (1891) [Equation 2.1], Yu and Choi (2003) [Equation 2.7], 

and Koo and Kleinstreuer (2005) [Equation 2.13]. The mean deviation of this 

experimental value was 28 % and 34 % with Leong et al. (2006) and Maxwell (1891), 

respectively. Most of these developed models depended on water based suspensions. 

Peng et al. (2009a) have used Hamilton & Crosser model (1962) [Equation 2.2] to 

determine the thermal conductivity of CuO/R113 nanorefrigerants. Jiang et al. (2009a) 

measured the thermal conductivity of CNT/R113 nanorefrigerants. The authors showed 

that, the mean deviation of their experimental value were 15.1 % and 26.9 % with Yu & 

Choi (2003) and Hamilton & Crosser model (1962), respectively.  However, it can be 

concluded that the thermal conductivity of nanorefrigerant increases with the 

intensification of particle volume fraction. 

 

The experimental values of this present study were compared with some other 

experimental works about thermal conductivity of nanorefrigerants. Figure 4.7 shows 

the thermal conductivity enhancement ratio for 1 volume concentration (%) of 

nanorefrigerants for different nanoparticles with two base refrigerants. The increment 

rates varied with one another. The highest thermal conductivity increment was 204 % 

for No. 2 CNT-R113 nanorefrigerants (Jiang et al., 2009b). The thermal conductivity 

intensification for the present study was 141 % which was less than that of No. 2 CNT-

R113 nanorefrigerants. These values were the relative values compared with the base 
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fluids thermal conductivity. Thermal conductivity of R113 and R141b at 30°C are 

0.067223 and 0.089447 W/(m.K), respectively (Lemmon et al., 2002). The thermal 

conductivity of CNT and Al2O3 is about 3000 and 40 W/(m.K), respectively. 

Furthermore, the thermal conductivity of the nanofluids or nanorefrigerants depends on 

both the nanoparticles’ and fluid’s self-thermal conductivity. Therefore, the thermal 

conductivity of CNT’s nanorefrigerants was higher than other nanorefrigerants and 

thermal conductivity of Al2O3/R141b was higher than Al2O3/R113 nanorefrigerants. 

 

 

 

Figure 4.7: Comparison of thermal conductivity ratio of 1 volume concentration (%) of 

nanorefrigerants with other experimental study. 

 

 

The effects of temperatures on the thermal conductivity of nanorefrigerant were 

investigated by changing the temperatures from 2 to 20ºC.  Figure 4.8 shows the 

thermal conductivity enhancement of nanorefrigerants at a temperature of 2 to 20ºC for 

0.5 to 3.0 volume concentration (%) of nanoparticles. At 2ºC temperature and 0.5 

particle volume concentration (%), the lowest observed thermal conductivity was 1.083 

times greater than that of base fluid.  The highest thermal conductivity was 2.287 times 

greater than base fluid at 20ºC and 3 particle volume fraction (%). The figure shows that 
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the thermal conductivity of nanorefrigerant is proportional to temperature. High 

nanorefrigerant temperature intensifies the Brownian motion of nanoparticles. With 

intensified Brownian motion, the contribution of micro convection in heat transport can 

also be increased. It is evidently shown that the thermal conductivity of nanorefrigerant 

can be enhanced by increasing the temperature. 

 

 

Figure 4.8: Thermal conductivity of Al2O3/R141b enhances accordingly with the 

increase of temperature. 

4.3.2 Viscosity of nanorefrigerants 

The viscosities of 1 volume concentration (%) of Al2O3/R141b nanorefrigerant for 

different speed of spindle are presented in Figure 4.9. It shows that, the viscosity 

decreases with the increase of spindle speed. The spindle speed is directly related to 

shear rate. Therefore, Al2O3/R141b nanorefrigerant is a non-Newtonian fluid.  
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Figure 4.9: Viscosity of 1 volume concentration (%) of Al2O3/R141b decreases with the 

increase of rpm. 

 

Viscosity of Al2O3/R141b nanorefrigerants for 0.5 to 2.0 of particle volume fractions at 

20ºC has been plotted in Figure 4.10. Figure shows that, viscosity of nanorefrigerants 

increases with the increase of volume concentrations. The most widely used Brinkman 

model (1952) to calculate the particles suspension viscosity was compared with the 

measured values for different nanoparticle concentrations at 20ºC. Peng et al. (2009a) 

suggested Brinkman model (1952) to determine the viscosity of nanorefrigerants. 

Abedian and Kachanov (2010) proved that the model is better than Einstein model 

(1906) when high particle volume fraction is considered. However, in this experiment 

the measured viscosity was so high compared with this model. This model was 

developed for generalized suspensions viscosity. Moreover, there are many reasons for 

viscosity enhancement; one of which may be the large agglomeration of particles.  
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Figure 4.10: Viscosity of Al2O3/R141b increases with the increase of particle volume 

fractions (at 20ºC). 

 

Figure 4.11 shows the effect of temperature over viscosity of nanorefrigerants. 

Normally viscosity of nanofluid deteriorates with the rise of temperature. The same 

trend for decrease of viscosity with the increase of temperature were found by some 

other researchers (Kulkarni et al., 2006; Namburu et al., 2007a).  High nanorefrigerant 

temperature increases the Brownian motion of nanoparticles and reduces the viscosity 

of nanorefrigerant. The highest viscosity observed was 214 times greater than base fluid 

for 5ºC and 2 volume concentration (%) of particles. Tseng and Lin (2003) found a 

higher relative viscosity compared to that in this experimental value. They observed that 

viscosity increased up to 1200 times more than the base fluid for 12 volume 

concentration (%) of TiO2 with water. 

  

0.1

1

10

100

0.0 0.5 1.0 1.5 2.0 2.5

V
is

co
si

ty
, 
m

P
a
.s

 

Volume concentration, % 

Experimental

Brinkman model (1952)



 

56 

 

 

Figure 4.11: Viscosity of Al2O3/R141b decreases with the increase of temperature. 

 

4.3.3 Density of nanorefrigerants 

Figure 4.12 shows the measured density of Al2O3/R141b nanorefrigerants for 0 to 0.4 

volume concentration (%) of Al2O3/R141b nanorefrigerant at 20ºC temperature. From 

the Figure 4.12, it is clear that, density increases with increase of volume 

concentrations. The increment trend was almost linear. Pastoriza-Gallego et al. (2011) 

found the same trend as density rises with the intensification of particle concentration 

for CuO/water nanofluid. Some other experimental results with other base fluid showed 

the same trend. Wasp et al. (1977) and Pak and Cho (1998) models were used to 

compare the obtained experimental data. Figure shows that the experimental values of 

this study are between the ranges of two other models. Where, the values of Pak and 

Cho model is higher than the experimental value and the value of Wasp model is lower 

than the experimental value. The Pak and Cho model was derived for water based 

nanofluids and the Wasp model was proposed for metal-lubricant mixture.  
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Figure 4.12: Density of Al2O3/R141b increases with the increase of particle volume 

fractions (at 20ºC). 

 

Figure 4.13 shows the density of Al2O3/R141b nanorefrigerants at 5 to 20ºC with 0 to 

0.4 volume concentrations (%) of nanoparticles. Figure shows that, density of 

nanorefrigerant deteriorates with the increase of temperature. Kedzierski  (2009) found 

the same trend as density of suspensions decreases with the rise of temperature for 

CuO/lubricant. It was observed that the decrease trend was slower up to 15ºC and after 

15ºC density decreased rapidly.  
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Figure 4.13: Density of nanorefrigerants at different temperature with different volume 

concentrations. 

4.4 Migration properties of nanorefrigerants 

After recording the weights, the effect of various parameters on the migration were 

interpreted in this section. Influence of heat flux, initial liquid level height, size of 
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will be presented and discussed in this section.  
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heat flux. Consequently when there are more particles in the vicinity of the heated 

surface, there is more heat transfer to the fluid. On the other hand, existence of 

nanoparticles affects the bubble dynamics as well as the frequency in which bubbles 

depart from the surface. The bubbles are formed in larger volumes during boiling of 

nanofluids. Due to this phenomenon more particles would be attached to the bubbles 

and consequently more migration would occur. With the enhancement of heat flux the 

bubble departure frequency increases and as a result more volumetric bubbles would 

depart along with higher amount of nanoparticles. The stirring effects of bubbles might 

also be effective. When the speed of departure increases, the particles disperse more 

under the influence of buoyancy and bubble movements. 

 

 

Figure 4.14: Influence of heat flux on migration of nanoparticles. 
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4.4.2 Influence of initial liquid level height on migration 

Figure 4.15 shows the relationship between migrated nanoparticles with initial mass 

fraction for two different initial liquid level heights of R141b refrigerant. From the 

figure it is evident that, migration of nanoparticle is more for the lower liquid level of 

R141b refrigerant. This is because when liquid level is low for the same nanoparticle 

mass fraction, it takes less time to fully evaporate the refrigerants. Therefore, the 

nanoparticles get less time to become agglomerated and sediment. 

 

 

Figure 4.15: Influence of initial liquid level height on migration of nanoparticles. 
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characteristic size of the heater surface increases the enhancement in critical heat flux 

would be reduced. The increase of boiling heat transfer for nanofluids is more 

pronounced for smaller heaters. This was also suggested by Haramura and Kato (1983) 

in their experiment. Hence, increasing the heated surface area will reduce the migration 

of particles for the same value of initial particle mass. It is noteworthy that to maintain 

the same liquid levels for two containers, more volume of refrigerant was contained in 

the bigger beaker. This in turn added to the evaporation time of all the mixture. More 

time during the boiling yielded more chance for the particles to agglomerate. 

 

 

Figure 4.16: Influence of size of boiling vessel on migration of nanoparticles. 
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there is less heat loss. Accordingly, there will be a higher wall superheat and more 

active nucleation site throughout the surface. With the increase in the number of 

nucleation sites more bubbles would be generated and consequently more particles 

would migrate. 

 

 

Figure 4.17: Influence of insulation of boiling vessel on migration of nanoparticles. 
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Figure 4.18: Influence of nanoparticles types on migration of nanoparticles. 

 

4.4.6 Influence of nanoparticles sizes on migration 

Figure 4.19 shows the effect of nanoparticle size for two different sizes of TiO2 

nanoparticles. Migration of nanoparticles were more for TiO2 nanoparticles with 40 nm 

size compared with migration of 21 nm size of TiO2 nanoparticles. The probable cause 

for this occurrence was the bubbles produced during the pool boiling that create the 

migration of nanoparticles. Particles bubbles depend on its capture that are related to the 

mechanisms of Brownian diffusion, interception, gravity and inertia impact (Edzwald et 

al., 1991). The intensification of external diameter is the reason of increased Stokes 

diameter of nanoparticles (Henn, 1996). Peng et al. (2011d) observed the same 

phenomenon on their experimental study. However, Peng et al. (2011b) found that, 

migration ratio increases with the decrease of nanoparticles size. 
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Figure 4.19: Influence of nanoparticles sizes on migration of nanoparticles. 

 

4.4.7 Influence of mass fractions of lubricating oil on migration 

Figure 4.20 shows the relationship between migrations of nanoparticles with initial 

mass fraction of nanoparticles for three different types of compositions. Figure shows 

that, nanorefrigerants without oil have less migration of nanoparticles. However, 

nanorefrigerants with 10 volume concentration (%) of oil have more migration of 

nanoparticles and nanorefrigerants with 5 volume concentration (%) of oil have less 

migration of nanoparticles than that with 10 volume concentration (%) of 
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trend for the migration is observed for 10 volume concentration (%) of nanorefrigerant-

oil while it  increases for 5 volume concentration (%) of nanorefrigerant-oil as well as 

for nanorefrigerants without oil. For the 2.5 grams of initial nanoparticle mass, the 

migration of nanoparticle is almost the same for 10 volume concentration (%) of 

nanorefrigerant-oil and 5 volume concentration (%) of nanorefrigerant-oil. 
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Figure 4.20: Influence of mass fractions of lubricating oil on migration of nanoparticles. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Introduction 

This chapter is divided into two sections. The first section starts with some concluding 

remarks and the second section is about some recommendations for future work. 

5.2 Conclusions 

From the comparative analysis and evaluation, the conclusions can be drawn as 

followings: 

 Preparation of refrigerants by ultrasonic processor is quite difficult and 

preparation by using mechanical shaker is an easier process. Moreover, 

nanofluids/nanorefrigerants prepared by mechanical shaking have good stability.  

 

 Characterization of refrigerant based nanofluids with UV-Visible 

spectrophotometer and Zeta potential analyzer are very difficult. Sediment 

photograph capturing is a fundamental method to observe the sediment of 

suspension and it is helpful to identify the sedimentation rate. 

 

 Like other nanofluids, thermal conductivity of the nanorefrigerants augmented 

with the increase of nanoparticle volume concentrations and temperatures. It 

increases sharply due to nanoparticle concentration compared to temperature 

effects. 

 

 Al2O3/R141b is a non-Newtonian fluid. Volume fractions and temperature have 

significant effects with viscosity of nanorefrigerants. Results show that viscosity 
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rises with the increase of the particle volume concentrations. However, it 

deteriorates with the rise of temperatures. 

 

 Like the viscosity, density of nanorefrigerants also rises with the enhancement of 

volume concentration. Similarly, it deteriorates with the rise of temperature.  

 

 Migration of  nanoparticles during the pool boiling of R141b refrigerant was 

analyzed under various situations. Different factors influence the amount of 

migrated mass of particles during the pool boiling of nanorefrigerants. Heat flux, 

insulation, initial liquid level height, initial mass of nanoparticles, nanoparticle 

type, and particle size as well as the vessel size can alter the amount of 

migration. An increase in the heat flux, initial mass and insulating the container 

would yield augmentation in the amount of migrated solid particles from the 

liquid refrigerant during boiling. Higher super heat, enhanced bubble departure 

frequency and the enhancement in boiling due to the smaller size of the heater 

are suggested to be responsible for the observations made in this experiment in 

terms of the migrated mass. 

 

 From this experiment it is clear that distributions of nanoparticles have a 

significant effect in liquid and vapor phase of refrigerants. 
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5.3 Limitations of the study 

Most of the refrigerants are in gaseous state at the ambient temperature and pressure. 

Especially, the commonly used refrigerants (e.g. R22, R410A, and R134a) evaporate at 

negative temperatures. Therefore it is quite difficult to mix nano powder with such 

refrigerants. Moreover, studies of their physical properties are also very difficult as 

these refrigerants could not be tested in an open environment. However, it is very 

difficult to do experiment in the laboratory due to several reasons: 

 Some nanoparticles and the equipment to establish the experimental setup are 

quite expensive. 

 There are not adequate funding sources for this research work.  

 There are very limited experimental facilities for investigating the fundamental 

properties of nanorefrigerants. 

 Refrigerants are not good solvents for nanoparticles to prepare nanofluids. 

 Some equipment and accessories (e.g. AND Vibro Viscometer and SHIMADZU 

UV-Visible spectrophotometer) do not supports these types of refrigerants.  

 

Some pictorial examples of limitation have been included in Figures 5.1 to 5.3. Figure 

5.1 is the sample holder used in UV-Visible spectrophotometer, UV-1601 (made by 

SHIMADZU) and it is melted when filled with refrigerant R141b. Figure 5.2 (a), (b) 

and Figure 5.3 (a), (b) show that the internal sample holder and the external guard of the 

internal cup, respectively become cracked as soon as filled up with R141b refrigerants.  
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Figure 5.1: The sample holder used in UV-Visible spectrophotometer is going to be 

melted with R141b refrigerant. 
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(a) 

 

(b) 

 

Figure 5.2 (a), (b): The cup used to carry the sample liquid while measuring the 

viscosity with “AND” Vibro Viscometer is going to be cracked. 
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(a) 

 

 

 

(b) 

 
 

Figure 5.3 (a), (b): The external guard of the cup used to carry the sample liquid while 

measuring the viscosity with “AND” Vibro Viscometer is going to be cracked. 
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5.4 Recommendations 

 More commonly used refrigerants, such as R-134a and R-410A, are in the 

gaseous state at room temperature and pressure. R141b is mainly used in foam 

insulation of transport. This refrigerant is not a good solvent and some apparatus 

do not support it. However, nanoparticles can be used in refrigeration to enhance 

heat transfer performance as well as energy performances. In most of the 

compressors, some refrigeration compressor oil is often used. Nanoparticles can 

be mixed with refrigerant oil as a good alternative solution.  

 

 Specific heat capacity and surface tension are two important properties. These 

are directly related to the heat transfer performance analysis. These two 

parameters need to be determined experimentally for nanorefrigerants. 

 

 Thermal conductivity increases with the enhancement of nanoparticle 

concentration and temperatures. However, viscosity increment simultaneously is 

a penalty. Viscosity is directly related to pressure drop and pumping power. An 

optimum quantity of nanoparticle needs to be found out considering the energy 

and cooling performance.  

 

 However, an optimal particle volume fraction exists when considering thermal 

conductivity, viscosity, and density as well as migration properties of 

nanorefrigerants that need to be calculated. 
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APPENDIX A: SPECIFICATIONS OF SENSORS AND 

SPINDLES 

Table A1: Specifications of the sensors of KD 2 pro thermal properties analyzer. 

 

Sensor No of  

Needle 

Length, 

mm 

Diameter, 

mm 

Designed for 

(material 

type) 

Measurement  

range,    

W/(m· K) 

Accuracy 

KS-1 1 60 1.3 Liquid 0.02 to 2.00  ± 5% from 0.2 - 2 W/(m· 

K) 

±0.01 W/(m· K) from 0.02 

- 0.2 W/(m· K) 

TR-1 

 

1 100 2.4 

 

Solid 0.10 to 2.00 ±10% from 0.2 - 2 W/(m· 

K) 

±0.02 W/(m· K) from 0.1 - 

0.2 W/(m· K) 

SH-1 

 

2 30 1.3 Solid 0.02 to 2.00 ± 5% from 0.2 - 2 W/(m· 

K) 

±0.01 W/(m· K) from 0.02 

- 0.2 W/(m· K) 

 

Table A2: Measurement range of the spindles of Brookfield LVDV III Ultra Rheometer. 

 

Spindle Spindle code Measurement range* (mPa.s) 

LV-1 61 15–20,000 

LV-2 62 50–100,000 

LV-3 63 200–400,000 

LV-4 64 1,000–2,000,000 

LV-5 65 2,000–4,000,000 

LV-2C  50–100,000 

LV-3C  200–400,000 

*This measurement range is for standard LVDV machine and for below 60 rpm. 
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APPENDIX B: ELEMENTAL COMPOSITION OF 

NANOPARTICLES BY SEM-EDAX ANALYSIS 

Table B1: Elemental composition of TiO2 (~21 nm) nanoparticles by EDAX analysis at 

point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1: EDAX analysis of TiO2 (~21 nm) nanoparticles at point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B2: SEM image of TiO2 (~21 nm) nanoparticles during EDAX analysis with the 

marking of point 1.  

Element Wt% At% 

TiL 52.29 26.80 

OK 47.71 73.20 

Matrix Correction ZAF 
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Table B2: Elemental composition of TiO2 (~21 nm) nanoparticles by EDAX analysis at 

point 2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3: EDAX analysis of TiO2 (~21 nm) nanoparticles at point 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B4: SEM image of TiO2 (~21 nm) nanoparticles during EDAX analysis with the 

marking of point 2. 

Element Wt% At% 

 TiL 60.52 33.86 

  OK 39.48 66.14 

Matrix Correction ZAF 
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Table B3: Elemental composition of TiO2 (40 nm) nanoparticles by EDAX analysis at 

point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B5: EDAX analysis of TiO2 (40 nm) nanoparticles at point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B6: SEM image of TiO2 (40 nm) nanoparticles during EDAX analysis with the 

marking of point 1. 

 

Element Wt% At% 

 TiL 53.85 28.04 

  OK 46.15 71.96 

Matrix Correction ZAF 
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Table B4: Elemental composition of TiO2 (40 nm) nanoparticles by EDAX analysis at 

point 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B7: EDAX analysis of TiO2 (40 nm) nanoparticles at point 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B8: SEM image of TiO2 (40 nm) nanoparticles during EDAX analysis with the 

marking of point 2. 

Element Wt% At% 

 TiL 57.52 31.14 

  OK 42.48 68.86 

Matrix Correction ZAF 
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Table B5: Elemental composition of Al2O3 (13 nm) nanoparticles by EDAX analysis at 

point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B9: EDAX analysis of Al2O3 (13 nm) nanoparticles at point 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure B10: SEM image of Al2O3 (13 nm) nanoparticles during EDAX analysis with the 

marking of point 1.  

Element Wt% At% 

  OK 44.73 57.71 

 AlK 55.27 42.29 

Matrix Correction ZAF 
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Table B6: Elemental composition of Al2O3 (13 nm) nanoparticles by EDAX analysis at 

point 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B11: EDAX analysis of Al2O3 (13 nm) nanoparticles at point 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B12: SEM image of Al2O3 (13 nm) nanoparticles during EDAX analysis with the 

marking of point 2. 

Element Wt% At% 

  OK 44.72 57.71 

 AlK 55.28 42.29 

Matrix Correction ZAF 
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Table B7: Elemental composition of Al2O3 (50 nm) nanoparticles by EDAX analysis at 

point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B13: EDAX analysis of Al2O3 (50 nm) nanoparticles at point 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B14: SEM image of Al2O3 (50 nm) nanoparticles during EDAX analysis with the 

marking of point 1. 

Element Wt% At% 

  OK 42.42 55.40 

 AlK 57.58 44.60 

Matrix Correction ZAF 
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Table B8: Elemental composition of Al2O3 (50 nm) nanoparticles by EDAX analysis at 

point 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B15: EDAX analysis of Al2O3 (50 nm) nanoparticles at point 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure B16: SEM image of Al2O3 (50 nm) nanoparticles during EDAX analysis with the 

marking of point 2. 

Element Wt% At% 

  OK 42.96 55.95 

 AlK 57.04 44.05 

Matrix Correction ZAF 
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APPENDIX C: NANOPARTICLES SIZE MEASUREMENT 

Figure C1 shows the SEM image of TiO2 (~21nm) nanoparticles. Measurements of the 

approximate diameter of some of the individual particle by SEM are shown in Figure 

C2. The elemental composition of TiO2 (~21nm) nanoparticles by SEM-EDAX analysis 

is presented in Tables B1 and B2 (Appendix B). 

 

 

Figure C1: SEM image of TiO2 (~21 nm) nanoparticles. 
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Figure C2: SEM image of TiO2 (~21 nm) nanoparticles with the approximate 

measurement of some particle’s diameter. 
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Figure C3 shows the TEM image of R141b/TiO2 (~21nm) nanorefrigerant (with 0.5 

volume concentration (%) of nanoparticles). Measurements of the approximate diameter 

of some of the individual particle by TEM are shown in Figure C4. From the SEM and 

TEM images, it was assumed that, the sizes of the particles were about 21 nm and the 

particle shape is almost spherical. The TEM image shows less agglomeration for this 

solution even after 24 hours of preparation.  

 

 

Figure C3: TEM image of R141b/TiO2 (~21 nm) nanorefrigerants. 
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Figure C4: TEM image of R141b/TiO2 (~21 nm) nanorefrigerants with the approximate 

measurement of some particle’s diameter. 
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Figure C5 shows the SEM image of TiO2 (40 nm) nanoparticles. Measurements of the 

approximate diameter of some of the individual particle by SEM are shown in Figure 

C6. The elemental composition of TiO2 (40 nm) nanoparticles by SEM-EDAX analysis 

is presented in Tables B3 and B4 (Appendix B). 

 

 

Figure C5: SEM image of TiO2 (40 nm) nanoparticles. 
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Figure C6: SEM image of TiO2 (40 nm) nanoparticles with the approximate 

measurement of some particle’s diameter. 
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Figure C7 shows the TEM image of R141b/TiO2 (40 nm) nanorefrigerants (with 0.5 

volume concentration (%) of nanoparticles). Measurements of the approximate diameter 

of some of the individual particle by TEM are shown in Figure C8. From the SEM and 

TEM images, it was assumed that, the sizes of the particles were about 40 nm and the 

particle shape is irregular. However, images show that, the size varies from 25 nm to 70 

nm. The TEM image shows less agglomeration for this solution even after 24 hours of 

preparation. 

 

 

Figure C7: TEM image of R141b/TiO2 (40 nm) nanorefrigerants. 
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Figure C8: TEM image of R141b/TiO2 (40 nm) nanorefrigerants with the approximate 

measurement of some particle’s diameter. 
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Figure C9 shows the SEM image of Al2O3 (13 nm) nanoparticles. The elemental 

composition of Al2O3 (13 nm) nanoparticles by SEM-EDAX analysis is presented in 

Tables B5 and B6 (Appendix B).  

 

 

Figure C9: SEM image of Al2O3 (13 nm) nanoparticles. 
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Figure C10 shows the TEM image of R141b/Al2O3 (13 nm) nanorefrigerants (with 0.5 

volume concentration (%) of nanoparticles). Measurements of the approximate diameter 

of some of the individual particle by TEM are shown in Figure C11. From the SEM and 

TEM images, it was assumed that, the sizes of the particles were about 13 nm and the 

particle shape is spherical. However, the size varies from 9 nm to 15 nm. The TEM 

image shows less agglomeration for this solution even after 24 hours of preparation. 

 

 

 

Figure C10: TEM image of R141b/Al2O3 (13 nm) nanorefrigerants. 
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Figure C11: TEM image of R141b/Al2O3 (13 nm) nanorefrigerants with the approximate 

measurement of some particle’s diameter. 
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Figure C12 shows the SEM image of Al2O3 (50 nm) nanoparticles. The elemental 

composition of Al2O3 (50 nm) nanoparticles by SEM-EDAX analysis is presented in 

Table B7 and B8 (Appendix B).  

 

 

Figure C12: SEM image of Al2O3 (50 nm) nanoparticles. 
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Figure C13 shows the TEM image of R141b/ Al2O3 (50 nm) nanorefrigerants (with 0.5 

volume concentration (%) of nanoparticles). The measurements of the approximate 

diameter of some of the individual particle by TEM have shown in Figure C14. From 

the SEM and TEM images, it was assumed that, the sizes of the particles were about 50 

nm long and 8 nm diameters, and the particle had tubular shape. However, the length of 

the particles is approximately 50 nm but the diameter of the particle varies from 5 nm to 

12 nm. Furthermore, The TEM image also shows huge agglomeration. 

 

 

Figure C13: TEM image of R141b/Al2O3 (50 nm) nanorefrigerants. 
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Figure C14: TEM image of R141b/Al2O3 (50 nm) nanorefrigerants with the approximate 

measurement of some particle’s diameter and length. 
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